
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Nonparametric Bayesian label prediction on a graph

Hartog, J.

Publication date
2019
Document Version
Final published version
License
Other

Link to publication

Citation for published version (APA):
Hartog, J. (2019). Nonparametric Bayesian label prediction on a graph. [Thesis, fully internal,
Universiteit van Amsterdam].

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/nonparametric-bayesian-label-prediction-on-a-graph(942dbbd0-8265-44cc-aaa7-3b6d85e07bb0).html


Nonparametric Bayesian label 
prediction on a graph

Jarno Hartog

N
on

p
aram

etric B
ayesian

 lab
el p

red
iction

 on
 a g

rap
h

Jarn
o H

artog



NONPARAMETRIC BAYESIAN LABEL PREDICTION ON
A GRAPH





NONPARAMETRIC BAYESIAN LABEL PREDICTION ON
A GRAPH

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. ir. K.I.J. Maex
ten overstaan van een door het College voor Promoties ingestelde commissie,

in het openbaar te verdedigen in de Agnietenkapel
op woensdag 11 september 2019, te 14.00 uur

door

Jarno HARTOG

geboren te Vlaardingen



Promotiecommissie:

Promotor: Prof. dr. J.H. van Zanten Universiteit van Amsterdam
Copromotor: Dr. B.J.K. Kleijn Universiteit van Amsterdam
Overige leden: Prof. dr. G. Jongbloed TU Delft

Prof. dr. M.R.H. Mandjes Universiteit van Amsterdam
Prof. dr. M.C.M. de Gunst Vrije Universiteit Amsterdam
Dr. A.J. van Es Universiteit van Amsterdam
Dr. G. Regts Universiteit van Amsterdam

Faculteit: Faculteit der Natuurwetenschappen, Wiskunde en Informatica



v

Keywords: binary classification, graph, Bayesian nonparametrics

Printed by: Ipskamp Printing

Front & Back: M.I. Stout & J. Hartog

Copyright © 2019 by J. Hartog

ISBN 978-04-028-1616-7

An electronic version of this dissertation is available at
https://dare.uva.nl/

https://dare.uva.nl/


Voor Merel Isabel Stout



CONTENTS

Summary xi

Samenvatting xiii

1 Introduction 1
1.1 Graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Bayesian computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Prediction problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Hierarchical Bayes 21
2.1 Observation model and priors . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Observation model. . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2 Prior on the soft label function . . . . . . . . . . . . . . . . . . . . 23
2.1.3 Latent variables and missing labels . . . . . . . . . . . . . . . . . 25

2.2 Sampling scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 Sampling from p(z |c, f ,D). . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Sampling from p( f |c, z,D). . . . . . . . . . . . . . . . . . . . . . 27
2.2.3 Sampling from p(c |z, f ,D). . . . . . . . . . . . . . . . . . . . . . 27
2.2.4 Overview of the sampling schemes. . . . . . . . . . . . . . . . . . 28

2.3 Computational aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Using the eigendecomposition of the Laplacian . . . . . . . . . . . 29
2.3.2 A strategy for sparse graphs . . . . . . . . . . . . . . . . . . . . . 31

2.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.1 Path graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.2 Small-world graph . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.3 Protein function prediction . . . . . . . . . . . . . . . . . . . . . 49
2.4.4 MNIST digit prediction . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Regression problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5.1 Traffic flow estimation . . . . . . . . . . . . . . . . . . . . . . . . 54

2.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 Truncation 61
3.1 Observational model and priors . . . . . . . . . . . . . . . . . . . . . . 62

3.1.1 Observational model. . . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.2 Prior on the soft label function . . . . . . . . . . . . . . . . . . . . 63
3.1.3 Prior on the truncation level . . . . . . . . . . . . . . . . . . . . . 64
3.1.4 Prior on the regularization parameter . . . . . . . . . . . . . . . . 64
3.1.5 Full hierarchical model . . . . . . . . . . . . . . . . . . . . . . . 65

vii



viii CONTENTS

3.2 Sampling scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.1 Sampling from p(z |c,k, g ,D) . . . . . . . . . . . . . . . . . . . . 65
3.2.2 Sampling from p(k, g |c, z,D) . . . . . . . . . . . . . . . . . . . . 65
3.2.3 Sampling from p(c |k, g , z,D) . . . . . . . . . . . . . . . . . . . . 67
3.2.4 Overview of sampling scheme . . . . . . . . . . . . . . . . . . . . 67

3.3 Computational aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.1 Impact of the truncation level . . . . . . . . . . . . . . . . . . . . 68
3.4.2 Computational gains: MNIST data . . . . . . . . . . . . . . . . . . 71
3.4.3 Large scale example: object tracking . . . . . . . . . . . . . . . . . 72

3.5 Regression problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.5.1 Traffic flow estimation . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Empirical Bayes 87
4.1 Observation model and prior . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1.1 Observation model. . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.1.2 Prior on the soft label function . . . . . . . . . . . . . . . . . . . . 88
4.1.3 Missing labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Laplace approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.1 Finding the location of the maximum . . . . . . . . . . . . . . . . 91

4.3 Optimization for hyperparameters . . . . . . . . . . . . . . . . . . . . . 93
4.3.1 Optimization over the regularization parameter . . . . . . . . . . . 93

4.4 Sampling scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4.1 Performance relative to hierarchical Bayes . . . . . . . . . . . . . . 97

4.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5.1 Finding the optimal regularization parameter . . . . . . . . . . . . 98
4.5.2 Finding the optimal truncation level . . . . . . . . . . . . . . . . . 100
4.5.3 MCMC versus Laplace approximation . . . . . . . . . . . . . . . . 102
4.5.4 Changing object in a noisy environment . . . . . . . . . . . . . . . 103

4.6 Regression problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.6.1 Traffic flow estimation . . . . . . . . . . . . . . . . . . . . . . . . 107

4.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Variational inference 113
5.1 Observational model and prior . . . . . . . . . . . . . . . . . . . . . . . 114

5.1.1 Observational model. . . . . . . . . . . . . . . . . . . . . . . . . 114
5.1.2 Prior on the soft label function . . . . . . . . . . . . . . . . . . . . 115
5.1.3 Prior on the regularization parameter . . . . . . . . . . . . . . . . 115
5.1.4 Full hierarchical model . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 Variational approximation . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2.1 Evidence lower bound . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3 Coordinate ascent variational inference. . . . . . . . . . . . . . . . . . . 119
5.3.1 Hyperparameter updates . . . . . . . . . . . . . . . . . . . . . . 119



CONTENTS ix

5.4 Stochastic variational inference . . . . . . . . . . . . . . . . . . . . . . . 122
5.4.1 Stochastic optimization . . . . . . . . . . . . . . . . . . . . . . . 123
5.4.2 Gradient of the ELBO . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.6 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.6.1 Minibatch size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.6.2 Changing object in a noisy environment . . . . . . . . . . . . . . . 129

5.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Dankwoord 133

List of Publications 135

References 137





SUMMARY

This dissertation is devoted to nonparametric Bayesian label prediction on a graph. La-
bel prediction is a problem within the area of statistical learning. Typically, we want to
predict a label, i.e. the outcome of some quantitative or categorical measurement, based
on some features of the available data. A training set of observed, possibly noisy, labels
and the corresponding features is available to base our inference on.

Label prediction problems on graphs arise in a variety of applications, for instance in
machine learning, in the prediction of the biological function of a protein in a protein-
protein interaction graph, in image analysis, and in the prediction of brand preference
in social networks.

Prime examples are problems in which the graph is given by the application con-
text. In our setting, we think of the labels as a stochastic process indexed by the graph
vertex set. The data are noisy observations of the vertex labels. In case of regression on
the graph, this process is real-valued. For classification problems, the process can be
binary-valued or discrete-valued in general. Our main goal is to predict the missing la-
bels correctly. The underlying idea is that the location of a given vertex in the graph and
the information of its neighbors should have predictive power for the label of the vertex
of interest.

First, we consider a hierarchical Bayesian approach with a randomly scaled Gaussian
prior. A benefit of the hierarchical Bayesian procedure is that it is capable, when properly
designed, to automatically determine the correct value for the scale parameter. The prior
can be interpreted as a series expansion of the function of interest using the eigenvectors
of the graph Laplacian matrix as a basis. In order to alleviate the computational burden
of taking into account all the eigenvectors, we truncate the series at a random point to
make our method applicable for very large graphs. For the full Bayesian approach, we
sample from the joint posterior of the function of interest, regularization parameter and
truncation level. Alternatively, we use empirical Bayes methods to select the regulariza-
tion parameter and truncation level. After fixing these parameters, we sample from the
posterior distribution of the function of interest. Finally, we use variational inference to
approximate the posterior distribution. A major benefit of variational inference is that it
allows for stochastic optimization to make it applicable to large data.

xi





SAMENVATTING

Dit proefschrift is gewijd aan het op een nietparametrische Bayesiaanse wijze voorspel-
len van labels op een graaf. Labelvoorspelling is een statistisch leerprobleem waar we de
uitkomst van een kwantitatief of categorisch experiment willen voorspellen op basis van
de beschikbare data. Een trainingsdataset van geobserveerde labels, mogelijk met ruis,
en de corresponderende kenmerken zijn beschikbaar om onze inferentie op te baseren.

Labelvoorspellingsproblemen duiken in verschillende toepassingsgebieden op, bij-
voorbeeld in automatisch leren, in het voorspellen van de biologische functie van een
proteïne in een proteïne-proteïne interactiegraaf, in beeldanalyse en in het voorspel-
len van merkvoorkeuren in een sociaal netwerk. De meest relevante problemen zijn die
waarin de graaf is gegeven door de context van de toepassing. De beschikbare data kan
ruis vertonen en bestaat uit observaties van labels op de knooppunten van een graaf.
Ons hoofddoel is het correct voorspellen van de missende labels. In onze opzet model-
leren we de labels als een stochastisch proces geïndexeerd door de knooppunten. De
onderliggende gedachte is dat de locatie van een gegeven knooppunt en de informatie
van zijn buren voorspellende kracht heeft voor het label van het betreffende knooppunt.

In het geval van regressie op de graaf neemt dit proces reeële waarden aan en in clas-
sificatieproblemen discrete waarden. Binnen dit onderzoek focussen we in het bijzon-
der op classificatieproblemen met binaire waarden. We beginnen met een hiërarchische
Bayesiaanse aanpak met een willekeurig geschaalde Gaussische a-priori-verdeling. In-
dien goed ontworpen, is de hiërarchische Bayesiaanse procedure in staat om de juiste
schaalparameterwaarde automatisch te vinden. De a-priori-verdeling kan worden geïn-
terpreteerd als een reeksontwikkeling van de onderliggende functie over een basis van
eigenvectoren van de Laplaciaanse matrix van de graaf. Om de computationele last van
het meenemen van alle eigenvectoren te verlichten, kappen we de reeks op een wille-
keurig moment af om onze methode toepasbaar te maken voor grote grafen.

Voor de volledige Bayesiaanse aanpak nemen we een steekproef uit de gezamenlijke
a-posteriori-verdeling van de onderliggende functie, de regularisatieparameter en het
afkapniveau. Daarnaast kijken we ook naar een empirisch Bayesiaanse aanpak om af-
zonderlijk de regularisatieparameter en het afkapniveau te selecteren. Nadat we deze
parameters hebben vastgesteld, nemen we een steekproef van de a-posteriori-verdeling
van de onderliggende functie. Tot slot gebruiken we ook variationele methoden om de
a-posteriori-verdeling te benaderen. Variationele methoden kunnen we met behulp van
stochastische optimalisatie op zeer grote datasets toepassen.

xiii





1
INTRODUCTION

This dissertation is devoted to nonparametric Bayesian label prediction on a graph. In
this chapter, we give an introduction to our main subject, preliminary definitions and
results that we need in our work. We introduce key concepts from graph theory such as the
graph Laplacian matrix and a notion of smoothness for functions on the vertices of the
graph. We briefly introduce Bayesian statistics and Markov chain Monte Carlo methods
for the computation of the posterior distribution. Finally, we introduce label prediction
problems on a graph and outline the rest of this dissertation.

Label prediction is a problem within the area of statistical learning. Typically, we want to
predict a label, i.e. the outcome of a quantitative or categorical measurement based on
features of the available data. A training set of observed, possibly noisy, labels and the
corresponding features is available to base our inference on. Within machine learning
literature, a difference is made between supervised learning, where both the labels and
features are observed, and unsupervised learning, where only the features are observed,
see for example Friedman et al. (2001). This last category includes clustering problems
and usually exploits the presence of special structure of the data. In this dissertation, we
consider semi-supervised learning problems where the data consists of noisy observa-
tions of some of the labels, and the data is structured as a graph.

Label prediction problems on graphs arise in a variety of applications, for instance in
machine learning (e.g. Belkin et al. (2004); Sindhwani et al. (2007)), in the prediction of
the biological function of a protein in a protein-protein interaction graph (e.g. Kolaczyk
(2009); Nariai et al. (2007); Sharan et al. (2007)), in image analysis (e.g. Liu et al. (2014))
and in the prediction of brand preference in social networks (Blair et al. (2003); Smith
(2011)).

Prime examples are problems in which the graph is given by the application context.
If a graph is not given by the application, one can still construct a graph in some cases.
For example, if the data are points in a metric space, a graph can be constructed by con-
necting data points that are close. The data are noisy observations of some of the vertex
labels. In our context, we think of the labels as a stochastic process indexed by the graph

1



2 1. INTRODUCTION

vertex set. The process is real-valued in case of regression on the graph. For classifica-
tion problems, the process can be binary-valued or discrete-valued in general. Our main
goal is to predict the missing labels correctly. The underlying idea is that the location of
a given vertex in the graph and the information of its neighbors should have predictive
power for the label of the vertex of interest.

Several graph-based prediction methods exist in the literature. The simplest is near-
est neighbor prediction. In this method an unknown label is predicted by taking the
average of the observed labels in the neighborhood of the vertex of interest. The neigh-
borhood consists of the vertices directly connected to the vertex of interest. This can also
be generalized to vertices that are more than one step away. There are several options
on how to take missing observations into account. Missing labels in the neighborhood
of the vertex of interest can, for example, simply be ignored or be imputed. The more
interesting choice, however, is the size of the neighborhood. This corresponds to how
much we smooth the data over the graph. For more information about nearest neighbor
methods, see Friedman et al. (2001). Other approaches are Markov random field models
and kernel-based methods, see Kolaczyk (2009). We consider, in this dissertation, meth-
ods closely related to frequentist kernel-based methods. We expand on the Bayesian
framework proposed in Kirichenko and Van Zanten (2017). A key similarity is the use of
the Laplacian matrix associated to the graph to take the graph geometry into account
(cf. Ando and Zhang (2007); Belkin et al. (2004); Kolaczyk (2009); Zhu and Hastie (2005)).
Regularization using a different norm than the one induced by the graph Laplacian ma-
trix is discussed in Sadhanala et al. (2016) and a different Bayesian approach is presented
in Bertozzi et al. (2018).

The rest of this dissertation is organized as follows. In the remainder of this chapter,
we introduce preliminary concepts from graph theory, statistics and Bayesian computa-
tion to formalize our problem setting.

CHAPTER 2
In Chapter 2, we describe the implementation of a nonparametric Bayesian approach to
solve regression and binary classification problems on graphs. We consider a hierarchi-
cal Bayesian approach with a randomly scaled Gaussian prior. A benefit of the hierar-
chical Bayesian procedure is that it is capable, when properly designed, to automatically
determine the correct value for the regularization parameter. The prior distribution uses
the graph Laplacian to take the underlying geometry of the graph into account. We pro-
pose two methods. The first is based on a theoretically optimal prior. The second is a
more flexible variant using partial conjugacy. In order to illustrate the proposed meth-
ods we have two simulated data examples and two examples using real data.

CHAPTER 3
We improve the method from Chapter 2 in Chapter 3. The prior in Chapter 2 can be
interpreted as a series expansion of the soft label function using the eigenvectors of the
graph Laplacian matrix as a basis. The coefficients have a Gaussian distribution and
the series is randomly scaled with a regularization parameter. Using all eigenvectors is
computationally demanding and limits the applicability of our method for very large
graphs. In order to alleviate this issue we truncate the series at a random in Chapter 3 for
computational efficiency. Truncating the series at a random point also makes the prior



1.1. GRAPH THEORY 3

more flexible in terms of adaptation to smoothness. We compare our truncated prior
to the untruncated prior in simulated and real data examples to illustrate the improved
scalability in terms of the size of the underlying graph.

CHAPTER 4
In Chapter 4, we use empirical Bayes methods to select the regularization parameter and
truncation level. This is a different approach than the Markov chain Monte Carlo algo-
rithm used to sample from the posterior distribution in Chapters 2 and 3. In the MCMC
algorithm, the regularization parameter and truncation level are simulated simultane-
ously with the parameter of interest. In the empirical Bayes method, we use a two-step
procedure. First, we fix the regularization parameter and truncation level at optimal val-
ues in terms of maximal marginal likelihood. After fixing the regularization parameter
and the truncation level, we sample from the posterior distribution of the parameter of
interest. A direct implementation of the optimization step for the classification problem
is not feasible, so we approximate the posterior distribution using Laplace approxima-
tion. We provide examples to show the strengths and weaknesses of the empirical Bayes
method.

CHAPTER 5
In Chapter 5, we use variational inference to approximate the posterior distribution.
Variational inference is a method from machine learning and, similar to the empirical
Bayes method, it has separate steps for the selection of the hyperparameters and sam-
pling from the approximated posterior distribution. The approximation of the posterior
distribution is done through optimization within a class of simpler functions. A major
benefit of variational inference is that it allows for stochastic optimization to make it ap-
plicable to large data. We show this in an example.

1.1. GRAPH THEORY
In this section, we introduce some relevant concepts from graph theory that are used
throughout the rest of this dissertation. For a more comprehensive introduction to graph
theory see Diestel (1997) and West (1996). For more on graphs within a statistical context
see Kolaczyk (2009).

A graph G = (V ,E) is a structure consisting of a vertex set V and an edge set E . The
vertices u ∈ V are also sometimes referred to as nodes and we usually denote them by
1, . . . ,n, where #V = n. The edges are pairs {u, v}, where u, v ∈V . A subgraph G ′ is a graph
whose vertex set and edge set are subsets of a given graph G . Given a subset V ′ ⊂ V the
vertex-induced subgraph is G ′ = (V ′,E ′), where E ′ ⊂ E are all edges between nodes in
V ′. If the edges of a graph are ordered pairs, the graph is called a directed graph, other-
wise the graph is undirected. In this dissertation we only consider undirected graphs. In
most applications this is reflected by a symmetric relationship between the nodes of the
graph, for example having worked together in a social network or protein interaction.
If {u, v} ∈ E , then we call u and v adjacent or neighbors. An edge of the form {u,u} is
called a loop. One could allow for multiple edges between nodes, but in this dissertation
we only consider graphs without loops or multiple edges, these are also called simple
graphs. Our method allows for a generalization to graphs with multiple edges or loops



4 1. INTRODUCTION

or even weighted edges. For simplicity, we do not consider these generalizations in our
dissertation. Moreover, we assume that the graph is connected. That means there is a
path from any vertex u to any other vertex v in the graph, where a path is a sequence of
vertices where each vertex is adjacent to the next one. While our algorithms generalize
to disconnected graphs, we prefer to estimate a function for each connected component
separately as it is a way to parallelize the computations. The connected components of
a graph G are the largest vertex-induced subgraphs that are connected.

1

2

3

4

Figure 1.1: A connected simple graph G = (V ,E). The vertex set is V = {1,2,3,4} and the edges are E =
{{1,2}, {1,3}, {2,3}, {3,4}}. The graph G is undirected.

The adjacency matrix A is a matrix has entries 1 or 0 in position (u, v) according to
whether {u, v} ∈ E or not. It immediately follows that an undirected graph has a symmet-
ric adjacency matrix and if the graph has no loops, the diagonal of the adjacency matrix
only has zeros. The degree of a vertex v is the number of edges that contain v , it can be
recovered from the adjacency matrix as the sum of the column or row corresponding to
the vertex v . Note that for directed graphs these correspond to indegree and outdegree
respectively, but for undirected graphs these two sums are equal. For the graph in Figure
1.1, the adjacency matrix is given by


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

 .

The vertex degrees are 2, 2, 3, 1. The key concept we will use throughout this dissertation
to describe the geometry of a connected simple graph is the Laplacian matrix defined as

L = D − A,

where D is a diagonal matrix containing the vertex degrees and A is the adjacency matrix.
It follows that the vector v = (1, . . . ,1) is an eigenvector of L with eigenvalue 0. Moreover,
for any vector x ∈Rn , we have

xT Lx = ∑
{i , j }∈E

(xi −x j )2. (1.1)

We can see that the right-hand side in Equation (1.1) is non-negative, so L is positive



1.1. GRAPH THEORY 5

semi-definite. For the graph in Figure 1.1, the Laplacian matrix is
2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1

 . (1.2)

We are interested in estimating a function f : V → R on the vertices of the graph. As the
graph has n vertices, a function on the vertices can be interpreted as an element of Rn .
Equation (1.1) shows that the Laplacian matrix measures how much a function differs
between adjacent vertices. The Laplacian applied to a function on a graph has values

(L f )i =
∑

j :{i , j }∈E
( fi − f j ).

For example, if a vertex denoted by a triple (x, y, z) has a neighborhood consisting of
vertices (x ±1, y ±1, z ±1), then the Laplacian matrix applied to a function on that graph
has value

(L f )(x, y, z) = 6 f (x, y, z)− f (x +1, y, z)− f (x −1, y, z)− f (x, y +1, z)− f (x, y −1, z)

− f (x, y, z +1)− f (x, y, z −1),

corresponding to the finite difference for the Laplacian operator in multivariate calculus
with unit spacing. This suggests that the Laplacian matrix is a discrete analog of the
Laplacian operator, see also Mohar (1991). We can interpret Equation (1.1) as a squared
smoothness norm. We use it later on in this dissertation to balance fitting the observed
data and the smoothness of the function estimate. In a statistical context, the Laplacian
matrix is often used to take into account the geometry of the graph (e.g. Belkin et al.
(2004); Kirichenko and Van Zanten (2017); Kolaczyk (2009)).

The geometry of the graph enters through the eigenvalues 0 = λ1 ≤ λ2 ≤ ·· · ≤ λn of
the Laplacian matrix. In most examples these will be computed numerically, but for
some graphs these can also be derived. For the graph G in Figure 1.1, the eigenvalues of
the Laplacian matrix (1.2) are λ1 = 0, λ2 = 1, λ3 = 3 and λ4 = 4. The corresponding eigen-
vectors are u(1) = (1,1,1,1), u(2) = (−1,−1,0,2), u(3) = (−1,1,0,0) and u(4) = (1,1,−3,1).

Figure 1.2: The eigenvectors of the graph G in Figure 1.1 visualized as a function on the graph, where the nodes
are scaled according to function value and the black or white fill indicates a positive or negative value.

A first example that is used throughout this dissertation is the path graph, a con-
nected, simple graph with n nodes, n −1 edges, where two nodes have degree 1 and the
other nodes have degree 2.



6 1. INTRODUCTION

Figure 1.3: Path graph with n = 5 nodes.

The eigenvalues of the Laplacian matrix of the path graph are

λ j = 4sin2
(

( j −1)π

2n

)
,

for j = 1, . . . ,n. The corresponding eigenvectors are given by

u( j )
i = cos

(
(i − 1

2 )( j −1)π

n

)
, (1.3)

for i = 1, . . . ,n. These can be verified by direct computation using trigonometric addition
and double angle formulas. For more background information about the spectrum of the
Laplacian matrix, see Cvetkovic et al. (2009). We will work with unit eigenvectors. The
norm of u( j ) in Equation (1.3) is

p
n/2 for j > 1 and

p
n for j = 1.

0

4

j

λ j

Figure 1.4: The eigenvalues of the path graph plot along the path graph for large n.

Figure 1.5: The first five eigenvectors of the path graph plot along the path graph for large n. The solid line is
the constant eigenvector u(1) = (1, . . . ,1) corresponding to eigenvalue λ1 = 0. The densely dashed line is the
eigenvector corresponding to λ2. Increased frequencies, represented by looser dashes, correspond to larger
eigenvalues.



1.1. GRAPH THEORY 7

In later examples, we will also use the grid graph, which is the graph Cartesian prod-
uct of path graphs.

Figure 1.6: A 7×4 grid graph. It is the Cartesian product of a path graph with 7 nodes and a path graph with 4
nodes.

The graph Cartesian product G1□G2 of two graph G1 = (V1,E1) and G2 = (V2,E2) is a
graph with vertex set V1×V2 and u = (u1,u2) and v = (v1, v2) adjacent whenever (u1 = v1

and {u2, v2} ∈ E2) or (u2 = v2 and {u1, v1} ∈ E1).

Figure 1.7: The graph Cartesian product G□G , where G is the graph from Figure 1.1.

The eigenvalues of the Laplacian matrix of a graph Cartesian product can be given in
terms of eigenvalues of the Laplacian matrices L1 and L2 of its components (cf. Theorem
3.5 in Mohar (1991)) as

λi +µ j ,

where λi , i = 1, . . . ,n1 are the eigenvalues of L1 and µ j , j = 1, . . . ,n2 are the eigenvalues of
L2. The corresponding eigenvectors are given as a Kronecker product x(i ) ⊗ y ( j ), where
x(i ) is the eigenvector of L1 with eigenvalue λi and y ( j ) is the eigenvector of L2 corre-
sponding to µ j . Recall that the Kronecker product A ⊗B for matrices A and B of arbi-
trary sizes is a block matrix, with blocks consisting of an element ai , j B , where ai , j are
the elements of A. Note that the Laplacian matrix of G1□G2 is the Kronecker sum

L1 ⊕L2 = L1 ⊗ In2 + In1 ⊗L2,

where In is the n ×n identity matrix. For example, we can see that the graph G□G from



8 1. INTRODUCTION

Figure 1.7 has an eigenvalue 5 = 1+4, corresponding to eigenvector


1
1
−3
1

⊗


−1
−1
0
2

=



−1
−1
0
2
−1
−1
0
2
3
3
0
−6
−1
−1
0
2



.

The geometry of the graph is related to the eigenvalues of the Laplacian matrix. For
example, for a disconnected graph G with K connected components, the Laplacian ma-
trix has eigenvalue zero with multiplicity K . The corresponding eigenvectors are the
constant vectors on each of the connected components. For a connected graph G , the
second smallest eigenvalue λ2 > 0 is also called the algebraic connectivity of G and is re-
lated to several graph invariants, which can be viewed as measures of connectivity, see,
for example, Section 6 of Mohar (1991). For example, λ2 is a lower bound on the vertex
connectivity, i.e. the minimum number of nodes, whose deletion would make the graph
disconnected.

In our context, we relate the geometry of the graph to the growth of the eigenvalues.
We often assume that for some parameter r ≥ 1, there exists j0 ∈N, κ ∈ (0,1] and C1,C2 >
0, such that for all n large enough,

C1

(
j −1

n

)2/r

≤λ j ≤C2

(
j −1

n

)2/r

, ∀ j ∈ { j0, . . . ,κn}. (1.4)

We will refer to Condition (1.4) as the geometry condition. This condition can be verified
numerically and for some graphs it can be shown to hold theoretically (see, for exam-
ple, Kirichenko and Van Zanten (2017)). For the path graph we can use the inequalities
2x/π ≤ sin x ≤ x for x ∈ [0,1] to see that the geometry condition holds for r = 1 with
C1 = 4, C2 = π2, κ = 1 and j0 = 1. In Kirichenko and Van Zanten (2017) it is shown that
for d-dimensional regular grid graphs, i.e. the Cartesian product of d path graphs with
the same number of nodes, the geometry condition holds for r = d , which gives an inter-
pretation to the geometry number r as the dimension of the graph. However, note that
r does not have to be an integer. Implicitly, we interpret the graph as an element of a
sequence of graphs of growing size n. In some applications, such as for the path graph,
this is a natural way to think of the graph growing in size.



1.2. STATISTICS 9

1.2. STATISTICS
In this section, we give the relevant statistical notation and results that are used through-
out this dissertation.

In mathematical statistics, a statistical model is defined as a collection of probabil-
ity distributions. The probability distributions are indexed by a parameter, which is to
be inferred from the data. If the unknown parameter is of finite dimension, the prob-
lem is called parametric. An example of parametric inference is the estimation of the
parameters of a linear model, i.e. linear regression. If the parameter of interest is of infi-
nite dimension, we speak of nonparametric statistics. Examples of such parameters are
functions and distributions. In nonparametric regression, the function of interest does
not depend on a finite number of parameters, such as in linear regression, but is an ele-
ment of an infinite dimensional function space. References for nonparametric statistics
are Tsybakov (2009) and Wasserman (2006). Although nonparametric models are typi-
cally less restrictive than parametric models, some assumptions need to be posed on the
parameter space. This is usually reflected in a choice of bandwidth, smoothness or reg-
ularization parameter that balances the fit to the data with a notion of complexity, such
as regularity or smoothness. The choice of this parameter is well known to be a delicate
issue and the label prediction in a graph context is no exception, see Belkin et al. (2006).

A frequentist approach to inference is to consider the unknown parameter of the sta-
tistical model unknown, but fixed. In Bayesian statistics, we treat the unknown parame-
ter as a random variable. The uncertainty about the parameter before observing the data
is described in the prior distribution on the parameter space. The conditional distribu-
tion of the parameter given the observed data is called the posterior distribution. It de-
scribes the uncertainty of the parameter after observing the data. The posterior distribu-
tion can be used to make predictions and the spread of the posterior mass can be used to
quantify uncertainty in the predictions. References for a good introduction to Bayesian
statistics are Gelman et al. (2014) and Robert (2007). The Bayesian approach can be pre-
ferred over the frequentist approach for philosophical reasons. However, many modern
applications use Bayesian statistics for its ability to incorporate regularization in com-
plex models via the prior distribution. A reference for Bayesian nonparametrics is Ghosal
and Van der Vaart (2017).

We denote the probability density function (pdf) of X by p(x) and indicate that X
has probability density function p by X ∼ p. The distribution of X conditional on Y is
denoted by X |Y and its density by p(x | y) = p(x, y)/p(y). We assume p(y) > 0, such that
this definition makes sense. Moreover, in this dissertation we only deal with densities
with respect to the Lebesgue measure, the counting measure and their product measure,
in which case we might also talk about a probability mass function. With a slight abuse
of notation, we use the notation p(·) and p(· | ·) for all (conditional) probability density
functions, it should be clear from the arguments and context which one is meant.

Most calculations in this dissertation revolve around Gaussian processes and there-
fore the multivariate normal distribution. We say X is Gaussian or X has a multivariate
normal distribution and denote this by X ∼ N (µ,Σ), where the pdf is given by

p(x) = (det2πΣ)−
1
2 e−

1
2 (x−µ)T Σ−1(x−µ),

where the parameter µ is the mean vector and Σ the (positive definite) covariance matrix



10 1. INTRODUCTION

of appropriate dimension. When X is partitioned as (X1, X2), a common calculation is
the pdf of X1 conditional on X2 in terms of the parameters µ= (µ1,µ2) and

Σ=
(
Σ11 Σ12

Σ21 Σ22

)
.

