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A three-dimensional cell-based mechanical model of coronary artery tunica

media is proposed. The model is composed of spherical cells forming a

hexagonal close-packed lattice. Tissue anisotropy is taken into account by

varying interaction forces with the direction of intercellular connection.

Several cell-centre interaction potentials for repulsion and attraction are con-

sidered, including the Hertz contact model and its neo-Hookean extension,

the Johnson–Kendall–Roberts model of adhesive contact, and a wormlike

chain model. The model is validated against data from in vitro uni-axial ten-

sion tests performed on dissected strips of tunica media. The wormlike chain

potential in combination with the neo-Hookean Hertz contact model pro-

duces stress–stretch curves which represent the experimental data very well.
1. Introduction
In-stent restenosis is an unwanted growth of a smooth muscle cell (SMC) layer

in a coronary artery after treatment of a stenosis with balloon angioplasty and

stenting [1,2]. We aim to numerically predict the risk of this dangerous side

effect which may lead to further surgeries. Tissue growth is provided by

proliferation and migration of SMC to the vessel’s lumen [2–4]. As far as

migration occurs as a result of intercellular bond degradation and expelling

of cells to the lumen, correct modelling of mechanical interactions in the

tunica media is crucial for the adequate simulation of the phenomenon. As a

starting point for the research on the mechanics of SMC under in-stent resteno-

sis condition, we present a cell-based model of the mechanics of post-mortem

tissue and verify the model against published in vitro stretch tests.

We model individual SMC as agents which interact with each other via

repulsive and attractive forces, while at the same time each cell goes through

a cell cycle, taking the cell’s mechanical and biochemical environment into

account [1]. This model of the tunica media is embedded in an overall multi-

scale model for in-stent restenosis [2] which has been applied to study many

aspects of this pathology [3–7]. So far we only applied our model in two-

dimensional simulation of the in-stent restenosis response. We have realized a

three-dimensional version (e.g. [8]), and first results of the three-dimensional

simulation are in good agreement with porcine data [8]. However, so far

the cell-based model of the arterial wall was not validated against known

mechanical properties of coronary arteries. That is the main topic of this paper.

Discrete tissue models are generally used in biomechanical and biochemical

studies (e.g. [10–16]), including discrete particle dynamics (DPD) models with

‘blobs’ of material as basic model units [16] and cell-based models [10–15] well

suitable for tumour growth simulation. We introduce a cell-based model of

tunica media of a coronary artery, which we verify against experimental stretch

tests [17], where strip samples of tunica media dissected from left anterior

descending human coronary arteries were uni-axially stretched in longitudinal

and circumferential directions. Here we focus on mimicking the mechanics of
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quiescent SMC. The cell-cycle transitions and interactions

between synthetic SMC, all important for the process of

neointima formation in in-stent restenosis, are beyond the

scope of this paper. The experimental data published in

[18] prove that N-cadherin junctions between synthetic

SMC are weakened to provide vessel healing via SMC

migration and neointima formation. Such mechanical inter-

actions between synthetic SMC and cell migration

modelling are the subject of a separate study.

Taking the single cell at the mesoscale as a starting point

for multiscale models of physiology [19] and then, in a

‘middle out fashion’ [20], coupling relevant processes at

larger tissue/organ scales or smaller subcellular scales, is

now a well-accepted paradigm. In this light we have pro-

posed the Virtual Artery [21] as a multiscale model at the

physics–chemistry–biology (PCB) interface [22] where the

PCB mesoscale model represents relevant single cell pro-

cesses in the arterial wall (endothelial cells, SMC) and

in the flowing blood (red blood cells, platelets, white

blood cells).

The Virtual Artery builds on models of individual cells

and their interactions. For instance, we modelled the mechan-

ical properties of single red blood cells and platelets with a

boundary element method, and coupled them with flow of

blood plasma relying on an immersed boundary method

[23,24]. We applied this to study the transport of platelets

in aneurisms [25] as well as the shear induced diffusion of

red blood cells [26]. Currently we are adding biology and

chemistry to capture processes in relation to thrombosis.

The present paper is organized as follows: §2 describes

several mathematical models of cell-to-cell interactions

considered in this study, next, anisotropic effects modelling

is described and, finally, a resulting system of differential

equations of cell motion is presented. Section 3 sums up the

numerical tests performed in the study; §4 presents

simulation results followed by a discussion; and §5 gives

the conclusions.
2. Mathematical models
2.1. Cell-to-cell interactions
A scheme of a healthy coronary artery cross section is shown

in figure 1a, with spindle-shaped SMC packed in concentric

spirals in the tunica media layer.

In our model of the tunica media, we assume SMC to be

elastic spheres forming a hexagonal close-packed lattice in the

initial, unloaded configuration (figure 1b). In the unloaded

configuration, a cell (shown green in figure 1b) has maximum

twelve interaction neighbours: six are in the same pack layer

(shown blue) and three neighbours in the upper and lower

pack layers (shown with transparent grey). The arterial

tunica media model is formed by bending a planar layer

of close-packed cells into a tube (figure 1c). The cells are

uniform, with radii equal to 36 mm, five layers of cells

forming the tissue (this is typical for human coronary arteries,

e.g. [27]).

Interactions in a pair of cells are assumed to be cell-

centred. The balance between repulsive and attractive forces

determines the equilibrium configuration of cells. Anisotropy

of the tissue is taken into account by modifying stiffness of

springs according to their orientation (see §2.2 for details).
Assuming that intercellular repulsion occurs as a result of

mechanical compression of elastic cells (modelled as spheres)

[28], we apply a neo-Hookean extension of Hertz contact

model [29] to describe the repulsive force Fhertz acting

between a pair of cells

FhertzðdÞ ¼ �
8a3Cð16a2 � 36pa~Rþ 27p2 ~R

2Þ
3~Rð4a� 3p~RÞ2

, ð2:1Þ

where d is the indentation computed as mutual penetration of two

elastic spheres (in figure 3a,b), d¼ R1 þ R2 2 x, R1, R2 are cells’

radii, x is the distance between cells’ centres, a ¼
ffiffiffiffiffiffi
~Rd

p
—radius

of the contact circle, ~R ¼ R1R2=ðR1 þ R2Þ—effective cell

radius, C ¼ ~E=6—elastic constant, and d � 0.

