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Abstract
Photosynthetic eukaryotes show a remarkable variability in photosynthesis, including large differences in light-harvesting 
proteins and pigment composition. In vivo circular spectropolarimetry enables us to probe the molecular architecture of 
photosynthesis in a non-invasive and non-destructive way and, as such, can offer a wealth of physiological and structural 
information. In the present study, we have measured the circular polarizance of several multicellular green, red, and brown 
algae and higher plants, which show large variations in circular spectropolarimetric signals with differences in both spectral 
shape and magnitude. Many of the algae display spectral characteristics not previously reported, indicating a larger variation 
in molecular organization than previously assumed. As the strengths of these signals vary by three orders of magnitude, these 
results also have important implications in terms of detectability for the use of circular polarization as a signature of life.
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Introduction

Terrestrial biochemistry is based upon chiral molecules. 
In their most simple form, these molecules can occur in a 
left-handed and a right-handed version called enantiom-
ers. Unlike abiotic systems, nature almost exclusively uses 
these molecules in only one configuration. Amino acids, for 
instance, primarily occur in the left-handed configuration 
while most sugars occur in the right-handed configuration. 
This exclusive use of one set of chiral molecules over the 

other, called homochirality, therefore serves as a unique and 
unambiguous biosignature (Schwieterman et al. 2018).

Many larger, more complex biomolecules and biomolecu-
lar architectures are chiral too and the structure and func-
tioning of biological systems is largely determined by their 
chiral constituents. Homochirality is required for processes 
ranging from self-replication to enzymatic functioning and 
is therefore also deeply interwoven with the origins of life.

The phenomenon of chirality, i.e., the molecular dis-
symmetry of chiral molecules, causes a specific response 
to light (Fasman 2013; Patty et al. 2018a). This response is 
both dependent on the intrinsic chirality of the molecular 
building blocks and on the chirality of the supramolecular 
architecture. Polarization spectroscopy enables these molec-
ular properties to be probed non-invasively from afar and is 
therefore of great value for astrobiology and the search for 
life outside our solar system. Polarization spectroscopy also 
has a long history in biological and chemical sciences. Cir-
cular dichroism (CD) spectroscopy utilizes the differential 
electronic absorption response of chiral molecules to left- 
and right-handed circularly polarized incident light and is 
very informative for structural and conformational molecular 
dynamics. As such it has proven to be an indispensable tool 
in (bio-)molecular research.

Chirality can also be observed in chlorophylls and bac-
teriochlorophylls utilized in photosynthesis. While their 
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intrinsic CD signal is very weak due to their almost planar 
symmetrical structure, these chlorophylls are organized in a 
chiral supramolecular structure that greatly enhances these 
signals (Garab and van Amerongen 2009). This is particu-
larly the case for the photosynthetic machinery in certain 
eukaryotes, where photosynthesis is carried out in special-
ized organelles, chloroplasts, which in higher plants have a 
large molecular density yielding anomalously large signals: 
polymer- and salt-induced (psi)-type circular dichroism 
(Keller and Bustamante 1986; Garab and van Amerongen 
2009; Garab et al. 1991a; Tinoco et al. 1987).

While circular dichroism spectroscopy depends on the 
modulation of incident light to detect the differential extinc-
tion of circularly polarized light, we have recently shown 
that in leaves comparable results can be obtained by measur-
ing the induced fractional circular polarization of unpolar-
ized incident light (Patty et al. 2017, 2018b). As the latter 
only requires modulation in front of the detector it offers 
unique possibilities, allowing to probe the molecular archi-
tecture from afar. In vegetation, the influence of photosyn-
thesis functioning and vegetation physiology on the polari-
zance could provide valuable information in Earth remote 
sensing applications, as was demonstrated for decaying 
leaves (Patty et al. 2017). As homochirality is a prerequisite 
for these signals (left- and right-handed molecules display 
an exactly opposite signal and will thus cancel out each other 
if present in equal numbers) and is unique to nature, circular 
polarization could also indicate the unambiguous presence 
of life beyond Earth and as such is a potentially very power-
ful biosignature (Sparks et al. 2009a, b; Wolstencroft 1974; 
Patty et al. 2018a; Pospergelis 1969; Schwieterman et al. 
2018).

