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A note on uniqueness of clearing prices in
financial systems

Maurice Koster∗

July 26, 2019

Abstract

The Eisenberg and Noe (2001) model of the financial system is general-
ized to the case where default is solved by means of a bankruptcy rule. For
regular financial networks a unique vector of clearing prices exists if only the
bankruptcy rule is strongly monotonic. This shows uniqueness of the clear-
ing prices on regular financial networks for the class of equal sacrifice rules
by Young (1988), and many variations of the proportional rule as in Csóka
and Herings (2018). This paper disentangles the role of network topology
from the way defaults are solved.

Keywords: Financial networks, Systemic risk, Contagion, Clearing algorithm,
Rationing, Proportional Rule, Constrained Equal Award Rule
JEL Classification: C79, D31, D81, M41.

1 Introduction

In the aftermath of the financial crisis in 2008 the delicate ways the players in the
financial industries are intertwined is seen as the main source of the world wide
spread of the shock caused by the subprime mortgage crises. And still the intricate
way these players are connected is a main concern amongst economists and policy-
makers. Governments and central banks took extraordinary measures to bend the
impact of the crisis through monetary stimulation programmes and quantitative
easing, leaving society with costs exceeding 10 trillion dollars. Now these economic
accommodations are at the verge of being revoked, the induced outflow (or lack of
inflow) may result in liquidity disruptions which could eventually lead to similar
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detrimental effects to the financial institutions as surfaced in the years after 2008.
And it is believed that the impact of those disruptions be amplified by the fact
that worldwide debts levels hit an all-time high.

The major lesson for the architecture of the financial network is that it cannot
only be seen as a means by which institutions and firms may diversify their risk
exposures, but that instead it may also be the main cause for the amplification
of risk. The dependencies within the network may cause shocks to spread by
contagion, and lead to a cascade of defaults – if not (again) prevented by public
institutions. See for instance the overview of Glasserman and Young (2016) or
Caccioli et al. (2018) which try to disentangle the problem by discussing various
ways correlations between nodes in the financial system play a role. In this paper
we will further investigate the rather simple yet seminal model of a financial system
due to Eisenberg and Noe (2001). Here a financial system is characterized by the
liability structure (who is liable to whom, and to what extent) and a description
of the aggregate external cash inflow per node, say firm or financial institution.
The authors aim at clearing this market, by determining a scheme of simultaneous
clearing prices that define the payments of each of the nodes to others. In this way
a net value for each node is defined. More specifically, given such payment scheme,
there are two types of nodes – the ones with a positive net value who will be able
to pay all their liabilities and those with a negative net value that cannot. A node
is said to default in the latter case, if the total inflow of cash, i.e., the external
cashflow plus the payments to the node by others, minus the total sum of liabilities
of the node is negative. These Eisenberg and Noe clearing prices are constructed
such that (i) no node pays more than it has available, and (ii) a defaulting node
will make a maximal payment equal to its total cash inflow. Eisenberg and Noe
(2001) also propose an iterative procedure by which the clearing prices may be
calculated, and in this process defaults may occur at different stages mimicking
the indirect way financial institutions may be affected by earlier defaults. The
model allows to interpret the phase in which a financial institution defaults as a
measure of its resilience to default; the earlier a node defaults – if at all – the more
financial instability it can be credited. Other measures of financial instability and
assessment of systemic risk are found in Elsinger et al. (2006), Acemoglu et al.
(2015), Battiston et al. (2012).

Crucial assumption in Eisenberg and Noe (2001) is the principle of propor-
tionality; in case of a defaulting node, the corresponding clearing price is shared
proportional to the liabilities of the node to the others. Groote-Schaarsberg et al.
(2018) and Csóka and Herings (2018) show in a continuous and discrete setting,
respectively, that the assumption of proportionality in solving defaulting situa-
tions is not crucial at all, as the idea of clearing prices is still meaningful for other
bankruptcy rules. In accordance with Eisenberg and Noe (2001) both aforemen-
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tioned works stress the fact that clearing prices may not be unique – but the
resulting allocation is. This means that the net equity for an agent is the same for
each of those vectors of clearing prices. Besides that, the set of vectors of clearing
prices is well-structured as it is a completely ordered lattice with a smallest and a
largest element.

