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Abstract 

We investigate the applicability of two clustering algorithms, DBSCAN and k-means, to detection of critical (died) patients using 
medical parameter time series. In addition, we perform preliminary cluster analysis of outliers. The most important motivation 
behind this paper is the potential use of these methods in real clinical setting within an automatic early warning system to 
potentially decrease the in-hospital mortality rates. Investigation of the outlier clustering is an important step towards the outlier 
analysis that will help finding out the cause of these outliers: a human error in the records, a technical mistake in the lab, or an 
actual complication of a patient’s disease. Our results demonstrate that specific clustering algorithms achieve a moderate 
performance in critical patient detection (F1 scores0.489 for DBSCAN and 0.495 for k-means). The patient classification 
boundary is very complex and could not be accurately detected by thesealgorithms, but there are methods capable to determine 
such boundaries, e.g. the high-degree polynomial kernel SVM. Regarding the outlier clustering, we perform a preliminary 
analysis showing that it is a viable option for potential outlier classification and analysis. 
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1. Introduction 

As large databases of electronic health records (EHR) become available for scientists (e.g. public Medical 
Information Mart for Intensive Care dataset, a.k.a. MIMIC[1]), more and more researchers use this opportunity to 
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study the applicability of various statistical, machine learning, and data mining methods with this data to develop 
various automated early warning or decision support systems and predictive models to use in hospitals. Therefore, 
novel models and methods aimed at predicting the treatment outcomes, diagnosis or emergency situations are being 
developed. As a result, computational approach is fast becoming a key instrument in the field of medical outcome 
prediction. This paper intends to determine the extent to which such approach is viable for the real-time medical 
application using the time series of various blood parameters of patients with Acute Coronary Syndrome. The set of 
investigated methods includes DBSCAN and k-means clustering algorithms. 

Some researchers have conducted empirical studies investigating the applicability of various machine learning 
methods with available EHR databases. For instance, Yakovlev et al. [2]examined the k-nearest neighbours 
algorithm, logistic regression, random forest, and naive Bayes classifiers for early in-hospital mortality prediction 
and artificial neural network for length of stay prediction. Celi et al. [3]suggested a use of logistic regression, 
Bayesian network and artificial neural network to develop a mortality prediction model for patient data from MIMIC 
database. Steenard et al. [4]developed a model for predicting the risk of developing congestive heart failure using 
more than 3000 various medical, demographics and lifestyle-related risk factors from more than a million patients 
using decision tree and artificial neural network. 

The predictive power of models that use features extracted from free-text medical notes have also been examined. 
Ghassemi et al. [5]utilized Latent Dirichlet Allocation to decompose the unstructured text data into meaningful 
features. In order to identify the classification boundaries, the authors applied a linear kernel SVM. Grnarova et al. 
[6]employed a two-layer system: the first layer maps sentences to sentence vectors, the second one constructs an 
individual patient representation from a combination of these vectors. For both levels, convolutional neural network 
with max-pooling is adopted. 

Wojtusiak et al. [7]described a machine learning approach and proposed a computational model C-LACE that 
aims to improve the popular models LACE[8]and LACE+[9]. The authors tested a variety of machine learning 
methods including logistic regression, random forest, naive Bayes, and SVM to arrive at the most accurately 
predicting model.Presbitero et al. [10]applied the methods of anomaly detection in time series to the clinical data. 
The authors applied metric based indicators of parameter distribution moments, time-varying autoregressive model 
and Mann-Kendall trend test for detection of increase or decrease in the anomaly indicators. 

It is a widely held view that the larger the training dataset is, the better the machine learning methods perform. In 
contrast, some researchers [11,12] hypothesize that using only data of subset of similar patients instead of the whole 
dataset for training machine learning methods might improve the accuracy of mortality prediction for individual 
patients. The authors employed a cosine similarity[11] and random forest proximity measure [12] as patient 
similarity metric to identify a subset of the most similar patients and use it to train one of three predictive models: 
death counting - empirical mortality rate across the most similar patients; logistic regression, and decision tree. The 
results confirm the hypothesis that all the methods perform best when trained with the limited set of the most similar 
patients. 