We use the block matrix inverse

Σ−1 =
(

(Σ11 −Σ12Σ
−1
22 Σ21)−1 −(Σ11 −Σ12Σ

−1
22 Σ21)−1Σ12Σ

−1
22

−Σ−1
22 Σ21(Σ11 −Σ12Σ

−1
22 Σ21)−1 Σ−1

22 +Σ−1
22 Σ21(Σ11 −Σ12Σ

−1
22 Σ21)−1Σ12Σ

−1
22

)
to see that

X1 |X2 ∼ N (µ1 +Σ12Σ
−1
22 (X2 −µ2),Σ11 −Σ12Σ

−1
22 Σ21). (1.5)

A reference for the use of Gaussian processes in machine learning is Rasmussen and
Williams (2006).

We employ a Bayesian approach to infer the parameter of interest. In our statistical
model of the data X we treat the parameter of interest θ as another random variable and
express the likelihood of the data as a conditional probability density p(x |θ). We choose
a prior density p(θ) and use Bayes’ rule to compute the posterior density

p(θ |x) = p(x |θ)p(θ)∫
p(x |θ)p(θ)dθ

.

To find the posterior distribution, we usually only consider p(x |θ)p(θ) as a function of
θ. We can always compute the normalization constant afterwards using the law of total
probability

∫
p(θ |x)dθ = 1.

A benefit of using a Gaussian family of distributions is the conjugacy in the sense that
if we use a prior distribution in this family, then the posterior distribution is also in the
Gaussian family. More precisely, if X |θ ∼ N (θ,Σ) and we use a prior distribution θ ∼
N (µ,Ξ), then the posterior distribution is θ |X ∼ N ((Ξ−1 +Σ−1)−1(Ξ−1µ+Σ−1X ), (Ξ−1 +
Σ−1)−1).

Another useful conjugacy is the normal-inverse gamma conjugacy. The gamma dis-
tribution has density

p(x) = βα

Γ(α)
xα−1e−βx ,

where α> 0 is the shape parameter, β> 0 is the rate parameter and Γ the gamma func-
tion defined by

Γ(z) =
∫ ∞

0
t z−1e−t d t .

As we usually don’t write the normalization constant, we simply use the notation X ∼
Γ(α,β) for X having a gamma distribution. The gamma distribution is conjugate for the
inverse variance (precision) of a univariate normal distribution. So, if X |θ ∼ N (µ,1/θ)
and θ ∼ Γ(α,β) then θ |X ∼ Γ(α+ 1

2 ,β+ 1
2 (X −µ)2).

The prior distribution on the parameter θ could, in turn, also depend on an unknown
hyperparameter ξ. In this case, we have a hierarchical Bayesian model. In a full Bayesian



1.3. BAYESIAN COMPUTATION 11

approach, we also endow ξ with a prior p(ξ), such that we can use the three distributions
p(x |θ), p(θ |ξ) and p(ξ) to determine the posterior

p(ξ,θ |x) ∝ p(x |θ)p(θ |ξ)p(ξ).

Usually, we are only interested in p(θ |x). We can compute this by integrating the joint
posterior over ξ. In principle, we could continue the hierarchy by having ξ also depend
on unknown hyperparameters. On the other hand, we can also see that introducing hy-
perparameters is equivalent to a special choice of prior for θ:

p(θ) =
∫

p(θ |ξ)p(ξ)dξ.

An alternative to a full Bayesian approach is the empirical Bayes approach. In this
case, we fix the hyperparameter at ξ∗, where ξ∗ maximizes the marginal likelihood

p(x |ξ) =
∫

p(x |θ)p(θ |ξ)dθ.

Once we have determined ξ∗, we fix it and infer p(θ |x) in the usual way. This method
not only avoids the computation of the integral

p(θ |x) ∝
∫

p(x |θ)p(θ |ξ)p(ξ)dξ,

but also the choice of hyperprior p(ξ).

1.3. BAYESIAN COMPUTATION
In our setting, the data is usually partitioned in observed data and missing data X =
(X obs, X miss). Our two main goals are the computation of the posterior distribution of
the parameter of interest based on the observed data θ |X obs and the computation of the
posterior predictive distribution X miss |X obs. We can use these distributions to compute
functionals of the posterior density. For example, if we observe X obs = x and we wish to
compute the expected value of g (θ) conditional on x, where g is some function, we can
express this as ∫

g (θ)p(θ |x)dθ. (1.6)

In some special cases, this integral can be computed explicitly, but generally a numerical
method has to be used. Specifically in our setting, the posterior distribution is a high-
dimensional distribution, so grid-based methods might not be feasible. As an alterna-
tive, a Monte Carlo method can be used. Such methods use a sample from the posterior
distribution θ(1), . . . ,θ(N ) ∼ p(θ |x) to estimate the expectation (1.6) as

1

N

N∑
t=1

g (θ(t )).

An advantage is that the accuracy of this estimate depends on the sample size N and not
on the dimension of the parameter θ.



12 1. INTRODUCTION

To sample from the posterior distribution several techniques exist. For an overview
of methods to generate random numbers see Devroye (1986). We assume that we have
a random number generator able to generate an independent sample from several well-
known distributions, such as the normal distribution, the gamma distribution and the
standard uniform distribution, i.e. the distribution with pdf p(x) = 1 for x ∈ (0,1). Stan-
dard random number generators for these distributions are usually included in statisti-
cal software packages such as R (R Core Team, 2018). To sample from other distributions,
we can use exact simulation methods, such as the inversion method and the rejection
method, see for example Madras (2002). To illustrate the rejection method, consider
sampling from a normal distribution with mean µ and variance σ2 conditioned to be
positive. To achieve this, we generate a proposal from N (µ,σ2) and only accept the pro-
posal if it is positive.

In more complex models, direct simulation from the posterior distribution is often
not possible. In these cases, Markov chain Monte Carlo (MCMC) methods often provide
a solution. The basic idea is to generate a sequence θ(0),θ(1), . . . recursively, such that, for
large t , θ(t ) approximately has the desired distribution. The recursive generation only
uses θ(t ) and new random variables to determine θ(t+1), but it does not use θ(s) for s <
t , i.e. the sequence is a Markov chain. As the Markov chain approximates the target
distribution, we might want to discard the first part of the sequence. This is called the
burn-in period. A consequence of the recursive generation is that θ(t+1) and θ(t ) are
generally dependent. To reduce the dependence in the sample, we can, for example,
only keep one in every ten iterations and discard the rest. This is called thinning. For
more techniques and background information about MCMC methods, see Brooks et al.
(2011). For these methods in Bayesian context, see for example Gelman et al. (2014).

The Gibbs sampler is one way to recursively generate random variables approximat-
ing a target distribution. Suppose we can partition θ = (θ1,θ2) and we wish to sample
from p(θ1,θ2). We can achieve this by iteratively sampling from p(θ1 |θ2) and p(θ2 |θ1):

Algorithm 1.1 Gibbs sampler.

Input: Starting value θ(0) = (θ(0)
1 ,θ(0)

2 ).
Output: Sample θ(0),θ(1), . . . approximately distributed as p(θ1,θ2).

1: for t = 1,2, . . . do
2: Sample θ(t )

1 ∼ p(θ1 |θ(t−1)
2 ).

3: Sample θ(t )
2 ∼ p(θ2 |θ(t )

1 ).
4: end for

To illustrate the Gibbs sampler, consider θ = (θ1,θ2) having a bivariate normal dis-
tribution with mean (0,0), marginal variance 1 and correlation ρ. We can use Equation
(1.5) to see that θ1 |θ2 ∼ N (ρθ2,1−ρ2) and θ2 |θ1 ∼ N (ρθ1,1−ρ2). We can use these con-
ditionals to iteratively sample from the joint distribution of θ. An example is given in
Figure 1.8. Note that to sample from a multivariate normal distribution N (µ,Σ), we usu-
ally use the Cholesky decomposition Σ = CC T and sample θ = µ+C Z , where Z has a
standard normal distribution.

Algorithm 1.1 naturally generalizes to partitions in more than two components.



1.3. BAYESIAN COMPUTATION 13

−4 −2 0 2 4

−
4

−
2

0
2

4

Figure 1.8: Approximate sample from a bivariate normal distribution, generated using a Gibbs sampler. The
grey lines in the background are the contour lines for the actual pdf.

Gibbs sampling is particularly applicable in hierarchical Bayesian models. In these mod-
els, the data has likelihood p(x |θ) and the prior distribution p(θ |ξ) depends on some
hyperparameter ξ, which has a hyperprior p(ξ). Both the parameter of interest θ and the
hyperparameter ξ can be inferred simultaneously from the data. We are interested in the
joint posterior p(ξ,θ |x). The Gibbs sampler approximates this distribution by sampling
iteratively from the conditional pdfs p(θ |ξ, x) and p(ξ |θ). This allows for computations
in hierarchical models where the joint posterior p(ξ,θ |x) is untractable, but there exists
partial conjugacy for the prior conditional on the hyperparameter.



14 1. INTRODUCTION

When partial conjugacy cannot be exploited in a Gibbs sampler, the more general
Metropolis-Hasitngs algorithm might provide a solution:

Algorithm 1.2 Metropolis-Hastings algorithm.

Input: Starting value θ(0). Proposal density q(·, ·). Target density p(·).
Output: Sample θ(0),θ(1), . . . approximately distributed as p(θ).

1: for t = 1,2, . . . do
2: Sample a proposal θ′ ∼ q(·,θ(t−1)).
3: Calculate

r ← p(θ′)q(θ(t−1),θ′)
p(θ(t−1))q(θ′,θ(t−1))

.

4: Sample u ∼U (0,1).
5: if u ≤ r then
6: Accept proposal, θ(t ) ← θ′.
7: else
8: Reject proposal, θ(t ) ← θ(t−1).
9: end if

10: end for

The proposal density q(θ′,θ) does not have to be symmetric and could, in general,
also depend on the iteration t . It is the transition density of the proposed move from θ

to θ′. Common choices are independent proposals and random walk proposals. For in-
dependent proposals, the proposal density q(θ′,θ) in state θ, does not depend on θ. For
random walk proposals, the proposal has the form θ′ = θ+ ϵ, where ϵ is independent of
θ, this implies q(θ′,θ) has the form f (θ′−θ) for some function f . The acceptance prob-
ability of the proposed move to θ′ from state θ is a(θ′,θ) = min{1,r (θ,θ′)} in Algorithm
1.2.

To illustrate the Metropolis-Hastings algorithm, we look at the example from Figure
1.8. Now we use a Metropolis-Hasting algorithm to sample from the bivariate normal
distribution. We use a random walk proposal θ+ ϵ, where ϵ∼ N (0,1). The results are in
Figure 1.9.

The Metropolis-Hastings update is constructed such that the resulting sample is a
Markov chain, and that the target distribution is reversible with respect to the Markov
chain. A proof and technical details can be found in Tierney (1998). Intuitively, we
should design the proposal distribution such that the Markov chain is irreducible, i.e.
it can reach all states from any starting point, with positive probability. Then, we verify
reversibility through the detailed balance relation (cf. Brooks et al. (2011); Tierney (1998))

p(θ)q(θ′,θ)a(θ′,θ) = p(θ′)q(θ,θ′)a(θ,θ′). (1.7)

As a last generalization, we consider reversible jump Markov chain Monte Carlo. Sup-
pose the state space of θ is C =∪

k∈K Ck , where K is a discrete set of model indices, for
example K = N, and Ck = {k}×Rnk . This means that given k, θ has dimension nk and
we can denote θ = (k,ξ). In the context of Bayesian model selection this interpretation is



1.3. BAYESIAN COMPUTATION 15

−4 −2 0 2 4

−
4

−
2

0
2

4

Figure 1.9: Approximate sample from a bivariate normal distribution, generated using a Metropolis-Hasting
sampler. The grey lines in the background are the contour lines for the actual pdf.

very useful. The detailed balance relation (1.7) can still be interpreted in the case of jump
across dimensions and has to be verified. A precise treatment of reversible jump MCMC
is given in Green (1995), in addition to Tierney (1998) and Brooks et al. (2011). A tutorial
with minimal measure theoretic notation is Waagepetersen and Sorensen (2001).



16 1. INTRODUCTION

In this dissertation, we only use a special case of reversible jump MCMC, where the
models are nested and the change of dimension only consists of adding or deleting a
component of the parameter vector ξ ∈ Rk . This is equivalent to considering a large
parameter Ξ that includes all possible components of ξ, and to set some components to
zero if they are omitted from the model. We can achieve this using a Metropolis-Hastings
algorithm, where we allow the proposal distributions to have a point mass at zero. This
will result in an equivalent algorithm to the reversible jump approach.

Algorithm 1.3 Reversible jump MCMC.

Input: Starting value θ(0) = (k(0),ξ(0)). Proposal density q(·, ·), prior density p(k), likeli-
hood p(ξ |k). Target density p(k,ξ).

Output: Sample θ(0),θ(1), . . . approximately distributed as p(θ).
1: for t = 1,2, . . . do
2: Sample a proposal k ′ ∼ q(·,k(t−1)).
3: Sample ξ∼ p(· |k ′).
4: Calculate

r ← p(k ′)q(k(t−1),k ′)
p(k(t−1))q(k ′,k(t−1))

.

5: Sample u ∼U (0,1).
6: if u ≤ r then
7: Accept proposal, θ(t ) ← (k ′,ξ).
8: else
9: Reject proposal, θ(t ) ← θ(t−1).

10: end if
11: end for

To illustrate the use of reversible jump MCMC in a Bayesian context, we consider
the following polynomial regression example. We generate points (xi , yi ) for i = 1, . . . ,n,
where xi ∼U (0,1) and yi = f (xi )+ϵi , where ϵi ∼ N (0,1) are independent and

f (x) = sin(12(x +0.2))

x +0.2
. (1.8)

Our goal to estimate the unknown function f (x) using an orthonormal basis of polyno-
mials u( j ) for j = 0,1,2, . . ., where polynomial u( j ) has degree j . Let U be the matrix with
columns u( j ) evaluated at x1, . . . , xn , and Uk its restriction to the columns up to degree k.
We estimate f with

Ukξ=
k∑

j=0
ξ j u( j ),

where the degree k and the coefficients ξ are unknown. We use a hierarchical Bayesian
model using the following prior: given the degree k, the coefficients ξ have a Gaussian
distribution with mean 0 and variance σ2. The polynomial degree k has a uniform distri-
bution on {0,1, . . . ,15}. We consider a maximal degree, because we do not want to overfit



1.4. PREDICTION PROBLEM 17

the data. Our hierarchical Bayesian model can be summarized as

y |ξ,k ∼ N (Ukξ, In),

ξ |k ∼ N (0,σ2Ik+1),

k ∼ Uniform{0, . . . ,15},

(1.9)

where In and Ik are identity matrices of dimensions n×n and (k +1)× (k +1). Given the
observations D = {(xi , yi ) : i = 1, . . . ,n}, we use Algorithm 1.3 to sample from p(k,ξ |D). If
we’re in state k, we use a random walk proposal q(·,k) assigning probabilities 0.25, 0.5,
0.25 to k−1, k, k+1. Note that the target density is p(k,ξ |D), so we also have to consider
p(ξ |k,D) and p(k |D) instead of p(ξ |k) and p(k). Using the model (1.9) and properties
of the normal distribution, we can find

ξ |k,D ∼ N

(
σ2

1+σ2 U T
k y,

σ2

1+σ2

)
and

p(k |D) ∝ (1+σ2)−
k
2 e

1
2

σ2

1+σ2 yT UkU T
k y .

Figure 1.10 shows a sample from the posterior k,ξ |D generated by Algorithm 1.3. The left
plot shows a sample of 20 draws from the posterior of f |D . In the middle plot we have
summarized a sample of size 1000 to construct point-wise credible intervals, depicted by
the grey area. The right plot shows a histogram of the posterior degree of the polynomial
k. We observe that it concentrates around the posterior mean 6.9.

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

degree of polynomial

d
e
n
s
it
y

0 5 10 15

0
.0

0
.1

0
.2

0
.3

0
.4

Figure 1.10: An illustration of Algorithm 1.3 in the context of polynomial regression. The data D consists of
n = 100 points. They are used to estimate the true underlying function in Equation (1.8) using polynomials
with random degree k. A sample of size 1000 is generated using Algorithm 1.3 to approximate the posterior
distribution. The actual function is the black line. Left: A sample of size 20 from the posterior f |D . Middle:
Point-wise credible intervals (gray area) and the posterior mean (blue line). Right: Histogram of the posterior
of the degree of the polynomial and the posterior mean (black line).

Gibbs, Metropolis-Hastings and reversible jump updates can be used as building
blocks to construct MCMC methods to sample from the posterior distribution.

1.4. PREDICTION PROBLEM
We have problems in mind in which the graph is given by the application context. Con-
cretely, we consider a connected, simple graph G = (V ,E), with #V = n vertices, which



18 1. INTRODUCTION

we denote by 1,2, . . . ,n. Associated to every vertex i is a noisy label yi , which, in case
of regression, can be a real number or, in case of classification, a discrete value. The
available data are noisy observations of some of the labels. So, we observe only a subset
Y obs ⊂ {y1, . . . , yn}, generated in an arbitrary way, but independent of the value of the la-
bels. Specifically, we assume that for some arbitrary distribution µ on the collection 2V

of subsets of vertices, a set of vertices I obs ⊂ V is drawn and that we see which vertices
were selected and what the corresponding noisy labels are. In other words, the observed
data is D = {(i , yi ) : i ∈ I obs}. The idea is that typically, the location of a given vertex in
the graph, in combination with (noisy) information about the labels of vertices close to
it, should have predictive power for the label of the vertex of interest. Hence, successful
prediction of labels should be possible to some degree.

In the regression problem, the labels are independent normal random variables, with

yi ∼ N ( fi ,σ2),

where
f : V →R

is an unobserved function on the vertices of the graph. We can consider σ2 given and
fixed or as an unknown parameter.

In the binary classification problem, the labels are independent Bernoulli random
variables, with

P (yi = 1) = 1−P (yi = 0) = ℓ(i ),

where
ℓ : V → (0,1)

is an unobserved function on the vertices of the graph. It is called the soft label function.
We write ℓ = Φ( f ) for some function f : V → R and Φ the probit link function, i.e. the
cdf of a standard normal distribution. The underlying idea is that the real hard labels
h(i ) of the vertices are obtained by thresholding the soft labels at level 1/2, i.e. h(i ) =
1ℓ(i )>1/2. The yi are noisy versions of the real hard labels h(i ), in the sense that they can
be wrong with some positive probability. Specifically, it holds in this setup that P (yi ̸=
h(i )) = |h(i )−ℓ(i )|. An equivalent formulation of the classification problem, using an
additional layer of latent variables z = (z1, . . . , zn) is given by

yi = 1zi>0

and
z ∼ N ( f , I ),

where I is the n ×n identity matrix, cf. Albert and Chib (1993); Choudhuri et al. (2007).
Compared to the regression problem, this function f plays a similar role as parameter of
interest, but in the classification problem and additional layer z is between the function
f and the observation y .

In both setups, we take a nonparametric Bayesian approach. It is nonparametric in
the sense that we do not assume that f belongs to some low-dimensional, for instance
(generalized) linear family of functions. We put a prior on f , which takes the geome-
try of the graph into account via the Laplacian matrix and a regularization parameter.



1.4. PREDICTION PROBLEM 19

This hyperparameter controls the bias-variance trade-off, in the sense that it balances
fit to the data with a sense of smoothness of the function f . Similar methods employ-
ing Laplacian regularization are Belkin et al. (2004), Kolaczyk (2009) and Kirichenko and
Van Zanten (2017).

In the following chapters, we explore different methods to compute the posterior dis-
tribution f |D . This posterior distribution can be used to predict the unobserved labels.
We focus mainly on the classification problem as this is a more difficult problem and
has more applications. However, we use the regression problem as a simple example to
illustrate our proposed methods. In Chapter 2, we employ a full hierarchical Bayesian
approach, resulting in an MCMC algorithm to sample from the joint posterior distribu-
tion of the function f and the regularization parameter. In Chapter 3, we change our
prior to include a truncation level for more flexibility and computational efficiency and
still consider a full hierarchical Bayesian approach. The result is a faster MCMC algo-
rithm to sample from the joint posterior distribution of the function f , the truncation
level and the regularization parameter. In Chapter 4, we use empirical Bayes methods
to select the truncation level and the regularization parameter. These hyperparameters
are then fixed and this greatly simplifies sampling from the posterior distribution of f .
However, to select the hyperparameters, an optimization problem has to be solved. In
Chapter 5, we use variational inference to approximate the posterior distribution. We
select the hyperparameters in a first step and sample from the approximated posterior
distribution of f in a second step. The use of stochastic optimization makes this method
scalable to large data.





2
HIERARCHICAL BAYES

This chapter describes an implementation of a nonparametric Bayesian approach to solve
regression and binary classification problems on graphs. We consider a hierarchical Bayesian
approach with a randomly scaled Gaussian prior. The prior uses the Laplacian matrix of
the graph to take the underlying geometry of the graph into account. A method based on
a theoretically optimal prior and a more flexible variant using partial conjugacy are pro-
posed. Two simulated data examples and two examples using real data are used in order
to illustrate the proposed methods.

In this chapter, we consider prediction problems that can be seen as regression or
classification problems on graphs. These arise in several applied settings, for instance
in the prediction of the biological function of a protein in a protein-protein interaction
graph (e.g. Kolaczyk (2009); Nariai et al. (2007); Sharan et al. (2007)), or in graph-based
semi-supervised learning (e.g. Belkin et al. (2004); Sindhwani et al. (2007)). We have
problems in mind in which the graph is given by the application context and the graph
has vertices of different types, coded by vertex labels that can have two possible values,
say for the classification problem. For the regression problem the vertices have a real-
valued label. The available data are noisy observations of some of the labels. The goal
of the statistical procedure is to predict the vertices correctly, including those for which
there is no observation available. The idea is that typically, the location of a given ver-
tex in the graph, in combination with (noisy) information about the labels of vertices
close to it, should have predictive power for the label of the vertex of interest. Hence,
successful prediction of labels should be possible to some degree.

Several approaches for graph-based prediction have been considered in the litera-
ture. In this chapter, we investigate a nonparametric full Bayesian procedure that was
recently considered in Kirichenko and Van Zanten (2017) and that has so far only been
studied theoretically. The Bayesian approach proposed in Kirichenko and Van Zanten

Parts of this chapter have been published in Computational Statistics & Data Analysis 120, 111-131 (2018)
(Hartog and Van Zanten, 2018).

21



22 2. HIERARCHICAL BAYES

(2017) consists of endowing the label function f with a prior distribution and determin-
ing the corresponding posterior. The priors we consider are described in detail in the
next section.

The posterior distribution for f that results from a Bayesian analysis can be used for
instance for prediction. For the priors we consider, the computation of the posterior
mode is closely related to the computation of a kernel-based regression estimate with
a kernel based on the Laplacian matrix associated with the graph (e.g. Ando and Zhang
(2007); Belkin et al. (2004); Kolaczyk (2009); Smola and Kondor (2003); Zhu and Hastie
(2005)). In that sense the method we consider is close to those used in the cited papers.
A benefit of the full Bayesian framework is that the spread of the posterior may be used to
produce a quantification of the uncertainty in the predictions. Moreover, we specifically
consider a full hierarchical Bayesian procedure, because of its capability, when properly
designed at least, to automatically let the data determine the appropriate value of crucial
tuning parameters.

As is well known, the choice of bandwidths, smoothness, or regularization param-
eters in nonparametric methods is a delicate issue in general. The graph context is no
exception in this regard and it is recognized that it would be beneficial to have a better
understanding of how to choose the regularization parameters (e.g. Belkin et al. (2006)).
The theoretical results in Kirichenko and Van Zanten (2017) indicate how the perfor-
mance of nonparametric Bayesian prediction on graphs depends on both the geometry
of the underlying graph and on the smoothness of the (unobserved) function f . More-
over, for a certain family of Gaussian process priors Kirichenko and Van Zanten (2017)
gives guidelines for choosing the hyperparameters in such a way that asymptotically op-
timal performance is obtained.

The aim of this chapter is to provide an implementation of nonparametric Bayesian
prediction on graphs using Gaussian priors based on the Laplacian matrix of the graph.
Moreover, we investigate numerically the influence of the geometry of the graph and the
smoothness of the function of interest, motivated by the asymptotics given in Kirichenko
and Van Zanten (2017). In this manner we arrive at recommended choices for tuning
parameters and hyperpriors that are in line with the theoretical guarantees and that are
also computationally convenient.

The rest of this chapter is organized as follows. In the next section, a description of
the priors we consider for the classification problem are given. Algorithms to sample
from the posterior distribution are given in Section 2.2 and computational aspects are
discussed in Section 2.3. In Section 2.4 we present numerical experiments. We first apply
and test the procedure on two simulated data sets, one involving the path graph and
one a small-world graph, respectively. Next, we study the performance on real data,
considering the problems of predicting the function of a protein in a protein-protein
interaction graph, and classifying hand-written digits using a nearest neighbor graph.
Whereas the rest of this chapter focuses on the classification problem, in Section 2.5 we
present our results in the context of the regression problem. Concluding remarks are
given in Section 2.6.



2.1. OBSERVATION MODEL AND PRIORS 23

2.1. OBSERVATION MODEL AND PRIORS

2.1.1. OBSERVATION MODEL
We start with a connected, simple undirected graph G = (V ,E), with #V = n vertices de-
noted by V = {1,2, . . . ,n}. Associated to every vertex i is a noisy hard label yi . We assume
the yi ’s are independent Bernoulli variables, with

P (yi = 1) = 1−P (yi = 0) = ℓ(i ),

where ℓ : V → (0,1) is an unobserved function on the vertices of the graph, the so-called
soft label function. We observe only a subset Y obs ⊂ {y1, . . . , yn} of all the noisy labels.
This can be a random subset of all the {y1, . . . , yn}, generated in an arbitrary way, but
independent of the values of the labels. Note that in this setup we either observe the
label of a vertex or not, so multiple observations of the same vertex are not possible.

2.1.2. PRIOR ON THE SOFT LABEL FUNCTION

Our prediction method consists in first inferring the soft label function ℓ from Y obs and
subsequently predicting the hard labels by thresholding. We take a Bayesian approach
that is nonparametric, in the sense that we do not assume that ℓ belongs to some low-
dimensional, for instance generalized linear family of functions.

PRIOR ON ℓ

To put a prior on ℓ we first use the probit link Φ (i.e. the cdf of the standard normal
distribution) to write ℓ=Φ( f ) for some function f : V →R and then put a prior on f . To
achieve a form of Laplacian regularization, which takes the geometry of the graph into
account (e.g. Belkin et al. (2004); Kirichenko and Van Zanten (2017); Kolaczyk (2009)) we
employ a Gaussian prior with a covariance structure that is based on the Laplacian L of
the graph G . Recall that this is the matrix defined as L = D − A, where D is the diagonal
matrix of vertex degrees and A is the adjacency matrix of the graph. (See for instance
Cvetkovic et al. (2009) for background information.)

We want to consider a Gaussian prior on f with a fixed power of the Laplacian ma-
trix as precision (inverse covariance) matrix. As the Laplacian matrix has eigenvalue 0
however, it is not invertible. Therefore we add a small number 1/n2 to all eigenvalues of
L to overcome this problem. By Theorem 4.2 of Mohar (1991), we know that the smallest
positive eigenvalue λ2 of L satisfies λ2 ≥ 4/n2, which motivates this choice. To make the
prior flexible enough we add a multiplicative scale parameter c > 0 as well. Together, this
results in a Gaussian prior for f with zero mean and precision matrix c(L+n−2I )q , where
q,c > 0. We then have

ℓ=Φ( f ),

f |c ∼ N (0, (c(L+n−2I )q )−1).

To make the connection with kernel-based learning, we note that in the correspond-
ing regularized kernel-based regression model, the matrix (L+n−2I )q corresponds to the
kernel and the scale parameter c to the regularization parameter controlling the trade-
off between fitting the observed data and the smoothness of the function estimate, as
measured by the squared smoothness norm f T (L+n−2I )q f .



24 2. HIERARCHICAL BAYES

PRIOR ON c
As with all nonparametric methods, the performance of our procedure will depend cru-
cially on the choice of the hyperparameters c and q , which control the bias-variance
trade-off. The correct choices of these parameters depends in principle on properties of
the unobserved function f (or equivalently, the function ℓ). Theoretical considerations
in Kirichenko and Van Zanten (2017) have shown that good performance can be ob-
tained across a range of regularities of f by fixing q at an appropriate level, and putting
a prior on the hyperparameter c, so that we obtain a hierarchical Bayesian procedure.
The choices for the prior on c and for q that were shown to work well in Kirichenko and
Van Zanten (2017) depend on the geometry of the graph G . A main goal of the present
chapter is to investigate numerically whether this dependence is indeed visible when
the method is implemented and to investigate choices for q and c that yield good per-
formance and are computationally convenient as well.

The geometry of the graph G enters through the eigenvalues of the Laplacian, which
we denote by 0 = λ1 < λ2 ≤ ·· · ≤ λn . (See e.g. Chapter 7 of Cvetkovic et al. (2009) for
the main properties of the spectrum of L.) In Kirichenko and Van Zanten (2017) the
theoretical performance of nonparametric Bayesian methods on graphs is studied under
the assumption that for some parameter r ≥ 1, there exist j0 ∈N, κ ∈ (0,1] and C1,C2 > 0
such that for all n large enough,

C1

(
j −1

n

)2/r

≤λ j ≤C2

(
j −1

n

)2/r

, ∀ j ∈ { j0, . . . ,κn}. (2.1)

This condition can be verified numerically for a given graph (as is done for instance for
certain protein-protein interaction and small world graphs in Kirichenko and Van Zan-
ten (2017)) and can be shown to hold theoretically for instance for graphs that look like
regular grids or tori of arbitrary dimensions.

In our notation, the hyperprior for the regularization parameter c that was shown to
have good theoretical properties in Kirichenko and Van Zanten (2017) (under the geom-
etry condition (2.1)) is the prior with density p given by

p(c) ∝ c−r /(2q)−1e−nc−r /(2q)
, c > 0. (2.2)

If the true (unknown) soft label function ℓ has regularity β> 0, defined in an appropriate,
Sobolev-type sense, then this choice for c guarantees that the posterior contracts around
the truth at the optimal rate, provided the hyperparameter q has been chosen such that
q ≥ β. Below we investigate the effect of choosing q or r too high or too low relative to
these optimal choices.

To better understand how crucial it is to use the prior (2.2) and to set its hyperparam-
eters just right, we compare it to a slightly simpler choice that is natural here, which is a
gamma prior on c with density

p(c) ∝ ca−1e−bc , c > 0, (2.3)

for certain a,b > 0. This choice is computationally convenient due to the usual normal-
inverse gamma partial conjugacy (see e.g. Choudhuri et al. (2007); Liang et al. (2007) in



2.1. OBSERVATION MODEL AND PRIORS 25

the context of our setting). It introduces two more hyperparameters a and b. The au-
thors of Choudhuri et al. (2007) and Liang et al. (2007) mention a = b = 0, corresponding
to Jeffreys prior, which is improper, but does not result in any computational restric-
tions. We will see in the numerical experiments that this choice is a reasonable one in
our setting as well.