Groote-Schaarsberg et al. (2018) show that within the continuous formulation
of the model uniqueness of clearing prices is guaranteed for hierarchical structures,
i.e., problems that relate to an upper triangular matrix of liabilities. Supply chains
may have this hierarchical structure. In particular this means that uniqueness of
clearing prices is related to a network specific characteristic. In this paper, I show
that the clearing prices related to strictly monotonic bankruptcy rules are unique
for the regular financial networks discussed by Eisenberg and Noe (2001). The set
of rules that are strictly monotonic in the estate component is rich and includes
for example the equal sacrifice rules introduced by Young (1988) – whereas in the
context of taxation. Regularity of the network requires for each specific node that
the aggregate operating cash flow corresponding to the set of nodes it can reach
through the liability network is positive. Importantly, regularity is a pure network
characteristic, independent from the bankruptcy rule that is used. So the contribu-
tion of this paper is also that in studying for vulnerabilities of the financial system,
network driven effects are disentangled from the way defaults are settled. Next, I
will show that for bankruptcy rules that are even strongly monotonic the iterative
procedure suggested by Eisenberg and Noe (2001) is converging in finitely many
steps so that it may be used to calculate the vector of clearing prices. A strongly
monotonic bankruptcy rule sees to it that an agent with a positive claim on a
specific agent is always credited with a minimal but positive fraction of additional
available payment under default. Basically this monotonicity property makes the
iterated mapping contracting, so that on the domain of prices there will be the
one fixed point we are looking for. The monotonicity property is a sufficient con-
dition for the results, though not necessary. As an example I discuss the financial
systems corresponding to the constrained equal award rule, which is not strictly
monotonic, and show that clearing prices may still be unique.

The uniqueness result also has some say in papers that explore other general-
izations of Eisenberg and Noe’s model. Consider for example the model including
defaulting costs by Rogers and Veraart (2013), or the model where financial insti-
tutes reinsure themselves through credit default swaps as in Schuldenzucker et al.
(2016) (see also Elliott et al. (2014)). Also it allows to generalize the characteriza-
tion of Nash equilibria in the 2 stage game proposed by Allouch and Jalloul (2018),
where the players have the choice in the first period to save or invest an amount of
capital. This game is easily generalized to general bankruptcy rules. Uniqueness
of the clearing prices assures that the players do not need to overcome a possible
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coordination problem and the equilibria may be characterized in the way that is
done in Allouch and Jalloul (2018) for the proportional rule. The Nash equilibria
are characterized by the choice in the first period, to default or not. The analysis
for other monotonic bankruptcy rules is similar as the induced games also show
strategic complementarities.

The question of uniqueness of clearing prices is also addressed by Csósak and
Herings (2018), who present a discrete model that allows for decentralized clearing
of the financial system. This model accommodates practical situations where it
is hard to retrieve all necessary information or where defaults are not filed simul-
taneously due to timing elements. The authors concentrate on methods used in
practice, which are often a mixture of priority and proportional rules. The authors
also conclude that uniqueness of clearing prices is not guaranteed for the discrete
and decentralized model - and not for the limiting continuous framework that re-
sults from letting the smallest unit of account go to zero. A procedure is discussed
which calculates the smallest vector of clearing prices in finitely many steps for the
discrete model – which may not converge in the limiting continuous model. The
result in this paper may be used to study for decentralized pricing schemes in a
continuous setup.

2 The general framework and results

2.1 Mathematical prerequisities

Let Rn denote the n-dimensional Euclidean vector space. Special vector is the
zero vector 0 with all zero coordinates. Denote the set of all non-negative vectors
by Rn

+ := {x ∈ Rn : x ≥ 0}. Below we will use N = {1, 2, . . . , n} for some
integer n > 1 as notation for a set of agents. With slight abuse of notation we will
sometimes choose to denote RN by Rn. For any two vectors x, y ∈ Rn we define
vectors x ∧ y, x ∨ y ∈ Rn such that for all i

(x ∧ y)i := min{xi, yi}
(x ∨ y)i := max{xi, yi}

In addition we define x+ := x∨0 where 0 is the zero vector in Rn such that 0i = 0
for all i. We will write x ≤ y iff xi ≤ yi for all i, and x < y if xi < yi for all i.
Then using this, we define Rn

+ := {x ∈ Rn : x ≥ 0} as the set of all non-negative
vectors, whereas Rn

++ = {x ∈ Rn : x > 0}.
Denote by ‖ · ‖ the `1 norm on Rn so that for all x ∈ Rn we have

‖x‖ :=
n∑
i=1

|xi|.
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The j-th row of a matrix M is denoted Mj.