The interaction potential can be expressed as the integral

of (2.1) over indentation d: Uhertz ¼ �
Ð d

0 FhertzðxÞ dx. To avoid

numerical integration or complex analytical calculation of

this integral, a partial sum of Taylor series approximation

of (2.1) was used for computing sample deformation energy

P in the numerical implementation employing the nonlinear

conjugate gradients method (§2.5). Thus, assuming the mag-

nitude of mutual indentations to be smaller than the spheres’

effective radius d=~R� 1 (and hence a=~R ¼
ffiffiffiffiffiffiffiffi
d=~R

q
� 1), we

use a polynomial Taylor approximation for the denominator

in (2.1). The approximation is limited by a cubic termða=~RÞ3:

1

3~Rð4a� 3p~RÞ2
¼ 1

27p2 ~R
3

1� 4a
3p~R

� ��2

� 1

27p2 ~R
3

1þ 2
4a

3p~R
þ 3

4a
3p~R

� �2

þ 4
4a

3p~R

� �3
" #

: ð2:2Þ

Using the approximation (2.2) in (2.1) and keeping the terms of

the order not higher than 3 when multiplying the square brack-

ets below in (2.3), we obtain an easily integrated polynomial

expression for neo-Hookean extension of the Hertz force:

Fhertz apprðdÞ � �
8a3C

~R
16

27

a
p~R

� �2

� 4

3

a
p~R
þ 1

" #

� 1þ 2
4a

3p~R
þ 3

4a
3p~R

� �2

þ 4
4a

3p~R

� �3
" #

� 8a3C
~R

1þ 4

3

a
p~R
þ 64

27

a
p~R

� �2

þ 320

81

a
p~R

� �3
" #

:

ð2:3Þ

For indentations smaller than d ¼ 0:6~R, the relative error

of this approximation is less than 2.4%, which is quite good

(figure 2 for the comparison of Fhertz(d ) and Fhertz_appr(d ) in

the range of indentations 0 � d=~R � 0:6). In simulations

presented below, the mutual indentations never exceeded

the value d ¼ 0:6~R (§4.1).

The neo-Hookean Hertz interaction potential is now

approximated as follows:

Uhertz apprðdÞ �
16C
~R

2

40

81

a8

ðp~RÞ3
þ 64

189

a7

ðp~RÞ2
þ 2a6

9p~R
þ a5

5

" #
:

Besides Hertz repulsion, we also considered a power law

repulsion potential proposed in [16]:

Fpow ¼ �
k2

x2
, Upow ¼

k2

x
, ð2:4Þ

where k2 is a constant parameter.
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Figure 1. (a) Scheme of a coronary artery cross section; (b) hexagonal pack of spherical cells; (c) a smooth muscle layer formed from the hexagonal close pack
of spherical cells.
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normalized to 1). (Online version in colour.)
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Next, we assume that intercellular attraction forces in the

tunica media are provided by stretch stiffness of protein

cytoskeleton and extracellular matrix (ECM) fibres. The inter-

cellular attraction forces are non-zero in a limited zone of

negative indentations, where the contact between elastic

spheres is open. The intercellular attraction is described

with a wormlike chain potential proposed in [16] for a DPD

model of an isotropic ‘matrix’ in the arterial wall compo-

sition. We apply it on a cell scale to the anisotropic model

of tunica media:

FwmlcðzÞ ¼
kBT

lmax
� 6zþ 3z2 � 2z3

ð1� zÞ2

 !

and Uwmlc ¼ kBT �
3z2 � 2z3

1� z
,

9>>>>=
>>>>;

ð2:5Þ

where kBT ¼ kBTlmax/4p, kB is the Boltzmann constant, T is

absolute temperature, p is a persistence length, lmax is the

maximal chain length, z ¼ x/lmax is the relative distance of

a pair of cells.

By summing the wormlike chain attraction force (2.5)

with the neo-Hookean Hertz repulsion force (2.1) and, alter-

natively, with the power-law repulsion force (2.4), we

obtain the tissue models referenced below as ‘wmlc þ hertz’

and ‘wmlc þ pow’ models.

Besides the ‘wmlc þ hertz’ and ‘wmlc þ pow’ models, we

also studied the adhesive contact interaction described by the
Johnson–Kendall–Roberts (JKR) model [29]. Equation (2.6)

describes JKR interaction force FJKR and potential UJKR(d )

combining Hertz repulsion of isotropic linear elastic spheres

and adhesive attraction in the contact circle:

FJKRðdÞ ¼ ~E � 4

3
� a

3

~R
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8gpa3

~E

s2
4

3
5

and UJKRðdÞ ¼ ~E
8

15
� a5

~R
2
þ gpa2

~E
� 4

3

a3

~R

ffiffiffiffiffiffiffiffiffiffiffi
2gpa

~E

r" #
,

9>>>>>>=
>>>>>>;

ð2:6Þ

where ~E—effective Young’s modulus, 1=~E ¼ ð1� n2
1Þ=E1þ

ð1� n2
2Þ=E2, ~R ¼ R1R2=ðR1 þ R2Þ—effective cell radius, g is

surface interaction constant; a is the contact zone radius related

to indentation d implicitly:

d ¼ a2

~R
�

ffiffiffiffiffiffiffiffiffiffiffi
2gpa

~E

r
: ð2:7Þ

Expressions (2.6) cover both positive and negative inden-

tations. A critical gap at which the cells separate is defined

as dcr ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3g2p2 ~R=64~E

23

q
; a critical tension force is

Fcr ¼ 3gp~R [30]. After separation, interaction is resumed

when the spheres get into contact (at d � 0)—the correspond-

ing hysteresis loops are shown with black arrows in figure 3

presenting cell-to-cell interaction potentials and forces.