To distinguish between the two priors (2.2) and (2.3) in the paper we always call (2.3)
the ordinary gamma prior for c, and (2.2) the generalized gamma prior for c.

We remark that since we are considering two competing priors on c, we could in prin-
ciple consider some form of (Bayesian) model selection. However, we will see in the nu-
merical experiments that the ordinary gamma prior generally performs better than the
generalized gamma. Since the ordinary gamma prior is also preferable from the com-
putational perspective, we would recommend to use the ordinary gamma instead of a
combined method.

2.1.3. LATENT VARIABLES AND MISSING LABELS

Combining what we have so far, we obtain a hierarchical model that can be described as
follows:

yi | f ,c ∼ independent Bernoulli(Φ( fi )), i = 1, . . . ,n,

f |c ∼ N (0, (c(L+n−2I )q )−1),

c ∼ p given by (2.2) or (2.3).

As is well known (cf. Albert and Chib (1993)) an equivalent formulation using an addi-
tional layer of latent variables z = (z1, . . . , zn) is given by

yi = 1zi>0, i = 1, . . . ,n,

z | f ,c ∼ N ( f , I ),

f |c ∼ N (0, (c(L+n−2I )q )−1),

c ∼ p given by (2.2) or (2.3).

This is a more convenient representation which we will use in our computations.

We consider the situation in which we do not observe all the labels yi , but only a
certain subset Y obs. The labels that we observe, are only observed once. The precise
mechanism that determines which yi ’s we observe and which ones are missing is not
important for the algorithm we propose. We only assume that it is independent of the
other elements of the model. Specifically, we assume that for some arbitrary distribution
µ on the collection 2V of subsets vertices, a set of vertices I obs ⊂V is drawn and that we
see which vertices were selected and what the corresponding noisy labels are. In other
words, the observed data is D = {(i , yi ) : i ∈ I obs}.



26 2. HIERARCHICAL BAYES

All in all, the full hierarchical scheme we will work with is the following:

D = {(i , yi ) : i ∈ I obs},

I obs ∼µ,

yi = 1zi>0, i = 1, . . . ,n,

z | f ,c ∼ N ( f , I ),

f |c ∼ N (0, (c(L+n−2I )q )−1),

c ∼ p given by (2.2) or (2.3).

(2.4)

Our goal is to compute the posterior f |D and to use it to predict the unobserved labels.

2.2. SAMPLING SCHEME
We use the latent variable approach as in Albert and Chib (1993); Choudhuri et al. (2007),
for instance, and implement a Gibbs sampler, as in Algorithm 1.1, to sample from the
posterior f |D in the setup (2.4). This involves sampling repeatedly from the conditionals
p(z |c, f ,D), p( f |c, z,D) and p(c |z, f ,D). We detail these three steps in the following
subsections.

2.2.1. SAMPLING FROM p(z |c, f ,D)
By construction, we have that given D , the latent variables zi , i ̸∈ I obs corresponding to
the missing observations are independent of those corresponding to the observed labels.
We simply have that given c, f and D , the variables zi , i ̸∈ I obs, are independent N ( fi ,1)-
variables.

As for the latent variables corresponding to the observed labels, we have, by (2.4),
that the zi ’s are independent given c, f and D and

p(zi |c, f ,D) = p(zi |c, f , yi ) ∝ p(yi |zi )p(zi | f ,c) ∝ 1zi matches yi e−
1
2 (zi− fi )2

,

where we say that zi matches yi if yi = 1zi>0. For yi = 1, this describes the N ( fi ,1)-
distribution, conditioned to be positive. We denote this distribution by N+( fi ,1). For
yi = 0 it corresponds to the N ( fi ,1)-distribution, conditioned to be negative. We denote
this distribution by N−( fi ,1).

Put together, we see that given c, f , and D , the zi are independent and

zi |c, f ,D ∼


N ( fi ,1), if i ̸∈ I obs,

N+( fi ,1), if i ∈ I obs and yi = 1,

N−( fi ,1), if i ∈ I obs and yi = 0.

We note that generating normal random variables conditioned to be positive or nega-
tive can for example be done by a simple rejection algorithm or inversion (e.g. Devroye
(1986)).



2.2. SAMPLING SCHEME 27

2.2.2. SAMPLING FROM p( f |c, z,D)
Since given z, we know all the yi ’s, and I obs is independent of all other elements of the
model, we have p( f |c, z,D) = p( f |c, z). Next, we have

p( f |c, z) ∝ p(z | f ,c)p( f |c).

By plugging in what we know from (2.4) we get

p( f |c, z) ∝ e−
1
2 f T (I+c(L+n−2 I )q ) f +zT f .

Completing the square, it follows that

f |c, z ∼ N
(
(I + c(L+n−2I )q )−1z, (I + c(L+n−2I )q )−1) . (2.5)

2.2.3. SAMPLING FROM p(c |z, f ,D)
Again, we use that given z we know all the yi ’s, and that I obs is independent of everything
else, which gives p(c |z, f ,D) = p(c |z, f ). Since given f , z is independent of c, we have

p(c |z, f ) ∝ p( f |c)p(c). (2.6)

Now, the method for (approximate) sampling from c |z, f depends on the choice of the
prior for c.

ORDINARY GAMMA PRIOR FOR c
If the prior density for c is the ordinary gamma density given by (2.3) we have the usual
normal-inverse gamma conjugacy. Indeed, then we have

p( f |c)p(c) ∝ cn/2e−
1
2 c f T (L+n−2 I )q f ca−1e−bc ∝ ca+n/2−1e−c(b+ 1

2 f T (L+n−2 I )q f ).

In other words, in this case we have

c |z, f ∼ Γ

(
a + n

2
,b + 1

2
f T (L+n−2I )q f

)
.

GENERALIZED GAMMA PRIOR FOR c
If the prior density for c is the generalized gamma density given by (2.2), we do not have
conjugacy. We replace drawing from the exact conditional c |z, f , as done in the preced-
ing subsection, by a Metropolis-Hastings step. To this end, we choose a proposal density
w(c ′,c). To generate a new draw for c we follow the usual steps:

• draw a proposal c ′ ∼ s(·,c);

• draw an independent uniform variable V on [0,1];

• if

V ≤ h(c ′)w(c,c ′)
h(c)w(c ′,c)

,

where
h(c) = cn/2−r /(2q)−1e−

1
2 c f T (L+n−2 I )q ) f −nc−r /(2q)

,

then accept the proposal c ′ as new draw, else retain the old draw c.



28 2. HIERARCHICAL BAYES

Note that h(c) is indeed proportional to p( f |c)p(c), as required (cf. (2.6)).
We have considered different proposal distributions w(c ′,c) in our experiments. Our

experiments indicate that a random walk proposal works well.

2.2.4. OVERVIEW OF THE SAMPLING SCHEMES
For convenience we summarize our sampling scheme, which depends on the prior for c
that we use.

For the generalized gamma prior (2.2) we have the following:

Algorithm 2.1 Sampling scheme when using the generalized gamma prior on c.

Input: Data D = {(i , yi ) : i ∈ I obs}, initial values for f and c.
Output: MCMC sample from the joint posterior p(z, f ,c |D).

1: repeat
2: For i = 1, . . . ,n, draw independent

zi ∼


N ( fi ,1), if i ̸∈ I obs,

N+( fi ,1), if i ∈ I obs and yi = 1,

N−( fi ,1), if i ∈ I obs and yi = 0.

3: Draw
f ∼ N

(
(I + c(L+n−2I )q )−1z, (I + c(L+n−2I )q )−1

)
.

4: Draw a proposal c ′ ∼ w(·,c) and a uniform v on (0,1).
5: if

v ≤
(

c ′

c

)n/2−r /(2q)−1

e−
1
2 (c ′−c) f T (L+n−2 I )q ) f −n((c ′)−r /(2q)−c−r /(2q)) w(c,c ′)

w(c ′,c)
,

then
6: Set c ← c ′.
7: else
8: Retain c.
9: end if

10: until you have a large enough sample.



2.3. COMPUTATIONAL ASPECTS 29

For the ordinary gamma prior (2.3) the algorithm looks as follows:

Algorithm 2.2 Sampling scheme when using the ordinary gamma prior on c.

Input: Data D = {(i , yi ) : i ∈ I obs}, initial values for f and c.
Output: MCMC sample from the joint posterior p(z, f ,c|D).

1: repeat
2: For i = 1, . . . ,n, draw independent

zi ∼


N ( fi ,1), if i ̸∈ I obs,

N+( fi ,1), if i ∈ I obs and yi = 1,

N−( fi ,1), if i ∈ I obs and yi = 0.

3: Draw
f ∼ N

(
((I + c(L+n−2I )q )−1z, (I + c(L+n−2I )q )−1

)
.

4: Draw

c ∼ Γ

(
a + n

1
,b + 1

2
f T (L+n−2I )q f

)
.

5: until you have a large enough sample.

2.3. COMPUTATIONAL ASPECTS

2.3.1. USING THE EIGENDECOMPOSITION OF THE LAPLACIAN

In every iteration of either Algorithm 2.1 or 2.2 the matrix I + c(L +n−2I )q has to be in-
verted. Doing this naively can in general be computationally demanding, taking O(n3)
computations, in particular if L is not very sparse, i.e. if G is a dense graph with many
vertices with relatively large degree. To relax the computational burden it can be ad-
vantageous to change coordinates and to work relative to a basis of eigenvectors of the
Laplacian matrix L.

To make this concrete, suppose we have the eigendecomposition of the Laplacian
matrix L = UΛU T , where Λ is the diagonal matrix of eigenvalues of L and U is an or-
thogonal matrix of eigenvectors. Computing this decomposition has a one time cost of
O(n3). We can then parametrize the model by the vector g = U T f instead of f . The
corresponding equivalent formulation of (2.4) is given by

D = {(i , yi ) : i ∈ I obs},

I obs ∼µ,

yi = 1zi>0,

z |g ,c ∼ N (Ug , I ),

g |c ∼ N (0, (c(Λ+n−2I )q )−1),

c ∼ p given by (2.2) or (2.3).

(2.7)



30 2. HIERARCHICAL BAYES

Making the appropriate, straightforward adaptations in the posterior computations,
the sampling schemes take the following form in this parametrization:

Algorithm 2.3 Sampling scheme when using the generalized gamma prior on c, using
L =UΛU T .

Input: Data D = {(i , yi ) : i ∈ I obs}, initial values for g and c.
Output: MCMC sample from the joint posterior p(z, g ,c |D).

1: repeat
2: Compute f ←Ug and for i = 1, . . . ,n, draw independent

zi ∼


N ( fi ,1), if i ̸∈ I obs,

N+( fi ,1), if i ∈ I obs and yi = 1,

N−( fi ,1), if i ∈ I obs and yi = 0.

3: For j = 1, . . . ,n, draw independent

g j ∼ N

(
zT u( j )

1+ c(λ j +1/n2)q ,
1

1+ c(λ j +1/n2)q

)
.

4: Draw a proposal c ′ ∼ w(·,c) and a uniform v on (0,1).
5: if

v ≤
(

c ′

c

)n/2−r /(2q)−1

e
− 1

2 (c ′−c)
∑n

j=1(λ j +1/n2)q g 2
j −n((c ′)−r /(2q)−c−r /(2q)) w(c,c ′)

w(c ′,c)
,

then
6: Set c ← c ′.
7: else
8: Retain c.
9: end if

10: until you have a large enough sample.



2.3. COMPUTATIONAL ASPECTS 31

For the ordinary gamma prior (2.3) the algorithm looks as follows:

Algorithm 2.4 Sampling scheme when using the ordinary gamma prior on c, using L =
UΛU T .

Input: Data D = {(i , yi ) : i ∈ I obs}, initial values for g and c.
Output: MCMC sample from the joint posterior p(z, g ,c |D).

1: repeat
2: Compute f ←Ug and for i = 1, . . . ,n, draw independent

zi ∼


N ( fi ,1), if i ̸∈ I obs,

N+( fi ,1), if i ∈ I obs and yi = 1,

N−( fi ,1), if i ∈ I obs and yi = 0.

3: For j = 1, . . . ,n, draw independent

g j ∼ N

(
zT u( j )

1+ c(λ j +1/n2)q ,
1

1+ c(λ j +1/n2)q

)
.

4: Draw

c ∼ Γ

(
a + n

2
,b + 1

2

n∑
j=1

(λ j +1/n2)q g 2
j

)
.

5: until you have a large enough sample.

We note that in this approach, we need to invest once in the computation of the spec-
tral decomposition of the Laplacian matrix L. This removes the O(n3) matrix inversions
in each iteration of the algorithms. We do remark however that there is a matrix multi-
plication Ug in line 2 of the algorithms. This is in principle an O(n2) operation, which
is the most expensive operation in each iteration. Moreover, Algorithms 2.3 and 2.4 pro-
duce samples of g |D , that is, we obtain the posterior samples as vectors of coordinates
relative to the eigenbasis of the Laplacian matrix. If we want the samples in the original
basis, which is what we need for prediction, we need to multiply all these vectors by U .

2.3.2. A STRATEGY FOR SPARSE GRAPHS
Instead of sampling the Gaussian distribution in f |c, z at once as in (2.5), it can be ad-
vantageous to sample this vector one coordinate at the time.

Denoting by v−i the vector v with coordinate i removed, standard Gaussian compu-
tations show that for every coordinate i ,

fi | f−i ,c, z ∼ N (µi ,σ2
i ),

where

µi =
zi − c((L+n−2I )q )i ,−i f−i

c((L+n−2I )q )i ,i +1
,



32 2. HIERARCHICAL BAYES

and

σ2
i =

1

c((L+n−2I )q )i ,i +1
.

This method for sampling from the conditional f |c, z does not require the eigendecom-
position of L. In case the power of the Laplacian matrix q is an integer, the computations
for a fixed i only involve the q-step neighbors of vertex i , which might be computation-
ally attractive in graphs where the number of q-step neighbors of each vertex is low. For
example, if the number of q-step neighbors is bounded by K , the complexity of each
iteration is O(K n).

2.4. NUMERICAL EXPERIMENTS

2.4.1. PATH GRAPH

To explore some of the issues involved in implementing Bayesian prediction predic-
tion on graphs we first consider the basic example of simulated data on the path graph
with n = 500 vertices. In this case, it is known that the Laplacian eigenvalues are λ j =
4sin2(π j /(2n)) for j > 1, with corresponding eigenvectors

u( j )
i =

p
2p
n

cos

(
π(i − 1

2 ) j

n

)
, i = 1, . . . ,n.

This graph satisfies the geometry condition (2.1) with r = 1. To simulate data we con-
struct a function f0 on the graph by setting

f0 =
n∑

j=1
a j u( j ),

where we choose a j = p
n( j − 1)−1.5 sin( j − 1) for j > 1 and a1 = 0. This function has

Sobolev-type smoothnessβ= 1, as defined precisely in Kirichenko and Van Zanten (2017).
We simulate noisy labels yi on the graph vertices satisfying P (yi = 1) = ℓ0(i ) =Φ( f0(i )),
where Φ is the standard normal cdf. Finally we remove 20% of the labels at random to
generate the set of observed labels Y obs. The left panel of Figure 2.1 shows the soft label
function ℓ0 and simulated noisy hard labels Yi on the path graph with n = 500 vertices.
In the right panel logλ j is plotted against log( j /n) to illustrate that for this graph the
geometry condition indeed holds with r = 1.



2.4. NUMERICAL EXPERIMENTS 33

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a

b
ili

ty

−6 −5 −4 −3 −2 −1 0

−
1

0
−

8
−

6
−

4
−

2
0

log(k/n)

lo
g

(e
ig

e
n
v
a

lu
e

s
)

Figure 2.1: Left: soft label function and simulated noisy hard labels on a path graph with 500 nodes. Right:
spectrum of the Laplacian.

In Figure 2.2, we visualize the posterior for the soft label function ℓ for various graph
sizes n. Here, we used the generalized gamma prior on c with r = 1, α = β = 1 and
q = α+ r /2. These values are suggested by the theory in Kirichenko and Van Zanten
(2017). The blue line is the posterior mean and the gray area depicts point-wise 95%
credible intervals.

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

Figure 2.2: Posteriors for the soft label function for n = 100,500,1000. Prior on c is the generalized gamma.

At a first glance it appears that the procedure might be slightly oversmoothing, which
could be due to the fact that the posterior for c is concentrated at too large values. To
get more insight into this issue, we compare to posteriors computed with a fixed tuning
parameter c, set at the oracle value which minimizes the MSE of the posterior mean,
which we determined numerically. The results are given in Figure 2.3. The posteriors
have slightly better coverage than those in Figure 2.2.



34 2. HIERARCHICAL BAYES

0 5000 10000 15000

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

Regularization parameter

E
rr

o
r

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 20000 40000 60000 80000

0
.0

0
3

0
.0

0
4

0
.0

0
5

0
.0

0
6

Regularization parameter

E
rr

o
r

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0e+00 1e+05 2e+05 3e+05 4e+05

0
.0

0
1
0

0
.0

0
1
2

0
.0

0
1
4

0
.0

0
1
6

0
.0

0
1
8

Regularization parameter

E
rr

o
r

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

Figure 2.3: Posteriors for fixed tuning parameter c for n = 100,500,1000. Top panel: MSE of the posterior mean
as function of c. Bottom panel: posterior for the soft label function for optimal choice of c. Values of c were
4.0 ·102, 1.6 ·104 and 2.9 ·104, respectively.

Posterior histograms of the tuning parameter show if we use the generalized gamma
prior for c, the posterior indeed favours too high values of c, compared to the oracle
choice. This results in the oversmoothing we observe in Figure 2.2. See the first two rows
of Figure 2.4.

When instead of the theoretically optimal generalized gamma prior on c, we use the
ordinary gamma prior, we can use the hyperparameters a and b to ensure that the pos-
terior for c assigns more mass close to the oracle tuning parameter. In practice, we do
not know the true underlying function, so it is natural to spread the prior mass as much
as possible. We can for example choose a = b = 0, corresponding to an improper prior
p(c) ∝ 1/c (as in Choudhuri et al. (2007)), or a = 1 and b = 0 such that p(c) ∝ 1. In Figure
2.5, we plot the ordinary gamma prior density corresponding to a = b = 0 (blue dashed
line) and the generalized gamma prior densities for various n (black lines). Since the
ordinary gamma assigns more mass to smaller values of c, we might hope that if we use
that prior on c, we get a posterior closer to the oracle and hence reduce the oversmooth-
ing problem.



2.4. NUMERICAL EXPERIMENTS 35

Scaled regularization parameter

D
e
n
s
it
y

0 2 4 6 8 10

0
.0

0
.5

1
.0

1
.5

2
.0

0 2 4 6 8 10

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8

Scaled regularization parameter

E
rr

o
r

Scaled regularization parameter

D
e
n
s
it
y

0 2 4 6 8 10

0
.0

0
.5

1
.0

1
.5

2
.0

Scaled regularization parameter

D
e
n
s
it
y

0 2 4 6 8 10

0
.0

0
.5

1
.0

1
.5

2
.0

Scaled regularization parameter
D

e
n
s
it
y

0 2 4 6 8 10

0
.0

0
.5

1
.0

1
.5

2
.0

0 2 4 6 8 10

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8

Scaled regularization parameter

E
rr

o
r

Scaled regularization parameter

D
e
n
s
it
y

0 2 4 6 8 10

0
.0

0
.5

1
.0

1
.5

2
.0

Scaled regularization parameter

D
e
n
s
it
y

0 2 4 6 8 10

0
.0

0
.5

1
.0

1
.5

2
.0

Scaled regularization parameter

D
e
n
s
it
y

0 2 4 6 8 10

0
.0

0
.5

1
.0

1
.5

2
.0

0 2 4 6 8 10

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8

Scaled regularization parameter

E
rr

o
r

Scaled regularization parameter

D
e
n
s
it
y

0 2 4 6 8 10

0
.0

0
.5

1
.0

1
.5

2
.0

Scaled regularization parameter

D
e
n
s
it
y

0 2 4 6 8 10

0
.0

0
.5

1
.0

1
.5

2
.0

Figure 2.4: Histograms of the scaled regularization parameter n1−r /(2q)c−r /(2q) for n = 100,500,1000. The top
row: posterior corresponding to generalised gamma prior. Bottom rows: posterior corresponding to ordinary
gamma prior with a = b = 0 and a = 1, b = 0, respectively. The second row shows the MSE of the posterior
mean corresponding to fixed c as function of c.



36 2. HIERARCHICAL BAYES

0 1 2 3 4 5

0
1

2
3

4
5

Figure 2.5: Densities of the generalized gamma prior for n = 100,500,1000 in black. Blue dashed line the ordi-
nary gamma prior with a = b = 0.

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

Figure 2.6: Posteriors for the soft label function for n = 100,500,1000. Prior on c is the ordinary gamma with
a = b = 0.

Figure 2.6 visualizes the posteriors that we get for the soft label function when using
the ordinary gamma prior with a = b = 0. We see that indeed we get better posterior
coverage than in Figure 2.2. The third row in Figure 2.4 confirms that when using the
ordinary gamma prior on c, the posterior for c puts more mass around the optimal value.

IMPACT OF PRIOR SMOOTHNESS

In the paper Kirichenko and Van Zanten (2017) it was suggested to take the power of the
Laplacian equal to q =α+ r /2, where r is the number appearing in the geometry condi-
tion (2.1) and α is a tuning parameter that quantifies the smoothness of the prior in some
sense. It was proved that when combining this with the generalized gamma prior (2.2) on



2.4. NUMERICAL EXPERIMENTS 37

c, we get good convergence rates if the Sobolev-type smoothness of the true soft-label
function is less than q . This might suggest that it is advantageous to set q high, since
then the theory says that we get good rates across a large range of regularities of the true
function. On the other hand, setting q higher means we favour smooth functions more.
This could potentially lead to oversmoothing and hence to poor posterior coverage. In
this section we investigate this issue numerically.



38 2. HIERARCHICAL BAYES

In Figure 2.7 we use the generalized gamma prior on c. We plot the posterior for ℓ,
varying n from left to right and q from top to bottom. In the top row q = 0.2+ r /2. Since
this is less than β= 1, the theory suggests that we are undersmoothing too much and will
get sub-optimal convergence rates. The figure seems to confirms this. In the middle row
we have q = 1+ r /2. This means the prior smoothness matches the true smoothness,
which is asymptotically a good choice according to the theory. This is the same picture
as in Figure 2.2. In the bottom row q = 5+r /2. In this case the prior smoothness is larger
than the true smoothness β= 1. However, the theory says that we should still get a good
convergence rates, because to compensate for the smoothness mismatch the posterior
for c will automatically charge smaller values of c more. In the simulations, we see that
the result is indeed not dramatic, but that the procedure is in actual fact oversmoothing
somewhat, resulting in worse posterior coverage.

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

Figure 2.7: Posteriors for ℓ when using the generalized gamma prior on c. From left two right we have n =
100,500,1000. From top to bottom we have q =α+1/2, with α= 0.2,1,5.



2.4. NUMERICAL EXPERIMENTS 39

Figure 2.8 gives the same plots when using the ordinary gamma prior on c, with a =
b = 0. We see essentially the same effects, but the effect of choosing q too small is a bit
more pronounced. In terms of posterior coverage the ordinary gamma prior does a bit
better, although it gives too conservative credible sets when q is set too low.

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

Figure 2.8: Posteriors for ℓ when using the ordinary gamma prior on c with a = b = 0. From left to right we have
n = 100,500,1000. From top to bottom we have q =α+1/2, with α= 0.2,1 and 5 respectively.

2.4.2. SMALL-WORLD GRAPH

In this section, we consider simulated data on a small-world graph obtained as a real-
ization of the Watts-Strogatz model (Watts and Strogatz (1998)). The graph is obtained
by first considering a ring graph of 1000 nodes. Then we loop through the nodes and
uniformly rewire each edge with probability 0.25. We keep the largest connected com-
ponent and delete multiple edges and loops resulting in the graph in Figure 2.9 with 848
nodes.



40 2. HIERARCHICAL BAYES

−7 −6 −5 −4 −3 −2 −1 0

−
4

−
3

−
2

−
1

0
1

2

log(k/n)

lo
g

(e
ig

e
n
v
a

lu
e

s
)

Figure 2.9: Left: small world graph with two types of labels. White labels are missing. Right: eigenvalue plot for
the small-world graph. The linear fit has slope 1.20 corresponding to geometry condition with r = 1.7.

We numerically determine the eigenvalues λ j and eigenfunctions u( j ) of the Lapla-
cian matrix and define a function f0 on the graph by

f0 =
n∑

j=1
a j u( j ),

where we choose a j =
p

n( j −1)−2/r−1/2 sin( j −1) for j > 1 and a1 = 0 to have Sobolev-
type smoothness β = 2 (cf. Kirichenko and Van Zanten (2017)). As before, we assign
labels to the graph according to probabilities P (Yi = 1) = ℓ0(i ) =Φ( f0(i )), where Φ is the
distribution function of the standard normal distribution. We remove the label of 10% of
the nodes. The aim is to predict these using the observed labels.

In this case it is hard to visualise smooth functions on the graph and hence to visu-
alize the entire posterior distribution of the soft label function. Instead, we analyze the
quality of the procedure by plotting 95% credible intervals for the soft label function at 20
randomly selected vertices of which we have not observed the noisy labels. Figure 2.10
gives these plots for the procedure with the generalized gamma prior on c (left), the or-
dinary gamma prior on c with a = b = 0 (middle), and the fixed oracle choice of c (right).
At the bottom left and middle the posteriors for c are shown. The bottom right is a plot
of the MSE of the posterior mean corresponding to a fixed c as a function of that c. The
point where it is minimal is the oracle choice of c.



2.4. NUMERICAL EXPERIMENTS 41

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

Scaled regularization parameter

D
e
n
s
it
y

0 2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index
P

ro
b
a
b
ili

ty

Scaled regularization parameter

D
e
n
s
it
y

0 2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 2 4 6 8 10 12

0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5

Scaled regularization parameter

E
rr

o
r

Figure 2.10: Top row: credible intervals for soft label function at 20 vertices with missing labels. Blue dots are
the posterior means, black dots are the true function values. From left to right the plots correspond to the
procedure with the generalized gamma prior on c, the ordinary gamma prior with a = b = 0, and with the
fixed, oracle choice of c, respectively. Bottom row: histograms of posterior for c (scaled). The bottom right plot
shows the error for different values of the scaled regularization parameter, the oracle choice of c corresponds
to the value where the error is minimal.

Also in this example we observe that with the theoretically optimal generalized gam-
ma prior on c we are shrinking a bit too much, resulting in particular in credible intervals
not containing the true soft label. When using the ordinary gamma prior the perfor-
mance is closer to the oracle procedure. The bottom row of Figure 2.10 confirms that
with the ordinary gamma prior the posterior for c is closer to the oracle choice.

IMPACT OF HYPERPARAMETERS

We have determined numerically that the graph under consideration satisfies the ge-
ometry condition (2.1) with r = 1.7, see the right panel of Figure 2.9. The results of
Kirichenko and Van Zanten (2017) thus suggest to use as prior on f the Laplacian to
the power q =α+1.7/2 for parameter α that determines the prior smoothness. Also for
this example we have investigated the impact of different choices.

Figure 2.11 illustrates what happens if r is chosen too low. On the left, we see that
the procedure with the generalized gamma prior on c oversmooths quite dramatically.
The bottom row of the figure shows that the posterior for c puts too little mass around
the oracle c in that case. The plots in the middle corresponds to ordinary gamma prior
on c with a = b = 0. This performs much better, close to procedure with oracle choice of
c shown on the right. In Figure 2.12 the parameter r is chosen too high. Here all three
procedures have comparable performance. All oversmoothe a bit too much due to the



42 2. HIERARCHICAL BAYES

fact that the power of the Laplacian matrix becomes too large. This is in line with what
we saw for the path graph.



2.4. NUMERICAL EXPERIMENTS 43

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

Scaled regularization parameter

D
e
n
s
it
y

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
2

4
6

8
1
0

1
2

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index
P

ro
b
a
b
ili

ty

Scaled regularization parameter

D
e
n
s
it
y

35 40 45 50 55

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0
0
.1

2

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

30 35 40 45 50 55 60

0
.0

0
4
5

0
.0

0
5
5

0
.0

0
6
5

0
.0

0
7
5

Scaled regularization parameter

E
rr

o
r

Figure 2.11: Same as Figure 2.10, but now with r = 1.

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

Scaled regularization parameter

D
e
n
s
it
y

0e+00 1e−07 2e−07 3e−07 4e−07 5e−07

0
e
+

0
0

2
e
+

0
6

4
e
+

0
6

6
e
+

0
6

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

Scaled regularization parameter

D
e
n
s
it
y

0e+00 1e−07 2e−07 3e−07 4e−07

0
e
+

0
0

2
e
+

0
6

4
e
+

0
6

6
e
+

0
6

8
e
+

0
6

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

2e−06 4e−06 6e−06 8e−06 1e−05

0
.0

2
4
5

0
.0

2
5
0

0
.0

2
5
5

0
.0

2
6
0

Scaled regularization parameter

E
rr

o
r

Figure 2.12: Same as Figure 2.10, but now with r = 10.



44 2. HIERARCHICAL BAYES

If we choose the parameter r correctly, i.e. r = 1.7 in this case, and only choose differ-
ent values for the hyperparameter α we only change the prior smoothness of f , without
changing the prior on c. Figures 2.13 and 2.14 illustrate the effect. In the first experiment,
we set α= 0.4, which is too low relative to the smoothness of the true soft label function,
in the second one α= 10, which is too high. We clearly see the effect on the width of the
credible intervals. The effect on coverage is not very large.



2.4. NUMERICAL EXPERIMENTS 45

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

Scaled regularization parameter

D
e
n
s
it
y

0.0 0.5 1.0 1.5 2.0 2.5

0
2

4
6

8

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index
P

ro
b
a
b
ili

ty

Scaled regularization parameter

D
e
n
s
it
y

0.0 0.5 1.0 1.5 2.0 2.5

0
2

4
6

8

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5

Scaled regularization parameter

E
rr

o
r

Figure 2.13: Same as Figure 2.10, but now with α= 0.4.

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

Scaled regularization parameter

D
e
n
s
it
y

10 12 14 16 18 20

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

Scaled regularization parameter

D
e
n
s
it
y

10 12 14 16 18 20

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

10 12 14 16 18 20

0
.0

0
5

0
.0

1
5

0
.0

2
5

Scaled regularization parameter

E
rr

o
r

Figure 2.14: Same as Figure 2.10, but now with α= 10.



46 2. HIERARCHICAL BAYES

IMPACT OF MISSING OBSERVATIONS

To assess the impact of the percentage of missing observations we increase the level from
10% to 20%, 30% and 70%. We observe in Figures 2.15, 2.16 and 2.17 that as the percent-
age of missing observations increases, the posterior of c is more spread out and there is
more uncertainty in the function estimates, as is to be expected. In the most extreme
case of 70% missing labels we observe that the generalized gamma prior on c results in
quite severe oversmoothing. In the histogram we see that the posterior for c puts too lit-
tle mass around the oracle choice of c in that case. The inverse gamma prior has a much
better performance, and remains comparable to the oracle choice.