2.2 Bankruptcy rules

Formally, a bankruptcy problem1 for a set of agents N = {1, 2, . . . , n} is an ordered
tuple (c, E) ∈ RN

+ × R+ where c stands for the vector of justified claims of the
agents and E is the available estate, such that

∑
i∈N ci ≥ E. Denote by C the set

of all bankruptcy problems for N . A bankruptcy rule is a mapping r : C → RN

such that for all (c, E) ∈ C

(a) 0 ≤ r(c, E) ≤ c,

(b)
∑

i∈N ri(c, E) = E.

Before discussing some of the most popular rules in the literature of bankruptcy
problems I will discuss some monotonicity properties for rules that are at the core
of the results presented in this paper:

Monotonicity E → r(c, E) is non-decreasing, i.e., for E < E ′ it holds r(c, E) ≤
r(c, E ′) for all c.

So monotonicity is a rather weak property that ascertains that no agents suffers
when there is more to divide. A stronger version is the following:

Strict monotonicity r is monotonic and E → ri(c, E) is strictly increasing if
ci > 0.

The reason that we restrict our attention to i with ci > 0 is that it leaves room
to allocate 0 to zero claimants, regardless the size of the estate.

Example 1 The proportional rule rp is the strictly monotonic rationing rule de-
fined for non-trivial problems by

rpi (c, E) =


ci∑
j∈N cj

E if
∑

j∈N cj > 0,

0 else .

1Here I chose to use the term bankruptcy problem, but in fact the rationing problems as in
Moulin (2002) or taxation problems in Young (1988) are of the same mathematical structure.
Solution concepts within these fields of the literature on distributive justice can usually easily be
transfered and interpreted. For overviews, see Thomson (2015) and Moulin (2002).
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Young (1988) discusses the rule within the taxation setting as a flat tax. It is used
by Eisenberg and Noe (2001) in order to define settlements after a firm defaults.
/

Example 2 The constrained egalitarian rule rcea is the parametric rule defined
by rceai (c, E) = min{ci, λ} such that λ solves

∑
j∈N min{cj, λ} = E. This rule is

not strictly monotonic as increases in estate may not be strictly beneficial for the
smaller claimants. /

Well-known in the literature on taxation problems (see Young (1988), Lambert
and Naughton (2009)) is the class of strictly monotonic rules which are referred
to as equal sacrifice rules. Such rules make use of a notion of utility for income,
modelled by a strictly increasing and continuous function U : (0,∞) → R where
U(x) is interpreted as the utility of an agent at income x ∈ (0,∞). A bankruptcy
rule r is said to equalize absolute sacrifice relative to U if for all rationing problems
(c, E) ∈ Rn

++ × R++ we have

t = r(c, E)⇔ there is λ ≥ 0 such that for all i ∈ N, ci > 0 =⇒ U(ci)−U(ti) = λ.

Notice that for such bankruptcy rules we have, using existence of U−1,

ci > 0 =⇒ ri(c, E) = ti = U−1(U(ci)− λ)

where λ is such that
∑

i∈N ti = E. Again, it is important to realise that ri(c, E) = 0
if only ci = 0 (which is an implication of the definition of a bankruptcy rule part
(a)).

Example 3 The proportional rule is an equal sacrifice method corresponding to
utility function U(x) = log(x). To see this, for each bankruptcy problem (c, E)
and t = rp(c, E) we have

ln(ci)− ln(ti) = λ⇐⇒ ci
ti

= eλ ⇐⇒ ti =
ci∑
j∈N cj

E = rpi (c, E) with λ = ln
c(N)

E
.

