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Abstract

We set up a laboratory experiment to empirically investigate equilibrium selection in a complex economic 
environment. We use the overlapping-generation model of Grandmont (1985), which displays multiple 
perfect-foresight equilibria, including periodic and chaotic dynamics. The equilibrium selection problem is 
not solved under learning, as each outcome is predicted by at least one existing learning theory. We find 
that subjects in the lab systematically coordinate on an equilibrium despite the complexity of the environ-
ment. Coordination only happens on simple equilibria, in this case the steady state or the period-two cycle, 
a result which is predicted only if the subjects follow simple learning rules. This suggests that relevant 
perfect-foresight equilibria should be robust to the use of simple rules.
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1. Introduction

From a theoretical standpoint, the self-fulfilling nature of expectations exposes dynamic gen-
eral equilibrium models to indeterminacy. When multiple equilibria are possible, the selected 
one depends not only upon the economic structure, but on the beliefs that agents use to forecast 
prices (Benhabib and Farmer, 1999). Indeterminacy therefore poses a number of challenges for 
working with this class of models.

Conceptually, no combination of environmental structure and agent preferences alone can pin 
down expectations about the future. As a consequence, indeterminacy undermines the concept 
of rational expectations equilibrium and the predictive power of the model. When multiple equi-
libria exist, some may be suboptimal. For instance, some equilibria may imply high volatility in 
real variables that arises from random coordination devices or initial conditions, which is unde-
sirable from the point of view of policy makers aiming to stabilize aggregate fluctuations. This 
multiplicity further creates both practical issues for comparative static analysis and additional 
considerations for robust policy design. Being able to predict equilibrium selection in this setting 
is therefore a critical issue for modeling and policy analysis.

Learning theory has been frequently advocated as a theoretical equilibrium selection device. 
The main idea is that only rational expectation equilibria that emerge as a long-run outcome of 
an adaptive learning process should be regarded as relevant (see Evans and Honkapohja (2001)
for a comprehensive discussion). A problem with learning, however, is that ‘anything goes’: any 
equilibrium can be selected if the adaptive rule is suitably designed. For example, in an OLG 
economy with infinitely many periodic equilibria, any equilibrium cycle can be learned provided 
that the adaptive rule of agents is consistent with the periodicity of the cycle (Grandmont, 1985; 
Guesnerie and Woodford, 1991; Evans and Honkapohja, 1995). In a similar set-up, Woodford 
(1990)’s learning-to-believe in sunspots shows that a suitable adaptive learning rule may lead to 
convergence to a sunspot equilibrium with probability one.

A theorist is then left with the crucial yet loosely-defined task of designing the belief for-
mation process of the agents, with little guidance from theory and yet with major consequences 
for the model’s conclusions. Unsurprisingly, this challenge is accentuated if the model exhibits 
non-linear or even complex dynamics. In addition, allowing for heterogeneity of beliefs intro-
duces further difficulty, as the process of coordination among agents has to be modeled in turn. 
Similarly, an empirical economist can pick an interesting equilibrium and fit the dynamics to the 
data, but what constitutes an interesting or relevant equilibrium remains a non-trivial question.

How agents learn to form and coordinate beliefs, and which equilibria are consequently se-
lected and regarded as plausible, ultimately remain empirical questions. Collecting empirical 
evidence about agents’ processes of expectation formation and equilibrium selection can un-
doubtedly provide guidance when designing models of learning. Since this is difficult to do with 
most available data, economists have taken it to the lab. Lucas (1986) was the first to stress the 
experimental approach in studying expectations and stability of equilibria under learning:
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Recent theoretical work is making it increasingly clear that the multiplicity of equilibria [...] 
can arise in a wide variety of situations [...]. All but a few equilibria are, I believe, behaviorally 
uninteresting: They do not describe behavior that collections of adaptively behaving people 
would ever hit on. I think an appropriate stability theory can be useful in weeding out these 
uninteresting equilibria [...]. But to be useful, stability theory must be more than simply a 
fancy way of saying that one does not want to think about certain equilibria. I prefer to view 
it as an experimentally testable hypothesis [...]. (Lucas, 1986, pp. S424-S425)

One example of this approach comes from the pioneering work of Marimon et al. (1993) and 
Marimon and Sunder (1993, 1994). In these studies, the authors designed and used laboratory 
experiments with human subjects to empirically observe the process of equilibrium selection.

The goal of our paper, similarly, is to present laboratory experiments which can test different 
theories of learning and the resulting equilibrium selection in a complex environment. To achieve 
this, we conduct an experimental study within an OLG economy à la Grandmont (1985). There 
are many reasons for choosing this environment.

Importantly, this is a general-equilibrium environment with a pervasive multiplicity of equi-
libria, that possesses infinitely many long-run equilibria, including a steady state, cycles of all 
periods, and even chaotic dynamics. Additionally, since the model is fully deterministic, exoge-
nous shocks play no role in cycle formation; complicated dynamics and multiple equilibria arise 
under perfect-foresight as soon as there is a strong conflict between the substitution and wealth 
effects of a change in the return on savings. By simply varying a single parameter, namely the 
risk aversion parameter in agents’ utility functions, the complexity of the model can be tuned in 
order to produce various treatments with distinct multiplicities of equilibria. This feature con-
siderably simplifies the lab implementation of the model, which undoubtedly represents a strong 
argument for the choice of the Grandmont OLG environment given the challenge of bringing 
general-equilibrium economies into lab experiments. What is more, this environment serves as 
an excellent and classical example of economic complexity, which has not yet been convincingly 
investigated in a laboratory setting.

A further advantage of the Grandmont model is that it has been extensively studied in the 
literature since the seminal work by Lucas (1972), and a wide range of learning predictions has 
been established to guide the construction of hypotheses. These learning theories, however, fail to 
deliver a clear prediction of equilibrium selection because ‘anything goes’: all equilibria can be 
selected under learning provided that agents use a suitable rule. As theory does not resolve equi-
librium selection within this complex model, empirical insights gained through the present study 
may prove informative with respect to agents’ coordinating behavior in the (considerably more 
complex) real world. Finally, the model has been designed so as to incorporate heterogeneous 
beliefs in a micro-founded general-equilibrium setting.

We use a learning-to-forecast experiment (LtFE), where the only degree of freedom is the 
belief formation process of the subjects; all other components are deterministic. This design 
allows the experimentalist to isolate the effects of expectations on the model dynamics (Marimon 
et al., 1993), and appears as the most natural way to implement a parsimonious, yet complex, 
lab-based model in which equilibrium selection depends only on self-fulfilling beliefs.

Within this framework, we design several experimental treatments and formulate two main 
hypotheses. Our first hypothesis relates to the possibility of coordination, amongst a group of 
individuals holding heterogeneous beliefs, precipitated entirely by repeated market interactions 
in such a complex environment. As the results will show, we always observe coordination on 
one of the existing perfect-foresight equilibria of the model, irrespective of the complexity of the 
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underlying model. This is already a remarkable result: our experiment is the first to document 
systematic coordination of beliefs in a chaotic environment, and the first in which spontaneous
coordination on a 2-cycle equilibrium arises, even if the 2-cycle is unstable under learning. This 
means that, unlike in previous studies, subjects were able to reach a periodic equilibrium in the 
absence of exogenous fluctuations (see the discussion of related work by Marimon et al. (1993)
below). Neither of these outcomes are obvious given the complexity of the underlying model, the 
heterogeneity in beliefs and the imperfect information that subjects have.

Our second hypothesis is that coordination is more likely to emerge on simple equilibria 
(such as a steady state) than on more complicated equilibria (i.e., higher-order cycles). This 
rather intuitive prediction is based on theories of learning and on existing empirical evidence, 
both of which suggest that subjects tend not to make use of information from more than a few 
periods prior. Even after considering various treatments with increasingly complicated dynamics, 
we consistently find aggregate convergence of prices and individual forecasts to the steady state 
or the 2-cycle, possibly after a long transition. Accordingly, we never observe selection of any 
higher-order cycles or more complicated equilibrium dynamics.

None of the learning theories predict entirely our experimental results, which underlines the 
relevance of empirical investigation through lab experiments. A necessary condition for equilib-
rium selection in the experiment is the weak E-stability criterion that predicts that only if the 
forecasting rule of the agents is exactly consistent with a steady state or a 2-cycle can these out-
comes be achieved under adaptive learning. However, this criterion does not eliminate completely 
the multiplicity issue, and its prediction is not robust to misspecification or overparametrisation 
of the forecasting rule. Accordingly, we find that the subjects in the experiment only select for 
simple, weakly E-stable equilibria. This finding shows that, despite the complexity of the en-
vironment, subjects adopt simple rules (based on information from last period), but do not use 
higher order rules.

After the two main hypotheses have been addressed, we assess the robustness of our results to 
the nature of the experimental task by implementing a learning-to-optimize experiment (LtOE), 
where subjects explicitly make quantity decisions. This exercise is motivated by previous exper-
imental results which showed that coordination is more challenging in a LtOE than in a LtFE. 
In the LtOE, we almost systematically find coordination on the monetary steady state. Those 
sessions also allow us to highlight possible explanations for the absence of coordination on the 
2-cycle in the LtOE, namely strategic uncertainty, as subjects may prefer an allocation for which 
the payoff is constant over one for which it fluctuates, and a higher cognitive load. Finally, two 
additional sets of experimental sessions show that our results are robust to alternative designs of 
the experiment.

Related literature A large number of experimental studies have explored the question of equilib-
rium selection in static or repeated games; see, e.g., Camerer (2003) for a survey. We discuss here 
two contributions that are closely related to our experimental study, but still differ in key ways. 
In the first of these, Van Huyck et al. (1994) employ an experimental coordination game with two 
efficient Nash equilibria in order to investigate the problem of equilibrium selection. The myopic 
best-response dynamics coincide with the chaotic quadratic map, while the interior equilibrium 
is stable under adaptive learning. In all their experimental sessions, subjects coordinate on the 
interior solution, in line with the prediction of adaptive learning.

An important difference between this experiment and our own is that our set-up has infinitely 
many perfect-foresight periodic cycles that arise as equilibrium outcomes of the model. These 
occur without the need to impose (a priori) any expectation rules, and can be stable under adap-
tive learning. As such, we aim to find out which of these periodic equilibria, if any, subjects may 
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coordinate on. By contrast, in Van Huyck et al. (1994), the chaotic dynamics are not an equilib-
rium of the coordination game, but result from the assumption of myopic best-response behavior. 
Furthermore, the authors do not address the question of whether or how subjects may coordinate 
on the best response, which seems especially difficult given the complicated dynamics at work.

The second closely related contribution is the work by Marimon et al. (1993), who were the 
first researchers to observe a form of coordination on 2-cycle dynamics in a laboratory experi-
ment.1 They use a design similar to our LtFE, but there are nevertheless several major differences 
worth noting. First, they consider an OLG environment in which only a steady state, a two-period 
cycle and two-state sunspot equilibria exist, while our model involves infinitely many periodic 
and chaotic equilibria, making our equilibrium selection problem more complex. Second, they 
employ a three-population design, in which participants are randomly drawn from the pool to re-
enter the market and form the new generation in each period. We use a single-population design, 
so that the resulting course of events in the experiment is the same as in the learning literature, 
especially the seminal contribution of Grandmont (1985), and we later show that our results are 
robust to an alternative design that introduces the overlapping generation friction.

Most importantly, Marimon et al. impose real shocks to the OLG economy by cyclically 
varying the number of subjects in each generation between a high and a low number in phase 
with the color of a blinking square on subjects’ computer screens. This generates temporary 
‘attenuated’ 2-cycle oscillations driven by these exogenous shocks. However, these oscillations 
dampen out once the exogenous shocks to generation size are removed.2 Hence, these authors do 
not find evidence of 2-cycles arising spontaneously, a phenomenon which characterizes our own 
experimental results.

The remainder of this paper is organized as follows. Section 2 introduces the underlying OLG 
model of the experiment and discusses its properties and learning dynamics. This section is quite 
technical and may be skipped over, as Section 3 then motivates and details the experimental de-
sign within the OLG model and our hypotheses based on learning predictions. Section 4 presents 
the experimental results, Section 5 provides estimates of individual forecasting rules, and Sec-
tion 6 presents two additional sets of experimental sessions designed for robustness. Section 7
concludes. Appendices A-K contain details about all experimental sessions and treatments, their 
analyses and instructions.

2. The model

This section describes the underlying model of the experiment, a deterministic OLG economy 
à la Grandmont (1985). We recall Grandmont’s result that the model has infinitely many perfect 
foresight equilibria and discuss the stability of these under learning.

2.1. The underlying OLG economy

Consider an exchange economy with a single perishable consumption good and constant pop-
ulation. In each period t , a continuum (of measure 1) of identical agents is born. Each agent lives 
for two periods, meaning that two generations coexist in each period: the young, and the old. 
Individuals receive an endowment e1 > 1 of the consumption good when young, and 0 < e2 < 1

1 To the best of our knowledge at the time of writing, they remain the only ones to have done so.
2 See the five economies in Marimon et al. (1993, Figure 3, p. 89).
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when old. These restrictions are sufficient – see Grandmont (1985, Assumption 1.d) – to result in 
the Samuelson case in the terminology of Gale (1973), in which young individuals seek to save 
part of their first-period endowment by selling to the old individuals a quantity st ∈ (0, e1] of 
the good at the market-clearing price Pt , and holding the corresponding (non-negative) money 
balances denoted by mt = Ptst . In the following period (t + 1), these individuals become the old 
generation; they now individually purchase goods from the newly-born young generation using 
all of their available savings. Purchases are made at the market-clearing price, denoted by Pt+1, 
while the aggregate money supply in the economy is held constant at some exogenously-specified 
M > 0.

Expressing the decision problem more formally, a young individual in a given period chooses 
his current consumption level3 ct to maximize his expected utility function U(ct, ce

t+1) over 
his two-period lifetime, subject to his current (when young) and expected (when old) budget 
constraints:{

ct ≤ e1 − st

ce
t+1 ≤ e2 + Re

t+1st ,
(1)

where Re
t+1 ≡ Pt

P e
t+1

corresponds to the expected gross return on savings.

2.2. Definition of a perfect-foresight equilibrium

First, we derive the temporary equilibrium map as in Grandmont (1985). The model makes 
use of a separable utility function:

U(ct , ct+1) = V1(ct ) + V2(ct+1) (2)

where the functions V1,2(·) are continuous, strictly increasing and concave on [0, +∞), twice 
continuously differentiable on (0, +∞), and with limc→0 V ′(c) = +∞. These properties, to-
gether with the compactness of the budget constraints, ensure that the maximization problem of 
the young individuals has a unique solution. The first-order condition can be expressed in terms 
of consumption:

V ′
1(ct )Pt+1 = V ′

2(ct+1)Pt (3)

or in terms of real money balances:

V ′
1(e1 − st )st = st+1V

′
2(st+1 + e2). (4)

Once the optimal savings and consumption decisions have been determined, it is possible to de-
fine a perfect-foresight equilibrium sequence of prices (or, equivalently, of real money balances) 
using the market clearing conditions in the markets for money and goods, respectively:

mt = M , st = M

Pt

and st+1 = Pt

Pt+1
st for all t. (5)

At this stage, it is convenient to define the functions v1(s) ≡ sV ′
1(e1 − s), that maps [0, e1)

onto [0, +∞); and v2(s) ≡ sV ′
2(e2 + s), which maps [0, +∞) onto itself. Since v1(.) is strictly 

increasing, we know that v−1
1 (.) exists. The dynamics of s under perfect foresight can then be 

3 Conversely, the same choice can be expressed as an individual choosing his real money balance st .
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described by the continuous map χ = v−1
1 ◦ v2. The graph of χ is called the offer curve, defined 

as the locus of points representing optimal consumption when young and when old (ct , ct+1), 
given the return on savings Rt+1. Equivalently, the dynamics of the model can be expressed in 
terms of a temporary equilibrium map in prices, given by a continuous map, denoted by G:

Pt = G(P e
t+1) = M

χ(M/P e
t+1)

. (6)

The maps G and χ are topologically equivalent, since describing the dynamics of the model in 
terms of prices is equivalent to describing them in terms of savings.

A perfect-foresight (periodic) equilibrium is a (periodic) sequence of prices that is a solution 
of (6) with P e

t+1 = Pt+1. A perfect-foresight steady state is a fixed point P̄ of the map G, so 
that P̄ = G(P̄ ). A periodic perfect-foresight equilibrium of period k is a sequence (or orbit) of k
prices {P1, P2, ..., Pk}, such that Pj = Gk(Pj ) for j = 1, ..., k, where Gk denotes the kth iterate 
of the map G.4

2.3. Existence of infinitely many perfect-foresight equilibria

There are at most two steady states in this model (Gale, 1973): one monetary steady state, 
where real money balances are strictly positive and the sequence of the returns on savings equals 
unity; and one non-monetary steady state where aggregate savings are zero and individuals con-
sume their endowment every period. In his seminal paper, Grandmont (1985) shows that this 
economy may possess infinitely many perfect-foresight equilibria when the income effect of a 
change in the return on savings R is sufficiently strong, as an increase in R has an ambiguous ef-
fect on consumption when young. These include periodic equilibria of any period, and infinitely 
many chaotic equilibria.5

As is often done in the related OLG literature, we make use of CRRA utility functions for our 
laboratory experiments:

V (c1) = c
1−ρ1
1

1 − ρ1
, V (c2) = c

1−ρ2
2

1 − ρ2
, (7)

where we further assume 0 < ρ1 < 1 and ρ2 > 0. Parameters ρ1 and ρ2 measure the degree of 
relative risk aversion of the young and the old individuals, and play a critical role in the long-run 
dynamics of the economy. Given the characteristics of the model and the further assumption that 
e1 + e2 > 1/e2, Grandmont (1985, Corollary to Proposition 4.4, p. 1023) shows that complex 
dynamics arise as a long-run outcome of the model as soon as ρ2 is high enough. When ρ2 ≤ 1, 
substitution effects dominate, the offer curve is monotonic for all consumption values, and the 
dynamics always converge to the unique monetary steady state. When ρ2 > 1, the offer curve 
becomes non-monotonic. As ρ2 increases further, the offer curve becomes bumpier, and the 
long-run price dynamics increase in complexity owing to an infinite cascade of period-doubling 
bifurcations. For values of ρ2 sufficiently high, the map has infinitely many periodic as well as 
chaotic perfect-foresight equilibria, together with the monetary steady state.

4 Here we take k to be the smallest integer greater than one which satisfies these conditions.
5 Azariadis and Guesnerie (1986) show that if the model has an equilibrium cycle, it also has many sunspot equilibria 

on which expectations may coordinate. As we consider a deterministic environment, we do not address the existence of 
or coordination on sunspot equilibria.
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2.4. Stability of perfect-foresight equilibria under learning

Which of these infinitely many equilibria are stable under learning? Grandmont (1985) distin-
guishes between forward perfect-foresight dynamics (when the map G in (6) is defined according 
to P e

t+1 = Pt+1) and backward perfect-foresight dynamics (when P e
t+1 = Pt−1 in (6)).6 It is 

a well-known result in this literature that equilibria that are (locally) unstable in the forward 
perfect-foresight dynamics are (locally) stable in the backward perfect-foresight dynamics. How-
ever, those two dynamics are largely theoretical outcomes, as forward perfect-foresight dynamics 
can be regarded as the long-run outcome of some learning process, while backward dynamics are 
effectively fictitious to the extent they imply that time flows backwards.7

Grandmont (1985) advocates an expectation formation process that is based on past prices 
(akin to econometric learning), together with mild assumptions on the expectation function, and 
proves that an equilibrium which is stable under backward perfect-foresight dynamics is also 
stable under forward dynamics with learning. Provided that the memory of past prices in the 
expectation function is consistent with the periodicity of such a cycle, any cycle can be learned 
under adaptive learning. In this case, the equilibrium cycle is said to be E-stable (see Evans and 
Honkapohja (2001) for a detailed treatment of this literature).

Fig. 1 reproduces the bifurcation diagram of the backward perfect-foresight dynamics (i.e. un-
der naïve expectations) from Grandmont (1985, p. 1030).8 The long-run outcomes of the model 
are displayed in terms of real money balances (y-axis) for any value of ρ2 > 2 (x-axis). Under 
this calibration, Grandmont (1985, Lemma 4.6, p. 1026) shows that there is at most one peri-
odic equilibrium that is stable under backward perfect-foresight dynamics for each value of ρ2. 
For such an equilibrium of period k, as long as the forecasting rules of the agents are consistent 
with the k−periodicity of this equilibrium, it is equivalently stable under forward dynamics with 
learning and it follows that it is strongly E-stable under recursive learning. All other equilibria 
that may co-exist are either weakly E-stable or E-unstable, but are (locally) stable under forward 
perfect-foresight dynamics. In particular, when there is a cycle of period three, it is well known 
that cycles of any periodicity co-exist with the period-three cycle as equilibrium solutions of the 
system. This occurs, for example, when ρ2 is greater than 13.

