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Propositions
1. Mathematics is the logic of certainty; probability is the 

logic of uncertainty.
2. All models are wrong some are useful.
3. The choice of statistical models matters, no matter how 

big your data set is. (This thesis)
4. Statistical analysis has to be bespoke. (This thesis)
5. Prior knowledge can be translated into English, as well 

as databases and probability distributions. (This thesis)
6. We can do much better about missing data than just 

dropping them. (This thesis)  
7. Want to understand a model? Run simulations! (This 

thesis)
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Chapter 1

1.1 High dimensional data

Biomedical research relies on data produced by either experimental or observational stud-

ies. In an experimental study, biological units such as subjects, animals or cells are

sampled from a population of interest and assigned to receive treatment and control.

Because in an experiment scientists can make the groups receiving different treatments

comparable, they can evaluate causal effects of treatments on outcomes. However, some

experiments are impractical or unethical. In such scenarios, scientists often use obser-

vational data to make causal inference of treatment effects on outcomes. In contrast to

an experimental study, scientists cannot control differences between groups that receive

different treatments in an observational study. As a result, scientists need to rely on more

data than just treatments and outcomes and more complicated statistical models.

This thesis contains one experimental and three observational studies. Although these

studies focus on different phenotypes such as inflammation, hypercholesterolemia and

type 2 diabetes, they all rely on high-throughput technologies to measure many variables

simultaneously from a single biological sample. Since every biological sample is now

characterized by a large number of variables, this type of data is called high dimensional

data. In particular, this dissertation will focus on three types of high dimensional data,

namely transcriptomics, metabolomics and gut microbiome. I will first introduce each of

them.

1.1.1 Transcriptomics

Transcriptomics uses high-throughput technologies, such as microarray and next gener-

ation sequencing, to identify and determine abundance of the entire collection of RNA

molecules in biological samples. The shape of transcriptomics data is either a matrix

of fluorescence signal values (microarray platforms) or a matrix of frequencies (RNA se-

quencing platforms). In both cases, every row of the matrix represents a transcript or

gene, and every column represents a biological sample. The most common data analysis in

transcriptomics studies is to identify genes (or transcripts) that are differentially expressed

in response to different treatments. In order to identify biological pathways that respond

to the treatments, gene expression data are often integrated with biological databases

2
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such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa

et al. 2012). Recent developments of genome scale metabolic models (GEMs) enable

us to predict metabolic functions based on gene expression data (Hoppe 2012). GEMs

represent our current knowledge of all established metabolic reactions involved in human

energy metabolism and macromolecule biosynthesis (Thiele et al. 2013; Mardinoglu et

al. 2014). Both KEGG database and GEMs help us grouping genes that participate in

the same metabolic pathway. GEMs can further help us grouping genes that regulate the

same metabolite. Later in chapter 2, I will show an example in which gene expression

data were integrated with both the KEGG database and with GEMs to study metabolic

reprogramming in immune cells.

1.1.2 Metabolomics

Metabolomics uses mass spectrometry and NMR (nuclear magnetic resonance) spec-

troscopy to identify and quantify small molecules in cells, tissues or biological fluids

(e.g. plasma and urine). The resulting metabolic profile is regarded as a snapshot of

the metabolic state, and end product of both genetic and environmental factors. Similar

to transcriptomics, the shape of metabolomics data is a matrix, in which every row is a

metabolic feature and every column is a biological sample. Metabolomics has been suc-

cessfully used to identify novel biomarkers for disease diagnostics and has improved our

understanding of pathophysiologic mechanisms (Newgard 2017; Würtz et al. 2017). This

dissertation will focus on metabolomics data generated by the Nightingale metabolomics

platform (Nightingale Health, Finland). This platform quantifies 225 metabolic features

including lipids, lipoproteins, fatty acids, amino acids, and glycolysis precursor molecules.

A major challenge of metabolomics data analysis is how to functionally interpret metabo-

lite measurements (Bartel, Krumsiek, and Theis 2013). One strategy is to integrate

metabolomics with other omics data such as transcriptomics (Bartel et al. 2015a). In this

thesis, we aimed to use plasma metabolomics to improve our understanding of hyperc-

holesterolemia (chapter 3) and type 2 diabetes (chapter 4), by integrating metabolomics

with genetic mutation and clinical data.
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1.1.3 Gut microbiome

The human gut microbiome plays an important role in health and disease (Lynch and

Pedersen 2016). Currently two major approaches, 16S ribosomal RNA (rRNA) gene am-

plicons and shotgun metagenomics, are used to profile the gut microbiome (Jovel et al.

2016). The difference between these two approaches is that 16S rRNA sequencing is

restricted to bacteria and archaea whereas shotgun metagenomics measures all microor-

ganisms present in a sample. In this dissertation, we will focus on microbiome data

generated by 16S rRNA gene amplicons. 16S microbiome data is represented as a fre-

quency matrix giving the number of times each microbe (every row) is observed in each

sample (every column). In general microbiome data have the following features: 1) li-

brary sizes can vary by orders of magnitude across samples. 2) microbiome data often

have excess zero counts. These zero counts can be due to either biological absence of a

microbe, or insufficient sequencing. 3) microbiome data are compositional data, meaning

that the obtained counts do not reflect the absolute number of microbes that are present.

4) microbiome data are often over-dispersed, characterized as some taxa (e.g., Bacteroides

and Lactobacillus species) are common among samples, many other taxa are present at

much lower abundances.

A particular interest of human gut microbiome research is to link nutrition intake and

microbiome, because diet is modifiable and shapes the composition of human microbiota

(Turnbaugh et al. 2009). For this purpose, associations of dietary intake and microbial

abundance were evaluated in various cohort studies (Wu et al. 2011; Deschasaux et

al. 2018). These association studies can improve our understanding of the relationships

between the human microbiome and nutrient intake, as well as help development of new

therapeutic interventions. In chapter 5, I will show a study in which we evaluated diet-

microbe associations based on a large cohort microbiome data.

After introducing the high dimensional data, I would like to highlight some statistical

strategies used in this thesis in the next section.

4
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1.2 Statistical analysis strategies

In this dissertation, I applied different statistical analysis strategies. In chapter 2, I

applied sample permutations for statistical inference. In chapter 3, I chose hierarchical

clustering to group hypercholesterolemic females based on their plasma metabolic profiles.

In chapter 4, I performed Bayesian data analysis in order to deal missing observations.

In chapter 5, I carried out statistical simulations to compare different analysis methods.

In following paragraphs, I will give a short description of permutation, quantification of

similarity, Bayesian imputation and statistical simulation.

1.2.1 Permutation

I often ask my colleagues “what is your motivation of producing this data set?”. Very

likely the answer is “I want to know if there is any difference between groups.”. For many

people, hypothesis testing is the most common data analysis performed in biomedical

research. What we care about is whether our observed difference is by chance or reflecting

a true biological difference. My preferred strategy is to do permutation analysis. In

permutation analysis, we randomly shuffle the labels of “control” and “treatment”, and

then calculate the difference between these randomly nested control and treatment groups.

Any difference we observe after this shuffling is due to chance. If we repeat this process

many times, we can count how many times we observe a difference as big as or even bigger

than the one based on the original labeling. The corresponding proportion is called the

(one sided) permutation P value. In my opinion, this strategy alleviates some anxiety on

distribution assumptions built in many statistical tests. Sometimes permutation analysis

can be computationally expensive and it is possible that we cannot enumerate all the

permutations due to the limit of time and computational resources. In such case we take

a sample of all permutations to perform the calculation. This is called a randomization

approach.

1.2.2 Quantification of similarity

One advantage of high dimensional data is that it provides us a large number of variables

to describe biological samples. Mathematically each biological sample is represented by

5
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a point inside a high dimensional space. In that high dimensional space, we can quantify

the distance between any two points by calculating the Euclidean or any other type of

distance. This distance can then be used to quantify similarity between pairs of samples.

Popular clustering algorithms, such as k-nearest neighbors and hierarchical clustering, are

built upon this idea. In chapter 3, I will show an example in which I used this approach

to study hypercholesterolemia with and without known genetic mutations.

1.2.3 Bayesian imputation

High dimensional data often contain missing values. For example, metabolomics can have

missing values because the concentration of a metabolite is below the limit of detection,

or because values were rejected by the automatic sample and measurement quality control

procedure. Dropping observations with missing data is the default setting used by many

data analysis programs. However, this is almost never appropriate because the dropped

cases can bias the results. One of the ways to deal with missing data is by using a Bayesian

approach. In the Bayesian framework, what we observed is called data, and what we

did not observe is called parameters. Because missing data are not observed, they are

treated as parameters in that analysis. All parameters in Bayesian models require a prior

distribution to incorporate our prior information before seeing the data. As a result,

Bayesian imputation does not give us one or a few imputed values but a whole posterior

distribution for each missing observation.

In chapter 4, I will show an example in which I used Bayesian imputation to deal with

missing values in both response variables and predictor variables.

1.2.4 Statistical simulation

Statistical simulation plays a unique role in data analysis. The uniqueness is that in

a simulation study we know the truth. This is why when a new statistical method is

developed, simulation studies are used to show that the method is working properly.

One has two options to perform a statistical simulation. The first option is to construct

a probabilistic model which mimics the data generating process. The data generating

process describes how the data came to be, and it can be inspired by a biological theory

or model. The next challenge is to translate the data generating process in the language of
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probability. When we know little about the data generating process, we can alternatively

generate the simulated data by repeated sampling with replacement from the data we

have. This approach is sometimes called resampling. Like permutation, resampling can

be sometimes computationally expensive. In chapter 5, I will show an example in which

I applied both approaches to simulate human gut microbiome data.

1.3 Outline of this thesis

This dissertation contains four biomedical research projects in which we analyzed various

type of high dimensional data, including transcriptomics of immune cells, human plasma

metabolomics and human gut microbiome.

Our research examples started with a case-control study, which is a common study de-

sign in biomedical research. In chapter 2, we studied differential metabolic regulation in

peripheral blood mononuclear cells (PBMCs) of healthy volunteers challenged by Can-

dida albicans, Borrelia burgdorferi, lipopolysaccharide, and Mycobacterium tuberculosis in

vitro. The gene expression data were generated by microarray. The goal of this study

was to identify discriminating metabolic pathways and metabolites in human PBMCs

stimulated by various pathogenic agents. To this end, we performed gene set enrichment

analysis in the context of KEGG pathways and a human genome scale metabolic model.

A genome-scale metabolic model represents a curated knowledgebase of all established

metabolic reactions involved in human energy metabolism and macromolecule biosynthe-

sis (O’Brien, Monk, and Palsson 2015). Our analysis generated a list of pathways and

metabolites that can be used to discriminate PBMCs stimulated by Candida albicans,

Borrelia burgdorferi, lipopolysaccharide and Mycobacterium tuberculosis.

If case-control studies are the most classical biomedical research topic in the wet lab, the

cohort study might be the most common study in the dry lab. In chapter 3, we studied 119

females with high circulating cholesterol (also called hypercholesterolemia) in Lifelines, a

large cohort study and biobank that includes a total of 167,729 individuals from the north

of the Netherlands (Scholtens et al. 2015). The 119 females were selected if they were

apparently healthy and had high circulating cholesterol levels. The data generated in this

study were plasma metabolomics. Prior knowledge on hypercholesterolemia tells us that
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the high plasma LDL cholesterol is often caused by genetic mutations in the LDL recep-

tor (LDLR), apolipoprotein B (APOB), or proprotein convertase subtilisin/kexin type

9 (PCSK9 ). However, a substantial proportion of hypercholesterolemic subjects do not

have any mutations in these canonical genes. Based on prior knowledge, we assumed that

the cohort of 119 hypercholesterolemic females contained at least two subgroups. One of

the subgroups should contain subjects carrying mutations in the canonical genes. To un-

cover the subgroups, we performed hierarchical clustering based on plasma metabolomics

data, and identified four subtypes of hypercholesterolemia. Overlapping the clustering

outcomes with true genetic information, we identified that subjects with mutations in

LDLR or APOB preferentially clustered together, suggesting that patients with defects

in the LDLR pathway show a distinctive metabolomics profile. We also identified that

subjects without mutations in LDLR or APOB were characterized by two clusters, with

or without elevated triglyceride concentration. In conclusion, we show the potential of us-

ing metabolomics to segregate hypercholesterolemic subjects into different clusters, which

helps in targeting genetic analysis.

Chapters 1 and 2 showed examples that are completely driven by experimental data.

Prior knowledge was introduced either by using the biological databases (chapter 2) or

motivating the choice of clustering analysis (chapter 3). In chapter 4, we showed an ex-

ample in which we introduced prior knowledge by specifying model structure. In this

chapter, we were asking “why are subjects with African ethnic background more vulnera-

ble to develop type 2 diabetes than subjects with an European ethnic background?”. We

profiled metabolomics of 773 subjects with European, Ghanaian or African Surinamese

background. We then performed Bayesian lognormal regression analyses to assess associ-

ations between hemoglobin A1C (HbA1c) and plasma metabolites. In order to evaluate

the effect of ethnicity, an interaction term between ethnicity and HbA1c was introduced

into the lognormal regression model. Compared to European subjects, we found that

subjects with Ghanaian and African Surinamese background had reversed associations

between HbA1c and circulating acetoacetate and small HDLs. We hypothesized that

these metabolic abnormalities may link to impaired cholesterol efflux capacity of HDL

that may explain the excess type 2 diabetes in the subjects with African background.

Chapters 2-4 describe how data can be used to answer research questions as well as to

generate novel hypothesis. Running statistical models is an essential step in this process.

8

Chapter 1

Sometimes more than one method can be chosen for the purpose. So which methods

are to be preferred? Surprisingly, this is not a trivial question. In fact application of

particular methods seems to be based on the tradition of a particular research group,

availability of experience with particular software, or dependent on the outcomes of the

analysis. Statistical simulation is the preferred way to scientifically benchmark different

methods. In chapter 5, based on the microbiome data of HELiUS (HEalthy Life in an

Urban Setting), a large-scale prospective cohort study which included 25,000 inhabitants

(18-70 years) from the city of Amsterdam, the Netherlands (K. Stronks et al. 2013a),

we showed that depending on the choice of statistical methods, significant associations

between microbe and nutrition intake varied dramatically. Our subsequent statistical

simulations showed that no single analysis method was optimal. To achieve better control

of false discovery rate, the best we can do is to run multiple analyses and focus on the

significant findings identified by all methods.

A single type of omics profile can provide a useful glimpse, but cannot capture the entire

biological complexity of most human diseases (Karczewski and Snyder 2018). Multi-omics

integration is considered as the next step to achieve a holistic picture of human phenotypes

and disease. In chapter 6, we discussed three systems biology platforms for multi-omics

integration. These platforms include gene regulatory networks, protein-protein interaction

networks and genome-scale metabolic modeling.

In chapter 7, we discuss the results of the various studies included in this dissertation and

end with some future perspectives.
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Chapter 2

2.1 Abstract

Immunity and cellular metabolism are tightly interconnected but it is not clear whether

different pathogens elicit specific metabolic responses. To address this issue, we stud-

ied differential metabolic regulation in peripheral blood mononuclear cells (PBMCs) of

healthy volunteers challenged by Candida albicans, Borrelia burgdorferi, lipopolysaccha-

ride and Mycobacterium tuberculosis in vitro. By integrating gene expression data of

stimulated PBMCs of healthy individuals with the KEGG pathways, we identified both

common and pathogen-specific regulated pathways depending on the time of incubation.

At 4 hour of incubation, pathogenic agents inhibited expression of genes involved in

both the glycolysis and oxidative phosphorylation pathways. In contrast, at 24 hour of

incubation, particularly glycolysis was enhanced while genes involved in oxidative phos-

phorylation remained unaltered in the PBMCs. In general, differential gene expression

was less pronounced at 4 hour compared to 24 hour of incubation. KEGG pathway

analysis allowed differentiation between effects induced by Candida and bacterial stimuli.

Application of genome-scale metabolic model further generated a Candida-specific set of

103 reporter metabolites (e.g. desmosterol) that might serve as biomarkers discriminating

Candida-stimulated PBMCs from bacteria-stimulated PBMCs. Our analysis also identi-

fied a set of 49 metabolites that allowed discrimination between the effects of Borrelia

burgdorferi, lipopolysaccharide and Mycobacterium tuberculosis. We conclude that anal-

ysis of pathogen-induced effects on PBMCs by a combination of KEGG pathways and

genome-scale metabolic model provides deep insight in the metabolic changes coupled to

host defense.