2.4. NUMERICAL EXPERIMENTS 47

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

Scaled regularization parameter

D
e
n
s
it
y

0 2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

Scaled regularization parameter

D
e
n
s
it
y

0 2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 2 4 6 8 10 12

0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5

Scaled regularization parameter

E
rr

o
r

Figure 2.15: Same as Figure 2.10, but now with 20% of the label unobserved.

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

Scaled regularization parameter

D
e
n
s
it
y

0 2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

Scaled regularization parameter

D
e
n
s
it
y

0 2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 2 4 6 8 10 12

0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5

Scaled regularization parameter

E
rr

o
r

Figure 2.16: Same as Figure 2.10, but now with 30% of the label unobserved.



48 2. HIERARCHICAL BAYES

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

Scaled regularization parameter

D
e
n
s
it
y

0 2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

Scaled regularization parameter

D
e
n
s
it
y

0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

0 5 10 15

0
.0

2
0
.0

3
0
.0

4
0
.0

5
0
.0

6

Scaled regularization parameter

E
rr

o
r

Figure 2.17: Same as Figure 2.10, but now with 70% of the label unobserved.



2.4. NUMERICAL EXPERIMENTS 49

2.4.3. PROTEIN FUNCTION PREDICTION

To test the nonparametric Bayesian procedure on real data, we adapt the case study from
Kolaczyk (2009), Section 8.5. The example is about the prediction of protein function
from a network of interactions among proteins that are responsible for cell communica-
tion in yeast. For more information about the background of the experiment setup, see
Kolaczyk (2009).

The protein interaction graph is shown on the left in Figure 2.18. A vertex in the graph
is labelled according to whether or not the corresponding protein is involved in so-called
intracellular signaling cascades (ICSC), which is a specific form of communication. We
have randomly removed 12 of the labels and we apply our Bayesian prediction procedure
to try and recover them from the observed labels.

−5 −4 −3 −2 −1 0

−
2

−
1

0
1

2
3

log(k/n)

lo
g

(e
ig

e
n
v
a

lu
e

s
)

Figure 2.18: Left: protein-protein interaction graph. The red nodes in the graph are involved in ICSC, the blue
nodes are not involved and the white nodes are unknown. Right: Laplacian eigenvalues. The linear fit has
slope 0.97 corresponding to geometry condition with r = 2.1.

In view of the findings in the preceding sections we apply the procedure with the
ordinary gamma prior on c with a = b = 0. Numerical computation of the Laplacian
eigenvalues shows that in this case the geometry condition is fulfilled with r = 2.1, see
the right panel of Figure 2.18. We use this value in the procedure. The parameter α that
determines the prior smoothness of f is set to α = 1. This is a conservative choice, in
order to avoid oversmoothing. We now run our algorithm to produce credible intervals
for the soft label function ℓ at the vertices of which we did not observe the labels.



50 2. HIERARCHICAL BAYES

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

P
ro

b
a

b
ili

ty

1 2 3 4 5 6 7 8 9 10 11 12

Figure 2.19: Credible intervals for the soft threshold function at the nodes with missing labels. Blue dots are
the posterior means, black and red dots are the true labels. In this example, we observe a misclassification at
threshold 0.5 in vertices 1 and 11.

Figure 2.19 shows the results, together with the true labels that we removed. We see
that if we predict the missing labels by thresholding the posterior means at 1/2, we have
a misclassification rate of 2/12 ≈ 16.7%. If we repeat the procedure 100 times, every time
removing 12 different labels at random, we obtain an average misclassification rate of
27%. To assess this, we also computed k-nearest neighbour (k-NN) predictions for var-
ious k. We found average missclassification rates of 32% for one 1-NN, 28% for 2-NN
and 41% for 3-NN. Hence in terms of prediction performance our procedure is compa-
rable to k-NN with the oracle choice of k. This illustrates that, in line with the theory,
our procedure succeeds in automatically tuning the appropriate degree of smoothing.
Moreover, the Bayesian procedure has the advantage that in addition to predictions, we
obtain credible intervals as an indication of the uncertainty in the predictions.

2.4.4. MNIST DIGIT PREDICTION

So far, we have considered examples with graphs that satisfy the geometry condition
(2.1). For such graph we have theoretical results that provide some guidelines for the
construction of the prior and choices of the hyperparameters. In principle however, we
can also apply our procedure to graphs that do not satisfy (2.1) for some r . It is intuitively
clear that a condition like (2.1) should not always be necessary for good performance. If
we use the ordinary gamma prior on c and set q at a conservative (not too high) value, we
can just apply our procedure and should still get reasonable results if the graph geom-
etry and the distribution of the labels are sufficiently related. In this section, we briefly



2.4. NUMERICAL EXPERIMENTS 51

investigate such a case.

The MNIST dataset of handwritten digits has a training set of 60 thousand examples
and a test set of 10 thousand. The digits are size-normalized and centered in a fixed-size
image. The dataset is publicly available at http://yann.lecun.com/exbd/mnist. We
have randomly selected a subsample of 700 consisting of only the digits 0 and 1 of which
600 in are the training set and 100 are from the test set. Our goal is to classify the 100
images from the test set. To turn this into a label prediction problem on a graph, we
construct a graph with 700 nodes, corresponding to the images. For each image we de-
termined the 10 closest images in terms of pixel-distance and connect the corresponding
nodes in the graph by an edge. The resulting graph is shown in Figure 2.20. The eigen-
value plot suggests that the graph does not satisfy the geometry condition to the extent
that the preceding graphs did.

−6 −5 −4 −3 −2 −1 0

−
3

−
2

−
1

0
1

2
3

log(k/n)

lo
g

(e
ig

e
n
v
a

lu
e

s
)

Figure 2.20: Left: constructed MNIST graph. Digits 0 are labeled blue, digits 1 are labeled red and the missing
labels are white. Right: Laplacian eigenvalues.

The picture indicates that predicting the missing labels in this graph is not a very hard
problem. And indeed, our procedure performs well in this case. We classify all missing
labels correctly, with very high certainties. See Figure 2.21.



52 2. HIERARCHICAL BAYES

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

P
ro

b
a

b
ili

ty

1 8 16 25 34 43 52 61 70 79 88 97

Scaled regularization parameter

D
e

n
s
it
y

0.4 0.5 0.6 0.7

0
1

2
3

4
5

6

Figure 2.21: Left: credible intervals for the soft threshold function at the nodes with missing labels. Blue dots
are the posterior means, black and red dots are the true labels. Right: posterior for tuning parameter c.

2.5. REGRESSION PROBLEM
In this section, we demonstrate a hierarchical Bayesian approach to solving the regres-
sion problem on a graph. The graph is denoted by G = (V ,E), where V = {1, . . . ,n}. We
assume that the noisy labels y are Gaussian with

y | f ∼ N ( f ,σ2I ),

where f is the function of interest. For simplicity, we assume σ2 is fixed and known and
that all noisy label are observed. We are interested in inferring f from the data y . Similar
to the classification problem in the previous sections, we consider a Gaussian prior on
f , which depends on the Laplacian matrix L and on a multiplicative scaling parameter
c > 0. The resulting prior is

f |c ∼ N (0, (c(L+n−2I ))−q ),

for some fixed q > 0. The additional number n−2 is added to L to make it invertible as
in Section 2.1. In this chapter, we have considered the generalized gamma prior (2.2)
and the ordinary gamma prior (2.3) for the regularization parameter c. Motivated by the
numerical experiments in Section 2.4, we only consider the ordinary gamma prior

c ∼ Γ(a,b)

for a,b > 0. The improper case of a = b = 0 is also used in the literature (e.g. Choudhuri
et al. (2007); Liang et al. (2007)). In Section 2.4, we have seen that this is a reasonable
choice in our setting as well. The three distributions of y | f , f |c and c form the hierar-
chical model.

To sample from the posterior f | y , we use a Gibbs sampler as in Algorithm 1.1. We can
naturally partition the unknown parameter as ( f ,c). To sample from the joint posterior
f ,c | y we iteratively sample from the conditionals f |c, y and c | f , y .



2.5. REGRESSION PROBLEM 53

We have

p( f |c, y) ∝ p(y | f ,c)p( f |c).

Note that y | f is independent of c. We can plug in the two densities to get

p( f |c, y) ∝ e−
1
2 (y− f )T (y− f )/σ2− 1

2 c f T (L+n−2 I )q f .

From this expression, we see the connection with kernel-based maximum likelihood
methods (e.g. Kolaczyk (2009)). The first term in the log posterior density of f |c, y is
the squared error of our estimate f with the observed data y . The second term is the
kernel-based norm of f . The parameter c balances smoothness in terms of the kernel-
based norm with fit to the data. We can rearrange p( f |c, y) to see that

f |c, y ∼ N (σ−2(σ−2I + c(L+n−2I )q )−1 y, (σ−2I + c(L+n−2I )q )−1).

The conditional p(c | f , y) can be found in a similar manner, this time exploiting the
normal-inverse gamma partial conjugacy. It should be noted that given f , y is indepen-
dent of c, so c | f , y does not depend on y . We find

c | f , y ∼ Γ

(
a + n

2
,b + 1

2
f T (L+n−2I )q f

)
.

We see that the improper prior with a = b = 0 results in a proper posterior.
As in Section 2.3, we can use the eigendecomposition of the Laplacian matrix L =

UΛU T to change coordinates to a basis of its eigenvectors. The model is parametrized
by the vector g = U T f instead of f . We can make the appropriate changes to the full
conditionals to find a sampling scheme for the posterior p(g ,c |D).

These steps can be summarized in the following algorithm:

Algorithm 2.5 Simple sampling scheme for the regression problem.

Input: Data D = {(i , yi ) : i = 1, . . . ,n}, variance σ2, initial value for c.
Output: MCMC sample from the joint posterior g ,c | y .

1: repeat
2: For j = 1, . . . ,n, draw

g j ∼ N (σ−2(σ−2 + c(λ j +n−2)q )−1(U T y) j , (σ−2 + c(λ j +n−2)q )−1).

3: Draw

c ∼ Γ

(
a + n

2
,b + 1

2

n∑
j=1

(σ−2 + c(λ j +n−2)q )g 2
j

)
.

4: until you have a large enough sample.

When σ2 is unknown, we can put an independent prior p(σ2) on σ2, or rather, an
independent prior p(σ−2) on the precision σ−2. We include a draw from σ−2 |c, g ,D in



54 2. HIERARCHICAL BAYES

Algorithm 2.5 to sample from the joint posterior g ,c,σ−2 |D . If we take a gamma prior
for σ−2 with shape s and rate t , we see that

σ−2 |c, g ,D ∼ Γ

(
s + n

2
, t + 1

2

n∑
i=1

y2
i +

1

2

n∑
j=1

(g 2
j −2g j (U T y) j )

)
,

where we have written the quadratic form (y −Ug )T (y −Ug ) in such a way that we avoid
the matrix-vector multiplication Ug iteration, but only require U T y , which can be com-
puted beforehand. Note that this uses the orthogonality U T U = I .

To account for missing data, we can include the missing observations ymiss as latent
variables and impute them prior to line 2 of Algorithm 2.5 in every iteration using

ymiss |c, g ,σ−2,D ∼ N (U missg , (1/σ−2)I ),

where U miss is the restriction of U to the rows corresponding to the missing observations.
The other steps in Algorithm 2.5 remain unchanged as we simply use y = (yobs, ymiss). A
drawback is that U T y can no longer be computed beforehand, but has to be updated
in every iteration. However, we can decompose U T y = (U obs)T yobs + (U miss)T ymiss and
only update the part corresponding to the missing values. A sampling scheme for the
regression problem with missing data and unknown noise level is Algorithm 2.6.

Algorithm 2.6 Sampling scheme for the regression problem.

Input: Data D = {(i , yi ) : i ∈ I obs}, initial values for c, g and σ−2.
Output: MCMC sample from the joint posterior ymiss,c, g ,σ−2 |D .

1: repeat
2: For i ∉ I obs, draw

yi ∼ N (Ui ,·g ,1/σ−2).

3: For j = 1, . . . ,n, draw

g j ∼ N (σ−2(σ−2 + c(λ j +n−2)q )−1(U T y) j , (σ−2 + c(λ j +n−2)q )−1).

4: Draw

c ∼ Γ

(
a + n

2
,b + 1

2

n∑
j=1

(σ−2 + c(λ j +n−2)q )g 2
j

)
.

5: Draw

σ−2 ∼ Γ

(
s + n

2
, t + 1

2

n∑
i=1

y2
i +

1

2

n∑
j=1

(g 2
j −2g j (U T y) j )

)
.

6: until you have a large enough sample.

2.5.1. TRAFFIC FLOW ESTIMATION
To illustrate the regression problem, we consider a simulated example of traffic flow es-
timation inspired by Aldous and Shun (2010) and Bickel et al. (2007). Traffic data is col-



2.5. REGRESSION PROBLEM 55

lected by authorities to measure the performance of the road network in terms of flow,
occupancy and speed at locations in the network. A common type of sensor used for
traffic flow estimation is a loop detector that counts the number of passing vehicles over
a certain time interval. However, the resulting loop data is often missing or invalid due to
communication errors or malfunction. Missing and bad observations are imputed from
the neighboring sensor location using a simple average or a regression approach.

We simulate a road network between cities based on a toy model. We sample 500
points uniformly on the unit square and compute the relative neighborhood graph by
connecting nodes u and v if there does not exist a node w such that

max{∥u −w∥,∥v −w∥} < ∥u − v∥.

In Figure 2.22 this definition is illustrated, nodes u and v are connected if there is no
node in the gray area. The resulting graph is simple and connected. Relative neighbor-
hood graphs and related proximity graphs, such as the nearest neighbor graph in Section
2.4.4, can be used as a toy models for road networks (see Aldous and Shun (2010)).

u v

Figure 2.22: Construction of a relative neighborhood graph. Nodes u and v are connected if there is no point
closer to both u and v as they are to each other, corresponding to the gray area not containing a node.



56 2. HIERARCHICAL BAYES

The resulting graph is the left graph in Figure 2.23. As traffic flow is a property of the
roads in the city graph, we construct its line graph, by associating a vertex with each road
in the city graph and connecting two vertices if the corresponding roads in the city graph
have a city in common. This is the right graph in Figure 2.23 and is the road graph G we
work with. It has n = 617 vertices.

Figure 2.23: Left: A road network between cities as a realization of the relative neighborhood graph on 500
random uniform points on the unit square. Right: The corresponding line graph, where the nodes correspond
to the roads of the left graph. The dashed line is the original graph.

We construct a true traffic flow function f0 on the graph by setting

f0 =
n∑

j=1
a j u( j ),

where u( j ) are the eigenvectors of the Laplacian matrix L =UΛU T of G . To construct the
coefficients a j we consider the path graph with vertices xi = i /n for i = 1, . . . ,n and the
function 5+ f (xi ), where f is given by Equation (1.8). We compute a j as the coefficients
of 5+ f on the path graph and use them in our graph G , generalizing the function on the
path graph to our graph G . The resulting underlying traffic flow is depicted in Figure 2.24
on both the city graph and the road graph G .



2.5. REGRESSION PROBLEM 57

Figure 2.24: Left: The corresponding traffic flow on the city graph, where the flow is observed on the edges.
Right: The traffic flow on the road graph G . Traffic intensity ranges from green (light traffic) to red (heavy
traffic) and is observed on the nodes.

To construct a noisy observation of the traffic flow, we add independent noise ϵi ∼
N (0,1) to each node i = 1, . . . ,n and remove 123 of our observations as depicted in Figure
2.25.

Figure 2.25: The noisy observation of the underlying traffic flow in Figure 2.24. The missing observations are
in gray.

We estimate the traffic flow using Algorithm 2.6 with hyperparameters a = b = 0,
s = t = 1 and q = 15. We numerically determine r = 1.67 from the spectrum of the Lapla-
cian matrix as shown in Figure 2.26. The resulting posterior mean for f =Ug is shown
in Figure 2.27. To illustrate the uncertainty in our estimate, we also plot the estimated



58 2. HIERARCHICAL BAYES

traffic flow along a path from the north-west corner of the map to the south-east corner
in Figure 2.28 together with point-wise 95% credible intervals.

−6 −5 −4 −3 −2 −1 0

−
5

−
4

−
3

−
2

−
1

0
1

2

log((j−1)/n)
lo

g
(e

ig
e

n
v
a

lu
e

)

Figure 2.26: Left: The road graph. Right: The eigenvalues of the Laplacian matrix of the road graph. The dashed
line corresponds to geometry number r = 1.67 based on a linear fit with slope 1.24. We have used the first 35%
of the eigenvalues with exception of the first three.



2.5. REGRESSION PROBLEM 59

c

d
e

n
s
it
y

0.030 0.035 0.040 0.045 0.050 0.055

0
2

0
4

0
6

0
8

0
1

0
0

sigma^2

d
e

n
s
it
y

0.8 0.9 1.0 1.1 1.2 1.3 1.4

0
1

2
3

4

Figure 2.27: The posterior mean for the traffic flow data from Figure 2.25. Bottom: Histograms for the posterior
distribution of c and σ2. The vertical black lines are the corresponding posterior means.



60 2. HIERARCHICAL BAYES

0 10 20 30 40

0
2

4
6

8
1

0

path

tr
a

ff
ic

 f
lo

w

Figure 2.28: Left: A path in the city graph. Right: Posterior mean (blue) and point-wise 95% credible interval
(gray area) for the traffic flow along the path. The points are the noisy observations and the black line is the
true underlying traffic flow function.

2.6. CONCLUDING REMARKS
We have described nonparametric Bayesian procedures to perform regression and bi-
nary classification on graphs. We have considered a hierarchical Bayesian approach
with a randomly scaled Gaussian prior as in the theoretical framework in Kirichenko and
Van Zanten (2017). We have implemented the procedure with the theoretically optimal
prior from Kirichenko and Van Zanten (2017) and a variant with a different prior on the
scale, which exploits partial conjugacy and has some more flexibility.

Our numerical experiments suggest that good results are obtained for the classifi-
cation problem, when using Algorithm 2.4, i.e. using the ordinary gamma prior on the
scale. Suggested choices for the hyperparameters are a = b = 0 and q = α+ r /2. Here r
is the geometry parameter appearing in the geometry condition (2.1) and can be deter-
mined numerically from the spectrum of the Laplacian matrix. The parameter α reflects
prior smoothness and should not be set too high (e.g. α= 1 or 2), to avoid oversmooth-
ing. For the regression problem, we have found good results using Algorithm 2.6. In the
example in Section 2.5, we have used a larger prior smoothness as the true underlying
function was very smooth.

In view of computational complexity it might be more advantageous to consider
other methods to adaptively find the tuning parameter, such as empirical Bayes meth-
ods (see Chapter 4). Also, it might be sensible to modify the prior by truncating the n-
dimensional Gaussian prior on f to a lower dimensional one by writing a series expan-
sion for f and truncating the sum at a random point, similar to the approach in Liang
et al. (2007) for instance (see Chapter 3). It is conceivable that in this way the procedure
becomes both more flexible in terms of adaptation to smoothness and will also compu-
tationally scale better to large sample size n.



3
TRUNCATION

In this chapter, we describe an implementation of a nonparametric Bayesian approach to
solve regression and binary classification problems on graphs. We consider a hierarchical
Bayesian approach with a prior that is constructed by truncating a series expansion of
the soft label function using the graph Laplacian eigenfunctions as basis functions. We
compare our truncated prior to the untruncated Laplacian-based prior in simulated and
real data examples to illustrate the improved scalability in terms of size of the underlying
graph.

In this chapter, we consider an extension to the method proposed in Hartog and
Van Zanten (2018) (Chapter 2) in the context of regression and binary classification prob-
lems on graphs. The setup of the regression problem and the classification problem re-
mains the same as in Chapter 2 and outlined in Section 1.4. We have noisy observations
of the labels of part of the vertices of a large given graph and the goal is to classify all ver-
tices correctly, including those for which there is no observation available. In Hartog and
Van Zanten (2018) an implementation is provided of nonparametric Bayesian prediction
on graphs using Gaussian priors based on the Laplacian matrix of the graph. Using the
eigendecomposition of the Laplacian matrix, we can view this prior as a Gaussian series
prior

f =
n∑

j=1
g j u( j ), (3.1)

where n is the number of vertices of the graph, u( j ) are the eigenvectors of the Laplacian
matrix and g j Gaussian random variables for j = 1, . . . ,n. As indicated in Hartog and
Van Zanten (2018), using the full Laplacian, i.e. all n eigenvectors, is computationally
demanding and limits the applicability of a Bayesian procedure with this natural prior
for very large graphs. In the present chapter, we address this issue by truncating the se-
ries at a random point for computational efficiency. This leads to a number of practical

Parts of this chapter have been published in Communications in Statistics - Simulation and Computation
(2019) (Hartog and Van Zanten, 2019).

61



62 3. TRUNCATION

issues regarding prior choices etcetera, which we address in a simulation study. We illus-
trate the improved scalability by considering an example involving a graph with 90,000
nodes.

Another advantage of truncating the series (3.1) at a random point is that it yields a
more flexible prior in terms of adaptation to smoothness. Theoretical results for random
inverse-gamma scaling of series priors with Gaussian coefficients and random trunca-
tion are given in Van Waaij and Van Zanten (2017) in the context of signal in white noise
and estimating the drift function of a diffusion process. In these contexts it was shown
that the truncated series prior with a geometric or Poisson prior on the truncation level
achieves the optimal posterior contraction rate. Although in this work we are in a dif-
ferent setup where the results of Van Waaij and Van Zanten (2017) do not directly apply,
we will also use a geometric prior and our proposed method will be a reversible jump
Markov chain Monte Carlo algorithm similar to the method in Van der Meulen et al.
(2014) in the context of diffusion processes.

The rest of this chapter is organized as follows. In the next section, we describe the
classification problem setting and the priors we consider. A sampling scheme to draw
from the posterior distribution is given in Section 3.2 and some computational aspects
are discussed in Section 3.3. In Section 3.4 we present numerical experiments. We first
apply our method on a simple example on the path graph to illustrate the impact of the
prior on the truncation level. In the next example we use data from the MNIST dataset to
illustrate how the truncated prior is more attractive than an untruncated prior in terms
of computation time at a similar level of prediction accuracy. As a final example we ap-
ply our algorithm to a simple object tracking problem in a noisy environment, to further
illustrate the improved scalability achieved by truncation. In Section 3.5 we show the
applicability of the truncated prior to the regression problem and illustrate it with a sim-
ulated example. In Section 3.6 some concluding remarks are given.

3.1. OBSERVATIONAL MODEL AND PRIORS

3.1.1. OBSERVATIONAL MODEL
Our problem setup is the same as in Chapter 2 (Hartog and Van Zanten (2018)). We have
a given connected, simple graph G = (V ,E), with #V = n vertices, denoted for simplicity
by V = {1, . . . ,n}. Associated to every vertex i is a random hard label yi ∈ {0,1}. We assume
that the variables yi are independent, so that their joint distribution is determined by the
unobserved soft label function ℓ : V → (0,1) given by

ℓ(i ) = P (yi = 1) = 1−P (yi = 0).

The observed data is D = {(i , yi ) : i ∈ I obs}, where I obs ⊂V is drawn from an arbitrary dis-
tribution µ on the collection 2V of subsets of vertices. The exact sampling mechanism
µ is not important for the algorithm we propose, only that the subset is independent of
the labels. Throughout, we use the well-known latent variable perspective on this model
(cf. Albert and Chib (1993)). This is simply the observation that we can sample Bernoulli
variables y1, . . . , yn with success probabilities ℓ(1), . . . ,ℓ(n) using an intermediate layer
of latent Gaussian variables. Indeed, let Φ be the probit link, i.e. the cdf of the stan-
dard normal distribution. Then, if f : V → R is given, sampling independent Bernoulli



3.1. OBSERVATIONAL MODEL AND PRIORS 63

variables yi with success probabilities ℓ(i ) = Φ( f (i )) can be achieved by subsequently
sampling independent Gaussian variables zi with mean f (i ) and variance 1 and then
setting yi = 1zi>1 for i = 1, . . . ,n.

3.1.2. PRIOR ON THE SOFT LABEL FUNCTION
The idea proposed in Hartog and Van Zanten (2018) is essentially to achieve a form of
Bayesian Laplacian regularization in this problem by putting a Gaussian prior on the
function f that determines the distribution of the hard labels, with a precision (inverse
covariance) matrix given by a power of the Laplacian matrix L. The Laplacian matrix is
given by L = D − A, with A the adjacency matrix of the graph and D the diagonal matrix
of vertex degrees. It is a symmetric, non-negative definite matrix. Since it always has
eigenvalue 0 however, it is not invertible. A slight adaptation is necessary before it can
serve as a precision matrix. In Hartog and Van Zanten (2018), the matrix L is made in-
vertible by adding a small number 1/n2 to the diagonal, motivated by the result that the
smallest nonzero eigenvalue of the Laplacian matrix is at least 4/n2 (Theorem 4.2 of Mo-
har (1991)). Adding a multiplicative scale parameter c > 0 and a hyperparameter q ≥ 0
as well, Hartog and Van Zanten (2018) propose to employ the prior

f |c ∼ N (0, (c(L+n−2I )q )−1).

Using the eigendecomposition of the Laplacian matrix L =UΛU T , with Λ the matrix of
Laplacian eigenvalues and U the orthogonal matrix containing the corresponding eigen-
vectors, we can write f =Ug for some vector g and write the prior proposed in Hartog
and Van Zanten (2018) in series form as

f |c ∼
n∑

j=1
g j u( j ),

where u( j ) is the j th eigenvector of L and

g |c ∼ N (0, (c(Λ+n−2I )q )−1),

where we assume the eigenvalues are ordered by magnitude, i.e. 0 =λ1 <λ2 ≤ ·· · ,≤λn .
In this chapter, we propose a prior that is more flexible and that improves scalability

with the graph size n. We truncate the above series at a random point k to be equipped
with a prior distribution. Specifically, the prior we use in this chapter can then be written
as

f |k,c ∼
k∑

j=1
g j u( j ),

which depends on the random truncation level k and random scale parameter c via g .
The prior on g given c and k is in this case

g |k,c ∼ N (0, (c(Λk +n−2I )q )−1),

where Λk denotes the restriction of Λ to the first k rows and columns.



64 3. TRUNCATION

3.1.3. PRIOR ON THE TRUNCATION LEVEL

As we wish to express some preference for small models, i.e. low values for k, we use a
truncated exponential prior with rate γ with probability mass function

p(k) ∝ e−γk , k = 1, . . . ,n. (3.2)

The rate γ controls how strongly we prefer small models over large models, with the
limiting case γ→ 0 giving uniform mass 1/n to all possible values k = 1, . . . ,n. It can be
seen that for every l ∈ {1, . . . ,n}, the prior (3.2) on k assigns mass

(1−e−γl )
eγn

eγn −1

to {1, . . . , l }. For large graphs this is approximately 1− e−γl and this can be used to set
γ in such a way that the prior is mostly concentrated on the first l eigenvectors, pos-
sibly relieving the computational burden of having to compute all the eigenvalues. In
some cases this might result in oversmoothing, but for large graphs it might simply be
prohibitive to compute all the eigenvectors.

In our numerical experiments ahead we use the rule-of-thumb of setting γ = 20/n,
unless otherwise stated. This corresponds to concentrating the prior mass on the first
eigenvectors. Specifically, for this choice it holds that approximately 63% of the prior
mass is on the first 5% of the eigenvectors, 86% mass on the first 10% of the eigenvectors
and 98% mass is on the first 20% of the eigenvectors. Simulations indicate that this is an
appropriate choice in many situations.

3.1.4. PRIOR ON THE REGULARIZATION PARAMETER

We use the natural choice of prior for c, which is a gamma prior with density

p(c) ∝ ca−1e−bc , c > 0

for certain a,b > 0. This choice is motivated by the normal-inverse gamma partial conju-
gacy (see e.g. Choudhuri et al. (2007); Liang et al. (2007) in the context of our setting) and
the positive results in the numerical experiments in Hartog and Van Zanten (2018). We
can even choose the improper prior corresponding to a = b = 0, in which case p(c) ∝ 1/c
(as in Choudhuri et al. (2007); Hartog and Van Zanten (2018)) or a = 1 and b = 0, such
that p(c) ∝ 1.



3.2. SAMPLING SCHEME 65

3.1.5. FULL HIERARCHICAL MODEL
All in all, the full hierarchical scheme considered here is the following:

D = {(i , yi ) : i ∈ I obs},

I obs ∼µ,

yi = 1zi>0, i = 1, . . . ,n,

z | f ∼ N ( f , I ),

f =
k∑

j=1
g j u( j ),

g |k,c ∼ N (0, (c(Λk +n−2I )q )−1),

p(k) ∝ e−γk ,

p(c) ∝ ca−1e−bc .

(3.3)

Our goal is to compute f |D and use it to predict the unobserved labels.

3.2. SAMPLING SCHEME
We will use a reversible jump Markov chain Monte Carlo algorithm (Green (1995)) to
sample from f |D in the setup (3.3). This involves sampling repeatedly from the con-
ditionals p(z |c,k, g ,D), p(k, g |c, z,D), and p(c |k, g , z,D). The joint move in k and g is
the reversible jump step as k is the dimension of g . We detail these three steps in the
following subsections.

3.2.1. SAMPLING FROM p(z |c,k, g ,D)
As we identify f =∑k

j=1 g j u( j ), we see that z has the same full conditional as in the setup
in Hartog and Van Zanten (2018). Given c, f and D , the zi ’s are independent and

zi |c, f ,D ∼


N ( fi ,1), if i ̸∈ I obs,

N+( fi ,1), if i ∈ I obs and yi = 1,

N−( fi ,1), if i ∈ I obs and yi = 0,

where N+ and N− denote the normal distribution, conditioned to be positive or negative,
respectively. Generating variables from these distribution can for example be done by
a simple rejection algorithm or inversion (e.g. Devroye (1986), see Chopin (2011) for a
more refined analysis).

3.2.2. SAMPLING FROM p(k, g |c, z,D)
Since, given z, we know all the yi ’s and I obs is independent of all other elements of the
model, we have p(k, g |c, z,D) = p(k, g |c, z). Due to the role of k in the model, we do not
have conjugacy to draw from the exact conditional. Instead, we use a reversible jump
step. To this end, we choose a proposal density w(k ′,k). To generate a new draw for k, g
we propose the following steps:



66 3. TRUNCATION

• draw a proposal k ′ ∼ w(·,k);

• draw an independent uniform random variable v on (0,1);

• if

v ≤ p(z |c,k ′)p(k ′)w(k |k ′)
p(z |c,k)p(k)w(k ′ |k)

,

then accept the new proposal k ′ and for j = 1, . . .k ′ draw

g j ∼ N

(
zT u( j )

1+ c(λ j +1/n2)q ,
1

1+ c(λ j +1/n2)q

)
,

otherwise retain the old draws k and g .