For later use, we summarize and compare here the stability conditions obtained in the lit-
erature under different periodic equilibrium-consistent learning schemes. Any period k-cycle 
{P ∗

1 , ..., P ∗
k } (k ≥ 1) of the map G is stable under backward perfect foresight if and only if

| DGk(P ∗
k ) | = |

k∏
i=1

DG(P ∗
i ) |< 1 (8)

where DGk is the derivative of the k-th iterate of G. This condition corresponds to the determi-
nacy condition of any cycle under perfect foresight (see e.g. Guesnerie and Woodford (1991)), 
and is also equivalent to the strong E-stability condition under recursive learning, per Evans and 
Honkapohja (1995, Proposition 3, p. 197). Such a condition is defined as a stability criterion 
which is robust to over-parametrization of the forecasting rules of agents. Conversely, if an equi-
librium is stable only when the agents’ forecasting rule is exactly consistent with its periodicity, it 

6 The forward dynamics may not be globally well-defined. Gardini et al. (2009) characterize the forward perfect-
foresight equilibria as iterated function systems with fractal attractors.

7 A less extreme interpretation of backward perfect-foresight dynamics is that agents have naïve expectations.
8 This uses the same parametrization we employ in our experiments, which is e1 = 2, e2 = 0.5, ρ1 = 0.5.
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Fig. 1. Bifurcation diagram under backward perfect-foresight dynamics in Grandmont (1985, p. 1030). The red ver-
tical lines indicate the five different ρ2 values run in the different treatments of the experiment (see Section 3). (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

is said to be weakly E-stable. The weak E-stability criterion is, unsurprisingly, less stringent, re-
quiring DGk(P ∗

k ) < 1 for k ≤ 2, and − cos(π/k)−k < DGk(P ∗
k ) < 1 for k > 2. When k → +∞, 

this condition is equivalent to strong E-stability.
Guesnerie and Woodford (1991) consider a period-k adaptive expectation scheme with a con-

stant parameter 0 < w < 1:

pe
t+1 = wpt+1−k + (1 − w)pe

t+1−k (9)

This is consistent with a period k ≥ 1 equilibrium, and reduces to backward perfect foresight 
when w = 1 and k = 2. Strong E-stability is a sufficient condition for stability under adaptive 
expectations. The necessary (and sufficient) condition for stability is a complicated function of 
k and w which cannot be solved in closed form for k > 2, but reduces to weak E-stability when 
w → 0, and to strong E-stability when w → 1.

In the special case of a steady state P ∗ (when k = 1), it is stable under rule (9) if and only 
if DG(P ∗) < 1 or DG(P ∗) > 2−w

w
. In the special case of a 2-cycle (when k = 2), its stability 

condition becomes − (2−w)2

w
< DG2(P ∗

1,2) < 1. If we define d ≡ DG2(P ∗
1,2), then a 2-cycle is 

stable under rule (9) if and only if one of the two following conditions holds:

i) d ≤ −1 and w ∈ (0,w), where w = 4 − d − √
d(d − 8)

2
ii) d ∈ (−1,1)

Two other learning mechanisms have been applied to this specific OLG economy, and pre-
dict different outcomes from the ones under adaptive learning. Bullard and Duffy (1998) use an 
heterogeneous agent version of this model with two population groups, in which agents forecast 
prices using evolutionary learning. A genetic algorithm (GA) selects for the lag k to be used in 
forming the next period’s price forecast, such that P e

i,t (t + 1) = Pt−k . Because of this, their algo-
rithm can, in principle, learn high-order cycles. They conduct numerical simulations of the OLG 
economy under the same range of ρ2 values as in Fig. 1, and consistently observe convergence 
either to the monetary steady state or to the 2-cycle (when it exists, which is approximately when 
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ρ2 > 4).9 Their result supports the intuition that agents tend to use simple forecasting rules and 
hence coordinate on simple — in the sense of low-order — equilibria.

The second learning mechanism is the so-called Sample-AutoCorrelation (SAC) learning 
(Hommes and Zhu, 2014), that has been applied by Hommes et al. (2013) to this OLG economy 
with ρ2 = 12, i.e. when the dynamics in the backward perfect foresight is chaotic. SAC learning 
assumes that boundedly rational agents make use of a parsimonious linear AR(1) forecasting 
rule, and update the two parameter values using the observed sample average and first-order 
autocorrelation of past prices. The authors find that only two outcomes – namely, (quick) conver-
gence to the steady state or up-and-down oscillations akin to a ‘noisy’ 2-cycle – emerge as the 
result of such learning process.

As made clear by the above presentation, theory has its limitations in narrowing down the set 
of equilibria in that model. In other words, ‘anything goes’, that is, any equilibrium may be stable 
under some suitable learning process. As Table 1 and the discussion in Section 3.3 will make even 
clearer, the multiplicity issue is not fully eliminated by any learning stability criterion. Even when 
narrowing down the set of learnable equilibria, weakly E-stability or adaptive learning require 
first to discriminate between forecasting rules, as stability then requires agents to use a correctly 
specified learning rule consistent with the exact periodicity of the equilibrium. Therefore, in order 
to test which theories of learning are empirically relevant in this complex OLG environment in 
which multiplicity of equilibria is pervasive, we create and run a laboratory experiment. The 
following section details its design, hypotheses, and implementation.

3. Experimental design

The experiment employs a single-population design along with within-session randomization. 
At the beginning of every experimental session, participants are divided into groups of N =
6 subjects, and each group represents an experimental economy governed by the OLG model 
described in Section 2. Each participant repeatedly plays the role of a ‘professional advisor’ 
working for one young individual in each of the T periods.10 As the role of the old individuals 
in the OLG framework is essentially passive (they just consume the amount of goods that their 
savings can buy), they do not make any strategic decisions, and subjects do not need to advise 
them. Our single-population design is motivated by its close relation to the adaptive learning 
literature, where the learning dynamics follows the intertemporal mapping between expected 
and realized prices in the model. Nonetheless, in Section 6, we show that our results are robust 
to a two-population design that preserves the overlapping generation frictions.

We implement two designs. In one design, called the learning-to-forecast experiment (LtFE), 
subjects’ roles are to submit price forecasts for their respective clients. Based on these forecasts, 
a computer calculates the young individuals’ conditional optimal savings decisions and imple-

9 They also find one 4-period cycle for one simulation at a specific value of ρ2, as well as two cases of non-convergence.
10 Note that the underlying model of the experiment is an infinite-horizon setting, but a constant supply of fiat money 
should be worthless in a finite implementation (see, for instance, Lim et al. (1994)). We choose not to address this issue 
in the LtFEs as subjects do not observe money holdings and focus on their price forecasting task. In the LtO condition, 
addressing this issue would require an additional price setting mechanism for the last period that would considerably 
complicate the design, and result in a larger disconnect with respect to the LtFEs, without obvious benefits. Indeed, cog-
nitive limitations (see e.g. Hirota and Sunder 2007), as well as strategic uncertainty and the lack of common knowledge 
about rationality in a group of heterogeneous participants render unlikely that participants would engage in backward-
induction reasoning over a hundred periods, and make their saving decisions accordingly. Indeed, we never observed 
coordination on very low savings in our experiment.
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ments them. In the other design, called the learning-to-optimize experiment (LtOE), we test the 
robustness of our findings by keeping the environment the same but having subjects directly sub-
mit savings decisions (i.e., having them make forecasts only implicitly). We present both designs 
below.

3.1. The learning-to-forecast experiment (LtFE)

At the beginning of every period/generation t , each subject i = 1, ..., N has to submit a two-
period-ahead price forecast P e

i,t (t + 1) of the price P(t + 1). We assume that every member of 
the young generation then makes the optimal savings decision, conditional on the price forecast 
that he receives from his advisor. Using the CRRA utility functions (7) and combining the first-
order condition (3) with the budget constraint (1), the optimal consumption ci,t of any young 
individual11 is implicitly defined by

ci,t + c
(ρ1/ρ2)
i,t

P e
i,t (t + 1)

Pt

[(ρ2−1)/ρ2]
= e1 + e2

P e
i,t (t + 1)

Pt

(10)

where the market clearing price at time t is given by Pt = M∑N
i=1 si,t

= M

Ne1−∑N
i=1 ci,t

.

In treatments with high ρ2 values, we use a transformation of the map G that governs the 
law of motion of the price. This is because, as ρ2 increases, real money balances tend towards 
the bounds 0 and 2, which produces price ranges that are too large to be easily readable on the 
graph and table shown on subjects’ screens (see Fig. 33 in Appendix I). Therefore, for ρ2 = 12
and ρ2 = 13.5 (see below), we map the subjects’ price forecasts into the actual price values as 
follows

p = H(p̃) = 3.5
p̃
8 − 1 (11)

or, equivalently, as the inverse:

p̃ = H−1(p) = 8 × ln(p + 1)

ln(3.5)
(12)

with p, p̃ ∈ [0, +∞] being the actual value of the price.12 As the map H is one-to-one, G and 
H are topologically equivalent, and the non-linear transformation does not affect the dynamical 
properties of the system.13

Sequence of events In each generation t , once the N subjects have submitted their price fore-
casts, the corresponding level of consumption and savings of each young individual, together 
with the market clearing price P(t), are solved numerically14 and displayed to the subjects. The 
consumption levels of the old individuals and their corresponding lifetime (two-period) utility 
values are determined simultaneously.

The economy then proceeds to the following period t +1, at which point the young individuals 
from t have become old and a new generation of young has been born. The process repeats up 

11 Or, conversely, his optimal real money balance e1 − ci,t .
12 For example, for ρ2 = 12, the transformation maps the two-cycle {4.67, 13451.29} in {11.08, 60.71}.
13 In particular, the number of equilibria and their stability are unaffected, with the slope of any iterate of G and H
being the same at any of their fixed points.
14 As condition (10) does not allow for a closed-form solution of optimal individual consumption levels.
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until period T , which indicates the end of the experiment. Note that for the first period, subjects 
have to submit two price forecasts, for the current period 1 and the next period 2, before the first 
market clearing price P1 can be computed.

Payoff Subjects earn points as a function of their forecast errors. The lower their forecast error, 
the higher their payoff. We use the quadratic payoff function, as in e.g. Bao et al. (2017) (see 
Hommes et al. (2005) for some motivations):

max

(
1300 − 1300

49

(
P e

i,t (t + 1) − Pt+1
)2

,0

)
(13)

in which the payoff is maximal and equal to 1300 points in the case of perfect prediction, and 
equals zero if the prediction error is higher than 7 so as to avoid negative payoff and, together 
with the range of price values in the experiment and the exchange rate used, ensure reasonable 
average payoff levels even in case of rather poor forecasting performances. The timing of the 
payoff is two-periods ahead, as subjects only observe the realized price (and their forecast error) 
at the end of the following period. A table showing the associated payoff value for each possible 
forecast error was provided in the instructions.

3.2. The learning-to-optimize experiment (LtOE)

In the LtOE, we drop the assumption of optimal conditional savings given a price forecast, 
and instead ask the subjects to directly submit the savings decision of the young individual. This 
savings decision may be based on his forecast of the return on savings Pt/P

e
t+1, but we do not ex-

plicitly elicit those forecasts. This is essentially because this design focuses on quantity decisions 
of subjects, and we did not wish to introduce a more demanding cognitive load by combining 
the tasks of forecasting and optimizing (see Bao et al. (2017) for more discussion). However, 
subjects are instructed (see Appendix H) that they face a two-stage decision process, and they 
first may forecast the return on savings, and then choose the corresponding optimal value of sav-
ings using their two-dimensional payoff table (see below). Additionally, visual information (e.g. 
question marks in the table on their screen, see Fig. 33 in Appendix I) indicates the two-period 
ahead nature of the forecast of the return on savings. Quantities that are displayed to the subjects 
are also scaled by a factor of 100, so that they make decisions in the interval between 0 and 
200, and not between 0 and 2. This allows an easier interpretation of the savings task. Because 
the price transformation (11) that we use in the LtFE for high ρ2 values impacts the return on 
savings, we only consider ρ2 = 3, 5 and 8 for the LtOE (see Section 3.3).

Sequence of events At any generation t , once every subject i = 1, ..., N has submitted a savings 
decision si,t for a member of the young generation, the market clearing price for the consumption 
good is given by Pt = M∑N . At the same time, the consumption of the old individuals and their
i=1 si,t
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two-period utility are determined, after which the economy proceeds to period t +1, and so forth 
until period T .15

Payoff Each subject earns a payoff based on the realized lifetime (two-period) utility of the indi-
vidual over his two-period life. As in the LtFE, the timing of the payoff of any savings decision 
is then two periods ahead: a savings decision made for any member of the young generation in 
period t is rewarded at the end of period t + 1, once the consumption when old is revealed. In 
order to implement this payoff scheme in the lab, we use two transformations of the two pe-
riod utility function U (with separable utility functions given by (7)). First, in order to rule out 
negative payoffs, we apply the following transformation of the utility:

ũ = max
(
K × (

U(ci,t , ci,t+1
) + C),0

)
(14)

where the parameters K, C > 0 are chosen to keep the values of the payoff function under LtOE 
in the same order of magnitude as the ones under LtFE, and to ensure that any equilibrium real 
money balances gives rise to a non-zero payoff.16 We use the payoff function (14) for ρ2 = 3, 
when the monetary steady state is the only equilibrium solution of the model (see Subsection 3.3).

Additionally, all periodic equilibria in the OLG are Pareto-optimal but differ in terms of inter-
generational equity (Grandmont, 1985). This means that utility values along cycles, for instance 
along the 2-cycle and at the monetary steady state, may differ. In order to be consistent with the 
LtF design, where subjects’ payoffs are maximized (and identical) along any perfect equilibrium 
path, we apply the following transformation of the payoff function:

û = 1300 ×
(

ũ

1300

)α

(15)

where the scale parameter 1300 is chosen in consistency with the payoff function under LtFE, 
and α is adjusted so that the average payoff along the 2-cycle is of the same order of magnitude as 
the payoff at the steady state. Without this transformation, the monetary steady state would be the 
only payoff-maximizing equilibrium over the two generations in the model, so that coordination 
on the steady state would be ex ante favored. Such a result is not a very useful one for our 
purposes. When ρ2 = 5 and 8 (see Subsection 3.3), the payoff of any given savings decision st is 
given by (15).

Similarly to the LtFE, the instructions given to the subjects included a two-dimensional payoff 
table that reported the expected payoff to savings decisions for given (expected) values of the 
return on savings (see Appendix H). The optimal savings decisions conditional on each expected 
return on savings then correspond to the consumers’ offer curve, the shape of which is unaffected 
by the transformations of the utility functions that we have considered.

15 We also initialize the price P0 so that subjects can observe a value of the return on savings right from period 1, after 
having submitted their first savings decision, i.e. P0

P1
. This is to avoid that subjects have to submit two savings decisions 

in a row without seeing the first realization of the return on savings. In this case, pilot sessions indicate that they would 
have no reason to change their decisions, and the first two realizations of aggregate savings would be similar, and so 
would the first two realizations of the price. The first realization of the return on savings would then be close to one, 
artificially driving the experimental economies towards the steady state. We chose the initial values P0 (specifically 50
for ρ2 = 3,5 and 10 for ρ2 = 8, see below) i) to be consistent with the initial price ranges given in the LtFE, and ii) 
in order for the first return to be sufficiently different from unity, but not too extreme, so that the plots on the subjects’ 
screen remain readable.
16 See Marimon et al. (1993) for a similar transformation of the utility function.
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3.3. Treatments and hypotheses

We adopt the calibration used in Section 2: e1 = 2, e2 = 0.5, ρ1 = 0.5. We then vary the 
parameter ρ2 to define different treatments with increasingly complex equilibrium outcomes.17

The first hypothesis that we aim to test by bringing this OLG economy to the lab is whether or 
not coordination of a group of subjects with heterogeneous beliefs may happen at all as the result 
of repeated market interactions in such a complex environment.

Hypothesis 1 (Selection of an equilibrium). Subjects coordinate their forecasts so that the re-
sulting market price converges towards a perfect-foresight equilibrium of the underlying model.

Given the cost of lab implementation, we can only investigate a few cases, and consider five 
treatments representing a variety of typical cases in non-linear dynamics: (i) a stable steady state 
(ρ2 = 3), (ii) a stable 2-cycle (ρ2 = 5), (iii) chaos with (unstable) 2k cycles (ρ2 = 8), (iv) chaos, 
with unstable cycles of any periodicity but three (ρ2 = 12), and (v) a stable 3-cycle and unstable 
cycles of any periodicity (ρ2 = 13.5). Furthermore, they are distinct enough from the bifurcation 
values to ensure clear-cut illustrations of those dynamics (see Fig. 1). Additionally, the case 
ρ2 = 8 lies after but close to the limiting value of the cascade of period-doubling bifurcation 
route to chaos, so as to imply a wide range of existing equilibria along which price equilibrium 
values are within a range to be also implemented in the LtOE. Table 1 summarizes the stable 
equilibria under different learning theories from the literature (discussed in Section 2.4) for each 
of these five treatments.

Let us first consider E-stability. Recall that strong E-stability corresponds to stability under 
backward perfect foresight, which is the inverse of stability in the forward perfect-foresight dy-
namics. For ρ2 = 3, the monetary steady state is strongly E-stable, and the map G does not have 
any other equilibrium.18 For ρ2 = 5, the period-two cycle is the only strongly E-stable outcome, 
and the monetary steady state is weakly E-stable. For ρ2 = 8, the map G has no strongly E-stable 
cycle; the monetary steady state, the 2-cycle, and the 4-cycle are the only (weakly) E-stable equi-
libria. All other existing equilibrium cycles (i.e. those with periodicities which are multiples of 
2k , k ≥ 3) are E-unstable.

For ρ2 = 12 and ρ2 = 13.5, the map G has chaotic dynamics with infinitely many periodic 
cycles19 and chaotic orbits, along with the monetary steady state. When ρ2 = 12, none of those 
equilibrium cycles are strongly E-stable, while only the steady state and the 2-cycle are weakly 
E-stable. When ρ2 = 13.5, the only strongly E-stable outcome is a period-three cycle, while the 
steady state and the 2-cycle are the only weakly E-stable equilibria.

The stability of an equilibrium k−cycle under the adaptive expectation rule (9) (conditional 
on the rule being consistent with periodicity k) depends on the weight w given to prices from 
the period t + 1 − k. Under a second order rule, only the steady state and the 2-cycle can be 
selected. Moreover, cycles of period 2k are created by period-doubling bifurcations, so that the 

17 The implementation of the OLG model in the lab rules out the possibility of chaotic dynamics, as price values are 
rounded to two digits on subjects’ screens, and it becomes impossible to construct a bounded path that never repeats any 
past value. However, it still leaves room for high order cycles.
18 In the lab, price forecasts are bounded, and the autarkic steady state in which agents only consume their endowment 
and do not save at all is not feasible. Similarly, when submitting savings decisions, subjects cannot submit a savings 
decision of zero, so the price level is always defined and the monetary steady state is the only feasible steady state.
19 For all periodicities but three for ρ2 = 12, and including three for ρ2 = 13.5.
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Table 1
Summary of the stability of equilibria under theoretical learning predictions in the five treatments for different ρ2-valu

Expectations homogeneous

forward backward strong weak adaptive
perfect foresight E-stability expectations

Grandmont 
(1985)

Evans and Honkapohja 
(1995)

Guesnerie and Woodfor
(1991)

ρ2 = 3 none SS SS SS SS

ρ2 = 5 SS 2-cycle 2-cycle SS
2-cycle

SS
2-cycle ∀w

ρ2 = 8 2k-cycles none none SS
2-cycle
4-cycle

SS
2-cycle
(if w < 0.8)
2k-cycles (k > 1)
(if w low enough)

ρ2 = 12 all cycles
(period �= 3)

none none SS
2-cycle

SS
2-cycle
(if w < 0.61)
any cycle (k �= 3,
if w low enough)

ρ2 = 13.5 all cycles
(period �= 3)

3-cycle 3-cycle SS
2-cycle
3-cycle

SS
2-cycle
(if w < 0.57)
3-cycle ∀w

any cycle k > 3
(if w low enough)

Notes: SS stands for the monetary Steady State, SAC learning for Sample AutoCorrelation learning, GA for Gen
expectations is conditional on agents using an adaptive rule consistent with the cycle’s periodicity. Results under GA
highlight in bold the predictions which are supported by our experimental evidence (see Section 4).
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derivative of the second iterate of the map G, DG2(P ∗
1,2) at the 2-cycle is always negative. For 

ρ2 = 5, since the 2-cycle is strongly E-stable — which is equivalent to DG2(P ∗
1,2) ∈ (−1, 0) — 

the 2-cycle is stable for any w value. When ρ2 = 8, 12 or 13.5, we have DG2(P ∗
1,2) < −1. Given 

our calibration, the stability thresholds w are as follows:

w 
⎧⎨
⎩

0.8 when ρ2 = 8
0.61 when ρ2 = 12
0.57 when ρ2 = 13.5

The increasing complexity of the model dynamics under these five treatments aims to test the 
following hypothesis:

Hypothesis 2 (Selection of simple equilibria). Coordination on higher-order cycles or compli-
cated dynamics, if any exist, is less likely than coordination on simple equilibria, such as a steady 
state or a cycle of low periodicity.