Higher plants evolved relatively recently in contrast to 
microbial life. Biosignatures of microbial life are mostly 
focused on astrobiology [and which also display typical 
circular polarization signals (Sparks et al. 2009a)]. While 
molecular analysis suggests higher plants appeared by 700 
Ma (Heckman et al. 2001), the earliest fossil records date 
back to the middle Ordovician ( ∼ 470 Ma) (Wellman and 
Gray 2000). The earliest microbial fossil records date back 
to 3.7 Ga (Nutman et al. 2016) and oxygenic photosyn-
thesis (in cyanobacteria) is likely to have evolved before 
2.95 Ga (Planavsky et al. 2014). It is however unclear if 

photosynthetic microbial life would be able to colonize ter-
restrial niches extensively enough to be used as a remotely 
detectable biosignature.

On the other hand, these photosynthetic bacteria stood 
at the basis of the evolution of higher plants as their photo-
synthetic apparatus evolved from a endosymbiosis between 
a cyanobacterium and a heterotrophic host cell. It is widely 
accepted that all chloroplasts stem from a single primary 
endosymbiotic event (Moreira et al. 2000; Ponce-Toledo 
et al. 2017; McFadden 2001). Not all photosynthetic eukar-
yotes, however, descend from this endosymbiotic host, as 
certain algae acquired photosynthesis through secondary 
endosymbiosis of a photosynthetic eukaryote (McFadden 
2001; Green 2011). The simplified evolutionary relations 
between the different algae, based on the host and on the 
chloroplasts, are shown in Fig. 1.

Although algae contribute up to 40% of the global photo-
synthesis (Andersen 1992), they have received limited atten-
tion in astrobiology so far. While not as ancient as micro-
bial life, algae are considerably older than plants, with fossil 
evidence of red algae dating back to 1.6 Ga (Bengtson et al. 
2017). Additionally, molecular research on algae has mainly 
focused on a few unicellular algae, rather than multicellular 
species, and systematic studies on the chiral macro-organ-
ization of algal photosynthesis are lacking (Garab and van 
Amerongen 2009). Despite the common origin, millions of 
years of evolution has caused chloroplasts to show a remark-
able diversity and flexibility in terms of structure (Fig. 2).

In higher plants, the chloroplasts typically display cylin-
drical grana stacks of 10–20 membrane layers that have a 
diameter of 300–600 nm. The stacks are interconnected by 
lamellae of several hundred nm in length (Mustárdy and 
Garab 2003). Additionally, certain plants can display grana 
stacks of more than 100 membrane layers (Anderson et al. 
1973, Steinmann and Sjöstrand 1955) while the bundle 
sheath cells of certain C4 plants, such as maize, lack stacked 
grana and only contain unstacked stroma lamellae (Faludi-
Daniel et al. 1973).

In higher plants, the psi-type circular polarizance is 
largely dependent on the size of the macrodomains formed 
by the photosystem II light-harvesting complex II supercom-
plexes (PSII–LHCII). The structure of PSII–LHCII in higher 
plants is relatively well known and consists of a dimeric 

Fig. 1   Evolutionary relation-
ships based on the host rRNA 
(left) and based on chloroplast 
DNA (cpDNA) (right)
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PSII core complex C2 and associated trimeric LHCII, sub-
divided in three types based on their position and associa-
tion with the core: Loose (L), Moderate (M), and Strong 
(S). Additionally, three minor antennae occur as monomers 
(CP24, CP26, CP29) (Boekema et al. 1999). The position 
of trimer L is still unclear and has so far only been observed 
in spinach (Boekema et al. 1999). The protein constituents 
and their typical circular polarization signature have been 
determined by Tóth et al. (2016). Furthermore, the negative 
band of the psi-type split signal is associated with the stack-
ing of the thylakoid membranes, whereas the positive band is 
associated with the lateral organization of the chiral domains 
(Garab et al. 1988a, 1991b; Cseh et al. 2000).