We may choose a symmetric proposal distribution w , where, for example, the di-
mension can move a few steps up or down from the current level in a uniform, triangu-
lar or binomial way. This is similar to a random walk proposal. In that case, the ratio
w(k,k ′)/w(k ′,k) = 1. We may integrate to see that

p(z |c,k) =
∫

p(z |c,k, g )p(g |c,k)d g

= (2π)−n/2

(
k∏

j=1

c(λ j +1/n2)q

1+ c(λ j +1/n2)q

)1/2

e
− 1

2 zT z+ 1
2

∑k
j=1

(zT u( j ))2

1+c(λ j +1/n2)q
,

resulting in the following three cases:

p(z |c,k ′)
p(z |c,k)

=



(∏k
j=k ′+1

1+c(λ j +1/n2)q

c(λ j +1/n2)q

)1/2

e
− 1

2
∑k

j=k′+1
zT u( j )

1+c(λ j +1/n2)q
, if k ′ < k,

1, if k ′ = k,(∏k ′
j=k+1

c(λ j +1/n2)q

1+c(λ j +1/n2)q

)1/2

e
1
2

∑k′
j=k+1

zT u( j )

1+c(λ j +1/n2)q
, if k ′ > k.

In our numerical experiments, we use w(k ′,k) = k−2+B , where B ∼ Binom(4,0.5). In
the following lemma we show detailed balance for this move, this implies that our pro-
posed Markov chain has the correct stationary distribution (see e.g. Brooks et al. (2011)).

Lemma 3.2.1. The above proposed steps satisfy the relation

p(k, g |c, z)p((k, g ) → (k ′, g ′)) = p(k ′, g ′ |c, z)p((k ′, g ′) → (k, g )),

where p(A → B) denotes the transition density from state A to state B.

Proof. The transition density from (k, g ) to (k ′, g ′) is

p((k, g ) → (k ′, g ′)) = min

{
1,

p(z |c,k ′)p(k ′)w(k,k ′)
p(z |c,k)p(k)w(k ′,k)

}
w(k ′,k)p(g ′ |c,k ′, z).

Note that if the minimum is less than 1, the opposite move has a minimum larger than
one. Using

p(k, g |c, z) = p(g |c,k, z)p(k |c, z),

and that the priors for c and k are independent, the assertion is verified. In case the
minimum is greater than 1 can be dealt with in a similar way.



3.2. SAMPLING SCHEME 67

3.2.3. SAMPLING FROM p(c |k, g , z,D)
We see that, given g , c is independent of the rest of the variables. In this case we have the
usual normal-inverse gamma conjugacy giving

c |k, g ∼ Γ

(
a + k

2
,b + 1

2

k∑
j=1

(λ j +1/n2)q g 2
j

)
.

3.2.4. OVERVIEW OF SAMPLING SCHEME
For convenience we summarize our sampling scheme.

Algorithm 3.1 Sampling scheme using truncation.

Input: Data D = {(i , yi ) : i ∈ I obs}, initial values for c, k and g .
Output: MCMC sample from the joint posterior p(c,k, g , z |D).

1: repeat
2: Compute f ←∑k

j=1 g j u( j ) and for i = 1, . . . ,n, draw independent

zi ∼


N ( fi ,1), if i ̸∈ I obs,

N+( fi ,1), if i ∈ I obs and yi = 1,

N−( fi ,1), if i ∈ I obs and yi = 0.

3: Draw a proposal k ′ ∼ w(·,k) and a uniform v on (0,1).
4:

5: if

v ≤ e−γ(k ′−k) w(k,k ′)
w(k ′,k)



(∏k
j=k ′+1

1+c(λ j +1/n2)q

c(λ j +1/n2)q

)1/2

e
− 1

2
∑k

j=k′+1
zT u( j )

1+c(λ j +1/n2)q
, if k ′ < k,

1, if k ′ = k,(∏k ′
j=k+1

c(λ j +1/n2)q

1+c(λ j +1/n2)q

)1/2

e
1
2

∑k′
j=k+1

zT u( j )

1+c(λ j +1/n2)q
, if k ′ > k.

then
6: Set k ← k ′ and for j = 1, . . .k draw

g j ∼ N

(
zT u( j )

1+ c(λ j +1/n2)q ,
1

1+ c(λ j +1/n2)q

)
,

7: else
8: Retain k and g .
9: end if

10: Draw

c ∼ Γ

(
a + k

2
,b + 1

2

k∑
j=1

(λ j +1/n2)q g 2
j

)
.

11: until you have a large enough sample.



68 3. TRUNCATION

3.3. COMPUTATIONAL ASPECTS
If the underlying function f is smooth enough that we can approximate it with only a
few k ≪ n eigenvectors, then the proposed algorithm needs an initial investment of
O(kn2) to compute the first k eigenvalues and eigenvectors, in case these are not ex-
plicitly known for the graph under consideration. Step 6 in Algorithm 3.1 has complexity
O(kn) and is the most expensive step. In principle, it could be that k = n and our method
would be as complex as the algorithm proposed in Hartog and Van Zanten (2018). How-
ever, for very large graphs, it could be prohibitive to calculate the full eigendecompo-
sition. One could compute a fixed number of eigenvalues and eigenvectors and if the
Markov chain is about to step beyond this number one could either compute the next
eigenvalue-eigenvector pair on the fly or reject the proposed k.

3.4. NUMERICAL RESULTS
In this section, we numerically assess scalability of the method and the sensitivity to the
choice of the truncation level.

3.4.1. IMPACT OF THE TRUNCATION LEVEL
To assess the impact of the truncation level γ we first consider a basic example of sim-
ulated data on the path graph with n = 500 vertices. In this case, the eigenvalues of the
Laplacian matrix are λk = 4sin2(π( j −1)/(2n)) with corresponding eigenvectors given by

u( j )
i =


p

2p
n

cos

(
π(i− 1

2 ) j
n

)
, j = 2, . . . ,n,

1p
n

, j = 1,
(3.4)

for i = 1, . . . ,n. We construct a function f0 on the graph representing the ground truth by
setting

f0 =
n∑

j=1
a j u( j ),

where we choose a j =
p

n( j − 1)−1.5 sin( j − 1) for j > 1 and a1 = 0. We simulate noisy
labels Yi on the graph vertices satisfying P (Yi = 1) = ℓ0(i ) =Φ( f0(i )), where Φ is the cdf
of the standard normal distribution. Finally, we remove 20% of the labels at random to
generate the set of observed labels Y obs. Figure 3.1 shows the resulting soft label function
ℓ0 and the simulated noisy labels Yi .

From the construction of our prior, we would like to spread out the mass in the prior
on c and perhaps favor low values in the prior on k for computational efficiency. From
the construction of the prior on k we see that high values for the parameter γ correspond
to more prior mass on low values of k and low values spread out the prior mass over all
possible values of k with limiting case γ= 0 corresponding to p(k) ∝ 1. In Figure 3.2, we
visualize the posterior for the soft label function ℓ for various values for γ. We have used
the a = b = 0 and proposal probabilities (0.0625,0.25,0.375,0.25,0.0625) for k−2, . . . ,k+2,
this corresponds to a Binom(4,0.5) proposal as mentioned in Section 3.2.2. The blue line
is the posterior mean and the gray area depicts point-wise 95% credible intervals. The
bottom plots are the posterior draws for k. We observe that a high γ results in low values



3.4. NUMERICAL RESULTS 69

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

Figure 3.1: Soft label function ℓ0 =Φ( f0) and simulated noisy label on a path graph with n = 500 nodes.

for k, as expected. However, if we choose γ too high, we might be oversmoothing as
a result of taking too few eigenvectors. If we compare the cases γ = 0 and γ = 0.1 we
observe only a little difference in the estimation performance, whereas the number of
eigenvectors used in case of γ= 0.1 is only a fraction of the number of eigenvectors used
in case of γ= 0.



70 3. TRUNCATION

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a

b
ili

ty

0 10000 20000 30000 40000 50000

0
1

0
0

2
0

0
3
0
0

4
0

0
5

0
0

Index

k

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a

b
ili

ty

0 10000 20000 30000 40000 50000

0
1
0
0

2
0
0

3
0
0

4
0

0
5

0
0

Index

k

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a

b
ili

ty

0 10000 20000 30000 40000 50000

0
1
0
0

2
0
0

3
0
0

4
0

0
5

0
0

Index

k

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

Figure 3.2: Top: Posteriors for the soft label function for γ= 0,0.1,1. The rightmost picture is the case k = n for
comparison. Bottom: The corresponding draws from the posterior of k. The black line is the true underlying
soft label function. The blue line is the posterior mean and the gray area depicts point-wise 95% credible
intervals. The red and blue dots are the observations.

We also consider a simulated example on a small-world graph obtained as a realiza-
tion of the Watts-Strogatz model (Watts and Strogatz, 1998). The graph is obtained by
first considering a ring graph of 1000 nodes. Then, we loop through the nodes and uni-
formly rewire each edge with probability 0.25. We keep the largest connected compo-
nent and delete multiple edges and loops, resulting in a graph with 848 nodes as shown
in Figure 3.3. We use the same construction of the observed data on the graph as in the
previous example on the path graph. Our suggested rule-of-thumb of setting γ = 20/n
corresponds in the previous examples to γ = 0.04 and γ = 0.024, which in both cases
ends up in using only a small fraction of the total number of eigenvectors, but it does not
oversmooth too much. The results are in Figure 3.4.



3.4. NUMERICAL RESULTS 71

Figure 3.3: Small world graph with two types of labels. White nodes represent unobserved labels.

3.4.2. COMPUTATIONAL GAINS: MNIST DATA

The MNIST data set consists of images of handwritten digits. The images are size-normalized
and centered. The dataset is publicly available at http://yann.lecun.com/exbd/mnist.
We have selected the images of only the digits 4 and 9 from both the test set (1991 im-
ages) and the training set (11791 images). Our goal is to classify the images from the test
set using the images from the training set. To turn this into a label prediction problem on
a graph we construct a graph with 11791+1991 = 13782 nodes representing the images.
For each image we determine the 15 closest images in Euclidean distance between the
projections on the first 50 principal components, similar to Bertozzi et al. (2018), Liang
et al. (2007) and Belkin et al. (2006).

We use this example to explore the relative speedup of our proposed method with
respect to the method proposed in Hartog and Van Zanten (2018) without truncation,
where we also compare the difference in prediction accuracy. To this end, we take ran-
dom subsamples of different sizes of the graph to illustrate what happens when the size
of the graph grows. The ratio of 4’s and 9’s in the test and train set is kept constant and
equal to that of the entire dataset. In Figure 3.5 we observe a dramatic difference in
the computational time for the algorithm without truncation versus the algorithm with
truncation, while the prediction performance is comparable.



72 3. TRUNCATION

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a

b
ili

ty

0 1000 2000 3000 4000 5000

0
1

0
2

0
3

0
4

0

Index

k

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a

b
ili

ty

0 1000 2000 3000 4000 5000

0
1

0
2

0
3

0
4

0

Index

k

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a

b
ili

ty

0 1000 2000 3000 4000 5000

0
1

0
2

0
3

0
4

0

Index

k

Figure 3.4: Top: Posteriors for the soft label function for γ = 0,0.1,1. Bottom: The corresponding draws from
the posterior of k.

0 2000 4000 6000 8000 10000 12000 14000

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0
1

0
0

0
0

Graph size n

T
im

e
 (

s
)

5 6 7 8 9

2
4

6
8

log(n)

lo
g

(t
im

e
)

600 800 1000 1200 1400

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

Graph size n

M
is

c
la

s
s
if
ic

a
ti
o

n
 r

a
te

Figure 3.5: Left: Computation time versus graph size. Middle: Computation time versus graph size on a log-log
scale. Right: The prediction performance on the different subgraphs. The blue line is our proposed truncation
method, the black line is the method from Hartog and Van Zanten (2018). In both methods we set a = b = 0
and we choose γ= 20/n.

3.4.3. LARGE SCALE EXAMPLE: OBJECT TRACKING

To demonstrate the applicability of our proposed method in a large graph, where for
example the untruncated method from Hartog and Van Zanten (2018) is prohibitive, we
use a simulated object tracking application. As ground truth, we use the animation given
by the following frames (Figure 3.6).



3.4. NUMERICAL RESULTS 73

Figure 3.6: Moving object in a noisy environment, images are 100×100 pixels. The fifth image is corrupted with
an additional object which should be removed.

The animation consists of 9 frames of 100×100 pixels. It represents a slowly moving
blue ball on a red background. We removed the color of 20% of the pixels at random and
added an additional ball in the fifth image to represent a corrupted frame. To convert the
animation into a graph problem we connect neighboring pixels in each frame and with
the corresponding pixels in the previous and next frame, resulting in a 100×100×9 grid
graph on a total of n = 90000 nodes as in Figure 3.7.



74 3. TRUNCATION

Figure 3.7: Schematic representation of the construction of the grid graph. Each pixel is also connected to the
pixel at the same location in the frame before and after the current frame (these lines are omitted from the
above representation for clarity).

We can explicitly compute the eigenvalues as λi +µ j +νk (cf. Theorem 3.5 in Mohar
(1991)), where

λi = 4sin2
(
πi

200

)
, i = 0, . . . ,99,

µ j = 4sin2
(
π j

200

)
, j = 0, . . . ,99,

νt = 4sin2
(
πt

18

)
, t = 0, . . . ,8.

The corresponding eigenvectors are given by the tensor products u(i ) ⊗ v ( j ) ⊗ w (t ) of
eigenvectors of the path graph with sizes 100 (u), 100 (v) and 9 (w) as in Equation (3.4).
Using the noisy images, we estimate the location of the ball as shown in Figures 3.8 and
3.9,

In this particular example, we have an explicit interpretation of the dimensions of
the graph. In this case, it would also make sense to make a difference between the space
dimensions, corresponding to eigenvectors u(i ) and v ( j ), and the time dimension, corre-
sponding to eigenvectors w (t ). Our framework allows for an extension, by using different
priors for the truncation point in those two types of dimension. Instead of a single trun-
cation in the model (3.3), we can use

f =
k∑

i , j

l∑
t=1

gi , j ,t u(i ) ⊗ v ( j ) ⊗w (t ),

where p(k) ∝ e−γk and p(l ) ∝ e−δl , are independent priors for the two different trunca-
tion levels. Alternatively, we can use the approach from Section 3.3 and compute a fixed



3.4. NUMERICAL RESULTS 75

number of eigenvalues and eigenvectors in each dimension and compute the next pair
on the fly or reject the proposed move. We chose this last alternative in our example with
20 eigenvectors in each space dimension and all 9 in the time dimension.

We observe that the object is located in all images and that the additional object in
frame 5 adds some noise in the probability estimates, but is ignored when we truncate
at probability 0.5.

Figure 3.8: Estimated probabilities of location of object in a noisy environment. The gray scale represents a
probability of being a black pixels where dark is close to 1 and light is close to 0.



76 3. TRUNCATION

Figure 3.9: Estimated location of object in a noisy environment. We truncated the probabilities from Figure 3.8
at 0.5 to decide whether the pixels belong to the object or not.

An advantage of the Bayesian procedure that we use is that we obtain credible inter-
vals as indicators of uncertainty in our prediction. The width of these intervals per pixel
are shown in Figure 3.10. We observe that the uncertainty around the boundary of the
object is relatively high, whereas it is relatively low inside and outside of the object.



3.5. REGRESSION PROBLEM 77

Figure 3.10: Uncertainty in of the predicted probability for each pixel computed as the width of the 95% cred-
ible interval. The heat map is from red (low uncertainty, width of credible interval close to 0) to white (high
uncertainty, width of credible interval close to 0.25).

3.5. REGRESSION PROBLEM
In this section, we demonstrate the hierarchical Bayesian approach using truncation to
solve the regression problem on a graph. We repeat the regression setting for complete-
ness. The graph is denoted by G = (V ,E), where V = {1, . . . ,n}. We assume that the noisy
labels y are Gaussian with

y | f ∼ N ( f ,σ2I ),

where f is the function of interest. For simplicity, we assume σ2 is fixed and known and
that all noisy label are observed. We are interested in inferring f from the data y . Similar
to the classification problem in the previous sections, we consider a Gaussian prior on
f , which depends on the Laplacian matrix L, on a multiplicative scale parameter c > 0



78 3. TRUNCATION

and a truncation level k. The resulting prior is given by the truncated series

f =
k∑

j=1
g j u( j ),

where
g |c,k ∼ N (0, (c(Λk +n−2I )q )−1),

for some fixed q > 0, where Λk is the restriction of the matrix of eigenvalues Λ, from
the eigendecomposition L = UΛU T , to the first k rows and columns. The additional
number n−2 is added to L to make it invertible as in Section 3.1. In this chapter, we have
considered the ordinary gamma prior for the scaling parameter c,

c ∼ Γ(a,b)

for a,b > 0. The improper case of a = b = 0 is also used in the literature (e.g. Choudhuri
et al. (2007); Liang et al. (2007)). In Section 3.4, we have seen that this is a reasonable
choice in our setting as well. For the truncation level, we use the exponential prior

p(k) ∝ e−γk ,

for k = 1, . . . ,n. Motivated by the numerical experiments in Section 3.4, we use the rule-
of-thumb γ = 20/n. The four distributions y |k, g , g |c,k, c and k form the hierarchical
model.

To sample from the posterior f | y , we use a Gibbs sampler, as in Algorithm 1.1, com-
bined with a reversible jump step, as in Algorithm 1.3. We can naturally partition the un-
known parameter as (c, g ,k). To sample from the joint posterior c, g ,k | y we iteratively
sample from the conditionals k, g |c, y , using a reversible jump move, and c |k, g , y .

To apply Algorithm 1.3 for a reversible jump in g ,k |c, y , we need to compute the
densities p(k |c, y) and p(g |k,c, y). We write Uk for the restriction of U to the first k
columns and find

g |c,k, y ∼ N (σ−2(σ−2I + c(Λk +n−2I )q )−1U T
k y, (σ−2I + c(Λk +n−2I )q )−1)

and

p(k |c, y) ∝ p(k)(σ−2)
n
2

(
k∏

j=1

c(λ j +n−2)q

σ−2 + c(λ j +n−2)q

) 1
2

e
− 1

2
yT y

σ2 + 1
2

∑k
j=1

(σ−2 yT u( j ))2

σ−2+c(λ j +n−2)q
.

The conditional p(c |k, g , y) can be found using the normal-inverse gamma partial
conjugacy. It should be noted that given (k, g ), y is independent of c, so c |k, g , y does
not depend on y . We find

c |k, g , y ∼ Γ

(
a + k

2
,b + 1

2

k∑
j=1

(σ−2 + (λ j +n−2)q )g 2
j

)
.

We see that the improper prior with a = b = 0 results in a proper posterior.
These steps can be summarized in the following algorithm:



3.5. REGRESSION PROBLEM 79

Algorithm 3.2 Simple sampling scheme for the regression problem using truncation.

Input: Data D = {(i , yi ) : i = 1, . . . ,n}, variance σ2, initial values c, k and g .
Output: MCMC sample from the joint posterior c,k, g | y .

1: repeat
2: Draw a proposal k ′ ∼ w(·,k) and uniform v on (0,1).
3: if

v ≤ p(k)

p(k ′)
w(k,k ′)
w(k ′,k)



(∏k
j=k ′+1

σ−2+c(λ j +n−2)q

c(λ j +n−2)q

) 1
2

e
− 1

2
∑k

j=k′+1
(σ−2 yT u( j ))2

σ−2+c(λ j +n−2)q
, k ′ < k

1, k ′ = k(∏k ′
j=k+1

c(λ j +n−2)q

σ−2+c(λ j +n−2)q

) 1
2

e
1
2

∑k′
j=k+1

(σ−2 yT u( j ))2

σ−2+c(λ j +n−2)q
, k ′ > k

then
4: Update k ← k ′ and for j = 1, . . . ,k, draw

g j ∼ N (σ−2(σ−2 + c(λ j +n−2)q )−1 yT u( j ), (σ−2 + c(λ j +n−2)q )−1).

5: else
6: Retain g and k.
7: end if
8: Draw

c ∼ Γ

(
a + k

2
,b + 1

2

k∑
j=1

(σ−2 + (λ j +n−2)q )g 2
j

)
.

9: until you have a large enough sample.

As a proposal, we use k ′ = k −K /2+B , where B ∼ Binom(K ,1/2) for K = 4. When σ2

is unknown, we can put an independent prior p(σ2) on σ2, or rather, an independent
prior p(σ−2) on the precision σ−2. We include a draw from σ−2 |c,k, g ,D in Algorithm
3.2 to sample from the joint posterior g ,k,c,σ−2 |D . If we take a gamma prior for σ−2

with shape s and rate t , we see that

σ−2 |c,k, g ,D ∼ Γ

(
s + n

2
, t + 1

2

n∑
i=1

y2
i +

1

2

k∑
j=1

(g 2
j −2g j yT u( j ))

)
.

To account for missing data, we can include the missing observations ymiss as latent
variables and impute them prior to line 2 of Algorithm 3.2 in every iteration using

ymiss |c,k, g ,σ−2,D ∼ N (U miss
k g , (1/σ−2)I ),

where U miss
k is the restriction of Uk to the rows corresponding to the missing observa-

tions. The other steps in Algorithm 3.2 remain unchanged as we simply use y = (yobs, ymiss).
A sampling scheme for the regression problem with missing data and unknown noise
level is Algorithm 3.3.



80 3. TRUNCATION

Algorithm 3.3 Sampling scheme for the regression problem using truncation.

Input: Data D = {(i , yi ) : i ∈ I obs}, initial values c, k, g and σ−2.
Output: MCMC sample from the joint posterior ymiss,c,k, g ,σ−2 |D .

1: repeat
2: For i ∉ I obs, draw

yi ∼ N (Ui ,1···k g ,1/σ−2).

3: Draw a proposal k ′ ∼ w(·,k) and uniform v on (0,1).
4: if

v ≤ p(k)

p(k ′)
w(k,k ′)
w(k ′,k)



(∏k
j=k ′+1

σ−2+c(λ j +n−2)q

c(λ j +n−2)q

) 1
2

e
− 1

2
∑k

j=k′+1
(σ−2 yT u( j ))2

σ−2+c(λ j +n−2)q
, k ′ < k

1, k ′ = k(∏k
j=k ′+1

c(λ j +n−2)q

σ−2+c(λ j +n−2)q

) 1
2

e
1
2

∑k
j=k′+1

(σ−2 yT u( j ))2

σ−2+c(λ j +n−2)q
, k ′ > k

then
5: Update k ← k ′ and for j = 1, . . . ,k, draw

g j ∼ N (σ−2(σ−2 + c(λ j +n−2)q )−1 yT u( j ), (σ−2 + c(λ j +n−2)q )−1).

6: else
7: Retain g and k.
8: end if
9: Draw

c ∼ Γ

(
a + k

2
,b + 1

2

k∑
j=1

(σ−2 + (λ j +n−2)q )g 2
j

)
.

10: Draw

σ−2 ∼ Γ

(
s + n

2
, t + 1

2

n∑
i=1

y2
i +

1

2

k∑
j=1

(g 2
j −2g j yT u( j ))

)
.

11: until you have a large enough sample.

3.5.1. TRAFFIC FLOW ESTIMATION

To illustrate the regression problem, we consider a simulated example of traffic flow es-
timation inspired by Aldous and Shun (2010) and Bickel et al. (2007). Traffic data is col-
lected by authorities to measure the performance of the road network in terms of flow,
occupancy and speed at locations in the network. A common type of sensor used for
traffic flow estimation is a loop detector that counts the number of passing vehicles over
a certain time interval. However, the resulting loop data is often missing or invalid due to
communication errors or malfunction. Missing and bad observations are imputed from
the neighboring sensor location using a simple average or a regression approach.

We simulate a road network between cities based on a toy model. We sample 500



3.5. REGRESSION PROBLEM 81

points uniformly on the unit square and compute the relative neighborhood graph by
connecting nodes u and v if there does not exist a node w such that

max{∥u −w∥,∥v −w∥} < ∥u − v∥.

In Figure 3.11 this definition is illustrated, nodes u and v are connected if there is no
node in the gray area. The resulting graph is simple and connected. Relative neighbor-
hood graphs and related proximity graphs, such as the nearest neighbor graph in Section
3.4.2, can be used as a toy models for road networks (see Aldous and Shun (2010)).

u v

Figure 3.11: Construction of a relative neighborhood graph. Nodes u and v are connected if there is no point
closer to both u and v as they are to each other, corresponding to the gray area not containing a node.

The resulting graph is the left graph in Figure 3.12. As traffic flow is a property of the
roads in the city graph, we construct its line graph, by associating a vertex with each road
in the city graph and connecting two vertices if the corresponding roads in the city graph
have a city in common. This is the right graph in Figure 3.12 and is the road graph G we
work with. It has n = 617 vertices.

Figure 3.12: Left: A road network between cities as a realization of the relative neighborhood graph on 500
random uniform points on the unit square. Right: The corresponding line graph, where the nodes correspond
to the roads of the left graph. The dashed line is the original graph.

We construct a true traffic flow function f0 on the graph by setting

f0 =
n∑

j=1
a j u( j ),



82 3. TRUNCATION

where u( j ) are the eigenvectors of the Laplacian matrix L =UΛU T of G . To construct the
coefficients a j we consider the path graph with vertices xi = i /n for i = 1, . . . ,n and the
function 5+ f (xi ), where f is given by Equation (1.8). We compute a j as the coefficients
of 5+ f on the path graph and use them in our graph G , generalizing the function on the
path graph to our graph G . The resulting underlying traffic flow is depicted in Figure 3.13
on both the city graph and the road graph G .

Figure 3.13: Left: The corresponding traffic flow on the city graph, where the flow is observed on the edges.
Right: The traffic flow on the road graph G . Traffic intensity ranges from green (light traffic) to red (heavy
traffic) and is observed on the nodes.



3.5. REGRESSION PROBLEM 83

To construct a noisy observation of the traffic flow, we add independent noise ϵi ∼
N (0,1) to each node i = 1, . . . ,n and remove 123 of our observations as depicted in Figure
3.14.

Figure 3.14: The noisy observation of the underlying traffic flow in Figure 2.24. The missing observations are
in gray.



84 3. TRUNCATION

We estimate the traffic flow using Algorithm 3.3 with hyperparameters a = b = 0, s =
t = 1 and q = 1. We numerically determine r = 1.67 from the spectrum of the Laplacian
matrix as shown in Figure 3.15. We choose prior smoothness α not too large. The true
function in Equation (1.8) is very smooth, but we will see that the truncated series prior is
flexible enough to truncate early for posterior smoothness. The resulting posterior mean
for f =Ug is shown in Figure 3.16. To illustrate the uncertainty in our estimate, we also
plot the estimated traffic flow along a path from the north-west corner of the map to
the south-east corner in Figure 3.17 together with point-wise 95% credible intervals. An
average of 7.8 terms are used to construct the estimate.

−6 −5 −4 −3 −2 −1 0

−
5

−
4

−
3

−
2

−
1

0
1

2

log((j−1)/n)

lo
g

(e
ig

e
n
v
a

lu
e

)

Figure 3.15: Left: The road graph. Right: The eigenvalues of the Laplacian matrix of the road graph. The dashed
line corresponds to geometry number r = 1.67 based on a linear fit with slope 1.24. We have used the first 35%
of the eigenvalues with exception of the first three.



3.5. REGRESSION PROBLEM 85

c

d
e

n
s
it
y

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

sigma^2

d
e

n
s
it
y

1.2 1.4 1.6 1.8 2.0 2.2 2.4

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Figure 3.16: The posterior mean for the traffic flow data from Figure 3.14. Bottom: Histograms for the posterior
distribution of c and σ2. The vertical black lines are the corresponding posterior means.



86 3. TRUNCATION

0 10 20 30 40

0
2

4
6

8
1

0

path

tr
a

ff
ic

 f
lo

w

Figure 3.17: Left: A path in the city graph. Right: Posterior mean (blue) and point-wise 95% credible interval
(gray area) for the traffic flow along the path. The points are the noisy observations and the black line is the
true underlying traffic flow function.

3.6. CONCLUDING REMARKS
We have described an implementation of a nonparametric Bayesian approach to solve
regression and binary classification problems on graphs. We have considered a hierar-
chical Bayesian approach with a randomly scaled Gaussian series prior as in Hartog and
Van Zanten (2018), but with a random truncation point. We have implemented the pro-
cedure using a reversible jump Markov chain Monte Carlo algorithm.

Our numerical experiments suggest that good results for classification are obtained
using Algorithm 3.1 using hyperparameters a = b = 0 and γ = 20/n. We find that in the
examples we studied, the random truncation point results in a superior performance
compared to the method proposed in Hartog and Van Zanten (2018) in terms of com-
putational effort, while the prediction performance remains comparable. We have also
demonstrated that our proposed method is scalable to large graphs and, with some ad-
justment, is applicable to the regression problem.



4
EMPIRICAL BAYES

In this chapter, we describe an implementation of a nonparametric Bayesian approach
to solve regression and binary classification problems on graphs. We consider a empirical
Bayesian approach with a prior that is constructed by truncating a series expansion of the
soft label function using the graph Laplacian eigenfunctions as basis functions. The series
is multiplied by a scale parameter for more flexibility. The scale parameter and truncation
level are treated as unknown hyperparameters and are chosen such that the (approximate)
marginal likelihood is maximized. To compute the marginal likelihood in the classifica-
tion problem, we use a Laplace approximation. We demonstrate our method using simu-
lated data examples.

In this chapter, we consider regression and classification problems on graphs. Our
setup is the same as in Chapter 2 and Chapter 3 (Hartog and Van Zanten (2018)), but
included here for completeness. Applications of regression and classification problems
on graphs arise in, for example the prediction of biological function of a protein in a
protein-protein interaction graph (e.g. Kolaczyk (2009); Nariai et al. (2007); Sharan et al.
(2007)) or in graph-based semi-supervised learning (e.g. Belkin et al. (2004); Sindhwani
et al. (2007)). We have problems in mind in which the graph is given by the application
context. In the classification problem, the vertices of the graph can have (two) different
values, corresponding the the possible classes of the vertices. In the regression problem,
the label have real-valued labels. The available data in both cases is a noisy observation
of some of the labels. We aim to classify the unobserved labels correctly.

The main idea behind our approach is that the information about the labels of neigh-
boring vertices should typically have predictive power for the vertex label of interest. In
our setting, we say that there exists a soft label function that determines the observed
labels. This soft label function should vary smoothly over the graph. Moreover, we ap-
proximate the soft label function with a function of lower dimension.

We endow the soft label function with a prior distribution and determine the corre-
sponding posterior. This posterior distribution can be used for prediction. As in Hartog
and Van Zanten (2019), there are tuning parameters to be set. As with many nonparamet-
ric methods, the correct choice of bandwidth, smoothness or regularization parameters

87



88 4. EMPIRICAL BAYES

can be hard to determine. Our case is no exception, however in Hartog and Van Zan-
ten (2019) a hierarchical Bayesian approach is presented, where the tuning parameters
are also endowed with a prior distribution and the data automatically determines the
appropriate values for it. A drawback of the proposed implementation is that sampling
from the posterior distribution is time consuming, because it is done via a Markov chain
Monte Carlo algorithm. In the present chapter, we propose an empirical Bayes approach,
where we predict the unobserved labels in two steps. We use the scaled and truncated
Gaussian series prior from Hartog and Van Zanten (2019) as a prior for the soft label
function. First, we determine the optimal value for the tuning parameters, the regular-
ization parameter and the truncation level, in terms of maximal marginal likelihood. As
the marginal likelihood is intractable, we approximate it using Laplace approximation
and maximize the approximated likelihood instead. Second, we fix the tuning parame-
ters at the values attaining the maximal approximated likelihood and sample from the
posterior. As a faster alternative, we can sample from the Laplace approximation to the
posterior. In this two-step estimation approach, most of the computational costs is the
first step. Note that the observed data is used in both steps.

