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Abstract

We investigated whether early algebra lessons that explicitly aimed to elicit mathemat-
ical discussions (shift-problem lessons) invoke more and qualitatively better mathe-
matical discussions and raise students’ mathematical levels more than conventional
lessons in a small group setting. A quasi-experimental study (pre- and post-test, control
group) was conducted in 6 seventh-grade classes (N =160). An analysis of the inter-
action processes of five student groups showed that more mathematical discussions
occurred in the shift-problem condition. The quality of the mathematical discussions in
the shift-problem condition was better compared to that in the conventional textbook
condition, but there is still more room for improvement. A qualitative illustration of two
typical mathematical discussions in the shift-problem condition are provided. Although
students’ mathematical levels were raised a fair amount in both conditions, no differ-
ences between conditions were found. We concluded that shift-problem lessons are
powerful for eliciting mathematical discussions in seventh-grade shift-problem early
algebra lessons.
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level raising - Mathematical discussions - Secondary education
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Introduction

Textbooks are commonly used in mathematics classrooms in the Netherlands, as well as
in other countries. For the most part, these textbooks lead students step-by-step through
predefined solution processes for solving mathematical assignments (Lithner 2008;
Mayer 2002). However, it has been shown that students who were engaged in such
step-by-step solving processes display superficial and fragmented mathematical knowl-
edge and superficial mathematical reasoning (Bergqvist et al. 2008). Several experi-
mental studies have shown that it is possible to invoke learning processes that contribute
significantly to students’ ability to reason mathematically and that mathematical discus-
sions in small groups can lead to mathematical level raising (Dekker and Elshout-Mohr
1998, 2004; Pijls and Dekker (2011); Pijls et al. 2007). A major drawback of these
experimental interventions is that their implementation in everyday mathematics class-
rooms would require substantial curriculum changes (Stein et al. 2007).

Palha et al. (2013) addressed this problem by developing design principles for
lessons that aim to raise students’ mathematical levels, based on curriculum materials
that are used currently in mathematical lessons. These design principles are inspired by
the domain specific theory of Realistic Mathematics Education of Freudenthal (1991).
Main design principles are learning goals aiming at a deeper understanding of math-
ematics and invoking mathematical discussions through collaborative learning and
challenging assignments. The mathematical content unfolds from the mathematical
discussions and all assignments require reasoning. The authors referred to these lessons
as shift-problem lessons, indicating that the mathematical problems that are discussed
in these lessons are designed with the specific goal of a shift to a deeper understanding
of mathematics. An example of such a shift-problem lesson for integral calculus is:
“Given the graph representing the velocity of a car against time and the formula for the
velocity. The students are asked to provide formulas that describe the distance travelled
starting at different times.” (Palha et al. (2014), p. 1596). In a quasi-experimental study,
Palha et al. (2014) compared these shift-problem lessons in which 11th-grade students
worked collaboratively in small heterogeneous groups (different levels of mathematical
knowledge) with a conventional condition, in which the students worked individually
on regular assignments of the textbook on the same topic. The authors found a
significant positive effect on students’ knowledge of integral calculus for shift-
problem lessons when compared to conventional lessons. Furthermore, they found that
students in the shift-problem condition were able to reason about integral calculus
assignments at higher levels. Although these outcomes are promising, it is yet unclear
whether the design principles that underpin shift-problem lessons will result in similarly
positive outcomes when used with a different topic and with younger students.

The aim of this study is to investigate the effects of shift-problem lessons on the
topic of early algebra for seventh-grade students (12- and 13-year-old students). We
chose the topic early algebra because students’ difficulties with learning early algebra in
secondary education often reoccur in international comparative studies such as the
Trends in International Mathematics and Science Study (TIMSS) (Mullis et al. 2016)
and the Programme for International Student Assessment (PISA) (OECD 2016). In a
quasi-experimental design, we compared the amount and quality of mathematical
discussions between these shift-problem lessons and conventional lessons during group
work, as well as the gain in students’ mathematical levels between both conditions.
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Theoretical framework
Mathematical level raising for early algebra

According to Freudenthal (1991) and Van Hiele (1986), the learning of mathematics
occurs in discrete steps, implying the existence of levels of mathematical thinking. Van
Hiele (1986) described four levels: (1) visual level: the forms of mathematical objects
are the object of study, (2) descriptive level: the properties of mathematical objects are
the object of study, (3) theoretical level: relations between the properties of mathemat-
ical objects are the object of study, and (4) formal logical level: relations between
theorems are the object of study. Freudenthal (1991) built upon this theory and states
that the levels are more relative than discrete, meaning that level raising occurs every
time a mathematical activity (performed at a lower level) consciously becomes the
object of reflection (at a higher level). Freudenthal (1971) defines a mathematical
activity as an activity of organizing subject matter, which can be matter from reality
or mathematical matter, according to mathematical patterns or new ideas. For example,
at a lower level, patterns of the number of tables and chairs in a table setting can be
studied. At a higher level, these patterns themselves become the object of reflection
when one tries to create a formula with which the number of chairs in a particular table
setting can be calculated when the number of corresponding tables is given.

According to Freudenthal (1978), when students collaborate in a heterogeneous
small group on one task, there will often be at least one student who experiences an
“Aha moment” (jumping to a higher level) when understanding the subject matter. A
typical higher level activity will follow for that student, such as reflecting on how he/
she mastered the subject matter and explaining to other students in the group what he/
she just learned. In other words, discussions between students in a heterogeneous group
while performing mathematical activities (mathematical discussions) enhance mathe-
matical level raising.