The evolutionary history of grana and their functional 
advantage has been a matter of debate. It has been proposed 
that the structural segregation by grana of PSII and PSI pre-
vents excitation transfer between these systems (Alberts-
son 2001; Nevo et al. 2012; Trissl and Wilhelm 1993). The 

extended compartmentation brought upon by grana might 
also aid regulatory pathways such as used in carbon fixation 
(Anderson 1999). It has been suggested that grana facili-
tates the regulation of light harvesting and enhance PSII 
functioning from limiting to saturating light levels, while at 
the same time protecting it from sustained high irradiance 
(Anderson 1999). Together with other adaptations, it has 
been hypothesized that these changes might have ultimately 
enabled green algae/plants to colonize and dominate various 
terrestrial niches (Nevo et al. 2012). Others have suggested 
that it might simply be a lack of competition; red algae for 
instance have probably experienced several evolutionary 
bottlenecks, vastly decreasing their genome size and there-
with their potential for evolutionary adaptation (Collen et al. 
2013).

Most closely related to higher plants are the green algae, 
which share a quite recent common ancestor. Similar to 
higher plants, green algae contain chlorophyll a and b. The 
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Fig. 2   Schematic representation of the photosynthetic structures of 
higher plants and algae. There is a distinct organizational difference 
in the supercomplexes between higher plants and algae. Additionally, 
while green algae display stacked thylakoid membranes, they lack 

true grana. Red algae contain phycobilisomes, unlike the other algae. 
In brown algae the thylakoid membranes are threefold and the super-
complex organization is not entirely resolved



132	 Photosynthesis Research (2019) 140:129–139

1 3

structural composition of their photosynthetic machin-
ery and the associated genes is primarily known from the 
unicellular green algae Chlamydomonas. Despite the high 
sequence similarity there are significant differences between 
the supercomplexes of higher plants and green algae. Impor-
tantly, green algae lack CP24, resulting in a different organ-
ization of the PSII–LHCII supercomplex (Tokutsu et al. 
2012). While many green algae display thylakoid stacking, 
which can be up to seven membrane layers thick (Remias 
et al. 2005), true grana in green algae are rare and only 
occur in the late branching taxa Coleochaetales and Cha-
rales (Gunning and Schwartz 1999; Larkum and Vesk 2003).

Red algae also contain thylakoid membranes but these 
are never stacked. Furthermore, unlike green algae and 
plants, red algae can contain chlorophyll d, a pigment with 
an absorption band from 700 to 730 nm (Larkum and Kühl 
2005). The red algae also contain phycobilisomes that serve 
as the primary antennae for PSII rather than the chlorophyll 
binding proteins found in higher plants and other algae. 
These phycobilisomes are homologous to those in cyano-
bacteria, but are lacking in plants and other algae (McFad-
den 2001).

Similarly, brown algae do not possess stacked thylakoid 
membranes but also do not contain phycobilins. All brown 
algae contain chlorophyll a and usually chlorophyll C1, C2, 
and/or C3. The light-harvesting systems in brown algae are 
based on fucoxanthin chlorophyll a/c{1,2,3} proteins (FCP), 
which are homologous to LHC in higher plants/green algae 
but have a different pigment composition and organization 
(Premvardhan et al. 2010; Büchel 2015). Although this is 
still under debate (Burki et al. 2016), the brown algae have 
been classified as one supergroup (Dorrell and Smith 2011). 
Most brown algae have chloroplasts which were acquired 
through one or more endosymbiotic events with red algae 
(Dorrell and Smith 2011). Additionally, certain species of 
brown algae have been shown to display psi-type circular 
polarizance, although varying magnitudes of these signals 
have been reported, ranging from very weak to signals simi-
lar to higher plants [see (Garab and van Amerongen 2009) 
and references therein].