The rest of this chapter is organized as follows. In the next section, we describe the
problem setting and the priors we consider. Section 4.2 describes the Laplace approxi-
mation we use for the posterior distribution. Section 4.3 describes how the tuning pa-
rameters are selected using the data and Section 4.4 discusses how to use the fixed tun-
ing parameters to sample from the posterior distribution. We also discuss the computa-
tional aspects of these algorithms. Section 4.5 consists of several examples to illustrate
the different steps in our proposed algorithm, its strengths and possible weaknesses. In
Section 4.6, we apply our empirical Bayes approach to the regression problem. Conclud-
ing remarks are given in Section 4.7.

4.1. OBSERVATION MODEL AND PRIOR

4.1.1. OBSERVATION MODEL
The observation model is similar to Hartog and Van Zanten (2018) and Hartog and Van Zan-
ten (2019). We start with a connected, simple undirected graph G = (V ,E), with #V = n
vertices denoted by V = {1,2, . . . ,n}. Associated to every vertex i is a noisy hard label yi .
We assume the yi ’s are independent Bernoulli variables, with

P (yi = 1) = 1−P (yi =−1) = ℓ(i ),

where ℓ : V → (0,1) is an unobserved function on the vertices of the graph, the so-called
soft label function. Note that we use {−1,1} instead of the usual {0,1}, for notational rea-
sons later on. We observe only a subset Y obs ⊂ {y1, . . . , yn} of all the noisy labels. This can
be a random subset of all the {y1, . . . , yn}, generated in an arbitrary way, but independent
of the values of the labels. Note that in this setup we either observe the label of a vertex
or not, so multiple observations of the same vertex are not possible.

4.1.2. PRIOR ON THE SOFT LABEL FUNCTION
The prior on the soft label function is the same as in Hartog and Van Zanten (2019). We
repeat its construction here for completeness. Our prediction method consists in first



4.1. OBSERVATION MODEL AND PRIOR 89

inferring the soft label function ℓ from Y obs and subsequently predicting the hard la-
bels by thresholding. We take a Bayesian approach which is nonparametric, in the sense
that we do not assume that ℓ belongs to some low-dimensional, for instance generalized
linear family of functions.

To put a prior on ℓ we use a link h, for example, in case of probit classification h =Φ

(i.e. the cdf of the standard normal distribution), to write ℓ = h( f ) for some function
f : V → R and then put a prior on f . We consider a Gaussian series prior on f where
each term is the series is an eigenvector of the Laplacian matrix L of the graph. Recall
that this is the matrix defined as L = D − A, where D is the diagonal matrix of vertex
degrees and A is the adjacency matrix of the graph. If we write the eigendecomposition
L =UΛU T , then we can write any function f as

f =Ug =
n∑

j=1
g j u( j ),

where u( j ) is the j -th eigenvector and g j its coefficient. The ordering of the eigenvectors
in the above series is assumed to be according to the sizes of the eigenvalues, so 0 =
λ1 < λ2 ≤ ·· · ≤ λn . To construct a prior on f we truncate the above series after k terms
and employ an independent Gaussian prior on the coefficients g j with mean zero and

precision (inverse covariance) ecλ
q
j , where c is a scale parameter, λ j the eigenvalue of

L corresponding to the j th eigenvector and q > 0 a fixed power. The lowest eigenvalue
of the Laplacian matrix is 0 however, so it is not invertible. Therefore, one might add a
small number ϵ to all eigenvalues, corresponding to eigendecomposition U (Λ+ϵ)U T or
set λ1 equal to the smallest positive eigenvalue λ2. In the following we assume either
option is chosen and just write λ for the adjusted eigenvalues. We then have

ℓ= h( f ),

f =
k∑

j=1
g j u( j ),

g |c,k ∼ N (0,e−cΛ−q ).

We might also choose the logit link function given by h(x) = 1/(1+e−x ) instead of the pro-
bit link function. It slightly changes the model, but might have better numerical proper-
ties as explained in Section 4.2.1. We will estimate f in a two step procedure, namely by
first estimating the hyperparameters k and c from the data, and then estimate f .

4.1.3. MISSING LABELS
We consider the situation in which we do not observe all the labels yi , but only a certain
subset Y obs. The labels that we observe, are observed only once. The precise mechanism
that determines which yi ’s we observe and which ones are missing is not important for
the algorithm we propose. We only assume that it is independent of the other elements
of the model. Specifically, we assume that for some arbitrary distribution µ on the col-
lection 2V of subsets of the vertices, a set of vertices I obs is drawn and that we see which
vertices are selected and what the corresponding noisy labels are. In other words, the
observed data is D = {(i , yi ) : i ∈ I obs}.



90 4. EMPIRICAL BAYES

All in all, the full model we will work with is the following:

D = {(i , yi ) : i ∈ I obs},

I obs ∼µ,

yi | fi ∼ independent Bernoulli(h( fi )), i ∈ I obs,

f =Ug ,

g |c,k ∼ N (0,e−cΛ−q ),

where the matrices U and Λ are the appropriate-sized submatrices of our eigendecom-
position L =UΛU T , i.e. U is the |I obs|×k matrix with rows corresponding to the observed
labels and the first k rows and Λ is the k ×k matrix corresponding to the first k rows and
columns. Our goal is to first estimate the optimal hyperparameters c∗ and k∗ using the
data D , and thereafter fixing them to infer g |D,c∗,k∗ which, in turn, we can use to pre-
dict the unobserved labels. The unobserved hard labels can be inferred by thresholding,
i.e. sign(Ug ).

4.2. LAPLACE APPROXIMATION

We select the hyperparameters c and k by maximizing the marginal likelihood p(Y obs |c,k).
Our approach is similar to the kernel-based approach in Rasmussen and Williams (2006).
We can write the likelihood as

p(Y |g ,c,k) = ∏
i∈I obs

p(Yi |c,k, g ),

where

p(Yi |c,k, g ) = h(Yi (Ug )i )

and

(Ug )i =
k∑

j=1
g j u( j )

i .

Note that we chose that the two labels are Yi ∈ {−1,1} so that the above expression is
simple. The prior on g has density

p(g |c,k) = (2π)−k/2eck/2

(
k∏

j=1
λ

q/2
j

)
e−

1
2 ec g T Λq g

and so the joint distribution is

p(Y , g |c,k) = p(Y |g ,c,k)p(g |c,k).

The marginal likelihood is computed by integrating out g :

p(Y |c,k) =
∫

p(Y , g |c,k)d g .



4.2. LAPLACE APPROXIMATION 91

To efficiently compute this integral, we employ Laplace approximation. We write the
integral as

p(Y |c,k) =
∫

eΨ(g )d g ,

where

Ψ(g ) = log p(Y |g ,c,k)+ log p(g |c,k)

= ∑
i∈I obs

h(Yi (Ug )i )− k

2
log2π+ ck

2
+ q

2

k∑
j=1

logλ j − ec

2

k∑
j=1

g 2
j λ

q
j .

The Laplace approximation consists of approximating Ψ with its second order Taylor
polynomial in the location of the maximum ĝ , so

Ψ(g ) ≈Ψ(ĝ )− 1

2
(g − ĝ )T A(g − ĝ ),

where A =−HΨ(ĝ ) is the negative Hessian matrix of Ψ in ĝ . We will see that A is positive
definite and so Ψ(g ) is concave and therefore has a unique maximum ĝ . The approxi-
mated marginal likelihood is given by

q(c,k) =
∫

eΨ(ĝ )− 1
2 (g−ĝ )T A(g−ĝ )d g = eΨ(ĝ )(det2πA−1)1/2.

We can approximate the log marginal likelihood as

log q(c,k) =Ψ(ĝ )− 1

2
logdet A+ k

2
log2π. (4.1)

4.2.1. FINDING THE LOCATION OF THE MAXIMUM
To find expressions to find the location of the maximum ĝ and the negative Hessian
matrix A, we can compute the gradient of Ψ as

∇Ψ(g ) =∇ log p(Y |c,k)−ecΛq g

and the Hessian matrix as

HΨ(g ) = H log p(Y |c,k)−ecΛq .

We write explicit expressions for the gradient and the Hessian for both the probit and the
logit model in terms of the link function h with derivative h′.

Lemma 4.2.1. In both the probit and the logit case, we can write the Hessian matrix
HΨ(g ) as −U T W U for a diagonal matrix W . It is negative definite, so a unique maxi-
mum of Ψ(g ) exists.

Proof. In the probit model, we use the properties that ∂(Ug )i /∂g j = ui , j , ϕ(x) = ϕ(−x)
and ϕ′(x) =−xϕ(x) to see that

∂ logΦ(Yi (Ug )i )

∂g j
= Yiϕ((Ug )i )ui , j

Φ(Yi (Ug )i )



92 4. EMPIRICAL BAYES

and

∂2 logΦ(Yi (Ug )i )

∂g j∂gl
=−

(
ϕ((Ug )i )2

Φ(Yi (Ug )i )2 +Yi (Ug )i
ϕ((Ug )i )

Φ(Yi (Ug )i )

)
ui , j ui ,l .

In the logit model, we use that ∂(Ug )i /∂g j = ui , j , h′(x) = (1−h(x))h(x) and h′(x) = h′(−x)
to see that

∂ logh(Yi (Ug )i )

∂g j
= Yi (1−h(Yi (Ug )i ))ui , j

and

∂2 logh(Yi (Ug )i )

∂g j∂gl
=−h((Ug )i )(1−h((Ug )i ))ui , j ui ,l .

It is directly seen that the resulting diagonal matrix W has positive entries in both cases.

We can find the maximum of Ψ(g ) by Newton’s method. The update step in Newton’s
method is given by

g new = g − (HΨ)−1∇Ψ
= g + (U T W U +ecΛq )−1(∇ log p(Y |g ,c,k)−ecΛq g ).

Instead of computing the inverse of HΨ(g ) and its determinant directly, we use the ma-
trix

B = I +e−cΛ−q/2U T W UΛ−q/2 (4.2)

for numerical stability, similar to the approach in Rasmussen and Williams (2006). The
eigenvalues of B are bounded from below by 1 and, in case of a logit link function,
bounded from above by 1+ e−c nλ−q

1 /4. In case of a probit link function, we observe
that ϕ(x)/Φ(−x) →∞ as x →∞. The matrix inversion in the Newton procedure can be
written as

(U T W U +ecΛq )−1 = e−cΛ−q/2B−1Λ−q/2

and the determinant as

det A = ec
k∏

j=1
λ

q
j detB.

We can write Equation (4.1) as

log q(c,k) = ∑
i∈obs

logh(Yi (U ĝ )i )− 1

2
logdetB − ec

2

k∑
j=1

g 2
j λ

q
j . (4.3)

The method described in this section is summarized in Algorithm 4.1 below:



4.3. OPTIMIZATION FOR HYPERPARAMETERS 93

Algorithm 4.1 Newton’s method for finding ĝ .

Input: Data D = {(i , yi ) : i ∈ I obs}, initial values for paramter g and hyperparameters c
and k.

Output: Mode for Laplace approximation ĝ and the approximated log marginal likeli-
hood q(c,k).

1: repeat
2: Compute W as in Lemma 4.2.1.
3: Compute B as in Equation (4.2).
4: Compute the Cholesky decomposition B = LLT .
5: Update g ← g +B−1∇Ψ(g ) using L.
6: until convergence.
7: Compute logdetB using L.
8: Compute log q(c,k) as in Equation (4.3).

The most expensive step is the computation of B being of order O(k2n). The Cholesky
decomposition is of order O(k3), which is less expensive if k is much smaller than n.

4.3. OPTIMIZATION FOR HYPERPARAMETERS
To maximize the approximate log marginal likelihood, we optimize Equation (4.3) over
the hyperparameters c and k. As Equation (4.3) is continuous in c and discrete in k, it
is hard to simultaneously optimize over both hyperparameters. For fixed k however, the
optimization over c is relatively straightforward, therefore, we propose to start at a low,
fixed value of k, find the optimal c and increase k until the approximated log marginal
likelihood doesn’t increase significantly anymore. The pitfalls of this method are ex-
plored in Section 4.5. The bottom-up search is summarized in Algorithm 4.2 below:

Algorithm 4.2 Bottom-up search for k∗.

Input: Initial values for c and k.
Output: c∗ and k∗

1: repeat
2: Compute c∗ using Algorithm 4.4 or 4.5.
3: Update k ← k +1.
4: until convergence.

Note that the current c∗ can be used as initial value in the next iteration. Also ĝ can
be used in the next iteration if it is for example appended by 0.

4.3.1. OPTIMIZATION OVER THE REGULARIZATION PARAMETER

If we fix the truncation level k, we can write an explicit expression for the derivative of
the approximate log marginal likelihood with respect to c. One has to note that ĝ and A
also depend on the hyperparameter c. The derivative with respect to c can be computed



94 4. EMPIRICAL BAYES

using the chain rule as

d log q(c,k)

dc
= ∂ log q(c,k)

∂c
+

k∑
j=1

∂ log q(c,k)

∂ĝ j

∂ĝ j

∂c
. (4.4)

The first term is given by

∂ log(c,k)

∂c
= k

2
− 1

2
trB−1 − ec

2

k∑
j=1

ĝ j
2λ

q
j . (4.5)

The partial derivative of ĝ is given by

∂ĝ

∂c
=−Λq/2B−1Λq/2g . (4.6)

The remaining partial derivatives are given by

∂ log q(c,k)

∂g j
=−1

2

∂ logdetB

∂g j

= tr

(
B−1 ∂B

∂g j

)
, (4.7)

where

∂B

∂g j
= e−cΛ−q/2U T ∂W

∂g j
UΛ−q/2. (4.8)

We can see that for the probit model

∂Wi ,i

∂g j
=

(
−2(Ug )i

ϕ((Ugi ))2

Φ(Yi (Ug )i )2 −2Yi
ϕ((Ugi ))3

Φ(Yi (Ugi ))3 +Yi
ϕ((Ugi ))

Φ(Yi (Ugi ))

−(Ug )i
ϕ((Ugi ))2

Φ(Yi (Ugi ))2 −Yi (Ug )2
i

ϕ((Ugi ))

Φ(Yi (Ugi ))2

)
ui , j (4.9)

and for the logit model

∂Wi ,i

∂g j
=−h((Ug )i )(1−h((Ug )i ))(2h((Ug )i )−1)ui , j . (4.10)

The computation of the derivative with respect to c is summarized in Algorithm 4.3
below:



4.3. OPTIMIZATION FOR HYPERPARAMETERS 95

Algorithm 4.3 Computation of the derivative d log q(c,k)
dc .

Input: The input and results of Algorithm 1.
Output: The derivative of the approximated log marginal likelihood.

1: for j=1, . . . , k do
2: Compute ∂W

∂g j
as in Equation (4.9) or Equation (4.10).

3: Compute ∂B
∂g j

as in Equation (4.8).

4: Compute ∂ log q(c,k)
∂ĝ j

as in Equation (4.7).

5: end for
6: Compute ∂ĝ

∂c as in Equation (4.6)

7: Compute ∂ log q(c,k)
∂c as in Equation (4.5).

8: Compute d log q(c,k)
dc as in Equation (4.4).

The most expensive step is the computation of ∂B/∂g j . It is of order O(k2n) and
repeated k times resulting in a cost of O(k3n).

For large k it might be cheaper to approximate the derivative by

log q(c +ϵ,k − log q(c,k)

ϵ
(4.11)

for small ϵ. In the successive calls to Algorithm 4.1, one can use the ĝ of the first call as
initial value in the second call.

With the derivative as an output of Algorithm 4.3 or by approximation, we can use
a simple secant method (see, for example Section 9.2 of Press et al. (2007)) to find the
optimal c∗ for fixed k as summarized in Algorithm 4.4.

Algorithm 4.4 Secant method to find c∗ for fixed k.

Input: Two initial values for c, say c1 and c2, fixed k.
Output: c∗.

1: repeat

2: Use Algorithm 4.3 to compute ct+2 ← ct+1 −
d log q(c,k)

dc

∣∣∣
ct+1

(ct+1−ct )

d log q(c,k)
dc

∣∣∣
ct+1

− d log q(c,k)
dc

∣∣∣
ct

.

3: until convergence.

Yet another approach to find c∗ is to do a golden section search (see, for example
Section 10.2 of Press et al. (2007)). The use of the golden ratio in Algorithm 4.5 ensures
that function evaluations can be reused.



96 4. EMPIRICAL BAYES

Algorithm 4.5 Golden section search to find c∗ for fixed k.

Input: Initial initial interval for c, say [a,b], fixed k, golden ration ϕ= (1+p
5)/2.

Output: c∗
1: repeat
2: Compute x = b − (b −a)/ϕ.
3: Compute y = a + (b −a)/ϕ.
4: if log q(x,k) > log q(y,k) then
5: Update (b, log q(b,k)) ← (y, log q(y,k)).
6: Update (y, log q(y,k)) ← (x, log q(x,k)).
7: Update x ← b − (a −b)/ϕ and compute log q(x,k).
8: else
9: Update (a, log q(a,k)) ← (x, log q(x,k)).

10: Update (x, log q(x,k)) ← (y, log q(y,k)).
11: Update y ← a + (b −a)/ϕ and compute log q(y,k).
12: end if
13: until convergence.

A closer look at the above algorithms can provide us some guidance to which one
to use in which situation. We proposed three variants: using the exact derivative of the
log marginal likelihood with respect to c (Algorithm 4.3), numerically approximating the
derivative with respect to c (Equation (4.11)) and a golden section search (Algorithm 4.5),
where we don’t use the derivative at all. While all three methods will eventually find c∗, so
we will not observe a difference in our classification outcome, they might differ in com-
putational costs. Explicitly computing the derivative of the log marginal likelihood with
respect to c as in Algorithm 4.3 has a cost of O(k3n). Numerically computing the deriva-
tive by using two successive calls to Algorithm 4.1 has two times an iteration step of cost
of order O(k2n). The number of iterations in the second call can be reduced by starting
in the final value of ĝ of the first call. However, in both these variants we sometimes find
that, if we initiate c far away from c∗, that the resulting step size is too large. It might
happen that the next evaluation of the derivative with respect to c is in such a large value
for c that it results in numerical errors. We can overcome these problems by assigning a
maximum step size or by scaling the step size with a factor γ ∈ (0,1). A method for one-
dimensional optimization that is both conservative in the number of function iterations
and does not require the computation of the derivative is golden section search. While
it does not use the information of the derivative, it always finds an optimal c within the
initial interval [a,b], which should be chosen wide enough such that c∗ is in there, but
also making sure that prohibitive values of c causing numerical errors are excluded.

4.4. SAMPLING SCHEME
Once c∗ and k∗ have been determined, we can sample from the posterior p(g |c∗,k∗,D).
There are two ways in we can sample from the posterior. We could use a Gibbs sampler
using a latent variable approach (cf. Albert and Chib (1993)) as described in Algorithm
4.6. In this case, we have an approximate sample from the exact posterior distribution.
Alternatively, we could sample from the Laplace approximation directly (see Rasmussen



4.4. SAMPLING SCHEME 97

and Williams (2006)) as in Algorithm 4.7. In this case we have an exact sample from an
approximation of the posterior. Sampling from the Laplace approximation is preferable
from a computational perspective, since the posterior distribution is approximated with
a Gaussian distribution with mean ĝ and covariance matrix A−1, which are both com-
puted in the optimization step. However, it may be a poor approximation to the true
shape of the posterior.

Algorithm 4.6 Gibbs sampler for posterior distribution.

Input: Data D = {(i , yi ) : i ∈ I obs}, c∗, k∗ and an initial value for g ,.
Output: Gibbs sample from posterior p(g |c∗,k∗,D).

1: repeat
2: Compute f ←Ug .
3: for i = 1, . . . ,n do
4: Draw independent

zi ∼


N ( fi ,1), if i ∉ I obs,

N+( fi ,1), if i ∈ I obs and yi = 1,

N−( fi ,1), if i ∈ I obs and yi =−1.

5: end for
6: Draw

g ∼ N ((I +ecΛq )−1U T z, (I +ecΛq )−1).

7: until you have a large enough sample.

Here N+ (N−) denotes a normal distribution with given mean and variance, condi-
tioned to be positive (negative). The output ĝ from Algorithm 4.1 can be used to initialize
the sampler.

Algorithm 4.7 Laplace sampler for posterior distribution.

Input: Hyperparameters c∗ and k∗.
Output: Sample from approximated posterior.

1: Run Algorithm 4.1 using c∗ and k∗.
2: Draw

g ∼ N (ĝ , A−1).

4.4.1. PERFORMANCE RELATIVE TO HIERARCHICAL BAYES
The hierarchical Bayes sampler in Hartog and Van Zanten (2019) has a cost of O(kn) per
iteration and Algorithm 4.1 has a cost of O(k2n) per iteration. Both costs are after an
initial cost of O(kn2) of computing the first k eigenvalues, however, the two cannot be
compared directly as an iteration in a Newton-type algorithm is very different from an it-
eration in an MCMC-type algorithm. The actual time it takes to get an estimate depends
mainly on the implementation and the choices made about convergence criteria. Once



98 4. EMPIRICAL BAYES

the hyperparameters c∗ and k∗ are fixed, a draw from the Laplace approximation of the
posterior is simply a draw from a k∗-dimensional multivariate normal distribution. One
conceptual aspect in favor of empirical Bayes is that the selection of the hyperparame-
ters and the estimation of the soft label function are in two separate steps. As a result,
we can decide, with a limited computational budget, to be a bit imprecise in the de-
termination of the hyperparameters to save time. In the MCMC algorithm for the full
hierarchical Bayesian approach, the hyperparameters are sampled together with the co-
efficients of the soft label function, so limiting your costs in the determination of the
hyperparameters only is not possible. However, the MCMC algorithm is more flexible in
terms of the prior distribution used for the hyperparameters and, as it also produces a
posterior distribution for c and k, it is able to quantify uncertainty in these parameters,
whereas in the empirical Bayes method, they are simply fixed at c∗ and k∗.

4.5. NUMERICAL EXPERIMENTS

4.5.1. FINDING THE OPTIMAL REGULARIZATION PARAMETER

We use a simulated example to illustrate our algorithms. We start with a realization of the
Watts-Strogatz model (Watts and Strogatz, 1998). The graph is obtained by first consid-
ering a ring graph of 1000 nodes. Then we loop through the nodes and uniformly rewire
each edge with probability 0.25. We keep the largest connected component and delete
multiple edges and loops resulting in the graph in Figure 4.1 with 848 nodes.

Figure 4.1: Small-world graph with two types of labels. The white vertices have unobserved labels.

We numerically determine the eigenvalues λ j and eigenvectors u( j ) of the Laplacian



4.5. NUMERICAL EXPERIMENTS 99

matrix and define a function f0 on the graph by

f0 =
n∑

j=1
a j u( j ),

where we choose a j =
p

n( j−1)−2/r−1/2 sin( j−1). This function has Sobolev-type smooth-
ness β = 2 (cf. Kirichenko and Van Zanten (2017)). We assign labels to the vertices ac-
cording to probabilities P (Yi = 1) =Φ( f0(i )), where Φ is the distribution function of the
standard normal distribution. We remove 10% of the labels.

For now, we fix k at 25 and inspect the corresponding approximated log marginal
likelihood and its derivative in Figure 4.2. Note that c →∞ corresponds to an ever more
concentrated prior on g around 0 and c → −∞ corresponds to ever more flatter prior.
We observe that a Newton-type algorithm that starts with an initial value of c around 20
risks numerical errors by breaking too early or not finding the optimal c∗ = 5.8 at all. A
conservative choice might seem to take the initial value to be low, but an initial value
around −10 will largely overshoot the optimal value and have a second iteration with a
too large value for c. If no prior information about the order of magnitude of the optimal
c∗ is available, we suggest the safer choice of using golden section search with a wide
starting interval.

−20 −10 0 10 20

−
7

5
0

−
7

0
0

−
6

5
0

−
6

0
0

−
5

5
0

−
5

0
0

−
4

5
0

c

lo
g

 l
ik

e
li
h

o
o

d

−20 −10 0 10 20

−
2

0
−

1
0

0
1

0

c

d
e

ri
v
a

ti
v
e

Figure 4.2: The approximated log likelihood in the small-world graph example for k = 25 as a function of c and
its derivative.



100 4. EMPIRICAL BAYES

4.5.2. FINDING THE OPTIMAL TRUNCATION LEVEL

The optimization over k is a discrete optimization problem, therefore we choose to split
the joint optimization over c and k into its two separate parts. The optimization over c
is a one-dimensional optimization over a continuous parameter. As the computational
costs of this step increase with k (Algorithm 4.1 costs O(k2n) per iteration), we propose
a bottom-up search, where we start at a low value of k, compute the optimal c∗ for this
fixed k, and then increase k (Algorithm 4.2). We include one more eigenvector to the
estimate of f in every iteration. At some point, adding an additional eigenvector as ex-
planatory variable does not increase the log marginal likelihood significantly, and this is
where we will stop the algorithm. We find that there are two drawbacks to this method.
One drawback is that that it exhaustively searches all values of k from a low value of k
up to k∗. An advantage of this method as compared to different search orders in k is
that we can use the previous ĝ and c as our initialization in our current k to reduce the
number of iterations in Algorithm 4.1. Another problem can be that the log marginal
likelihood has very small increments for low values of k followed by a large increment
later on, but we might never get there. So we can trust our method only if we believe that
the unknown function we try to estimate actually has a low dimensional representation
in terms of eigenvectors of the Laplacian matrix. If this is not the case however, a good
approximation by our proposed method might even be computationally prohibitive all
together on account of the scaled computational costs with respect to k.

To illustrate our method, we use the small-world example from the previous subsec-
tion. In the left plot in Figure 4.3, we see the approximate log likelihood as a function of c
for different values of k. In the middle plot we see the maximal approximate log marginal
likelihood for different values of k. Note that we plotted only up to k = 100, whereas we
could in theory have included all 848 possible values for k. However, we observe that the
maximal approximate log marginal likelihood is achieved as early as k = 3 in this exam-
ple, because our chosen function is very smooth. In the right plot we see, for different
values of k, the corresponding optimal c. We observe that the optimal c increases with
k. This makes sense, because having fewer terms in the prior (low values of k) makes
it smoother, whereas low values for c make the prior rougher, so these two parameters
balance each other out.

0 2 4 6 8 10

−
6
0
0

−
5
8
0

−
5
6
0

−
5
4
0

−
5
2
0

−
5
0
0

−
4
8
0

c

lo
g
 l
ik

e
li
h
o
o
d

0 20 40 60 80 100

−
4
9
0

−
4
8
5

−
4
8
0

−
4
7
5

−
4
7
0

k

m
a
x
im

a
l 
lo

g
 l
ik

e
li
h
o
o
d

0 20 40 60 80 100

3
.0

3
.5

4
.0

4
.5

5
.0

k

o
p
ti
m

a
l 
c

Figure 4.3: Left: The approximate log marginal likelihood for k = 2,3,4,5,10,15,20,25,50,100 as a function of c.
Middle: The maximal approximate log marginal likelihood for different values of k. Right: The corresponding
optimal value c∗ for different values of k.



4.5. NUMERICAL EXPERIMENTS 101

Bottom-up search might break down when the maximal approximate log marginal
likelihood has a sudden large increase after a certain eigenfunction is included, because
the search might have stopped before that point. A simple example is the function on
the path graph shown in the left plot of Figure 4.4. In the right plot, we see that the max-
imal approximate marginal log likelihood makes a jump at k = 25. If we terminated our
search before this point we would set k∗ = 3. The two corresponding ĝ ’s are in Figure 4.5,
these correspond to a smooth and a rough explanation of the data. In this example the
rough explanation would be the better one according to the approximate log marginal
likelihood. However one can also think of a multimodal example, where both, or even
multiple interpretations of the data are equal in terms of log marginal likelihood. In that
case, it would be advisable to take the lowest k for computational reasons, but also for
model simplicity.

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a

b
ili

ty

10 20 30 40 50

−
5

3
0

−
5

2
0

−
5

1
0

−
5

0
0

−
4

9
0

k

m
a

x
im

a
l 
lo

g
 l
ik

e
li
h

o
o

d

Figure 4.4: Left: A simulated example on the path graph with n = 1000. The circles are the observations and the
black line is the true soft label function. Right: The maximal approximate log marginal likelihood for different
values of k.



102 4. EMPIRICAL BAYES

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a

b
ili

ty

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a

b
ili

ty

Figure 4.5: Left: The left plot in Figure 4.3, with the soft label function estimate ℓ̂=Φ(U ĝ ) for k = 3 (red). Right:
The left plot in Figure 4.3 with soft the label function estimate ℓ̂=Φ(U ĝ ) for k = 25 (red).

4.5.3. MCMC VERSUS LAPLACE APPROXIMATION

In Section 4.4, we propose two methods to sample from the posterior distribution once
we have found c∗ and k∗. Algorithm 4.6 is a Gibbs sampler using a latent variable ap-
proach as in Albert and Chib (1993). This is relevant to the probit link function. It is
generally more involved than Algorithm 4.7, where we sample from the Laplace approx-
imation. The Laplace approximation of the posterior is a Gaussian distribution, so this
allows for simple direct sampling. A drawback of the Laplace approximation is that a
Gaussian distribution might not be a good approximation to the true posterior. This can
be the case if, for example, the true posterior is multimodal or if the true posterior doesn’t
have elliptical joint marginal densities. In that case, we also expect the Gibbs sampler to
suffer.

In our small-world graph example, the quality of the estimate and intervals of the
Laplace approximation is the same as of an MCMC sample as shown in Figure 4.6. We
also don’t observe any qualitative differences between the correlations plots of the sam-
ples for the first five points, as shown in Figure 4.7. This suggests that a Gaussian distri-
bution is a good enough approximation to the true posterior distribution.



4.5. NUMERICAL EXPERIMENTS 103

2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a

b
ili

ty

Figure 4.6: Estimated 95% credible intervals for the soft label function evaluated at ten of the missing points
based on a sample of 3000 draws from the posterior using the Laplace approximation (red) and an MCMC
sampler (black). The black dots are the true soft label function values.

Figure 4.7: Correlation plots of the samples from the posterior for the first five points from Figure 4.6. Laplace
approximation is in red and the MCMC sample in black.

