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a b s t r a c t 

In- and outflow boundary conditions for 2D immersed boundary lattice Boltzmann suspension simula- 

tions, applied to cell based blood flow models, are presented. The inlet is constructed with an one-way 

coupling to a periodic domain containing a correct distribution of suspended particles. This provides an 

inflow of particles that has a correct distribution and is decoupled from any phenomena in the flow do- 

main. An outflow boundary for the particles that does not influence the distribution of particles in the 

flow domain is also constructed. With this a method to run long ( > 1 s) cell based blood flow simula- 

tions within any type of domain is provided. These boundary conditions are then used for a simulation 

of blood flow in a curved vessel with an aneurysm. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Cell resolved blood flows are studied with various computer

models, see e.g. Fedosov et al. [1] or Mountrakis et al. [2] . These

models explicitly represent the red blood cells and/or platelets

in their model [3] to mimic and explain various effects (e.g. the

Fåhræus–Lindqvist effect [4] or thrombus formations [5] ). In these

studies mostly periodic boundary conditions (PBC) are used for the

flow domain. Sometimes, however, it is not possible to use periodic

boundaries (e.g. single inlet, multiple outlet flows) and another so-

lution has to be used [6] . In this paper inflow and outflow flow

boundaries for complex flows are constructed for suspensions that

are modeled with an immersed boundary method [7] on top of a

lattice Boltzmann fluid solver [8] . 

These boundaries are important since the distribution of cells

in a blood vessel is non-trivial. This is because of phenomena such

as the cell-free layer, Fåhræus–Lindqvist effect or margination of

platelets. While periodic boundary conditions might circumvent

this problem, they themselves can impose further complications.

In a system with PBC the outlet can influence the distribution of

particles in the inlet boundary condition (e.g. imagine a thrombus

where all platelets get stuck, then this directly causes a depletion

of active platelets). 
∗ Corresponding author. 
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Therefore, we propose another type of inlet and outlet inspired

y Lykov et al. [6] . The in- and outlets are decoupled (the outlet

annot influence the inlet) and a separate tubular domain provides

 correct distribution of particles and fluid for the inlet boundary

ondition. Lykov’s approach is adjusted for IB-LBM blood suspen-

ion simulations. Furthermore Lykov’s approach is only validated

or very narrow domains ( < 10 μm). Our method is also validated

or wider domains ( ∼ 200 μm). A similar approach is proposed by

e et al. [9] . We extend their method by providing a detailed ex-

lanation on how to construct such in- and outlet boundary con-

itions and how key parameters can be chosen. Finally, we also

alidate the in- and outlet boundary conditions and show their ap-

lication in a selected use case. 

. Methods 

.1. Material model for the particles 

The material model developed by Mountrakis et al. [10] is used

or simulating red blood cells and platelets. This material model is

lso used for shear experiments [11] . We have tuned this model

o increase numerical stability (see Appendix A ). The cells are ini-

ialized as disks that relax towards their final shape (biconcave

or RBCs, platelets stay ellipse shaped) in the first millisecond of

 simulation. In a computational context cells are referred to as

articles, while the Lagrangian structure points that make up the

articles are referred to as lsps. 
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. The various elements necessary for defining the in- and outlet boundary 

conditions. 
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Fig. 2. Particle A is transferring into the inflow region. All the lsps of particle A in 

the inflow region are ghosts . Particle B has no more ghost particles because it fully 

entered the inflow region and therefore has been dropped into the fluid. Particle B 

cannot overlap with particle A because it is repelled from the ghost lsps of particle 

A. 
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.2. In- and outflow boundary conditions 

A tubular domain with periodic boundary conditions for both

he particles and solvent (pre-inlet) is placed in front of the in-

et (see Fig. 1 ). This domain cannot be influenced by the rest of

he system in any way. This property implies a one-way commu-

ication restriction between the pre-inlet domain and the flow do-

ain. The restriction is enforced by only copying information from

he pre-inlet domain to the flow domain. This means that the fluid

eld and immersed boundary particles must be reconstructed in

he flow domain. This is done in the inflow region. 

At the end of the flow domain particles have to be removed

ithout influencing the flow domain. This is not possible with

 one-way coupling as with the pre-inlet domain and flow do-

ain. Therefore an outflow region is defined in which particles are

eleted. The resulting disturbances have no influence on the flow

omain before the outlet boundary. 

The flow domain is encompassed by the inlet and outlet. Be-

ween these boundaries the distribution of particles and fluid is

ell defined. In the in- and outflow regions the distribution of par-

icles and the fluid flow might not be correct. 