Keywords: innate immunity, metabolism, peripheral blood mononuclear cell, Candida

albicans, lipopolysaccharides, Mycobacterium tuberculosis, Borrelia burgdorferi, genome

scale metabolic model

2.2 Introduction

As the first line of host defense, the innate immune system can immediately sense and com-

bat foreign pathogens (McGettrick and O’Neill 2013; Mills and O’Neill 2014). Cells of the

innate immune system, such as monocytes and neutrophils recognize pathogens via pat-
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tern recognition receptors (PRRs) (McGettrick and O’Neill 2013; Mills and O’Neill 2014;

Cheng, Joosten, and Netea 2014). These PRRs, such as Toll-like receptors, NOD-like

receptors, C-type lectin receptors, and RigI-helicases, are found on the plasma membrane

of innate immune cells (McGettrick and O’Neill 2013; Mills and O’Neill 2014; Cheng,

Joosten, and Netea 2014). Activation of these PRRs leads to profound changes in gene

expression and subsequent production of inflammatory mediators such as cytokines and

chemokines (McGettrick and O’Neill 2013; Cheng, Joosten, and Netea 2014; Pearce and

Pearce 2013). Once innate immune cells are activated, they can trigger responses of the

adaptive immune system (e.g. activate T lymphocytes) (Mills and O’Neill 2014; Pearce

et al. 2013).

Although often not realized, the responses of immune cells against pathogens are tightly

linked to endogenous changes of metabolism (Mills and O’Neill 2014). It is known that

upon activation, immune cells (e.g. monocytes and T lymphocytes) dramatically shift

from oxidative phosphorylation to aerobic glycolysis, in order to meet the rapidly in-

creasing energy demand by processes such as cytokine production and cell proliferation

(McGettrick and O’Neill 2013; Cheng, Joosten, and Netea 2014; Pearce and Pearce 2013;

Pearce et al. 2013). In addition, immune cells also increase the activity of the pentose

phosphate pathway to provide sufficient nucleotide precursors for accelerated cell pro-

liferation (e.g. T lymphocytes) (Mills and O’Neill 2014; Pearce et al. 2013). Also, in

lipopolysaccharide (LPS) challenged macrophages, succinate and citrate accumulate to

regulate production of IL-1 β (Tannahill et al. 2013). Thus far, however, metabolism

of activated immune cells has been mainly investigated after challenges with LPS which

only activates Toll-like receptor 4 (McGettrick and O’Neill 2013; Tannahill et al. 2013;

Bordbar et al. 2012). A recent study on the modulation of glycolysis and oxidative phos-

phorylation in immune cells stimulated with LPS and other TLR stimuli supported the

concept that different stimuli may induce various metabolic programs in immune cells

(Lachmandas et al. 2016).

To our knowledge, a comprehensive understanding of the metabolism of immune cells

after stimulation of various PRRs (e.g. TLRs, NOD-like receptors - NLRs, C-type lectin

receptors - CLRs, and RigI-helicases) has not yet been reported. In the current study,

we interrogate which metabolic pathways and metabolites are altered upon activation

by various pathogens. To this end, we systematically measured gene expression profiles
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in human PBMCs (peripheral blood mononuclear cells) stimulated by heat inactivated

Candida albicans (Candida), Borrelia burgdorferi (Borrelia), Escherichia coli-derived LPS

and Mycobacterium tuberculosis (MTB). These four are typical stimuli of innate immune

pathways. LPS is the prototypical stimulus recognized by TLR 4 (Ngkelo et al. 2012).

Candida is recognized by TLRs and CLRs, and causes mucosal and systematic infection in

immunocompromised individuals (Mayer, Wilson, and Hube 2013). Borrelia is recognized

by TLRs, NLRs, CLRs and RigI-helicases and causes Lyme disease (Oosting et al. 2016).

MTB is recognized by TLRs, NLRs, and CLRs and causes tuberculosis (Kleinnijenhuis

et al. 2011).

To identify gene expression changes involved in metabolism, we ran Kyoto Encyclopedia

of Genes and Genomes (KEGG) based metabolic pathway analysis and genome-scale

metabolic model (GEM) based reporter metabolite analysis, respectively. KEGG pathway

analyses are widely and successfully used in biomedical research over the last decade as a

routine step of interpreting gene expression data (Kanehisa et al. 2012). As an alternative,

genome scale metabolic models (GEMs) are increasingly used to interpret large-scale

gene expression data sets. GEMs are represented by networks in which the nodes are

metabolites and the connecting edges are metabolic reactions (Mardinoglu, Gatto, and

Nielsen 2013; Bordbar et al. 2014). Generic human GEMs, such as Recon2 (Thiele

et al. 2013) and HMR2 (Mardinoglu et al. 2014) represent our current knowledge of all

established metabolic reactions involved in human energy metabolism and macromolecule

biosynthesis. GEMs have mostly been used to identify key enzymes and metabolites that

may serve as potential biomarkers and drug targets for non-alcoholic fatty liver disease,

obesity, Alzheimer’s disease, and cancer (Mardinoglu et al. 2014; Mardinoglu et al. 2013;

Lewis et al. 2010; Yizhak et al. 2014; Agren et al. 2014). Our analysis showed that KEGG

pathway analysis allowed differentiation between effects induced by Candida and bacterial

stimuli, and application of genome-scale metabolic model further generated a Candida-

specific set of 103 reporter metabolites that might serve as biomarkers discriminating

Candida-stimulated PBMCs from bacteria-stimulated PBMCs.
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2.3 Material and Methods

2.3.1 Study populations

As described in the previous study (Smeekens et al. 2013), blood was collected after

written informed consent from healthy volunteers. The study was approved by the In-

stitutional Review Boards at Radboud University Nijmegen Medical Centre (RUNMC,

Nijmegen, The Netherlands). The study was performed in accordance with the declara-

tion of Helsinki. After informed consent was given, blood was collected by venipuncture

into 10 ml EDTA syringes (Monoject, s-Hertogenbosch, The Netherlands).

2.3.2 Gene expression microarray data of stimulated PBMCs

As reported in in the previous study (Smeekens et al. 2013), we isolated PBMCs from

healthy subjects by density centrifugation and stimulated them with heat-killed C. albi-

cans (UC 820) (1 × 106 per ml), heat-killed B. burgdorferi, E. coli-derived LPS (10 ng

per ml) or heat-killed MTB (1 µg per ml) respectively for 4 or 24 hours. PBMCs that

were cultured in only RPMI medium were used as controls. Illumina Human HT-12 Ex-

pression BeadChips were used to measure gene expression levels at 4 and 24 hour. Details

about the experiment and processed data are available in GSE42606 archived by Gene

Expression Omnibus.

2.3.3 Identification of differentially expressed genes

The raw gene expression data were preprocessed by using the lumi R package with default

settings, which includes background correction, variance stabilizing transformation and

quantile normalization (Lin et al. 2008). Principal component analysis was performed

with the full gene expression data set by using the function prcomp in R. Valid paired sam-

ples were selected to perform differential expression analysis at 4 and 24 hour separately.

At 4 hour, the size of paired samples for each stimulation were 19 (Candida), 25 (Borre-

lia), 19 (LPS), and 18 (MTB). At 24 hour, the size of paired samples were 29 (Candida),

29 (Borrelia), 20 (LPS), and 30 (MTB). Illumina probe IDs were mapped to Ensembl

gene IDs (Ensembl version 73) or Entrez gene IDs by using the lumiHumanIDMapping
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and biomaRt R packages (Du et al. 2016; Durinck et al. 2009). To exclude the influence

of ambiguous probes (a probe ID corresponding to two or more gene IDs), only the probes

that have unique gene IDs were used for differential gene expression analysis. Moreover,

the hidden batch effect originated from microarray analysis were adjusted by applying

surrogate variable analysis which is built in the sva R package (Leek and Storey 2007;

Leek and Storey 2008; Leek et al. 2012). Gene expression levels of stimulated PBMCs

were then compared to controls by using linear models and empirical Bayes statistics

(Smyth 2004). Both methods were implemented in the limma R package (Ritchie et al.

2015). Significance inference of differential expression was done with moderated t test

(Ritchie et al. 2015) and the Benjamini-Hochberg procedure (Benjamini and Hochberg

1995) was performed to calculate False Discovery Rate (FDR). In cases when a gene has

multiple probes on the chip, the probe-level statistical test results were aggregated into a

single gene-level statistic based on the smallest FDR.

2.3.4 Gene set enrichment analysis

In this study, the KEGG pathways and the generic human genome-scale metabolic model,

HMR2 were used to analyze the gene expression data of human PBMCs stimulated by

different pathogenic agents for 4 or 24 hours. The KEGG pathway information was

downloaded from Molecular Signature Database v5.1 (Subramanian et al. 2005). There

are in total 186 pathways and the related gene identifiers are Entrez gene IDs. Here

we focused on 68 metabolic pathways since this study aims to identify metabolic signa-

tures of stimulated human PBMCs. The HMR2 (SBML format) was downloaded from

Human Metabolic Atlas (Pornputtapong, Nookaew, and Nielsen 2015). HMR2 contains

3,765 genes, 6,007 metabolites and 8,181 reactions (Mardinoglu et al. 2014). Essentially,

KEGG pathway analysis and reporter metabolite analysis are two gene set enrichment

analysis methods. The difference between them is that KEGG pathway analysis uses

protein constituted pathways to group genes, whereas reporter metabolite analysis uses

metabolites to define gene sets. Since every metabolite serves as a gene set in reporter

metabolite analysis, the information of which genes belonged to which metabolite was

attained through using the piano R package (Väremo, Nielsen, and Nookaew 2013a).

The gene identifiers in HMR2 were annotated by Ensembl gene IDs (version 73). When
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KEGG pathways were used as gene sets, we computed average t statistics of pathways as

the summary statistics:

Zpathway =
∑Npathway

i=1 ti√
Npathway

(2.1)

This simple approach was first introduced by (Irizarry et al. 2009). Zpathway is the

summary statistic of a pathway. Npathway is the number of genes in the pathway and ti

is the modified t statistics of gene i in the pathway. When metabolites of HMR2 were

translated to gene sets, the original reporter metabolite algorithm (Patil and Nielsen 2005)

was adapted to calculate summary statistics for metabolites. (Patil and Nielsen 2005)

defined reporter metabolites of which the expression levels were significantly changed. In

the original reporter metabolite algorithm (Patil and Nielsen 2005), the gene-level P values

were first converted to Z scores by using the inverse normal cumulative distribution. Then

an aggregated Z score (gene set summary statistic) was calculated for each metabolite from

the gene-level Z scores of its associated genes. Here we calculated summary statistics for

metabolites directly with the gene-level modified t statistics:

Zmetabolite =
∑Nmetabolite

i=1 ti√
Nmetabolite

(2.2)

Zmetabolite is the summary statistics of a metabolite, and ti is the t statistics of gene i

associated with the metabolite. Nmetabolite is the number of genes associated with the

metabolite.

Regarding statistical inference, we calculated a P value for each gene set based on its

background distribution of summary statistics. However, unlike the original reporter

metabolite algorithm (Patil and Nielsen 2005), which derived background distributions by

randomly sampling genes from the GEM, we applied sample permutations to derive such

background distributions. Comparing gene/sample permutations is out of the scope of this

manuscript. (Goeman and Bühlmann 2007) extensively discussed this topic previously.

The sample labels (stimulated or control) were randomly shuffled within each pair of

samples (PBMCs derived from the same donor). As the next step, we repeated the same

procedures as described previously to recalculate the gene-level as well as the summary

statistics. In total, we performed such permutations 10,000 times for each stimulation
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case. The resulted permutation Z scores were used to represent the enrichment:

Enrichment score = Z − mean(Znull)
sd(Znull)

(2.3)

Z is the summary statistic of a gene set (either Zpathway or Zmetabolite). Znull refer to the

summary statistics of that gene set based on the sample permutations.

Permutation P values were then calculated by using the function permp in the statmod

R package. The algorithm underlying the permp function was developed by Phipson and

Smyth (Phipson and Smyth 2010). Since we tested a number of pathways or metabo-

lites simultaneously, we performed the Benjamini-Hochberg procedure (Benjamini and

Hochberg 1995) to derive the FDR. When a metabolite had a FDR value below 0.05, we

defined that particular metabolite as a reporter metabolite.

2.3.5 Identification of discriminating metabolic pathways and

reporter metabolites

We were interested in metabolic pathways and metabolites that can discriminate Can-

dida-stimulated PBMCs from Borrelia, LPS and MTB-stimulated PBMCs. We were also

interested in metabolic pathways and metabolites that can discriminate Borrelia, LPS

and MTB-stimulated PBMCs. To this end, we first compared gene set enrichment re-

sults across PBMCs stimulated by Candida, Borrelia, LPS and MTB after treatment at

4 and 24 hour. We compared the 4-hour gene expression profile of PBMCs stimulated

by Candida, Borrelia, LPS and MTB to the paired RPMI-treated PBMCs. We did the

same regarding the 24-hour gene expression profile. When a pathway or a metabolite had

a FDR value below 0.05 and a positive enrichment score, we labeled its transcriptional

regulation as “Up”. When a pathway or a metabolite had a FDR value below 0.05 and

a negative enrichment score, we marked its transcriptional regulation as “Down”. The

remaining pathways and metabolites were then denoted as “N.S.”, meaning no significant

transcriptional changes. In the following analysis, comparisons of pathways or metabo-

lites in PBMCs stimulated by various pathogens were done based on their “Up”, “Down”,

and “N.S.” patterns. The euclidean distance was calculated to quantify similarity between

two metabolic pathway gene expression patterns. The ggdendro R package was used to
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produce the dendrogram and the cmdscale function of the stat R package was used to

produce the multidimensional scaling plot. To identify metabolic pathways and metabo-

lites that were differentially regulated in a specific bacterial stimulation at both 4 and 24

hour, we also compared gene set enrichment results across PBMCs stimulated by Borrelia,

LPS and MTB. Considering difficulty of interpretation, HMR2 subsystems (equivalent to

pathways), including “Isolated”, “Artificial reactions”, “Exchange reactions”, “Pool reac-

tions”, “Miscellaneous”, “Other amino acid”, and “Blood group biosynthesis” were not

included in the analysis. To simplify data visualization, all the transport subsystems were

not included as well. If a metabolite could be mapped to multiple subsystems, all the

subsystems were included in the final results.

To evaluate whether pathogen-specific metabolism corresponded to a specific immune re-

sponse, we focused on innate immunity genes provided by the database innateDB (Breuer

et al. 2013). According to the innateDB, there are 1,057 innate immune genes in human.

Our microarray platform measured 850 of these innate immune genes. Similar to the

procedures in pathway analysis, when an innate immune gene had a FDR value below

0.05 and a positive t statistic, we labeled its transcriptional regulation as “Up”. When an

innate immune gene had a FDR value below 0.05 and a negative t statistic, we marked

its transcriptional regulation as “Down”. The remaining innate immune genes were then

denoted as “N.S.”, meaning no significant transcriptional changes. Again we performed

the multidimensional scaling analysis.

2.4 Results

2.4.1 Transcriptional regulation in metabolic pathways of hu-

man PBMCs stimulated by various pathogenic challenges

Depending on the duration and type of pathogenic stimulant, gene expression patterns

of human PBMCs varied considerably. Along the axis of the first principal component,

a clear separation of 4 and 24 hour gene expression patterns was observed (Figure 2.1).

To identify differentially regulated metabolic pathways in human PBMCs stimulated by

heat-killed Candida, heat-killed Borrelia, LPS and heat-killed MTB, we ran gene set

enrichment analysis with KEGG metabolic pathways. In general, we observed more down
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case. The resulted permutation Z scores were used to represent the enrichment:

Enrichment score = Z − mean(Znull)
sd(Znull)

(2.3)

Z is the summary statistic of a gene set (either Zpathway or Zmetabolite). Znull refer to the

summary statistics of that gene set based on the sample permutations.
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and MTB-stimulated PBMCs. To this end, we first compared gene set enrichment re-

sults across PBMCs stimulated by Candida, Borrelia, LPS and MTB after treatment at

4 and 24 hour. We compared the 4-hour gene expression profile of PBMCs stimulated

by Candida, Borrelia, LPS and MTB to the paired RPMI-treated PBMCs. We did the

same regarding the 24-hour gene expression profile. When a pathway or a metabolite had

a FDR value below 0.05 and a positive enrichment score, we labeled its transcriptional

regulation as “Up”. When a pathway or a metabolite had a FDR value below 0.05 and

a negative enrichment score, we marked its transcriptional regulation as “Down”. The

remaining pathways and metabolites were then denoted as “N.S.”, meaning no significant

transcriptional changes. In the following analysis, comparisons of pathways or metabo-

lites in PBMCs stimulated by various pathogens were done based on their “Up”, “Down”,

and “N.S.” patterns. The euclidean distance was calculated to quantify similarity between

two metabolic pathway gene expression patterns. The ggdendro R package was used to
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hour, we also compared gene set enrichment results across PBMCs stimulated by Borrelia,

LPS and MTB. Considering difficulty of interpretation, HMR2 subsystems (equivalent to

pathways), including “Isolated”, “Artificial reactions”, “Exchange reactions”, “Pool reac-

tions”, “Miscellaneous”, “Other amino acid”, and “Blood group biosynthesis” were not

included in the analysis. To simplify data visualization, all the transport subsystems were

not included as well. If a metabolite could be mapped to multiple subsystems, all the

subsystems were included in the final results.