Example 4 Consider the utility function U(x) = −xα where α < 0 is fixed. Each
α defines implicitly an equal sacrifice bankruptcy rule t = rα(c, E):2

U(ci)− U(ti) = λ⇔ rα(c, E) := ti = U−1(U(ci)− λ) = (cqi + λ)1/q. (1)

For instance, for α = −1 the equation (1) simplifies to the parametric rule

rαi (c, E) =
ci

λci + 1
.

2See Young (1988) Theorem 2.

6

 Electronic copy available at: https://ssrn.com/abstract=3427039 



The class of rules {rα}α is naturally related to rp and the (not strictly monotonic)
rcea as it can be shown that

rcea = lim
α→−∞

rα and rp = lim
α→0

rα.
/

Note that for (strictly) monotonic bankruptcy rules r the right derivative
∂+

∂E
ri(c, E) exists for all bankruptcy problems and is non-negative. Below we will

focus on strictly monotonic rules with the following property:

Strong monotonicity Bankruptcy rule r is strongly monotonic if it is mono-
tonic and for each i ∈ N with ci > 0 and each interval I = [0, E∗] there exists
αi > 0 such that

∂+

∂E
ri(c, E) ≥ αi for E ∈ I. (2)

So strong monotonicity states that each increase of the available estate results in
a minimal fair share of the increment for each agent with non-zero claim. Basically,
strong monotonicity rules out a kind of exotic rules which are strictly monotonic
and do allow for zero derivatives. Where most of the generalizations of Eisenberg
and Noe (2001) only make use of strict monotonicity, the following implication of
strong monotonicity is most useful for computational issues that we will discuss
later on. By (2) we have∑

i∈N :ci>0

αi ≤
∑

i∈N :ci>0

∂+

∂E
ri(c, E) = 1. (3)

2.3 The economic model

Consider a group of n economic agents, each defined by having a certain level of
financial liabilities towards other agents in this group. In this way we constitute
a financial network with dependent actors, where the connections or relations of
agents within the network are shaped through the nominal liabilities an agent
has to other agents in the system. In particular, these liabilities represent the
binding financial promises of agents to others in the system. This structure can
be represented by an n × n matrix L, where Lij stands for the nominal liability
of agent i to agent j. We will assume that these liabilities are all non-negative
and no agent has a liability to herself, so that the main diagonal of L consists of
zeroes. So, for all i, j ∈ N we assume that Lii = 0 and Lij ≥ 0. Besides, we will
assume that each of the agents also has some cash inflow from sources outside the
liabilities network: let ei ≥ 0 be the operating cash flow received by agent i. Let
pi represent the total of payments by agent i to the other agents in the system,
and let p = (p1, p2, . . . , pn) ∈ Rn

+ be the summarizing vector of total payments
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made by the agents. Let τ ∈ Rn
+ be the vector that summarizes the total nominal

obligations of the agents in the system, i.e., for i ∈ N let

τi :=
n∑
j=1

Lij. (4)

This total obligation vector τ summarizes agent-wise the payment levels required
to satisfy all the contractual liabilities in the network. We will assume that all
liabilities have the same maturity date at which they become due and should
be paid for. Suppose the financial system is cleared using a vector of payments
p = (p1, p2, . . . , pn) ∈ Rn

+ where pi stands for the payment of agent i to clear
his obligations. We will assume that no agent pays more than the total of his
obligations, or p ≤ τ . On the other hand, each agent i has some justified claim Lji
on pj. In particular this means that for each j ∈ N the ordered pair (Lj, pj) is a
classic bankruptcy problem or claims problem as in Thomson (2015). Now suppose
that we use a strictly monotonic bankruptcy rule r to determine per agent how his
payment pj is split amongst the claimants and their claims as given by Lj. This
means that from payment pj by agent j, agent i obtains ri(Lj, pj). Then the total
cash flow to agent i equals the sum of the payments received from other agents
plus the operating cash flow, which then is given by

n∑
j=1

ri(Lj, pj) + ei.