While application of machine learning methods to medical data is a popular research topic, wide majority of 
scientists prefer to utilize supervised approaches, e.g. random forest, neural network, SVM, or logistic regression, 
because they tend to perform better than unsupervised learning methods. However, unsupervised methods have their 
own advantages: by definition, they do not requirea priory label specification, which makes them applicable to a 
wider range of datasets. Furthermore, they are generally less expensive computationally and simpler, therefore the 
results they produce are easier to interpret. In the present paper we investigate the applicability of two unsupervised 
learning methods,DBSCAN and k-means clustering algorithms, for real-time anomaly detection based on the time 
series data of 3650 acute coronary syndrome patients. We assess the performance of the algorithms on different time 
intervals and describe the highest clustering performance we could achieve on each of them. In addition, we test the 
viability of DBSCAN clustering algorithm for outlier clustering. 

The paper is structured as follows: the section after the current one describes the methodology of data extraction, 
preprocessing, and feature selection, as well as general experimentation algorithm and description of specific 
clustering methods. The next section contains results, which include sensitivity analysis for each method and show 
achieved performance. We close the paper with conclusion and description of future directions for the research. 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2018.08.277&domain=pdf
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contrast, some researchers [11,12] hypothesize that using only data of subset of similar patients instead of the whole 
dataset for training machine learning methods might improve the accuracy of mortality prediction for individual 
patients. The authors employed a cosine similarity[11] and random forest proximity measure [12] as patient 
similarity metric to identify a subset of the most similar patients and use it to train one of three predictive models: 
death counting - empirical mortality rate across the most similar patients; logistic regression, and decision tree. The 
results confirm the hypothesis that all the methods perform best when trained with the limited set of the most similar 
patients. 

While application of machine learning methods to medical data is a popular research topic, wide majority of 
scientists prefer to utilize supervised approaches, e.g. random forest, neural network, SVM, or logistic regression, 
because they tend to perform better than unsupervised learning methods. However, unsupervised methods have their 
own advantages: by definition, they do not requirea priory label specification, which makes them applicable to a 
wider range of datasets. Furthermore, they are generally less expensive computationally and simpler, therefore the 
results they produce are easier to interpret. In the present paper we investigate the applicability of two unsupervised 
learning methods,DBSCAN and k-means clustering algorithms, for real-time anomaly detection based on the time 
series data of 3650 acute coronary syndrome patients. We assess the performance of the algorithms on different time 
intervals and describe the highest clustering performance we could achieve on each of them. In addition, we test the 
viability of DBSCAN clustering algorithm for outlier clustering. 

The paper is structured as follows: the section after the current one describes the methodology of data extraction, 
preprocessing, and feature selection, as well as general experimentation algorithm and description of specific 
clustering methods. The next section contains results, which include sensitivity analysis for each method and show 
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2. Methodology 

2.1. Data preprocessing 

The data for this research has been provided by the Almazov National Medical Research Centre (St. Petersburg, 
Russia). It consists of 6372 electronic health records describing patients with Acute Coronary Syndrome. Each 
record is an XML filethat includes medical observations, test results and reports compiled and maintained by the 
medical doctors and nurses of the Centre. The original set of records was combined and transformed into a 
structurally consistent form. 4196 records with patients having time series data were extracted. In 4095 of these 
cases treatment was successful and outcome was positive, while a small minority of patients (namely, 101) 
deceased. Time series of 506 unique “parameter name – units” pairs were extracted from the initial dataset. 

Specifics of time series of medical parameters is that they are usually inconsistent, sparse, and heterogeneous, 
have varying lengths and irregular sampling intervals. Apart from this, different parameters of the dataset have 
vastly varying population, which poses additional challenges. There are also issues specific when the data is used by 
machine learning methods. For instance, 195 parameters were measured only for patients who were treated 
successfully, and 7 parameters – only for patients who passed away. Such features are examples of parameters that 
are often impossible to use with classification methods. 