To evaluate whether pathogen-specific metabolism corresponded to a specific immune re-

sponse, we focused on innate immunity genes provided by the database innateDB (Breuer

et al. 2013). According to the innateDB, there are 1,057 innate immune genes in human.

Our microarray platform measured 850 of these innate immune genes. Similar to the

procedures in pathway analysis, when an innate immune gene had a FDR value below

0.05 and a positive t statistic, we labeled its transcriptional regulation as “Up”. When an

innate immune gene had a FDR value below 0.05 and a negative t statistic, we marked

its transcriptional regulation as “Down”. The remaining innate immune genes were then

denoted as “N.S.”, meaning no significant transcriptional changes. Again we performed

the multidimensional scaling analysis.

2.4 Results

2.4.1 Transcriptional regulation in metabolic pathways of hu-

man PBMCs stimulated by various pathogenic challenges

Depending on the duration and type of pathogenic stimulant, gene expression patterns

of human PBMCs varied considerably. Along the axis of the first principal component,

a clear separation of 4 and 24 hour gene expression patterns was observed (Figure 2.1).

To identify differentially regulated metabolic pathways in human PBMCs stimulated by

heat-killed Candida, heat-killed Borrelia, LPS and heat-killed MTB, we ran gene set

enrichment analysis with KEGG metabolic pathways. In general, we observed more down
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Figure 2.1: Principal component analysis of gene expression of human PBMCs stimulated
by Candida, Borrelia, LPS and MTB for 4 and 24 hour.

than up-regulated metabolic pathways in stimulated PBMCs at 4 hour. However, this was

reversed at 24 hour (Figure 2.2). Hierarchical clustering analysis revealed that metabolic

pathway metabolic pathway regulations were very different between 4 and 24 h irrespective

of the stimuli used (Figure 2.3). Multidimensional scaling analysis confirmed the result

of hierarchical clustering analysis. Furthermore, we observed that the clustering result

based on metabolic pathways was consistent with the clustering outcome based on innate

immunity genes at 24 hour after stimulation (Figure 2.4).

2.4.2 Transcriptional regulation of energy metabolism in human

PBMCs stimulated by various pathogenic challenges

At 4 hour after stimulation, glycolysis pathway was down-regulated in Candida (Enrich-

mment score = -5.88, FDR = 2.41 × 10−4), Borrelia (Enrichment score = -5.96, FDR =

3.09 × 10−4), LPS (Enrichment score = -5.83, FDR = 3.21 × 10−4) and MTB-stimulated

(Enrichment score = -4.17. FDR = 0.0013) PBMCs. Oxidative phosphorylation path-

way was also down-regulated in Candida (Enrichment score = -4.90, FDR = 2.41×10−4),
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Figure 2.2: Distribution of significantly up-regulated (red), down-regulated (blue), and
not significantly changed (grey) pathways in 68 KEGG metabolic pathways for Candida,
Borrelia, LPS and MTB-stimulated human PBMCs at 4 and 24 hour. Any metabolic
pathway is significantly changed if its FDR < 0.05.
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Figure 2.1: Principal component analysis of gene expression of human PBMCs stimulated
by Candida, Borrelia, LPS and MTB for 4 and 24 hour.
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based on metabolic pathways was consistent with the clustering outcome based on innate
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Figure 2.2: Distribution of significantly up-regulated (red), down-regulated (blue), and
not significantly changed (grey) pathways in 68 KEGG metabolic pathways for Candida,
Borrelia, LPS and MTB-stimulated human PBMCs at 4 and 24 hour. Any metabolic
pathway is significantly changed if its FDR < 0.05.
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Figure 2.3: Hierarchical clustering gene expression pattern in KEGG metabolic pathways
derived from human PBMCs stimulated by Candida, Borrelia, LPS and MTB at 4 and
24 hour. Euclidean distance is calculated to quantify similarity between two metabolic
pathway gene expression pattern.
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Figure 2.4: Multidimensional scaling of differential expression patterns of human PBMCs
stimulated by Candida, Borrelia, LPS and MTB at 4 and 24 hour. Differential expres-
sion patterns were derived from genes involved in KEGG metabolic pathways and innate
immunity. Euclidean distance is calculated to quantify similarity between two metabolic
pathway gene expression pattern.
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Figure 2.3: Hierarchical clustering gene expression pattern in KEGG metabolic pathways
derived from human PBMCs stimulated by Candida, Borrelia, LPS and MTB at 4 and
24 hour. Euclidean distance is calculated to quantify similarity between two metabolic
pathway gene expression pattern.
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Figure 2.4: Multidimensional scaling of differential expression patterns of human PBMCs
stimulated by Candida, Borrelia, LPS and MTB at 4 and 24 hour. Differential expres-
sion patterns were derived from genes involved in KEGG metabolic pathways and innate
immunity. Euclidean distance is calculated to quantify similarity between two metabolic
pathway gene expression pattern.
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Borrelia (Enrichment score = -4.60, FDR = 3.09×10−4), LPS (Enrichment score = -5.21,

FDR = 3.21 × 10−4) and MTB-stimulated (Enrichment score = -3.82. FDR = 0.0013)

PBMCs. At 24 hour after stimulation, glycolysis pathway was up-regulated in Candida

(Enrichment score = 4.33, FDR = 2.12 × 10−4), Borrelia (Enrichment score = 7.52, FDR

= 3.09 × 10−4), LPS ( Enrichment score = 2.99, FDR = 0.0019) and MTB-stimulated

(Enrichment score = 7.51, FDR = 4.25 × 10−4) PBMCs. However, oxidative phospho-

rylation was not significantly changed in PBMCs stimulated by Candida, Borrelia, LPS

and MTB.

2.4.3 Discriminating metabolic pathways in human PBMCs

stimulated by various pathogenic challenges

We focused on metabolic pathways that had the same transcriptional patterns in PBMCs

stimulated by Borrelia, LPS and MTB, but differed from Candida-stimulated PBMCs

at both 4 and 24 hour. The detail statistics for pathways were provided in the Supple-

mentary Table 1. The pentose phosphate pathway was down-regulated in Borrelia, LPS

and MTB-stimulated PBMCs, but not in Candida-stimulated PBMCs at 4 hour (Figure

2.5). However, at 24 hour, the pentose phosphate pathway was up-regulated in Candida-

stimulated PBMCs, but had no significant change in Borrelia, LPS and MTB-stimulated

PBMCs (Figure 2.5). Riboflavin, beta alanine and histidine metabolism were differen-

tially regulated in Candida-stimulated PBMCs, but not significantly changed in Borrelia,

LPS and MTB-stimulated PBMCs at both 4 and 24 hour (Figure 2.5). Aminoacyl tRNA

biosynthesis was up-regulated in Borrelia, LPS and MTB-stimulated PBMCs but not sig-

nificantly changed in Candida-stimulated PBMCs at 4 hour. However, this pathway was

up-regulated in Candida-stimulated PBMCs but down-regulated in Borrelia, LPS and

MTB-stimulated PBMCs at 24 hour (Figure 2.5).

Regarding the metabolic pathways that discriminated Borrelia, LPS and MTB-stimulated

PBMCs, we observed that glycosylphosphatidylinositol GPI anchor biosynthesis was up-

regulated in LPS-stimulated PBMCs but did not change in Borrelia and MTB-stimulated

PBMCs at 4 hour. However, at 24 hour, this pathway was down-regulated in Borrelia

and MTB-stimulated PBMCs whereas it remained unchanged in LPS-stimulated PBMCs

(Figure 2.6). Similarly, fatty acid metabolism and glycerolipid metabolism were down-
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Figure 2.5: KEGG metabolic pathways that discriminated Candida-stimulated PBMCs
from Borrelia, LPS and MTB-stimulated human PBMCs. Blue refers to significantly
down regulation. Red refers to significantly up regulation. Grey means not significantly
changed. A pathway is significantly changed if its FDR < 0.05.
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rylation was not significantly changed in PBMCs stimulated by Candida, Borrelia, LPS
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2.4.3 Discriminating metabolic pathways in human PBMCs

stimulated by various pathogenic challenges

We focused on metabolic pathways that had the same transcriptional patterns in PBMCs

stimulated by Borrelia, LPS and MTB, but differed from Candida-stimulated PBMCs

at both 4 and 24 hour. The detail statistics for pathways were provided in the Supple-

mentary Table 1. The pentose phosphate pathway was down-regulated in Borrelia, LPS

and MTB-stimulated PBMCs, but not in Candida-stimulated PBMCs at 4 hour (Figure

2.5). However, at 24 hour, the pentose phosphate pathway was up-regulated in Candida-

stimulated PBMCs, but had no significant change in Borrelia, LPS and MTB-stimulated

PBMCs (Figure 2.5). Riboflavin, beta alanine and histidine metabolism were differen-

tially regulated in Candida-stimulated PBMCs, but not significantly changed in Borrelia,

LPS and MTB-stimulated PBMCs at both 4 and 24 hour (Figure 2.5). Aminoacyl tRNA

biosynthesis was up-regulated in Borrelia, LPS and MTB-stimulated PBMCs but not sig-

nificantly changed in Candida-stimulated PBMCs at 4 hour. However, this pathway was

up-regulated in Candida-stimulated PBMCs but down-regulated in Borrelia, LPS and

MTB-stimulated PBMCs at 24 hour (Figure 2.5).

Regarding the metabolic pathways that discriminated Borrelia, LPS and MTB-stimulated

PBMCs, we observed that glycosylphosphatidylinositol GPI anchor biosynthesis was up-

regulated in LPS-stimulated PBMCs but did not change in Borrelia and MTB-stimulated

PBMCs at 4 hour. However, at 24 hour, this pathway was down-regulated in Borrelia

and MTB-stimulated PBMCs whereas it remained unchanged in LPS-stimulated PBMCs

(Figure 2.6). Similarly, fatty acid metabolism and glycerolipid metabolism were down-
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Figure 2.5: KEGG metabolic pathways that discriminated Candida-stimulated PBMCs
from Borrelia, LPS and MTB-stimulated human PBMCs. Blue refers to significantly
down regulation. Red refers to significantly up regulation. Grey means not significantly
changed. A pathway is significantly changed if its FDR < 0.05.
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Figure 2.6: KEGG metabolic pathways that discriminated between Borrelia, LPS and
MTB-stimulated human PBMCs. Blue refers to significantly down regulation. Red refers
to significantly up regulation. Grey means not significantly changed. A pathway is sig-
nificantly changed if its FDR < 0.05.

regulated in LPS-stimulated PBMCs but not in Borrelia and MTB-stimulated PBMCs at

4 hour. This pathway was up-regulated in Borrelia and MTB-stimulated PBMCs but did

not change in LPS-stimulated PBMCs at 24 hour (Figure 2.6). Tryptophan metabolism

was differentially regulated in MTB-stimulated PBMCs, but not significantly changed in

Borrelia and LPS-stimulated PBMCs at both 4 and 24 hour (Figure 2.6). We did not

identify a metabolic pathway that can discriminate Borrelia-stimulated PBMCs from LPS

and MTB-stimulated PBMCs.

2.4.4 Discriminating metabolites in human PBMCs stimulated

by various pathogenic challenges

In an attempt to identify metabolites that discriminated PBMCs with various stimuli, we

ran reporter metabolite analysis with the human genome-scale metabolic model, HMR2.

A total number of 4,548 metabolites were involved in the reporter metabolite analysis. We
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Figure 2.7: Distribution of significantly up-regulated (red), down-regulated (blue), and
not significantly changed (grey) reporter metabolites for Candida, Borrelia, LPS and
MTB-stimulated human PBMCs at 4 and 24. When a reporter metabolite has FDR <
0.05, it is significant.

observed more down-regulated than up-regulated reporter metabolites in the stimulated

PBMCs at 4 hour. However, this pattern was reversed at 24 hour (Figure 2.7). In a next

step, we focused on reporter metabolites that were differentially regulated in Candida-

stimulated PBMCs but not in PBMCs with bacterial stimuli at both 4 and 24 hour.

Among the identified reporter metabolites at 4 and 24 hour, 103 of them were found

specific for Candida-stimulated PBMCs. These 103 Candida-specific reporter metabolites

participated in 45 pathways including nucleotide metabolism (15 reporter metabolites),

and fatty acid biosynthesis (10 reporter metabolites) (Figure 2.8). We also focused on

reporter metabolites that can discriminate between Borrelia, LPS and MTB-stimulated

PBMCs at both 4 and 24 hour. We identified 32, 7 and 10 reporter metabolites that

were specific for Borrelia, LPS and MTB-stimulated PBMCs, respectively (Figure 2.9).

Statistics of all the pathogen-specific reporter metabolites were provided in Supplementary

Table 2.
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Figure 2.6: KEGG metabolic pathways that discriminated between Borrelia, LPS and
MTB-stimulated human PBMCs. Blue refers to significantly down regulation. Red refers
to significantly up regulation. Grey means not significantly changed. A pathway is sig-
nificantly changed if its FDR < 0.05.

regulated in LPS-stimulated PBMCs but not in Borrelia and MTB-stimulated PBMCs at

4 hour. This pathway was up-regulated in Borrelia and MTB-stimulated PBMCs but did

not change in LPS-stimulated PBMCs at 24 hour (Figure 2.6). Tryptophan metabolism

was differentially regulated in MTB-stimulated PBMCs, but not significantly changed in

Borrelia and LPS-stimulated PBMCs at both 4 and 24 hour (Figure 2.6). We did not

identify a metabolic pathway that can discriminate Borrelia-stimulated PBMCs from LPS

and MTB-stimulated PBMCs.

2.4.4 Discriminating metabolites in human PBMCs stimulated

by various pathogenic challenges

In an attempt to identify metabolites that discriminated PBMCs with various stimuli, we

ran reporter metabolite analysis with the human genome-scale metabolic model, HMR2.

A total number of 4,548 metabolites were involved in the reporter metabolite analysis. We
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Figure 2.7: Distribution of significantly up-regulated (red), down-regulated (blue), and
not significantly changed (grey) reporter metabolites for Candida, Borrelia, LPS and
MTB-stimulated human PBMCs at 4 and 24. When a reporter metabolite has FDR <
0.05, it is significant.

observed more down-regulated than up-regulated reporter metabolites in the stimulated

PBMCs at 4 hour. However, this pattern was reversed at 24 hour (Figure 2.7). In a next

step, we focused on reporter metabolites that were differentially regulated in Candida-

stimulated PBMCs but not in PBMCs with bacterial stimuli at both 4 and 24 hour.

Among the identified reporter metabolites at 4 and 24 hour, 103 of them were found

specific for Candida-stimulated PBMCs. These 103 Candida-specific reporter metabolites

participated in 45 pathways including nucleotide metabolism (15 reporter metabolites),

and fatty acid biosynthesis (10 reporter metabolites) (Figure 2.8). We also focused on

reporter metabolites that can discriminate between Borrelia, LPS and MTB-stimulated

PBMCs at both 4 and 24 hour. We identified 32, 7 and 10 reporter metabolites that

were specific for Borrelia, LPS and MTB-stimulated PBMCs, respectively (Figure 2.9).

Statistics of all the pathogen-specific reporter metabolites were provided in Supplementary

Table 2.
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Figure 2.8: Reporter metabolites that discriminate Candida-stimulated PBMCs from
Borrelia, LPS and MTB-stimulated PBMCs at 4 and 24 hour. These reporter metabolites
were grouped based on their associated subsystems in HMR2. Blue denotes significant
down-regulation. Red denotes significant up-regulation.
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Figure 2.9: Reporter metabolites that discriminated Borrelia, LPS and MTB-stimulated
PBMCs at 4 and 24 hour. Associated subsystems of these reporter metabolites are iden-
tified in HMR2.
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Figure 2.8: Reporter metabolites that discriminate Candida-stimulated PBMCs from
Borrelia, LPS and MTB-stimulated PBMCs at 4 and 24 hour. These reporter metabolites
were grouped based on their associated subsystems in HMR2. Blue denotes significant
down-regulation. Red denotes significant up-regulation.

28

Chapter 2

Figure 2.9: Reporter metabolites that discriminated Borrelia, LPS and MTB-stimulated
PBMCs at 4 and 24 hour. Associated subsystems of these reporter metabolites are iden-
tified in HMR2.
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2.5 Discussion

The main finding of our study is that characterization of pathogen-dependent metabolic

reprogramming in immune cells treated by various stimuli of innate immune pathway. For

this purpose, we performed gene set enrichment analysis on gene expression data of human

PBMCs treated with heat-killed Candida, heat-killed Borrelia, E. coli-derived LPS and

heat-killed MTB. Either KEGG metabolic pathways or metabolites in human genome-

scale metabolic models were used as gene sets. Our particular experimental setup with

one fungal pathogen (Candida) and three bacterial inflammatory stimuli (Borrelia, LPS

and MTB) allowed us to identify metabolic signatures of Candida-induced host response,

but also host response differences between bacterial challenges.

