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Victor Azizi Tarksalooyeh1(B), Gábor Závodszky1, and Alfons G. Hoekstra1,2

1 Computational Science Lab, Institute of Informatics,
University of Amsterdam, Amsterdam, The Netherlands

v.w.azizitarksalooyeh@uva.nl
2 ITMO University, Saint-Petersburg, Russian Federation

Abstract. Large scale cell based blood flow simulations are expen-
sive, both in time and resource requirements. HemoCell can perform
such simulations on high performance computing resources by dividing
the simulation domain into multiple blocks. This division has a per-
formance impact caused by the necessary communication between the
blocks. In this paper we implement an efficient algorithm for computing
the mechanical model for HemoCell together with an improved commu-
nication structure. The result is an up to 4 times performance increase
for blood flow simulations performed with HemoCell.

Keywords: Blood flow simulation · High performance computing ·
Computational optimization

1 Introduction

Blood flow simulation remains an area of active research. Many interesting prop-
erties have been identified with the help of simulations [4,6,9–11,13]. There is
an increasing interest in blood flow simulations in which the blood cells (red
blood cells, platelets, white blood cells) are fully resolved [3,8,15,16]. These
simulations can be used to understand and find underlying mechanics of com-
plex behaviour of blood flows including but not limited to platelet margination
[9], the formation of the cell free layer [6], the F̊ahræus–Lindqvist effect [2], the
behaviour in microfluidic devices or the behaviour around micromedical implants
[1,5]. Simulations that model blood as a pure fluid flow are not able to recover
these intricate properties of blood flow.

One of the challenges of suspension simulation codes is to parallelize them
such that interesting systems with sufficient number of cells (>1000 cells) can be
simulated for an extended duration (>0.1 s) in a reasonable time span (<5 days).
Only a few open source solutions exist for suspension simulations that need to
implement a complex mechanical model for the simulated cells, HemoCell [16]
and Palabos-LAMMPS [14] are examples of available open-source codes that can
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be used to simulate blood flow. Other codes exists but are not (yet) available as
open-source.

HemoCell is a software package that is developed at the University of Ams-
terdam that is able to simulate blood flow at high shear rates (>1000 s−1) and
with a high number of cells (>1000 cells). In this paper we present HemoCell an
highly efficient parallel code for blood flow suspension simulations.

HemoCell is built on top of Palabos [7] and offers support for complex sus-
pension simulations. Palabos is a general purpose lattice Boltzmann solver with
high performance computing capabilities. We will shortly introduce HemoCell
and its underlying models, followed by a discussion of challenges and solutions
for efficient parallel simulations. These include boundary communication of pro-
cessors for the suspension part, efficiently storing relevant information while
avoiding global communication, and efficiently computing the complex material
model associated with the cells within HemoCell. Next, we discuss the theoretical
and practical implications of the methods we used to implement the suspension
simulation software within HemoCell and provide performance measurements.

1.1 HemoCell

HemoCell [16] is an open source parallel code for simulating blood flows with
fully resolved cells that is built as a library on top of Palabos [7]. Palabos is
a versatile library which can be used to solve pure fluid flow problems with
the lattice Boltzmann method (LBM). Palabos offers relevant multi-processing
abilities. HemoCell implements the cell mechanics simulations and their coupling
to the fluid using the immersed boundary method (IBM), see also Fig. 1.

Fig. 1. Overview of the Palabos and HemoCell libraries

HemoCell uses data parallelism to distribute the workload over many cores.
With the help of PalaBos HemoCell can divide the flow domain into multiple
rectangular blocks of each which represents a processor These domains are called
atomic blocks (AB). ABs are abstracted away from the user through the use
of functionals, which can be used to perform operations on a domain without
knowing about the underlying distributed structure. Furthermore, each simu-
lation can have multiple fields, which span the whole domain and represent a
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specific part of the simulation. In Hemocell two fields are used, a fluid field and a
cell field. Palabos takes care of the boundary communication between processors
for the fluid field. HemoCell takes care of the cell field and of the communication
between the two fields as required by the immersed boundary method [12].