Figure 1 shows the properties of the dataset. We see that the majority of parameters were measured in a small 
number of patients and just a few times over the treatment history of a patient (low number of samples per time 
series). There is however a group of parameters having both significant number of patients and relatively long time 
series (encircled in Figure 1). We therefore pick the features having both significant number of patients and long 
time series. Out of 506 parameters, we pick a set of 16 features, which includes platelet distribution width, mean 
platelet volume, mean red blood cells volume, glucose concentration, red blood cells, monocytes, lymphocytes, 
mean hemoglobin per red blood cell concentration, white blood cells, platelets, creatinine concentration, hemoglobin 
concentration, mean hemoglobin per red blood cell, red blood cells distribution width, hematocrit, and neutrophils. 
The data has been filtered so it contains only patients having measurements of all these parameters. The resulting 
dataset contains 3650 patients, 93 of which died (critical patients) and the rest were discharged (normal patients). 

 

Figure 1. Distributions of patient count andmeannumber of samples in a time series per parameter. Each point in the scatter plot represents one 
parameter (out of 4196). Top and right graphs show the probability density functions. Encircled are the 16 parameters used in this paper, with a 
sufficiently high number of patients and long time series.  

In order to overcome some of the issues of medical time series, such as sampling inconsistency and varying 
length, researchers utilize various approaches. For instance, Ghassemi et al.[13]proposed to use the technique of 
transforming time series data into a new latent space using the hyperparameters of Multi-Task Gaussian Process 
(MTGP) models. Batal et al. [14]developed the STF-Mine algorithm (Segmented Time series Feature Mine) to 
collapse multivariate time series data into automatically generated temporal features for classification using frequent 
pattern mining method; Caballero and Akella [15] chose to fill out the missing values using Regularized Expectation 
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Maximization method. In the first stage of our work, we resample the time series data over regular intervals (one 
day by default) using linear interpolation for the points that are within the original sampling boundaries and 
extrapolate by a nearest neighbour when a new point is outside. Time values of the series were recalculated as their 
offsets from the last measurement. In addition, all the measurements were normalized by median of the parameter 
they belong to. As a result, each patient is represented by a combination of 16 regularly sampled time series having 
equal lengths. 

There are a number of approaches to applying the clustering algorithms to the time series data. For instance, it is 
possible to perform cluster analysis to the values at each moment in the time series and investigate the dynamics, or 
develop some novel representation for such data [13,14]. In this research, we decided to investigate the performance 
of the algorithms on the binned vector values on various time intervals. Preliminary examination of this approach 
includes analysis of dynamics of centroids and standard deviations for both groups of patients (critical and normal) 
on these time intervals. 

In Figure 2 (left) we show an example of parameters exhibiting significant difference between the centroids of 
two groups of patients. Moreover, this difference grows over time. Parameters showing the most noticeable 
distinction between the two groups of patients are creatinine, neutrophils, glucose, and white blood cells 
concentrations. The remaining 12 parameters show almost no difference between the patient groups, see for example 
Figure 2 (right). Time intervals are chosen based on the assumption that the longer ago the test was taken, the less 
important it is for indication of the current state of the patient. 

 

Figure 2. Examples of the mean and standard deviation dynamics. Each bar represents a mean value on the time interval it belongs to, i.e. both 
bars on any given interval represent a binned value over the same time interval, but for different patient groups 

2.2. General experimentations algorithm 

First, we perform sensitivity analysis to determine optimal parameters for each method with given data. Then, we 
assess the performance of the method with full feature set and only with selected features. During the experiments, 
we determined that the creatinine-neutrophils pair performs the best out of all the parameter combinations. 
Therefore, selected feature set includes only creatinine and neutrophils for all the results described in the paper. We 
chose precision, recall, and F1 score as metrics of performance, because of the properties of the data we have. Since 
only 2.5% of patients were critical, it would be unreasonable to use the fraction of correctly predicted outcomes. 

All the experiments described in the following section are performed using Python programming language. All 
the implemented functions are based on respective implementations from the Scikit-learn library. 

2.3. Clustering methods description 

2.3.1. Density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm 
Density-based spatial clustering of applications with noise (DBSCAN) algorithm is a density-based clustering 

algorithm[16]. For each point in a given dataset, it determines a set of neighbouring points that are within a specified 
distance (epsilon). If the number of these core points is higher than a specified threshold, then initial point becomes 
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collapse multivariate time series data into automatically generated temporal features for classification using frequent 
pattern mining method; Caballero and Akella [15] chose to fill out the missing values using Regularized Expectation 
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Maximization method. In the first stage of our work, we resample the time series data over regular intervals (one 
day by default) using linear interpolation for the points that are within the original sampling boundaries and 
extrapolate by a nearest neighbour when a new point is outside. Time values of the series were recalculated as their 
offsets from the last measurement. In addition, all the measurements were normalized by median of the parameter 
they belong to. As a result, each patient is represented by a combination of 16 regularly sampled time series having 
equal lengths. 