A very strong temporal effect on the expression of metabolic genes was observed. This

observation is in line with the concept that stimulation period is a critical factor in immune

response (Nagy and Haschemi 2015; Hotamisligil 2017). At 4 hour after stimulation, both

oxidative phosphorylation and glycolysis were down-regulated. At 24 hour, however,

gene expression of glycolysis showed up-regulation, whereas gene expression of oxidative

phosphorylation remained unaltered in PBMCs. The observation of down-regulation of

glycolysis genes after 4 hour of stimulation is novel, and its impact for cell function

warrants future studies. However, the observation at 24 hour is consistent with literature

data showing that activated immune cells shift towards glycolysis and away from oxidative

phosphorylation (McGettrick and O’Neill 2013; Cheng, Joosten, and Netea 2014; Pearce

and Pearce 2013; Pearce et al. 2013).

For the purpose of identifying pathogen-dependent metabolic reprogramming in immune

cells, we focused on metabolic pathways and metabolites that allow discrimination be-

tween various stimuli at both 4 and 24 hour.

2.5.1 Five metabolic pathways can discriminate Candida-

stimulated PBMCs from Borrelia, LPS and MTB-

stimulated PBMCs

Five pathways, i.e. the pentose phosphate pathway, histidine metabolism, beta alanine

metabolism, riboflavin metabolism and aminoacyl tRNA biosynthesis, were identified
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to discriminate Candida-stimulated PBMCs from Borrelia, LPS and MTB-stimulated

PBMCs. Interestingly, we observed that the pentose phosphate pathway was differen-

tially regulated in PBMCs stimulated by Borrelia, LPS and MTB but not in Candida-

stimulated PBMCs at 4 hour. In contrast, at 24 hour, this pathway was differentially

regulated only in Candida-stimulated PBMCs but not significantly changed in Borrelia,

LPS and MTB-stimulated PBMCs. The pentose phosphate pathway was reported to sup-

port cytokine secretion in dendritic cells (Everts et al. 2014). Since cytokine production

of human PBMCs depends on the type of stimulus (Henderson and Rippin 1995), our

observation of differential regulation in the pentose phosphate pathway likely indicates a

specific function for Candida stimulated cytokine production. Indeed, our findings cor-

roborate those of a recent study in which Candida-stimulated PBMCs were identified to

have different cytokine profiles from bacteria-stimulated PBMCs (Li et al. 2016). On

the other hand, little is known about the specific roles of the other four Candida-specific

metabolic pathways in regulation of the immune response, and further investigation is

warranted to validate these novel findings.

2.5.2 Four metabolic pathways can differentiate between Bor-

relia, LPS and MTB-stimulated PBMCs

We further noted that three pathways (glycosylphosphatidylinositol GPI anchor biosyn-

thesis, glycerolipid metabolism, fatty acid metabolism) discriminated LPS-stimulated

PBMCs from Borrelia and MTB-stimulated PBMCs. Meanwhile, tryptophan metabolism

differentiates MTB-stimulated PBMCs from Borrelia and LPS-stimulated PBMCs. We

failed to identify pathways that allow discrimination Borrelia-stimulated PBMCs from

LPS and MTB-stimulated PBMCs. Activation of tryptophan metabolism was previously

reported in human marcophages in vitro upon MTB stimulation (Blumenthal et al. 2012),

and a recent study (Laarhoven et al. 2018) has identified a crucial role of tryptophan

metabolism for the pathophysiology of tuberculous meningitis. In addition, enhancement

of tryptophan catabolism is an IFN (interferon) γ-induced immune response in many

different host cell types, and has been postulated to reduce the supply of tryptophan

to bacterial pathogens (Moffett and Namboodiri 2003; O’Neill, Kishton, and Rathmell

2016). A reduced supply of tryptophan is linked to suppress T cell proliferation (Munn
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tween various stimuli at both 4 and 24 hour.

2.5.1 Five metabolic pathways can discriminate Candida-

stimulated PBMCs from Borrelia, LPS and MTB-

stimulated PBMCs

Five pathways, i.e. the pentose phosphate pathway, histidine metabolism, beta alanine

metabolism, riboflavin metabolism and aminoacyl tRNA biosynthesis, were identified
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to discriminate Candida-stimulated PBMCs from Borrelia, LPS and MTB-stimulated

PBMCs. Interestingly, we observed that the pentose phosphate pathway was differen-

tially regulated in PBMCs stimulated by Borrelia, LPS and MTB but not in Candida-

stimulated PBMCs at 4 hour. In contrast, at 24 hour, this pathway was differentially

regulated only in Candida-stimulated PBMCs but not significantly changed in Borrelia,

LPS and MTB-stimulated PBMCs. The pentose phosphate pathway was reported to sup-

port cytokine secretion in dendritic cells (Everts et al. 2014). Since cytokine production

of human PBMCs depends on the type of stimulus (Henderson and Rippin 1995), our

observation of differential regulation in the pentose phosphate pathway likely indicates a

specific function for Candida stimulated cytokine production. Indeed, our findings cor-

roborate those of a recent study in which Candida-stimulated PBMCs were identified to

have different cytokine profiles from bacteria-stimulated PBMCs (Li et al. 2016). On

the other hand, little is known about the specific roles of the other four Candida-specific

metabolic pathways in regulation of the immune response, and further investigation is

warranted to validate these novel findings.

2.5.2 Four metabolic pathways can differentiate between Bor-

relia, LPS and MTB-stimulated PBMCs

We further noted that three pathways (glycosylphosphatidylinositol GPI anchor biosyn-

thesis, glycerolipid metabolism, fatty acid metabolism) discriminated LPS-stimulated

PBMCs from Borrelia and MTB-stimulated PBMCs. Meanwhile, tryptophan metabolism

differentiates MTB-stimulated PBMCs from Borrelia and LPS-stimulated PBMCs. We

failed to identify pathways that allow discrimination Borrelia-stimulated PBMCs from

LPS and MTB-stimulated PBMCs. Activation of tryptophan metabolism was previously

reported in human marcophages in vitro upon MTB stimulation (Blumenthal et al. 2012),

and a recent study (Laarhoven et al. 2018) has identified a crucial role of tryptophan

metabolism for the pathophysiology of tuberculous meningitis. In addition, enhancement

of tryptophan catabolism is an IFN (interferon) γ-induced immune response in many

different host cell types, and has been postulated to reduce the supply of tryptophan

to bacterial pathogens (Moffett and Namboodiri 2003; O’Neill, Kishton, and Rathmell

2016). A reduced supply of tryptophan is linked to suppress T cell proliferation (Munn
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et al. 1999). Our observation of differential regulation of tryptophan in MTB-stimulated

PBMCs might be related to different T cell proliferation after stimulation of MTB, com-

pared to Borrelia and LPS.

2.5.3 Genome-scale metabolic model provides metabolic path-

ways with details

The KEGG pathway based analysis failed to identify metabolic pathways that discrim-

inate Borrelia-stimulated PBMCs from LPS- and MTB-stimulated PBMCs. To explore

potential differences in more depth, we ran the reporter metabolite analysis, which is

a gene set enrichment analysis with a genome-scale metabolic model. A genome-scale

metabolic model is comprised of metabolites and reactions between them. Compared to

KEGG metabolic pathway information, the genome-scale metabolic model makes use of

detailed information on biochemical reactions of pathways. For instance, for any enzyme

catalyzing reaction, we can retrieve the genes encoding that enzyme in the genome-scale

metabolic model. Moreover, metabolites can be products of some reactions and mean-

while act as substrates in other reactions. Consequently, reporter metabolite analysis

based on genome-scale metabolic model does not repeat but complement results from

KEGG pathway analysis. We used HMR2 in our analysis since we did not perform flux

balance analysis.

2.5.4 103 reporter metabolite can discriminate Candida-

stimulated PBMCs from Borrelia, LPS and MTB-

stimulated PBMCs

In this study, we identified 103 reporter metabolites that were differentially regulated

in Candida-stimulated PBMCs, but not in PBMCs stimulated with bacterial stimuli at

both 4 and 24 hour. A considerable number of these Candida-specific reporter metabolites

were found to be related to lipid metabolism. The previous study (Smeekens et al. 2013)

reported that Candida induced a type I IFN response that was distinct from Borrelia,

LPS and MTB stimulation. Interestingly, type I IFN was identified to influence de novo

cholesterol biosynthesis and fatty acids biosynthesis in murine marcophages (York et al.
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2015). Desmosterol, one of the Candida-specific reporter metabolites, is the last inter-

mediary metabolite in the Bloch pathway of cholesterol biosynthesis. This metabolite

was previously reported to coordinate cholesterol and fatty acid homeostasis, and affect

anti-inflammatory function in macrophage (Spann et al. 2012). Taken together, we pro-

posed that desmosterol might serve as a metabolic read out of the type I IFN response in

Candida-stimulated PBMCs.

2.5.5 49 reporter metabolites can discriminate between Borre-

lia, LPS and MTB-stimulated PBMCs

In PBMCs stimulated by Borrelia, LPS and MTB, 49 metabolites were identified to dis-

criminate different kinds of pathogenic challenges. Within LPS-specific reporter metabo-

lites, we observed intermediate metabolites present in the Bloch pathway and Kandutsch-

Russell pathway (e.g. 4α-carboxy-5α-cholesta-8,24-dien-3β-ol). With mass spectrometry

and isotope labeling techniques, (Mitsche et al. 2015) previously showed that different

tissues or cell types were characterized by different flux distributions in the Bloch and

Kandutsch-Russell pathway. Our observation indicates that there also might be condition-

specific flux distribution in these two parallel cholesterol biosynthesis pathways. Within

MTB-specific reporter metabolites, we observed two kind of epoxyeicosatrienoic acids,

synthesized from arachidonic acid. Epoxyeicosatrienoic acids were reported to inhibit in-

flammatory gene expression in immune cells and animal models (Thomson, Askari, and

Bishop-Bailey 2012).

2.6 Conclusions

In summary, by integrating gene expression data with KEGG metabolic pathways in

combination with the human genome-scale metabolic model, a very sensitive method

to characterize metabolic reprogramming in immune cells is obtained. Applying this

methodology, we were able to discriminate metabolic pathways and metabolites in human

PBMCs stimulated by Candida, Borrelia, LPS and MTB. For instance, in the case of

Candida we identified five differentially regulated pathways spanning metabolic regions

from the pentose phosphate pathway to aminoacyl tRNA biosynthesis. Our analysis
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here, for the first time, provides insight into pathogen-specific metabolism which affects

stimulus-dependent signal transduction and cytokine production in stimulated human

PBMCs.
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3.1 Abstract

Hypercholesterolemia is characterized by high plasma low density lipoprotein (LDL)

cholesterol and often caused by genetic mutations in LDLR, APOB or proprotein con-

vertase subtilisin/kexin type 9 (PCSK9 ). However, a substantial proportion of hyperc-

holesterolemic subjects do not have any mutations in these canonical genes, leaving the

underlying pathobiology to be determined. In this study, we investigated whether com-

bining plasma metabolomics with genetic information increases insight in the biology of

hypercholesterolemia. For this proof of concept study, we combined plasma metabolites

from 119 hypercholesterolemic females with genetic information on the LDL canonical

genes. Using hierarchical clustering we identified four subtypes of hypercholesterolemia,

which could be distinguished along two axes represented by triglyceride and large LDL par-

ticle concentration. Subjects with mutations in LDLR or APOB preferentially clustered

together suggesting that patients with defects in the LDL receptor pathway show a distinc-

tive metabolomics profile. In conclusion, we show the potential of using metabolomics to

segregate hypercholesterolemic subjects in different clusters which may help in targeting

genetic analysis.

Keywords: hypercholesterolemia; triglyceride; low density lipoprotein; genetics;

metabolomics;

3.2 Introduction

Hypercholesterolemia due to a high concentration of plasma low density lipoprotein (LDL)

cholesterol has been shown to be a causal factor in accelerating atherosclerosis in a plethora

of studies (Ference et al. 2017; Goldstein and Brown 2015). The liver plays a pivotal role

in the regulation of cholesterol metabolism. It secretes cholesterol packaged in VLDL

particles that are subsequently converted into IDL and LDL particles largely by the ac-

tion of different lipases in the periphery (Packard and Shepherd 1997). A key step in the

uptake of cholesterol is the internalization of LDL via the LDL receptor (LDLR) (Brown

and Goldstein 1986). Mutations in the LDLR as well as mutations in genes encoding

apolipoprotein B (APOB) or proprotein convertase subtilisin/kexin type 9 (PCSK9 ), are

causally related with hypercholesterolemia (Soutar and Naoumova 2007). These genetic
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mutations, however, do not explain all hypercholesterolemic cases. For instance, in the

UK pilot cascade project, 403 of 635 (63.5%) hypercholesterolemic subjects did not have

mutations in LDLR, APOB, or PCSK9 (Taylor et al. 2010). In a recent large scale

study designed to evaluate the prevalence of a familial hypercholesterolemia (FH) mu-

tation among individuals with severe hypercholesterolemia (Khera, Won, et al. 2016),

only 24 of 1,386 subjects with LDL cholesterol above 5 mmol/L were identified to have

mutations in these three canonical genes. Although the prevalence of genetically defined

hypercholesterolemia varies across studies (Wang et al. 2016), a substantial proportion

of hypercholesterolemic subjects do not have mutations in LDLR, APOB or PCSK9. A

major reason for this finding could be the presence of disease-causing mutations in other

genes involved in cholesterol homeostasis either affecting the LDL receptor pathway or

other yet to be defined mechanisms. Interestingly, whole exome sequencing of a cohort

with FH subjects without mutations in LDLR, APOB and PCSK9 did not identify novel

causal mutations (Futema et al. 2014).

Recently, we analyzed a cohort of 119 young females with plasma LDL cholesterol above

the 99th percentile for their age. In 20 hypercholesterolemic females, we identified 12

causal heterozygous mutations in LDLR and one causal heterozygous mutation in APOB

(Balder et al. 2018). In the 99 remaining females we found eight subjects carrying

a variant in LDLR or APOB with unknown clinical significance (Balder et al. 2018).

This left us with 91 females that suffered from hypercholesterolemia caused by either a

polygenic (Talmud et al. 2013) or epigenetic (Dekkers et al. 2016) mechanism, or presence

of pathogenic variant in yet unknown genes. To get further insight in the underlying

pathobiology of hypercholesterolemia of unknown origin, we performed plasma metabolite

analysis on all the 119 hypercholesterolemic females. We hypothesized that mutations in

genes belonging to the same metabolic pathway (e.g. the LDL receptor pathway) should

render a similar plasma metabolome. This analysis differentiated four subgroups, which

could be distinguished along two axes represented by plasma triglyceride and large LDL

particle concentration.
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3.3 Materials and Methods

3.3.1 Participants

The selection of the participants (N = 119) in this study is described in detail elsewhere

(Balder et al. 2018). In brief, these women were apparently healthy, aged 25 to 40

year and had plasma LDL cholesterol level above 4.7 mmol/l. Exclusion criteria were

diagnosis of cardiovascular disease (e.g. myocardial infarction, stroke or coronary surgery),

diabetes mellitus, use of lipid-lowering drug, or having aberrant thyroid, liver or kidney

function. The study protocol was approved by the Medical Ethical Committee of the

University Medical Center Groningen in The Netherlands and all participants provided

written informed consent.

3.3.2 Next generation sequencing

With a custom target sequencing array developed based on the SureSelect capture system,

we sequenced the coding regions of 11 genes, including LDLR, APOB, PCSK9, LDLRAP1,

APOE, ABCG5, LIPA, STAP1, MTTP, ANGPTL3, and SAR1B to assess a monogenic

cause of hypercholesterolemia. If a mutation had minor allele frequency below 0.1% in

the Genome of Netherlands (Netherlands Consortium 2014), it was considered a rare

mutation. Mutations that are verified to cause hypercholesterolemia were listed in our

previous publication (Balder et al. 2018).

Detection of copy number variations (CNV) was performed using the CoNVaDING (Copy

Number Variation Detection in Next-generation sequencing Gene panels) (Johansson et

al. 2016). Detected CNVs were validated using either multiplex ligation-dependent probe

amplification, or by long-range PCR or real-time PCR (Balder et al. 2018).

3.3.3 Genetic risk score calculation

To study a possible polygenic cause of hypercholesterolemia, we calculated the weighted

genetic risk score (wGRS). The Global Lipid Genetic Consortium (GLGC) metaanalysis

of genome-wide association studies identified 95 loci affecting LDL cholesterol concen-

tration (Teslovich et al. 2010). Among these loci, 12 SNPs had the highest power to

38

Chapter 3

discriminate between FH mutation-negative individuals and the general population (Tal-

mud et al. 2009; Talmud et al. 2013). For each individual, we calculated the wGRS

using the weighted sum of the risk allele (the LDL cholesterol-raising allele) (Balder et

al. 2018). The weights used were the corresponding per-allele effect in plasma LDL

cholesterol changes reported by the Global Lipid Genetic Consortium (Teslovich et al.

2010).

3.3.4 Lifestyle score calculation

To investigate the association between lifestyle and plasma metabolome in hypercholes-

terolemic females, we used a recently described healthy lifestyle score (Khera, Emdin, et

al. 2016). Points were given for the major lifestyle parameters including smoking status

and eating habits. The details were described in our previous publication (Balder et al.