A reoccurring problem with attaining mathematical level raising when learning early
algebra in secondary education is that students find it difficult to make a shift from
studying patterns at a lower level to understanding formulae at a higher level (Kieran
1992; Sfard and Linchevski 1994; Van Stiphout et al. 2011). Janvier (1987) addressed
this problem by defining algebra representations, situation, graphs, tables, and formulae
as four ways to describe the relation between two variables in a formula. He calls the

Table 1 Janvier translation skills. All possible translation skills between representations situation, tables,
graphs, and formulae are shown

To Situation Tables Graphs Formulae
From

Situation Measuring Sketching Modeling
Tables Reading Plotting Fitting
Graphs Interpretation Reading off Curve fitting
Formulae Parameter recognition Computing Sketching

Adapted from Janvier (1987)
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746 S. M. Calor et al.

ability to switch between the representations a translation skill. Table 1 shows these
translation skills.

According to Janvier (1987), translation skills are best learned when they are taught in
a pair-wise manner. For example, the translation skill modeling is learned best when
students first learn how to construct a situation from a formula, followed by learning how
to construct a formula given a situation, or vice versa. In this study, all translation skills
involving the representation formulae are considered to contribute to mathematical level
raising. These translation skills are as follows: parameter recognition (formulae to
situation), computing (formulae to tables), sketching (formulae to graphs), modeling
(situation to formulae), fitting (tables to formulae), and curve fitting (graphs to formulae).

Collaborative learning and group composition

Freudenthal (1991) advocated collaborative learning for attaining mathematical level
raising. Following Kaendler et al. (2015), we define collaborative learning as: “Col-
laborative learning is the process of two or more students working together to find a
joint solution to the group task at hand.” (Kaendler et al. 2015, p. 506). The focus is on
co-constructing knowledge together, while students depend on one another because of
their unique knowledge and perspectives. In this way, it differs from cooperative
learning in which group tasks are divided in subtasks that can be solved individually
(Dillenbourg 1999). The quality of interaction between students is an important
indicator for the effectiveness of collaborative learning (Van Boxtel et al. 2000; Van
der Linden et al. 2000; Ing et al. 2015).

Invoking mathematical discussions through collaborative learning is also one of the
main design principles of shift-problem lessons. Collaborative learning in classrooms
has been researched for decades (Johnson and Johnson 2009) and is known to have a
positive effect on students’ learning outcomes (Kyndt et al. 2014). It has been success-
ful in promoting learning in the mathematics classroom (Dekker and Elshout-Mohr
1998, 2004; Pijls et al. 2007; Webb 2009; Yackel et al. 1991). Several studies have
shown that collaborative problem-solving skills as giving and receiving explanations
about mathematical content may lead to restructuring, clarification, and repairing of
students” own knowledge and learning new knowledge (Webb 2009). Although col-
laborative learning is meaningful, the results of the PISA assessment on collaborative
learning (OECD 2017) showed that only 8% of the students of the OECD countries
seem to have high-level collaborative problem-solving skills.

One of the factors that may affect students’ learning during collaborative learning is
the composition of the group. Several studies have been conducted over the years to
study the effect of group composition on learning outcomes for mathematics in
secondary education. In their meta-analysis, Lou et al. (1996) did not find differences
in performance between heterogeneous and homogeneous groups. Hooper and
Hannafin (1988) reported similar results but also showed that heterogeneous grouping
is more beneficial for students with low mathematical abilities. Similar results have
been found in more recent studies (Webb 2011; Wiedmann et al. 2012). For instance,
Wiedmann et al. (2012) showed that groups needed at least one member with high
mathematical ability. More importantly, they reported that heterogeneous groups gen-
erated the highest quality approaches and the widest variety in problem-solving skills
when learing early algebra.

@ Springer
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Mathematical discussions

The effects of collaboration on learning depends on the quality of the discussion (Van
Boxtel et al. 2000; Van der Linden et al. 2000; Ing et al. 2015). In mathematical
discussions, students reason about mathematical subjects and are challenged to reflect
on mathematical structures and activities (Freudenthal 1991; Van Hiele 1986). These
practices are supposed to contribute to mathematical level raising. The two main
activities of mathematical level raising mentioned by Freudenthal (reflection and
discussion) form the basis of the Process Model of Dekker and Elshout-Mohr (1998).

The Process Model was developed to study the quality of mathematical discussions.
The model is meant to analyze discussions in small group of students who work on a
mathematical task. Students work on the same mathematical task, each in their own
way. The Process Model distinguishes three types of learning activities: key activities,
regulating activities, and mental activities. Key activities are communicative activities
that help students attain mathematical level raising. Key activities invoke reflection;
thus, they activate mental activities. Four key activities can be distinguished: to tell/
show one’s work, to explain one’s work, to justify one’s work, and to reconstruct one’s
work. For example, key activity “explanation” leads to mathematical level raising,
since a student who does the explaining has to think about his work and thus may fill in
gaps in his existing knowledge or may even reconstruct his existing knowledge (Webb
et al. 2002). Regulating activities are communicative activities that are meant to
regulate key activities. Three regulating activities can be distinguished: ask to show
one’s work, ask to explain one’s work and criticize another students’ work. And finally,
mental activities are activities that occur in students’ minds. Five types of mental
activities can be distinguished: becoming aware of one’s work, thinking about one’s
work, thinking about another students’ criticism, thinking about one’s justification,
criticizing one’s work. Key activities and regulating activities can be observed very
well and can therefore also be measured very well. Mental activities take place in
students’ mind and are therefore more difficult to measure.