It is possible to use different time or space discretisation in the

re-inlet domain because of the one-way communication restric-

ion between the pre-inlet domain and the flow domain. It is even

ossible to use an entirely different model, as long as the results of

hat can be interpolated to the inflow region of the flow domain. 

.2.1. Inflow region 

At the beginning of the inflow region there is a fluid row which

as no neighbors (as it is decoupled from the pre-inlet). This is a

lassical fluid boundary problem that is well understood for lattice

oltzmann methods [12,13] . We use the macroscopic velocity of a

ow from the pre-inlet domain to solve the distribution function

or this boundary with the method proposed by Zou and He [14] .

he immersed boundary method only couples through the macro-

copic fluid force and velocity, thus the particles are not affected

y the discontinuities in the distribution functions. 

The inflow of particles is more intricate. When a lsp of a parti-

le crosses the row from which the macroscopic velocity is copied

or the fluid, it is copied to the inflow region. However, all lsps of

 particle have to interact to keep the particle in its correct shape.

hen a particle is transferring from the pre-inlet domain into the

nflow region the lsp in the inflow region cannot interact with the

sp in the pre-inlet domain. Therefore, this can cause numerical in-

tability of the particle in the inflow region. Because of this a more

omplex system for the inlet for particles is proposed. 

When a single lsp enters the inflow region it first becomes a

host lsp (see Fig. 2 ). A ghost lsp is used to calculate repulsion for

ther lsps in the inflow region. This is to ensure no overlap occurs.

 ghost has no other interaction with lsps and it follows the loca-

ion of the lsp in the pre-inlet domain it was copied from. To keep
he velocity field of the fluid from deviating from the one in the

re-inlet domain, which would give rise to discontinuities when

he particle is finally “dropped into” the inflow region, the force

rom a ghost lsp is communicated through the immersed boundary

ethod to the fluid field in the inflow region as well. 

When the full ghost particle has crossed the Zou–He boundary

t the beginning of the inflow region, all the ghost lsps become

ormal lsps in the inflow region. This happens immediately after

he last ghost lsp of the ghost particle enters the inflow region.

his solves the problem of numerical instability of a particle while

ransferring into the flow domain. The transformation of all ghost

sps into normal lsps can be seen as “dropping a particle into the

uid”. 

The size of the inflow region is dependent on the experiment,

ut should be at least as long as the length of the longest possible

longated particle in the experiment. With blood flows this is the

ed blood cell with a maximum length of about 15 μm. 

.2.2. Outflow region 

At the end of the outflow region there must be a boundary con-

ition. The same Zou–He boundary as in the inflow region is used,

ut density is prescribed instead of velocity to calculate the un-

nown distributions. The density that is used for this is the initial

ensity of the flow domain ρ0 , therefore ρ0 = ρout . This bound-

ry condition does not enforce a parabolic profile as expected in

 tubular domain. Therefore, a flattening of the velocity profile in

he outflow region is to be expected. 

A particle is removed fully when one of its lsps crosses the

ast row of the outflow region (and consequently behavior of the

article becomes undefined). The pressure gradient from the fluid

n the particle as opposed to the fluid outside it is approximately

ero. Because of this there are no shockwaves resulting of the dele-

ion of a particle. However, the deletion of a particle does influ-

nce the particle distribution and flow profile. For this reason the

emoval is done in the outflow region. 

The size of the outflow region is dependent on the experiment

nd chosen boundary condition. It should be at least as long as the

ength of the longest possible elongated particle. When the bound-

ry condition introduces artifacts in the outflow region the size of

he outflow region should be at least as large to encompass all

hese artifacts. 

.3. Macroscopic fluid model 

The fluid is simulated using the lattice Boltzmann method with

he BGK collision operator. The lattice spacing is �x = 1 μm . The

uid that is simulated is blood plasma at 37 ◦C , therefore, the

inematic viscosity is 1 . 28 × 10 −6 m 

2 / s [15,16] and the density is

025 kg/m 

3 . The timestep is set to �t = 1 . 176 × 10 −7 s . The relax-

tion time ( τ ) of the fluid is 1.1. With the particles present this

ives an observed locally maximum compressibility error of 1%

as observed from our simulations). This means that the quasi-
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Table 1 

Dimensions and constants for the pre-inlet plane 

Poiseuille flow. 