Previous results in LtFEs (albeit in much simpler linear environments) have documented the 
use of simple forecasting rules that involve past information with only a few lags (typically one 
or two). If this is true here as well, the learning theories reviewed in Section 4 predict that the 
resulting selected equilibrium should be a lower-order cycle (or even the steady state). This is 
supported by findings from cognitive psychology, in which the sequence-learning literature con-
cludes that humans are only good at learning patterns of up to a handful of prior observations (see 
Spiliopoulos (2012) and the references therein). Forecasting can be viewed as akin to sequence 
prediction, where a period k-cycle is akin to a pattern of length k; under such an assumption, 
subjects are also more likely to coordinate on lower-order cycles.

Consequently, this prediction arises at least in part from the limits of subjects’ memories and 
cognitive capacities. This would suggest the use of higher-order adaptive rules to be an unlikely 
occurrence. Conversely, the relative naïvety needed to sustain complex dynamics could result in 
higher forecasting errors than would otherwise be the case, leading to a conscious decision to 
aim for more elaborated forecasting rules.

Finally, we use the LtOE to assess the robustness of our hypothesis testing procedure with 
respect to the experimental task.

Hypothesis 3 (Robustness to a learning-to-optimize procedure). The coordination pattern and 
resulting equilibria (if any) selected in the learning-to-forecast experiments are also observed in 
the learning-to-optimize experiments.

The robustness of our results to a LtO design is an interesting and relevant exercise because, 
with very few exceptions (see, e.g., Evans and McGough (2018)), the learning literature is en-
tirely focused on the expectations component of dynamic macroeconomic models. This treats 
the process of optimal decision making conditional on such expectations as a trivial one. In real-
ity, however, agents have to make economic decisions based on implicit forecasts and therefore 
effectively employ a two-step decision process.

As such, we treat the robustness to LtO design of predictions drawn from learning theories as 
a matter of empirical concern. Previous experimental evidence does suggest that optimizing is 
a more complicated task than forecasting, and generates noisier aggregate outcomes as a result 
(see the trial sessions discussed in Marimon et al. (1993) in an OLG model; see Bao et al. (2013, 
2017) in, respectively, a cobweb and an asset-pricing model). Our experimental environment is 
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Table 2
Summary of the baseline experimental treatments and designs.

ρ2 3 5 8 12 13.5
Equilibrium values

s∗ 0.562 0.5387 0.5246 0.5166 0.5148
P ∗ 17.78 8.91 0.72 17.1 16.208
{s∗

1 , s∗
2 } NA {1.1823,0.1203} {1.4614,0.0094} {0.0001,1.4981} {0.0002,1.497}

{P ∗
1 ,P ∗

2 } NA {4.06,39.9} {0.26,40.39} {11.0835,60.71} {10.288,66.5}
LtFE

Nb. of periods 50 100 100 100 100
Nb. of groups 4 4 4 4 4
Exchange rate 0.00027 (1300 points = 0.35E)
Maximum payoff 1300 points (0.35E) per period on any perfect foresight equilibrium

LtOE
Nb. of periods 100 100 100
Nb. of groups 4 4 4
Initial price P0 50 50 15
Exchange rate 0.00045 0.00039

Parameters of the payoff function
C 0 1 15.25
K 500 350.5 71.92
α NA 4 25
Payoff on the 
SS

975 723 639
(0.44E) (0.28E) (0.26E)

Payoff on the 
2-cycle

NA 40+1310
2 = 675 15+1301

2 = 658
(0.26E) (0.27E)

Notes: The equilibrium price values for ρ2 = 12 and 13.5 in the LtFE correspond to the transformed values given by 
Equation (11). The exchange rate between experimental currency and euros is higher in the LtOE than in the LtFE in 
order to ensure comparable earnings for subjects with respect to the relative length of the experimental sessions. The 
initial price in the LtFE is determined by the first submitted forecasts due to the two-period ahead structure. In the LtOE, 
it has to be initialized to determine the first return on savings in the end of period 1. SS stands for Steady State. The 
parameters of the payoff function in the LtOE correspond to Equations (14) and (15).

more complicated than those in related studies, and none of them explicitly examines equilib-
rium selection in a setting with multiple potential equilibria (let alone in the presence of complex 
dynamics). How the outcomes of our LtFE differ from those in a LtOE in such a complex envi-
ronment is then an open question.

3.4. Implementation

The experiment was programmed in Java using the software package PET20 and was run at 
the CREED laboratory at the University of Amsterdam over the periods of November–December 
2014, February–May 2015 and April-June, 2018. A total of 192 subjects were recruited from 
the CREED subject pool21 to participate in the 32 baseline experimental economies of N =
6 subjects each. Table 2 reports the main features of these different treatments and designs, 
along with the equilibrium values of prices and savings at the monetary steady state and on 

20 The PET software was developed by AITIA, Budapest under the FP 7 European project CRISIS, Grant Agreement 
No. 288501. It is available at http://www.aitia .ai /en /web /iaws /downloads.
21 The CREED subject pool is composed of students from all fields, and includes both undergraduates and graduates.

http://www.aitia.ai/en/web/iaws/downloads
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the perfect-foresight 2-cycle. We ran 4 economies (groups of 6) per treatment, for a total of 20
LtF economies and 120 subjects, and 12 LtO economies and 72 subjects for each of the values 
ρ2 = {3, 5, 8}. Each experimental economy with ρ2 = 3 was run for T = 50 generations/periods, 
as pilot observations indicated a very quick stabilization in the LtFE, and we ran all the other 
treatments for T = 100 periods.

The computer interfaces of the LtFE and the LtOE are provided in Appendix I, while the 
instructions, payoff tables, and questionnaires are contained in Appendix G for the LtFE and 
Appendix H for the LtOE. Subjects received a detailed description of the OLG environment 
underlying the experiment, along with their experimental task and their payoff. Following Mari-
mon et al. (1993), we refer to the consumption good as ‘chips’. The participants were given the 
opportunity to read the instructions at their own pace, and were then asked to fill in a quiz on 
paper. The instructors then checked that each individual subject was able to correctly answer all 
of the questions. If an incorrect answer had been given, the experimenter privately explained to 
the participant what the correct one was. Only when all participants had answered every question 
correctly was the experiment started.

This procedure allows us to be reasonably certain that every subject understood both the eco-
nomic environment underlying the experiment and his experimental task (in particular, the use of 
the two-dimensional payoff table in the LtOE) before entering the experimental economy. Par-
ticipants’ payoffs were expressed in points, which were converted into euros at the end of the 
experiment at an exchange rate given in the instructions; mean participant earnings came out to 
23.6 euros. Each experimental session lasted around 2 hours on average, including an average 
of 40 minutes to complete the instructions and questionnaire. These times, however, exhibited 
strong disparities across treatments (see below for details).

4. Experimental results

Do subjects achieve coordination on a perfect-foresight equilibrium in this complex envi-
ronment with a pervasive multiplicity of equilibria? and if yes, which one do they select? The 
qualitative features of our experimental results, summarized in Figs. 2-6, together with the quan-
titative measures in Table 3 hereafter, provide clear-cut answers to these questions.

The figures display the observed aggregate saving levels (the real money balances) in the 20
groups of the LtFEs and the 12 groups of the LtOEs respectively (with one graph per ρ2-value 
treatment, and one line per group). For all 32 experimental economies separately, the dynamics 
of the individual price forecasts or saving decisions together with the realized price or savings 
are reported in the figures in Appendices A and B.

Table 3 quantifies these experimental outcomes for each group along five dimensions, that we 
successively detail in the sections below. The first three dimensions – namely i) the type of equi-
librium selected, ii) the average relative distance of the price to equilibrium (ARDE, in absolute 
value and percentage points), and (iii) the first-order autocorrelation ρs of aggregate savings, are 
used in Section 4.1 along with Figs. 2-6 to characterize aggregate behavior and price conver-
gence. In Section 4.2, we then discuss the coordination of individual saving decisions using the 
average relative standard deviation (denoted by σ(si)/μsi ) of individual saving decisions among 
the six subjects. Finally, in Section 4.3, we investigate the efficiency of the subjects’ decisions in 
terms of earnings using the earnings efficiency ratio (EER ), i.e. the ratio (in percentage points) 
of realized payoffs during the whole experiment to the maximum amount of points possible in 
equilibrium.
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Fig. 2. Real money balances time series for ρ2 = 3. Note: The dashed red line corresponds to the monetary steady state.

Fig. 3. Real money balances time series for ρ2 = 5. Note: The lower and upper blue dotted lines correspond to the 
perfect-foresight 2-cycle, the middle dashed red line to the monetary steady state.

4.1. Convergence of aggregate behavior

Figs. 2-6 already illustrate the first three main findings from the experiment. We start by 
highlighting them before providing formal support. First, in line with Hypothesis 1:

Finding 1 (Systematic equilibrium selection). In all LtF experimental economies, the price (or, 
equivalently, aggregate savings) converges towards a perfect-foresight equilibrium.

Convergence by the sole force of repeated market interactions already constitutes a remarkable 
feature of our experiment since spontaneous, systematic equilibrium selection was not assured, 
a priori, in such a complex experimental environment given (initially) heterogeneous beliefs.

Second, in line with Hypothesis 2:
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Fig. 4. Real money balances time series for ρ2 = 8. Note: See Fig. 3.

Fig. 5. Real money balances time series for ρ2 = 12. Note: See Fig. 3.

Fig. 6. Real money balances time series for ρ2 = 13.5. Note: See Fig. 3.
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Table 3
Summary statistics of the baseline experimental economies.

Group 1 2 3 4 1 2 3 4
ρ2 = 3
LtFE LtOE

Equilibrium SS SS SS SS SS SS SS SS
ARDE 0.01 0.17 0.12 0.03 4.13 12.48 6.26 6.76
ρs −0.17 −0.07 −0.13 −0.37 0.39 −0.51 0.55 0.31
σ(si )/μsi 0.05 1.39 0.54 0.13 11.71 32.68 13.55 15.68
EER 95.6 95.3 91 94.6 97.2 95.3 96.6 95.6

ρ2 = 5
LtFE LtOE

Equilibrium 2-cycle 2-cycle 2-cycle SS SS SS SS SS
ARDE 10.19 12.44 7.99 0.09 3.13 4.24 3.96 7.16
ρs −0.98 −0.94 −0.94 −0.33 0.18 0.65 −0.03 −0.72
σ(si )/μsi 7.78 8.82 0.37 0.00 5.91 12.6 8.57 11.09
EER 81.8 69.2 83.9 96.8 98.1 92.4 94.1 91.3

ρ2 = 8
LtFE LtOE

Equilibrium 2-cycle 2-cycle 2-cycle SS SS SS SS SS
ARDE 3.31 19.23 5.85 46.75 3.89 6.18 4.74 6.82
ρs −0.95 −0.95 −0.96 −0.87 −0.17 −0.28 0.58 0.17
σ(si )/μsi 2.42 14.8 10.22 19.7 10.43 8.79 1.8 18.45
EER 77.9 87.9 80.4 98 93.4 88.5 81.1 96.5

ρ2 = 12 (LtFE only) ρ2 = 13.5 (LtFE only)
Equilibrium 2-cycle 2-cycle 2-cycle 2-cycle 2-cycle 2-cycle 2-cycle 2-cycle
ARDE 7.03 1 0.48 0.47 2.24 1.58 0.78 0.5
ρs −0.93 −0.96 −0.96 −0.97 −0.95 −0.97 −0.96 −0.96
σ(si )/μsi 22.54 11.32 2.92 2.06 7.38 7.1 4.8 2.3
EER 54.3 62 69.4 73.1 55.9 64.6 68.4 88.3
Notes: For each experimental group the table reports: the selected equilibrium (SS stands for Steady State); ARDE mea-
sures the Average Relative Distance of the price to this Equilibrium (in absolute value and percentage points) over the 
last 25 periods of each group– for instance, if the ARDE is 10, aggregate prices are on average 10% away from their 
equilibrium value over the last 25 periods; σ(si )/μsi is the relative standard deviation of savings (in percentage points) 
among the N subjects, averaged over the last 25 periods (in the LtFEs, we compute this quantity from the savings de-
cisions implied by the price forecasts of the subjects); ρs is the first-order autocorrelation of aggregate savings over the 
last 25 periods; EER stands for Earnings Efficiency Ratio, expressed in percentage points, and measures the number of 
points on average earned by the subjects over the whole periods of the experiments w.r.t. the maximum amount of points 
possible in equilibrium.

Finding 2 (Characterization of the selected equilibria). In all LtF experimental economies, the 
price converges towards either the monetary steady state or the 2-cycle.

Phrased differently, we do not observe any chaotic long-run dynamics or cycles of period three 
or higher periods, but we do witness cycles of two periods in addition to the steady state. We shall 
stress the novelty of this result: our experiment is the first to observe spontaneous coordination 
on a 2-cycle without the use of any training phase or signals akin to sunspots.

Third, Finding 3 provides some insight into the outcomes in the 12 LtOEs (see Figs. 2b, 3b 
and 4b:
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Finding 3 (Robustness to LtOE). In the LtOE, the monetary steady state is the only selected 
perfect-foresight equilibrium.

We now support these three findings by quantitative measures from Table 3. To compute those 
measures, we use the last 25 periods of each experimental economy to discard occasionally long 
out-of-equilibrium transient phases, while considering enough data points not to overweigh the 
effects of temporary individual deviations. We primarily use the ARDE to assess convergence to 
an equilibrium: an ARDE ε means that the average relative distance of the price to that equilib-
rium over the last 25 periods is ε%. Hence, the lower this number (in percentage points), the more 
accurate the convergence to the corresponding equilibrium. The selected equilibrium reported in 
Table 3 for each economy is the one that returns the lowest ARDE.

Although somewhat arbitrary, a formal definition of convergence may help summarize our 
results. For instance, one could define convergence as 10%-convergence, which would be 
satisfied for 27 out of the 32 economies. Three out of the remaining five still lie within a 
12.5%-neighborhood, which can be considered as near-equilibrium behavior (the ARDE for 
those groups are 10.19, 12.44 and 12.48%). The last two groups (with ARDE-values 19.23 and 
46.75%) deserve a closer look before being classified. As we detail below, they in fact correspond 
to a case of slow convergence to a 2-cycle, and a ‘noisy’ steady state.

Let us first detail the outcomes from the 20 LtFEs for the five different ρ2-values (see Fig. 2a, 
3a, 4a, 5a and 6a). When ρ2 = 3, the steady state is the only perfect-foresight equilibrium and 
it is stable.22 Unsurprisingly, the corresponding four experimental economies very quickly and 
almost perfectly converge to the steady state, as testified by ARDE values below 0.5% in all four 
economies.

In the 16 LtF economies with multiple perfect-foresight equilibria, we only observe two 
instances of convergence to the unstable steady state. In the first case (ρ2 = 5, Group 4), con-
vergence occurs quickly and is almost perfect (ARDE = 0.09%). The second case (ρ2 = 8, 
Group 4) corresponds to the instance of ‘noisy’ convergence mentioned above, as the price os-
cillates around the steady state with strong negative autocorrelation (ρs = −0.87).23

The remaining 14 economies converge towards the 2-cycle, with first-order autocorrelation 
of aggregate time series close to -1 (≈ −0.95) regardless of whether the 2-cycle is stable (when 
ρ2 = 5) or unstable (for higher values of ρ2). Convergence is accurate, as quantified by low 
ARDE values (less than 3.3% in 8 economies; less than 8% in 11 economies). This is especially 
the case in the eight economies of the strongly unstable treatments (ρ2 = 12 and 13.5), where the 
only selected equilibrium is the (unstable) 2-cycle and convergence is near-perfect for 7 out of 8
groups (the corresponding ARDE values are at most 2.25%).

These results seem to suggest that the more unstable the steady state, the more likely the se-
lection of the 2-cycle, whether stable or not. Admittedly, group experiments can only provide 
a small number of data points but, bearing in mind this inherent limitation of the method, our 
experimental results provide a clear-cut picture of equilibrium selection in this complex environ-
ment.

22 Hereafter, we refer to a stable equilibrium as stable in the backward perfect-foresight dynamics as depicted in Fig. 1, 
which also corresponds to stability under naïve expectations and to strong E-stability (see Section 2). Similarly, by ‘more 
unstable’, we mean a higher (in absolute terms) value of the slope of the derivative of the map G at this equilibrium.
23 In fact, the rather high ARDE value of 47.75% is partly due to the particularly low price steady state value in this 
treatment – 0.72 – but the price in this group constantly oscillates between a minimum of 0.3 and a maximum of 1.58, 
with a close-to-equilibrium average of 0.76.
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Furthermore, we observe from the figures that convergence to the 2-cycle itself sometimes 
only happens after a long transition: 6 of the observed groups took at least 50 periods to do so, 
see Groups 1 and 4 in the ρ2 = 12 treatment, Groups 1, 2, and 3 in the ρ2 = 13.5 treatment and 
Group 2 in the ρ2 = 8 treatment. This latter group is the instance of particularly long conver-
gence mentioned previously: the ARDE over the last 25 periods is the largest among the 2-cycles 
(19.23%) because convergence occurs only in the last 10 periods – if computed only over the last 
10 periods, the ARDE drops to 8.58%, and even to 2.04% over the last 5 periods.

One may wonder whether there is any statistical difference in the goodness of convergence 
between the two outcomes, a steady state or a 2-cycle. To do so, Fig. 7a reports the cumula-
tive distribution of the ARDE values of each experimental economy. Hence, each dot or triangle 
represents one ARDE value from Table 3. Following the distinction established in Table 3, we 
separate the LtF economies that converge to the steady state from those that converge to the 
2-cycle. A K-S test leads us to reject the null hypothesis that these economies have equal distri-
butions of this distance value, in favor of the alternative hypothesis that economies converging to 
the steady state have lower average distance (p-value = 0.009).24 We therefore conclude that in 
the LtFE aggregate convergence is significantly better when the dynamics converge towards the 
steady state than when they converge towards the 2-cycle.

We next take a closer look at the 12 LtOEs. The ARDE values support the visual impression 
conveyed by Figs. 2b, 3b and 4b that all economies in the LtO condition converge towards the 
steady state: 6 out of 12 economies display an ARDE below 5%; all but one below 7.16% and 
only one (ρ2 = 3, Group 2) converges in a neighborhood slightly larger than 10% (12.48%).

Yet, the convergence on the steady state in the LtOE seems somewhat weaker than in the 
LtF treatment. While the experimental economies converge almost perfectly to the steady state 
in the LtFE (with ARDE values typically lower than 0.5%), they only converge to a (close) 
neighborhood of the steady state in the LtOE (with ARDE values typically below 7%). This 
difference is also notable from a visual inspection of Fig. 2b, 3b and 4b25: the LtOEs appear 
to experience more price volatility than do the LtFEs. A K-S test on the distributions of the 
ARDE values (that are also displayed in Fig. 7a) reveals that this visual impression is statistically 
significant (the p-value of the unilateral K-S test is 0.004).

We conclude that, even though all LtO groups select the steady state, convergence is sig-
nificantly better in the LtFEs that do so. Section 6.1 below develops additional elements of 
discussion on the absence of 2-cycle equilibrium in the LtO condition, in contrast to the LtF 
condition.