2018). In short, a maximum of four points reflects a very healthy lifestyle: the smaller

the score, the less healthy the lifestyle. The minimum point is zero.

3.3.5 Metabolite measurements

Fasting plasma samples were routinely collected by Lifelines (www.lifelines.nl) and

stored at −80◦C until analysis on the Nightingale metabolomics platform (Nightingale

Health, Finland). This platform includes 225 metabolic features including lipids,

lipoproteins, fatty acids, amino acids, and glycolysis precursor molecules listed on

https://nightingalehealth.com/biomarkers, using a NMR spectroscopy platform (Fischer

et al. 2014; Soininen et al. 2015).

3.3.6 Statistical analysis

To explore subtypes of hypercholesterolemia, we performed hierarchical clustering based

on the plasma metabolomics data. Since the metabolomics data contains measurements

of different units, we first scaled the data so that every variable had mean 0 and standard

deviation 1. Next, we ran the hierarchical clustering with the function hclust from R. We

used Euclidean distance as the dissimilarity measure and complete linkage as the similarity

measure between the clusters. The dendrogram was made by using the ggdendro and
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ggplot2 (Wickham 2016) R package. Finally, we cut the dendrogram into four clusters by

using cutree function in R.

To identify the cluster corresponding to hypercholesterolemia due to defects in the

LDL receptor pathway, we performed principal component analysis (PCA) on the

metabolomics data. Since the data contains measurements of different units, we

converted the metabolomics data into ranks, so that every metabolite had value ranging

between 1 and 119. We then calculated the covariance matrix and performed eigenvector

decomposition. Entries of every eigenvector is also called loadings. Based on the

loadings, we identified metabolites that most correlated to the first and second principal

components by calculating the Spearman correlation coefficients.

To evaluate associations between genetic risk/lifestyle scores and metabolite concentra-

tions, we applied a nonparametric method, namely the Kendall’s tau correlation test. We

reported the Kendall’s tau correlation coefficient and P value. A P value below 0.05 is

considered significant.

3.4 Result

A group of 119 young women with hypercholesterolemia, defined as plasma LDL choles-

terol levels above the 99th percentile for their age, was selected from the Lifelines cohort.

The baseline characteristics are presented in Table 3.1. To analyze the underlying patho-

biology of the hypercholesterolemic phenotype, plasma metabolomics was performed us-

ing the Nightingale platform. Although the absolute values measured in the Nightingale

platform are lower than the conventional measured plasma lipids, we showed that the cor-

relation between both measurements are high (Table 3.1). A summary of all the results of

metabolite analysis is presented in supplemental Table 1. Hierarchical clustering analysis

of the metabolomics data set revealed three main clusters and one cluster containing only

one sample (Figure 3.1). The size of the cluster 1, 2, 3, and 4 was 43, 15, 60 and 1,

respectively.

To analyze the divergence of the different clusters, we ran principal component analysis.

The first and second principal component explained 38% and 21% of the total variance

of the metabolic variables across the 119 individuals, respectively (Figure 3.2). To under-
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Table 3.1: Characteristics of 119 hypercholesterolemic females

Clinical
Chemistry

Nightingale
Metabolomics

Spearman
Correlation
Coefficient

LDL cholesterol (mmol/l) 5.25 ± 0.50 2.27 ± 0.26 0.66
Total cholesterol (mmol/l) 7.17 ± 0.64 5.57 ± 0.43 0.68
Triglyceride (mmol/l) 1.50 ± 0.68 1.45 ± 0.47 0.96
HDL cholesterol (mmol/l) 1.39 ± 0.28 1.47 ± 0.22 0.84
ApoB (g/l) 1.25 ± 0.14 1.10 ± 0.11 0.78

Note:
Data are expressed as mean ± SD; N = 119; Age (year), 32.90 ± 4.37;
BMI, 27.9 ± 5.10

Figure 3.1: Hierarchical clustering of plasma metabolomics data derived from 119 hyper-
cholesterolemic females. Euclidean distance was used as the dissimilarity measure and
complete linkage was used as the dissimilarity measure between the clusters.

stand which metabolites correspond to the first and second principal component the most,

we calculated the Spearman correlation coefficients between original variables and princi-

pal components (Supplemental Table 2). We observed that plasma triglyceride and large

LDL particle concentration were the most correlated variables with the PC1 (Spearman

correlation coefficient -0.988) and PC2 (Spearman correlation coefficient -0.978), respec-

tively. Therefore, we used these two variables to represent the axes of PC1 and PC2

(Figure 3.3). Our next question was whether the 4 clusters derived from the hierarchical

clustering analysis (Figure 3.1) were indeed separated by PC1 and PC2. To answer that,

we added the hierarchical clustering results to the scatterplot (Figure 3.3). Inspection re-
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ggplot2 (Wickham 2016) R package. Finally, we cut the dendrogram into four clusters by
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Figure 3.2: Proportion of variance explained by PCs derived from plasma metabolomics
data of 119 hypercholesterolemic females.

veals that the females in cluster 3 are separated from the other groups by showing a high

plasma large LDL particle concentration coupled with relatively low plasma triglyceride,

suggesting a defect in hepatic LDL uptake.

Because we sequenced LDLR, APOB and PCSK9 in all subjects, we could verify whether

the females with known heterozygous mutations in the LDL receptor pathway plot in the

region of cluster 3. Indeed, from 20 subjects with heterozygous mutations in LDLR or

APOB 15 subjects were located in cluster 3 (Figure 3.4). The other 5 carriers were found

in cluster 1 (n = 3) and cluster 2 (n = 2). In addition, we identified 8 women who were

heterozygous carrier of a novel variant in LDLR or APOB from which the pathogenicity

has not yet been determined. Five of these 8 subjects were positioned in cluster 3 and

three in cluster 1 (Figure 3.5).

To improve our understanding of the underlying pathobiology of the elevated plasma

LDL cholesterol in the remaining 91 women, we calculated the weighted genetic risk score

(wGRS) and lifestyle score, and assessed the associations between both scores and plasma

concentrations of large LDL particle and triglyceride. As shown in supplemental Figure

3.6 and 3.7, no relation could be demonstrated between both scores and plasma large LDL

particle concentration (wGRS: Kendall tau correlation coefficient -0.017, P value = 0.80.

Lifestyle score: Kendall tau correlation coefficient -0.04, P value = 0.57). Both scores
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Figure 3.3: Plasma triglyceride against large LDL particle concentration in 119 hyperc-
holesterolemic females. Different colors refer to the hierarchical clustering outcomes (red,
cluster 1; blue, cluster 2; green, cluster 3; purple, cluster 4).
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Figure 3.3: Plasma triglyceride against large LDL particle concentration in 119 hyperc-
holesterolemic females. Different colors refer to the hierarchical clustering outcomes (red,
cluster 1; blue, cluster 2; green, cluster 3; purple, cluster 4).
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Figure 3.4: Plasma triglyceride against large LDL particle concentration in 119 hyperc-
holesterolemic females. Different colors refer to the hierarchical clustering outcomes (red,
cluster 1; blue, cluster 2; green cluster 3; purple, cluster 4). The hypercholesterolemic
females with mutations that were known to affect the LDLR pathway were highlighted.
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Figure 3.5: Plasma triglyceride against large LDL particle concentration in 119 hyperc-
holesterolemic females. Different colors refer to the hierarchical clustering outcomes (red,
cluster 1; blue cluster 2; green cluster 3; purple, cluster 4). The highlighted dots represent
eight individuals who carry a heterozygous variant in LDLR or APOB of unknown clinical
significance. The specific variant in LDLR or APOB is shown.
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showed moderate association with plasma triglyceride concentration (wGRS: Kendall tau

correlation coefficient -0.156, P value = 0.02. Lifestyle score: Kendall tau correlation

coefficient -0.198, P value = 0.0099).

3.5 Discussion

In the current study, we showed that combining plasma metabolomics data with genetic

information can improve our understanding of the origin of severe hypercholesterolemia in

young healthy women. These analyses may help the diagnosis and personalized treatment

of patients with hypercholesterolemia in which no causal mutations in the canonical LDL

genes can be identified.

Metabolic profiling has been used in a large number of cohort studies to assess the value of

circulating metabolites in prediction of risk for cardiovascular events (Würtz et al. 2015;

Holmes et al. 2018). More specifically, metabolomics has been used to study associations

between circulating metabolites and statin usage (Würtz et al. 2016), CETP inhibition

(Kettunen et al. 2018) and PCSK9 inhibition (Sliz et al. 2018), generating insight in the

broad metabolic effects of these interventions. Nightingale metabolomics data contain not

only concentrations in different units, but also other quantities such as ratios, percentages,

degrees of saturation and lipoprotein particle size. Therefore, in the current study, we

scaled all the metabolic variables to make them have equal importance in the hierarchical

clustering.

The hierarchical clustering analysis revealed four clusters in the 119 hypercholesterolemic

females with plasma LDL cholesterol above 99th percentile for their age. We hypothesized

that mutations in genes belonging to the same metabolic pathway (e.g. the LDL receptor

pathway) should render a similar plasma metabolome (one cluster). The principal com-

ponent analysis revealed that plasma triglyceride and large LDL particle concentrations

are the major discriminators for the four clusters. Since cluster 3 is characterized by a

high concentration of large LDL particle and relatively low triglyceride in plasma, we

hypothesized that this cluster represented the hypercholesterolemia due to defective LDL

clearance. Incorporation of the genetic information provided us the verdict, because we

expected the 20 subjects carrying a known functional heterozygous mutation in LDLR or
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APOB to position in cluster 3. Indeed, 15 subjects fit this hypothesis and were located

in cluster 3.

Then we came up with the question “Can we get insight if a novel variant in LDLR

or APOB is the underlying cause for the severe hypercholesterolemia based on the

metabolome profile?”. Indeed, 6 out of 8 carriers of a novel mutation fit in cluster 3,

suggesting potential effects of these variants on LDL receptor mediated uptake. This

observation suggests that metabolic profiling is useful to delineate the subjects with a

pathogenic mutation from those that do not carry any variant in either LDLR or APOB.

However, not all subjects in cluster 3 do carry a variant in LDLR or APOB. We realize

that the pathway of LDL receptor mediated endocytosis and intracellular cholesterol

trafficking contains many more genes (Marques-Pinheiro et al. 2010; Bartuzi et al. 2016;

Paththinige, Sirisena, and Dissanayake 2017) than we have sequenced in our cohort. So

expansion of the number of genes on the chip or choosing whole genome sequencing will

ultimately improve the information on all genes involved in the LDL receptor pathway

and may thus help to identify additional genetic variants underlying the pathobiology

in the remaining 40 females in cluster 3. Meanwhile, we cannot exclude other processes

underlying the hypercholesterolemia such as epigenetic changes (Dekkers et al. 2016),

lincRNA (Hu et al. 2014), microRNA (Irani et al. 2018) or combinations thereof.

Cluster 4 contained only one subject, and the individual had the highest large LDL par-

ticle concentration among the 119 hypercholesterolemic females. Interestingly, we did

not identify any mutations in the sequenced genes including LDLR, APOB and PCSK9.

This female subject was 28 years with BMI 21.7 kg/m2. Her waist circumference was 69

centimeters. When we compared her plasma metabolomics data to the other 118 hyper-

cholesterolemic females, we identified 77 outlier variables [either below the 1st quantile

(1.5×interquartile range) or above the 3rd quantile (1.5×interquartile range). supplemen-

tal Table 3]. We noticed that this female had a high proportion of esterified cholesterol

in VLDL and HDL particles compared to the remaining 118 subjects. Interestingly, the

CETPtg/apoCI-/- mouse model showed a very similar phenotype (Gautier et al. 2002).

Apolipoprotein C1 is an important regulator for CETP activity, which may partly un-

derlie the observed phenotype (Pillois et al. 2012). So far no mutations in APOC1 have

been described.

A recent study (Lorenzo et al. 2018) showed that hypercholesterolemic subjects without
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any known genetic defect had lower levels of LDL cholesterol than those with a mutation.

Therefore, we hypothesized that the origin of the hypercholesterolemia in cluster 1 may

be either polygenic or due to lifestyle factors. After additional analysis of relationships

between the wGRS or lifestyle score and triglyceride or large LDL particle concentration,

we observed that only genetic risk scores were negatively associated with triglyceride

concentration (Kendall tau correlation coefficient -0.23, P value = 0.04). This observation

suggests that this cluster of hypercholesterolemic subjects may be caused by less damaging

mutations in genes involved in the LDL receptor pathway. The major observation in

the subjects located in cluster 2 is that they had elevated plasma triglyceride. The

genetic array used in the current study does not contain the genes involved in triglyceride

metabolism. Our data suggest that generation of a triglyceride specific gene array may

generate interesting results in the subjects in this cluster.

In summary, this study shows that bioinformatic analysis of metabolomics data derived

from hypercholesterolemic subjects generates interesting clusters of patients that may help

to guide targeted genomics approaches hypercholesterolemia.
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Figure 3.6: Scatterplots of weighted genetic risk score against triglyceride or large LDL
particle concentration in 91 hypercholesterolemic females without canonical mutations.

3.7 Supplementary Material

The Supplementary tables for this article can be found online at: http://www.jlr.org/

content/59/11/2174/suppl/DC1
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Figure 3.6: Scatterplots of weighted genetic risk score against triglyceride or large LDL
particle concentration in 91 hypercholesterolemic females without canonical mutations.
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Figure 3.7: Scatterplots of weighted genetic risk score against triglyceride or large LDL
particle concentration in 91 hypercholesterolemic females without canonical mutations.
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Figure 3.7: Scatterplots of weighted genetic risk score against triglyceride or large LDL
particle concentration in 91 hypercholesterolemic females without canonical mutations.
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Chapter 4

4.1 Abstract

Background: The prevalence of type 2 diabetes mellitus (T2DM) varies significantly across

ethnic groups. A better understanding of the mechanisms underlying the variation in

different ethnic groups may help to elucidate the pathophysiology of T2DM. The present

work aims to generate a hypothesis regarding “why do subjects with African background

have excess burden of T2DM?”.

Methods: In the current study, we performed metabolite profiling of plasma samples

derived from 773 subjects of three ethnic groups (Dutch with European, Ghanaian and

African Surinamese background). We performed Bayesian lognormal regression analyses

between HbA1c and circulating metabolites.

Results: We showed that subjects with Ghanaian and African Surinamese background

had similar associations of HbA1c with circulating amino acids as subjects with Euro-

pean background. But subjects with Ghanaian and African Surinamese background had

reversed association between HbA1c and acetoacetate, compared to the subjects with Eu-

ropean background. Moreover, we also observed that HbA1c was associated with small

HDL particles in subjects with African Surinamese background.

Conclusions: Based on the observations, we hypothesize that subjects with African back-

ground may have impaired cholesterol efflux capacity of HDL, linking to their excess

burden of T2DM.

Keywords: metabolomics, diabetes mellitus, ethnicity, Bayesian, association

4.2 Introduction

The prevalence of type 2 diabetes mellitus (T2DM) increased rapidly worldwide during

the past decades, and is strongly associated with the developing obesity pandemic (NCD

Risk Factor Collaboration (NCD-RisC) 2016). Apart from the common risk factors that

prevail in all populations, ethnic background is a risk factor as well (Maskarinec et al.

2009). In the Netherlands, subjects with a migration background showed a considerable

higher incidence of T2DM compared to subjects with European background (Bindraban

et al. 2008; Ujcic-Voortman et al. 2009). Among men, individuals with European,
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Ghanaian and African Surinamese background had T2DM prevalence of 5.0%, 14.9% and

10.4%, respectively (Meeks et al. 2015). Among women, the prevalence is 2.3% (Eu-

ropean), 11.1% (Ghanaian) and 11.5% (African Surinamese) (Meeks et al. 2015). The

differences in T2DM prevalence across ethnic groups could not be explained by genetic

variants alone (Waters et al. 2010). In contrast, other studies showed that the ethnic dif-

ferences in T2DM prevalence were accompanied by differences in plasma amino acids and

lipids. In line with this, compared to Europeans, the serum concentrations of isoleucine,

phenylalanine, tyrosine and alanine were significantly higher in South Asians (Tillin et

al. 2015). In another study (Valkengoed et al. 2017), individuals with Surinamese back-

ground were identified to have lower sphingolipids, but higher unsaturated acylcarnitines

and higher amino acid levels, than Europeans.