In the present study, we measure the fractional circu-
lar polarizance of various higher plants and multicellular 
algae. As the level of chiral macro-organization varies 
greatly between unicellular algae, we expect especially in 
multicellular algae that the organization can reach a higher 
or different level of complexity. These studies will addi-
tionally assess the feasibility of biosignature detection for 
(eukaryotic) photosynthesis from different evolutionary 
stages. While transmission and reflectance generally show 
a comparable spectral profile, the signals in reflectance are 
often weaker (e.g., due to surface glint). In the present study, 
we will therefore only display the results in transmission, 

as it provides better sensitivity for small spectral changes 
between samples.

Materials and methods

Sample collection

Ulva lactuca, Porphyra sp., and Saccharina latissima were 
grown in April at the Royal Netherlands Institute for Sea 
Research (NIOZ), using natural light and seawater. The 
algae were transported and stored in seawater at room tem-
perature. Measurements on the algae were carried out within 
2 days after acquisition.

Ulva sp., Undaria pinnatifida, Grateloupia turuturu, S. 
latissima, Fucus serratus, and Fucus spiralis were collected 
by Guido Krijger from WildWier1 from the North Sea near 
Middelburg in February. The algae were transported under 
refrigeration and stored in seawater. Measurements on the 
algae were carried out within 2 days after acquisition.

Leaves of Skimmia japonica and Prunus laurocerasus 
were collected in January from a private backyard garden 
near the city center of Amsterdam, Aspidistra elatior was 
obtained from the Hortus Botanicus Vrije Universiteit 
Amsterdam in February.

Spectropolarimetry

For all measurements, three different samples were used 
(n = 3) and each single measurement is the average of at 
least 20,000 repetitions. Before each measurement, the sam-
ples were padded with paper towels to remove excess surface 
water. Circular polarization measurements were carried out 
in transmission and were performed using TreePol. TreePol 
is a dedicated spectropolarimetric instrument developed 
by the Astronomical Instrumentation Group at the Leiden 
Observatory (Leiden University). The instrument was spe-
cifically developed to measure the fractional circular polari-
zation (V/I) of a sample interacting with unpolarized light 
as a function of wavelength (400–900 nm) and is capable of 
fast measurements with a sensitivity of ∼ 1 × 10−4. Tree-
Pol applies spectral multiplexing with the implementation 
of a dual fiber-fed spectrometer using ferro-liquid-crystal 
(FLC) modulation synchronized with fast read-out of the 
one-dimensional detector in each spectrograph, in combina-
tion with a dual-beam approach in which a polarizing beam 
splitter feeds the two spectrographs with orthogonally polar-
ized light [see also (Patty et al. 2017)].

1  Any mention of commercial products or companies within this 
paper is for information only; it does not imply recommendation or 
endorsement by the authors or their affiliated institutions.
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In this study, we have measured the induced fractional 
circular polarizance normalized by the total transmit-
ted light intensity (V/I). Circular dichroism measures 
the differential absorption of left- or right-handed cir-
cularly polarized incident light, which is often reported 
in degrees θ. Under certain conditions, these two can be 
related and can therefore be converted by V∕I ≈ 2��deg

180
 

[see also (Patty et al. 2018a)]. It has been shown that for 
leaves in transmission, the induced polarizance and the 
differential absorbance are comparable (Patty et al. 2017; 
2018b), but we have not verified this for the samples used 
in this study.

Results

Higher plants

The circular polarization spectra of three different higher 
plants are shown in Fig. 3. For all species, we observe 
the typical split signal around the chlorophyll a absorp-
tion band ( ≈ 680 nm) with a negative band at ≈ 660 nm 
and a positive band at ≈ 690 nm. The spectra of Skimmia 
and Prunus are very similar to each other in both shape 
and magnitude and show no significant differences. These 
results are also very similar to the results obtained for 
most other higher plants (data not shown). Interestingly, 
the circular polarimetric spectrum of A. elatior shows 
an exceedingly large negative band (−1.5 × 10−2) with a 
noticeable negative circular polarization extending much 
further into the blue, beyond the chlorophyll a (but also b) 
absorption bands. The positive band, however, has a simi-
lar magnitude (+ 6 × 10−3) as the other two plant species.