To avoid numerical solution of equation (2.7), a poly-

nomial approximation of FJKR(d ) proposed in [30] has been

used:

FJKRðdÞ ¼ 3gp~R � 1� 0:12 1� d
dcr

� �5=3
" #

and UJKRðdÞ ¼ 3gp~R � dþ 0:045dcr 1� d
dcr

� �8=3
" #

:

9>>>>>=
>>>>>;

ð2:8Þ

The approximation (2.8) works well for indentations with

an order of magnitude comparable to that of dcr [30].

The potential wells and interaction forces are shown in

figure 3, for the three interaction models studied (‘wmlc þ
hertz’, ‘wmlc þ pow’, JKR). The equilibrium configurations

marked with filled circles in figure 3b refer to the states of

positive indentation of the cells. So, in the absence of external

loads, spheroids representing the cells in a tissue are pre-

compressed. The red-filled area shows zones of the open

contact between the cells, where the ‘wmlc þ hertz’ and

‘wmlc þ pow’ models mimic the response of ECM and cell
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Figure 3. Cell-to-cell interaction: (a) potential wells; (b) interaction forces as functions of indentation d, in ‘wmlc þ pow’ (dashed blue), ‘wmlc þ hertz’ (solid red)
and ‘JKR’ (dash-dotted purple) models.

Table 1. The ‘wmlc þ hertz’, ‘wmlc þ pow’ and JKR model parameters used for cell-to-cell interaction illustration.

cell radius lmax/(2R) kBT, mN mm ~E, kPa

‘wmlc þ hertz’ R ¼ 36 mm 1.1 8.93 � 1022 170

‘wmlc þ pow’ lmax/(2R) kBT, mN mm k2, mN mm2

1.1 7 � 1022 70

JKR g, mN mm21 jdcrj, mm ~E, kPa

1.2 � 1023 7.5 170
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cytoskeleton to stretching. The parameter values used for cell-

to-cell interaction visualization are presented in table 1.

2.2. Model anisotropy
The experimental stretch–stress curves in [17] show signifi-

cant anisotropy of tunica media, with circumferential

stiffness about three times higher than axial stiffness, due to

the circumferentially elongated shape of smooth muscle

cells. We assume stretch stiffness in the radial direction to

be equal to axial stretch stiffness. Anisotropy is taken into

account by modifying elastic constants according to the direc-

tion of an intercellular bond. Thus, the elastic constant C in

the Hertz repulsion force (2.1) is computed as follows: C ¼
Cl þ (Cc 2 Cl) . jcos aj, where a is the angle between the inter-

cellular bond and circumferential direction in the initial

(unloaded) configuration, Cl, Cc are elastic constants for the

bonds oriented along axial and circumferential directions,

respectively. The stiffness parameters k2 in (2.4), kBT and

lmax in (2.5), ~E in (2.6) are scaled in a similar way, depending

on the orientation of an intercellular bond towards the

circumferential direction.

2.3. Residual stresses modelling
Arterial walls are subjected to bending stress in vivo. This is

confirmed by experiments on measuring opening angles
(e.g. [31]). The isolated layers of tunica adventitia and

tunica media show the presence of residual bending stresses,

as well. A possible explanation of residual bending stresses in

tunica media is its heterogeneity across the wall width; higher

concentration of ECM fibres at the outer radius makes the

outer layer contract more intensively when the ring is cut.

In the presented model, the residual bending was simulated

by intensifying attraction forces in the outer layer of SMC

(see §4.3 for details).

2.4. Neighbour detection algorithm
In the non-deformed configuration, each cell in the hexagonal

pack has 12 contacting neighbours (figure 1b, six in the same

layer—the blue cells—and three in both the upper and lower

layer—the grey cells). During loading, the neighbour list is

dynamically updated at each loading step and repulsive

interactions are added if new penetrations occur. In the in
silico stretch tests, the attractive bonds were never deleted,

because the simulated range of stretches (from 1 to 1.4)

does not imply any tissue ruptures. According to [17], the

ultimate stretch values in tunica media are 1.81 and 1.74 for

circumferential and axial tension, correspondingly. The mar-

gins have been obtained in [17] for normal samples of tunica

media composed of contractile SMC. For synthetic cells how-

ever, the margins can be lower. As discussed in §1, we now

focus only on the quiescent SMC mechanics.



Table 2. Geometric parameters of tunica media sample in the in silico
tests.

sample length (along axis), mm 7.21

sample width, mm 2.81

sample thickness, mm 0.32

model cell radius, mm 36
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Note that although the repulsive bonds list is updated

dynamically at loading, the attractive bonds list is kept

static and is determined by the initial, unloaded configur-

ation of the tissue. Doing so, we mimic the elastomeric

properties of the tissue. If the neighbour detection algorithm

would entirely be based on positive mutual penetrations in

the actual configuration (with no interaction in the open

contacts), plastic deformation patterns would be mimicked,

better representing amorphous media (as, for example, in

[32],where plastic deformation patterns were obtained as a

result of neighbour detection specifics).

2.5. Solving the equations of motion
A tissue is modelled as a system of discrete particles inter-

acting with their neighbours. The motion of the system is

described by Newton’s law:

miai ¼ Fi
i ¼ 1, 2 . . . N,

�

where mi, ai are mass and acceleration of a particle, and Fi is

the force vector acting on a particle number i.
We assume an over-damped motion and fully neglect

inertia. Hence, cell accelerations are zero and the force

vector is formed from viscous and elastic components. The

resulting system of ordinary differential equations describing

tissue mechanics is expressed as follows:

b
dX
dt
þ FðXÞ ¼ 0, ð2:9Þ

where X ¼ X(t) is the global vector of cell centre positions, b is

the damping factor and F(X ) is the global nonlinear elastic

forces vector.