Metabolite profiling, or metabolomics, has been widely applied to identify new biomark-

ers for T2DM (Roberts, Koulman, and Griffin 2014; Guasch-Ferré et al. 2016), predict

T2DM risk (Wang et al. 2011; Rebholz et al. 2018) and improve our understanding of

pathophysiologic mechanisms (Newgard et al. 2009; Newgard 2017). The most frequently

observed metabolic abnormalities in insulin resistant and T2DM subjects include elevated

circulating branched amino acids (BCAAs) and aromatic amino acids (AAAs) (Würtz,

Mäkinen, et al. 2012; Würtz, Tiainen, et al. 2012; Würtz et al. 2013). A hypothesized

mechanism linking elevated BCAAs to T2DM is that disturbed BCAA metabolism leads

to accumulation of BCAA metabolites (e.g. 2-Aminoadipic acid), resulting in pancreatic

β cell dysfunction (Lynch and Adams 2014; Wang et al. 2013). High triglyceride and

low HDL cholesterol is another frequently observed metabolic abnormality in insulin re-

sistance and T2DM subjects (Fizelova et al. 2015; Festa et al. 2005; Mackey et al. 2015;

Wang et al. 2012; Garvey et al. 2003). Often dyslipidemias are viewed as consequences

rather than cause of T2DM (Fizelova et al. 2015; Festa et al. 2005; Mackey et al. 2015).

However, cholesterol homeostasis plays an important role in regulating pancreatic β cell

function (Eckardstein and Sibler 2011; Fryirs et al. 2010; Kruit et al. 2011). Cholesterol

is taken up by pancreatic β cells via the LDL receptor and exported back to plasma via

the ATP-binding cassette transporter A1 (ABCA1) (Kruit et al. 2010). Accumulation

of cholesterol in pancreatic β cells leads to impairment of glucose tolerance and defective

insulin secretion (Kruit et al. 2010; Eckardstein and Sibler 2011; Kruit et al. 2011). The

present work aimed to generate a hypothesis regarding “why do subjects with African
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4.1 Abstract

Background: The prevalence of type 2 diabetes mellitus (T2DM) varies significantly across

ethnic groups. A better understanding of the mechanisms underlying the variation in

different ethnic groups may help to elucidate the pathophysiology of T2DM. The present

work aims to generate a hypothesis regarding “why do subjects with African background

have excess burden of T2DM?”.

Methods: In the current study, we performed metabolite profiling of plasma samples

derived from 773 subjects of three ethnic groups (Dutch with European, Ghanaian and

African Surinamese background). We performed Bayesian lognormal regression analyses
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Results: We showed that subjects with Ghanaian and African Surinamese background

had similar associations of HbA1c with circulating amino acids as subjects with Euro-
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ropean background. Moreover, we also observed that HbA1c was associated with small
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Conclusions: Based on the observations, we hypothesize that subjects with African back-

ground may have impaired cholesterol efflux capacity of HDL, linking to their excess

burden of T2DM.

Keywords: metabolomics, diabetes mellitus, ethnicity, Bayesian, association

4.2 Introduction

The prevalence of type 2 diabetes mellitus (T2DM) increased rapidly worldwide during

the past decades, and is strongly associated with the developing obesity pandemic (NCD

Risk Factor Collaboration (NCD-RisC) 2016). Apart from the common risk factors that
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2009). In the Netherlands, subjects with a migration background showed a considerable
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et al. 2008; Ujcic-Voortman et al. 2009). Among men, individuals with European,
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Ghanaian and African Surinamese background had T2DM prevalence of 5.0%, 14.9% and
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background have excess burden of T2DM?”. As an initial step, we investigated whether

the relationship between circulating metabolites and glucose tolerance varies depending

on ethnicity.

The current study focused on Dutch with European, Ghanaian and African Surinamese

background. Here we used the hemoglobin A1C (HbA1c) level as the surrogate of glucose

tolerance, since HbA1c is an index of chronic glycemia and a predictor of T2DM (Nathan

et al. 1984; Diabetes Prevention Program Research Group 2015). By running Bayesian

lognormal regression analyses, we show that compared to the European origin, Dutch

with Ghanaian and African Surinamese background have similar associations of HbA1c

with circulating amino acids, but reversed association between HbA1c and concentration

of acetoacetate. We also observed that HbA1c was associated with small HDL particles

in subjects with African Surinamese background. We hypothesized that subjects with

African background may have impaired cholesterol efflux capacity of HDL, linking to

their excess burden of T2DM.

4.3 Materials and Methods

4.3.1 Study population

The study was composed of three ethnic groups in the Dutch population. In particular,

217 African Surinamese and 255 Ghanaian were from the HELIUS study (K. Stronks et

al. 2013a; Snijder et al. 2017), and 301 European Dutch were from the 300-obesity cohort

from the Human Functional Genomics Project (Netea et al. 2016). The HELIUS study

was complied with all relevant ethical regulations and in accordance with the Declaration

of Helsinki (6th, 7th revisions); it was approved by the Academic Medical Center (AMC)

Medical Ethics Committee and all participants provided written informed consent.

4.3.2 Metabolite profiling

Fasting plasma samples were collected in the clinic and stored at −80◦C. Quantification

of 8 amino acids, 2 ketone bodies and 14 lipoproteins was performed by using a high-

throughput NMR metabolomics platform (Nightingale, Austria) (Inouye et al. 2010).
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The following 14 lipoprotein subclasses were quantified: extremely large (average parti-

cle diameter >75 nm), very large (average particle diameter 64.0 nm), large (53.6 nm),

medium (44.5 nm), small (36.8 nm) and very small VLDL (31.3 nm). intermediate-density

lipoprotein (IDL; 28.6 nm); three LDL subclasses, i.e. large (25.5 nm), medium (23.0 nm)

and small LDL (18.7 nm); and four HDL subclasses, i.e. very large (14.3 nm), large (12.1

nm), medium (10.9 nm) and small HDL (8.7 nm). The following components of the

lipoprotein particles were quantified: phospholipids (PL), triglycerides (TG), cholesterol,

free cholesterol (FC) and cholesterol esters (CE).

4.3.3 Statistical analysis

Because this study contains three ethnic groups from two different cohort studies with

different time of sampling and measurement, we cannot directly compare metabolite vari-

ables between ethnic groups. As an alternative, we performed association analyses be-

tween HbA1c and circulating metabolites within each ethnic group. The outcome variable

(y) was concentration of a metabolite, such as amino acids, ketone bodies, or lipoprotein

particles. The predictor variable (x) was the HbA1c level. To assess the strength of

associations between HbA1c and metabolites, we ran lognormal regression because the

outcome variables are positive continuous data with skewed distributions. To study the

dependency of ethnicity on the relationship between HbA1c and metabolic variables, we

introduced ethnicity-specific intercepts and slopes into the model. We also adjusted for

covariates including gender and age. We centered and scaled HbA1c and age by subtract-

ing their mean values and dividing by their standard deviations. After scaling, one unit

HbA1c means 10 mmol/mol and one unit age means 10 (years). Due to missing observa-

tions in both outcome and predictor variables, we applied a Bayesian lognormal regression

to handle the missing data. There are two types of missing values: 1) when the concentra-

tion of a metabolite is below the limit of detection, or 2) when values were rejected by the

automatic sample and measurement quality control procedure in the Nightingale pipeline.

All the missing observations were assumed missing at random and treated as parameters.

Values were randomly drawn from a normal distribution with ethnicity-dependent mean

and standard deviation. Based on a previous study (Dekker et al. 2015) the mean value

and standard deviation of HbA1c is about 40 mmol/mol and 5 mmol/mol, therefore, we
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to handle the missing data. There are two types of missing values: 1) when the concentra-
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All the missing observations were assumed missing at random and treated as parameters.
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used exponential(0.025) and exponential(0.2) as prior distributions. Regarding the miss-

ing values that were below the limit of detection, the imputed values were constrained

between zero and the minimal observed value. For the rest parameters, we used default

prior distributions and fitted the model by running Hamiltonian Markov Chain Monte

Carlo in the program Stan (version 2.18.0) (Carpenter et al. 2017). The detailed model

is given below:

y[i] ∼ Lognormal(µ[i], σ) (4.1)

x[i] ∼ Normal(µHbA1c,ethnicity[i], σHbA1c,ethnicity[i]) (4.2)

zx[i] = x[i] − 40
10 (4.3)

zAge[i] = Age[i] − 59
10 (4.4)

µ[i] = A[i] + BH [i] × zx[i] + βA × zAge[i] (4.5)

A[i] = α + αethnicity[i] + αgender[i] (4.6)

BH [i] = βH + βH,ethnicity[i] + βH,gender[i] (4.7)

σ ∼ Exponential(1) (4.8)

µHbA1c,ethnicity[i] ∼ Exponential(0.025) (4.9)

σHbA1c ∼ Exponential(0.2) (4.10)

βA ∼ Normal(0, 10) (4.11)

α ∼ Normal(0, 10) (4.12)

αethnicity[i] ∼ Normal(0, 0.1) (4.13)

αgender[i] ∼ Normal(0, 0.1) (4.14)

βH ∼ Normal(0, 10) (4.15)

βH,ethnicity[i] ∼ Normal(0, 0.1) (4.16)

βH,gender[i] ∼ Normal(0, 0.1) (4.17)

We ran four Markov chains with 4000 iterations in each chain. Results were presented with

the posterior mean of lognormal regression coefficient with 95% credible interval (CI). The

regression coefficient represents the expected difference in log(metabolite concentration)
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due to a difference of one unit HbA1c.

4.3.4 Availability of Data

The metabolomics and clinical data of subjects with Ghanaian and African Surinamese

background are available by submitting a proposal to the HELIUS Executive Board as

outlined at http://www.heliusstudy.nl/en/researchers/ collaboration. Requests for fur-

ther information and proposals can be submitted to Marieke Snijder. The metabolomics

and clinical data of subjects with European background are available by contacting human

functional genomics project www.humanfunctionalgenomics.org.

4.3.5 Code availability

The model file and analysis code are available at https://github.com/XiangZhangSC/

nutrition_and_diabetes_paper.

4.4 Result

4.4.1 Participant characteristics

This study included in total 773 subjects from three ethnic groups in the Dutch popula-

tion. Specifically, the study population consisted of 301 European Dutch, 255 Dutch with

Ghanaian background, and 217 Dutch with African Surinamese background (Table 4.1).

Dutch with European background were older than the other two ethnic groups. There

were relatively more male participants in the Dutch with European background, and in

the Dutch with African Surinamese background, there were relatively more female par-

ticipants. To control for these possible confounding factors, all the results shown below

were after adjusting for gender and age.

4.4.2 Association of HbA1c with circulating amino acids

Since circulating amino acids are robust markers of T2DM, we first evaluated their asso-

ciations with HbA1c in Dutch with European, Ghanaian and African Surinamese back-
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and clinical data of subjects with European background are available by contacting human
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4.3.5 Code availability
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4.4 Result

4.4.1 Participant characteristics

This study included in total 773 subjects from three ethnic groups in the Dutch popula-

tion. Specifically, the study population consisted of 301 European Dutch, 255 Dutch with

Ghanaian background, and 217 Dutch with African Surinamese background (Table 4.1).

Dutch with European background were older than the other two ethnic groups. There

were relatively more male participants in the Dutch with European background, and in

the Dutch with African Surinamese background, there were relatively more female par-

ticipants. To control for these possible confounding factors, all the results shown below

were after adjusting for gender and age.
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Table 4.1: Characteristics of 773 participants with different ethnic backgrounds
European Ghanaian African Surinamese

N 301 255 217
Female (%) 44.5 52.5 65.9
Age (years) 67.1 ± 5.4 51.2 ± 8.3 55.2 ± 7.2
BMI 30.7 ± 3.5 29.6 ± 4.4 31.2 ± 5.8
Waist circumference (cm) 107.0 ± 9.8 98.5 ± 10.6 103 ± 13.4
HbA1c (mmol/mol) 41.7 ± 7.9 56.1 ± 19.7 46.6 ± 15.4

ground. We observed that in Dutch with European background increasing HbA1c concen-

trations were associated with increasing concentrations of circulating isoleucine (regression

coefficient in males 0.14 with 95% credible interval [0.10 0.18], in females 0.15 [0.10 0.19]),

leucine (males 0.07 [0.04 0.10], females 0.07 [0.04 0.10]), valine (males 0.06 [0.03 0.09],

females 0.07 [0.04 0.10]) and alanine (males 0.07 [0.04 0.11], females 0.08 [0.05 0.12]), as

well as decreasing levels of glutamine (males -0.07 [-0.10 -0.03], females -0.08 [-0.12 -0.04])

(Figure 4.1).

In Dutch with Ghanaian background, we observed that increasing HbA1c concentrations

were associated with increasing concentrations of circulating isoleucine (females 0.03 [0.01

0.06]), and valine (females 0.03 [0.01 0.04]), as well as decreasing levels of glutamine

(females -0.04 [-0.06 -0.01]) (Figure 4.1).

In Dutch with African Surinamese background, we observed that increasing HbA1c con-

centrations were associated with increasing concentrations of circulating isoleucine (males

0.03 [0.003 0.06], females 0.04 [0.02 0.06]), leucine (males 0.02 [0.01 0.04], females 0.03

[0.01 0.04]), and valine (males 0.03 [0.02 0.05]), female 0.08 [0.05 0.12]), as well as de-

creasing levels of glutamine (males -0.02 [-0.05 -0.003], females -0.04 [-0.06 -0.02]) (Figure

4.1).

4.4.3 Association of HbA1c with circulating ketone bodies

In the next step, we assessed the association between HbA1c and ketone bodies. We

observed that increasing levels of HbA1c were associated with decreasing levels of ace-

toacetate in subjects with European background (males -0.11 [-0.21 -0.01], females -0.15

[-0.25 -0.05]). However, increasing levels of HbA1c were associated with increasing levels

of acetoacetate in subjects with Ghanaian (males 0.08 [0.02 0.15]) and African Surinamese
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Figure 4.1: Regression parameter estimates between plasma amino acids and HbA1c in
subjects with European, Ghanaian and African Surinamese background. Circles (female)
or triangles (male) and horizontal lines represent the posterior means of the regression
coefficient between plasma amino acids and HbA1c and 95% credible intervals.
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Figure 4.1: Regression parameter estimates between plasma amino acids and HbA1c in
subjects with European, Ghanaian and African Surinamese background. Circles (female)
or triangles (male) and horizontal lines represent the posterior means of the regression
coefficient between plasma amino acids and HbA1c and 95% credible intervals.
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Figure 4.2: Regression parameter estimates between plasma ketone bodies and HbA1c in
subjects with European, Ghanaian and African Surinamese background. Circles (female)
or triangles (male) and horizontal lines represent the posterior means of the regression
coefficient between plasma ketone bodies and HbA1c and 95% credible intervals.

(males 0.09 [0.02 0.15]) background (Figure 4.2).

4.4.4 Association of HbA1c with circulating HDL particles

In subjects with European background, we observed that increasing levels of HbA1c were

associated with decreasing concentrations of large (males -0.18 [-0.25 -0.12], females -

0.16 [-0.23 -0.09]) and medium (males -0.04 [-0.07 -0.01], females -0.04 [-0.07 -0.01]) HDL

particles (Figure 4.3).

In subjects with African Surinamese background, however, we observed that increasing

levels of HbA1c were associated with increasing concentration of small HDL particle

(males 0.01 [0.0004 0.02], females 0.01 [0.004 0.02]) (Figure 4.3).

4.5 Discussion

“Why do subjects with African background have excess burden of T2DM?” To answer

this question, we performed metabolite profiling in plasma of 773 subjects from three

ethnic groups in the Dutch population (Dutch with European, Ghanaian and African

Surinamese background). Consistent with a recent meta-analysis (Guasch-Ferré et al.
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Figure 4.3: Regression parameter estimates between plasma HDL particle concentration
and HbA1c in subjects with European, Ghanaian and African Surinamese background.
Circles (female) or triangles (male) and horizontal lines represent the posterior means
of the regression coefficient between plasma HDL particle concentration and HbA1c and
95% credible intervals.
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Figure 4.2: Regression parameter estimates between plasma ketone bodies and HbA1c in
subjects with European, Ghanaian and African Surinamese background. Circles (female)
or triangles (male) and horizontal lines represent the posterior means of the regression
coefficient between plasma ketone bodies and HbA1c and 95% credible intervals.

(males 0.09 [0.02 0.15]) background (Figure 4.2).
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Surinamese background). Consistent with a recent meta-analysis (Guasch-Ferré et al.
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Figure 4.3: Regression parameter estimates between plasma HDL particle concentration
and HbA1c in subjects with European, Ghanaian and African Surinamese background.
Circles (female) or triangles (male) and horizontal lines represent the posterior means
of the regression coefficient between plasma HDL particle concentration and HbA1c and
95% credible intervals.
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2016), we observed that increasing levels of BCAAs, as well as decreasing levels of glu-

tamine were associated with worsening of glycemia in Dutch with European background.