Green algae

The circular polarization spectra of two different green 
algae are shown in Fig.  4. Similar to higher plants, a 
split signal is observed around the chlorophyll a absorp-
tion band ( ≈ 680 nm). Unlike higher plants, however, the 
negative and positive bands do not seem to overlap. The 
negative band reaches a V/I minimum at ≈ 655 nm and 
the positive band reaches a maximum at ≈ 690 nm, but 
the V/I signal is close to 0, and thus shows no net circu-
lar polarization between ≈ 665 to 678 nm. Additionally, 
the magnitude of the signals is much smaller than that of 
higher plants.

Fig. 3   Circular polarimetric 
spectra of S. japonica, P. lau-
rocerasus, and A. elatior leaves. 
Shaded areas denote the stand-
ard error, n = 3 per species

Fig. 4   Circular polarimetric spectra of U. lactuca and Ulva sp. green 
algae. Shaded areas denote the standard error, n = 3 per species
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Red algae

We show the circular polarization spectra of two differ-
ent red algae in Fig. 5. These spectra show distinct dif-
ferences compared to the higher plants and the green or 
brown algae. Porphyra sp. shows a continuous split signal 
around ≈ 680 nm, and an additional sharp positive feature 
at ≈ 635 nm. G. turuturu lacks these features and shows 
an inverse split signal around ≈ 680 nm. In both spe-
cies, non-zero circular polarization can also be observed 
between 550 and 600 nm. We will further interpret these 
results in the Discussion.

Brown algae

The brown algae exhibit a lot of variation in signal strength. 
For ease of comparison, the results of our circular spec-
tropolarimetric measurements are plotted in Figs. 6 and 7 
on the same y-scale. Figure 6 makes clear that a juvenile S. 
latissima barely displays a significant signal with the excep-
tion of a very weak negative feature (V/I = −4 × 10−4). The 
mature S. latissima samples show somewhat stronger bands, 
although the signal is still relatively small (−1 × 10−3, 
+ 1 × 10−3). The polarimetric spectra of the brown algae 
U. pinnatifida, display a larger signal comparable to that of 
higher vegetation. 

Interestingly, the polarimetric spectra of the brown algae 
of the genus Fucus display very large circular polarization 
signals, see Fig. 7. The alga Fucus spiralis has a V/I mini-
mum and maximum of − 8 × 10−3 and + 2 × 10−2, respec-
tively. Additionally, the bands are relatively narrow, with 
less polarization outside the chlorophyll a absorbance band. 
In the polarimetric spectra of F. spiralis, and to a lesser 
extent also of U. pinnatifida, a small negative band can be 
observed at 720 nm. Additionally, in the spectra of both F. 
serratus and F. spiralis, a positive band can be observed at 
595 nm.

V/I versus absorbance

The V/I maxima and minima versus the absorbance are 
shown in Fig. 8. A slight correlation is visible between the 
maximum and minimum magnitude of the V/I bands within 
650 nm to 700 nm and the absorbance over 675 nm to 685 
nm. In general, the magnitude of the bands increases with 
increasing absorbance. Both F. serratus and F. spiralis show 
positive and negative bands with a very large magnitude 

Fig. 5   Circular polarimetric spectra of Porphyra sp. and G. turuturu 
red algae. Shaded areas denote the standard error, n = 3 per species

Fig. 6   Circular polarimetric 
spectra of S. latissima (juvenile 
and mature) and U. pinnatifida 
brown algae. Shaded areas 
denote the standard error, n = 3 
per species
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well outside this trend. This is similar for the large negative 
band of A. elatior. On the other hand, mature S. latissima 
and Porphyra sp. have a relatively low circular polarizance.

Discussion

Different eukaryotic phototrophic organisms display differ-
ent circular polarization spectra, with signal magnitudes that 
can vary by two orders of magnitude. Chlorophyll a itself 
exhibits a very weak intrinsic circular polarizance around 
680 nm (Garab and van Amerongen 2009). Excitonic cou-
pling between chlorophylls leads to a much larger signal 
in phototrophic bacteria and certain algae. In many more 
developed phototrophic organisms, the polarization spectra 
are dominated by the density and handedness of the supra-
molecular structures (psi-type circular dichroism), although 
these signals are superimposed on each other. Thus, for iden-
tical chlorophyll concentrations, the polarimetric spectral 
characteristics can vastly differ depending on the organiza-
tion (see also Fig. 9).