There are a number of approaches to applying the clustering algorithms to the time series data. For instance, it is 
possible to perform cluster analysis to the values at each moment in the time series and investigate the dynamics, or 
develop some novel representation for such data [13,14]. In this research, we decided to investigate the performance 
of the algorithms on the binned vector values on various time intervals. Preliminary examination of this approach 
includes analysis of dynamics of centroids and standard deviations for both groups of patients (critical and normal) 
on these time intervals. 

In Figure 2 (left) we show an example of parameters exhibiting significant difference between the centroids of 
two groups of patients. Moreover, this difference grows over time. Parameters showing the most noticeable 
distinction between the two groups of patients are creatinine, neutrophils, glucose, and white blood cells 
concentrations. The remaining 12 parameters show almost no difference between the patient groups, see for example 
Figure 2 (right). Time intervals are chosen based on the assumption that the longer ago the test was taken, the less 
important it is for indication of the current state of the patient. 

 

Figure 2. Examples of the mean and standard deviation dynamics. Each bar represents a mean value on the time interval it belongs to, i.e. both 
bars on any given interval represent a binned value over the same time interval, but for different patient groups 

2.2. General experimentations algorithm 

First, we perform sensitivity analysis to determine optimal parameters for each method with given data. Then, we 
assess the performance of the method with full feature set and only with selected features. During the experiments, 
we determined that the creatinine-neutrophils pair performs the best out of all the parameter combinations. 
Therefore, selected feature set includes only creatinine and neutrophils for all the results described in the paper. We 
chose precision, recall, and F1 score as metrics of performance, because of the properties of the data we have. Since 
only 2.5% of patients were critical, it would be unreasonable to use the fraction of correctly predicted outcomes. 

All the experiments described in the following section are performed using Python programming language. All 
the implemented functions are based on respective implementations from the Scikit-learn library. 

2.3. Clustering methods description 

2.3.1. Density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm 
Density-based spatial clustering of applications with noise (DBSCAN) algorithm is a density-based clustering 

algorithm[16]. For each point in a given dataset, it determines a set of neighbouring points that are within a specified 
distance (epsilon). If the number of these core points is higher than a specified threshold, then initial point becomes 
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a new core point (a cluster is started), otherwise the point is marked as an outlier. When a cluster is started, 
sufficiently big neighbourhoods of each neighbourare added to this cluster. The algorithm keeps working until all 
the points are either in a cluster or outliers. 

The parameters defining the performance of the method are epsilon, minimum samples in a neighbourhood to 
start (or to be added to) a cluster, and the function to calculate distance between points. 

We chose to use Euclidean metric to calculate distance between points. Manhattan distance, albeit having lower 
computational cost, has shown itself to be less convenient to use because of higher variations of optimal epsilon. 

2.3.2. K-means clustering algorithm 
K-means [17] is a simple centroid-based clustering algorithm. It requires setting the number of clusters (K) 

beforehand. After initialising the centres of K clusters (initialization method depends on implementation), the 
algorithm determines the closest centre for each point and assigns this point to respective cluster. Then, cluster 
centres get recalculated as centroids of all the points belonging to the respective cluster. The algorithm keeps 
iterating until cluster centres converge or iteration limit is reached. 

The parameters of the method we looked into are the centre initialization method and iteration limit. Available in 
the Scikit-learn centre initialization options are “random”; a more sophisticated “k-means++” method, which allows 
to speed up convergence; and an array of manually defined cluster centres. 

2.4. Outlier clustering 

To perform outlier clustering, we first apply the DBSCAN algorithm with parameter values specified during the 
sensitivity analysis to detect outliers. Then, we filter out clusters and perform clustering of outliers alone. For this 
preliminary investigation we use only two factors showing the best clustering performance: creatinine and 
neutrophils and only the last measurements data, since it shows the highest dispersion. 