We observed similar associations of HbA1c with circulating amino acids in subjects with

Ghanaian and African Surinamese background. These observations suggested that amino

acid metabolism was similar in subjects with European and African background. How-

ever, we observed that increasing levels of HbA1c were associated with increasing levels of

acetoacetate in Dutch with Ghanaian and African Surinamese background, but associated

with decreasing levels of acetoacetate in Dutch with European background. In liver, ace-

toacetate can be produced from tyrosine (KNOX and LeMAY-KNOX 1951). Tyrosine was

repeatedly identified to be associated with glycemia and insulin resistance in the general

population (Würtz, Tiainen, et al. 2012; Würtz, Mäkinen, et al. 2012; Würtz et al. 2013;

Hellmuth et al. 2016). In South Asian men, tyrosine was identified as a strong predictor

of T2DM incidence (Tillin et al. 2015). Interestingly, we observed a high probability (93%

in males and 94% in females) of positive association between HbA1c and tyrosine in Dutch

with European background. In contrast, we observed a high probability (95% in males

and 92% in females) of negative association between HbA1c and tyrosine in Dutch with

Ghanaian background. In Dutch with African Surinamese background, we also observed

a high probability (95% in males and 96% in females) of negative association between

HbA1c and tyrosine. Acetoacetate was shown to strongly inhibit expression of ABCA1, a

key player mediating cellular cholesterol efflux (Uehara et al. 2002; Phillips 2014). Inacti-

vation of ABCA1 leads to cholesterol accumulation in the pancreatic β cells and impaired

glucose tolerance (Brunham et al. 2007; Vergeer et al. 2010; Kruit et al. 2011). The main

acceptors of ABCA1-mediated cholesterol efflux are small HDL particles (Du et al. 2015).

Interestingly, we observed that increasing concentrations of small HDL particles tended

to associate with worsening of glycemia in subjects with African Surinamese background.

Taking all these considerations together, we speculate that the excess burden of T2DM

in subjects with African Surinamese and Ghanaian background might be due to impaired

cholesterol efflux capacity of HDL caused by acetoacetate-induced inhibition of ABCA1

gene expression. Future research is needed to test our hypothesis.

One limitation of this study is that the three ethnic groups were from two different cohort

studies, with different time of sampling and measurement. As a consequence, we can-

not directly compare metabolite variables between ethnic groups but did run association
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analyses within each ethnic group.

In conclusion, subjects with Ghanaian and African Surinamese background showed re-

versed associations of HbA1c with circulating acetoacetate, compared to Dutch with Eu-

ropean background. We hypothesized that acetoacetate-induced inhibition of ABCA1

gene expression may link to impaired cholesterol efflux capacity to HDL in the ethnic

groups of African background.
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5.1 Abstract

Background: Statistical evaluation of the association between microbial abundance and

dietary variables can be done in various ways. Currently, there is no consensus on which

methods are to be preferred in which circumstances. Application of particular methods

seems to be based on the tradition of a particular research group, availability of experience

with particular software, or dependent on the outcomes of the analysis.

Results: We applied four popular methods including edgeR, limma, metagenomeSeq and

shotgunFunctionalizeR, to evaluate the association between dietary variables and abun-

dance of microbes. We found large difference in results between the methods. Our simu-

lation studies revealed that no single method was optimal.

Conclusions: We advise researchers to run multiple analyses and focus on the signifi-

cant findings identified by multiple methods in order to achieve a better control of false

discovery rate.

Keywords: microbiome; diet; association; simulation; sequencing

5.2 Background

With the help of high-throughput sequencing technologies, human microbiota have been

profiled and studied extensively (Duvallet et al. 2017). Since diet shapes the composi-

tion of human microbiota and influences human health, linking abundance of microbes

to dietary variables is a common practice in human microbiome studies (Wu et al. 2011;

Deschasaux et al. 2018). These association studies not only can improve our understand-

ing of the relationships between the human microbiome and nutrient intake, but also may

help development of new therapeutic interventions.

Microbiome data are often generated by targeted sequencing of the 16S ribosomal RNA

(rRNA) gene, and represented as a frequency matrix giving the number of times each

microbe is observed in each sample. In general microbiome data have following features:

1) library sizes can vary by orders of magnitude across samples. 2) microbiome data often

have excess zero counts. These zero counts can be due to either biological absence of a

microbe, or insufficient sequencing. 3) microbiome data are compositional data, meaning
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that the obtained counts do not reflect the absolute number of microbes that are present.

4) microbiome data are over-dispersed, characterized as some taxa (e.g., Bacteroides and

Lactobacillus species) are common among samples, many other taxa are present at much

lower abundances.

various statistical methods have been developed for microbiome data analysis, but there

are no standard procedures to perform association analyses (Xia and Sun 2017). Previous

benchmark works (Thorsen et al. 2016; Jonsson et al. 2016) focused on case-control

studies, and revealed that the choice of statistical methods considerably affected outcomes

of differential relative abundance tests. Unlike case-control studies, association studies

work also on continuous variables. To our best knowledge, the influence of choosing

different methods on outcomes of association studies has not been evaluated. To assess

the influence, we analyzed the associations between dietary variables and gut microbiota

in 1090 individuals from the HELIUS-cohort study (Amsterdam, the Netherlands) (K.

Stronks et al. 2013b; Vermeulen et al. 2017). Since the focus of the current work is on

robustness of the statistical results rather than biological or epidemiological associations,

biological interpretation of diet-microbe associations is out of the scope of this work. We

used four methods including those based on Poisson (shotgunFunctionalizeR), negative

binomial (edgeR), zero-inflated Gaussian (metagenomeSeq) distributions, as well as a

weighted linear regression model (voom + limma). We compared the results derived from

the four methods and observed large differences. To find out which method we should

choose in which circumstances, we ran simulation studies and found that no single method

was optimal for all microbiome data sets. Therefore, we advise researchers to run multiple

statistical analyses and focus on the significant findings identified by multiple methods in

order to achieve better control of false discovery rate.

5.3 Methods

5.3.1 Subjects and HELIUS cohort

Subjects were participants in the HEalthy Life in an Urban Setting (HELIUS) cohort

study. This study used a stratified-random sampling approach to include between 2011

and 2015 25,000 inhabitants (18-70 years) from the city of Amsterdam, the Netherlands
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(K. Stronks et al. 2013b). Stratification was done on six subgroups with different ethnic

origins (African Surinamese, South Asian Surinamese, Ghanaian, Turkish, Moroccan, and

Dutch). Subgroups were about equally large.

5.3.2 Dietary intakes assessment

As described previously (Dekker et al. 2011; Beukers et al. 2015), a subsample of vol-

untary participants of Dutch, Moroccan, Turkish, South-Asian Surinamese and African

Surinamese origin were asked to participate in the HELIUS-Dietary Patterns study, with

objective to collect detailed information on their diet. Usual dietary intakes were assessed

through the completion of ethnic-specific semi-quantitative food frequency questionnaires

(FFQs) with a reference period of 4 weeks. These FFQs were adapted from an existing

Dutch FFQ and comprised about 200 items. Food items were collapsed into 73 food groups

based on similarity in nutrient profile and culinary use. In this study ethnic-specific food

groups were not included in this analysis and 67 food items were used for the analyses.

5.3.3 16S processing

We used the 16S ribosomal RNA (rRNA) sequencing data generated in a previous study

based on the HELIUS cohort (Deschasaux et al. 2018). In short, the composition of fecal

microbiota was profiled by sequencing the V4 region of the 16S rRNA gene on a MiSeq

system. The 16S rRNA gene reads were processed on a mothur pipeline (version 1.39.5)

(Schloss et al. 2009). The OTU clustering was done by using the vsearch (version 2.6)

(Rognes et al. 2016) and FastTree 2.1 (Price, Dehal, and Arkin 2010). The details of the

sequencing and bioinformatic pipelines were described in (Deschasaux et al. 2018).

5.3.4 Statistical analyses

Our analysis is based on 1090 subjects who had both fecal microbiome and FFQ data.

Following (Duvallet et al. 2017), here we removed OTUs with fewer than 10 reads in total,

as well as OTUs which were present in fewer than 1% of samples. The final OTU table

contains 1090 samples and 2073 OTUs. We used four widely used methods for sequencing

data analysis to quantify the strength of the associations between dietary variables (x)
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and OTU counts (y). Because the large number of associations (67 × 2073), we used

multidplyr R package (https://github.com/hadley/multidplyr) for parallel computation.

The selected methods were as follows:

shotgunFunctionalizeR (Kristiansson, Hugenholtz, and Dalevi 2009) is a popular R pack-

age used in microbiome research community, and based on the Poisson generalized linear

model (implemented in glm function in R). We used the glm function with log(total

counts) as offset to quantify associations between dietary variables and OTU counts.

Negative binomial model, also called gamma-Poisson model, is popular for statistical

modeling of OTU count data (McMurdie and Holmes 2014; Zhang et al. 2017). Phyloseq

(McMurdie and Holmes 2013) is a popular R package used by the microbiome research

community. The core of Phyloseq is based on another popular R package DESeq2 (Love,

Huber, and Anders 2014), which is based on negative binomial model. However, when

the sample size is big (above 100), the computation becomes slow in DESeq2. Therefore,

in this work we used another negative binomial based R package, edgeR (Robinson, Mc-

Carthy, and Smyth 2010). The observed OTU count was modeled by a negative binomial

distribution with two parameters, the mean and the dispersion. OTU specific dispersion

was estimated by running estimateDisp function (Chen, Lun, and Smyth 2014) imple-

mented in the edgeR package (Robinson, McCarthy, and Smyth 2010). The associations

between dietary variables and OTU counts were quantified by running glmFit function of

the edgeR package (Robinson, McCarthy, and Smyth 2010). The log(total counts) was

used as offset.

In contrast to above methods modeling the counts with exact probabilistic distributions,

others have advocated weighted linear regression analysis with precision weights derived

from the mean variance relationship (Law et al. 2014). This approach has been imple-

mented in the voom function of the popular R package limma (Ritchie et al. 2015). The

weighted linear regression was done to estimate the linear association between dietary

variables and OTU counts with precision weights estimated by the voom (Law et al.

2014) and lmFit functions in the limma package.

The last method, metagenomeSeq (Paulson et al. 2013) is also a popular R package used

by microbiome research community. It is based on the zero-inflated Gaussian model.

This approach has been implemented in the fitZig function of the popular R package
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metagenomeSeq (Paulson et al. 2013). The cumulative-sum scaling method was used to

take care library size difference.

In a typical association study, the primary goal is to identify some candidate associations

for future research. Therefore, regarding multiple testing we calculated false discovery

rate (FDR). If an association had FDR value below 0.05, we considered it as a significant

association. Since the research question is focused only on robustness of the statistical

results and not on biological or epidemiological associations, we did not adjust for possible

confounding or selection factors.

5.3.5 Simulation framework

We use y to represent the simulated microbiome data with n rows and J columns. Every

column of y represents a microbe and every row of y represents a subject. Here, we

simulated associations of a dietary variable, denoted as x, with gut microbiota. x is a

vector of length n, and was randomly sampled from real FFQ data with replacement. The

FFQ data was published in (Wu et al. 2011) and contained 214 dietary variables that

were scaled to having mean 0 and standard deviation 1. For each simulated microbiome

data, we used one dietary variable and in total generated 214 simulated data sets. Our

simulation framework included the steps below:

η[j] ∼ Bernoulli(0.5) (5.1)

γ[j] ∼ T7(0, 2.5) (5.2)

β[j] = (1 − η[j]) × 0 + η[j] × γ[j] (5.3)

θ[i, 1 : J ] ∼ Dirichlet(π[1 : J ]) (5.4)

α[i, 1 : J ] = logit(θ[i, 1 : J ]) (5.5)

logit(µ[i, j]) = α[i, j] + β[j] × x[i] (5.6)

N [i] ∼ Lognormal(µL, σL) (5.7)

y[i, 1 : J ] ∼ Multinomial(N [i], µ[i, 1 : J ]) (5.8)

1. The indicator variable, η[j], indicates if a dietary variable influences the abundance

of the microbe j. For microbe j, we randomly drew η[j] from a Bernoulli distribution
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with parameter 0.5 (Equation (5.1)).

2. γ[j] represents the effect of the dietary variable on the abundance for OTU j, and

was sampled from a t distribution with 7 degrees of freedom, location 0 and scale

2.5 (Gelman et al. 2008) (Equation (5.2)).

3. Then the true association between the diet and microbe j was captured by β[j]

defined in Equation (5.3).

4. The matrix θ has n rows and J columns. θ[i, j] corresponds to the baseline abun-

dance level for the microbe j in subject i. For subject i, we randomly drew a vector

of length J from a Dirichlet distribution (Equation (5.4)).

5. The parameter of the Dirichlet distribution π is a vector of length J . We used R

package DirichletMultinomial (Holmes, Harris, and Quince 2012) and the Human

Microbiome Project 16S rRNA stool data (Schiffer et al. 2018) to estimate the π.

6. The true microbe j proportion in subject i, µ[i, j] was modeled as a logistic regression

of x[i] (Equation (5.6)).

7. Similar to (Paulson et al. 2013), library size of subject i, N [i], was randomly drawn

from a lognormal distribution with mean µL and standard deviation σL. µL is the

logarithm of target sequencing depth (Equation (5.7)). We estimated σL based on

the HMP stool 16S rRNA data set by using the fitdistr function implemented in the

MASS package.

8. Finally, for subject i, the observed microbe counts were randomly generated from a

multinomial distribution (Equation (5.8)).

Our HELIUS microbiome data set had 1090 subjects and the median sequencing depth was

about 50,000. To mimic HELIUS data, we simulated the 16S microbiome data sets, with

each data set having 1000 subjects and mean of sequencing depth 50,000. Performance

metrics included true positive rate, false positive rate and error probability for identifying

a significant association between microbe and dietary variable. They are calculated per

simulation and defined as below:
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confounding or selection factors.

5.3.5 Simulation framework

We use y to represent the simulated microbiome data with n rows and J columns. Every

column of y represents a microbe and every row of y represents a subject. Here, we

simulated associations of a dietary variable, denoted as x, with gut microbiota. x is a

vector of length n, and was randomly sampled from real FFQ data with replacement. The

FFQ data was published in (Wu et al. 2011) and contained 214 dietary variables that

were scaled to having mean 0 and standard deviation 1. For each simulated microbiome

data, we used one dietary variable and in total generated 214 simulated data sets. Our

simulation framework included the steps below:

η[j] ∼ Bernoulli(0.5) (5.1)

γ[j] ∼ T7(0, 2.5) (5.2)

β[j] = (1 − η[j]) × 0 + η[j] × γ[j] (5.3)

θ[i, 1 : J ] ∼ Dirichlet(π[1 : J ]) (5.4)

α[i, 1 : J ] = logit(θ[i, 1 : J ]) (5.5)

logit(µ[i, j]) = α[i, j] + β[j] × x[i] (5.6)

N [i] ∼ Lognormal(µL, σL) (5.7)

y[i, 1 : J ] ∼ Multinomial(N [i], µ[i, 1 : J ]) (5.8)

1. The indicator variable, η[j], indicates if a dietary variable influences the abundance

of the microbe j. For microbe j, we randomly drew η[j] from a Bernoulli distribution
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with parameter 0.5 (Equation (5.1)).

2. γ[j] represents the effect of the dietary variable on the abundance for OTU j, and

was sampled from a t distribution with 7 degrees of freedom, location 0 and scale

2.5 (Gelman et al. 2008) (Equation (5.2)).

3. Then the true association between the diet and microbe j was captured by β[j]

defined in Equation (5.3).

4. The matrix θ has n rows and J columns. θ[i, j] corresponds to the baseline abun-

dance level for the microbe j in subject i. For subject i, we randomly drew a vector

of length J from a Dirichlet distribution (Equation (5.4)).

5. The parameter of the Dirichlet distribution π is a vector of length J . We used R

package DirichletMultinomial (Holmes, Harris, and Quince 2012) and the Human

Microbiome Project 16S rRNA stool data (Schiffer et al. 2018) to estimate the π.

6. The true microbe j proportion in subject i, µ[i, j] was modeled as a logistic regression

of x[i] (Equation (5.6)).

7. Similar to (Paulson et al. 2013), library size of subject i, N [i], was randomly drawn

from a lognormal distribution with mean µL and standard deviation σL. µL is the

logarithm of target sequencing depth (Equation (5.7)). We estimated σL based on

the HMP stool 16S rRNA data set by using the fitdistr function implemented in the

MASS package.

8. Finally, for subject i, the observed microbe counts were randomly generated from a

multinomial distribution (Equation (5.8)).

Our HELIUS microbiome data set had 1090 subjects and the median sequencing depth was

about 50,000. To mimic HELIUS data, we simulated the 16S microbiome data sets, with

each data set having 1000 subjects and mean of sequencing depth 50,000. Performance

metrics included true positive rate, false positive rate and error probability for identifying

a significant association between microbe and dietary variable. They are calculated per

simulation and defined as below:
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True positive rate = TP
TP + FN (5.9)

False positive rate = FP
TN + FP (5.10)

Error probability = FP
TP + FP (5.11)

TP, FP, TN and FN refer to true positive, false positive, true negative and false negative,

respectively. A true positive finding is defined as having a significant estimated β �= 0

(Equation (5.6)) in case the true β �= 0. A false positive finding is defined as having a

significant estimated β �= 0 (Equation (5.6)) in case the true β = 0. The error probability

quantified the probability that a significant association is false. Here we did not use “false

discovery rate” but used the term “error probability” in order to avoid confusion, because

we also calculated the false discovery rate during analyses of associations between OTUs

and dietary variables.