The typical psi-type circular spectropolarimetric signals 
observed in vegetation are the result of the superposition of 
two relatively independent signals resulting from different 
chiral macrodomains in the chloroplast (Garab et al. 1988b, 
c, 1991a; Finzi et al. 1989). These psi-type bands of oppo-
site sign do not have the same spectral shape and thus do 
not cancel each other out completely. The negative band is 
predominantly associated with the stacking of the thylakoid 
membranes, whereas the positive band mainly derives from 
the lateral organization of the chiral macrodomains formed 
by the PSII–LHCII complexes (Cseh et al. 2000; Dobrikova 
et al. 2003; Jajoo et al. 2012; Garab et al. 1991a).

Plant chloroplasts generally show little variation in struc-
ture (Staehelin 1986), which is noticeable in the circular 
polarization spectra of most plants (e.g., see the spectra of 

Fig. 7   Circular polarimetric spectra of F. serratus and F. spiralis 
brown algae. Shaded areas denote the standard error, n = 3 per spe-
cies

Grateloupia turuturu
Saccharina latissima juv.

Ulva lactuca

Undaria pinnatifida

Porphyra sp.
Saccharina latissima mat.

Ulva sp.

Aspidistra elatior

Fucus spiralis

Skimmia japonica
Prunus laurocerasus

Fucus serratus

Fig. 8   Maximum extend of the V/I bands within 650 nm to 700 nm 
against the absorbance over 675 nm to 685 nm. Error bars denote the 
standard error for n = 3 per species

Excitonic 
PSI-type

Intrinsic

Fig. 9   The three major sources of circular polarizance around the 
chlorophyll absorbance band in the red for higher plants for identical 
chlorophyll concentrations. Adapted after (Garab and van Amerongen 
2009)
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Skimmia and Prunus in Fig. 3). It has been reported before 
that the cpDNA sequences are extraordinarily conserved 
among plants and nearly identical in ferns, gymnosperms, 
and angiosperms (Palmer and Stein 1986). Of course, cer-
tain plants contain more chloroplasts per cell, or contain 
chloroplasts which are significantly larger or smaller, but in 
both cases, the normalized circular polarization will remain 
the same.

The polarimetric spectra of Aspidistra (Fig. 3) show a 
remarkably intense negative band, unlike the results usually 
encountered in plants. The positive band, however, has a 
magnitude that can be expected based on the lower absorb-
ance as compared to the other higher plants we measured 
(see also Fig. 8). It has been shown that the contribution of 
both the negative and the positive band is dependent on the 
alignment of the chloroplasts (Garab et al. 1988c, 1991a), 
which might locally be aligned in such a way that only a sin-
gle band dominates [e.g., near the veins of leaves (Patty et al. 
2018b)]. The polarimetric spectra of Aspidistra, however, 
can be very well explained by the unusually large grana. 
Previous electron microscopy research on Aspidistra ela-
tior chloroplasts revealed grana containing a vast number 
of thylakoid layers that may well exceed 100 (Steinmann 
and Sjöstrand 1955). As the positive and the negative bands 
overlap (leading to the split signal), it is to be expected that 
also the positive band is larger than encountered normally.

Similar to higher plants, also green algae contain 
PSII–LHCII supercomplexes utilized in photosynthesis. 
Between green algae and higher plants there are slight dif-
ferences in the trimeric LHCII proteins and their isoforms, 
and, in addition, the green algae lack one of three minor 
monomeric LHCII polypeptides (CP24) [see also (Mina-
gawa 2013) and references therein]. The green algae we 
measured show a spectral polarimetric profile that appears 
very similar to that of plants. However, the negative band 
centered around 650 nm is likely an excitonic band resulting 
from short-range interactions of the chlorophylls and the 
negative, usually stronger, psi-type band around 675 nm is 
virtually absent. The positive psi-type centered around 690 
nm, on the other hand, is still present.