The cells consist of vertices which are connected through links that make up
a boundary to represent a cell in the fluid. A RBC in HemoCell has 1280 vertices.
A complex mechanical model is used to calculate forces [16]. This mechanical
model requires that a cell is present on both processors whenever it is crossing
a boundary. This results in the two main bottlenecks and thus challenges for
HemoCell.

1. The material model of the cells needs to be calculated efficiently.
2. Dividing the cell field into multiple processors is complex because the material

model requires duplication of cells over boundaries.

2 Calculating the Mechanical Model of a Cell

The cells within HemoCell are implemented as vertices and connections that
form a triangulated mesh. These cells compute the forces acting on its vertices
through a mechanical model [16]. Figure 2 shows a mesh used to represent a red
blood cell.

Fig. 2. Mesh representing red blood cell in HemoCell

Závodszky et al. [16] model the forces acting on the vertices of a cell as
follows:

Ftotal = Flink + Fbend + Fvolume + Farea + Fvisc (1)

Below we list all five forces and explain in detail what information is needed
to compute them.
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1. The link force Flink acts along the edges and between neighbouring points.
The force on a single vertex i (F i

link) can be described as follows:

F i
link =

m∑

n=1

Clink
Ei,in − |ixn − ix|

Ei,in

(2)

Where Ei,in is the equilibrium length between two vertices, ix is the location
of vertex i, m is the number of direct neighbours of vertex i and in is the n’th
direct neighbour of vertex i. Clink consists of all the constant terms that do
not change during a simulation as explained by Závodszky et al. [16].

2. The bending force Fbend uses patches which are defined as a plane that goes
through the average location of all direct neighbours of vertex i. The normal
direction of this plane is defined as the average normal of all neighbouring
triangles that include vertex i. The distance along the normal direction of
this plane towards vertex i is used to calculate the bending force on vertex i,
a negative term is added to the neighbours of i to make the force zero-sum.

F i
bend = Cbend

(
Epatch

i −
(∑m

n=1 i
x
n

m
− ix

)
·
(∑m

n=1 normal (tni )
L

))

−
m∑

n=1

1
Nm

i

F in
bend (3)

Where Epatch
i is the equilibrium distance between the patch and the vertex

i along the patch normal. tni is the n’th triangle that is a direct neighbour
of vertex i. normal() returns the normal pointing outward from a triangle.
L is the length of the summation of the normal vectors of all the triangles
that are part of the patch, thus this division results in a unit vector along the
average normal direction. The dot product results in a length term along the
patch normal. Nm

i is the number of direct vertex neighbours of in. C again
of all the constant terms that do not change during a simulation.

3. The area force Farea acts on all the triangles that are part of the mesh.
Therefore the force on a single vertex is a sum over all neighbouring triangles:

F i
area =

m∑

n=1

Carea

(
Earea

int
− area (int )

Earea
int

)
(ix − middle (int )) (4)

Where area() calculates the area of a triangle, Earea
int

is the equilibrium value
for the area of triangle int . middle() calculates the average of the three tri-
angle vertices of triangle int . Carea() is a function that takes the area ratio as
input and outputs a force coefficient.

4. The volume force Fvolume results from the total volume of the cell, thus infor-
mation about all vertices is needed. The force is distributed over the vertices
proportional to the area of the direct neighbouring triangles of that vertex.

F i
volume =

volume(celli) − Evolume
celli

Evolume
celli

m∑

n=1

Cvolume
area (tni )
Earea

tni

normal (tni ) (5)
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Where volume () calculates the volume of a complete cell, this function needs
every vertex of the cell as input. Evolume

celli
is the equilibrium volume of celli

and normal() is the normal direction of triangle tni .
5. The viscous force Fvisc limits the relative velocity of neighbouring vertices

connected with an edge.