Parameter Value 

Diameter, L d 200 μm 

Length, L p 100 − 500 μm 

Hematocrit, H 42 % 

Platelet ratio, P 1 
20 

Reynolds number, Re 18 

Simulation time, s 1.18 s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The flow velocity profile of the pre-inlet with aspect ratio 2.5 perpendicular 

to the flow direction. The black dotted line is the parabolic profile for a fluid flow 

without particles present in a plane Poiseuille flow with the same average velocity. 

Fig. 4. A plot of the hematocrit (solid red line) and platelet concentration (dotted 

black line) perpendicular to the flow. Fifty samples from five experiments from the 

largest pre-inlet ( 500 μm ) are used. The samples are taken after a simulation time 

of 1.0 s. The location of the cell-free layer is plotted on the right. 

Fig. 5. A plot of the percentage of marginated platelets for the different pre-inlet 

domains over time. (For interpretation of the references to color in this figure leg- 

end, the reader is referred to the web version of this article) 
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incompressibility constraint of the lattice Boltzmann method is

conserved. 

In the pre-inlet domain the fluid is driven by an external forc-

ing term, which is implemented as proposed by Guo et al. [17] .

The magnitude of this forcing term is calculated from the Hagen–

Poiseuille equation adjusted for flow between parallel plates and a

given Reynolds number. In our experiments we choose Re plasma =
40 . This results in v̄ plasma = 17 cm / s for a domain with a width

of 200 μm. In our experiments the cells add extra viscosity to

the fluid. Since our driving force is constant this results in a

lower mean velocity and lower recovered Reynolds number. We

measured the resulting mean velocity of the suspension which is

v̄ susp = 7 . 5 cm / s . Since our flow exhibits laminar behavior we as-

sume that 

Re susp ≈ v̄ susp 

v̄ plasma 

Re plasma 

which gives us Re susp ≈ 18. Furthermore this Reynolds number

varies slightly with the local hematocrit of the system since the

presence of cells in the fluid changes the viscosity. 

In the beginning ( t = 0 s ) of a simulation, the body force is in-

creased quadratically from zero to the final magnitude over one

millisecond to allow the red blood cells to relax from their initial

disk shape to their biconcave shape. A quadratic increase is chosen

for numerical stability. 

2.3.1. Immersed boundary implementation 

The fluid-particle coupling is modeled through an immersed

boundary method [7] . In this immersed boundary method the ve-

locity of the fluid is interpolated to the particles at every timestep.

The same is true for the force exercised by the material model of

the particles on the fluid. This interpolation is done to the clos-

est Eulerian points X with a discrete Dirac delta function as con-

structed by Mountrakis et al. [10] which effectively gives a four-

point stencil with weights to the closest points. No repulsion par-

ticles are used at the fluid boundaries. 

3. Results 

3.1. Pre-inlet 

Firstly, five differently sized pre-inlet domains are tested to en-

sure that a correct distribution of particles enters the system. To

this end five simulations of each of the five different geometries

for the pre-inlet domain are performed. The width of the pre-inlet

domain is 200 μm for all geometries ( L d = 200 μm ). The geome-

tries only differ in length in the direction of the periodic boundary

condition ( L p ), giving them different aspect ratios defined as the

length of a channel divided by its width ( L p / L d ). The aspect ratios

range from 0.5 to 2.5 . The rest of the parameters are the same

( Table 1 ). 

All pre-inlets retrieve similar velocity profiles. Therefore, only

the pre-inlet domain with aspect ratio 2.5 is plotted in Fig. 3 . Due

to the shear thinning behavior of blood the velocity profile is more

plug-like than the parabolic profile for a fluid without particle that
as the same average velocity. These finding are supported by Car-

oni et al. [18] . 

In flowing whole blood the platelets will marginate to the cell-

ree layer. This is used as a measure of correctness for the pre-

nlets. The margination is measured as the percentage of platelets

n the cell-free layer. In relevant literature there is no clear defini-

ion of the size of the cell-free layer. Because of this we define it

s the maximum length from the wall where there is a hematocrit

f at most 50% of the mean hematocrit. This definition for the cell-

ree layer is used in the rest of this paper. In all the simulations of

he pre-inlet domains the cell-free layer is 5 μm according to this

efinition (see Fig. 4 ). A platelet is considered marginated when it

s present within this layer. 

Fig. 5 shows the percentage of marginated platelets over time.

he initial margination happens quickly and then asymptotically

ends to the final margination percentage, this finding is supported

y the work of Pleunis et al. [19] and Zhao et al. [20] . All pre-

nlets achieve the same average margination. All pre-inlets seem to

ecover a correct distribution, however, the system with the largest

spect ratio inherently has the smallest finite size system effects.

herefore we have used the pre-inlet with the largest aspect ratio

2.5) in the following experiment. 