To summarize so far, taking the LtO and the LtF treatments together, more than half of the 
economies (19 our of 32) converge within a 5%-neighborhood of this equilibrium, all but 5
converge within 10% of this equilibrium and all but 2 are still within 12.5%, which we can define 
as near-equilibrium behavior. The two remaining economies correspond to a case of particularly 
slow but successful convergence to a 2-cycle, and a ‘noisy’ convergence to the steady state. 
Therefore, we conclude that, in this complex lab environment, only simple equilibria, namely the 
monetary steady state or the 2-cycle, are selected as coordination devices, and may, accordingly, 
be viewed as empirically most relevant.

Before, turning to individual participants’ data, we conclude the discussion of the aggregate 
convergence outcomes in light of learning predictions summarized in Table 1. In order to give 

24 We use K-S tests throughout the analysis, but the results are robust to the use of Wilcoxon rank sum tests instead.
25 To see that, compare in particular Figs. 2a and 2b when ρ2 = 3 and the monetary steady state is both stable and the 
only available equilibrium. See also the figures reported in Appendices A and B.
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Fig. 7. Cumulative distributions of experimental statistics. Note: Each point on the three graphs represents the numbers 
given in, respectively, row 2, 4 and 5 of Table 3: the ARDE and the relative standard deviation (RSD) of individual savings 
are averaged over the last 25 periods of each economy and the Earning Efficiency Ratios over the whole experiment. 
We separate the LtF economies that converge to the steady state from those that converge to the 2-cycle, and the LtO 
economies according to the classification established in Table 3.

an accurate prediction of the experimental results, a learning selection device should pick up the 
steady state or the 2-cycle as a stable outcome of the learning dynamics. In that respect, the first 
striking observation is that none of the reviewed learning theory exactly predicts the equilibrium 
selection in our experiment. The GA learning yields the closest predictions but we do not observe 
any coordination on the steady state when the complexity of the model increases (increasing 
ρ2-values), while the study by Bullard and Duffy (1998) does. Furthermore, neither backward 
nor forward perfect-foresight dynamics can predict the outcomes in the experimental economies. 
The two observed outcomes – the steady state and the 2-cycle – are not strongly E-stable (except 
when ρ2 = 3 for the steady state, and when ρ2 = 5 for the 2-cycle), they are only weakly E-stable
in all treatments. Hence, the criterion of weak E-stability appears as a necessary condition for an 
equilibrium to be selected in our experiments, but it is not a sufficient condition: indeed, not all 
weakly E-stable cycles are observed in our experiments; the 4-cycle when ρ2 = 8 and the 3-cycle 
when ρ2 = 13.5 are never selected (see again Table 1).

Selection of the monetary steady state or the 2-cycle regardless of their E-stability makes a 
clear case for simple forecasting rules, involving — at most — information from period t − 1 on. 
Indeed, from Table 1, convergence to the 2-cycle or the steady state is only predicted if subjects 
use some appropriately-weighted second-order adaptive rule or econometric learning based on 
AR(1) rules. These types of forecasting rules are more sophisticated than naïve expectations, 
but simpler than higher-order adaptive processes. Section 5 below discusses this point in greater 
detail based on subject-level data series, which also supports Hypothesis 2. Together, these ob-
servations give us Finding 4:

Finding 4 (Learning predictions versus experimental observations). In light of the experimental 
data,

(a) No learning criterion exactly predicts our experimental outcomes.
(b) Weak E-stability is a necessary but non-sufficient condition for an equilibrium to be selected.
(c) The criterion of strong E-stability does not predict the selected equilibria.
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(d) The selected equilibria are consistent with adaptive or learning rules using only information 
from period t − 1 (second-order adaptive rules).

(e) In the LtOE, the monetary steady state is the selected perfect-foresight equilibrium, regard-
less of its stability under learning.

4.2. Coordination between individual decisions

The previous subsection has shown that aggregate savings in both the LtFEs and LtOEs con-
verge to simple equilibria, but does this imply that individual decisions are coordinated on these 
equilibrium values or does some degree of heterogeneity remain? A simple and intuitive measure 
of individual coordination is the relative standard deviation of (implied) individual savings de-
cisions, σ(si)/μsi . The smaller this number, the lower heterogeneity and therefore the stronger 
coordination between individual decisions. Table 3 reports the average over the last 25 periods of 
this value for each experimental economy. Fig. 7b also plots the cumulative distributions of those 
values (each dot or triangle being a value reported in Table 3), by distinguishing between LtFEs 
converging to the steady state, LtFEs converging to the 2-cycle, and the LtOEs (all converging to 
the steady state). Our main results can be summarized as follows:

Finding 5 (Coordination between individual decision).

(a) Subjects coordinate their forecasts better on the steady state than on the 2-cycle.
(b) Subjects coordinate their forecasts better than they coordinate their savings decisions.

Let us start by the LtFE converging to the steady state: the individual coordination is almost 
perfect, with heterogeneity less than 1.39% in 5 out of 6 groups; only in the ‘noisy’ converging 
group (ρ2 = 8, group 4) heterogeneity is somewhat larger (19.7%). For the 14 LtF economies 
converging to the 2-cycle, more individual heterogeneity is observed, but overall individual co-
ordination is still rather high, with relative standard deviations less than 5% for 6 out of 14, and 
less than 10% for 10 out of 14 economies, and only one case (Group 1, ρ2 = 12) slightly larger 
than 20%. As is the case with the previous subsection, in the LtFEs, we find that subjects coordi-
nate significantly better on the steady state than on the 2-cycle: the K-S test with the alternative 
hypothesis that standard deviations are lower in the steady state than on the 2-cycle decisively 
rejects its null hypothesis with a p-value of 0.0076.

The better coordination on the steady state as compared to the 2-cycle can be at least partly 
explained by subjects’ mistakes when entering their decisions in the experimental software. In-
tuitively, the likelihood of making mistakes when entering price predictions should be higher 
when alternating between high and low forecasts than when entering a constant number. Sev-
eral subjects indeed reported in their post-experiment questionnaires that they had made typos.26

However, the 2-cycle appears to be a long-run outcome that is robust against individual devia-
tions; even when it is temporarily ‘disturbed’ after a subject’s individual mistake, the dynamics 
settle back down to the 2-cycle after a few periods.

26 For instance, in Group 1 of the LtFE with ρ2 = 5.
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As for the comparison between LtF and LtOEs, Fig. 7b contrasts the coordination between 
subjects in the LtFE converging to the steady state versus those in the LtOE. We find that the 
LtOEs display more heterogeneity between subjects than do the LtFEs.27

More homogeneous price predictions as opposed to savings decisions may be explained by 
two phenomena. First, we observe a bias towards round numbers in the LtOE. Recall that sub-
jects make savings decisions with the help of a two-dimensional payoff matrix in which the 
savings decisions are discretized, but that the instructions insist on the fact that they can submit 
any number (up to two decimal places). We find that, overall, 60% of the savings decisions are 
multiples of 5 (50, 55, 60, etc.), and 47% are multiples of 10 (50, 60, etc.). This is unlikely to 
result from the numbers used in the payoff table; pilot sessions using a table in A3-format with 
a finer grid report the same type of decisions. By contrast, only 36% of price predictions are 
integer values, and most of these at the beginning of the experiment (when subjects have less 
historical information). This tendency to submit round numbers may be a consequence of payoff 
values being less sensitive to decision accuracy near the steady-state under the LtOE than under 
the LtFE (see payoff tables in Appendix H). With flatter payoff values, the LtOE subjects have 
less of a monetary incentive to refine their savings decisions.

A second explanation for the more heterogeneous savings decisions as compared to price 
predictions could be strategic behavior by certain subjects. Five subjects reported in the post-
experiment questionnaire that they intentionally deviated from the average savings values in 
their group in an attempt to manipulate the return on savings. This is the case, for instance, in 
Group 2 with ρ2 = 3: one subject reported that he/she made occasionally high savings decisions 
in an attempt to decrease the price. In doing so, they sought to increase the return on savings so 
as to reach the payoff-maximizing region of the payoff table, even though those attempts resulted 
in payoff losses. We now take a closer look at the participants’ earnings.

4.3. Participants’ earnings

In order to evaluate the efficiency of the participants in performing their experimental task, 
we make use of the earnings efficiency ratio (EER). In a given period of the LtFE, making a 
perfect prediction yields a maximum payoff of 1300 points — an amount which declines as the 
absolute error increases. In the LtOE, the maximum points are given by the transformed values 
of the utility function on the payoff table.

Table 3 returns the EER for each experimental economy and Fig. 7c reports the cumulative 
distributions of those values in the experiments. We see that the LtFEs converging to steady state 
as well as the LtOEs (all converging to steady state) yield very high numbers for efficiency, 
almost always larger than 90% or even 95%. By contrast, the LtFEs converging to the 2-cycle 
display lower efficiency rates, around 80% for ρ2 = 5 and ρ2 = 8 and even lower values – around 
60% for ρ2 = 12 and ρ2 = 13.5. These differences are statistically significant: the ratios are 
significantly higher in the case of convergence to the steady state than of convergence to the 
2-cycle.28

This result is easily explained by the convergence times recorded in the experiments: con-
vergence is much quicker towards the steady state than towards the 2-cycle, reflected in the 

27 The corresponding p-value of the one-sided K-S test is 0.0039. For the sake of completeness, we also compare the 
individual coordination of the LtFE converging to a 2-cycle to the LtOE converging to a steady state. A K-S test does not 
reject the null hypothesis that these economies display similar levels of heterogeneity (p-value of 0.0733).
28 The corresponding p-value of the one-sided K-S test is 0.0002.
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long transition periods observed when ρ2 = 8, 12 or 13.5. Once at the steady state, the de-
terministic structure of the model stabilizes price dynamics, and subjects easily make perfect 
(payoff-maximizing) forecasts.

As it happens, efficiency ratios do not differ significantly between the steady state LtFEs 
and the LtOEs.29 In the LtOEs, all economies converge to the steady state, around which utility 
is less sensitive to individual decisions (essentially for savings values between 0.5 and 0.6). 
Utility in the LtOEs therefore tends to be nearly maximized despite some heterogeneity and 
small persistent deviations from the optimal savings decision.

By contrast, along the transition phases towards the 2-cycle in the LtFEs, price values oscillate 
in an irregular manner without any clear pattern (see, e.g., Group 1 in both ρ2 = 12 and 13.5), and 
subjects make large forecast errors. Therefore, the economies with ρ2 = 12 and ρ2 = 13.5 display 
the lowest earnings efficiency ratios across all experimental sessions (see again Table 3).30

After discussing overall participants’ efficiency in performing their experiment task, we now 
take an in-depth look at individual time series and seek to answer the following questions: how 
do subjects in the lab learn to coordinate on the steady state or the 2-cycle and which behavioral 
rules do they use?

5. Estimation of individual forecasting rules

This section focuses on the analysis of individual behavioral rules in the LtFEs. This is be-
cause the forecasting rules can be directly linked to the theoretical predictions derived from the 
learning literature presented in Table 1. Therefore, we fit forecasting rules to the price prediction 
data for the 120 LtFE subjects in order to check consistency with those learning predictions.31

As a baseline, for each participant to the LtFE, we estimate the general forecasting rule:

pe
i,t+1 = α + βPt−1Pt−1 + βPt−2Pt−2 + βpe

i,t
pe

i,t + βpe
i,t−1

pe
i,t−1 + εi,t (16)

where pe
i,t+1 is the price forecast made by subject i at the beginning of period t for period 

t + 1, Pt−1 the last observable price (from period t − 1), Pt−2 the price in period t − 2, pe
i,t the 

last price forecast (made in period t − 1 for period t ), pe
i,t−1 the price forecast made in period 

t − 2 for period t − 1, and εi,t a noise term. We use the heteroskedasticity and autocorrelation 
consistent (HAC) estimator of the R package sandwich (Zeileis, 2004), and use the Ljung-Box 
test for autocorrelation with 4 lags.32 Following a variant of the backward stepwise regression 
procedure, we successively drop the non-significant variables and re-estimate (16) until only 
significant variables remain present. We adopt a 5% confidence level for the whole econometric 
analysis.

The general rule (16) allows for the selection of equilibrium cycles up to period three, which 
is the highest periodicity consistent with strong E-stability in our treatments (see Table 4). How-
ever, in light of the theoretical predictions discussed in Section 2 and the experimental data 

29 The p-value of the two-sided KS-test is 0.9607.
30 However, differences in earnings efficiency ratios are not significant at 5% across ρ2 values.
31 A similar exercise, whose results are reported in Appendix F, is performed on the individual savings choices. Ad-
mittedly, a link between microeconomic behaviors and equilibrium selection is more tedious to establish in the LtOE, 
as the learning literature has only been concerned with expectation formation. Yet, our main result below also applies to 
the LtOEs. In particular, we establish a connection between estimated individual savings strategies and aggregate exper-
imental data as in the LtF case, and we also document the use of simple heuristics when subjects are directly tasked with 
economic decisions.
32 This is consistent with the number of time periods observed at each data point.
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Table 4
Distribution of forecasting rules among the 84 subjects in the LtFE that converge to the 2-cycle.

2nd order adaptive
rule

naïve
expectations

stable AR(1) rule
without constant

stable AR(1) rule
with constant

mixed rule
–

β̂pt−1 + β̂pe
t−1

= 1 β̂pt−2 = β̂pe
t

= β̂pe
t−1

= α̂ = 0 β̂pt−2 = β̂pe
t

= β̂pe
t−1

= 0 other combinations of
significant variablesβ̂pt−2 = β̂pe

t
= α̂ = 0 β̂pt−1 = 1 β̂pt−1 < 1 β̂pt−1 < 1, α̂ > 0

ρ2 = 5
Gp 1 6
Gp 2 4 1 1
Gp 3 1 4 1

ρ2 = 8
Gp 1 4 1 1
Gp 2 5 1
Gp 3 5 1

ρ2 = 12
Gp 1 4 2
Gp 2 5 1
Gp 3 4 1 1
Gp 4 2 2 1 1

ρ2 = 13.5
Gp 1 4 2
Gp 2 4 1 1
Gp 3 5 1
Gp 4 6

TOTAL 49 (58%) 21 (25%) 4 (5%) 1 (1%) 9 (11%)

Note: A stable AR(1) forecasting rule corresponds to β̂pt−1 < 1 and β̂pt−2 = β̂pe
t

= β̂pe
t−1

= 0.

highlighted in Section 4.1, we shall focus on the second-order adaptive rule (Equation (9)) and 
naïve expectations as our two benchmark rules. Those two rules correspond to special cases of 
the general rule (16). A subject is said to use a second-order adaptive rule if he uses a forecasting 
heuristic of the form:

pe
i,t+1 = βPt−1 + (1 − β)pe

i,t−1 + εi,t , β ∈ (0,1)

which corresponds to the following constraints on the estimated coefficients result from the 
econometric estimation of (16): β̂pt−1 + β̂pe

t−1
= 1, β̂pt−1 , β̂pe

t−1
∈ [0, 1], and β̂pt−2 = β̂pe

t
= α̂ =

0.
In the special case of β̂pt−1 = 1 and β̂pt−2 = β̂pe

t
= β̂pe

t−1
= α̂ = 0, the subject’s heuristic takes 

the form:

pe
i,t+1 = Pt−1 + εi,t

which corresponds to naïve expectations. This forecasting heuristic selects the 2-cycle only in 
case of ρ2 = 5.

We first estimate the general rule (16) in the 14 economies that converge towards the 2-cycle, 
for a total of 84 subjects. Table 4 classifies these subjects according to the learning rule that best 
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matches their behavior.33 As expected, coefficients on information of lag 2 are never significant, 
and more than 80% of the subjects use a second-order adaptive rule or naïve expectations.

More than half of the subjects (49 out of 84) follow a second-order adaptive rule, and we 
fail to reject the joint hypothesis β̂pt−1 + β̂pe

t−1
= 1, β̂pt−2 = β̂pe

t
= α̂ = 0 at 5% for all but 4 of 

them. Almost all of these 49 subjects are part of economies with ρ2 = 8, 12 or 13.5, which is 
consistent with the theoretical learning predictions and the observed selection of the 2-cycle. For 
instance, all the subjects in Group 4 with ρ2 = 13.5 have second-order adaptive expectations, 
which deliver convergence to the 2-cycle.34

More can be said using the estimates of the coefficients in these second-order adaptive rules. 
Recall the stability condition of the 2-cycle under the adaptive rule (9) given in Subsection 2.4: 
the stability of the 2-cycle depends on the weight given to Pt−1 (w in Equation (9)). Intuitively, 
the 2-cycle is stable if the weight on the past observed price is not too high, and this weight 
should be lower, the more unstable the 2-cycle. Our estimates appear to support this theoretical 
prediction: treatments with higher ρ2 values tend to be associated with lower weights on prior 
price observations. Furthermore, the average weighting coefficient values for each ρ2 treatment 
are always lower than the corresponding stability threshold w.35

A further quarter of the subjects (21 out of 84) use naïve expectations, with most being part of 
economies with ρ2 = 5. Recall that, at this ρ2 value, the 2-cycle is stable under naïve expectations 
(in fact, it is stable for all values of w of the adaptive rule (9)). For instance, all six subjects in 
Group 1 with ρ2 = 5 use naïve expectations.

The above discussion is summarized in Fig. 8a, which plots the estimated coefficients of P e
t−1

against those of Pt−1 for each of the 84 subjects. Most of the points are scattered around the 
dashed line y = 1 −x, which corresponds to the second-order adaptive rule (i.e., β̂pt−1 + β̂pe

t−1
=

1). We also observe a concentration of points around (1, 0) for the case ρ2 = 5 (indicating naïve 
expectations), while higher values of ρ2 are associated with a more even dispersion along the 
line (which is line with the stability conditions discussed above).

The remaining 14 subjects (less than 20% of the total from economies that converge to the 
2-cycle) use a mixed forecasting rule. Some of these subjects are part of Group 1 with ρ2 = 12
and 13.5, where we observe a particularly long transition, with irregular price movements, before 
convergence to the 2-cycle. This description leads us to the following result:

Finding 6 (Individual behavioral rules and group behaviors). The individual estimates of fore-
casting rules reveals the wide use of second-order heuristics and, therefore, bridge the gap 
between theoretical predictions of individual learning behaviors and experimental data on ag-
gregate price patterns.

Despite our results, evidence for second-order forecasting heuristics is sparse in the related 
literature. While several studies have documented the use of first-order adaptive rules, especially 

33 The whole distributions of the parameter estimates are reported in Appendix E.
34 This group, where all subjects use the same forecasting rules, is also the one that displays the fastest convergence 
toward the 2-cycle in this treatment. The point that the homogeneity of forecasting rules within a group impacts coordi-
nation on outcomes has been made by Marimon et al. (1993), who estimate similar forecasting rules in their LtFE.
35 More precisely, the average weighting coefficients associated with Pt−1 are 0.6603 in Groups 1, 2 and 3 with ρ2 = 8
(w  0.8); 0.6016 across all groups with ρ2 = 12 (w  0.61); and 0.5583 when ρ2 = 13.5 (w  0.57). K-S tests indicate 
that these coefficients are all significantly lower than for ρ2 = 5 (where the average value of this coefficient is 0.9076). 
Additionally, coefficients on Pt−1 are significantly lower when ρ2 = 13.5 than when ρ2 = 8, but other pair-differences 
across treatments are not significant at 5%.
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Fig. 8. Outcomes of the estimations of individual forecasting rules. Note: Left panel: Scatter plot (84 observations) of 
the estimated coefficients β̂pt−1 and β̂pe

t−1
in Rule (16) for the subjects in the economies that converge to a 2-cycle 

(i.e. all groups with ρ2 = 12 and ρ2 = 13.5, and Groups 1, 2 and 3 with ρ2 = 5 and ρ2 = 8). The dotted gray line 
represents the locus of points for which β̂pt−1 + β̂pe

t−1
= 1. Right panel: Frequency distribution (36 observations) of the 

distance between the steady-state value of average savings and the long-run savings equilibrium M/P ∗ implied by (16), 
for participants to the economies which converge to the steady state (i.e. all groups with ρ2 = 3, and Group 4 for ρ2 = 5
and ρ2 = 8).

in linear frameworks involving one-period-ahead forecasts (Heemeijer et al., 2009; Hommes, 
2011), the only study that finds evidence for second-order adaptive rules is Marimon et al. (1993)
(and only with a much smaller sample of subjects and periods). By contrast, in a related frame-
work to ours, Marimon and Sunder (1995) do not find strong evidence for the use of adaptive 
expectations, and Bernasconi and Kirchkamp (2000) instead highlight the possibility of iner-
tial expectations, characterized by significant and positive intercepts in the estimated behavioral 
rules.