Cell centre positions are specified in the reference (initial)

frame by three Cartesian coordinates per cell and stored in

the global vector X. The global elastic forces vector is

formed in a loop over the cells: based on the computed dis-

tances between a cell and its neighbours, the forces in each

pair of cells are calculated by formulae (2.1)–(2.4), and then

projected onto reference frame axes; the projections are

accumulated in the global force vector.

In the general case of finding a non-stationary solution of

(2.9), the system is integrated over time using the explicit 4-

stage Runge–Kutta scheme [33]. We can also immediately

solve for the stationary solution F(X ) ¼ 0 by approaching

the equilibrium configuration with a nonlinear conjugate

gradients method [34]:

s0 ¼ FðX0Þ,
Xn ¼ Xn�1 þ an�1sn�1, an�1 ¼ arg min

a
PðXn�1 þ asn�1Þ

and sn ¼ FðXnÞ þ bnsn�1, bn ¼
FðXnÞT � ðFðXnÞ � FðXn�1ÞÞ

FðXn�1ÞT � FðXn�1Þ
,

where si are search directions, P(X ) is elastic energy of

the system, 2rP(Xn) ¼ F(Xn), bn is the Polak–Ribière

parameter [34].
3. Problem set-up and simulation procedure
Geometric parameters of a stripe sample of tunica media

extracted from human left anterior descending coronary

artery were taken from [17]. The parameters are presented

in table 2. The model value of cell radii was 36 mm, so that
there were five layers of cells across the thickness of

tunica media.

The in silico tests of the tunica media model included the

following stages:

(1) Uni-axial stretching of a strip of tunica media and quali-

tative comparison of simulated stretch–stress data with

experimental data from [17]. The comparison has shown

that the ‘wmlc þ hertz’ model is the most suitable for

mimicking the mechanical properties of tunica media

(see §4.1). Further numerical tests were performed for

the ‘wmlc þ hertz’ model only.

(2) Calibrating the ‘wmlc þ hertz’ model parameters by

matching simulated and experimental curves with the

least-squares method. Six parameters in total have been

calibrated: lmax, kBT and C in circumferential and axial

directions.

(3) Analysis of sensitivity of stretch–stress curves to vari-

ation of model parameters.

(4) Tests on mimicking opening angle formations by introdu-

cing heterogeneity into the model: increasing the stiffness

of intercellular bonds in the outer layer of SMC.

(5) Simulation of stent deployment, wall stress analysis.

Stress components at stretching were calculated as sa,c ¼

Fa,c/A, where sa,c are the axial and circumferential stress

components, Fa,c the axial and circumferential loads, and A
the sample cross-sectional area in the deformed configur-

ation. Stretch was calculated as l ¼ L/l, where l and L are

the unloaded and deformed sample length, respectively.

The initial configuration of the sample was stress-free.
4. Results
4.1. Uni-axial stretch tests, model parameters

calibration
Deformation of the in silico strip sample is shown in

figure 4b–e, for axial and circumferential stretching tests

(the initial configuration of the sample is shown in

figure 4a). The colour palette represents the distribution of

longitudinal and circumferential projections of intercellular

forces SX and SZ (N). The in silico and in vitro stress–stretch

curves are compared in figure 5a,b. The experimental curves

obtained in [17] show a rapid nonlinear growth of tunica

media strength above physiological ranges of stretch; this

highly nonlinear response is provided by the ECM and cytos-

keleton fibres. As opposed to the experimental data, the ‘JKR’

model produces stretch–stress curves with a saturation zone

occurring due to reduction of cellular contact area at tension.

At a stretch equal to 1.25, the in silico JKR sample ruptured.

The ‘wmlc þ pow’ and ‘wmlc þ hertz’ curves qualitatively
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agree with the experimental ones. Finally, the ‘wmlc þ hertz’

model was chosen as the most appropriate for further cali-

bration because the Hertz contact model has some

experimental background in cell mechanics [28]. The

‘wmlc þ pow’ model therefore was not calibrated for the pre-

cise matching with the experimental data.

Calibration of the ‘wmlc þ hertz’ model parameters was

performed with the least-squares method. The resulting opti-

mal parameters are presented in table 3, for longitudinal/

radial and circumferential directions of transversal aniso-

tropy. The calibrated ‘wmlc þ hertz’ stress–stretch curves

are shown in figure 5a,b.

Circumferential and axial cell-to-cell interaction potentials in

the calibrated ‘wmlcþ hertz’ model are presented in figure 6.

Figure 6 shows that the equilibrium indentation d ¼ 0:3R ¼ 0:6~R
for the axial potential and d ¼ 0:16R ¼ 0:32~R for the circum-

ferential potential; therefore, the Hertz force approximation

proposed in §2.1 is relevant and the error of approximation

is less than 3%.

The JKR model parameters used for simulation have the

following values: g 5 0.75 � 1023 mN mm21, ~E ¼ 127 kPa;

the wmlc þ pow model parameters are as follows: lmax_c/

(2R) ¼ lmax_x/(2R) ¼ 1.1, kbT_x ¼ kbT_c ¼ 7 � 1022 mN mm21,

k2_x ¼ k2_c ¼ 70 mN mm2.

The big difference between calibrated values of Hertz

repulsion coefficients Cc and Cx (Cc ¼ 23 kPa, Cx ¼ Cr ¼

0.24 kPa, Cc/Cx � 100, table 3) in fact simulates the elongated

shape of contacting cells in a real tissue. If we refer to the

Hertz theory of elliptical contact and consider two contact
configurations in a pair of identical ellipsoids with semi-

axes of 50 � 5 � 5 micrometres (these values represent typical

dimensions of SMC), the contact force will depend on the

local Gaussian curvature of the contacting surfaces [30]

(figure 7).