A financial system is characterized by an ordered triple (L, e, r), where L is an
n × n matrix of liabilities (nonnegative and diagonal is zero), e ≥ 0 is the vector
of external cash flows, and r is a rationing rule.

2.4 Clearing payment vectors for a financial system

Crucial in the clearing of a financial system is the determination of the individual
payments. Below we will focus on the question whether payment vectors exist,
that see to a clearing of the financial system such that two minimal requirements
are satisfied. First we will require from a payment vector that it expresses the
idea of limited liability: no agent should pay more than the total of his cash
inflow. Second, in principal we strive for the situation where each agent is first
held responsible for all its liabilities, and in case he cannot make the necessary
payments all his cash inflow is used to cover his obligations to the creditors. The
following definition is the Eisenberg and Noe (2001) version, only now for general
bankrutpcy rules:
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Definition 1 A clearing payment vector for the financial system (L, e, r) is a
vector p∗ ∈ [0, τ ] that satisfies

(a) Limited Liability: p∗i ≤
n∑
j=1

ri(Lj, p
∗
j) + ei

(b) Absolute Priority: Either p∗i = τi or

p∗i =
n∑
j=1

ri(Lj, p
∗
j) + ei.

Then any clearing payment vector p∗ satisfies the following condition, that will be
central in this paper:

p∗i =

(
n∑
j=1

ri(Lj, p
∗
j) + ei

)
∧ τi. (5)

So – no different from Eisenberg and Noe (2001) – we conclude that the clearing
vector p∗ is a fixed point of the map, Φ(·, L, e, r) : [0, τ ] → [0, τ ] defined by the
coordinate mappings

Φi(p, L, e, r) =

(
n∑
j=1

ri(Lj, pj) + ei

)
∧ τi. (6)

Theorem 1 (Tarski (1955)) Let (A,≤) be any complete lattice3 and suppose
f : A → A is monotonically increasing, i.e., for all x, y ∈ A, x ≤ y implies
f(x) ≤ f(y). Then the set of all fixed points of f is a complete lattice with respect
to the order ≤.

Theorem 1 in Eisenberg and Noe (2001) generalizes to our case, as long as we
constrain ourselves to increasing division rules. The existence of clearing prices
for general bankruptcy rules is already done in Groote-Schaarsberg et al. (2018).
For monotonic bankruptcy rules we have a stronger statement.

Theorem 2 Consider a financial system (L, e, r) with a monotonic bankruptcy
rule r. Then:

(a) There is a greatest and a least clearing payment vector, p+ and p−.

3A partially ordered set (A,≤) is a complete lattice if every subset U of A has both an infimum
and a supremum in (A,≤). This holds for the partially ordered set [0, τ ].

9

 Electronic copy available at: https://ssrn.com/abstract=3427039 



(b) Under all clearing vectors, the value of equity for each agent is the same,
that is, if p′ and p∗ are any two clearing vectors, then for all i ∈ N(

n∑
j=1

ri(Lj, p
′
j) + ei − τi

)
∨ 0 =

(
n∑
j=1

ri(Lj, p
∗
j) + ei − τi

)
∨ 0.

Proof: The mapping Φ defined by (6) is increasing on the partially ordered set
[0, τ ]. Also ([0, τ ],≤) is a complete lattice, so that the implication of Tarski’s fixed
point theorem (see Tarski (1955)) is that the set of fixed points of Φ is a complete
lattice with respect to ≤. In particular Φ has a greatest fixed point p+, and a
smallest fixed point p−. So this proves (a).

For part (b) let p′ be any clearing vector. It is necessary and sufficient to
show that the value of equity is the same under p′ and p+. First note that by
monotonicity of r, p+ ≥ p′ implies that for all i(

n∑
j=1

ri(Lj, p
+
j ) + ei − τi

)
∨ 0 ≥

(
n∑
j=1

ri(Lj, p
′
j) + ei − τi

)
∨ 0. (7)

Because p+ and p′ are both clearing vectors, it also must be the case that for all i(
n∑
j=1

ri(Lj, p
+
j ) + ei − τi

)
∨ 0 =

n∑
j=1

ri(Lj, p
+
j ) + ei − p+

i ,(
n∑
j=1

ri(Lj, p
′
j) + ei − τi

)
∨ 0 =

n∑
j=1

ri(Lj, p
′
j) + ei − p′i.