These results are unlike those reported for the unicel-
lular green algae Chlamydomonas reinhardtii, which dis-
play a negative excitonic and a negative psi-type band of 
equal strength [e.g., see (Nagy et al. 2014)]. Importantly, 
the PSII–LHCII supercomplexes are far less stable in green 
algae as compared to plants, and it has been indicated that 
the L trimer (as well as the M and S trimers) could dis-
sociate easily from PSII (Tokutsu et al. 2012). It has been 
shown that in Ulva flattening of the chloroplasts occurs 
under illumination, which additionally results in a decrease 
in thickness of the thylakoid membrane itself (Murakami 
and Packer 1970). Such fundamental changes in molecular 
structure might easily lead to (partial) dissociation of trimer 

L, which in turn can lead to the observed apparent absence 
of the negative psi-type band.

The red algae contain a more primitive photosynthetic 
apparatus that represents a transition between cyanobacteria 
and the chloroplasts of other algae and plants. This is also 
very evident from the displayed spectra in Fig. 5. For both 
species, the magnitude of the signal is small and compara-
ble, even though Porphyra sp. had a much larger absorbance 
(Fig. 8), but the spectral shape suggests very fundamental 
differences in molecular structure. Surprisingly, Porphyra 
sp. shows a circular polarization spectrum with bands that 
might be associated with psi-type circular polarizance [at 
675 nm (−) and at 690 nm (+)]. The origin and significance 
of these signals, however, require further investigation. 
The circular polarimetric spectra of G. turuturu lack these 
features but show two bands that can be associated with 
the excitonic circular polarization bands similar to those 
in cyanobacteria [at 670 nm (+) and at 685 nm (−)] [cf. 
(Sparks et al. 2009a)], which for a large part result from the 
excitonic interactions in PSI (Schlodder et al. 2007). In both 
species, the features between 550 and 600 nm might be asso-
ciated with R-phycoerythrin (Bekasova et al. 2013). Addi-
tionally, in Porphyra sp., the sharp feature around 635 nm 
can be associated with phycocyanin (Sparks et al. 2009a). 
Both pigment–protein complexes belong to the phycobili-
somes, which only occur in red algae and cyanobacteria and 
function as light-harvesting antennae for PSII while LHC is 
limited to PSI.

As in red algae and green algae, the brown algae contain 
no true grana but the thylakoid membranes are stacked in 
groups of three (Berkaloff et al. 1983). The brown algae 
measured in this study additionally contain chlorophyll c, 
which is slightly blue-shifted compared to chlorophyll a or b. 
Compared to chlorophyll a, chlorophyll c, however, has only 
a very weak contribution to the overall circular polarizance. 
Additionally, in brown algae, the light-harvesting antennae 
are homogeneously distributed along the thylakoid mem-
branes (De Martino et al. 2000; Büchel and Garab 1997).

Interestingly, the juvenile Saccharina displays only a 
very weak negative band around 683 nm (Fig. 6). These 
results closely resemble those of isolated brown algae 
LHCs, which exhibit no excitonic bands but show solely 
a negative band around 680 nm. This band likely results 
from an intrinsic induced chirality of the chlorophyll a 
protein complex (Büchel and Garab 1997). The polari-
metric spectra of mature Saccharina and Undaria show a 
split signal that is similar to that of higher plants. While 
the molecular architecture of the LHCs is very differ-
ent from those in higher plants, the pigment–protein 
complexes in brown algae are organized in large chiral 
domains which give similar psi-type signals in circular 
polarizance (Szabó et al. 2008; Nagy et al. 2012). These 
intrinsic so-called fucoxanthin chlorophyll a/c binding 
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proteins show a high homology to LHC in higher plants 
and have been shown to form complexes with trimers or 
higher oligomers (Lepetit et al. 2007; Büchel 2003; Katoh 
et al. 1989).