For configuration 1 in figure 7, the Gaussian curvature

radius of each ellipsoid is computed as R1,2 ¼
ffiffiffiffiffi
ab
p

, and this

value is then used for computing effective radius in formula

(2.1) of the Hertz theory. For configuration 2 in figure 7, the

curvature radius equals b.

According to formula (2.1), the main term in the

expression for the Hertz force is proportional to the

following expression: FhertzðdÞ�
ffiffiffiffiffiffiffiffi
Rd3
p

. At a fixed level of

stretch 1, d � b1 for case 1 and d � a1 for case 2. Therefore,

Fhertz1ðdÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ab
p
ðb1Þ3

q
� a1=4b7=4 for case 1 and

Fhertz2ðdÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
bða1Þ3

q
� b1=2a3=2 for case 2.

Next, taking into account different amount of contacts per

unit cross-sectional area in axial and circumferential direc-

tions, we get the following estimates for the total force

response produced by a unit area:

Ftotal1 �Fhertz1ðdÞ	Ncontacts1 � a1=4b7=4 � 1 ½m
2


ab
� a�3=4b3=4

and Ftotal2 �Fhertz2ðdÞ	Ncontacts2 � a3=2b1=2 � 1 ½m
2


b2
� a3=2b�3=2:

From this follows: Ftotal2=Ftotal1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ða=bÞ94

q
, which gives

us a ratio of 177 for a given ellipsoid dimensions.



5

8

6

4

2

0

4

3

2

1

0

Ucircum (d) Uaxial (d)

ci
rc

um
f.

 p
ot

en
tia

l(
×

10
–3

 N
 m

m
)

ax
ia

l p
ot

en
tia

l(
×

10
–5

 N
 m

m
)

–0.5 –0.2 0.1
indentation/R

0.4 0.7 1.0 –0.15 0.08 0.31
indentation/R

0.54 0.77 1.00

Figure 6. Circumferential and axial cell-to-cell interaction potentials, calibrated ‘wmlc þ hertz’ model. (Online version in colour.)

Table 3. Calibrated parameter values, ‘wmlc þ hertz’ model.

lmax_c/(2R) kBT_c, mN mm Cc, kPa lmax_x/(2R) kBT_x, mN mm Cx, kPa

tunica media 1.27 8.93 � 1022 23.35 1.10 1.64 � 1023 0.24

a 
b 

case 2case 1

Figure 7. Elliptic contact, two cases.
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As already mentioned above, the elastic constants in the

Hertz force scale by a factor of almost 100: Cc ¼ 23 kPa,

Cx ¼ Cr ¼ 0.24 kPa. This factor of 100 agrees in the order of

magnitude with the value obtained above from the Hertz

theory for homogeneous elastic ellipsoids, proving that the

elliptical shape of the cells has been indirectly accounted

for in our current model.

According to experimental data, tunica media is an

incompressible material [17]. In discrete models, the bulk

incompressibility of arterial wall model is often tuned by

adjusting radial stiffness of the tissue across the wall, so

that the incompressibility condition lc . lr lx ¼ 1 is satisfied

(e.g. [16]). However, this procedure does not allow con-

trolling pairwise ratios of strain components, especially

the relation between axial and circumferential strains at

axial or circumferential tension. We assumed radial spring

stiffness to be equal to axial stiffness. Therefore, bulk incom-

pressibility was not simulated. At in silico stretching, the

value of lc . lr . lx product varied in the ranges of [1; 1.14]

and [1; 1.19] for axial and circumferential stretching,

respectively.
4.2. Sensitivity of simulated stretch – stress curves
Sensitivity of stretch–stress curves of the ‘wmlc þ hertz’

model against parameter variation is presented in figure 8.

Variation of lmax_c and lmax_x was performed with a 1% step

and those of the other parameters with a 10% step. Variation

of maximal chain length for circumferentially oriented

springs lmax_c significantly affects both circumferential and
axial stiffness (figure 8a), with circumferential stiffness show-

ing a larger response. Variation of maximal chain length for

axially oriented springs lmax_x affects axial stiffness moder-

ately and does not significantly alter circumferential

stiffness (figure 8b). The difference between sensitivity of

the model to variation of circumferential and axial stiffness

parameters is caused by the non-equality of these directions

in the hexagonal lattice (figure 1b). While there are bonds

oriented along circumferential directions, there are no

bonds strictly oriented in longitudinal direction. A fixed

level of relative circumferential extension of the sample

causes the same extension of axial bonds, while longitudinal

extension of the sample causes both rotations and extensions

of intercellular bonds.

4.3. Residual stresses and opening angles
In vivo, the arterial tunica media, as well as tunica adventitia,

are subjected to residual bending stresses [31]. The residual

bending stresses have both longitudinal and circumferential

components; thus, a ring fragment of tunica media with an

axial cut transforms into a near-planar surface with negative

curvature (figure 9a shows numerical simulation); the curva-

ture of the resulting surface characterizes the level of residual

bending stress [31]. Similarly, due to longitudinal residual

bending, an initially planar strip of tunica media gets

bent (figure 9b, for corresponding simulation). To mimic

residual bending, we have intensified the attractive inter-

actions in the outermost layer of SMC: this was achieved by

increasing the kBT_c and kBT_x constants for the outermost

cells. While mimicking circumferential opening angle for-

mation was possible with a moderate increase of

circumferential spring stiffness (up by 20%, kBT_c ¼ 9.38 �
1022 mN mm in the outer layer), mimicking longitudinal

opening angle formation, on the contrary, required a very

high change of axial spring stiffness (approximately by five

times, kBT_x ¼ 9.02 � 1023 mN mm in the outer layer). Such

difference between two directions can be explained by their
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inequality in the dense hexagonal lattice. Moreover, in reality,

axial opening angle formation can be caused by a low-pitch

spiral package of smooth muscle spindles straightening

when cut. However, the current model does not take into

account this spiral build-up. Therefore, the question of mod-

elling axial opening angle is still open and, in the future, may

require changing the discrete arterial wall structure presented

in figure 1c: at bending a planar layer of close-packed cells

into a tube, the edges of the layer should be shifted along

each other.