The estimation of rule (16) is less meaningful for the 36 remaining subjects — who select 
the steady state — as their predictions quickly become more or less constant over time. With the 
exception of Group 4 with ρ2 = 8 (where small oscillations persist throughout the experiment), 
we find after only ten periods that 98% of price predictions fall in the range [P ∗ −1, P ∗ +1], and 
84% fall in the range [P ∗ − 0.1, P ∗ + 0.1] (where P ∗ is the steady-state price). Therefore, for 
each of these 36 subjects, we compute the long-run estimated price level of Equation (16) to be

P ∗∗ ≡ α

1 − β̂pt−1 − β̂pe
t−1

− β̂pt−2 − β̂pe
t

(17)

The distribution of distances of the implied long-run savings equilibria from the steady-state 
level is reported in Fig. 8b. Based on these data, we do not reject the null hypothesis that the 
long-run savings level is equal to that in the steady state.36

To conclude so far, we have established the systematic selection of simple equilibria both 
in the LtF and the LtO conditions in this complex lab environment, and consistency between 

36 The average relative distance from the estimated long-run savings equilibria to the steady state equals 0.003, and the 
p-value of a two-sided Wilcoxon signed rank test is 0.1252.
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the observed prevailing equilibria, the individual behaviors of participants and the theoretical 
learning predictions. Before the conclusive remarks, the next section presents the outcomes from 
two additional sets of experiments designed to test the robustness of our findings and provide 
further explanations of our results.

6. Robustness checks

This section presents two additional robustness sessions. Subsection 6.1 discusses a set of 
additional experiments that aim to shed further light on the absence of 2-cycle selection in the 
LtOE in contrast to the LtFE, while Subsection 6.2 reports on a two-population version of our 
experiment that preserves the original overlapping-generation metaphor of the model.

6.1. LtOEs with 2-cycle training phase

In order to further test the robustness of the two-cycle, we ran 9 additional LtO sessions with 
an initial 10-period ‘training phase’ during which individual subjects played against five ‘robots’ 
that were perfectly coordinated on the 2-cycle (see Marimon et al. 1993; Duffy and Fisher 2005; 
Arifovic et al. 2014 for similar designs). We also ran 7 extra training sessions with a non-linear 
savings transformation in order to make the gap between the savings points of the 2-cycle less 
extreme in the case of ρ2 = 8. Fig. 9 displays the aggregate price series and Table 5 summarizes 
the quantitative measures of these experiments in the same way as for the baseline experimental 
sessions in Section 4, while the exhaustive data for each group are deferred to Appendix C.

In total, out of the 16 robustness economies that we ran with these modifications, we observed 
three cases of up-and-down oscillations in subjects’ savings decisions in phase with the 2-cycle 
(with strong negative autocorrelation, see Table 5) induced by the training phase. Despite up-
and-down oscillations, Gp. 5 with ρ2 = 5 ends up in a closer neighborhood to the steady state 
than the 2-cycle (the corresponding ARDE value is 17.28%). As for the two others, namely Gp. 
1 with ρ2 = 5 and Gp. 5 with ρ2 = 8 and the transformed savings values, the distance to the 
equilibrium 2-cycle values remained substantial, in contrast to the patterns observed in the LtFE, 
as shown by the much higher ARDE values reported in Table 5 (39.1% and even 55.2%). The 
other 13 groups converge towards the steady state, with no substantial difference with respect 
to the baseline experimental sessions. We therefore conclude that Finding 3 is a robust result, in 
that even groups in the LtOE who were ‘trained’ to follow the 2-cycle did not converge to it.

Finding 7 (Robustness of the selection of the steady state in the LtOEs). Almost all LtOEs 
converge to the steady state; the few instances of up-and-down oscillations in phase with the 
two-cycle induced by a training phase are hard to sustain and remain further away from the 
two-cycle than in the LtFE.

These robustness sessions also allow us to establish a plausible explanation for the absence of 
2-cycle selection in the LtOE: namely, strategic uncertainty. We determined from post-session 
questionnaires that subjects exposed to the large variations in return on savings during the first ten 
training periods were concerned about volatility; statements regarding motivations included the 
desire to ‘secure a smooth payoff’, ‘hold on to an equilibrium situation’, ‘have a sure payment’, 
and ‘avoid fluctuations’.

The payoff schemes for these experiments were designed to generate the same payoff value 
in every period in the steady state equilibrium as for the two-period average along the 2-cycle. 
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Fig. 9. Real money balances time series in LtOEs with training. Note: See Fig. 3. The first 10 training periods are not 
displayed. Group 1 with ρ2 = 5 prematurely crashed in period 58 due to a server issue.

However, the two payoffs are no longer equivalent once strategic uncertainty is taken into ac-
count. Strategic uncertainty is inherent to any group experiments requiring coordination between 
six players. Even though the experimental environment is deterministic, uncertainty arises from 
others’ actions: coordination on the steady state may be preferable because strategic uncertainty 
weighs heavier along the 2-cycle in the LtO treatment.

This is a consequence of the strong asymmetry of payoff along the 2-cycle in the LtO treat-
ment (about 1300 and 40 points over 2 periods) that is absent from the steady state allocation in 
the LtOE (that provides about 700 points per period) and from any perfect-foresight equilibrium 
payoff in the LtF treatment, including the 2-cycle (that provides 1300 points per period). If one 
subject deviates from the low saving decision on the 2-cycle, the high payoff (1300) is not real-
ized and the average pay-off over the two periods is much lower than after a one-time deviation 
from the steady state. To see this clearly, one should look at the payoff table (see Appendix H): 
if the next period’ return on savings is lower than its two-cycle value (i.e. 9.9), the payoff for 
any saving decision quickly drops below 1300 points. The effect of strategic uncertainty is even 
exacerbated at the 2-cycle if one recalls that subjects tend to make more mistakes due to con-
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Table 5
Summary statistics of the 16 LtO experimental economies with training.

Group 1 2 3 4 5 1 2 3 4
With training phase
ρ2 = 5 ρ2 = 8

Equilibrium 2-cycle SS SS SS SS SS SS SS SS
ARDE 39.1 8.39 5.56 5.97 17.28 4.32 5.58 8.43 2.51
ρs −0.77 −0.38 0.27 −0.05 −0.84 0.31 0.03 0.45 0.43
σ(si )/μsi 20.9 21.9 9.85 5.13 6.6 2.51 7.8 13.7 5.95
EER 91 91.6 91.5 92.8 93.3 88.5 85.8 89.4 88.5

Group 1 2 3 4 5 6 7
ρ2 = 8: with training phase and non-linear transformation of savings

Equilibrium SS SS SS SS 2-cycle SS SS
ARDE 13.14 4.78 22.8 6.4 55.2 2.56 22.55
ρs 0.67 −0.1 −0.65 0.02 −0.62 0.72 0.72
σ(si )/μsi 26.7 12.98 56.85 10.47 61.66 7.6 48.43
EER 81.1 87.8 69 84.9 74.6 85.7 76.6
Notes: See Table 3.

fusion or mistakes when entering successively a high and a low number than a constant steady 
state decision, as explained in Section 4.2.

By contrast, the steady state in the LtOE provides a payoff structure comparable to the 2-cycle 
in the LtFE, in the sense that the payoff stream is constant, and potential losses due to one-time 
individual deviations are limited. As a result, subjects may prefer an allocation for which the 
payoff does not fluctuate (namely coordination on the steady state in the LtOE or any perfect-
foresight equilibrium in the LtFE) to one that does and involves potentially larger payoff losses.

Two additional elements may play a role in the prevalence of the monetary steady state in the 
LtOE: a framing effect and subjects’ cognitive load. First, cautious or conservative behavior may 
appear more natural when it comes to making savings decisions than when making forecasts and 
tracking a time series pattern. Relatively stable savings decisions from one period to the next 
drive the dynamics towards the steady state by quickly pushing the return on savings towards 
unity.

Second, the cognitive load implied by the two experimental tasks is different. We report a 
significantly higher cognitive load in the LtO than in the LtF design according to two measures: 
the cumulative distribution of individual decision times (Fig. 10a) and the length of the instruc-
tions (Fig. 10b). Subjects read the instructions, complete the quiz and make their decisions more 
quickly in the LtFE despite the more complicated equilibrium on which they often coordinate 
(i.e., the 2-cycle).37 This salient difference between the two designs constitutes a serious candi-
date for an explanation of the absence of selection of the 2-cycle in the LtOE. Our result may 
suggest that the more sophisticated the experimental task and the higher the implied cognitive 
load, the simpler the subjects’ behavioral rules and the simpler the selected equilibrium.

Before concluding, we take a look at the robustness of our results to another variation of the 
experimental design that is commonly used across experimental and learning OLG studies.

37 The average individual decision time in the LtFE is 19.9 seconds while it is 24.71 in the LtOE, and it took on average 
33.5 minutes for the subjects to read the instructions and answer the quiz in the LtFE, while it took them on average 
42.4 minutes to do so in the LtOE. The p-value of the corresponding unilateral K-S test is less than 0.0001 in the two 
cases. Note that the instructions are slightly longer (by around half a page) in the LtOE, but this factor alone likely cannot 
account for the additional 9 minutes.
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Fig. 10. Measurement of cognitive loads in the 20 LtFE vs. the 28 LtOEs. Note: The 12 baseline LtO groups and the 16 
robustness groups with training are pooled together on the figures.

6.2. Two-population design

We present here another second set of experiments to test whether our results established in a 
single-population design are robust to a setup that preserves the overlapping generation metaphor 
of the underlying model and genuinely involves two distinct populations of alternatively young 
and old agents. One reason for this investigation is the common use of such a two-population de-
sign in related OLG experimental studies (see, inter alia, Aliprantis and Plott 1992; Marimon and 
Sunder 1993) as well as in the GA learning model of Bullard and Duffy (1998). This latter study 
shares two interesting similarities with our group experiment: it only results in the selection of the 
steady state or the two-cycle, no matter the ρ2-value, and it implements an heterogeneous-agent 
version of the OLG model, instead of the aggregate temporary equilibrium mapping between 
expected and realized prices that is used in the adaptive learning literature.

For these reasons, we ran robustness LtF and LtO sessions using a two-population version of 
our experimental design. Instead of N = 6 subjects who make forecasts/savings decision in every 
period, we introduce a design where two groups of six subjects each make decisions every other 
period. Thus, one group makes decisions in every odd period, and the other every even period. 
Note that population sizes of six ensure that the market influence of each subject remains the 
same, and we doubled the exchange rate to ensure comparable individual earnings between the 
two designs. The complete instructions are given in Appendices J and K.

We ran four two-population groups of two representative treatments of the LtFE, namely 
ρ2 = 5 that gives rise to an unstable steady state or a stable 2-cycle and ρ2 = 13.5, that displays 
the richest set of potential equilibria. We also conducted four LtO sessions for ρ2 = 5. Given 
the extreme payoff values along the 2-cycle in the LtOE (see Table 2), we added four more LtO 
groups with a flattened payoff (see Appendix K) so as to render the payoff between the odd and 
the even generations less asymmetric, and provide closer incentives to the two populations of 
subjects to coordinate on the 2-cycle.

Fig. 11 presents the behavior of real money balances in all those groups and Table 6 shows 
the same statistics as for the baseline treatments (for all group figures, see Appendix D). 



140 J. Arifovic et al. / Journal of Economic Theory 183 (2019) 106–182
Fig. 11. Real money balances time series in the two-generation experimental economies. Note: See Fig. 3.

Our results in the baseline treatments are fully robust to the two-population implementa-
tion:

Finding 8 (Robustness to the two-population design).

(a) In all but one experimental economies, the price level converges to a perfect foresight equi-
librium.

(b) In all but one LtF economies, subjects coordinate on the 2-cycle.
(c) In all LtO economies, the price, or equivalently aggregate savings, converge towards or in a 

neighborhood of the steady state.
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Taking first a closer look at the two-population LtFEs, except the third group of ρ2 = 13.5, all 
groups converge to the 2-cycle equilibrium values. Comparing with Table 3, both convergence of 
the price level (through the ARDE values) and coordination between subjects’ forecasts (through 
the relative standard deviation values) are even better in the two-population design than in the 
one-population design.

The case of ρ2 = 5 is particularly clear: the ARDE values are all below 5%, three out of four 
are below 1%, and all the relative standard deviations are on average close to zero. The three 
converging groups with ρ2 = 13.5 display similar high levels of convergence and coordination 
as in the single-population design, but coordination seems quicker: we do not observe any long 
chaotic transient as in the single-population design (compare the first 50 periods in Figs. 11b and 
6a).

By contrast, the third group fails to coordinate on any perfect-foresight equilibrium: the time 
series (green line of Fig. 11b) does not display any clear pattern, the ARDE value is particularly 
high (almost 37%), while the autocorrelation is negative (−0.43), but not nearly close to −1, 
subjects are poorly coordinated (the relative standard deviation is the highest observed across all 
sessions, as high as 60.4%) and the average price value over the last 25 periods (20.92) is almost 
twice lower than the one that would prevail along the 2-cycle (37.27).

Digging into individual data indicates that this coordination failure is due to a single subject 
who displayed confusion, entered random forecasts (reaching an earning efficiency ratio lower 
than 8%), and hindered the group coordination. This example of coordination failure shows that 
coordination between a group of 6 or even 12 subjects in such a complex environment is far 
from trivial but yet achieved in all but one of our 64 experimental groups (over all treatments and 
designs), which is quite remarkable.

Lastly, the two-population LtOEs tend to coordinate on the steady state: the ARDE values are 
of the same order of magnitude as in the one-population design, and 5 out of the 8 groups display 
ARDE values below 10%. In the three other groups (namely Group 3 of the same payoff and 
Groups 1 and 3 of the flattened payoff), the ARDE values are higher (20.3 to 27.9%, see Table 6), 
but additional computations reveal that the average aggregate savings over the last 25 periods are 
respectively equal to 0.535, 0.564 and 0.497, which corresponds to a small neighborhood (less 
than 10%) of the steady state value of 0.538. A closer look at Figs. 11c and 11d, together with 
those numbers, reveal that these groups converge near the steady state but with clear up-and-down 
oscillations akin to a dampened or attenuated two-cycle (to see that, look at the strong negative 
autocorrelation values of aggregate savings in Table 6, a feature absent from the one-population 
design in Table 3).

End-questionnaire data tell us that this feature is due to participants competing with the other 
generation for the higher returns on savings by lowering their own savings decisions to enjoy a 
higher-than-one return.38 Interestingly, they coordinated on lower-than-steady-state savings, but 
not quite as low as coordination on the 2-cycle would have required. This discrepancy seems to 
have two explanations. First, subjects reported concerns about utility losses when attempting to 
bring the return down by savings very little. Second, participants reported concerns about the 

38 More than one third of the participants to those three groups made statements when describing their strategies such 
as: ‘drive supply to around 40 for our team and keep it there. Keep previous period’s return around 1.5 as most people 
use it to make decisions. This way, the other team gets return around 0.6, save 70 and still get around 550, no too little 
so it does not motivate trade war; ‘most points when return high, so try to keep my savings decision low, but not too low 
not too loose too many points.’; ‘I wanted to get the price high in the round period so I advised to save little but not too 
little otherwise my utility would be lower’; ‘try to pull down the average savings of my team’.
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Table 6
Summary statistics of the experimental economies in the two-group design.

Group 1 2 3 4 1 2 3 4
LtFE
ρ2 = 5 ρ2 = 13.5

Equilibrium 2-cycle 2-cycle 2-cycle 2-cycle 2-cycle 2-cycle 2-cycle 2-cycle
ARDE 0.72 0.06 0.16 2.16 2.33 0.2 36.91 0.13
σ(si )/μsi 0.78 0.00 0.06 1.32 5.22 2.61 60.4 1.13
ρs −0.96 −0.96 −0.96 −0.95 −0.91 −0.96 −0.43 −0.96
EER 89.7 90.7 91.4 91.9 81.6 83.8 55.7 91.2

LtOE (ρ2 = 5)
Same payoff Transformed payoff

Equilibrium SS SS SS SS SS SS SS SS
ARDE 5.42 5.78 27.9 6.7 26.3 3.07 20.3 7.58
σ(si )/μsi 10.66 6.37 13.39 7.04 8.67 9.52 17.26 9.01
ρs −0.08 −0.9 −0.89 −0.88 −0.77 −0.75 −0.93 −0.81
EER 97 96 93.9 97.4 98.8 99 99.1 99.5
Notes: See Table 3.

other generation, who would then receive a much lower payoff than theirs, and would therefore 
have an incentive to reply by lowering their savings and driving the return towards one. Our 
effort, through a flattened payoff table, to provide a more generous payoff to the high savings/low 
returns generation did not eliminate this inter-generational concern, and has led to similar results 
as for the other LtO groups.

To conclude, our results are fully robust to a design that preserves the overlapping genera-
tion friction as common in related experimental and learning studies. Again, remaining cautious 
given the few data points that a group experiment allows us to collect, it even seems that the 
two-population design favors coordination on a 2-cycle more than the one-population design 
does.

7. Conclusion

This experimental study adds to the literature on equilibrium selection when self-fulfilling be-
liefs lead to indeterminacy in the model, and additionally provides an empirical test of learning 
predictions when multiple equilibria are possible. We design an experiment in an heterogeneous-
agent version of the well-known complex OLG environment first studied by Grandmont (1985). 
This environment exhibits infinitely many periodic — and even chaotic — equilibria, along with 
the monetary steady state. Existing theoretical contributions provide little guidance into the pro-
cess of equilibrium selection because any of these equilibria can emerge as a stable outcome 
of a suitable expectation formation process. Hence, the equilibrium selection problem requires 
empirical insights.

We can broadly summarize our experimental results as follows. In all (but one) experimental 
economies, prices converge to a neighborhood of a simple perfect-foresight equilibrium. This 
equilibrium is either a steady state or a two-cycle. Our learning-to-forecast experiments are the 
first example of spontaneous coordination on a two-cycle in the lab. By contrast, learning-to-
optimize experiments do not converge to a two-cycle, not even after up-and-down oscillations 
induced by an initial training phase, but rather converge to a steady state. This may be due to 
strategic uncertainty or differences in cognitive load between the two designs. Our results are ro-
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bust to an alternative, two-population, design that preserves the overlapping generation friction 
in the lab.

Comparing the experimental data to theoretical predictions of forecasting rules, our exper-
iment provides evidence on behaviors in a complex environment, which has not yet been ex-
tensively investigated in a laboratory setting. We find that subjects use simple belief-formation 
processes by tracking low-order patterns and only considering very recent observations. Sim-
ple behavioral rules, together with repeated market interactions, enforce convergence to simple 
equilibria even though the set of possible outcomes is large and complicated. To revisit a quote 
from Lucas (1986, pp. S424-S425) first shown in the introduction, this empirical result supports 
the idea that ‘all but a few equilibria are [...] behaviorally uninteresting’. If perfect foresight 
(or rational expectations) is not selective enough, our experimental data suggest that the selected 
equilibrium will be robust to the use of simple behavioral rules. Furthermore, once removing the 
assumption of the conditional optimality of savings decisions, our experiment reports an even 
smaller set of empirically relevant outcomes, of which the steady state becomes the most likely. 
While we cannot yet claim that indeterminacy is only a theoretical issue, our experiment provides 
an empirical example where the problem of equilibrium selection is far less salient than theory 
would suggest.

Our experimental environment is, of course, a stylized one. We may consider it too rudi-
mentary to draw general conclusions about economic dynamics or to validate the claim that the 
long-run behavior of a competitive monetary economy must be a deterministic steady state. In-
stead, we provide suggestive evidence that self-fulfilling beliefs alone cannot sustain irregular 
and unpredictable fluctuations, even in a complex environment with (initially) heterogeneous be-
liefs and decentralized information. Empirically observed economic fluctuations likely require 
amplification mechanisms that cannot be accounted for by beliefs alone.

Appendix A. Experimental economies – LtFE (baseline sessions) (Figs. 12–16)

Fig. 12. ρ2 = 3 (steady state).



144 J. Arifovic et al. / Journal of Economic Theory 183 (2019) 106–182
Fig. 13. ρ2 = 5 (2-cycle).

Fig. 14. ρ2 = 8 (noisy 32-cycle). Note: For Group 4, note the change in the scale of y-axis.
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Fig. 15. ρ2 = 12 (chaotic dynamics).

Fig. 16. ρ2 = 13.5 (3-cycle).
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Appendix B. Experimental economies – LtOE (baseline sessions) (Figs. 17–19)

Fig. 17. ρ2 = 3 (steady state).