As shown in Fig. 7, the measured species of the genus 
Fucus exhibit an unusually large signal in circular polari-
zance, while the absorbance of the samples was within 
the range of the samples of the other species (Fig. 8). 
Although their spectral shapes are very similar to those 
of diatoms [cf. (Ghazaryan et al. 2016; Szabó et al. 2008; 
Büchel and Garab 1997)], the bands are 	 two  o rde r s 
of magnitude stronger in Fucus. Most research on chlo-
rophyll a/c photosynthesis is, however, carried out on 
diatoms and the reported size of the protein complexes 
again varies. Signals of such magnitude suggest that these 
macromolecular assemblies are much larger in Fucus than 
previously reported for other brown algae. Additionally, 
in the spectra of Fucus, a positive band can be observed 
around 595 nm. Most likely, this band and the weaker 
negative band around 625 nm can be assigned to chloro-
phyll c.

The results here show that the molecular and macro-
molecular organization of the photosynthetic machinery 
in algae is much more flexible and dynamic than reported 
before, likely due to larger inter-specific differences than 
generally assumed. Additionally, this also appears to be 
the case for one of the plants we measured (A. elatior), 
which displayed a negative psi-band one order of mag-
nitude larger than ordinarily observed for higher plants.

When it comes to circular polarizance as a biosignature, 
it is important to note that efficient photosynthesis is not 
necessarily accompanied by large signals in circular polar-
ization. While the intrinsic circular polarizance of chlo-
rophyll is very low, the magnitude of the signals becomes 
greatly enhanced by a larger organization resulting in exci-
tonic circular polarizance and ultimately psi-type circular 
polarizance. For the latter, the chiral organization of the 
macrodomains of the pigment–protein complexes is of 
importance, but it should be noted that the density of the 
complexes needs to be large enough (that is, significant 
coupling over the macrodomain is required) in order to 
function as a chiral macrodomain (Keller and Bustamante 
1986). Many organisms thus display only excitonic cir-
cular polarizance, as is the case for certain algae meas-
ured in this study and generally bacteria. When psi-type 
circular polarizance is possible, the signals can easily 
become very large, in our study up to 2% for brown algae 
in transmission.

Conclusions

We have measured the polarizance of various multicel-
lular algae representing different evolutionary stages of 

eukaryotic photosynthesis. We have shown that the chi-
ral organization of the macrodomains can vary greatly 
between these species. Future studies using molecular 
techniques to further characterize and isolate the com-
plexes in these organisms are highly recommended. It 
will additionally prove very interesting to investigate these 
chloroplasts (including those with larger grana such as 
Aspidistra) using polarization microscopy (e.g., Steinbach 
et al. 2014; Finzi et al. 1989; Gombos et al. 2008). The 
high-quality spectra in this study and their reproducibility 
underline the possibility of utilizing polarization spectros-
copy as a quantitative tool for non-destructively probing 
the molecular architecture in vivo.

Our results not only show variations in spectral shapes, 
but also in magnitude. Especially, the brown algae show a 
large variation, which is up to three orders of magnitude 
for the species measured in this study. Additionally, the 
induced fractional circular polarization by members of 
the genus Fucus is much larger than observed in vegeta-
tion. Future studies on the supramolecular organization in 
this genus and the variability caused by, for instance, light 
conditions, will also clarify the maximum extent of the cir-
cular polarizance by oxygenic photosynthetic organisms.

While the displayed results were obtained in transmis-
sion, the spectral features are also present in reflection. As 
such, future use of circular spectropolarimetry in satellite 
or airborne remote sensing could not only aid in detecting 
the presence of floating multicellular algae but also aid 
in species differentiation, which is important in regional 
biogeochemistry (Dierssen et al. 2015).

Importantly, while the presence of similar circular 
polarization signals is an unambiguous indicator for the 
presence of life, life might also flourish on a planetary sur-
face and still show minimal circular polarizance (which for 
instance would have been the case on Earth if terrestrial 
vegetation evolved through different Archaeplastida/SAR 
supergroup lineages). On the other hand, these signals 
might also be much larger than we would observe from 
an Earth disk-averaged spectrum (which is the unresolved 
and therefore spatially integrated spectrum of a planet).
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