3. Results of data analysis, sensitivity study and performance evaluation 

3.1. Data analysis 

Figure 3presents the dynamics of the two parameters that exhibit distinguishably different trends between normal 
and critical patients as presented in the previous section: creatinine and neutrophils. As it was mentioned in the 
previous section, all the values are normalized by the median of respective parameter, therefore point (1;1)represents 
the median values. 

 
Figure 3. Creatinine and neutrophils dynamics. Normalized to creatinine median (86.0 µmol/L) and neutrophils median (6.2∙109particles/L). 
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As seen from Figure 3, values in the interval between 14 and 7 days before the last measurement are largely 
contained within relatively small area around medians. On the other hand, the last measurement values tend to 
spread across larger area, and we see significant number of critical patients located far away from medians. 

3.2. Sensitivity study 

3.2.1. Sensitivity of DBSCAN clustering algorithm 
The parameters we looked into for the DBSCAN algorithm are epsilon and neighbourhood size threshold. We 

tested epsilon values from 0.05 to 3 with step of 0.05 and neighbourhood size threshold values from 5 to 60 with 
step of 5. We assess the performance based on the highest F1 score from all the clusters. Out of all the selected 
parameter combinations, pair of neutrophils and creatinine showed the highest F1 score. The resultsof sensitivity 
analysis are presented in Figure 4. We can see that the neighbourhood range (epsilon) significantly affects the 
algorithm’s performance, while the neighbourhoodsize threshold (min samples) causes less variation. For the final 
experiments, we set the algorithm parameters to the values showing the highest overall performance for each time 
interval. 

 
Figure 4. DBSCAN sensitivity analysis results. Colour represents the F1 score achieved with respective algorithm parameters 

3.2.2. Sensitivity of K-means clustering algorithm 
Sensitivity analysis revealed that when applied to the patients with full feature set with default iteration limit 

(namely, 300), the algorithm shows poor performance: the highest F1 score the algorithm achieved was 0.177, 
interestingly enough, at the time interval from two weeks to a week before the last measurement. 

It is also worth noting that maximum iterations limitation coupled with random (“k-means++” is still random) 
centre initialization gives highly inconsistent results and doesn’t help to fit the algorithm’s parameters. 

When applied to the “creatinine – neutrophils” vectors with default iteration limit, the algorithm performs better 
(F1 score of 0.336 based on the last measurements only) using “k-means++” initialization, but still vastly 
underperforms by comparison with DBSCAN. As was mentioned earlier, critical patients do not form a cluster, but 
rather, they spread away from the normal condition, which explains poor performance of clustering algorithms. 
Furthermore, it is preferred to use k-means clustering when the data form equal-sized (geometrically speaking) 
clusters, while the clusters we are dealing with are assumed to be vastly different. 

To find the optimal centre placement on the “creatinine – neutrophils” plane, we tested each point on the grid 
from (0;0) to (5;5) with step of 0.1 as the centre for critical cluster, while the centre for normal patients was fixed at 
(1;1) (medians of both parameters). Figure 5shows the F1 score for different placement of the critical patients' 
cluster centre. 

The iteration limit was set to one during the centre placement analysis. It was revealed that increasing of iteration 
limit leads to degrading performance. Since optimal centres placement varies depending on specific time interval, 
we saved optimal centre coordinates for each interval to use them for further performance assessment. 
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Figure 5. K-means sensitivity analysis. F1 score for different coordinates of the critical cluster centre 

3.3. Performance evaluation 

Current section includes the resulting precision, recall and F1 score for both methods using parameter values 
derived in Section 3.2. 

3.3.1. DBSCAN 
Performance of the DBSCAN algorithm on different time intervals is shown in Figure 6. The overall 

classification accuracy of the algorithm is rather modest. Even though the F1 score is a little higher when applied to 
the selected parameters, at the peak of its performance, which is achieved at the last day of treatment, the algorithm 
is not sufficient to determine the outcome. Another issue that is making this algorithm less usable for real-time 
medical applications is the need to empirically derive its parameters. It’s also worth noting that in each case the best 
result was achieved when epsilon was high enough to collect the vast majority of points into one cluster, while the 
outliers included the substantial fraction of critical patients, which supports the conclusion from the previous 
subsection that critical patients do not form a cluster, but significant part of them scatter away from the norm enough 
to be considered outliers. 