Table 2 shows the mental and key activities of student B, regulated by student A.

In this study, a mathematical discussion is considered to be a qualitatively good
discussion if it comprises all key activities, since key activities evoke reflection which
in its turn evokes mathematical level raising. Shift-problem lessons are a way to elicit
these key activities, in particular, the design principle: “reflection can be induced
through mathematical discussions” (Palha et al. 2013, p. 148—149).

Table 2 The three types of activities of the Process Model, regulating, mental, and key activities performed by
student A and student B

Regulating Activities Mental Activities Key Activities

A asks B to tell/show his work B becomes aware of his work B tells/shows his work
A asks B to explain his work B thinks about his work B explains his work
A criticizes B’s work B thinks about A’s criticism B justifies his work

B thinks about his justification

B criticizes his work B reconstructs his work

@ Springer
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Aims and research question

The aim of the current study is to investigate whether shift-problem lessons result in
more and better quality mathematical discussions and more mathematical level raising
for early algebra in the seventh grade. The focus of this study is not on the teacher. For
both teachers and students, working in group settings was common practice. The focus
of this study lies on material that could assist teachers in this setting. In a quasi-
experimental study, we compared the effects of shift-problem lessons with a condition
in which students worked with textbooks in a small group setting.

The following research question guides this study:

Do shift-problem lessons for early algebra in seventh grade result in more and
qualitatively better mathematical discussions and more mathematical level raising than
working with conventional lessons in a small group setting?

We hypothesized that

+ students in the shift-problem condition would be engaged in more and better quality
mathematical discussions than students in the conventional textbook condition.

+ students in the shift-problem condition would reach a higher mathematical level
than the students in the conventional textbook condition.

Method
Design

We used a quasi-experimental research design (pre—post-test, control group) to inves-
tigate our research question.

Intervention

In both conditions, students worked during 5 weeks on a lesson series of 12 lessons of
60 min on the topic of early algebra. In the shift-problem condition, we replaced five of
these lessons, that were suitable for adaption, with shift-problem lessons. The shift-
problem lessons consisted of tasks that were close to, or adaptations of, the conven-
tional textbook tasks according to the sequence of the tasks in the textbook (Moderne
Wiskunde 1A 2012; Moderne Wiskunde 1B 2012). By doing so, we aimed to stay close
to the teacher’s curriculum. We designed these tasks according to the design principles
of Palha et al. (2013).

These design principles are:

1) “the designer is guided by the learning goal of a deeper understanding of
mathematics

2) mathematics has to start at a level that is experientially real to the students and

3) reflection can be induced through mathematical discussions” (Palha et al. 2013, p.
148-149)

@ Springer
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In none of the conditions, teachers were given prior instructions on how to support the
small groups of students. Teachers gave support in their usual way (i.e., teachers mainly
gave content help or hints to individual students in the groups).

In the conventional textbook condition, students sat together in small heterogeneous
groups of three or four students (as was normally the case) and were allowed to talk to
each other but worked individually on regular assignments from the conventional
mathematics textbook during all 12 lessons. Every lesson started with 15 min instruction
by the teacher, followed by students working on the textbook assignments for 45 min.

In the shift-problem condition, students worked collaboratively during five lessons
(lesson 2, 4, 6, 11, and 12) on shift-problem lessons. Every lesson started with 15 min
introduction by the teacher, followed by students working on the shift-problem lessons
for 45 min. During the remaining lessons, students sat together in the same small
heterogeneous groups and worked on regular assignments from the textbook.

Shift-problem lesson for early algebra

The main learning goal in the shift-problem lessons is a deeper understanding of early
algebra, in particular, formulae (design principle: “the designer is guided by the
learning goal of a deeper understanding of mathematics” (Palha et al. 2013, p. 148—
149)). All possible switches to and from representation formulae are associated with
this learning goal. To accomplish this learning goal, the lesson series (shift-problem
lessons plus conventional sections), as a whole, contained exercises testing all possible
switches between the Janvier (1987) representations. In particular, the lesson series
contained exercises involving all six switches to and from representation formulae. If,
for example, a particular switch only occurred in one direction in the conventional task,
we added the corresponding switch in the opposite direction in the shift-problem
lesson. By adapting conventional tasks, we stay close to students’ experiences with
mathematics (design principle: “mathematics has to start at a level that is experientially
real to the students” (Palha et al. 2013, p. 148-149)) as Palha did with Geometry
exercises (Palha et al. 2013).

For example, let us consider a task on early algebra in the conventional textbook (see
Fig. 1).

This conventional task already contains the translation skill modeling (switch from
situation to formulae). We adapted the task by adding the translation skill parameter
recognition (switch from formulae to situation) to the task, so the translation skills
parameter recognition and modeling can be learned in a pair-wise manner, as was
suggested by Janvier (1987). Tables and chairs that are part of the conventional task
were also printed in color and cut into separate figures of tables and chairs, so students
could work with concrete material. Figure 2 shows the adapted task.

Teachers in both conditions implemented the lessons as intended (gave support as
they normally would). Implementation check was performed by the first author during
and after lessons (check with teacher and watch videotape of lessons).

Participants

Participants were 160 students, aged between 12 and 15 years old (M=12.87, SD =
0.54), from 6 seventh-grade classes (M =26.67, SD =0.52), and 6 teachers (5 males, 1
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An owner of a restaurant has a basic table setting of two rectangle tables
beside each other, see table setting A. With a larger party of people, he
extends the 2 tables with extra tables.

a How many people can take place in this manner at 3 tables?

b The setting is extended to 5 tables. Make a sketch of the situation.