4.4. Stent deployment simulation
Stent deployment simulation was performed as a preliminary

step for in-stent restenosis simulations [1–6], in order to

obtain the initial configuration of the vessel lumen. In the cur-

rent vessel model, the vessel wall only contained the tunica

media layer (figure 10a). Radial movement of stent struts

was simulated by imposing a kinematic boundary condition

on the radial displacements of the cells contacting with the

struts (these cells are shown in red in figure 10a). The radial

displacements of stent struts are equal to 0.1 of the vessel’s

inner radius which is 1.4 mm. The end sections of the

vessel are stress-free. The movement of the vessel as a rigid

body is eliminated by the viscous term in the motion

system (2.9). The explicit time-stepping Runge–Kutta pro-

cedure mentioned in §2.5 was used for this test. In future

studies, we plan to include tunica adventitia in the vessel

wall model, for modelling the stent deployment stage in the

in-stent restenosis analysis. For patients with atherosclerotic

and non-atherosclerotic intimal thickening, the tunica

intima also becomes a load-bearing layer [17]. Therefore,

including the tunica intima into the mechanical vessel

model could also be studied.

Circumferential projections of intercellular forces are

shown in figure 10b,c, for two stages of stent deployment,

for a radial displacement of stent struts equal to 5% and

10% of the inner radius of the artery respectively.

4.5. Generalization of the model to arbitrary cell size
The calibrated parameters presented in table 2 were obtained

for a tissue model taking a cell radius of 36 mm. In general,

these calibration results can be applied to arbitrary cell

sizes using correction coefficients determined so that at a
fixed level of relative stretch, the total force response from

cells in the strip cross section preserves its value, for any

cell size. The number of cells composing a cross section of

the sample with a hexagonal close-packed lattice is

(figure 1b) N � bh=2
ffiffiffi
3
p

R2, where b is cross-section width, h
is tunica media layer width. If the cell radius is scaled

down by a factor of n (Rnew ¼ R/n), the number of cells com-

posing a cross section is naturally scaled up by a factor of n2.
The Hertz force acting on each cell at the fixed level of

applied stretch is scaled down by n2 (see equation (2.1) and

note that indentation d in (2.1) is also scaled by n at the

fixed level of relative stretch of the sample). The total repul-

sive response of the sample preserves its value under the

given level of stretch. Also, the wormlike chain force on

each cell is scaled up by a factor of n due to scaling of lmax

(see equation (2.5)). To keep the total attractive response

constant, we scale Fwmlc(z) down by n3.

Therefore, the calibrated parameters from table 2 can be

used for arbitrary cell size with the following correction:

kBT_c_corrected¼ kBT_c/(36 mm/R)3, kBT_x_corrected¼ kBT_x/

(36 mm/R)3. The rest of model parameters do not depend

on the cell size.
5. Conclusion
A cell-based anisotropic model of tunica media in human cor-

onary artery has been proposed and numerically verified

against the in vitro uni-axial stretch tests from [17]. The

in silico stretching tests have shown that the mechanical

behaviour of tunica media can be realistically mimicked

with a cell-based model using wormlike chain potential

(representing compliance of cytoskeleton network and ECM

fibres) and neo-Hookean extension of Hertz contact potential

(representing repulsive contact interactions between SMC).

The JKR adhesive contact model produces stress–stretch

curves which are qualitatively different from the curves

obtained for elastomeric stretch patterns observed in arterial

wall layers.

Regarding the compressive stiffness of tunica media, we

have considered the neo-Hookean extension of the Hertz con-

tact model as an appropriate model of intercellular repulsion;

however, this assumption needs to be verified against

experiments.
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Our further research on tunica media mechanics will

focus on carrying out a coupled biomechanical/biochemical

study of neo-intima formation dynamics in order to assess

interaction cut-off margins for synthetic SMC and correctly

mimic SMC migration.

Data accessibility. The source code is publicly available and hosted in the
BitBucket directory at https://bitbucket.org/naunat/tunicamedia.
The animations of the in silico tests (including stretching, open
angle formation and stent deployment) are available at the Dryad
repository [35].

Authors’ contributions. D.R.H. conceived the original model; N.B.M.
improved it and implemented the current version of the model,
designed and performed the simulations, analysed the results and
drafted the manuscript. A.I.S. analysed the results and helped in
drafting the manuscript. A.G.H. conceived of the study, designed
the study, coordinated the study and helped in drafting the manu-
script. All authors reviewed the manuscript and gave final
approval for publication.

Competing interests. We declare we have no competing interests.

Funding. We acknowledge financial support by the Russian Science
Foundation, Agreement no. 14-11-00826 (10.07.2014). We also
acknowledge partial funding from the European Union Horizon
2020 research and innovation programme under grant agreement
no. 671564, the ComPat project (http://www.compat-project.eu/)
under grant agreement 675451, and the CompBioMed project
(http://www.compbiomed.eu/).