.2. Plane Poiseuille flow 

To test the in- and outlet boundary conditions a plane Poiseuille

ow is simulated with a pre-inlet domain of the same length as

he flow domain (500 μm). See Table 2 for the parameters that are

sed. At the start ( t = 0 s ) of the simulation only the pre-inlet is

lled with particles. The flow domain only consists of fluid. Fig. 6

hows the domain being filled up after turning on the body force
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Table 2 

Dimensions and constants for the plane 

Poiseuille flow experiment. 

Parameter Value 

Height, d 200 μm 

System length, L 500 μm 

Pre-inlet length, L p 500 μm 

Hematocrit, H 42% 

Platelet ratio, P 1 
20 

Reynolds number, Re 18 

Sample step size 0.00118 s 

Simulation time 1.18 s 

Inflow region 50 μm 

Outflow region 50 μm 

Fig. 6. A plot of the hematocrit over time for the first 0.07 s. The hematocrit is 

measured and averaged over the full domain (including in- and outflow regions in 

the flow domain). 

Fig. 7. Velocity magnitude of the fluid in the pre-inlet and the system after 1 s, 

particles are omitted for visibility. 

i  

a

 

m  

i  

o  

a  

o  

P  

p

 

fi  

l  

t  

T  

f

 

t  

b  

F  

f  

T  

n  

o  

t

Fig. 8. A comparison of the hematocrit and platelet concentration at different 

places in the system. The graphs are averaged over 10 samples taken after 1 sof 

simulation. 

Fig. 9. The profiles from Fig. 8 shown again in a single picture. The solid red line is 

the hematocrit of the pre-inlet. The solid green lines are the hematocrit of the other 

three places from Fig. 8 . The dotted red and green lines are the standard deviations 

for these profiles respectively. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

3

 

d  

s  

i  

a  

a

 

g  

p  

p  

t  

e  

s  

t  

W  

t  

a  

w  

w  

e

3

 

a  

w  

a  

t  

5

 

t  

t  
n the pre-inlet domain. After 0.01 s the flow domain equilibrates

round the same hematocrit as the pre-inlet domain. 

In Fig. 7 the velocity magnitude of the fluid of the pre-inlet do-

ain coupled with the flow domain is shown. The Zou–He velocity

nlet attaches to the pre-inlet with no visible artifacts. At the end

f the outflow region the Zou–He density outlet boundary treats

ll unknown lattice Boltzmann nodes as fluid nodes. Therefore the

utlet boundary does not act as an infinite elongation of the plane

oiseuille flow. This results in an more uniform velocity magnitude

rofile towards the end of the outflow region as expected. 

The transformation from the parabolic velocity magnitude pro-

le towards a more uniform profile of the fluid is present in the

ast 50 μm of the domain. Deviations from the correct particle dis-

ributions are not present anymore at that distance from the outlet.

herefore we assume 50 μm to be a large enough outflow region

or this simulation. 

Fig. 8 shows the pre-inlet domain and flow domain with par-

icles present. The red particles are red blood cells, while the

lack dots represent the platelets. The graphs on the bottom of

ig. 8 show the averaged hematocrit and platelet concentration

or various locations in the flow domain and pre-inlet domain.

hrough the transition of the pre-inlet domain to the flow domain

o noticeable change in this profile is visible. At the end of the

utflow region a slight disturbance is visible due to deletion of par-

icles and Zou–He boundary condition artifacts. 
.3. Same geometry with pre-inlet and periodic conditions 

To show the necessity of our in- and outlet conditions we con-

uct two experiments with a single geometry. The geometry is

uch that it can be either run with periodic boundaries or a pre-

nlet. The geometry is a straight pipe with diameter of 0.1 cm and

n attached aneurysm. We let blood flow through it for 0.4 s with

 velocity of 20 cm/s. 

In Fig. 10 we can see clear differences arising between the same

eometry with different boundary conditions. The aneurysm with

re-inlet is enriched with more platelets than the aneurysm with

eriodic boundaries. This is due to depletion of platelets in the

ube with the periodic conditions. The aneurysm with pre-inlet

ven has more platelets than are available in the whole periodic

ystem after 0.23 s. Furthermore, the density of particles in the

ube with periodic boundary conditions is lower in the aneurysm.

e account this effect due to the non-changing number of par-

icles in the whole periodic geometry. Both effects are unwanted

nd noticeable when running long simulations of such a geometry

ith periodic boundary conditions. The geometry that is simulated

ith our new in- and outlet conditions does not suffer from these

ffects. 