¢ How many chairs are there around 5 tables?

d How many chairs are there at each table, if you disregard the outer ends?
e Write the formula in words for calculating the total number of chairs.
The number of tables times ... plus ... equals to the number of chairs

f You can write the formula in words shorter with a chain of arrows. Finish the chain of arrows.
IN-number OUT-number

number of tables e number of chairs

Fig. 1 Conventional task on table settings

female) of one school in an ethnically diverse suburban neighborhood in Amsterdam,
the Netherlands. The first author is a teacher at this school.

Twenty-seven percent of the students spoke at least one foreign language at home
along with Dutch. Eight percent of these ethnic minority students did not speak Dutch
at all at home. The students were given track advice from primary school ranging from
vocational levels to pre-university levels. In contrast to conventional practice in the
Netherlands, the school delays streaming of students for 2 years according to primary
track advisement. Seventy percent of the participating students were given track advice
for a vocational level and 30% of the students for pre-university level. Students of
different backgrounds and of different track advisement were distributed evenly over
the classes by the school. Similar to Palha et al. (2014), we focused on heterogeneous
groups in this study. All students (both conditions) worked in small heterogeneous
groups (34 groups of four students and eight groups of three students). Student groups
were formed based on the results of the pre-test on mathematical level, measured with a
mathematical knowledge pre-test on early algebra. Students were divided into three
categories based on their performances: weak, average, and strong. Groups consisted of
one weak student, two average students and one strong student (Webb et al. 1998).
Ideally students worked in groups of four students, but eight groups of three students
were formed due to restrictions in class size.

The teachers volunteered to participate in this study. Every teacher taught his/her
own class. The teachers were matched into three pairs according to age and teaching
experience (6, 13, and 33 years of teaching experience). For every pair, one teacher was
assigned to the experimental condition and the other to the control condition (three
teachers with 17 groups of four students and four groups of three students in each

A setting of tables and chairs corresponds to the following formula in words:

The number of tables times 3 plus 2 equals to the number of chairs

a Construct a setting of tables and chairs together that corresponds to this formula in words.
Draw or glue this setting on your poster.

b Create a new formula in words that also corresponds to your setting.

Fig. 2 Adapted task on table settings with concrete material
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condition, two males and one female in the experimental condition and three males in
the control condition). One of the teachers is the first author of this article.

Data collection/instruments/analysis
Mathematical discussions

In every class (both conditions), one group was randomly selected for videotaping. The
data from one group in the conventional textbook condition were missing, resulting in a
total of three groups in the shift-problem condition and two groups in the conventional
textbook condition. Prior to data collection, every group was videotaped during one
lesson for students to get used to the camera.

Group interaction was videotaped in lesson 3. Shift-problem lesson 3 was selected
for its clear application of the design principles that underpin shift-problem lessons.

Interaction processes were transcribed and analyzed by using the program Multiple
Episode Protocol Analysis (Erkens 2002). The interaction was coded on the level of
utterances. Following Van Boxtel et al. (2000), we define an utterance as “an individual
message unit that is distinguished from another utterance through a ‘perceptible’ pause,
comma or full stop” (Van Boxtel et al. 2000, p. 317-318). To get a general impression
of the interaction processes, we first coded all utterances on the level of task acts. Task
acts refer to the function of the utterances in relation to the execution of the task (Van
Drie et al. 2005). We distinguished seven main categories; four categories on the
dimension of on-task utterances and three categories off-task utterances (see Table 3).
In the second step, utterances that were coded as talk about task content were divided
further into talk about task content to the teacher and mathematical discussions (talk
about task content to other students in the group). Finally, in the third step, utterances
coded as mathematical discussions in the second step were divided further into seven
subcategories according to the regulating and key activities of the Process Model
(Dekker and Elshout-Mohr 2004): ask to show work, ask to explain work, criticize
work, tell/show work, explain work, justify work, and reconstruct work (see Table 4).
In the “Two examples of mathematical discussions in the shift-problem condition”
section, we provide two examples of the analyses of typical mathematical discussions
in the shift-problem condition.

Inter-rater reliability between two coders, the first author and a research assistant,
was calculated over three randomly selected protocols (sum of 1236 utterances) for all
three coding steps. Inter-rater reliability was good (agreement 82% and Cohen’s kappa
0.76) for the coding in the first step (talk about task content, think aloud about task
content, talk about the task in general, talk about performing the task, social talk, talk
about the camera, no code). Inter-rater reliability was excellent (agreement 99.7% and
Cohen’s Kappa 0.97) for the second coding step after agreeing on the first step (talk
about task content with the teacher and elements of mathematical discussions), and
inter-rater reliability was satisfactory (agreement 84% and Cohen’s kappa 0.67) for the
third coding step after agreeing on the second step (detailed analysis of mathematical
discussions in regulating and key activities). For the third step, Cohen’s Kappa turned
out to be satisfactory but lower than may be expected due to an artifact in the
calculation of Cohen’s Kappa. Because subcategory tell/show work occurs the most
and others occur scarcely, the distribution of the diagonal of the matrix used in the
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Table 3 Coding definitions of task acts

Main categories

Description

Example in this study

On task
Talk about task content
Talk with teacher

Mathematical discussions

Think aloud about task content

Talk about the task in general

Talk about performing the task

Off Task
Social talk

Talk about the camera

No code

Conversations with teacher
about mathematical content

Conversations between students
in a small group about
mathematical content

Think aloud about mathematical
content, no interaction

Read the exercise out loud
Evaluation of the task

Cite what should be written down
Cite what the answer is
Conversations about the material
Encourage other students to work

Planning task

Non-task related conversations with
other students and teacher

Non-task related conversations about
the camera and microphone

Inaudible

“Miss, can you explain to us
why it should be doubled?”