4.5.4. CHANGING OBJECT IN A NOISY ENVIRONMENT
In the example in this section, we apply our method to a large graph constructed in the
following way. As a ground truth we use the following animation of a morphing object.
The animation consists of 50 frames of 50×50 pixels. The labels on each pixel indicate
whether the pixel is of the object or not. We flip 10% of the labels at random. To convert
this problem into a graph problem, we connect neighboring pixels in each frame and
with the corresponding pixels in the previous and next frame, resulting in a 50×50×50
grid graph on a total of n = 125000 nodes. We can explicitly compute the eigenvalues
using the known eigenvalues of the path graph using Theorem 3.5 in Mohar (1991). The
corresponding eigenvectors are given by the tensor products of the eigenvectors of the



104 4. EMPIRICAL BAYES

path graph and can also be computed explicitly. A selection of the noisy images are
shown in Figure 4.8. In Figure 4.9, we see the estimated soft label function, which we
can truncate at 0.5 to predict the shape of the object, see Figure 4.10.

Figure 4.8: 25 frames of the true underlying morphing object with noise.



4.5. NUMERICAL EXPERIMENTS 105

Figure 4.9: 25 frames of the estimated soft label function.

Figure 4.10: 25 frames of the estimated labels, using truncation at 0.5.



106 4. EMPIRICAL BAYES

4.6. REGRESSION PROBLEM
In this section, we demonstrate the empirical Bayes approach to solve the regression
problem on a graph. We repeat the regression setting for completeness. The graph is de-
noted by G = (V ,E), where V = {1, . . . ,n}. We assume that the noisy labels y are Gaussian
with

y | f ∼ N ( f ,σ2I ),

where f is the function of interest. For simplicity, we assume σ2 is fixed and known and
that all noisy label are observed. We are interested in inferring f from the data y . Similar
to the classification problem in the previous sections, we consider a Gaussian prior on
f , which depends on the Laplacian matrix L, on a multiplicative scale parameter c > 0
and a truncation level k. The resulting prior is given by truncated series

f =
k∑

j=1
g j u( j ),

where
g |c,k ∼ N (0, (ec (Λk +n−2I )q )−1),

for some fixed q > 0, where Λk is the restriction of the matrix of eigenvalues Λ, from the
eigendecomposition L =UΛU T , to the first k rows and columns. The additional number
n−2 is added to L to make it invertible as in Section 4.1. The empirical Bayes approach
consists of finding c and k such that the marginal likelihood is maximized. The marginal
likelihood is given by

p(y |c,k) ∝ (σ−2)
n
2

(
k∏

j=1

ec (λ j +n−2)q

σ−2 +ec (λ j +n−2)q

) 1
2

e
− 1

2
yT y

σ2 + 1
2

∑k
j=1

(σ−2 yT u( j ))2

σ−2+ec (λ j +n−2)q
,

so the log marginal likelihood is

1

2

k∑
j=1

log(ec (λ j +n−2)q )− 1

2

k∑
j=1

log(σ−2 +ec (λ j +n−2)q )+ 1

2

k∑
j=1

(σ−2 yT u( j ))2

σ−2 +ec (λ j +n−2)q

up to a constant. To maximize the log marginal likelihood, we propose a bottom-up
search as in Algorithm 4.2, where in each iteration we find the optimal c∗ using golden
ratio search, Algorithm 4.5, or the secant method, Algorithm 4.4. The derivative of the
log marginal likelihood with respect to the regularization parameter c is

k

2
− 1

2

k∑
j=1

ec (λ j +n−2)q (σ−2 +ec (λ j +n−2)q + (σ−2 yT u( j ))2)

(σ−2 +ec (λ j +n−2)q )2 .

Given c∗ and k∗, the posterior distribution of g is a normal distribution with mean

σ−2(σ−2I +ec (Λk +n−2I )q )−1U T
k y

and variance
(σ−2I +ec (Λk +n−2I )q )−1.



4.6. REGRESSION PROBLEM 107

These steps can be summarized in the following algorithm:

Algorithm 4.8 Sampling scheme for the regression problem using empirical Bayes.

Input: Data D = {(i , yi ) : i = 1, . . . ,n}, variance σ2, initial values for c, k and g .
Output: Hyperparameters c∗ and k∗, sample from the joint posterior g | y .

1: repeat
2: Compute c∗ using Algorithm 4.4 or 4.5.
3: Update k ← k +1.
4: until convergence.
5: repeat
6: Using c = c∗ and k = k∗ from the previous steps, sample

g ∼ N (σ−2(σ−2I +ec (Λk +n−2I )q )−1U T
k y, (σ−2I +ec (Λk +n−2I )q )−1).

7: until you have a large enough sample.

If there are any labels missing, we can adjust the log marginal likelihood to

1

2

k∑
j=1

log(ec (λ j +n−2)q )− 1

2
logdet(σ−2(U obs

k )T U obs
k +ec (Λk +n−2I )q )

+1

2
(yobs)T U obs

k (σ−2(U obs
k )T U obs

k +ec (Λk +n−2I )q )−1(U obs
k )T yobs,

where we can compute

((U obs
k )T U obs

k ) j ,l =
{

1−∑
i∈I miss (u( j )

i )2, j = l ,

−∑
i∈I miss u( j )

i u(l )
i , j ̸= l ,

if the number of missing labels is much smaller than the number of observed labels. The
posterior distribution in line 6 of Algorithm 4.8 is now

g ∼ N (σ−2(σ−2(U obs
k )T U obs

k +ec (Λk +n−2I )q )−1(U obs
k )T yobs,

(σ−2(U obs
k )T U obs

k +ec (Λk +n−2I )q )−1).

4.6.1. TRAFFIC FLOW ESTIMATION
To illustrate the regression problem, we consider a simulated example of traffic flow es-
timation inspired by Aldous and Shun (2010) and Bickel et al. (2007). Traffic data is col-
lected by authorities to measure the performance of the road network in terms of flow,
occupancy and speed at locations in the network. A common type of sensor used for
traffic flow estimation is a loop detector that counts the number of passing vehicles over
a certain time interval. However, the resulting loop data is often missing or invalid due to
communication errors or malfunction. Missing and bad observations are imputed from
the neighboring sensor location using a simple average or a regression approach.



108 4. EMPIRICAL BAYES

We simulate a road network between cities based on a toy model. We sample 500
points uniformly on the unit square and compute the relative neighborhood graph by
connecting nodes u and v if there does not exist a node w such that

max{∥u −w∥,∥v −w∥} < ∥u − v∥.

In Figure 4.11 this definition is illustrated, nodes u and v are connected if there is no
node in the gray area. The resulting graph is simple and connected. Relative neighbor-
hood graphs and related proximity graphs can be used as a toy models for road networks
(see Aldous and Shun (2010)).

u v

Figure 4.11: Construction of a relative neighborhood graph. Nodes u and v are connected if there is no point
closer to both u and v as they are to each other, corresponding to the gray area not containing a node.

The resulting graph is the left graph in Figure 4.12. As traffic flow is a property of the
roads in the city graph, we construct its line graph, by associating a vertex with each road
in the city graph and connecting two vertices if the corresponding roads in the city graph
have a city in common. This is the right graph in Figure 4.12 and is the road graph G we
work with. It has n = 617 vertices.

Figure 4.12: Left: A road network between cities as a realization of the relative neighborhood graph on 500
random uniform points on the unit square. Right: The corresponding line graph, where the nodes correspond
to the roads of the left graph. The dashed line is the original graph.



4.6. REGRESSION PROBLEM 109

We construct a true traffic flow function f0 on the graph by setting

f0 =
n∑

j=1
a j u( j ),

where u( j ) are the eigenvectors of the Laplacian matrix L =UΛU T of G . To construct the
coefficients a j we consider the path graph with vertices xi = i /n for i = 1, . . . ,n and the
function 5+ f (xi ), where f is given by Equation (1.8). We compute a j as the coefficients
of 5+ f on the path graph and use them in our graph G , generalizing the function on the
path graph to our graph G . The resulting underlying traffic flow is depicted in Figure 4.13
on both the city graph and the road graph G .

Figure 4.13: Left: The corresponding traffic flow on the city graph, where the flow is observed on the edges.
Right: The traffic flow on the road graph G . Traffic intensity ranges from green (light traffic) to red (heavy
traffic) and is observed on the nodes.

To construct a noisy observation of the traffic flow, we add independent noise ϵi ∼
N (0,1) to each node i = 1, . . . ,n and remove 123 of our observations as depicted in Figure
4.14.



110 4. EMPIRICAL BAYES

Figure 4.14: The noisy observation of the underlying traffic flow in Figure 2.24. The missing observations are
in gray.

We estimate the traffic flow using Algorithm 4.8 with q = 2. We numerically deter-
mine r = 1.67 from the spectrum of the Laplacian matrix as shown in Figure 4.15. The
resulting posterior mean for f = Ug is shown in Figure 4.16. To illustrate the uncer-
tainty in our estimate, we also plot the estimated traffic flow along a path from the north-
west corner of the map to the south-east corner in Figure 4.17 together with point-wise
95% credible intervals. The optimal values for the hyperparameters are c∗ = 2.8634 and
k∗ = 10.

−6 −5 −4 −3 −2 −1 0

−
5

−
4

−
3

−
2

−
1

0
1

2

log((j−1)/n)

lo
g

(e
ig

e
n
v
a

lu
e

)

Figure 4.15: Left: The road graph. Right: The eigenvalues of the Laplacian matrix of the road graph. The dashed
line corresponds to geometry number r = 1.67 based on a linear fit with slope 1.24. We have used the first 35%
of the eigenvalues with exception of the first three.



4.7. CONCLUDING REMARKS 111

Figure 4.16: The posterior mean for the traffic flow data from Figure 4.14.

0 10 20 30 40

0
2

4
6

8
1

0

path

tr
a

ff
ic

 f
lo

w

Figure 4.17: Left: A path in the city graph. Right: Posterior mean (blue) and point-wise 95% credible interval
(gray area) for the traffic flow along the path. The points are the noisy observations and the black line is the
true underlying traffic flow function.

4.7. CONCLUDING REMARKS
We have described a nonparametric Bayesian procedure to solve regression and binary
classification problems on graphs. We have considered an empirical Bayes approach
using a prior that can be represented as a scaled, truncated series of Gaussians. The
proposed method consists of two steps: setting the hyperparameters and estimating the
soft label function. To learn the regularization parameter and truncation level from the
data, we use Laplace approximation in the classification problem and maximize the ap-



112 4. EMPIRICAL BAYES

proximated marginal likelihood. After we have found and fixed hyperparameters we can
easily sample from the posterior distribution, or the Laplace approximation to the pos-
terior distribution. We have given details for an implementation of an efficient algo-
rithm to perform these tasks. Our numerical experiments suggest that good results are
obtained when using Algorithms 4.1 (finding the point in which to approximate), 4.5
(golden section optimization over c), 4.2 (bottom-up search over k) and 4.7 (sampling
from the Laplace approximation). As Laplace approximation can be generalized to the
case of multiple classes (see for example Rasmussen and Williams (2006)), we expect our
proposed method to generalize to multiple classes as well.



5
VARIATIONAL INFERENCE

In this chapter, we describe an implementation of variantional inference to solve binary
classification problems on graphs. We consider a Gaussian prior that is constructed by
truncating a series expansion of the soft label function using the eigenfunctions of the
Laplacian matrix as basis functions. We approximate the posterior distribution with in-
dependent Gaussian distributions. We demonstrate coordinate ascent variational infer-
ence to find optimal values for the hyperparameters. As a variant to coordinate ascent
variational inference, we consider stochastic variational inference to make the variational
approach scalable to large data sets.

In this chapter, we consider an alternative approximation to the empirical Bayes ap-
proach from the previous chapter in the context of binary classification problems on
graphs. The setup of the classification problem is the same as in Chapter 2, 3 and 4 and
outlined in Section 1.4, but is included here for completeness. Classification problems
on graphs arise in a variety of applications, for instance in machine learning (e.g. Belkin
et al. (2004); Sindhwani et al. (2007)), in the prediction of the biological function of a
protein in a protein-protein interaction graph (e.g. Kolaczyk (2009); Nariai et al. (2007);
Sharan et al. (2007)), in image analysis (e.g. Liu et al. (2014)) and in the prediction of
brand preference in social networks (Blair et al. (2003); Smith (2011)). For the problems
we have in mind, the graph is given or constructed by the application context. In binary
classification, the vertices of the graph can be of two different types. This in encoded in
the vertex label which is either 1 or −1. We have noisy observations of the labels of part of
the vertices of a large given graph. The goal is to classify all vertices correctly, including
those for which there is no observation available. The idea is that typically, the location
of a given vertex in the graph, in combination with (noisy) information about the labels
of vertices close to it, should have predictive power for the label of the vertex of interest.
Hence, successful prediction of labels should be possible to some degree.

The Bayesian approach in the previous chapters, Hartog and Van Zanten (2018) and
Kirichenko and Van Zanten (2017) consists of endowing the label function f with a prior
distribution and computing the posterior distribution. The posterior distribution for f

113



114 5. VARIATIONAL INFERENCE

that results from a Bayesian analysis can be used for prediction. The prior we consider is
a Gaussian prior, with covariance structure based on the Laplacian matrix of the graph.
The Laplacian matrix is used to take the geometry of the graph into account (cf.Ando
and Zhang (2007); Belkin et al. (2004); Hartog and Van Zanten (2018); Kolaczyk (2009);
Zhu and Hastie (2005). Using the eigendecomposition of the Laplacian matrix, we can
represent the prior as a random truncation of a series of Gaussian random variables

f =
k∑

j=1
g j u( j ), (5.1)

where k is the truncation level, u( j ) are the eigenvectors of the Laplacian matrix and g j

are independent Gaussian random variables for j = 1, . . . ,k with a variance that depends
on a hyperparameter c that allows to adjust the multiplicative scale of the prior. We
have previously considered a full Bayesian treatment (Chapter 3) and an emprical Bayes
method (Chapter 4) to determine the hyperparameters c and k and infer the posterior
distribution of f .

In the present chapter, we use variational inference to approximate the posterior dis-
tribution with a family of Gaussian distributions. We use an iterative procedure to com-
pute the parameters of approximating family of distributions. An advantage of the varia-
tional inference approach is that it uses deterministic updates similar to Gibbs sampling,
but is usually faster (Blei et al., 2017). Additionally, we will use stochastic variational in-
ference to take only a part of the observed data into account in each iteration (cf. Hoff-
man et al. (2013); Kushner and Yin (1997)). This will result in much faster iterations and
therefore applicability of our method to very large graphs.

The rest of this chapter is organized as follows. In the next section, we describe the
classification problem setting and the priors we consider. In Section 5.2, we describe
the variational approach, the evidence lower bound that we maximize in order to ap-
proximate the posterior distribution. In Section 5.3 and Section 5.2, we give the coordi-
nate ascent variational inference and stochastic variational inference algorithms to find
a (local) maximum of the evidence lower bound. The stochastic variational inference
algorithm uses stochastic optimization to trade a less accurate gradient for faster com-
putations. Subsequently, in Section 5.5, we propose how to sample from the posterior
distribution using the outcome of the algorithms. In Section 5.6, we give a simple ex-
ample application of finding an object in a noisy animation, for a graph of over 200000
vertices, demonstrating the improved scalability of the stochastic variational inference
approach.

5.1. OBSERVATIONAL MODEL AND PRIOR

5.1.1. OBSERVATIONAL MODEL
The context of our problem setup is the same as in Chapter 2 (Hartog and Van Zanten,
2018). We have a given connected, simple graph G = (v,E) with #V = n vertices, denoted
for simplicity by V = {1, . . . ,n}. Associated to every vertex i is a random hard label yi ∈
{−1,1}. We assume that the variables yi are independent for i = 1, . . . ,n, so that their joint
distribution is determined by the unobserved soft label function ℓ : V → (0,1) given by

ℓ(i ) = P (yi = 1) = 1−P (yi =−1).



5.1. OBSERVATIONAL MODEL AND PRIOR 115

The observed data is D = {(i , yi ) : i ∈ I obs}, where I obs ⊂ V is drawn from an arbitrary
distribution µ on the collection 2V if subsets if vertices. The exact sampling mechanism
µ is not important for the algorithm we propose, only that the subset is independent of
the labels. Throughout, we use the well-known latent variable perspective on this model
(cf. Albert and Chib (1993)). This is simply the observation that we can sample Bernoulli
variables y1, . . . , yn with success probabilities ℓ(1), . . . ,ℓ(n) using an intermediate layer of
latent Gaussian variables. Indeed, letΦbe the probit link function, i.e. the cdf of the stan-
dard normal distribution. Then, if f : V → R is given, sampling independent Bernoulli
variables yi with success probabilities ℓ(i ) = Φ( f (i )) can be achieved by subsequently
sampling independent Gaussian variables zi with mean f (i ) and variance 1 and then
setting yi = 1zi>0 for i = 1, . . . ,n.

5.1.2. PRIOR ON THE SOFT LABEL FUNCTION
To achieve a form of Bayesian Laplacian regularization in this problem, we put a Gaus-
sian prior on the function f that determines the distribution of the hard labels, with a
precision (inverse covariance) matrix given by a power of the Laplacian matrix L asso-
ciated to the graph G . Recall that the Laplacian matrix is given by L = D − A, where D
is the diagonal matrix of vertex degrees and A is the adjacency matrix of the graph. It
is a symmetric, non-negative definite matrix. Since zero is always an eigenvalue of the
Laplacian matrix (see Chapter 2), it is not invertible. To make the matrix invertible and
thus suitable as a precision matrix, we add a small number 1/n2 to the diagonal. This
number is motivated by the result that the smallest nonzero eigenvalue of the Laplacian
matrix is at least 4/n2 (Theorem 4.2 of Mohar (1991)). We denote the eigenvalues fo the
Laplacian matrix by 0 = λ1 < λ2 ≤ ·· · ≤ λn . As in Chapter 3 and Chapter 4, we use the
eigendecomposition L = UΛU T , where Λ is the diagonal matrix of eigenvalues, and U
the orthonormal matrix of corresponding eigenvectors, to write the function f =Ug as
a series expansion over the eigenvectors of the Laplacian matrix. We truncate this series
at a random point k. We scale the series by a random scale parameter c and define

f =
k∑

j=1
g j u( j ),

where u( j ) is the j th eigenvector of the Laplacian matrix L, and

g |c,k ∼ N (0, (ec (Λk +n−2I )q )−1),

where Λk is the restriction of Λ to the first k rows and columns.

5.1.3. PRIOR ON THE REGULARIZATION PARAMETER
We use the natural choice of prior for c, which is a gamma prior with density

p(c) ∝ ca−1e−bc , c > 0

for certain a,b > 0. This choice is motivated by the normal-inverse gamma partial con-
jugacy (see e.g. Choudhuri et al. (2007); Liang et al. (2007) in the context of our setting)
and the positive results in the numerical experiments in our previous chapters. We can



116 5. VARIATIONAL INFERENCE

even choose the improper prior corresponding to a = b = 0, in which case p(c) ∝ 1/c as
in Choudhuri et al. (2007); Hartog and Van Zanten (2018)) or a = 1 and b = 0, such that
p(c) ∝ 1.

5.1.4. FULL HIERARCHICAL MODEL
The resulting model is

D = {(i , yi ) : i ∈ I obs},

I obs ∼µ,

yi = 1zi>0 i = 1, . . . ,n,

z | f ∼ N ( f , I ),

f =
k∑

j=1
g j u( j ),

g |c,k ∼ N (0, (c(Λk +n−2I )q )−1),

c ∼ Γ(a,b).

(5.2)

We consider the power of the Laplacian matrix q ≥ 0 given. Note that we also use the
notation q for the variational density below. It should be clear from the context when
this is the case. Our goal is to compute f |D and use it to predict the unobserved labels.
Note that we have fixed the truncation level k for now. We will set this parameter using
an empirical Bayesian method, similar to Chapter 4, so for the variational inference part,
we can consider k fixed for the next two sections.

5.2. VARIATIONAL APPROXIMATION
Variational inference approximates the posterior distribution p(c, g , z |D) of our unob-
served parameters c, g , z given the observations D , with a family of variational distri-
butions q(c, g , z) (Blei et al., 2017). A common assumption for the variational distribu-
tion is that its marginal distributions over the different parameters are independent (see,
e.g. Damianou et al. (2011); Titsias and Lawrence (2010) in the context of Gaussian pro-
cesses). This implies that the variation density q(c, g , z) is the product of variational
densities for each parameter. In machine learning literature, this is called the mean-field
variational family (Blei et al., 2017). In our case, we assume that the variational distribu-
tion can be factorized as

q(c, g , z) = q(c)
k∏

j=1
q j (g j )

n∏
i=1

qi (zi ). (5.3)

This is an approximation, because in the actual posterior distribution, the parameters
are not independent, and the variational distributions do not have to be from the same
family as the posterior distribution. In our case, we choose

• q(c) to be a gamma density with scale κ and rate θ,

• q j (g j ) a normal density with mean µ j and variance σ2
j and



5.2. VARIATIONAL APPROXIMATION 117

• qi (zi ) a normal density with mean νi and variance τ2
i , conditioned to have the

same sign as yi . If yi is unobserved, zi can have any sign.

These choices are motivated by the partial conjugacy between these distributions and
are natural choices in the context of Gaussian distributions (see, e.g. Blei et al. (2017);
Damianou et al. (2011); Titsias and Lawrence (2010)). Within the variational families,
our goal is to find the best approximation to the actual posterior distribution in terms of
Kullback-Leibler divergence

KL(q(c, g , z), p(c, g , z |D)) =
Ñ

log
q(c, g , z)

p(c, g , z |D)
q(c, g , z)dcd g d z.

If we write expectation with respect to q(c, g , z) as Eq , we can express the Kullback-
Leibler divergence as

KL(q(c, g , z), p(c, g , z |D)) = Eq log q(c, g , z)−Eq log p(c, g , z |D).

The Kullback-Leibler divergence is not symmetric in its two arguments. It is non-negative
and is equal to zero if and only if its arguments are equal. It is not a feasible object func-
tion, because we wish to approximate the posterior p(c, g , z |D) in the first place, so we
cannot use that density to compute the Kullback-Leibler divergence. Instead, the alter-
native evidence lower bound (ELBO)

ELBO(q(c, g , z)) =
Ñ

log
p(c, g , z,D)

q(c, g , z)
q(c, g , z)dcd g d z

= Eq log p(c, g , z,D)−Eq log q(c, g , z)

= Eq log p(c, g , z |D)+ log p(D)−Eq log q(c, g , z)

= log p(D)−KL(q(c, g , z), p(c, g , z |D))

is maximized (cf. Blei et al. (2017)). The last equation shows that ELBO is equal to the
negative Kullback-Leibler divergence up to a constant log p(D) that doesn’t depend on
q(c, g , z). Therefore, maximizing ELBO and minimizing the Kullback-Leibler divergence
is equivalent. The name evidence lower bound comes from the result that it is a lower
bound for the log evidence log p(y) (Jordan et al., 1999).

5.2.1. EVIDENCE LOWER BOUND

We maximize the ELBO over the hyperparameters ν, µ, σ2 and θ. In this subsection, we
will write the ELBO as a function of these hyperparameters. We derive, for our setting,
that

ELBO(ν,µ,σ2,θ) = Eq log p(y |z)+
n∑

i=1
Eq log p(zi |g )+

k∑
j=1

Eq log p(g j |c)+Eq log p(c)

−
n∑

i=1
Eq log qi (zi )−

k∑
j=1

Eq log q j (g j )−Eq log q(c).

(5.4)

We find an expression for each of the terms below.



118 5. VARIATIONAL INFERENCE

The first terms Eq log p(y |z) ensures that yi and zi have the same sign if yi is ob-
served. Otherwise, z can have any value. The second term is given by

Eq log p(zi |g ) =−1

2
log2π− 1

2
Eq z2

i +Eq zi

k∑
j=1

ui , j Eq g j − 1

2

k∑
j=1

u2
i , j Eq g 2

j

and the third term is a sum of

Eq log p(g j |c) =−1

2
log2π+ 1

2
log(λ j +n−2)q + 1

2
Eq logc − 1

2
(λ j +n−2)q Eq cEq g 2

j .

The fourth term is

Eq log p(c) = a logb − logΓ(a)+ (a −1)Eq logc −bEq c.

Furthermore, we have

Eq log qi (zi ) =


− 1

2 log2π− 1
2 logτ2

i − 1
2

Eq (zi−νi )2

τ2
i

, i ∉ I obs,

− 1
2 log2π− 1

2 logτ2
i − 1

2
Eq (zi−νi )2

τ2
i

− logΦ
(

yi
νi
τi

)
, i ∈ I obs,

Eq log q j (g j ) =−1

2
log2π− 1

2
logσ2

j −
1

2

Eq (g j −µ j )2

σ2
j

and
Eq log q(c) = κ logθ− logΓ(κ)+ (κ−1)Eq logc −θEq c.

The necessary moments are standard moments for the normal and gamma distributions
and can be calculated as

Eq zi =
{
νi , i ∉ I obs,

νi + yi
ϕ(νi )

Φ(yiνi ) , i ∈ I obs,
(5.5)

Eq z2
i =

{
1+ν2

i , i ∉ I obs,

1+ν2
i + yiνi

ϕ(νi )
Φ(yiνi ) , i ∈ I obs,

(5.6)

Eq g j =µ j , (5.7)

Eq g 2
j =µ2

j +σ2
j , (5.8)

Eq c = a +k/2

θ
, (5.9)

Eq logc =ψ(a +k/2)− logθ, (5.10)

where ψ(·) is the digamma function, defined as the derivative of logΓ(·). We have also
used that τi = 1 and κ= a +k/2 as we will deduce in the next section. Note that Eq (g j −
µ j )2 = σ2

j , Eq (zi −νi )2 = 1 for i ∉ I obs and 1− yiνiϕ(νi )/Φ(yiνi ) for i ∈ I obs. Now that

we have written the ELBO for our specific model (Equation (5.4)) as a function of the
hyperparameters ν, µ, σ2 and θ, our next goal is to find the optimal hyperparameter,
such that the ELBO is maximized.



5.3. COORDINATE ASCENT VARIATIONAL INFERENCE 119

5.3. COORDINATE ASCENT VARIATIONAL INFERENCE
To maximize the ELBO over the hyperparameters of q in a mean-field family, we can use
coordinate ascent variational inference (CAVI) (Bishop, 2006). This method updates the
hyperparameters for each factor in Equation (5.3) iteratively, fixing all the other hyperpa-
rameters in each iteration. This approach is based on the lemma below. For a mean-field
density q(ξ) =∏

i qi (ξi ), we introduce the notation E−ξi for the expectation with respect
to the density

∏
j ̸=i q j (ξ j ). Note that in our setting ξ= (c, g , z).

Lemma 5.3.1. Let q(ξ) =∏
i qi (ξi ) be a mean-field approximation to the actual posterior

p(ξ |D). If we fix q j (ξ j ) for all j ̸= i , the optimal choice, with respect to maximizing ELBO,
for qi (ξi ) is proportional to

exp
(
E−ξi log p(ξ,D)

)
. (5.11)

Proof. This proof replicates the derivation in Blei et al. (2017), a different argument can
be found in Bishop (2006). Using iterated expectations and the mean-field factorization,
we can write the ELBO as

ELBO = Eξi E−ξi log p(ξ,D)−Eξi log qi (ξi )− ∑
j ̸=i

Eξ j log q j (ξ j ).

The last term is constant with respect to ξi . We see that the ELBO is equal to the nega-
tive Kullback-Leibler divergence between qi (ξi ) and expression (5.11), up to a constant.
Therefore the ELBO is maximized if qi (ξi ) is proportional to (5.11). Note that in p(ξ,D),
the only variable is ξi , as all the other ξ j for j ̸= i are fixed.

Iteratively updating each factor qi (ξi ) results in a monotone increasing sequence of
values of the ELBO and will therefore converge to a local maximum. As the ELBO is
not convex, there is no guarantee to find a global maximum. A practical solution is to
consider multiple initial values. Note that this method results in similar updates as in
the Gibbs sampler (Algorithm 1.1). Below, we find the optimal variational updates in our
setting using Equation (5.11).

5.3.1. HYPERPARAMETER UPDATES
In our setting, we have chosen conjugate variational densities, so that each update (cf.
Equation 5.11) only entails an update of the hyperparameters. Similar to the compu-
tation of conjugate conditionals in the Gibbs sampler (Chapter 2 and Chapter 3), the
functional form of Equation (5.11) shows us the optimal variational distribution.

To illustrate how to use expression (5.11) to see that the optimal update for the vari-
ational distribution is just an update of the hyperparameters, we will detail this for the
update of qi (zi ). Expression (5.11) implies that the optimal log variational density is
equal to

E−zi log p(c, g , z,D)

up to a constant. The expectation is with respect to q(c)
∏k

j=1 q j (g j )
∏

l ̸=i ql (zl ). Now, for
the log joint density

log p(c, g , z,D) = log p(yi |zi )+∑
l ̸=i

log p(yl |zl )+ log p(zi |g )+
k∑

j=1
log p(g j |c)+ log p(c)



120 5. VARIATIONAL INFERENCE

we see that the only part that depends on zi is log p(yi |zi )+ log p(zi |g ). The first part
ensures that yi and zi have the same sign, if yi is observed. The second part is

log p(zi |g ) =−1

2
log2π− 1

2

(
zi −

k∑
j=1

ui , j g j

)2

,

where we can expand the square to see that

E−zi log p(z |g ) =−1

2
log2π− 1

2
z2

i + zi

k∑
j=1

ui , j E−zi g j +E−zi

(
k∑

j=1
ui , j g j

)2

.

The first and last term do not depend on zi , so the optimal log variational density for zi

in our context is equal to

−1

2
z2

i + zi

k∑
j=1

ui , j E−zi g j ,

up to a constant, conditional on zi having the same sign as yi , if yi is observed. We
recognize that this has the similar functional form in zi as the log density of a normal
distribution with mean

∑k
j=1 ui , j E−zi g j and variance 1. We can conclude that the opti-

mal variational density for zi is a normal distribution with the mean
∑k

j=1 ui , j E−zi g j and
variance 1, conditioned to have the same sign as yi , if yi is observed. This is exactly the
variational distribution qi (zi ) we had chosen with hyperparameters νi and τi . Moreover,
we see that

τi = 1

and

νi =
k∑

j=1
ui , j E−zi g j .

The expectation E−zi g j is equal to Eq g j = µ j , because g j is independent of zi in the
variational distribution. So, we conclude that the optimal update for qi (zi ) consists of
only a hyperparameter update νi =∑k

j=1 ui , jµ j .

Similarly, for g j , we find that the optimal log variational density in our context is
equal to

n∑
i=1

ui , j E−g j zi g j − 1

2
g 2

j −
1

2
(λ j +n−2)q E−g j cg 2

j

up to a constant. Again, this is the log density of a normal distribution. The hyperpa-
rameter updates are given by

µ j =
∑n

i=1 ui , j E−g j zi

1+ (λ j +n−2)q E−g j c

and

σ2
j =

1

1+ (λ j +n−2)q E−g j c
.



5.3. COORDINATE ASCENT VARIATIONAL INFERENCE 121

Again, we can use the mean-field property to see that E−g j zi = Eq zi and E−g j c = Eq c
and insert the values from Equations (5.5) and (5.9).

The optimal log variational density for c is equal to

(a +k/2−1)logc −
(

b + 1

2

k∑
j=1

(λ j +n−2)q E−c g 2
j

)
c,

up to a constant, implying that

κ= a + k

2

and

θ = b + 1

2

k∑
j=1

(λ j +n−2)q E−c g 2
j ,

where we have E−c g 2
j = Eq g 2

j =µ2
j +σ2

j .