Fig. 18. ρ2 = 5 (2-cycle).
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Fig. 19. ρ2 = 8 (noisy 32-cycle).
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Appendix C. Experimental economies – LtOE with training (robustness sessions)

C.1. LtOE with a 10-period initial training phase on the 2-cycle (Figs. 20, 21)

Fig. 20. ρ2 = 5 (2-cycle) with training. Note: a computer crashed at period 58 in Group 1, ending prematurely the 
experiment in this group.
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Fig. 21. ρ2 = 8 (noisy 32-cycle) with training.
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C.2. LtOE with a 10-period initial training phase on the 2-cycle and a non-linear 
transformation of savings (ρ2 = 8) (Fig. 22)

Fig. 22. ρ2 = 8 (noisy 32-cycle) with training and a non-linear transformation of savings ∈ [0,100].
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Appendix D. Experimental economies – Two-population design (robustness sessions)

D.1. LtFE with the two-population design (Figs. 23, 24)

Fig. 23. ρ2 = 5 (2-cycle).

Fig. 24. ρ2 = 13.5 (3-cycle).
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D.2. LtOE with the two-population design (Figs. 25, 26)

Fig. 25. ρ2 = 5 (2-cycle) LtOE in the two-population design.

Fig. 26. ρ2 = 5 (2-cycle) LtOE in the two-population design with a flattened payoff function.
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Appendix E. Analysis of individual forecast time series (Fig. 28)

Fig. 27. Sample average and first-order sample autocorrelation of individual price forecasts in the 20 baseline LtFE, 120 
observations. Notes: The first 10 periods are discarded. In red: convergence to the steady state, in blue: 2-cycle dynamics 
(see classification in Table 3).

Fig. 28. Cumulative distribution of the estimated coefficients in Equation (16) for the 14 baseline LtF economies that 
converge to a 2-cycle, 84 observations).
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Fig. 29. Sample average and first-order autocorrelation of individual savings decisions in LtOEs, 168 observations. Notes:
See Fig. 27.

Appendix F. Analysis of individual savings time series (LtOE)

Fig. 29 summarizes the descriptive statistics of the individual savings time series in the base-
line 12 experimental groups as well as the 16 robustness groups that feature an initial 10-period 
training phase (referred to as Tr. T, and S for sessions using also the non-linear transformation 
of savings values). We have to include those robustness sessions here to compare the behavior of 
the subjects around the steady state and along the two-cycle, as the baseline LtOEs all converge 
to the steady state.

Using the same econometric procedure as in the LtFE (see Section 5), we estimate behavioral 
rules from the individual savings decisions in the LtOE. Specifically, we estimate the following 
behavioral rule for each participant39:

si,t = α + βst−1si,t−1 + βst−2si,t−2 + βRt−1Rt−1 + εi,t (18)

where si,t is the savings decision made by subject i at the beginning of period t for period t , 
Rt−1 ≡ Pt−1

Pt−2
the return on savings between period t − 2 and period t − 1 and εi,t a noise term. 

We include two lagged values of the individual savings decisions because they are relevant along 
a 2-cycle, and we include Rt−1 as this is the last observable return on savings that subjects 
have (and is displayed on their screen). The general rule (18) embeds a constant rule if the joint 
constraint β̂st−1 = β̂st−2 = β̂Rt−1 = 0 results from the estimation, a stable AR(1) rule if β̂Rt−1 =
β̂st−2 = 0 and |β̂st−1 | ∈ (0, 1), as well as a stable AR(2) rule if β̂Rt−1 = 0 and |β̂st−2 + β̂st−1 | ∈
(0, 1).

Following those nested cases, Table 7 classifies the 168 subjects, 150 in LtOEs that converge 
or oscillate around the steady state, and 18 in LtOEs that display regular up-and-down oscil-

39 For instance, Bao et al. (2017) estimate a similar rule with an AR(1) structure for quantity decisions in an LtOE in an 
asset pricing model.
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Fig. 30. Cumulative distribution of the estimated coefficients in Equation (18), 168 observations.

lations in phase with the 2-cycle (see the discussion in Section 6.1, those three groups are in 
bold in Table 7).40 Fig. 30 reports the distributions of the estimates of the four parameters of the 
general rule for all the 168 subjects. The main insights from this exercise may be presented as 
follows.

First, we notice that the intercept is always significant, and for all but one subject is positive 
(see the first plot in Fig. 30). A high concentration of the estimated values is observed between 
0.5 and 0.6, which broadly corresponds to the steady state value of individual savings.

Next, we focus on the 150 estimates in economies that converge towards the steady state 
(i.e. we exclude Gps. 1 and 5 of Tr. T with ρ2 = 5 and Gp. 5 of Tr. S): 94 subjects (63%) are 
characterized by an AR rule with significant intercept (β̂Rt−1 = 0), 34 of them use a constant rule, 
33 use an AR(1) rule, and 27 an AR(2) rule.

For those 94 cases, we compute the estimated long-run equilibrium value of savings from 
Rule (18) (where β̂Rt−1 = 0) as s∗SS ≡ α

1−β̂si,t−1 −β̂si,t−2
. Fig. 31a below displays the frequency 

distribution of those relative estimated distances to the steady state. The average relative distance 
is −0.01, and we cannot reject the null hypothesis that it is equal to zero.41

40 Since savings decisions are more variable than price predictions in economies that converge to the steady state, the 
estimation of (18) is less problematic in the LtOEs than in the LtFEs. In the LtOEs, only 3 subjects have strictly constant 
savings decisions after the first 10 periods.
41 A two-sided Wilcoxon rank sum test gives a p-value of 0.6481.
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Table 7
Distribution of savings rules among the 168 subjects in the LtOE in the 12 baseline LtO sessions and the 16 robustness 
sessions with the initial training phase.

intercept only stable AR(1) rule stable AR(2) rule mixed rule
β̂st−1 = β̂st−2 = 0 β̂st−2 = 0, |β̂st−1 | ∈]0,1[ β̂st−2 �= 0, |β̂st−1 | ∈ [0,1[ |β̂st−2 |, |β̂st−1 | ∈ [0,1[

β̂Rt−1 = 0 β̂Rt−1 > 0 β̂Rt−1 < 0

ρ2 = 3 Gp 1 2 1 1 2
Gp 2 2 1 1 1 1
Gp 3 2 2 1 1
Gp 4 2 2 2

ρ2 = 5 Gp 1 2 2 1 1
Gp 2 2 1 1 1 1
Gp 3 3 1 1 1
Gp 4 1 1 4

ρ2 = 8 Gp 1 1 2 3
Gp 2 2 2 1 1
Gp 3 2 1 1 2
Gp 4 3 1 2

Sessions with a 10-period initial training phase (Tr. T)
ρ2 = 5 Gp 1 4 2

Gp 2 1 2 2 1
Gp 3 1 2 2 1
Gp 4 1 3 1 1
Gp 5 1 5

ρ2 = 8 Gp 1 3 2 1
Gp 2 1 3 2
Gp 3 2 1 3
Gp 4 1 2 2 1

Sessions with a 10-period initial training phase and
a non-linear transformation of savings (Tr. S)

ρ2 = 8 Gp 1 1 2 1 1 1
Gp 2 1 2 3
Gp 3 2 1 3
Gp 4 1 2 3
Gp 5 6
Gp 6 1 1 2 1 1
Gp 7 1 2 1 2

TOTAL 34 (20%) 38 (23%) 40 (24%) 17 (10%) 39 (23%)
Notes: The groups that display up-and-down oscillations in phase with the 2-cycle are highlighted in bold.

Note that a comparison between Fig. 31a and Fig. 8b displaying the distribution of the same 
distances obtained from the estimated forecasting rules in the LtFE reveals a better coordi-
nation on the steady state in the LtFEs than in the LtOEs – i.e. the estimated distances are 
strikingly smaller and closer to zero in the LtFEs. This is fully in tune with the discussion in 
Section 4.2.

The other 56 subjects among the steady state economies use a mixed rule, i.e. their savings 
decisions are well described by an AR rule with a significant reaction to past values of the re-
turn on savings Rt−1. Overall, the estimated coefficients associated to Rt−1 are significantly 
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Fig. 31. Estimated long-run savings values with respect to equilibrium. Notes: Left panel: Frequency distribution of the 
relative distances between the steady state value of savings and the long-run estimated saving values s∗SS for the 94 
subjects that are characterized by an AR(1) or AR(2) rule in groups converging towards the steady state. Right panel: 
Frequency distribution of the distances between the average of the 2-cycle values of savings and the estimated long-
run saving values s∗2 in (18) for the economies that display up-and-down oscillations in phase with the 2-cycle, 18
subjects.

negative.42 Those negative coefficients are consistent with the offer curve displayed in the two-
dimensional payoff table: a higher expected return on savings corresponds to a lower optimal 
savings decision (bottom left corner of the payoff table), as long as the expected return is not too 
small.

In the three economies in which the dynamics resemble an ‘attenuated’ 2-cycle, all 18 par-
ticipants use an AR(1) or an AR(2) rule, all the estimated coefficients associated to st−1 are 
significantly negative, and all those associated to st−2 are significantly positive.43 These signs 
are fully consistent with a two-cycle dynamics – see Hommes et al. (2013) for a discussion of 
AR rules associated with 2-cycle dynamics.

Finally, we compute the average relative distances of the long-run estimated savings equi-
librium s∗2 to the average value of savings along the 2-cycle for each of the three economies 
(see Fig. 31b). This distance is very small for two of three groups, i.e. −0.0188 in Group 1 with 
ρ2 = 5/Tr. T and −0.018 in Group 5 with ρ2 = 8/Tr S. It is larger for Group 5 with ρ2 = 5/Tr. 
T (−0.1337). These estimates are fully consistent with the observed patterns in those groups: 
distances are always negative as the up-and-down oscillations never overshoot the equilibrium 
2-cycle, and we observe the wider oscillations in Group 1 with ρ2 = 5/Tr. T and Group 5 with 
ρ2 = 8/Tr. S.

Therefore, we conclude that the individual estimates of savings rules reveal the wide use of 
simple heuristics that are consistent with the experimental aggregate savings patterns.

42 39 out of the 56 coefficients are significantly negative, and the p-value of the associated unilateral Wilcoxon signed 
rank test is 0.0244.
43 The average estimates of β̂st−1 and β̂st−2 , respectively in Group 1 with ρ2 = 5/Tr. T, in Group 5 with ρ2 = 5/Tr. T 
and in Group 5 with ρ2 = 8/Tr. S are −0.7172, −0.3753 and −0.3646, and 0.1646, 0.4777, and 0.5135.



158 J. Arifovic et al. / Journal of Economic Theory 183 (2019) 106–182
Appendix G. Instructions of the LtFE for ρ2 > 3 [ρ2 = 3]

Welcome! The experiment is anonymous, the data from your choices will only be linked to 
your station ID, not to your name. If you follow these instructions carefully, you can earn a 
considerable amount of money. You will be paid privately in cash at the end of the experiment, 
after all participants have finished the experiment. Before the payment, you will be asked to fill 
out a short questionnaire. On your desk you will find a calculator and scratch paper, which you 
can use during the experiment. Before starting the experiment, you have to answer the questions 
at the end of the instructions to make sure that you understand your role in the experiment.

Each participant has the same role, and the rules are the same for all participants. From now 
until the end of the experiment, you are not allowed to communicate with other partic-
ipants. If you have any questions, please raise your hand, and we will come to you and 
answer your question privately.

Information about the experimental economy

You participate in a market, in which individuals trade chips at a given price in each period.
You are a Professional Forecaster, and you have to predict the price of the chips in the next 
period.

In every period, two generations of individuals – the young and the old – trade a consumption 
good. We will refer to this consumption good as chips. Imagine that a period in this economy 
represents a generation: in each period, the young generation from the previous period becomes 
old, and a new young generation enters. The young generation consists of individuals of working 
age who receive an income of 200 chips. The old generation does not work any more, and there-
fore only receives a smaller income of 50 chips. These incomes are fixed and identical across all 
individuals from the same generation.

Young individuals can choose to consume only part of their 200 chips, and to save the rest to 
consume more in the next period, when they will be old. In each period, a young individual then 
consumes:

consumption of chips when young = 200 − number of chips saved

To carry the saved chips to the next period, the young individual converts these chips into 
money, by selling them to the old individuals at the current price in the chips market. The savings 
of a young individual in money then equals:

savings in money = number of chips saved × current price of the chips

Once old, in the next period, an individual spends all his money to buy as many chips as his 
savings can buy from the new young individuals, at the prevailing price for chips. The amount of 
consumption of chips of an old individual then equals:

consumption of chips when old = 50 + savings in money

price of the chips when old

The price of chips is always determined in such a way that the chips saved by the young 
individuals can be exactly bought by the monetary savings of the old individuals.

As a professional forecaster, at the beginning of each period, you have to predict the price 
of the chips in the next period, and your prediction is then used by a young individual for mak-
ing a savings decision in the current period. In each period, there are six young individuals, 
each of them is advised by a forecaster. Each forecaster is played by a participant like you.
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The price predictions of participants for the next period determines the number of chips 
young individuals will be selling to the old ones in the current period, and therefore the price of 
the chips in the current period: the higher your price forecast for the next period, the more 
chips the young individuals save and the more chips to buy in the market in the current period, 
and the lower the realized price of chips in the current period. This means that your price 
prediction for the next period only influences the price in the current period, not the price 
in the next period. As for old people, they do not need your forecasts, as they just consume the 
number of chips their savings can buy.

In economies similar to this one, the price of chips has historically been between 1 and 
100.

Information about your prediction task

The experiment lasts for 100 [50] periods or generations. At the beginning of each period, 
you have to submit a prediction of the price of the chips in the next period. This means 
that you will observe the realized value of the price that you predicted in a given period only 
at the end of the next period. Your payoff in each period depends on your forecast error, that is 
the difference between your price forecast for a given period and its realized value (we explain 
below how your payoff is exactly computed). You will then observe your forecast error and 
your corresponding payoff for a forecast made at the beginning of any period at the end of 
the next period.

The experiment starts at period 1. For this period only, you are asked to submit two forecasts: 
your price forecast for the current period (period 1) and for the next period (period 2). Once 
all participants have submitted their two price forecasts, all young individuals decide how many 
chips to save and sell to the old in period 1, and this determines the price of the chips in period 1. 
You can now observe your forecast error for period 1. You are then entering period 2.

From period 2 to the end of the experiment (period 100 [50]), you have to submit a single 
forecast of the price in the next period. At period 2, you have to submit your price forecast 
for period 3. After all participants have submitted their price forecasts, young individuals decide 
how many chips to save in period 2, and the price of chips in period 2 is disclosed. You then 
observe your forecast error based on the forecast that you made in period 1 for period 2, and 
your corresponding score for period 2. You are then entering period 3. This sequence of events 
takes place in each of the 100 [50] periods of the experiment.

The computer interface is mainly self-explanatory. When making your forecast at any period, 
the following information will be displayed in the table (right panel of the computer screen) and 
the graph (left panel):

• The price level from the beginning of the experiment (period 1) up to the previous period;
• Your price forecast from the beginning of the experiment up to the current period;
• Your payoff from the beginning of the experiment up to the previous period.

All these elements can be relevant to make your forecasts, but it is up to you to determine how to 
use this information in order to make accurate forecasts.

You have to enter your price predictions in the bottom left part of the screen. When submitting 
your prediction, use a decimal point if necessary (not a comma). For example, if you want to 
submit a prediction of 2.5, type 2.5. At the bottom of the screen there is a status bar telling you 
when you can enter your prediction and when you have to wait for other participants.
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Information about your payoff

In each period, your payoff depends on the accuracy of your price forecast. The accuracy 
of your forecast is measured by the squared error between your price forecasts and the price 
realized values. Your payoff will be displayed on the computer screen in terms of points, and is 
computed as follows:

Your earnings = max

[
1300 − 1300

49
(your forecast error)2 ,0

]
There is a payoff table with the instructions. It shows your payoff for different values of forecast 
errors.

If you forecast the price perfectly, your squared error is zero and you get 1300 points. This 
is the highest payoff that you can get in any period. The more accurate your forecast, the lower 
your squared forecast error, and the higher your payoff. If your forecast error is higher than 7, 
you get 0 point, and this is the minimum payoff you can get in any period.

Example If your price forecast was 6 and the realized price is 5.7, your squared error is (6 −
5.7)2 = 0.32 = 0.09, and your payoff is

max(1300 − 1300

49
× 0.09 = 1298,0) = 1298

points. If your prediction of the price was 32 and the realized price is 42, your squared error is 
(42 − 32)2 = 102 = 100, and your payoff is

max(1300 − 1300

49
× 100 = −1353,0) = 0,

and you do not earn any point.
The sum of your prediction scores over the different periods is shown in the bottom right of 

the screen. At the end of the experiment, your cumulative payoff over all 100 [50] periods is 
computed, and converted into euro. For each 1300 points you make, you earn 0.35 euros. This 
will be the only payment from this experiment, you will not receive a show-up fee on top of 
it.

Please fill out the questionnaire below. We will make sure that every subject has filled out the 
questionnaire with the correct answers for each of the six questions before starting the experi-
ment.

Questionnaire

1. If you enter period 6, for which period are you asked to submit a price forecast?

· · ·

2. If you enter a price prediction for period 10, which period’s price will be influenced by your 
prediction?

· · ·

3. Suppose that in a period, your prediction for the market price was 40, and the market price 
turns out to be 45.5, how many points do you earn in this period?
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· · ·

4. Suppose that in a period, your prediction for the price was 10, and the price turns out to be 
25, how many points do you earn in this period?

· · ·

5. Suppose the total amount of savings of the young generation in period 2 is 5, and the total 
amount of savings in period 3 is 20. In which period will the price be the highest?

· · ·

6. Suppose all forecasters like you are predicting at the beginning of period 12 a “high” price 
for period 13, would you say that:
(a) The price in period 13 is likely to be high;
(b) The price in period 13 is likely to be low;
(c) The price in period 12 is likely to be high;
(d) The price in period 12 is likely to be low;
(e) Forecasts of the price for period 13 do not influence the price in period 13;
(f) Forecasts of the price for period 13 do not influence the price in period 12.
N.B.: multiple answers are possible.
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Pay-off table for the price forecasting task

error points

5.55 483

5.6 468

5.65 453

5.7 438

5.75 423

5.8 408

5.85 392

5.9 376

5.95 361

6 345

6.05 329

6.1 313

6.15 297

6.2 280

6.25 264

6.3 247

6.35 230

6.4 213

6.45 196

6.5 179

6.55 162

6.6 144

6.65 127

6.7 109

6.75 91

6.8 73

6.85 55

6.9 37

6.95 19

error ≥ 7 0
Your payoff : max
[
1300 − 1300

49 (your forecast error)2 ,0
]

1300 points = 0.35 euro

error points error points error points

0 1300 1.85 1209 3.7 937

0.05 1300 1.9 1204 3.75 927

0.1 1300 1.95 1199 3.8 917

0.15 1299 2 1194 3.85 907

0.2 1299 2.05 1189 3.9 896

0.25 1298 2.1 1183 3.95 886

0.3 1298 2.15 1177 4 876

0.35 1297 2.2 1172 4.05 865

0.4 1296 2.25 1166 4.1 854

0.45 1295 2.3 1160 4.15 843

0.5 1293 2.35 1153 4.2 832

0.55 1292 2.4 1147 4.25 821

0.6 1290 2.45 1141 4.3 809

0.65 1289 2.5 1134 4.35 798

0.7 1287 2.55 1127 4.4 786

0.75 1285 2.6 1121 4.45 775

0.8 1283 2.65 1114 4.5 763

0.85 1281 2.7 1107 4.55 751

0.9 1279 2.75 1099 4.6 739

0.95 1276 2.8 1092 4.65 726

1 1273 2.85 1085 4.7 714

1.05 1271 2.9 1077 4.75 701

1.1 1268 2.95 1069 4.8 689

1.15 1265 3 1061 4.85 676

1.2 1262 3.05 1053 4.9 663

1.25 1259 3.1 1045 4.95 650

1.3 1255 3.15 1037 5 637

1.35 1252 3.2 1028 5.05 623

1.4 1248 3.25 1020 5.1 610

1.45 1244 3.3 1011 5.15 596

1.5 1240 3.35 1002 5.2 583

1.55 1236 3.4 993 5.25 569

1.6 1232 3.45 984 5.3 555

1.65 1228 3.5 975 5.35 541

1.7 1223 3.55 966 5.4 526

1.75 1219 3.6 956 5.45 512

1.8 1214 3.65 947 5.5 497
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Appendix H. Instructions of the LtOE for ρ2 = 3 [ρ2 = 5] {ρ2 = 8} /tr = S/

General information about the experiment

Welcome! The experiment is anonymous, the data from your choices will only be linked to 
your station ID, not to your name. If you follow these instructions carefully, you can earn a 
considerable amount of money. You will be paid privately in cash at the end of the experiment, 
after all participants have finished the experiment. Before the payment, you will be asked to fill 
out a short questionnaire. On your desk you will find a calculator that you can use during the 
experiment. Before starting the experiment, you have to answer the questions at the end of the 
instructions to make sure that you understand your role in the experiment.