“T have 6, because you have to
double it”

“5 times 3 is umm ... 157

“Can you create a formula in words?”
“This task was difficult”

“Write down: In the candy store...”
“The answer was 12”

“Can you hand me the chairs?”

“You should also help”

“We have 5 min for the last
exercise”

“What subject do we have next?”

“Teacher, when will we get our
grades?”

“When you tap on the microphone,
you hear this”

“[inaudible]”

calculation of Cohen’s Kappa is uneven, leading up to a lower value for Cohen’s Kappa
than otherwise would be the case (Birt et al. 1993). The research assistant indepen-
dently coded the data of two groups in the experimental condition, and the first author

coded the rest of the data.

Table 4 Seven elements of a mathematical discussion

Regulating activities
Ask to show work
Ask to explain work
Criticize work

Key activities
Tell/Show work
Explain work
Justify work

Reconstruct work

Example
“What do you have?”
“How did you do that?”

“That is in the wrong order”

Example

“Look what I have done”

“I have 6, because you have to double it”

“I am right, because 5 times 5 =25”
“I’1l better do it like this”

@ Springer
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We compared absolute frequencies of the categorical elements of mathemat-
ical discussions to determine if more elements of mathematical discussions
occur in the shift-problem condition than in the conventional textbook
condition.

Mathematical level

Students’ mathematical levels in early algebra were measured by means of a
test. A pre-test was administered in the lesson prior to the intervention, and the
same test was administered as a post-test in the lesson after the intervention.
The test aims to measure the mathematical levels of students based on the
translation skills from Janvier (1987). The highest level implies being able to
translate from representation formulae to representations situation, tables, and
graphs and vice versa.

The test consists of six questions and 17 sub-questions, of which 10 were
used to measure mathematical levels. They consist of questions involving all
translation skills of the representation formulae (Janvier 1987). The other seven
questions were discarded (not included in the scores) during determination of
level raising. They consist of basic primary school arithmetic questions so that
students would be able to answer at least some of the questions when the test
was administered as a pre-test. Scores of 0, 1, and 2 were assigned; 0 meaning
low mathematical level, 1 meaning medium mathematical level, and 2 meaning
high mathematical level. The sub-questions of the test corresponded to the
switches between the Janvier representations involving formulae. The first
sub-question only involved a less abstract representation of a formula; therefore,
the score for this question was limited to 1 (medium mathematical level). The
sum of the scores amounts to a maximal number of 19 points in total that
students could score for the test. The levels that were assigned to the sub-
questions were discussed with a second coder (the second author of this
article). Students worked individually on the test for 60 min. An example of
a basic primary school arithmetic question is: “Out of one package pancake mix
you can bake six pancakes. How many pancakes can you bake with 12
packages of pancake mix?” An example of a question that measures mathemat-
ical level is: “Shane wants to get in shape, therefore he goes swimming. With
the following (word) formula you can calculate Shane’s costs. Number of times
swimming %3+ 30= costs. (Here, 3 stands for €3, the cost for swimming once
at a swimming pool for a member and 30 stands for €30, the cost of a yearly
membership to a swimming pool.) Draw a graph for this formula.”

Inter-rater reliability for the pre- and post-test between two coders (the first
and second author) over 36 randomly selected tests (10% of the total number of
tests) was excellent (ICC 0.95). The first author coded the rest of the data.

A multilevel model for repeated observations on fixed occasions with an
unrestricted covariance matrix (Snijders and Bosker 2012) was used to test for
differential growth between the shift-problem condition and the conventional
textbook condition. The fixed occasions are the measurements (pre- and post-
test) nested in individual students. The measurements (pre- and post-test) are
the first level and the individual students are the second level.
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Results

In this section, we first show the results on the interaction processes during mathematical
discussions in section 5.1, followed by two examples of such mathematical discussions
in section 5.2, and finally, we show the results on the mathematical level test in section
5.3 to explore the research question, “Does working with Shift-Problem Lessons for
Early Algebra in seventh grade lead to more mathematical discussions and more
mathematical level raising than working with conventional collaborative lessons?”

Interaction processes during mathematical discussions

Table 5 shows absolute frequencies of the main categories of the interaction analysis of
group discussions. The average number of total utterances in the Shift-problem condi-
tion (SPC) (M =1596) is approximately equal to the average number of total utterances
in the Conventional textbook condition (CC) (M =592.5). However, in the SPC, there
are more utterances of the categories of mathematical discussions, talk about task in
general, and talk about performing the task than in the CC. Utterances of the category
Think aloud about task sparsely occur in both conditions. There are less utterances of
category Social talk in the SPC than in the CC.