122 5. VARIATIONAL INFERENCE

The above hyperparameter updates can be summarized in the following algorithm:

Algorithm 5.1 CAVI for classification with fixed truncation level k.

Input: Data D = {(i , yi ) : i ∈ I obs}, fixed truncation level k, initial values for hyperparam-
eters ν, µ, σ2 and θ.

Output: ELBO and optimal variational approximation q(c, g , z).
1: repeat
2: for i = 1, . . . ,n do
3: Update

νi ←
k∑

j=1
ui , jµ j .

4: Compute

Eq zi ←
{
νi , i ∉ I obs,

νi + yi
ϕ(νi )

Φ(yiνi ) , i ∈ I obs.

5: end for
6: for j = 1, . . . ,k do
7: Update

µ j ←
∑n

i=1 ui , j Eq zi

1+ (λ j +n−2)q (a +k/2)/θ

and

σ2
j ←

1

1+ (λ j +n−2)q (a +k/2)/θ
.

8: end for
9: Update

θ← b + 1

2

k∑
j=1

(λ j +n−2)q (µ2
j +σ2

j ).

10: Compute ELBO using Equation (5.4).
11: until convergence of ELBO.

5.4. STOCHASTIC VARIATIONAL INFERENCE

Coordinate ascent is not the only way to approximately maximize the ELBO. An alterna-
tive and more traditional method to maximize ELBO is gradient ascent (see e.g. Blei et al.
(2017); Hoffman et al. (2013); Paisley et al. (2012); Ranganath et al. (2014) in the context
of variational inference). We view the ELBO (5.4) as a function of the hyperparameters
ν, µ, σ2 and θ. The gradient ascent method updates the hyperparameters in each itera-
tion in the direction of the gradient of the ELBO. If the step size is appropriate (cf. Wolfe
(1969)), we find a local maximum.



5.4. STOCHASTIC VARIATIONAL INFERENCE 123

5.4.1. STOCHASTIC OPTIMIZATION

A computational consideration in both the CAVI algorithm and the gradient ascent method,
is the fact that there is a hyperparameter vi associated to every vertex i = 1, . . . ,n of the
graph and that the update of the hyperparameter µ j uses all vi ’s. If the graph is very
large, this results in very slow iterations. The MCMC method in Hartog and Van Zanten
(2019) (Chapter 3) and the empirical Bayes method in Chapter 4 have a similar feature.
In our hierarchical model (5.2), we see that each data point (i , yi ) is associated to a latent
variable zi , whereas the parameters g and c influence all data points. For this reason,
we make a distinction between the local hyperparameter ν and the global hyperparam-
eters µ, σ2 and θ (cf. Blei et al. (2017); Hoffman et al. (2013)). Following the approach
of Robbins and Monro (1951), we replace the exact gradient with a noisy gradient that
only takes one (or a few) data point into account per iteration instead of all data points
to speed up iterations:

• Draw l uniformly at random from {1, . . . ,n}.

• Update the local hyperparameter νl ←
∑k

j=1 ul , jµ j .

• Estimate
∑n

i=1 ui , j Eq zi by nul , j Eq zl , where

Eq zl =
{
νl , l ∉ I obs,

νl + yl
ϕ(νl )

Φ(ylνl ) , l ∈ I obs.

• Use the estimate nul , j Eq zl to update the global hyperparameters.

Note that nul , j Eq zl is an unbiased estimator for
∑n

i=1 ui , j Eq zi . A straightforward gener-
alization is to sample a subset B ⊂ {1, . . . ,n} of fixed size #B instead of a single vertex. The
estimate for

∑n
i=1 ui , j Eq zi is in that case

n

#B

∑
i∈B

ui , j Eq zi . (5.12)

The random subset B is also called a minibatch (Blei et al., 2017). In the last step, we
use the estimate (5.12) to construct a noisy estimate of the gradient of the ELBO with
respect to the global hyperparameters. This technique is called stochastic optimization,
and the whole procedure stochastic variational inference (cf. Blei et al. (2017); Hoffman
et al. (2013)).

The size of the minibatches is an additonal hyperparameter which has to be set. A
small minibatch size increases the noise in the estimate (5.12), but speeds up each itera-
tion of the resulting algorithm. A large minibatch size results in a more accurate estimate
of the gradient, but increases the computational costs of each iteration. The optimal bal-
ance depends on the computational architecture (see, e.g. Bottou et al. (2018)).



124 5. VARIATIONAL INFERENCE

5.4.2. GRADIENT OF THE ELBO
To construct a noisy estimate of the gradient of the ELBO with respect to the global hy-
perparameters, we can compute the partial derivatives of Equation (5.4).

∂ELBO

∂µ j
=

n∑
i=1

ui , j Eq zi −µ j − (λ j +n−2)q a +k/2

θ
µ j ,

∂ELBO

∂σ2
j

=−1

2
− 1

2

a +k/2

θ
(λ j +n−2)q + 1

2

1

σ2
j

,

∂ELBO

∂θ
=−a +k/2

θ
+

(
b + 1

2

k∑
j=1

(λ j +n−2)q (µ2
j +σ2

j )

)
a +k/2

θ2 .

We can adapt the above gradient to take the different roles of the hyperparameters µ, σ2

and θ into account (cf. Amari (1998)). If the parameters where orthonormal, the direc-
tion of the gradient would be direction of the steepest increase in ELBO. However, due to
the interplay of the hyperparameters via q(c, g , z), the direction of the steepest increase
is

I (µ,σ2,θ)−1∇ELBO,

where I (µ,σ2,θ) is the Fisher information matrix, defined by

I (µ,σ2,θ) = Eq (∇ log q(c, g , z))(∇ log q(c, g , z))T ,

where the gradient is taken with respect to the global hyperparameters µ, σ2 and θ (see,
e.g. Amari (1998); Blei et al. (2017); Honkela et al. (2007)). This is called the natural gra-
dient with respect to the global hyperparameters. Note that due to the mean-field fac-
torization of q(c, g , z), the factor corresponding to z does not play a role in this compu-
tation. Moreover, the independence between g and c and between g j and gl , for l ̸= j ,
implies that the Fisher information matrix has zero entries on the blocks correspond-
ing to those terms. Further computation shows that I (µ,σ2,θ) is a diagonal matrix with
entries

• 1
σ2

j
, corresponding to µ j ,

• 1
2σ4

j
, corresponding to σ2

j and

• a+k/2
θ2 , corresponding to θ.

All in all, after updating ν using a minibatch B , we use the noisy natural gradient

∇µ j =σ2
j

n

#B

∑
i∈B

ui , j Eq zi −σ2
j

(
1+ (λ j +n−2)q a +k/2

θ

)
µ j

to update µ j for j = 1, . . . ,k,

∇σ j =σ2
j −

(
1+ (λ j +n−2)

a +k/2

θ

)
σ4

j



5.4. STOCHASTIC VARIATIONAL INFERENCE 125

to update σ2
j for j = 1, . . . ,k, and

∇θ =−θ+b + 1

2

k∑
j=1

(λ j +n−2)q (µ2
j +σ2

j )

to update θ. The updates consist of taking a step in the direction of the natural gradient.
For example, in iteration t , the hyperparameter θ is updated to θ+ϵ∇θ. The step size ϵ=
ϵt can depend on the iteration t . If the sequence ϵt satisfies

∑∞
t=1 ϵt =∞ and

∑∞
t=1 ϵ

2
t <∞,

the resulting algorithm will find a local maximum (cf. Bottou (1998); Robbins and Monro
(1951)). An example sequence that satisfies these conditions is ϵt = 1/t . These steps can
be summarized in the following algorithm:



126 5. VARIATIONAL INFERENCE

Algorithm 5.2 SVI for classification with fixed truncation level k.

Input: Data D = {(i , yi ) : i ∈ I obs}, fixed truncation level k, initial values for hyperparam-
eters ν, µ, σ2 and θ, t = 0 and a sequence ϵt .

Output: ELBO and optimal variational approximation q(c, g , z).
1: repeat
2: Draw a random subset B of size #B from {1, . . . ,n}.
3: for i ∈ B do
4: Update

νi ←
k∑

j=1
ui , jµ j .

5: Compute

Eq zi ←
{
νi , i ∉ I obs,

νi + yi
ϕ(νi )

Φ(yiνi ) , i ∈ I obs.

6: end for
7: Compute the noisy natural gradient

∇θ ←−θ+b + 1

2

k∑
j=1

(λ j +n−2)q (µ2
j +σ2

j ).

8: for j=1, . . . , k do
9: Compute the noisy natural gradient

∇µ j ←σ2
j

n

#B

∑
i∈B

ui , j Eq zi −σ2
j

(
1+ (λ j +n−2)q a +k/2

θ

)
µ j ,

∇σ2
j
←σ2

j −
(
1+ (λ j +n−2)

a +k/2

θ

)
σ4

j .

10: Update

µ j ←µ j +ϵt∇µ j ,

σ2
j ←σ2

j +ϵt∇σ2
j
.

11: end for
12: Update

θ← θ+ϵt∇θ.

13: Compute ELBO using Equation (5.4).
14: until convergence of ELBO.

Note that the computation of the ELBO using Equation (5.4) also involves a sum of
Eq log p(zi |g ) and Eq log qi (zi ) over all vertices i = 1, . . . ,n. This would become the new



5.5. SAMPLING 127

bottleneck in the computation. As an alternative, we could use the average log predictive
probability density on a small held-out dataset D ′ ⊂ D to monitor the progress of the
algorithm, as proposed in Blei et al. (2017). However, we prefer to use all the available
data in our inference. In that case, a cheaper alternative is to only compute the ELBO
every once every few, for example n/#B , iterations.

5.5. SAMPLING

So far, we have described algorithms to find hyperparameters for an approximation to
the posterior distribution p(c, g , z |D) for a fixed truncation level k. However, we do not
know the correct truncation level beforehand. As we have a conjugate prior for c, we treat
it as an unknown parameter of the model that we estimate in the posterior. In contrast,
we can view k as another hyperparameter of the ELBO. We choose to separate the opti-
mization over the hyperparameters ν, µ, σ2 and θ from the optimization over k, as k is
a discrete parameter (as in Chapter 4). Traditional methods for the selection of discrete
hyperparameters are manual search and grid search (see Bergstra and Bengio (2012)).
The space for the hyperparameter k is one-dimensional, so we propose a grid search.
As the computational costs of the optimization of the hyperparameters ν, µ, σ2 and θ

increase with k, we propose a bottom-up search. We start with a low value for k and find
the corresponding optimal hyperparameters in terms of the ELBO. Then, we increase k,
so we include one more eigenvector of the Laplacian matrix to the series expansion of
f . At some point, adding additional eigenvalues as explanatory variables does not in-
crease the ELBO significantly. This is where we break the search. This method has two
potential disadvantages. First, it exhaustively searches through all possible values of k,
although it does so in the computationally optimal order. Second, it might be that the
ELBO has very small increments for low values of k followed by a large increment later
on. Depending on the stopping rule for the bottom-up search, we might never reach
that large increment (see for example Section 4.5.2). The proposed bottom-up search is
summarized in Algorithm 5.3.

Algorithm 5.3 Bottom-up search for k∗.

Input: Initial k.
Output: Optimal truncation level k∗.

1: repeat
2: Compute the hyperparameters and ELBO using Algorithm 5.1 or 5.2.
3: Update k ← k +1.
4: until convergence.

After we have found the optimal truncation level k, we can sample from the ap-
proximate posterior q(c, z, g ) using the hyperparameters that we found with Algorithm
5.1 or 5.2. Because of the factorization (5.3), we see that the marginal for g j is simply
q j (g j ) ∼ N (µ j ,σ2

j ) and that it is independent of z, c and gl for l ̸= j . This makes sam-

pling from the approximate posterior g straightforward.



128 5. VARIATIONAL INFERENCE

5.6. NUMERICAL EXPERIMENTS

5.6.1. MINIBATCH SIZE

To illustrate the impact of the minibatch size to the maximization of the ELBO, we con-
sider a simple example on the path graph of 1000 vertices. We define a function on the
graph by

f (i ) = sin(12(i /n +0.2))

i /n +0.2
.

We assign labels to the vertices according to probabilities P (yi = 1) = 1−P (yi = −1) =
Φ( f0(i )), where Φ is the distribution function of the standard normal distribution. We
remove 20% of the labels.

We fix k at 25 for now, as we are only interested in the impact of choosing differ-
ent minibatch sizes. We run Algorithm (5.2) with the same initial value for minibatch
sizes 1, 2, 5, 10, 20, 50, 100, 200, 500 and 1000. A minibatch of size 1000 consists of
all the vertices. As the computational cost of Algorithm (5.2) is linear in the minibatch
size, we allow more iterations for smaller minibatch sizes. More specifically, we allow for
106/#B iterations for minibatch size #B . The other hyperparameters we set are q = 1.5
and ϵt = 1/(t + 10). The result in Figure 5.1 suggests that smaller minibatches find the
(local) maximum of the ELBO faster. We also observe that the true underlying function
is smoother than the approximate posterior. This suggests that k = 25 is too high. In-
deed, a choice of k = 11, results in a better fit to the true function and also a higher ELBO
(see Figure 5.2). We observe the same behavior of the ELBO as with k = 25.

0 200 400 600 800 1000

−
1
4
0
0

−
1
2
0
0

−
1
0
0
0

−
8
0
0

−
6
0
0

iterations (scaled)

E
L
B

O

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

Figure 5.1: Example with k = 25. Left: ELBO value as a function of (scaled) iteration. The iteration is scaled as
10−3#B t , reflecting approximately how many times we have looped through the vertices. The minibatch sizes
are 1, 2, 5, 10, 20, 50, 100, 200, 500 and 1000 from top to bottom. Right: The observations (black dots), the true
underlying function (black line), the approximation of the posterior mean (thick blue line) and a sample of 20
draws from the approximate posterior (blue lines).



5.6. NUMERICAL EXPERIMENTS 129

0 200 400 600 800 1000

−
1
4
0
0

−
1
2
0
0

−
1
0
0
0

−
8
0
0

−
6
0
0

iterations (scaled)

E
L
B

O

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

P
ro

b
a
b
ili

ty

Figure 5.2: The same as Figure 5.1, but with k = 11.

5.6.2. CHANGING OBJECT IN A NOISY ENVIRONMENT

In this example, we apply our method to a large graph constructed in the following way.
As a ground truth, we use the following animation of a morphing object. The anima-
tion consists of 60 frames of 60× 60 pixels. The labels on each pixel indicate whether
the pixel is of the object or not. We flip 10% of the labels at random. To convert this
problem into a graph problem, we connect neighboring pixels in each frame and with
the corresponding pixels in the previous and next frame, resulting in a 60×60×60 grid
graph on a total of n = 216000 nodes. We can explicitly compute the eigenvalues using
the known eigenvalues of the path graph using Theorem 3.5 in Mohar (1991). The corre-
sponding eigenvectors are given by the tensor products of the eigenvectors of the path
graph and can also be computed explicitly, see Chapter 1 for more details. We estimate
the soft label function using Algorithm 5.2. The estimated soft label function is shown
in Figure 5.4. We can truncate it at 0.5 to estimate the shape of the object in each frame.
The estimated objects are shown in Figure 5.5.



130 5. VARIATIONAL INFERENCE

Figure 5.3: 25 frames of the true underlying morphing object with noise.

Figure 5.4: 25 frames of the estimated soft label function.



5.7. CONCLUDING REMARKS 131

Figure 5.5: 25 frames of the estimated labels, using truncation at 0.5.

5.7. CONCLUDING REMARKS
We have described a nonparametric Bayes procedure to perform binary classification
on graphs. We have considered a variational Bayes approach using a prior that can be
represented as a scaled, truncated series of Gaussians. The proposed method consists of
approximating the posterior distribution with a family of variational distributions and
finding the optimal hyperparameters. These hyperparameter are chosen, such that the
evidence lower bound is maximized. We have described coordinate ascent variational
inference and stochastic variational inference. An advantage of the latter method is that
the precise gradient is replaced by a noisy estimate of the gradient, which can be much
cheaper to compute. The noisy estimate of the gradient is based on a subset of the ob-
served labels, a minibatch, instead of the entire data. The minibatch size is an additional
hyperparameter which has to be set. Our numerical example suggests that small mini-
batch sizes are preferred over large minibatch sizes. Additionally, we have to determine a
sequence ϵt . Another disadvantage of variational inference is that the variational distri-
bution might not be a good approximation to the true posterior distribution. Recently,
some theoretical results are available about convergence of variational posteriors (e.g.
Zhang and Gao (2018)), but this remains a difficult problem in general. We have ob-
served good results using stochastic variational inference in a simulated example with a
graph of over 200000 vertices.





DANKWOORD

Allereerst bedank ik Harry voor het mogelijk maken van het onderzoek dat tot dit proef-
schrift heeft geleid, jouw bijdrage hieraan en sturing. Van jou heb ik geleerd dat een
succesvolle onderzoeker alles van alle onderwerpen moet weten. Jij bent hier een goed
voorbeeld van en ik heb een hoop van jou geleerd. Ik ben bijzonder dankbaar voor het
vertrouwen in mij om het laatste deel van het traject in Londen af te maken en de kans
die je mij hebt gegeven om mijn onderzoek te combineren met mijn baan bij EY.

Bij EY hebben Wimjan, Floris, Philippe, Niels en Rens er voor gezorgd dat deze com-
binatie zo soepel mogelijk verliep. Bij elke terugkomst na een periode van focus op mijn
onderzoek kon ik altijd rekenen op een warm onthaal en door mee te blijven doen aan
de wintersport en andere activiteiten heb ik mij altijd deel gevoeld van het team.

Het andere team waar ik deel van was, was mijn onderzoeksgroep bestaande uit Jan,
Alice, Botond en Moritz. Het was fijn om met jullie te werken en om over andere din-
gen dan werk te praten. Ik heb veel aan jullie ervaring gehad. Jullie zijn stuk voor stuk
inspirerende onderzoekers die de bredere onderzoeksgemeenschap interessant houden.

Voor verdere inhoudelijke adviezen en feedback op mijn manuscript kon ik uiteraard
rekenen op Teun en Jacob. Hoewel dit proefschrift slechts wisselgeld is in verhouding
tot het grote goud dat jullie mij waard zijn, is het toch fijn om ook hier jullie steun te
genieten.

Ik ben altijd gesteund door mijn ouders Wim en Jutta. Jullie hebben mij vanaf nul
gestimuleerd om te leren. Door jullie ben ik slim. Vroeger kon ik trots mijn tekeningen
laten zien en nu moeten jullie het doen met computergegenereede plaatjes die blijkbaar
iets betekenen. Gelukkig weten jullie altijd wat echt belangrijk is en dat leer ik nog steeds
van jullie.

Ook Jelmer weet wat echt is. Je hebt mij veel geholpen met het afronden van mijn
proefschrift en ik hoop ook jou trots te kunnen maken met dit werk.

Lieve Merel, ontzettend bedankt voor alle liefde, hulp en wijsheid. Jij was er bij alle
fases van het onderzoek bij en je was overal van onschatbare waarde. Ik kijk uit naar alle
volgende fases in ons leven. Jij betekent alles voor mij.

133





LIST OF PUBLICATIONS

1. J. Hartog and J.H. van Zanten, Nonparametric Bayesian label prediction on a graph, Com-
putational Statistics & Data Analysis 120, 111-131 (2018).

2. J. Hartog and J.H. van Zanten, Nonparametric Bayesian label prediction on a large graph

using truncated Laplacian regularization, Communications in Statistics - Simulation and

Computation (2019).

Parts of Chapter 2 are published in item 1 (Hartog and Van Zanten, 2018). J. Har-
tog’s contribution includes execution of the research, numerical experiments and draft
of the article. J.H. van Zanten’s contribution includes discussion and development of the
concept, guidance and review of the article.

Parts of Chapter 3 are published in item 2 (Hartog and Van Zanten, 2019). J. Har-
tog’s contribution includes execution of the research, numerical experiments and draft
of the article. J.H. van Zanten’s contribution includes discussion and development of the
concept, guidance and review of the article.

135

https://doi.org/10.1016/j.csda.2017.11.008
https://doi.org/10.1016/j.csda.2017.11.008
https://doi.org/10.1080/03610918.2019.1634202
https://doi.org/10.1080/03610918.2019.1634202




REFERENCES

J. H. Albert and S. Chib. Bayesian analysis of binary and polychotomous response data.
Journal of the American Statistical Association, 88(422):669–679, 1993.

D. J. Aldous and J. Shun. Connected spatial networks over random points and a route-
length statistic. Statistical Science, 25(3):275–288, 2010.

S.-I. Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):
251–276, 1998.

R. K. Ando and T. Zhang. Learning on graph with Laplacian regularization. In Advances
in neural information processing systems, pages 25–32, 2007.

M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-supervised learning on
large graphs. In Learning theory, volume 3120 of Lecture notes in computational sci-
ence, pages 624–638. Springer, Berlin, 2004.

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: a geometric framework
for learning from labeled and unlabeled examples. Journal of machine learning re-
search, 7:2399–2434, 2006.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13:281–305, 2012.

A. L. Bertozzi, X. Luo, A. M. Stuart, and K. C. Zygalakis. Uncertainty quantification in
graph-based classification of high dimensional data. SIAM/ASA Journal on Uncertainty
Quantification, 6(2):568–595, 2018.

P. J. Bickel, C. Chen, J. Kwon, J. Rice, E. Van Zwet, and P. Varaiya. Measuring traffic. Sta-
tistical Science, pages 581–597, 2007.

C. M. Bishop. Pattern recognition and machine learning. Springer, New York, 2006.

M. Blair, R. Armstrong, and M. Murphy. The 360 degree brand in Asia: creating more
effective marketing communications. Wiley, New York, 2003.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statisti-
cians. Journal of the American Statistical Association, 112(518):859–877, 2017.

L. Bottou. Online algorithms and stochastic approximations. In Online Learning and
Neural Networks. Cambridge University Press, 1998. revised, oct 2012.

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223–311, 2018.

137



138 REFERENCES

S. Brooks, A. Gelman, G. Jones, and X.-L. Meng. Handbook of Markov chain Monte Carlo.
CRC press, Boca Raton, FL, 2011.

N. Chopin. Fast simulation of truncated Gaussian distributions. Statistics and Comput-
ing, 21(2):275–288, 2011.

N. Choudhuri, S. Ghosal, and A. Roy. Nonparametric binary regression using a Gaussian
process prior. Statistical Methodology, 4(2):227–243, 2007.

D. Cvetkovic, S. Simic, and P. Rowlinson. An introduction to the theory of graph spectra.
Cambridge University Press, Cambridge, 2009.

A. Damianou, M. K. Titsias, and N. D. Lawrence. Variational gaussian process dynami-
cal systems. In Advances in Neural Information Processing Systems, volume 24, pages
2510–2518, 2011.

L. Devroye. Non-uniform random variate generation. Springer-Verlag, New York, 1986.

R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag,
New York, 1997.

J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning. Springer
Series in Statistics. Springer-Verlag, New York, 2001.

A. Gelman, H. S. Stern, J. B. Carlin, D. B. Dunson, A. Vehtari, and D. B. Rubin. Bayesian
data analysis. Statistical Science Series. CRC Press, Boca Raton, FL, third edition, 2014.

S. Ghosal and A. Van der Vaart. Fundamentals of nonparametric Bayesian inference, vol-
ume 44 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge
University Press, Cambridge, 2017.

P. J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination. Biometrika, 82(4):711–732, 1995.

J. Hartog and J. H. Van Zanten. Nonparametric Bayesian label prediction on a graph.
Computational Statistics & Data Analysis, 120:111–131, 2018.

J. Hartog and J. H. Van Zanten. Nonparametric bayesian label prediction on a large graph
using truncated laplacian regularization. Communications in Statistics - Simulation
and Computation, 2019.

M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. Jour-
nal of Machine Learning Research, 14:1303–1347, 2013.

A. Honkela, M. Tornio, T. Raiko, and J. Karhunen. Natural conjugate gradient in varia-
tional inference. In Neural Information Processing, pages 305–314, 2007.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational
methods for graphical models. Machine Learning, 37(2):183–233, 1999.



REFERENCES 139

A. Kirichenko and J. H. Van Zanten. Estimating a smooth function on a large graph by
Bayesian Laplacian regularisation. Electronic Journal of Statistics, 11(1):891–915, 2017.

E. D. Kolaczyk. Statistical analysis of network data. Springer Series in Statistics. Springer,
New York, 2009.

H. Kushner and G. Yin. Stochastic approximation and recursive algorithms and applica-
tions. Springer, New York, 1997.

F. Liang, K. Mao, M. Liao, S. Mukherjee, and M. West. Nonparametric Bayesian kernel
models. Technical report, Department of Statistical Science, Duke University, 2007.

X. Liu, D. Zhao, J. Zhou, W. Gao, and H. Sun. Image interpolation via graph-based
Bayesian label propagation. IEEE Transactions on Image Processing, 23(3):1084–1096,
2014.

N. Madras. Lectures on Monte Carlo methods, volume 16 of Fields Institute Monographs.
American Mathematical Society, Providence, RI, 2002.

B. Mohar. The Laplacian spectrum of graphs. In Graph theory, combinatorics, and appli-
cations, volume 2 of Wiley-Interscience Publication, pages 871–898. Wiley, New York,
1991.

N. Nariai, E. D. Kolaczyk, and S. Kasif. Probabilistic protein function prediction from
heterogeneous genome-wide data. Plos one, 2(3):e337, 2007.

J. Paisley, D. M. Blei, and M. I. Jordan. Variational Bayesian inference with stochastic
search. In International Conference on Machine Learning, volume 29, pages 1367–
1374, 2012.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes 3rd
edition: The art of scientific computing. Cambridge university press, 2007.

R Core Team. R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria, 2018. URL https://www.R-project.
org/.

R. Ranganath, S. Gerrish, and D. M. Blei. Black box variational inference. In Artificial
Intelligence and Statistics, pages 814–822, 2014.

C. E. Rasmussen and C. K. I. Williams. Gaussian processes in machine learning. Adaptive
Computation and Machine Learning. MIT Press, Cambridge, MA, 2006.

H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathe-
matical Statistics, 22(3):400–407, 1951.

C. P. Robert. The Bayesian choice. Springer Texts in Statistics. Springer, New York, 2007.

V. Sadhanala, Y.-X. Wang, and R. J. Tibshirani. Total variation classes beyond 1d: Mini-
max rates, and the limitations of linear smoothers. In Advances in Neural Information
Processing Systems, pages 3513–3521, 2016.

https://www.R-project.org/
https://www.R-project.org/


140 REFERENCES

R. Sharan, I. Ulitsky, and R. Shamir. Network-based prediction of protein function.
Molecular systems biology, 3(1):88, 2007.

V. Sindhwani, W. Chu, and S. S. Keerthi. Semi-supervised Gaussian process classifiers. In
International Joint Conference on Artificial Intelligence, pages 1059–1064, 2007.

K. T. Smith. Digital marketing strategies that millennials find appealing, motivating, or
just annoying. Journal of Strategic Marketing, 19(6):489–499, 2011.

A. J. Smola and R. Kondor. Kernels and regularization on graphs. In Learning theory and
kernel machines, pages 144–158. Springer, New York, 2003.

L. Tierney. A note on Metropolis-Hastings kernels for general state spaces. The Annals of
Applied Probability, 8(1):1–9, 1998.

M. K. Titsias and N. D. Lawrence. Bayesian Gaussian process latent variable model. In
Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics, volume 9, pages 844–851, 2010.

A. B. Tsybakov. Introduction to nonparametric estimation. Springer Series in Statistics.
Springer, New York, 2009.

F. Van der Meulen, M. Schauer, and J. H. Van Zanten. Reversible jump MCMC for non-
parametric drift estimation for diffusion processes. Computational Statistics & Data
Analysis, 71:615–632, 2014.

J. Van Waaij and J. H. Van Zanten. Full adaptation to smoothness using randomly trun-
cated series priors with Gaussian coefficients and inverse gamma scaling. Statistics &
Probability Letters, 123:93–99, 2017.

R. Waagepetersen and D. Sorensen. A tutorial on reversible jump mcmc with a view to-
ward applications in qtl-mapping. International Statistical Review, 69(1):49–61, 2001.

L. Wasserman. All of nonparametric statistics. Springer Texts in Statistics. Springer, New
York, 2006.

D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks. Nature, 393
(6684):440, 1998.

D. B. West. Introduction to graph theory. Prentice Hall, Upper Saddle River, NJ, 1996.

P. Wolfe. Convergence conditions for ascent methods. SIAM review, 11(2):226–235, 1969.

F. Zhang and C. Gao. Convergence rates of variational posterior distributions. arXiv
preprint arXiv:1712.02519, 2018.

J. Zhu and T. Hastie. Kernel logistic regression and the import vector machine. Journal
of Computational and Graphical Statistics, 14(1):185–205, 2005.


	Summary
	Samenvatting
	Introduction
	Graph theory
	Statistics
	Bayesian computation
	Prediction problem

	Hierarchical Bayes
	Observation model and priors
	Observation model
	Prior on the soft label function
	Latent variables and missing labels

	Sampling scheme
	Sampling from p(z|c,f,D)
	Sampling from p(f|c,z,D)
	Sampling from p(c|z,f,D)
	Overview of the sampling schemes

	Computational aspects
	Using the eigendecomposition of the Laplacian
	A strategy for sparse graphs

	Numerical experiments
	Path graph
	Small-world graph
	Protein function prediction
	MNIST digit prediction

	Regression problem
	Traffic flow estimation

	Concluding remarks

	Truncation
	Observational model and priors
	Observational model
	Prior on the soft label function
	Prior on the truncation level
	Prior on the regularization parameter
	Full hierarchical model

	Sampling scheme
	Sampling from p(z|c,k,g,D)
	Sampling from p(k,g|c,z,D)
	Sampling from p(c|k,g,z,D)
	Overview of sampling scheme

	Computational aspects
	Numerical results
	Impact of the truncation level
	Computational gains: MNIST data
	Large scale example: object tracking

	Regression problem
	Traffic flow estimation

	Concluding remarks

	Empirical Bayes
	Observation model and prior
	Observation model
	Prior on the soft label function
	Missing labels

	Laplace approximation
	Finding the location of the maximum

	Optimization for hyperparameters
	Optimization over the regularization parameter

	Sampling scheme
	Performance relative to hierarchical Bayes

	Numerical experiments
	Finding the optimal regularization parameter
	Finding the optimal truncation level
	MCMC versus Laplace approximation
	Changing object in a noisy environment

	Regression problem
	Traffic flow estimation

	Concluding remarks

	Variational inference
	Observational model and prior
	Observational model
	Prior on the soft label function
	Prior on the regularization parameter
	Full hierarchical model

	Variational approximation
	Evidence lower bound

	Coordinate ascent variational inference
	Hyperparameter updates

	Stochastic variational inference
	Stochastic optimization
	Gradient of the ELBO

	Sampling
	Numerical experiments
	Minibatch size
	Changing object in a noisy environment

	Concluding remarks

	Dankwoord
	List of Publications
	References