 

Figure 6. DBSCAN precision, recall and F1 score on different time intervals 

Another issue which prevents the DBSCAN algorithm to be a viable option for real-time application is that it 
does not track cluster centres and cannot simply be trained and used later with new data (although it still might work 
when applied to a combination of previous and new data). K-means, on the other hand, while being much simpler 
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algorithm, explicitly stores cluster centres and can be used later to determine which cluster a new test vector belongs 
to. 

3.3.2. K-means 
K-means performance is shown in Figure 7. When applied to neutrophils – creatinine vectors, the algorithm uses 

optimal centres placement found in the previous section. When applied to a complete feature set, mean values are 
used as initial centre locations. Remarkably, the recall is high even at 180 days before the last test when all 16 
parameters are used. For the purposes of this research, high recall is more important than high precision, since it is 
more important to detect the critical transition in most patients (even with false alarms) than to detect only a few of 
them without any false alarms. 

 

Figure 7. K-means precision, recall and F1 score on different time intervals 

During the process of sensitivity analysis, we investigated that the process of iterative refinement of clusters 
makes the results worse. A single iteration of assigning cluster index by the closest initial cluster centre performs 
better than the normal way the algorithm operates. Application of the algorithm to selected feature patient vectors is 
a slight improvement compared to DBSCAN. However, there is a major drawback: in order to perform better, it 
requires a priori knowledge of optimal centres placement. 

4. Results of outlier clustering 

Here we use only two factors: creatinine and neutrophils and only the last measurements data. The DBSCAN 
algorithm was applied with parameters epsilon 0.4 and neighbourhood threshold 35 to the patient vectors, containing 
creatinine and neutrophils values. As a result, the algorithm detects one cluster, containing 3559 patients, and 91 
outliers. After that, we perform sensitivity analysis to test the algorithm on outliers only. We start from 
neighbourhood size of 3 and from epsilon value of 0.5. Results of sensitivity analysis are shown in Table 1. 

Table 1. Outlier clustering sensitivity analysis. 

 Epsilon: 0.50 Epsilon: 0.60 Epsilon: 0.70 Epsilon: 0.80 Epsilon: 0.90 Epsilon: 1.00 

Min 
samples 

Cluster 
count 

Outlier 
fraction 

Cluster 
count 

Outlier 
fraction 

Cluster 
count 

Outlier 
fraction 

Cluster 
count 

Outlier 
fraction 

Cluster 
count 

Outlier 
fraction 

Cluster 
count 

Outlier 
fraction 

3 4 0.2308 3 0.1758 2 0.1429 2 0.0989 2 0.0879 2 0.0769 

4 4 0.3407 2 0.2308 1 0.1868 2 0.1209 2 0.0989 2 0.0769 

5 1 0.4945 4 0.2967 1 0.2088 1 0.1978 1 0.1429 2 0.0879 

6 2 0.5055 2 0.4835 1 0.2308 1 0.1978 1 0.1758 1 0.1429 

7 1 0.6044 1 0.5714 1 0.2967 1 0.2198 1 0.1868 1 0.1538 
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Cluster 
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8 1 0.6154 1 0.5824 2 0.3187 1 0.2198 1 0.1978 1 0.1538 

9 1 0.6484 1 0.5824 2 0.4176 1 0.2747 1 0.2198 1 0.1648 

 
Selected examples of resulting clusters are presented in Figure 8. Initial cluster was removed from the picture for 

better clarity. As seen from the figure and the table, clustering results highly depend on the algorithm’s parameters. 
High epsilon values lead to the situation where all the points belong to one cluster. When neighbourhood threshold 
is set to 10 and higher, the algorithms detects only one cluster, which grows as epsilon increases. Overall, it is seen 
that some combinations of parameters allow to detect 3 or 4 clusters using only 2 features out of available feature 
set, which is a promising result for future research. 