Each participant has the same role, and the rules are the same for all participants. From now 
until the end of the experiment, you are not allowed to communicate with other participants. 
If you have any questions, please raise your hand, and we will come to you and answer your 
question privately.

Information about the experimental economy

You participate in a market for a consumption good. We will refer to this consumption good as 
chips. In every period, two generations of individuals – the young and the old – trade chips. Imag-
ine that a period in this economy represents a generation: in each period, the young generation 
from the previous period becomes old, and a new young generation enters. The young generation 
consists of individuals of working age who receive an income of 200 /100/ chips. The old gen-
eration does not work any more, and therefore only receives a smaller income of 50 /80/ chips. 
These incomes are fixed and identical across all individuals from the same generation.

Young individuals can choose to consume only part of their 200 /100/ chips, and to save
the rest to consume more than their 50 /80/ chips in the next period, when they will be old. 
In each period, a young individual then consumes:

consumption of chips when young = 200/100/ − quantity of chips saved

You work for a Professional Saving Advisor Bureau, and you have to decide in each 
period the quantity of chips a young individual will save. In each period, there are six young 
individuals, each of them follows the savings decision of a professional advisor. Each advisor is 
played by a participant like you.

To carry the saved chips to the next period, the young individual converts these chips into 
money, by selling them to the old individuals. The quantity of money in the economy remains 
constant. The savings of a young individual in money then equals:

savings in money = number of chips saved × current price of the chips

The current price of the chips is always determined in such a way that the chips saved by the 
young individuals can be exactly bought by the monetary savings of the old individuals. The 
more chips all the young individuals save, the lower the realized price of chips, and the more 
chips the old individuals can purchase back with their savings and consume. As old indi-
viduals just consume the number of chips their savings can buy from the new young individuals, 
they do not need your savings advice. The consumption of chips of an old individual then equals:

consumption of chips when old = 50/80/ + savings in money
price of the chips when old
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Your savings decision influences what the individual consumes both when young in the 
current period, and when old in the next period. The price of the chips in the current period
determines how much in money the young individual saves. The price of chips in the next pe-
riod will determine how many chips the individual will be able to buy with his savings when old. 
Therefore, the consumption of chips when old also depends on the return on savings between 
the current period and the next period, defined as:

return on savings = current price (when young)

future price (when old)

The return on savings tells you how many chips the individual will be able to buy when old 
with one chip you choose to save for him when young.

You do not know yet the prices of the current and the next periods, so you do not know 
yet the return on savings when making your savings decision. However, you should make 
a forecast of the return on savings of the next period to guide your savings decision in the 
current period.

Information about your task as an advisor

The savings advisor bureau exists for 50 [{/100/}] periods or generations. Each individual 
lives for two periods, consumes and saves when young, and consumes when old. At the begin-
ning of each period, you have to submit a savings decision for a young individual. Your payoff 
depends on the consumption of chips of this individual both when young and when old
(we explain below how your payoff is exactly computed). This means that you will observe the 
quantity of chips this individual has consumed over his two-period life, and the correspond-
ing payoff of your savings decision, only at the end of the next period, when he will have 
become old.

The experiment starts at period 1. From period 1 to the end of the experiment (period 50
[{/100/}]), you have to make a savings advice. Once all participants have entered their savings 
decision in period 1, all young people consume and save chips, all old individuals trade the 
money they are initially endowed with against the saved chips of the young and consume them. 
This determines the price of chips for period 1. Based on the initial price level, that usually ranges 
from 1 to 100, you observe the first return on savings. You are then entering period 2. After all 
participants have submitted their savings advice for period 2, young individuals consume and 
save chips, old individuals buy and consume chips, and the realized price of chips for period 2 is 
disclosed, which determines the return on savings between period 1 and 2. You then observe the 
consumption of the young person you advised in period 1 both in period 1 (when young) and 2
(when old), and therefore the corresponding payoff of your savings decision made in period 1. 
You are then entering period 3. This sequence of events takes place in each of the 50[{/100/}]
periods of the experiment.

The computer interface is mainly self-explanatory. When making your savings decision at 
any period, the following information will be displayed in the table (right panel of the computer 
screen):

• The price level from the beginning of the experiment (period 1) up to the previous period;
• The return on savings from period 1 up to the previous period;
• The average savings decisions among the 6 advisers from the beginning of the experiment 

(period 1) up to the previous period;
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• Your savings decisions from the beginning of the experiment (period 1) up to the previous 
period;

• The corresponding consumption of chips when young from the beginning of the experiment 
(period 1) up to the previous period;

• The consumption of chips when old of the individual you advised when young from period 
2 up to the previous period;

• Your payoff from period 2 up to the previous period.

The two plots (left panel) indicate your savings decisions together with the average decisions and 
the returns on savings.

All these elements can be relevant to make your savings decision but it is up to you to deter-
mine how to use this information. In each period, the return on savings you need to forecast 
for the next period and the savings decision you need to make for the current period will be 
displayed on your screen with question marks (?) to help you.

When submitting your savings decision, use a decimal point if necessary (not a comma). For 
example, if you want to save 15.05 chips, type 15.05. At the bottom of the screen there is a status 
bar telling you when you can enter your savings decision and when you have to wait for other 
participants.

Information about your payoff

In each period, your payoff depends on the quality of your savings decisions. The higher 
utility the individual you are advising gets from his consumption when young and when 
old, the higher the quality of your savings decisions, and the higher your payoff. You do not 
need to calculate his utility, and hence your payoff yourself. There is a payoff table on your 
table. According to your forecast of the return on savings (vertical axis), it shows the number of 
points that you can earn for a given savings decision. You should use this payoff table to choose 
your savings decision in the current period (horizontal axis) according to your forecast of 
the return on savings in the next period (vertical axis). Note that the payoff table displays only 
some possible savings decisions and forecasts of the return on savings, but you can choose other 
ones. For instance, you do not need to choose between 130 or 140, but you may submit 131.2. 
Equally, you do not have to choose between 0.7 and 0.8 for your forecast of the return on savings, 
you may choose 0.72.

Example If you have advised a young person to save 90 chips, and the current price turns out 
to be 10 and the next period’s price 20, the return on savings is 10

20 = 0.5, this person consumes 
200 − 90 = 110/100 − 90 = 10/ when young, and 50 + 0.5 × 90 = 95/80 + 0.5 × 90 = 125/

when old, and your payoff is 772[422]{356}/329/ points. For the same savings decision and 
current price, if the next period’s price turns out to be 5, the return on savings is 10

5 = 2 and 
this person consumes 50 + 2 × 90 = 230/80 + 2 × 90 = 260/ when old, and your payoff is 
1002[630]{475}/394/ points.

The sum of your payoff from your savings advices over the different periods is shown in 
the bottom right of the screen. At the end of the experiment, your cumulative payoff over all 
50[{/100/}] periods is computed, and converted into euro. For each 1000 points you make, you 
earn 0.5 euros. This will be the only payment from this experiment, you will not receive a 
show-up fee on top of it.
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You now have to fulfil the questionnaire below on the last page of these instructions. We will 
make sure that every subject has filled out the questionnaire with the correct answers for each of 
the seven questions before starting the experiment.

If you have any questions, please ask them now!

Questionnaire

1. If you enter period 6, for which period do you need to forecast the return on savings to make 
your savings decision?

· · ·
2. If you make a savings decision at the beginning of period 9, in which period will you observe 

your corresponding payoff?

· · ·
3. If you advise to save 150 chips, how many chips will the individual consume when young?

· · ·
4. Suppose that in a period 9, you advised to save 4 chips, the price of the chips was 30 in this 

period, and 10 in the next period (period 10). What is the return on savings between period 
9 and period 10?

· · ·
5. Suppose you forecast that the return on savings will be 9.5, how many chips should you 

advise to save? Use your payoff table!

· · ·
6. Suppose the total amount of savings of the young generation in period 2 is 100, and the total 

amount of savings in period 3 is 200. In which period will the price be the highest?

· · ·
7. Suppose you have decided for a young individual to save 100 chips in a given period.

(a) The young individual will consume

100 + 50 = 150

chips when old.
(b) You do not know yet how many chips the individual will consume when old.
(c) The consumption of the individual when old will depend only on the price of the chips 

in the next period.
(d) The consumption of the individual when old will depend on both the price of the chips 

in the current and in the next period, and his savings when young.
(e) You know the current price of the chips when making a saving decision.
N.B.: multiple answers are possible.
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table
ρ

2 =
3

30 140 150 160 170 180 190 200

0 0 0 0 0 0 0 0

4 5 0 0 0 0 0 0

07 164 115 59 0 0 0 0

04 364 316 261 193 109 0 0

21 479 430 372 303 216 98 0

96 552 500 440 368 279 159 0

48 601 547 485 411 320 197 0

84 635 580 515 440 347 223 0

11 660 603 537 460 367 242 0

31 679 621 554 475 381 255 0

47 694 634 566 487 392 265 0

59 705 645 576 496 400 273 0

70 715 653 584 503 407 279 0

78 722 660 590 509 412 284 0

85 728 665 595 514 416 288 0

90 733 670 599 518 420 291 0

95 738 674 603 521 423 294 0

99 741 677 606 524 425 296 0

03 744 680 608 526 427 298 0

06 747 683 611 528 429 300 0

08 750 685 613 530 431 301 0

11 752 687 614 531 432 303 0

24 763 697 624 540 440 310 0

29 768 701 627 543 443 312 0

32 770 703 629 545 444 314 0

33 771 704 630 546 445 314 0

34 772 705 631 546 446 315 0

35 773 706 631 546 446 315 0

35 773 706 631 547 446 315 0

35 773 706 632 547 446 316 0
Your savings decision
1 10 20 30 40 50 60 70 80 90 100 110 120 1

0.01 411 382 350 316 281 244 207 168 127 84 39 0 0

0.05 413 398 380 361 340 318 293 267 238 207 174 137 97 5

0.1 415 417 417 414 408 398 386 371 352 331 306 277 244 2

0.2 419 454 484 507 522 530 533 530 522 508 490 466 438 4

0.3 423 488 544 586 615 633 643 644 639 627 609 586 556 5

0.4 426 521 598 653 691 715 727 729 724 711 691 666 634 5

0.5 430 552 647 712 755 780 793 794 787 772 750 722 688 6

0.6 434 581 691 763 808 834 845 845 835 818 793 763 726 6

0.7 438 609 731 808 854 879 888 885 873 853 826 794 755 7

0.8 442 635 768 847 893 916 923 918 903 881 852 817 777 7

0.9 446 660 801 882 927 948 952 944 927 903 872 836 794 7

1 450 684 831 913 956 975 977 967 948 921 889 851 808 7

1.1 453 707 859 941 982 998 997 985 964 936 902 863 819 7

1.2 457 728 885 966 1005 1018 1015 1001 978 949 913 873 828 7

1.3 461 749 909 988 1025 1036 1031 1014 990 959 923 882 836 7

1.4 464 768 931 1008 1042 1051 1044 1026 1000 968 931 889 842 7

1.5 468 787 951 1027 1058 1065 1056 1036 1009 976 938 895 847 7

1.6 472 804 970 1044 1073 1077 1066 1045 1017 982 943 900 852 7

1.7 475 821 987 1059 1085 1088 1075 1053 1023 988 948 904 856 8

1.8 479 838 1004 1073 1097 1097 1083 1059 1029 993 953 908 859 8

1.9 483 853 1019 1085 1107 1106 1090 1066 1034 998 957 911 862 8

2 486 868 1033 1097 1117 1114 1097 1071 1039 1002 960 914 865 8

3 521 988 1135 1176 1178 1162 1136 1103 1066 1024 980 931 880 8

4 553 1070 1194 1217 1208 1185 1153 1117 1077 1034 988 938 886 8

5 584 1128 1231 1241 1225 1197 1163 1125 1083 1039 992 942 889 8

6 613 1172 1255 1257 1235 1204 1168 1129 1087 1042 994 944 890 8

7 641 1205 1272 1267 1242 1209 1172 1132 1089 1043 996 945 891 8

8 668 1230 1285 1274 1247 1212 1174 1133 1090 1045 997 946 892 8

9 692 1251 1294 1279 1250 1215 1176 1135 1091 1045 997 946 892 8

10 716 1267 1302 1283 1253 1216 1177 1136 1092 1046 998 947 893 8(N
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table
ρ

2 =
5

130 140 150 160 170 180 190 200

5 5 5 5 5 5 5 5

7 6 6 6 5 5 5 5

15 14 12 11 9 7 6 5

99 90 78 64 49 34 20 6

189 166 140 114 86 60 35 8

249 215 179 143 108 74 43 10

287 244 201 159 119 82 47 11

309 261 214 169 126 86 50 11

324 272 222 174 130 89 51 11

333 279 227 178 132 90 52 12

339 283 230 180 134 91 53 12

344 286 232 182 135 92 53 12

346 289 234 183 135 92 53 12

349 290 235 183 136 93 53 12

350 291 236 184 136 93 53 12

351 292 236 184 137 93 53 12

352 293 237 185 137 93 54 12

353 293 237 185 137 93 54 12

353 293 237 185 137 93 54 12

354 294 237 185 137 93 54 12

354 294 238 185 137 93 54 12

354 294 238 185 137 93 54 12

356 295 238 186 137 93 54 12

356 295 238 186 137 93 54 12

356 295 238 186 137 93 54 12

356 295 238 186 137 93 54 12

356 295 238 186 137 93 54 12

356 295 238 186 137 93 54 12

356 295 238 186 137 93 54 12

356 295 238 186 137 93 54 12

356 295 238 186 137 93 54 12
Your savings decision
1 5 10 20 30 40 50 60 70 80 90 100 110 120

0.05 5 5 5 5 5 5 5 5 5 6 7 10 7 6

0.075 5 5 5 5 5 5 5 6 6 6 7 7 12 12

0.1 5 5 5 5 5 6 7 8 10 11 13 14 15 20

0.2 5 5 5 7 14 26 42 59 76 90 100 106 108 105

0.3 5 5 6 17 44 83 126 165 196 217 228 229 222 208

0.4 5 5 8 37 98 170 236 288 321 338 339 328 308 281

0.5 5 5 13 70 168 268 349 401 428 433 422 398 366 328

0.6 5 6 20 113 248 368 451 497 512 504 480 445 403 357

0.7 5 7 31 164 331 461 540 574 576 556 521 477 428 376

0.8 5 9 44 220 412 544 614 636 625 594 550 499 445 389

0.9 5 11 62 279 489 617 675 684 662 622 571 515 456 397

1 5 14 82 340 559 680 725 721 690 642 586 526 464 403

1.1 5 17 105 400 624 734 766 751 711 658 597 534 470 407

1.2 5 22 130 458 682 780 799 775 728 669 605 540 474 410

1.3 5 27 157 514 734 819 826 794 741 678 612 544 477 412

1.4 5 33 186 567 780 852 849 809 751 685 616 547 480 414

1.5 5 40 217 618 820 880 867 821 759 691 620 550 481 415

1.6 5 48 248 665 856 903 883 831 766 695 623 552 483 416

1.7 5 57 280 708 888 924 895 839 771 699 626 554 484 417

1.8 5 66 313 749 917 941 906 846 775 702 627 555 485 418

1.9 5 77 346 787 941 957 915 852 779 704 629 556 485 418

2 5 88 379 822 964 970 923 856 782 706 630 557 486 418

3 6 230 678 1051 1087 1036 960 878 795 714 636 560 488 420

4 9 399 897 1153 1131 1056 970 884 798 716 637 561 489 420

5 15 563 1044 1203 1149 1064 974 886 799 717 637 561 489 420

6 23 710 1141 1229 1157 1067 976 886 800 717 637 561 489 421

7 36 834 1206 1243 1162 1069 977 887 800 717 637 561 489 421

8 51 936 1250 1252 1164 1070 977 887 800 717 637 561 489 421

9 71 1019 1281 1257 1166 1070 977 887 800 717 637 561 489 421

10 93 1087 1303 1261 1167 1071 977 887 800 717 637 561 489 421

20 415 1354 1364 1268 1169 1071 978 887 800 717 637 561 489 421
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ρ
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8

Your savings decision

30 140 150 160 170 180 190 200

15 11 10 10 10 10 10 10

11 15 15 11 10 10 10 10

11 11 15 15 11 11 10 10

10 11 11 15 15 11 10 10

10 10 11 15 15 11 10 10

10 10 11 15 15 15 11 10

10 10 11 11 11 11 15 11

10 10 10 10 10 11 15 10

10 10 10 10 10 11 15 10

10 10 10 10 11 15 15 10

10 10 10 10 11 15 15 10

10 10 10 10 11 15 15 10

10 10 10 10 11 15 15 10

10 10 11 11 11 15 15 10

11 11 11 12 15 15 11 11

67 70 70 66 60 51 39 21

65 152 135 116 96 75 55 26

18 191 163 135 108 83 59 28

41 206 173 141 112 86 60 28

57 216 179 145 115 87 61 29

60 218 180 146 115 87 61 29

60 218 180 146 115 87 61 29

60 218 180 146 115 87 61 29

60 218 180 146 115 87 61 29

60 218 180 146 115 87 61 29

60 218 180 146 115 87 61 29

60 218 180 146 115 87 61 29

60 218 180 146 115 87 61 29

60 218 180 146 115 87 61 29

60 218 180 146 115 87 61 29

60 218 180 146 115 87 61 29

60 218 180 146 115 87 61 29

60 218 180 146 115 87 61 29

60 218 180 146 115 87 61 29

60 218 180 146 115 87 61 29

60 218 180 146 115 87 61 29

60 218 180 146 115 87 61 29

60 218 180 146 115 87 61 29
1 5 10 20 30 40 50 60 70 80 90 100 110 120 1

0.005 10 10 10 10 10 10 10 10 10 10 10 10 11 15

0.006 10 10 10 10 10 10 10 10 10 10 10 10 10 11

0.007 10 10 10 10 10 10 10 10 10 10 10 10 10 10

0.008 10 10 10 10 10 10 10 10 10 10 10 10 10 10

0.009 10 10 10 10 10 10 10 10 10 10 10 10 10 10

0.01 10 10 10 10 10 10 10 10 10 10 10 10 10 10

0.02 10 10 10 10 10 10 10 10 10 10 10 10 10 10

0.03 10 10 10 10 10 10 10 10 10 10 10 10 10 10

0.04 10 10 10 10 10 10 10 10 10 10 10 10 10 10

0.05 10 10 10 10 10 10 10 10 10 10 10 10 10 10

0.06 10 10 10 10 10 10 10 10 10 10 10 10 10 10

0.07 10 10 10 10 10 10 10 10 10 10 10 10 10 10

0.08 10 10 10 10 10 10 10 10 10 10 10 10 10 10

0.09 10 10 10 10 10 10 10 10 10 10 10 10 10 10

0.1 10 10 10 10 10 10 10 10 10 10 10 10 10 10

0.2 10 10 10 10 10 10 10 11 14 19 28 39 50 60

0.3 10 10 10 10 10 11 19 37 68 103 135 158 170 171 1

0.4 10 10 10 10 12 26 68 132 194 241 266 271 262 243 2

0.5 10 10 10 10 21 76 172 265 328 355 356 338 310 277 2

0.75 10 10 10 23 143 334 467 520 519 489 445 397 348 301 2

1 10 10 10 94 373 573 638 626 581 525 466 409 355 305 2

1.25 10 10 13 239 584 713 713 665 601 536 472 412 357 306 2

1.5 10 10 24 415 730 786 747 680 609 539 474 413 358 307 2

1.75 10 10 53 579 821 824 762 687 612 541 475 414 358 307 2

2 10 10 104 711 876 843 769 690 613 541 475 414 358 307 2

3 10 25 461 973 952 866 777 693 614 542 475 414 358 307 2

4 10 109 788 1043 965 870 778 693 614 542 475 414 358 307 2

5 10 279 978 1064 968 870 778 693 614 542 475 414 358 307 2

6 10 485 1077 1072 969 870 778 693 614 542 475 414 358 307 2

8 10 828 1155 1076 970 871 778 693 614 542 475 414 358 307 2

10 10 1028 1178 1076 970 871 778 693 614 542 475 414 358 307 2

25 291 1247 1192 1077 970 871 778 693 614 542 475 414 358 307 2

50 1070 1252 1192 1077 970 871 778 693 614 542 475 414 358 307 2

75 1250 1252 1192 1077 970 871 778 693 614 542 475 414 358 307 2

100 1287 1252 1192 1077 970 871 778 693 614 542 475 414 358 307 2

125 1297 1252 1192 1077 970 871 778 693 614 542 475 414 358 307 2

150 1300 1252 1192 1077 970 871 778 693 614 542 475 414 358 307 2

200 1302 1252 1192 1077 970 871 778 693 614 542 475 414 358 307 2

(N
um

be
r o

f c
hi

ps
 b

ou
gh

t w
he

n 
ol

d 
w

ith
 o

ne
 c

hi
p 

sa
ve

d 
w

he
n 

yo
un

g)
Y

ou
r f

or
ec

as
t o

f t
he

 re
tu

rn
 o

n 
sa

vi
ng

s



170 J. Arifovic et al. / Journal of Economic Theory 183 (2019) 106–182
Appendix I. Computer interfaces (Figs. 32-33)

Fig. 32. Subjects’ computer interface (LtFE).