In Table 6, we zoom in on the elements of the mathematical discussions. As
mentioned earlier, more utterances of the category of mathematical discussions occur
in the SPC than in the CC. In groups 1, 2, and 3 of the SPC, the distribution of activities
is relatively the same. Regulating activities ask to show work and criticize work occur
the most while ask to explain work sparsely occurs. Of the key activities, tell/show
work occurs the most while explain work, justify work, and reconstruct work sparsely
occur. In group 1, explain work does not even occur at all. In the CC, the regulating

Table 5 Number of utterances and percentages per main interaction category summed over shift-problem
lesson 3 for three groups in the shift-problem condition and two groups in the conventional textbook condition

Shift-problem lesson 3 Shift-problem condition Conventional textbook condition
Group1  Group2  Group3  Group 4 Group 5
Total utterances 737 693 358 620 565
On task
Talk about task content
Talk with teacher 14 5 10 6 3
Mathematical discussions 195 182 68 30
Think aloud about task 2 1 0 3
Talk about task in general 171 157 67 137 28
Talk about performing the task 51 83 24 5 23
Off task
Social talk 265 241 153 419 495
Talk about camera 26 23 19 6 15
No code 13 1 17 14 1
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Table 6 Elements of mathematical discussions summed over shift-problem lesson 3 for three groups in the
shift-problem condition and two groups in the conventional textbook condition

Shift-problem lesson 3 Shift-problem condition Conventional textbook
condition
Group 1 Group 2 Group 3 Group 4 Group 5
Total elements of mathematical discussions 195 182 68 30 0
Regulating activities
Ask to show work 26 24 0
Ask to explain work 2 0 0
Criticize work 33 29 14 0
Key activities
Tell/show work 114 115 45 20 0
Explain work 0 6 1 0
Justify work 15 5 2 0
Reconstruct work 5 3 0

activity ask to show work occurs the most in group 4 while ask to explain work and
criticize work do not occur at all. The key activity tell/show work also occurs the most
and explain work once while justify work and reconstruct work do not occur at all. In
group 5, no mathematical discussions at all occur between the students. It is clear that
the key activity tell/show work occurs the most in both conditions while other key
activities sparsely occur.

Two examples of mathematical discussions in the shift-problem condition

We provide two examples of the analyses of the mathematical discussions of a group of
students (who we address with fictitious names). In the first example, the group of

Som?2

n-2= §:333#2=5

Fig. 3 Constructed table setting from students Leo, Hanna, Elizabeth, and Farrah corresponding to the
formula in the following words: the number of tables times 3 plus 2 equals the number of chairs
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students, Leo (strong student), Elizabeth (average student), Farrah (average student),
and Hanna (weak student), do not manage to co-construct the knowledge they need to
solve the task independently of the teacher. In the second example, the group does
manage to co-construct the knowledge they need to collaboratively solve the task.

In example 1, the group worked on the adapted task in Fig. 2. First, students were asked
to construct a table setting corresponding to the formula in words: “The number of tables
times 3 plus 2 equals to the number of chairs” (sub-question a). Second, students were
asked to create a new formula that also corresponds to their table setting (sub-question b).

Figure 3 shows the table setting the students constructed for the formula in words
while working on sub-question a of the adapted task in Fig. 2. Students had no
difficulty with the creation of this table setting.

However, students did have difficulty with the creation of a formula that also
corresponds with the table setting they created (sub-question b). One way to solve
the task is to reverse the formula in words by starting with the number of chairs instead
of the number of tables. The new formula then becomes: the number of chairs minus 2
divided by 3 equals the number of tables. In the exercise, the hint was given that the
formula could start with “number of chairs”.

In the following coded excerpt, the students discussed the creation of this new
formula, but were not able to co-construct the knowledge to create this new formula
independently. It represents a typical mathematical discussion with much of the key
activity tell/show work.

Leo: Create a new formula in words that also corresponds to this setting (reads)

Leo: It has to start with number of chairs

Elizabeth: Easy

Leo: Number of chairs Tell/show work
Hanna: Number of chairs, no, number of chairs times 3, plus 2 Tell/show work
Leo: Times 3 plus 2 (simultaneous with Hanna) Tell/show work
Elizabeth: Wait! How many chairs are there? 4, 5, 6, 7, 8, 9, 10 Criticize work
Leo: 2,4,6,7,8,9,10 Tell/show work
Elizabeth: So no Criticize work
Leo: 9, 10, 11 Tell/show work
Hanna: 11 times 3 Tell/show work
Leo: And plus 2 Tell/show work
Hanna: Plus 2. Equals to 35 Tell/show work
Leo: But there aren’t 35 chairs Criticize work
Farrah: 3,3,3is9 Tell/show work
Hanna: Yes, but

Farrah: 10, 11. Is 11 chairs Tell/show work
Elizabeth: Okay Tell/show work
Leo: Yes, but what is the formula in words? Ask to show work
Hanna: O, number of tables times Tell/show work
Elizabeth: What is the formula in words, then? Ask to show work
Leo: I really don’t know. Ask the teacher? Teacher, teacher?
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a Create a formula that corresponds to the table above.

b Create a story that correspondstothetable and your formula.

Fig. 4 Adapted task create a formula and story from a table

The discussion starts with general talk about the task. Leo reads the question and hints
out loud, and Elizabeth evaluates the question as being easy. Leo then shows his work
by following the hint that the new formula could begin with “number of chairs.” Hanna
shows her work by filling in the rest of the formula, number of chairs times 3 plus 2,
simultaneously with Leo. This formula is incorrect (it might be just a repetition of the
second part of the original formula). Elizabeth then criticizes Leo and Hanna’s work by
asking how many chairs are there, thus implying that the corresponding number of
tables in the table setting does not fit Leo and Hanna’s formula. Leo answers 11 and
Hanna calculates that according to their formula, there should be 35 chairs in the table
setting (both tell/show work). Leo then criticizes his and Hanna’s formula by stating
that there are not 35 chairs in the table setting, so the formula could not possibly be
correct. Farrah then joins the discussion after having counted the number of chairs in
the table setting and tells/shows her work by telling that there are 11 chairs. Leo and
Elizabeth then ask the other students what the formula could be (ask to show work).
None of the students knows the answer, so Leo suggests asking the teacher for help.