Acknowledgements. The authors would like to express their gratitude to
Prof. Gerhard Holzapfel, Department of Computational Biomecha-
nics, Graz University of Technology, for providing the digital data
on the in vitro stretch tests of dissected human coronary artery layers.
 Interface

14:
References
20170028
1. Caiazzo D et al. 2011 A complex automata approach
for in-stent restenosis: two-dimensional multiscale
modelling and simulations. J. Comput. Sci. 2, 9 – 17.
(doi:10.1016/j.jocs.2010.09.002)

2. Evans DJW et al. 2008 The application of multiscale
modelling to the process of development and
prevention of stenosis in a stented coronary artery.
Phil. Trans. R. Soc. A 366, 3343 – 3360. (doi:10.
1098/rsta.2008.0081)

3. Tahir H, Hoekstra AG, Lorenz E, Lawford PV, Hose
DR, Gunn J, Evans DJW. 2011 Multi-scale
simulations of the dynamics of in-stent restenosis:
impact of stent deployment and design.
Interface Focus 1, 365 – 373. (doi:10.1098/rsfs.
2010.0024)

4. Tahir H, Niculescu I, Bona-Casas C, Merks RMH,
Hoekstra AG. 2015 An in silico study on the
role of smooth muscle cell migration in
neointimal formation after coronary stenting.
J. R. Soc. Interface 12, 20150358. (doi:10.1098/
rsif.2015.0358)

5. Tahir H, Bona-Casas C, Hoekstra AG. 2013 Modelling
the effect of a functional endothelium on the
development of in-stent restenosis. PLoS ONE 8,
e66138. (doi:10.1371/journal.pone.0066138)

6. Amatruda CM et al. 2014 From histology and
imaging data to models for in-stent restenosis.
Int. J. Artif. Organs 37, 786 – 800. (doi:10.5301/ijao.
5000336)

7. Tahir H, Bona-Casas C, Narracott AJ, Iqbal J, Gunn J,
Lawford P, Hoekstra AG. 2014 Endothelial repair
process and its relevance to longitudinal neointimal
tissue patterns: comparing histology with in silico
modelling. J. R. Soc. Interface 11, 20140022.
(doi:10.1098/rsif.2014.0022)

8. Borgdorff J et al. 2017 A comparison of fully-
coupled 3D in-stent restenosis simulations to in-vivo
data. Front. Physiol. 8, 284. (doi:10.3389/fphys.
2017.00284)

9. Zun P, Anikina T, Svitenkov A, Hoekstra AG. 2017 A
comparison of fully-coupled 3D in-stent restenosis
simulations to in-vivo data. Front. Physiol. 8, 284.
(doi:10.3389/fphys.2017.00284)
10. Merks R. 2015 Cell-based modeling. In Encyclopedia
of applied and computational mathematics (ed. E
Björn), pp. 195 – 201. Berlin, Germany: Springer.

11. Dada JO, Mendes P. 2011 Multi-scale modelling and
simulation in systems biology. Integr. Biol. 3,
86 – 96. (doi:10.1039/c0ib00075b)

12. Starruß J, de Back W, Brusch L, Deutsch A. 2014
Morpheus: a user-friendly modeling environment
for multiscale and multicellular systems biology.
Bioinformatics 30, 1331 – 1332. (doi:10.1093/
bioinformatics/btt772)

13. Wolkenhauer O et al. 2014 Enabling multiscale
modeling in systems medicine. Genome Med. 6, 21.
(doi:10.1186/gm538)

14. Alt W, Byrne H, Deutsch A. 2010 From cells to
organisms: current topics in mathematical and
theoretical biology. Acta Biotheor. 58, 307 – 313.
(doi:10.1007/s10441-010-9113-x)

15. Drasdo D, Hoehme S, Block M. 2007 On the role of
physics in the growth and pattern formation of
multi-cellular systems: what can we learn from
individual-cell based models? J. Stat. Phys. 128,
287 – 345. (doi:10.1007/s10955-007-9289-x)

16. Witthoft A, Yazdani A, Peng Z, Bellini C, Humphrey
JD, Karniadakis GE. 2016 A discrete mesoscopic
particle model of the mechanics of a multi-
constituent arterial wall. J. R. Soc. Interface 13,
20150964. (doi:10.1098/rsif.2015.0964)

17. Holzapfel GA, Sommer G, Gasser CT, Regitnig P.
2005 Determination of layer-specific mechanical
properties of human coronary arteries with
nonatherosclerotic intimal thickening and related
constitutive modelling. Am. J. Physiol. Heart Circ.
Physiol. 289, H2048 – H2058. (doi:10.1152/ajpheart.
00934.2004)

18. Jones M, Sabatini PJB, Lee FSH, Bendeck MP, Lowell
Langille B. 2002 N-Cadherin upregulation and
function in response of smooth muscle cells to
arterial injury. Arterioscler. Thromb. Vasc. Biol. 22,
1972 – 1977. (doi:10.1161/01.ATV.0000036416.
14084.5A)

19. Walker DC, Southgate J. 2009 The virtual cell—a
candidate co-ordinator for ‘middle-out’ modelling of
biological systems. Brief. Bioinform. 10, 450 – 461.
(doi:10.1093/bib/bbp010)

20. Noble D. 2012 A theory of biological relativity: no
privileged level of causation. Interface Focus 2,
55 – 64. (doi:10.1098/rsfs.2011.0067)

21. Oekstra AG, Alowayyed S, Lorenz E, Melnikova N,
Mountrakis L, Rooij BV, Svitenkov A, Závodszky G,
Zun P. 2016 Towards the virtual artery: a multiscale
model for vascular physiology at the PCB interface.
Phil. Trans. R. Soc. A 374, 20160146. (doi:10.1098/
rsta.2016.0146)

22. Coveney PV, Boon JP, Succi S. 2016 Bridging the
gaps at the physics – chemistry – biology interface.
Phil. Trans. R. Soc. A 374, 20160335. (doi:10.1098/
rsta.2016.0335)

23. Mountrakis L, Lorenz E, Hoekstra AG. 2014 Validation
of an efficient two-dimensional model for dense
suspensions of red blood cells. Int. J. Mod. Phys. C
25, 1441005. (doi:10.1142/S0129183114410058)

24. Mountrakis L, Lorenz E, Malaspinas O, Alowayyed S,
Chopard B, Hoekstra AG. 2015 Parallel performance
of an IB-LBM suspension simulation framework.
J. Comput. Sci. 9, 45 – 50. (doi:10.1016/j.jocs.2015.
04.006)