 

Figure 8. Outlier clustering examples 

5. Conclusion and future work 

There are important conclusions to be drawn from the research, even though results described in this paper show 
that investigated methods show a moderate performance when applied to the clinical data, since the data does not 
form clusters: there is neither clear boundary between two patient groups, nor density-based separation. First, critical 
patients tend to spread away from normal values and, thus, might be considered outliers by a density based 
clustering algorithm. Second, since some of the blood parameters show clear differentiation between normal and 
critical patients, applying just one iteration of k-means algorithm with known normal and critical centres might 
detect critical patient. In addition, clustering algorithms we tested seem to perform better when applied to a limited 
set of patient parameters showing the clearest differentiation between the two groups. Outlier clustering is a 
promising direction for clinical application, and our preliminary analysis shows that the method allows to detect 
clusters in outliers using just a pair of the best clusteringfeatures: creatinine and neutrophils. 

There are a number of prospective directions this research might take. For instance, using more advanced ways to 
encode temporal features of time series would allow to create more dynamic model to use in real medical setting. 
Utilizing more advanced unsupervised methods, e.g. OPTICS clustering algorithm or supervised methods, such as 
random forest, neural network, SVM, or logistic regressionmight improve performance of classification. Our initial 
experiments with SVM have shown promising results: using high degree (10 and more) polynomial kernel, it has 
been able to separate the dataset into two groups achieving significantly higher F1 score (0.815) than clustering 
algorithms (0.5), since it is capable of drawing complex enough classification boundary. For outlier clustering, 
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addition of more detailed information about patients and using more features will allow us to interpret the results in 
a more meaningful way, e.g. to determine the cause of a specific outlier. 

In addition, we plan to investigate similar approaches for early warning of critical transitions in patients with 
chronic diseases. Unlike the acute coronary syndrome, chronic diseases develop slowly, therefore prediction is 
likely to be more accurate and timely. 
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8 1 0.6154 1 0.5824 2 0.3187 1 0.2198 1 0.1978 1 0.1538 

9 1 0.6484 1 0.5824 2 0.4176 1 0.2747 1 0.2198 1 0.1648 

 
Selected examples of resulting clusters are presented in Figure 8. Initial cluster was removed from the picture for 

better clarity. As seen from the figure and the table, clustering results highly depend on the algorithm’s parameters. 
High epsilon values lead to the situation where all the points belong to one cluster. When neighbourhood threshold 
is set to 10 and higher, the algorithms detects only one cluster, which grows as epsilon increases. Overall, it is seen 
that some combinations of parameters allow to detect 3 or 4 clusters using only 2 features out of available feature 
set, which is a promising result for future research. 

 

Figure 8. Outlier clustering examples 

5. Conclusion and future work 

There are important conclusions to be drawn from the research, even though results described in this paper show 
that investigated methods show a moderate performance when applied to the clinical data, since the data does not 
form clusters: there is neither clear boundary between two patient groups, nor density-based separation. First, critical 
patients tend to spread away from normal values and, thus, might be considered outliers by a density based 
clustering algorithm. Second, since some of the blood parameters show clear differentiation between normal and 
critical patients, applying just one iteration of k-means algorithm with known normal and critical centres might 
detect critical patient. In addition, clustering algorithms we tested seem to perform better when applied to a limited 
set of patient parameters showing the clearest differentiation between the two groups. Outlier clustering is a 
promising direction for clinical application, and our preliminary analysis shows that the method allows to detect 
clusters in outliers using just a pair of the best clusteringfeatures: creatinine and neutrophils. 

There are a number of prospective directions this research might take. For instance, using more advanced ways to 
encode temporal features of time series would allow to create more dynamic model to use in real medical setting. 
Utilizing more advanced unsupervised methods, e.g. OPTICS clustering algorithm or supervised methods, such as 
random forest, neural network, SVM, or logistic regressionmight improve performance of classification. Our initial 
experiments with SVM have shown promising results: using high degree (10 and more) polynomial kernel, it has 
been able to separate the dataset into two groups achieving significantly higher F1 score (0.815) than clustering 
algorithms (0.5), since it is capable of drawing complex enough classification boundary. For outlier clustering, 
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addition of more detailed information about patients and using more features will allow us to interpret the results in 
a more meaningful way, e.g. to determine the cause of a specific outlier. 

In addition, we plan to investigate similar approaches for early warning of critical transitions in patients with 
chronic diseases. Unlike the acute coronary syndrome, chronic diseases develop slowly, therefore prediction is 
likely to be more accurate and timely. 
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