In the second example, the group worked on the first part (sub-question a) of an
adapted task in which they were asked to create a formula that corresponds to the given
table (see Fig. 4).

The group was able to co-construct the knowledge to solve the first part of the task
collaboratively.

In the following coded excerpt, the students discussed the creation of their formula.
It shows how students collaboratively solve the task. In contrast to the previous
example, this example contains all four key activities, tell/show work, explain work,
justify work, and reconstruct work, but still key activity tell/show work occurs the
most.

Leo: Create a formula that corresponds to the table above. (reads)

Leo: A formula, is it not number of times x Tell/show work
Elizabeth: No, it is number of times Criticize work
Elizabeth: But wait, 31 minus 25, let me calculate for a minute Tell/show work
Leo: Why? Why do you do that? Ask to explain work
Elizabeth: Oh no, wait, 25, 25, ... (louder) Reconstructs work
Farrah: I know it! Number of times x... Tell/show work
Leo: Take it easy (to Elizabeth), it is number of times ... Tell/show work
Farrah: Number of times X 1 plus 25 Tell/show work
Leo: Why? Ask to explain
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Hanna: What? (skeptical) Criticize work
Hanna: Isn’t it 25 times 1 plus ... Tell/show work
Elizabeth: In any case 25 (simultaneously with Farrah) Tell/show work
Farrah: In any case 25 (simultaneously with Elizabeth) Tell/show work
Elizabeth: That in any case Tell/show work
Farrah: Yes Tell/show work
Leo: Number of times x Tell/show work
Farrah: So, number of times x something plus 25 or so Tell/show work
Leo: But it does not have to contain a plus all the time? Ask to explain
Elizabeth: Yes, that has to be the case Tell/show work
Farrah: Because, look, look, 25. It starts with 25 and then times, 25 times Explain work
Hanna: No! Criticize work
Farrah: Oh, wait times 6 Reconstructs work
Leo: But, than it is the same. Number of times x 5 plus 20 Tell/show work
(points to the graph of the previous exercise).
Farrah: No Criticize work
Farrah: Number of times %6 plus 25 Tell/show work
Leo: Why is it 6? Ask to explain
Farrah: Look, in between here is 6, 6, 6 (points to the items in the table) Explain work
Elizabeth: Do you understand?
Leo: Ooooh
Farrah: Number of times % 6 plus 25 (dictates to Leo)
Elizabeth: That’s why I subtracted it. That’s why I did minus Justify work
Leo: Number of times x 6 plus 25 (writes on poster)

The discussion starts with general talk about the task. Leo reads the question
out loud and begins showing his work by suggesting that the formula might be
something like number of times x. Elizabeth immediately criticizes Leo’s work
without letting him finish his sentence. She shows her work by suggesting that the
solution might start with number of times x, but thinks of another approach to
solve the problem. She shows her work by elaborating on this approach, 31 minus
25. Elizabeth has weak arithmetic skills, so she needs some time to make this
calculation. In the meanwhile, Leo asks Elizabeth to explain why she subtracts 25
from 31. Elizabeth might think that Leo’s question is some kind of criticism,
because she begins to doubt her approach and reconstructs her work into some-
thing beginning with 25. Then, Farrah shows her work by suggesting number of
times X 1 plus 25. This formula is incorrect. Leo asks Farrah to explain her
formula. Farrah ignores him. Hanna, who has been listening throughout the whole
discussion, is skeptical about Farrah’s formula and criticizes Farrah’s work. She
shows her own work by offering her formula, 25 times 1 plus ... as a solution.
This formula is also incorrect. Elizabeth and Farrah consequently co-construct the
knowledge that, in any case, the formula has to contain 25 in it. Leo then shows
his work, number of times x, followed by Farrah who almost has the solution and
shows her work, number of times x something plus 25 or so. Leo asks her to
explain whether or not the formula should always contain a plus in it. Elizabeth
shows her work by answering that that is indeed always the case. Then Farrah

@ Springer



“Let us discuss math”; Effects of shift-problem lessons on... 759

starts to explain to Leo why this is the case, by explaining that the table starts with
25, meaning that 25 has to be multiplied (which is incorrect). Hannah then
criticizes Farrah’s explanation. Farrah suddenly understands that times 6 is the
correct answer and seems to experience what Freudenthal called an “Aha moment”
(jumping to a higher level) (Freudenthal 1978), ‘Oh wait!’. She reconstructs her
work, using times 6. Leo then shows his work by saying that it is the same
formula as that of the previous exercise (which is incorrect). Farrah denies that
and shows her work by naming the whole correct formula, number of times x 6
plus 25. Leo asks her to explain why it is times 6. Farrah explains to him why that
is the case. Leo understands the explanation. Elizabeth realizes that her earlier
approach to solve the task was correct and justifies why she subtracted 25 from 31
in the beginning. Farrah dictates the formula to Leo, who writes it down.

Mathematical level raising

We present the means of the pre- and post-test on mathematical level for the shift-
problem condition and conventional textbook condition in Table 7.

Table 7 shows that the students’ mathematical level improved a fair amount in both
conditions. For the mathematical condition, the mean score increased from 1.43 to 9.53,
and for the CC, it increased from 1.72 to 8.80.