Now summing up the right-hand side over i = 1, . . . , n yields

n∑
i=1

(
n∑
j=1

ri(Lj, p
+
j ) + ei − p+

i

)
=

n∑
j=1

p+
j +

n∑
i=1

ei −
∑
i=1

p+
i

=
n∑
i=1

ei =
n∑
j=1

p′j +
n∑
i=1

ei −
∑
i=1

p′i

=
n∑
i=1

(
n∑
j=1

ri(Lj, p
′
j) + ei − p′i

)
.

But then this means that in (7) we should have equality as well. �

10

 Electronic copy available at: https://ssrn.com/abstract=3427039 



3 Characterizing the clearing prices

Eisenberg and Noe (2001) characterize vectors of clearing prices using the notion
of a surplus set, i.e., a set of agents S with no external obligations and a positive
aggregate operation cash flow:

Definition 2 A set S ⊂ N is a surplus set if if for all (i, j) ∈ S × Sc we have
Lij = 0 and

∑
i∈S ei > 0.

Lemma 1 If p is a clearing vector for the financial system (L, e, r), then it is not
possible for all agents in a surplus set to have zero equity value.

Proof: Suppose S is a surplus set for (L, e, r). Denote by P+
i the sum of all of the

external payments from Sc to node i ∈ S. Since S is a surplus set, its members
do not make payments to agents in Sc. Then zero equity for all all nodes in S at
clearing vector p implies that

pi =
∑
j∈S

ri(Lj, pj) + ei + P+
i , for all i ∈ S. (8)

Then summing up the equations (8) over S yields∑
i∈S

pi =
∑
j∈S

∑
i∈S

ri(Lj, pj) +
∑
i∈S

(ei + P+
i ) =

∑
j∈S

pj +
∑
i∈S

(ei + P+
i ). (9)

Here, the second equality is due to the fact that S is a surplus set, so that the
payments made by members in S are redistributed amongst S. Now (9) implies
0 =

∑
i∈S(ei + P+

i ), contradicting the assumption that
∑

i∈S ei > 0. �

Definition 3 A liability matrix L is associated the directed liability graph where
there is a directed edge from i to j, i → j, if Lij > 0. For each i ∈ N , define the
risk orbit O(i) as the set of nodes j ∈ N such that there exists a directed path in
the liability graph from i to j.

Lemma 2 Suppose p is a clearing vector for (L, e, r). Let O(i) be a risk orbit that
satisfies

∑
k∈O(i) ek > 0. Then there must be an agent j ∈ O(i) that has positive

equity, or

τj <
∑
k∈N

rj(Lk, pk) + ej.

Proof: It is easily seen that O(i) is a surplus set. Then Lemma 1 shows O(i)
should contain an agent with positive equity. �
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Definition 4 The ordered pair (L, e) is a regular financial structure if each of its
risk orbits O(i) is a surplus set.

Theorem 3 If a financial system (L, e, r) is such that (L, e) is regular and r is
strictly monotonic, then the greatest and least clearing vectors are the same, i.e.,
p+ = p−.

Proof: Assume p+ ≥ p− and p+ 6= p−. Define E+
j and E−j , respectively, as the

equity of agent j under p+ and p−, respectively. From Theorem 1 we get that
E+
j = E−j for all j. Absolute priority implies that for agents j with positive equity

it must hold p+
j = p−j = τj. These are the agents that first should pay back all

their obligations. So, for agents j with p+
j > p−j must be zero equity agents. And

in particular there must be such an agent, say agent i, such that p+
i > p−i . Due to

regularity of the financial structure and Lemma 2, the risk orbit O(i) contains a
node with positive equity. So there is ` ∈ {1, 2, . . . , n} and a path

i = i0 → i1 → . . .→ i`−1 → i` = m

as part of O(i) so that all agents on the path have zero equity, and m is the agent
with positive equity value. Claim: p+

ik
− p−ik > 0 for k = 0, 1, . . . , `− 1. We will use

a proof by induction. First, for k = 0 the claim holds. Now take k ≤ ` − 1 and
assume the claim is true for t < k. Since all agents it with t ≤ k are zero equity
agents, their payments equal their inflows. Especially this holds for agent ik, so
that

p+
ik

=
n∑
j=1

rik(Lj, p
+
j ) + eik

p−ik =
n∑
j=1

rik(Lj, p
−
j ) + eik

Then

p+
ik
− p−ik =

n∑
j=1

(rik(Lj, p
+
j )− rik(Lj, p

−
j )).