.4. Application to a curved aneurysm 

As an example of applying the in- and outlet conditions for

n application where periodic boundary conditions cannot be used

e simulate the flow of blood within a curved vessel that has an

ttached aneurysm. Again, the pre-inlet domain that is attached

o the curved aneurysm has a width of 200 μm and a length of

00 μm. 

The domain is also randomly initialized with the same hema-

ocrit and platelet percentage as the pre-inlet domain. Otherwise

he flow domain (aneurysm) would take in the order of seconds to
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Fig. 10. The same geometry run with periodic (a) and pre-inlet (b) boundaries after 

0.4 s. The red cells represent red blood cells and the black cells represent platelets. 

In (c) the number of platelets in the aneurysm is plotted over time. (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 11. Curved aneurysm with platelets (black dots), velocity magnitude of the 

fluid (color bar) and streamlines (white lines). The fluid is moving from the left 

to the top 
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Table 3 

Adjusted constants. 

Parameter Value 

Spring constant, C spr 1 × 10 −3 N / m 

Cell-cell constant, C rep 2 × 10 −22 N . m 

2 

Cutoff distance, h cutoff 0.6 μm 
reach the correct hematocrit. In the plane Poiseuille flow experi-

ment all these particles would be replaced with particles from the

pre-inlet domain within 0.1 s. Thus giving approximately the same

simulation results after this time. 

Fig. 11 shows the aneurysm after one second of simulation. In

this figure the location of a platelet is represented by a black dot.

The red blood cells are omitted for clarity. On the background the

velocity of the fluid and the streamlines are plotted. We can see

that platelets start to accumulate in the aneurysm as predicted by

Závodszky et al. [21] and observed in earlier work by Mountrakis

et al. in a straight vessel geometry with periodic boundary condi-

tions [22] . 
. Discussion and conclusion 

We have shown that Lykov’s et al. [6] method can be adapted

or two dimensional suspensions simulated with IB-LBM. Further-

ore, we show that these two dimensional suspensions can scale

o larger inflow boundaries of 200 μm. The tests with the plane

oiseuille flow show that an accurate distribution of particles

ithin the flow domain and a well behaving blood flow is re-

rieved with our in- and outlet boundaries. The simulation with

he curved vessel and attached aneurysm demonstrates the impor-

ance of such in- and outlet boundary conditions. Since platelets

re accumulating in the aneurysm it is necessary to have an inflow

hat is independent of the behaviour of particles in the system. 

These in- and outflow boundary conditions can be extended

nto three dimensions as a logical next step. As an extension to

he curved aneurysm showcase it is possible to do particle resi-

ence time analysis [21] and other analyses that were previously

nly available to pure fluid solvers within hemodynamics. In fu-

ure work we intend to investigate the behaviour of platelets in

neurysms in more detail, also taking into account the pulsatility

f blood flow. 
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ppendix A. Variables and formulae for the material model 

The material model used by Mountrakis et al. [10] suffered from

nstabilities in our simulations. Therefore, some constants and ma-

erial model equations are adjusted. 

In the simulations the red blood cells appeared to be too stiff.

his is solved by squaring the angle used in calculating the bend-

ng resistance force ( f trs ). The bending constant C trs is decreased a

undredfold to 1 × 10 −9 N / rad . 

We noticed numerical instability caused by large forces from

he repulsion force ( F rep ). This seemed to be happening because

f a exponential term for the distance. Therefore this term is re-

oved and made linear. This dampens the force impact of colli-

ions that with the quadratic term could create such large forces

hat the simulation became numerically unstable. 

As a final step some parameters for the material model are

lightly adjusted (see Table 3 ). 

In the simulations it became apparent that the repulsion force

auses the particles to keep a distance of h cutoff from each other at

ll times. Because of this the particles act as if they have a diame-

er that is 0 . 5 × h cutoff = 0 . 3 μm larger. Therefore this extra area is

dded to the calculation for the hematocrit. This is shown as the

pparent area in Table 4 . 
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Table 4 

Cell properties. 

Parameter Red blood cells Platelets 

Area 10.00 μm 

2 1.81 μm 

2 

Apparent area 15.30 μm 

2 –

Circumference 16.71 μm 5.03 μm 

N lsp 26 8 
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