A multilevel model for repeated observations on fixed occasions with an unrestricted
covariance matrix (Snijders and Bosker 2012) was used to test for differential growth
between the SPC and the CC.

We report on the model for two levels (with measurements (pre-test post-test) nested
in individual students) since there was no model improvement for three levels (mea-
surements, individuals, and groups) and four levels (measurements, individuals,
groups, classes).

The expected outcome for the CC was pre-test = 1.42 and post-test = 1.42 + 9.5136.
For the SPC, the expected outcome was pre-test = 1.42 + 0.30 and post-test = 1.42 +
0.30+9.5136—1.01. Thus, compared to CC the growth in the SPC is 1.01 smaller.
This differential growth is not significant (p =0.19).

Discussion/conclusion

The aim of this study was to investigate whether shift-problem lessons, lessons in
which the design principles that underpin shift-problem lessons are applied for the topic

Table 7 Means and standard deviations pre- and post-test on mathematical level, shift-problem condition
(N=180) and conventional textbook condition (N = 180), maximum score of 19

Shift-problem condition Conventional textbook condition
M (SD) M (SD)

Pre-test 1.43 (2.28) 1.72 (2.40)

Post-test 9.53 (4.69) 8.80 (4.86)
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of early algebra, would result in more and qualitatively better mathematical discussions
and more mathematical level raising than conventional collaborative lessons.

According to Freudenthal (1991), discussion and reflection are the main activ-
ities in mathematical level raising. We expected that more mathematical discus-
sions, in which students are challenged to reflect on mathematical structures and
activities, would occur in the shift-problem condition and that more mathematical
level raising would occur in the shift-problem condition than in the conventional
textbook condition.

First, our study showed that shift-problem lessons on the topic of early algebra in the
seventh-grade students elicited more and qualitatively better mathematical discussions
than conventional textbook lessons. Whereas mathematical discussion did occur in the
shift-problem lessons, it was hardly or not found in the conventional textbook lessons.

In addition, we examined the quality of the discussion. A mathematical discussion is
considered to be of good quality if it consists of all key activities, tell/show work,
explain work, justify work, and reconstruct work. The key activity that occurred most
in the discussions was tell/’show work. Furthermore, we found that the discussions in
the shift-problem condition were of better quality compared to the conventional
textbook condition. Other key activities were found in the shift-problem condition,
such as justify work and reconstruct work. Additionally, more regulating activities were
found, such as ask to show work and criticize work. For the one group in the
conventional textbook conditions in which mathematical discussions did occur, only
ask to show work and one time explain work was found. It thus can be concluded that
the shift-problem lessons did indeed elicit more mathematical discussions and that these
discussions were of better quality. Still, improvement is necessary as most activities
were telling and showing work. To gain a deeper understanding more explaining,
justifying and reconstruction activities should occur (Dekker and Elshout-Mohr 1998).

With respect to our second hypothesis, we found that students” mathematical levels
were raised in both conditions. However, multilevel analyses did not show differences
between the conditions.

A possible explanation for not finding more mathematical level raising in the shift-
problem lessons might be found in the quality of the discussions. As indicated before,
the quality of the discussion is related to learning (Van der Linden et al. 2000). Key
activities as formulated by Dekker and Elshout-Mohr (1998) are associated with
reflection, which is related to mathematical level raising (Freudenthal 1991). Although
the quality of the mathematical discussion was better in the shift-problem condition, as
more and more diverse activities occurred, the fact that the key activity tell/show work
occurred by far the most might explain why students did not achieve more level raising
in the shift-problem condition.

Our findings are not in line with the finding of Palha et al. (2014). A first difference
between the two studies is the topic, early algebra versus integral calculus. However, in
our experience, the design principles were well suited to design lessons for early
algebra. Second, the teachers in Palha’s study had a higher teacher degree, which is
required to be able to teach at pre university level in the Netherlands, than the teachers
in our study. Third, students in the experiment of Palha et al. (2014) were older, had
more knowledge of mathematics, and had chosen a profile with a difficult variant of
mathematics. More research is needed to determine what the effects of shift-problem
lessons are for different topics and different levels and ages of students.
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This study was conducted at one school, which has limitations for the generalization
of our findings. Still, several classes and several teachers participated in this study. This
research could be replicated on a larger scale to find more robust findings. For the
analysis of the interaction processes, a limited number of group discussions were
randomly selected for analysis. Weaker or stronger groups could have been selected
for analysis, which might have influenced our findings. It might thus be interesting to
analyze discussions of other groups and of other lessons.

Our coding scheme enabled us to analyze in detail students’ conversations during
group work and most importantly the quality of the mathematical discussions. This
analysis sheds light on the learning processes that occurred. Still, it is difficult to
capture all learning processes that occur. For example, the key activity reconstruct
work also might occur in students’ minds, which cannot be measured.

To conclude, this research suggests that shift-problem lessons do invoke more
mathematical discussions than conventional lessons. However, we have to be cautious
in generalizing these results, as they were collected at only one school. This research
also shows that applying shift-problem lessons is a necessary but not sufficient
condition to achieve more mathematical level raising. The quality of the mathematical
discussions in the shift-problem condition might be the key to increasing mathematical
level raising, as the key activity tell/show work occurred the most, and others hardly
occurred. This outcome raises a question regarding how teachers could improve the
quality of the mathematical discussion and, hopefully, mathematical level raising. One
possible way might be through scaffolding (Van de Pol et al. 2012). Future research
should focus on the supporting role of the teacher in stimulating mathematical level
raising.
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License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
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