By the induction hypothesis we have that p+
ik−1
−p−ik−1

> 0, and since ik−1 → ik we

have Lik−1ik > 0 so that by strict monotonicity of r it must be that rik(Lj, p
+
j ≥

rik(Lj, p
−
j ) for all j ∈ N and rik(Lik−1

, p+
ik−1

) > rik(Lik−1
, p−ik−1

). Then we may

conclude that p+
ik
− p−ik > 0. We claim that E+

m > E−m. This follows from the
following consideration. By definition we have

E+
m − E−m =

n∑
j=1

(rm(Lj, p
+
j )− rm(Lj, p

−
j ))− (p+

m − p−m). (10)
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Because m is a node with positive equity value, absolute priority implies that
p+
m = p−m. Because i`−1 → m it holds that Li`−1,m > 0 and thus rm(Li`−1

, p+
i`−1

) >

rm(Li`−1
, p−i`−1

) by strict monotonicity – as we just have shown that p+
i`−1

> p−i`−1
.

Then by the fact that p+ ≥ p− and (10) it follows E+
m−E−m > 0, which establishes

our claim. But this in turn conflicts with the result in Theorem 2 that the value
of equity at all nodes is the same under all clearing prices, and in particular under
p− and p+. This shows that the clearing price must be unique. �

Consider SΦ = {p ∈ [0, τ ],Φ(p) ≤ p}, the set of supersolutions of the operator
Φ. In addition define for p ∈ SΦ the default set under p, D(p) ⊂ N by i ∈ D(p)⇔
Φi(p) < τi. Note that D(p) 6= N . For fixed q ∈ SΦ, define the map p → F (p | q)
by

Fi(p | q) =

{ ∑
j∈D(q) ri(Lj, pj) +

∑
j 6∈D(q) ri(Lj, τj) + ei if i ∈ D(q),

τi if i 6∈ D(q).
(11)

So, F (p | q) describes the payments for all agents such that agents i non defaulting
under q pay all their obligations τi and the defaulting agents under q pay pi.

Theorem 4 For each financial system (L, e, r) such that (L, e) is regular and r is a
strongly monotonic, the map F (· | q) has a unique fixed point for each supersolution
q.

Proof: Take q ∈ SΦ. We will show that F (· | q) defines a contraction on [0, τ ], so
that by Banach’s Theorem we have a unique fixed point. Consider p, p′ ∈ [0, τ ].
First of all, for all j ∈ D(q) there is t(j) ∈ N\D(q) such that Ljt(j) > 0. Then
since r is strongly monotonic we may apply (2) to interval [0, τj] and ascertain the
existence of αt(j) ∈ (0, 1) such that |rt(j)(Lj, pj)− rt(j)(Lj, p′)| ≥ αt(j)|pj−p′j|. Now
let α = minj∈D(q) αt(j). Then according to r the agents in D(q) take maximally
the remaining fraction (1− α) ∈ (0, 1) of the change in pj − p′j. Using this in (*)
below, we get

‖F (p | q)− F (p′ | q)‖ =
∑
i∈N

|Fi(p | q)− Fi(p′ | q)|

=
∑
i∈D(q)

|Fi(p | q)− Fi(p′ | q)|+
∑
i 6∈D(q)

|Fi(p | q)− Fi(p′ | q)|

=
∑
i∈D(q)

|Fi(p | q)− Fi(p′ | q)| =
∑
i∈D(q)

∣∣∣∣∣∣
∑
j∈D(q)

(ri(Lj, pj)− ri(Lj, p′j)

∣∣∣∣∣∣
≤

∑
i∈D(q)

∑
j∈D(q)