F i
visc =

m∑

n=1

Cvisc ·
((

vi − vin
) ·

(
ixn − ix

|ixn − ix|
))

·
(

ixn − ix

|ixn − ix|
)

(6)

Where vv and vin are the velocity of vertex i and in respectively.
∑m

n=1 sums
over all direct vertex neighbours of i.

2.1 Implementation of the Mechanical Model

The formulas for calculating force on each independent vertex are explained
above. Between the calculation of the separate forces there are some overlaps, for
example the calculation of the area of a triangle is used for both the volume and
area forces Eqs. 4 and 5. This leaves room for optimization within implementing
the calculations. In Fig. 3 a pseudo code of the implementation is shown. In
this implementation we have tried to calculate each necessary value only once.
Furthermore, we try to minimize the number of loops. Most notably in the first
loop which calculates Farea all the necessary calculations for Fvolume are stored
for the second loop. In addition Flink and Fvisc are calculated in the same loop
as well.

for triangle in cell.triangles:

volume += volume_from_triangle(triangle);

normal,area,center = triangle_properties(triangle)

area_force = ((area - eq(area))/eq(area)) * C_area

for vertex in triangle:

vertex.force += (center-vertex)*area_force

volume_force = ((volume - eq(volume))/eq(volume)) * C_volume

for triangle in cell.triangles:

triangle_volume_force = triangle_volume_force_formula()

for vertex in triangle:

vertex.force += triangle_volume_force

for vertex in cell:

for neighbour in vertex:

middle += neighbour

vertex.force +=bending_force_formula(middle, vertex)

for edge in cell:

vertex.force += link_force_formula(edge)

vertex.force += visc_force_formula(edge)

Fig. 3. Pseudocode explaining how we optimized the calculation of the mechanical
model within HemoCell.
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3 Implementation of the Cell Field Communication
Structure

When the cell field is divided up into multiple atomic blocks it becomes necessary
to implement a communication structure. For a regular fluid field this simply
constitutes to communicating the values of the fluid cells in the boundary layer
to their corresponding neighbours. However it is not so simple for the cell field.
The number of vertices in a communication boundary can change over time
and therefore the communication size is not static but dynamic. Furthermore
at every communication step it has to be determined which vertices are present
within a communication boundary and which vertices are not.

Cells need information from all their vertices to calculate the mechanical
forces. Almost all forces (Farea, Flink, Fbend, Fvisc) that act on the vertices only
need information from their direct neighbours to be calculated. However the
volume force Fvolume needs information of all the vertices of the cell to be calcu-
lated. Therefore whenever a single vertex of a cell is present in an atomic block,
the boundaries must include every other vertex of the corresponding cell as well.
This means that the size of the boundary must be larger than the largest possi-
ble diameter of a cell. Figure 4 shows that a larger boundary size means that the
number of neighbours and thus the communication will increase if the atomic
blocks get too small.

Fig. 4. Visualization of the boundary size needed for the cell field.

There is a simple way to implement this boundary, namely by communica-
tion of vertices in the boundary. We will use this communication pattern as the
base upon which we propose improvements, see Fig. 5. In the näıve implemen-
tation firstly all neighbours are determined that overlap with the boundary of
the atomic block. Within HemoCell a RBCs (the largest cell) can stretch up to
12 µm. Thus all neighbours within a 12 µm range send the vertices correspond-
ing to the overlap they have with the boundary. This method has two drawbacks:
First a lot of unnecessary data is communicated and second when the boundary
size is larger than an atomic block the number of neighbours with which com-
munication is necessary grows, usually in the form of (2N + 1)3 − 1 Where N is
the number of neighbours in a single direction. So going from N = 1 to N = 2
creates 124 − 26 = 98 extra neighbours.
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neighbours = block.neighbours(12) for neighbour in neighbours:

send_particles = block.findparticles(intersect(block, neighbour)

MPI_Isend(neighbour,send_particles.size())