25. Mountrakis L, Lorenz E, Hoekstra AG. 2013 Where
do the platelets go? A simulation study of fully
resolved blood flow through aneurysmal vessels.
Interface Focus 3, 20120089. (doi:10.1098/rsfs.
2012.0089)

26. Mountrakis L, Lorenz E, Hoekstra AG. 2016 Scaling
of shear-induced diffusion and clustering in a
blood-like suspension. Europhys. Lett. 114, 14002.
(doi:10.1209/0295-5075/114/14002)

27. Vaughan D. 2002 A learning system in histology: CD-
ROM and guide. Oxford, UK: Oxford University Press.

28. Thomas G, Burnham NA, Camesano TA, Wen Q.
2013 Measuring the mechanical properties of living
cells using atomic force microscopy. J. Vis. Exp. 76,
50497. (doi:10.3791/50497)

29. Dintwa E, Tijskens E, Ramon H. 2008 On the
accuracy of the Hertz model to describe the normal
contact of soft elastic spheres. Granul. Matter 10,
209 – 221. (doi:10.1007/s10035-007-0078-7)

https://bitbucket.org/naunat/tunicamedia
https://bitbucket.org/naunat/tunicamedia
http://www.compat-project.eu/
http://www.compat-project.eu/
http://www.compbiomed.eu/
http://www.compbiomed.eu/
http://dx.doi.org/10.1016/j.jocs.2010.09.002
http://dx.doi.org/10.1098/rsta.2008.0081
http://dx.doi.org/10.1098/rsta.2008.0081
http://dx.doi.org/10.1098/rsfs.2010.0024
http://dx.doi.org/10.1098/rsfs.2010.0024
http://dx.doi.org/10.1098/rsif.2015.0358
http://dx.doi.org/10.1098/rsif.2015.0358
http://dx.doi.org/10.1371/journal.pone.0066138
http://dx.doi.org/10.5301/ijao.5000336
http://dx.doi.org/10.5301/ijao.5000336
http://dx.doi.org/10.1098/rsif.2014.0022
http://dx.doi.org/10.3389/fphys.2017.00284
http://dx.doi.org/10.3389/fphys.2017.00284
http://dx.doi.org/10.3389/fphys.2017.00284
http://dx.doi.org/10.1039/c0ib00075b
http://dx.doi.org/10.1093/bioinformatics/btt772
http://dx.doi.org/10.1093/bioinformatics/btt772
http://dx.doi.org/10.1186/gm538
http://dx.doi.org/10.1007/s10441-010-9113-x
http://dx.doi.org/10.1007/s10955-007-9289-x
http://dx.doi.org/10.1098/rsif.2015.0964
http://dx.doi.org/10.1152/ajpheart.00934.2004
http://dx.doi.org/10.1152/ajpheart.00934.2004
http://dx.doi.org/10.1161/01.ATV.0000036416.14084.5A
http://dx.doi.org/10.1161/01.ATV.0000036416.14084.5A
http://dx.doi.org/10.1093/bib/bbp010
http://dx.doi.org/10.1098/rsfs.2011.0067
http://dx.doi.org/10.1098/rsta.2016.0146
http://dx.doi.org/10.1098/rsta.2016.0146
http://dx.doi.org/10.1098/rsta.2016.0335
http://dx.doi.org/10.1098/rsta.2016.0335
http://dx.doi.org/10.1142/S0129183114410058
http://dx.doi.org/10.1016/j.jocs.2015.04.006
http://dx.doi.org/10.1016/j.jocs.2015.04.006
http://dx.doi.org/10.1098/rsfs.2012.0089
http://dx.doi.org/10.1098/rsfs.2012.0089
http://dx.doi.org/10.1209/0295-5075/114/14002
http://dx.doi.org/10.3791/50497
http://dx.doi.org/10.1007/s10035-007-0078-7


rsif.royalsocietypublish

11
30. Popov VL. 2010 Contact mechanics and friction:
physical principles and applications, 1st edn. Berlin,
Germany: Springer.

31. Holzapfel GA, Ogden RW. 2010 Modelling the layer-
specific three-dimensional residual stresses in
arteries, with an application to the human aorta.
J. R. Soc. Interface 7, 787 – 799. (doi:10.1098/rsif.
2009.0357)
32. Pathmanathan P, Cooper J, Fletcher A, Mirams G,
Murray P, Osborne J, Pitt-Francis J, Walter A,
Chapman SJ. 2009 A computational study of
discrete mechanical tissue models. Phys. Biol. 6,
036001. (doi:10.1088/1478-3975/6/3/036001)

33. Hairer E, Wanner G. 1996 Solving ordinary differential
equations II: stiff and differential-algebraic problems,
p. 17. Berlin, Germany: Springer.
34. Polak E, Ribière G. 1969 Note sur la convergence
de directions conjuguée. Rev. Francaise
Informat Recherche Operationelle, 3e Année 16,
35 – 43.

35. Melnikova NB, Svitenkov AI, Hose DR, Hoekstra AG.
2017 Data from: A cell-based mechanical model
of coronary artery tunica media. Dryad Digital
Repository. (http://dx.doi.org/10.5061/dryad.2t208)
i
ng.o
rg
J.R.Soc.Interface

14:20170028

http://dx.doi.org/10.1098/rsif.2009.0357
http://dx.doi.org/10.1098/rsif.2009.0357
http://dx.doi.org/10.1088/1478-3975/6/3/036001
https://dx.doi.org/10.5061/dryad.2t208

	A cell-based mechanical model of coronary artery tunica media
	Introduction
	Mathematical models
	Cell-to-cell interactions
	Model anisotropy
	Residual stresses modelling
	Neighbour detection algorithm
	Solving the equations of motion

	Problem set-up and simulation procedure
	Results
	Uni-axial stretch tests, model parameters calibration
	Sensitivity of simulated stretch-stress curves
	Residual stresses and opening angles
	Stent deployment simulation
	Generalization of the model to arbitrary cell size

	Conclusion
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References