∣∣ri(Lj, pj)− ri(Lj, p′j)∣∣ ∗≤ ∑
j∈D(q)

(1− α)|pj − p′j|
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≤ (1− α)
n∑
j=1

|pj − p′j| = (1− α)‖p− p′‖,

which shows that F (· | p′) is a contraction. �

The importance of Theorem 4 lays in the fact that we now may use the mapping
F to actually calculate the unique clearing vector for financial systems (L, e, r).
For any supersolution q we may calculate the fixed point f(q) of the mapping
p 7→ F (p | q). In particular, this shows that we may define inductively the se-
quence of payment vectors

p0 = τ, pj = f(pj−1). (12)

This is the sequence that Eisenberg and Noe (2001) in the model with r = rp refer
to as the fictitious default sequence and the machinery producing the sequence
is called the fictitious default algorithm. We may show that at each step in the
algorithm a supersolution is calculated, and that the algorithm does what we
actually want: calculating the clearing vector. This is summarized in the lemma
below, the proof of which is almost identical to that of Eisenberg and Noe (2001)4:

Lemma 3 Consider the fictitious default algorithm applied to a financial system
(L, e, r) with regular (L, e) and strongly monotonic division rule r. Then the se-
quence {pj} defined by (12) is decreasing to the clearing vector in at most n iter-
ations of the algorithm.

Proof: The logic is almost the same as that in Eisenberg and Noe (2001). First
we will show that for all j the vector pj is a supersolution for Φ, and that pj is
non-increasing in j. This is done using mathematical induction. Firstly, for j = 0
it is clear that p0 = τ is a supersolution for Φ. Secondly, suppose the assertion
is true for pk. Note that F (pk | pk−1) = pk. Because pk ∈ SΦ, we must have∑

j∈N ri(Lj, p
k
j ) + ei ≤ pki for agents i defaulting under pk. This implies, together

with the definition of F that Φ(pk) = F (pk | pk). Now we invoke our induction
hypothesis that pk is a supersolution to Φ, and so for F (· | pk). This implies that
the fixed point of F (· | pk), pk+1, is (weakly) smaller than pk. This shows the first
part of our claim. Now, since pk+1 ≤ pk the set of defaulting agents under pk is
not smaller than that under pk+1.

• If these sets of nodes are the same, we conclude that Φ(pk+1) = F (pk | pk),
and since pk+1 is defined as fixed point of F (· | pk), this shows that pk+1 is a
fixed point of Φ. In particular, it is a supersolution for Φ.

4Again, instead of writing the mappings F and Φ vector-wise, we focus at single coordinates
instead. The rest is identical
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• If the set of defaulting agents is larger under pk+1 than under pk, then it
must be that some agents pay their obligations in full under pk and default
under pk+1, and the other agents either default or not both under pk+1 and
pk. Thus, for those nodes i with changing payments, i.e., for which default
occurs under pk+1 but not under pk, we have Φ(pk+1)i < pk+1

i and for all other
nodes j we have Φ(pk+1)j = pk+1

j . This shows that pk+1 is a supersolution to
Φ.

And this concludes our proof by induction as also we have shown that {pj} is a
weakly decreasing sequence. Now we turn to convergence of the sequence. The
reasoning above also shows that if the set of defaulting nodes is the same under
both pj+1 and pj, then

• pj is a fixed point of Φ, and

• the sequence will remain constant after pj+1.

If pj fails to be a fixed point of the map Φ then an agent that does not default
under pj will do so under pj+1. This means that the number of defaulting agents
will increase at the next iteration. Because there are only n agents, and at most
n− 1 of them can default in any supersolution, the payment vector resulting from
the algorithm may change at most n times. Because the sequence is constant only
at fixed points of f , the clearing vector is reached after at most n iterations.

�

Example 5 Consider the following financial system (L, e, r) with

L =

0 1 1
2 0 3
2 3 0

 , e = 0.

Then for r = rcea there is a continuum of pt = (2, t, t) where t ∈ [4, 5]. Note that
rcea is not strictly monotonic, and so not strongly monotonic. For the strongly
monotonic proportional rule r = rp we have a unique vector of clearing prices:
p = (2, 5

2
, 5

2
).
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