MPI_Isend(neighbour,send_particles)

While (MPI_WaitAny(neighbours)):

MPI_Recv(neighbour, size)

MPI_Recv(neighbour, recv_particles, size)

block.add_particles(recv_particles)

neighbours = block.neighbours(1)

#Same communication pattern as top code block
#But with a boundary of size one

Neighbours = block.neighbours(12) requested_cells =

block.findlocalcellIds() for neighbour in neighbours:

MPI_Isend(neighbour,requested_cells)

for neighbour in neighbours:

MPI_Probe(neighbour) #Get any neighbour
MPI_Recv(neighbour, requested_cells)

send_particles =

block.findParticlesFromCells(requested_cells)

MPI_Isend(neighbour, send_particles)

for (neighbour in neighbours):

MPI_Probe() #Get any neighbour
MPI_Irecv(neighbour,recv_buffer)

for (neighbour in neighbours):

MPI_WaitAny(receive) #Wait for any receive
block.addParticles(recv_buffer)

MPI_WaitAll(sends)

Fig. 5. The top block shows in pseudocode a näıve implementation of the boundary
communication. The bottom block shows our optimized implementation of the bound-
ary communication algorithm.

We implemented an improved and consequently faster method to communi-
cate vertices in boundaries. The main idea is to only communicate vertices of
cells that are needed. For this an extra communication step needs to be imple-
mented. In this extra communication step an atomic block sends a list with all
the IDs of the cells that need to be communicated to its neighbours. In the next
communication step only these vertices are communicated. It is not possible
to get rid of the inefficient boundary communication entirely as vertices very
close to the domain are needed for non-local force calculations (e.g. inter cellular
forces). However, this is much more efficient if only a very small boundary needs
to be communicated.
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Fig. 6. The domain with which the simulations are performed with a differing number
of processors

3.1 Comparison Between Näıve and Optimized Implementation of
the Boundary Communication Algorithm

To test the performance gain of our optimized boundary communication algo-
rithm we have set up a simulation which is executed both with the näıve and the
optimized implementation. The simulation consists of a cubic 128 µm3 volume
that is periodic in all directions. Within this volume 7736 red blood cells are
present. Figure 6 shows the simulated domain. An external body force is applied
to drive the cell suspension inside the volume. The volume is simulated for 0.1 s
and statistics are collected over the whole duration. The results are plotted in
Fig. 7.

The results show a significant improvement of HemoCell in two ways. Firstly,
the base performance has improved by ≈36%, this can be deducted from the
difference in wall clock time per iteration in Fig. 7 for 8 cores. Secondly, the strong
scaling (dividing the same domain into more smaller atomic blocks) properties
are better. In the worst case (512 µm3 per atomic block) the edges of an atomic
block are only 8 µm long. This means that the boundary of each block overlaps
with 124 neighbours. In this case we see a performance improvement of ≈4
times over the näıve version. Over the whole range we see that our improved
communication performs better.
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Fig. 7. Statistics for each of the simulations. The fluid part is handled by Palabos. The
dotted line shows perfect linear scaling. (a) shows the statistics for the näıve implemen-
tation of the communication. (b) shows the statistics for our improved implementation.

4 Conclusions

Improving the performance of fully resolved blood flow simulations allows us to
perform simulations up to 4 times faster. For a simulation of 1 s a total number
of 10 million timesteps is required. This means that the improved version of
HemoCell only needs one day to complete this simulation with ABs of 512 µm3,
whereas the näıve version would need four days.
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We have shown that it is possible to merge the calculation the forces of the
mechanical model in such a way that there is less computation than when all the
forces are computed separately. This is achieved by re-using intermediate values
and combining loops where possible.

By improving the communication structure better strong scaling results are
achieved for HemoCell. Furthermore, the base performance with large ABs is
improved as well.

Acknowledgments. This work was supported by the European Union Horizon 2020
research and innovation programme under grant agreement no. 675451, the Comp-
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