Fig. 33. Subjects’ computer interface (LtOE).
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Appendix J. LtF instructions for even generation [odd generation]

Welcome! The experiment is anonymous, the data from your choices will only be linked to 
your station ID, not to your name. If you follow these instructions carefully, you can earn a 
considerable amount of money. You will be paid privately in cash at the end of the experiment, 
after all participants have finished the experiment. Before the payment, you will be asked to fill 
out a short questionnaire. On your desk you will find a calculator and scratch paper, which you 
can use during the experiment. Before starting the experiment, you have to answer the questions 
at the end of the instructions to make sure that you understand your role in the experiment.

Each participant has the same role, and the rules are the same for all participants. From now 
until the end of the experiment, you are not allowed to communicate with other partic-
ipants. If you have any questions, please raise your hand, and we will come to you and 
answer your question privately.

Information about the experimental economy

You participate in a market, in which individuals trade a consumption good at a given price in 
each period. We will refer to this consumption good as chips. You are a Professional Forecaster, 
and you have to make predictions of the price of a chip.

In every period, two generations of individuals – the young and the old – trade chips. In each 
period, the young generation from the previous period becomes old, and a new young generation 
enters. The young generation consists of individuals of working age who receive an income of 
200 chips. The old generation does not work any more, and therefore only receives a smaller 
income of 50 chips. These incomes are fixed and identical across all individuals from the same 
generation.

Young individuals can choose to consume only part of their 200 chips, and to save the rest to 
consume more in the next period, when they will be old. In each period, a young individual then 
consumes:

consumption of chips when young = 200 − number of chips saved

To carry the saved chips to the next period, the young individual converts these chips into 
money, by selling them to the old individuals at the current price in the chips market. The savings 
of a young individual in money then equals:

savings in money = number of chips saved × current price of the chips

Once old, in the next period, an individual spends all his money to buy as many chips as his 
savings can buy from the new young individuals, at the prevailing price for chips. The amount of 
consumption of chips of an old individual then equals:

consumption of chips when old = 50 + savings in money

price of the chips when old

The price of chips is always determined in such a way that the chips saved by the young 
individuals can be exactly bought by the monetary savings of the old individuals.

As a professional forecaster, you advise an individual of the generations that are young 
in even [ odd ] periods, namely in periods 2, 4, 6, etc. At the beginning of each even [ odd ]
period, you have to predict the price of the chips in the next odd [ even ] period, and your 
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prediction is then used by the young individual for making a savings decision in the current 
even [ odd ] period.

There are six forecasters who make price predictions in even [ odd ] periods, and six other 
forecasters who make predictions for the generations that are young in odd [ even ] periods . Each 
forecaster is played by a participant like you. Once the individuals you are advising become old, 
they do not need your price forecasts, as they just consume the number of chips their savings 
can buy. Therefore, in odd [ even ] periods, you do not make predictions and you wait for the 
forecasters to the young generation in odd [ even ] periods to submit their price forecasts for the 
next even [ odd ] period.

In general, the price predictions of participants for the next period determine the number 
of chips young individuals are selling to the old ones in the current period, and therefore the 
price of the chips in the current period: the higher the price forecasts for the next period, 
the more chips the young individuals save and the more chips to buy in the market in the current 
period, and the lower the realized price of chips in the current period. This means that price 
predictions for the next period only influences the price in the current period, not the price 
in the next period.

In economies similar to this one, the price of chips has historically been between 1 and 
100.

Information about your prediction task

The experiment lasts for 100 periods. At the beginning of each even [ odd ] period, you have 
to submit a prediction of the price of the chips in the next odd [ even ] period. This means 
that you will observe the realized value of the price that you predicted in a given period only 
at the end of the next period. Your pay-off depends on your forecast error, that is the difference 
between your price forecast and its realized value (we explain below how your pay-off is exactly 
computed). You will then observe your forecast error and your corresponding pay-off for a 
forecast made at the beginning of any period at the end of the next period.

The experiment starts in period 1, you have to wait for the other 6 forecasters to submit a 
prediction for the price in period 2. Once all 6 forecasters have submitted their price forecast, the 
young individuals they are advising decide how many chips to save and sell to the old in period 1, 
and this determines the price of the chips in period 1. [ The experiment starts in period 1, you are 
asked to submit a forecast for the next period (period 2). Once all 6 forecasters have submitted 
their price forecast, all young individuals decide how many chips to save and sell to the old in 
period 1, and this determines the price of the chips in period 1. You are then entering period 2. ]

You are then entering period 2. You are now asked to submit a price forecast for the next 
period (period 3). Once all 6 forecasters have done so, you will observe the realized price in 
period 2. You are then entering period 3, and have to wait for the other 6 participants to submit 
their forecasts for the price in period 4. Once they all have done so, you will observe the price 
in period 3, your forecast error based on the forecast that you made in period 2 for period 3, and 
your corresponding payoff for period 3. You are then entering period 4, and have to submit a 
price forecast for period 5, etc. This sequence of events takes place in each of the 100 periods 
of the experiment. [ In period 2, you wait for the other 6 forecasters to submit a prediction for 
the price in period 3. Once they all have done so, you will observe the realized price in period 
2, your forecast error based on the forecast that you made in period 1 for period 2, and your 
corresponding payoff for period 2. You are then entering period 3, and have to submit a price 
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forecast for period 4, etc. This sequence of events takes place in each of the 100 periods of the 
experiment. ]

The computer interface is mainly self-explanatory. The following information will be dis-
played in the table (right panel of the computer screen) and the graph (left panel):

• The price level from the beginning of the experiment (period 1) up to the previous period;
• Your past price forecasts from the beginning of the experiment on;
• Your pay-off from the beginning of the experiment on.

All these elements can be relevant to make your forecasts, but it is up to you to determine how to 
use this information in order to make accurate forecasts.

You have to enter your price predictions in the bottom left part of the screen. When submitting 
your prediction, use a decimal point if necessary (not a comma). For example, if you want to 
submit a prediction of 2.5, type 2.5. At the bottom of the screen there is a status bar telling you 
when you can enter your prediction and when you have to wait.

Information about your pay-off

Your pay-off depends on the accuracy of your price forecast. The accuracy of your forecast 
is measured by the squared error between your price forecasts and the price realized values. Your 
pay-off will be displayed on the computer screen in terms of points, and is computed as follows:

Your payoff = max

[
1300 − 1300

49
(your forecast error)2 ,0

]

There is a pay-off table with the instructions. It shows your pay-off for different values of forecast 
errors.

If you forecast the price perfectly, your squared error is zero and you get 1300 points. This 
is the highest pay-off that you can get in any period. The more accurate your forecast, the lower 
your squared forecast error, and the higher your pay-off. If your forecast error is higher than 7, 
you get 0 point, and this is the minimum pay-off you can get in any period.

Example If your price forecast was 6 and the realized price is 5.7, your squared error is (6 −
5.7)2 = 0.32 = 0.09, and your pay-off is max(1300 − 1300

49 × 0.09 = 1298, 0) = 1298 points. If 
your prediction of the price was 32 and the realized price is 42, your squared error is (42 −32)2 =
102 = 100, and your pay-off is max(1300 − 1300

49 × 100 = −1353, 0) = 0, and you do not earn 
any point.

The sum of your prediction scores over the different periods is shown in the bottom right of 
the screen. At the end of the experiment, your cumulative pay-off in the experiment is computed, 
and converted into euro. For each 1300 points you make, you earn 0.70 euros. This will be 
the only payment from this experiment, you will not receive a show-up fee on top of it.

Please fill out the questionnaire below. We will make sure that every subject has filled out the 
questionnaire with the correct answers for each of the six questions before starting the experi-
ment.
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Questionnaire

1. If the economy enters period 7, are you waiting or submitting a price forecast?

· · ·

2. If you enter period 12 [13], for which period are you asked to submit a price forecast?

· · ·

3. If you enter a price prediction for period 11 [10], which period’s price will be influenced by 
your prediction?

· · ·

4. Suppose that in a period, your prediction for the market price was 40, and the market price 
turns out to be 45.5, how many points do you earn in this period?

· · ·

5. Suppose that in a period, your prediction for the price was 10, and the price turns out to be 
25, how many points do you earn in this period?

· · ·

6. Suppose the total amount of savings of the young generation in period 2 is 5, and the total 
amount of savings in period 3 is 20. In which period will the price be the highest?

· · ·

7. Suppose all forecasters like you are predicting at the beginning of period 12[13] a “high” 
price for period 13[14], would you say that:
(a) The price in period 13[14] is likely to be high;
(b) The price in period 13[14] is likely to be low;
(c) The price in period 12[13] is likely to be high;
(d) The price in period 12[13] is likely to be low;
(e) Forecasts of the price for period 13[14] do not influence the price in period 13[14];
(f) Forecasts of the price for period 13[14] do not influence the price in period 12[13].
N.B.: multiple answers are possible.

Appendix K. LtO instructions for even generation [odd generation]

General information about the experiment

Welcome! The experiment is anonymous, the data from your choices will only be linked to 
your station ID, not to your name. If you follow these instructions carefully, you can earn a 
considerable amount of money. You will be paid privately in cash at the end of the experiment, 
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after all participants have finished the experiment. Before the payment, you will be asked to fill 
out a short questionnaire. On your desk you will find a calculator and scratch paper, which you 
can use during the experiment. Before starting the experiment, you have to answer the questions 
at the end of the instructions to make sure that you understand your role in the experiment.

Each participant has the same role, and the rules are the same for all participants. From now 
until the end of the experiment, you are not allowed to communicate with other partic-
ipants. If you have any questions, please raise your hand, and we will come to you and 
answer your question privately.

Information about the experimental economy

You participate in a market for a consumption good. We will refer to this consumption good 
as chips. In every period, two generations of individuals – the young and the old – trade chips. 
In each period, the young generation from the previous period becomes old, and a new young 
generation enters. The young generation consists of individuals of working age who receive an 
income of 200 chips. The old generation does not work any more, and therefore only receives a 
smaller income of 50 chips. These incomes are fixed and identical across all individuals from the 
same generation.

Young individuals can choose to consume only part of their 200 chips, and to save the 
rest to consume more than their 50 chips in the next period, when they will be old. In each 
period, a young individual then consumes:

consumption of chips when young = 200 − quantity of chips saved

You work for a Professional Saving Advisor Bureau, and you have to give saving advice.
To carry the saved chips to the next period, the young individual converts these chips into 

money, by selling them to the old individuals. The quantity of money in the economy remains 
constant. The savings of a young individual in money then equals:

savings in money = number of chips saved × current price of the chips

The current price of the chips is always determined in such a way that the chips saved by the 
young individuals can be exactly bought by the monetary savings of the old individuals. The 
more chips the young individuals save, the lower the realized price of chips, and the more 
chips the old individuals can buy with their savings and consume.

As a professional saving advisor, you make savings decisions for an individual of the 
generations who are young in even[ odd] periods, namely in periods 2, 4, 6, [ 1, 3, 5] etc. 
You then have to make a saving decision at the beginning of each even[ odd] period. There 
are six advisors like you who give saving advice in even [ odd] periods, and six others who advise 
the generations that are young in odd [ even] periods. Each advisor is played by a participant like 
you.

Once the individuals you advise have become old, they just consume the number of chips their 
savings can buy from the new young individuals. The consumption of chips of an old individual 
then equals:

consumption of chips when old = 50 + savings in money

price of the chips when old

Hence, old individuals do not need your savings advises, and in odd [ even] periods, you do 
not give advice and have to wait for the other six advisors to the young generations in odd [ even]
periods to submit their savings advice.
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In general, your saving decision influences what the individual consumes both when young
in a given even [ odd] period, and when old in the next odd [ even] period. The price of the 
chips in the current period determines how much in money the young individual saves. The
price of chips in the next period will determine how many chips the individual will be able to 
buy with his savings when old. Therefore, the consumption of chips when old also depends on 
the return on savings between the current period and the next, defined as:

return on savings = current price (when young)

future price (when old)

The return on savings tells you how many chips the individual will be able to buy when old 
with one chip you choose to save for him when young.

You do not know yet the prices of the current and the next periods, so you do not know yet the 
return on savings when making your savings decision. However, you should make a forecast 
of the return on savings of the next odd [ even] period to guide your savings decision in the 
current even [ odd] period.

Information about your task as an advisor

The savings advisor bureau exists for 100 periods. Each individual lives for two periods, 
consumes and saves when young, and consumes when old. At the beginning of each even [ odd]
period, you have to submit a savings decision for a young individual. Your pay-off depends 
on the consumption of chips of this individual both when young and when old (we explain 
below how your pay-off is exactly computed). This means that you will observe the quantity of 
chips this individual has consumed over his two-period life, and the corresponding pay-off 
of your savings decision made in even [ odd] periods only at the end of the next (odd) 
[ (even)]period, when he will have become old.

The experiment starts in period 1, you have to wait for the other 6 advisors to make savings 
decisions for the individuals in the generations that are young in odd periods. Once all 6 advisors 
have done so, the young individuals they are advising consume and save chips in period 1, all old 
individuals trade the money they are initially endowed with against the saved chips of the young 
and consume them. This determines the price of chips for period 1. You are then entering period 
2. You are now asked to submit a saving decision for this period (period 2). Once all six advisors 
have done so, the young individuals in period 2 consume and save chips, old individuals buy 
and consume chips, and the realized price of chips for period 2 is disclosed, which determines 
the return on savings between period 1 and 2. You are then entering period 3 and have to wait 
for the other six participants to submit their savings decisions, which will determine the price in 
period 3 and the return on savings between periods 2 and 3. You then observe the consumption 
of the young person you advised in period 2 both in period 2 (when young) and 3 (when old), 
and therefore the corresponding pay-off of your savings decision made in period 2. You then 
enter period 4 and are asked to submit a savings advise for a new young individual in this period, 
etc. [ The experiment starts in period 1, and you are asked to submit a saving decision for this 
period. Once all six participants like you have entered their savings decision, all young people 
consume and save chips in period 1, all old individuals trade the money they are initially endowed 
with against the saved chips of the young and consume them. This determines the price of chips 
for period 1. You are then entering period 2. You have to wait for the other six advisors to 
make savings decisions for the individuals of the young generation in period 2. Once they all 
have done so, those young individuals consume and save chips in period 2, old individuals buy 
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and consume chips, and the realized price of chips for period 2 is disclosed, which determines 
the return on savings between period 1 and 2. You then observe the consumption of the young 
person you advised in period 1 both in period 1 (when young) and 2 (when old), and therefore the 
corresponding pay-off of your savings decision made in period 1. You are then entering period 3
and are asked to enter a savings advise for a new young individual in this period, etc. ]

This sequence of events takes place in each of the 100 periods of the experiment.
The computer interface is mainly self-explanatory. The following information will be dis-

played in the table (right panel of the computer screen):

• The price level from the beginning of the experiment (period 1) up to the previous period;
• The return on savings from period 2 up to the previous period;
• The average savings decisions among the 6 advisors to your generations from the beginning 

of the experiment (period 2) [(period 1)] on;
• Your savings decisions from the beginning of the experiment on;
• The corresponding consumption of chips of the individuals you advised when young from 

the beginning of the experiment on;
• The consumption of chips when old of the individuals you advised when young from the 

beginning of the experiment on;
• Your pay-off from the beginning of the experiment on.

The two plots (left panel) indicate your savings decisions together with the average decisions 
of the advisors to your generations and the returns on savings.

All these elements can be relevant to make your savings decision but it is up to you to deter-
mine how to use this information. In each even [odd] period, the return on savings you need to 
forecast for the next odd [even] period and the savings decision you need to make for the 
current even [odd] period will be displayed on your screen with question marks (?) to help 
you.

When submitting your savings decision, use a decimal point if necessary (not a comma). For 
example, if you want to save 15.05 chips, type 15.05. At the bottom of the screen there is a status 
bar telling you when you can enter your saving decision and when you have to wait.

Information about your pay-off

Your pay-off depends on the quality of your savings decisions. The higher utility the 
individual you are advising gets from his consumption when young and when old, the higher 
the quality of your savings decisions, and the higher your pay-off. You do not need to calculate 
his utility, and hence your pay-off yourself. There is a pay-off table on your desk. According 
to your forecast of the return on savings (vertical axis), it shows the number of points that you 
can earn for a given savings decision. You should use this payoff table to choose your savings 
decision in the current even [odd] period (horizontal axis) according to your forecast of the 
return on savings in the next odd [even] period (vertical axis). Note that the payoff table 
displays only some possible savings decisions and forecasts of the return on savings, but you can 
choose other ones. For instance, you do not need to choose between 130 or 140, but you may 
submit 131.2. Equally, you do not have to choose between 0.7 and 0.8 for your forecast of the 
return on savings, you may choose 0.72.
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Example If you have advised a young person to save 90 chips, and the current price turns out to 
be 10 and the next period’s price 20, the return on savings is 10/20 = 0.5, this person consumes 
200 − 90 = 110 when young, and 50 + 0.5 × 90 = 95 when old, and your payoff is 422 {661}
points. For the same savings decision and current price, if the next period’s price turns out to be 
5, the return on savings is 10/5 = 2 and this person consumes 50 + 2 × 90 = 230 when old, and 
your payoff is 630 {707} points.

The sum of your payoff from your savings advice over the different periods is shown in 
the bottom right of the screen. At the end of the experiment, your cumulative payoff over the 
experiment is computed, and converted into euro. For each 1300 points you make, you earn 1 
euro. This will be the only payment from this experiment, you will not receive a show-up 
fee on top of it.

You now have to fill the questionnaire below on the last page of these instructions. We will 
make sure that every subject has filled out the questionnaire with the correct answers for each of 
the eight questions before starting the experiment.

If you have any questions, please ask them now!

Questionnaire

1. If you enter period 16, are you waiting or submitting a savings advice?

· · ·

2. If you enter period 6 [7], for which period do you need to forecast the return on savings to 
make your savings decision?

· · ·

3. If you make a saving decision at the beginning of period 10, in which period will you observe 
your corresponding pay-off?

· · ·

4. If you advise to save 150 chips, how many chips will the individual consume when young?

· · ·

5. Suppose that in period 10 [9], you advised to save 4 chips, the price of the chips was 30 in 
this period, and 10 in the next period (period 11 [10]). What is the return on savings between 
period 10 [9] and period 11 [10]?

· · ·

6. Suppose you forecast that the return on savings will be 9.5, how many chips should you 
advise to save? Use your payoff table!

· · ·
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7. Suppose the total amount of savings of the young generation in period 2 is 100, and the total 
amount of savings in period 3 is 200. In which period will the price be the highest?

· · ·

8. Suppose you have decided for a young individual to save 100 chips in a given period, would 
you say that:
(a) The young individual will consume 100 + 50 = 150 chips when old.
(b) You do not know yet how many chips the individual will consume when old.
(c) The consumption of the individual when old will depend only on the price of the chips 

in the next period.
(d) The consumption of the individual when old will depend on both the price of the chips 

in the current and in the next periods, and his savings when young.
(e) You know the current price of the chips when making a saving decision.
N.B.: multiple answers are possible.
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