5.4 Results

5.4.1 Large difference in results between statistical analyses

To evaluate effect of choosing different methods on outcomes in association studies, we

performed association analyses between 67 dietary variables and 2073 OTUs derived from

1090 HELIUS participants with four methods. Out of 138,891 association tests, we iden-

tified 3,535, 20,081, 62,581 and 71,371 associations with FDR below 0.05 in edgeR, voom

+ limma, metagenomeSeq and shotgunFunctionalizeR, respectively. There were 1,296 as-

sociations identified to be significant by all the four methods. In addition, there were 14,

3,703, 23,666, and 29,327 associations that were identified as significant only by edgeR,

voom + limma, metagenomeSeq or shotgunFunctionalizeR (Figure 5.1).

5.4.2 16S rRNA microbiome data simulation

After realizing such considerably different results between the methods, we attempted to

find out which method we should choose. To this end, we simulated 16S rRNA micro-
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Figure 5.1: Venn diagram of significant associations identified by edgeR, voom + limma,
metagenomeSeq and shotgunFunctionalizeR based on HELIUS 16S rRNA microbiome
and FFQ data.
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Figure 5.2: Comparison of simulated and real Human Microbiome Project stool 16S
rRNA data. A. library size distributions B. distribution of percentage of zeros per OTU.
C. mean-variance relationship. Every dot represents an OTU.

biome data with spiked-in associations between dietary variables and OTUs. We used a

published FFQs (food frequency questionnaires) data as a template. To make sure our

simulation framework can generate similar microbiome data as real ones, we compared

our simulated data to the real HMP (Human Metabolome Project) stool 16S data. Our

simulated microbiome data had similar distribution of library sizes and percentage of ze-

ros per OTU, as well as similar mean-variance relationship (Figure 5.2). Our template

FFQs data contained 214 dietary variables. In each simulation, we used one dietary vari-

able. Therefore, in total we generated 214 simulated 16S rRNA data sets. Each data set

contained 1000 subjects and had mean library size 50,000, and the same simulated data

set was analyzed by edgeR, voom + limma, metagenomeSeq and shotgunFunctionalizeR.

In our simulations, we observed large difference in results between the methods (Figure

5.3).

5.4.3 Method comparisons based on simulated data

Overall shotgunFunctionalizeR had both the highest true positive rate and the highest

false positive rate (Figure 5.4). The median true positive rate of shotgunFunctionalizeR

was (0.900), followed by metagenomeSeq (0.800), edgeR (0.624) and limma (0.519). Mean-
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Figure 5.3: Every dot represents the number of significant associations identified only by
the corresponding method. Each line represents a simulation, in which the same simulated
data were analyzed by edgeR, voom + limma, metagenomeSeq and shotgunFunctional-
izeR.
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Figure 5.3: Every dot represents the number of significant associations identified only by
the corresponding method. Each line represents a simulation, in which the same simulated
data were analyzed by edgeR, voom + limma, metagenomeSeq and shotgunFunctional-
izeR.

75

16460-Zhang_BNW.indd   85 23-04-19   22:30



Chapter 5

while the median false positive rate of shotgunFunctionalizeR, metagenomeSeq, limma,

and edgeR were 0.716, 0.388, 0.125 and 0.0898, respectively. Depending on the simulated

data set, the probability that a significant association is false (error probability) varied

within each method over the 214 simulations (Figure 5.5A). With the same simulated

data set, different methods showed different error probabilities (Figure 5.5B). Further-

more, the error probabilities in different methods were also influenced by the skewness of

the distribution of the dietary variables (Figure 5.6). In the next step, we identified that

30% simulations in edgeR, 16% simulations in limma, 0.9% simulations in metagenomeSeq

and 0% simulation in shotgunFunctionalizeR had error probabilities below 0.05 over the

214 simulations (Figure 5.7). However, when we focused on the significant associations

that were identified by all four methods (we call them “overlap”) in each simulation, we

observed that 44% simulations had error probabilities below 0.05 over the 214 simulations

(Figure 5.7).

5.5 Discussion

We learned from these relatively simple analyses that a key issue in the analysis of 16S

rRNA microbiome data is the choice of the statistical method. Depending on the choice

of statistical method, significant associations between dietary variables and microbial

abundances varied dramatically. We observed that shotgunFunctionalizeR produced the

largest number of unique significant associations, whereas most of the significant associa-

tions identified by edgeR were also identified by other methods. What really puzzled us is

the relatively small number of significant associations identified by all methods. To find

out which method we should choose for association studies, we developed a hierarchical

model to simulate 16S rRNA data based on dietary variables with spiked-in associations.

By comparing to the real HMP 16S microbiome data, we have shown that our simula-

tion model can simulate realistic 16S rRNA microbiome data. Although in this work

we focused on diet-microbe association analyses, our simulation framework can easily be

adapted to simulate other scenarios.

Based on our simulation model, we simulated a large number of 16S microbiome data

sets with sample size 1000 subjects and mean of sequencing depth 50,000. These settings

were used to mimic the HELIUS data set. When we analyzed the simulated data sets
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Figure 5.4: With each simulated data set, we calculated the performance of every method,
in terms of true positive rate and false positive rate. Every dot represents a simulation.
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Figure 5.4: With each simulated data set, we calculated the performance of every method,
in terms of true positive rate and false positive rate. Every dot represents a simulation.
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Figure 5.5: Every dot represents the probability that a significant association is false. Each
line represents a simulation, in which the same simulated data were analyzed by edgeR,
voom + limma, metagenomeSeq and shotgunFunctionalizeR. A: error probabilities vary a
lot within each method depending on the simulated data set. B: With the same simulated
data set, the error probabilities vary a lot across methods.
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Figure 5.6: Skewness of predictor variable influences false positive rate. Every circle
represents a simulation.
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Figure 5.5: Every dot represents the probability that a significant association is false. Each
line represents a simulation, in which the same simulated data were analyzed by edgeR,
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Figure 5.6: Skewness of predictor variable influences false positive rate. Every circle
represents a simulation.
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Figure 5.7: Distribution of probabilities that a significant association is false in edgeR,
limma, metagenomeSeq and shotgunFunctionalizeR. The “overlap” refers to the distribu-
tion of error probabilities of significant associations identified by all four methods.
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with edgeR, limma, metagenomeSeq and shotgunFunctionalizeR, we observed again large

difference in number of significant associations between the methods. In general, we want

our statistical method to detect as many as possible true positives, and as few as possible

false positives. From our simulation studies, we learned that overall the most sensitive

method (shotgunFunctionalizeR in this case) was likely to be the one with the most false

positives. This phenomenon was observed in the differential abundance test scenario as

well (Thorsen et al. 2016). Even though we set FDR as 0.05 in all our diet-microbe

association analyses, our simulation results showed that control of FDR completely failed

in shotgunFunctionalizeR, and rarely achieved in metagenomeSeq. On the other hand,

edgeR and limma achieved FDR 0.05 in some cases. In the previous case-control simu-

lations (Jonsson et al. 2016), metagenomeSeq and shotgunFunctionalizeR were shown to

fail controlling false discovery rate at 0.05. However, edgeR was reported to be able to

control false discovery rate at 0.05 (Jonsson et al. 2016). We think this is due to the

fact that performing association analyses is more challenging than case-control compar-

isons because we cannot control both dependent and independent variables. Our further

analysis showed that the skewness of the independent variable (e.g. dietary variable) in-

fluences the error probabilities in all methods. When the skewness of the dietary variable

increased, the probability that a significant association is false also increased. When

we focused on the significant diet-microbe associations that were identified by all four

methods, we observed that more simulations had error probability below 0.05.

5.6 Conclusions

In summary, the choice of the statistical method is a key issue in the analysis of 16S rRNA

microbiome data. No single method was optimal for diet-microbe association analyses.

We recommend researchers to run multiple statistical models and focus on the significant

associations identified by multiple methods. In this way, we expect to achieve better

control of false discovery rate.
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5.7 List of abbreviations

TP: true positive FP: false positive TN: true negative FN: false negative FDR: false

discovery rate OTU: operational taxonomic unit HELIUS: HEalthy Life in an Urban

Setting FFQs: food frequency questionnaires

5.8 Declarations

5.8.1 Ethics approval and consent to participate

The HELIUS study was complied with all relevant ethical regulations and in accordance

with the Declaration of Helsinki (6th, 7th revisions); it was approved by the Academic

Medical Center (AMC) Medical Ethics Committee and all participants provided written

informed consent.

5.8.2 Consent for publication

Not applicable

5.8.3 Availability of data and material

The 16S rRNA gene sequences have been deposited at the European Genome-phenome

Archive under study number EGAD00001004106. The FFQs data of this study are

available from the study coordinator upon reasonable request. The 16S rRNA data

and FFQs data, as well as the code used for simulation studies can be found at https:

//github.com/XiangZhangSC/HELIUS.

5.8.4 Competing interests

Not applicable
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Chapter 6

6.1 Abstract

When considering the variation in the genome, transcriptome, proteome and metabolome,

and their interaction with the environment, every individual can be rightfully considered

as a unique biological entity. Individualized medicine promises to take this uniqueness

into account to optimize disease treatment and thereby improve health benefits for every

patient. The success of individualized medicine relies on a precise understanding of the

genotype-phenotype relationship. Although omics technologies advance rapidly, there are

several challenges that need to be overcome: Next generation sequencing can efficiently

decipher genomic sequences, epigenetic changes, and transcriptomic variation in patients,

but it does not automatically indicate how or whether the identified variation will cause

pathological changes. This is likely due to the inability to account for 1) the consequences

of gene-gene and gene-environment interactions, and 2) (post)transcriptional as well as

(post)translational processes that eventually determine the concentration of key metabo-

lites. The technologies to accurately measure changes in these latter layers are still under

development, and such measurements in humans are also mainly restricted to blood and

circulating cells. Despite these challenges, it is already possible to track dynamic changes

in the human interactome in healthy and diseased states by using the integration of multi-

omics data. In this review, we evaluate the potential value of current major bioinformat-

ics and systems biology-based approaches, including genome wide association studies,

epigenetics, gene regulatory and protein-protein interaction networks, and genome-scale

metabolic modeling. Moreover, we address the question whether integrative analysis of

personal multi-omics data will help understanding of personal genotype-phenotype rela-

tionships.

6.2 Introduction

Humans share the same genes but do not have identical DNA sequences. The latest

1000 Genomes Project reported over 84,000,000 single nucleotide polymorphisms (SNPs),

3,000,000 short insertions/deletions, and 60,000 structural variants in 2,504 subjects from

26 populations, by applying whole genome sequencing as well as exome sequencing and

microarray genotyping technologies (1000 Genomes Project Consortium et al. 2015).
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While there are large differences in the presence of both rare and common variants, it has

been reported that every subject carries around 250 to 300 loss-of-function variants that

lead gene products to having less or no function (1000 Genomes Project Consortium et

al. 2010, 1000-Genomes-Project-Consortium:2012aa,UK10K-Consortium:2015aa). Nowa-

days, whole genome sequencing allows the determination of the entire DNA sequence

of an individual, and the resulting genomic information is believed to enable prediction

of disease risk and optimization of treatment outcome (Sadee 2011). In practice, pre-

dicting disease phenotypes from genetic sequences is extremely challenging because the

genotype-phenotype relationship is far more complex than anticipated. A single gene can

be associated with multiple disease phenotypes while a single disease phenotype can be

caused by mutations in multiple genes (Barabási, Gulbahce, and Loscalzo 2011). Im-

portantly, mutations do not have identical effects on individuals due to the individual

variation in interaction between genes, proteins, metabolites and environmental factors

(Barabási, Gulbahce, and Loscalzo 2011; Kathiresan and Srivastava 2012).

The complete set of (physical) interactions between molecules, such as genes, proteins

and metabolites is known as the interactome (Cusick et al. 2005). In this review, we

focus on the interactome in human cells. If we consider genome sequences as stills and

phenotypes as a movie, then there must be a biological system which serves as a projector.

It is indeed proposed that the interactome acts as the projector and eventually translates

the phenotypic effects determined by both genotypes and environmental factors (Figure

6.1). Vidal et al. (Vidal, Cusick, and Barabási 2011; Emmert-Streib, Dehmer, and Haibe-

Kains 2014) proposed that most disease phenotypes may be caused by the perturbation

of the interactome, in which the products of disease genes were found to interact with

each other and cluster as modules (Menche et al. 2015; Ghiassian, Menche, and Barabási

2015). These disease modules may overlap each other, explaining the shared associated

genes and clinical symptoms of different diseases (Menche et al. 2015; Ghiassian, Menche,

and Barabási 2015).

To understand the projector function of the interactome, one must capture all molecular

components involved in cellular functions. With the rapid development of omics technolo-

gies, it is now possible to readily profile up to 19,797 protein-coding genes, 79,795 protein-

coding transcripts, 30,057 proteins, and 4,229 metabolites (Psychogios et al. 2011; Harrow

et al. 2012; Kim et al. 2014). Since individuality is present in the genomes, epigenomes,
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While there are large differences in the presence of both rare and common variants, it has

been reported that every subject carries around 250 to 300 loss-of-function variants that

lead gene products to having less or no function (1000 Genomes Project Consortium et
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and Barabási 2015).

To understand the projector function of the interactome, one must capture all molecular

components involved in cellular functions. With the rapid development of omics technolo-

gies, it is now possible to readily profile up to 19,797 protein-coding genes, 79,795 protein-

coding transcripts, 30,057 proteins, and 4,229 metabolites (Psychogios et al. 2011; Harrow

et al. 2012; Kim et al. 2014). Since individuality is present in the genomes, epigenomes,
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Figure 6.1: Genetic mutations and environmental effects can only lead to disease phe-
notypes through perturbation of the human interactome, which is a complex network
constituted by gene regulatory network, protein interaction network, and metabolism.

transcriptomes, proteomes, and metabolomes, each cell type in every human subject will

have a different interactome (Feinberg et al. 2010; Suhre et al. 2011; Yizhak et al. 2010b;

Forler, Klein, and Klose 2014). In contrast to non-individualized medicine, personalized

medicine attempts to address such subject-specific differences with respect to diagnosis

and treatment (Topol 2014). This review aims to give an overview of bioinformatic and

network modeling approaches that can be used to develop individualized medicine.

6.3 Genome-wide association studies, epigenetics

and individualized medicine

Genome-wide association studies (GWAS) have identified a great number of common

single nucleotide polymorphisms (SNPs) that are statistically associated with complex

disease phenotypes. The National Human Genome Research Institute (NHGRI) GWAS

catalog includes 1,751 curated publications of 11,912 SNPs (Welter et al. 2014). Besides

disease-associated SNPs, GWAS also identified SNPs associated with drug efficacy and

toxicity, fueling the development of pharmacogenomics and guiding individualized thera-

pies (Sadee 2011; Crews et al. 2012; Low et al. 2014). The Pharmacogenomics Knowl-

edgebase PharmGKB (Hewett et al. 2002; Altman 2007) is a literature-based database
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which provides useful annotations on genes involved in pharmacokinetics (how the drug

is absorbed, distributed, metabolized and eliminated) and pharmacodynamics (how the

drug acts on its target and its mechanism of action). In the current release of PharmGKB,

curated evidence for 1,073 human genes involved in drug response is present.

Epigenetics has been shown to play a key role in the crosstalk between environment and

genome, pointing towards the notion that epigenetic marks might explain in part the role

of the environment in disease development (Bjornsson, Fallin, and Feinberg 2004; Rivera

and Ren 2013). Major epigenetic alterations include DNA methylation, histone modifi-

cation, and chromatin remodeling (Rasool et al. 2015). A total number of 127 reference

human epigenomes are available on the website of the Roadmap Epigenomics Project,

including epigenetic landscapes of 111 primary cell and tissue types as well as 16 cell

lines (Roadmap Epigenomics Consortium et al. 2015). Due to epigenetic modifications,

cells can exhibit different phenotypes in response to various environmental factors, such

as nutritional changes and oxidative stress. Feinberg (Feinberg 2007) defined this ability

as phenotypic plasticity, whose abnormality is linked to diseases, such as cancers, neu-

rodegenerative and autoimmune disorders (Howell et al. 2009). By integrating GWAS

SNPs with epigenetic annotations, Farh et al. (Farh et al. 2015) identified that 90%

of potentially causal variants of autoimmune diseases are non-coding and 60% map to

enhancers of immune cells.

In general, information deriving from GWAS (Table 6.1) and epigenetics provide possi-

ble etiological pathways rather than the exact molecular mechanisms underlying diseases.

Burke et al. (Burke and Korngiebel 2015) pointed out that although dramatic progress has

been made in genomics research, there is still a gap between genomic knowledge and clin-

ical application. To fill such gap, an accurate understanding of the genotype-phenotype

relationship, which is hierarchically bridged by DNA, RNA, protein, metabolite and flux,

must be developed (Figure 6.2). The integrative personal omics profile (iPOP) study

(Chen et al. 2012) was the first example of individualized medicine attempting to over-

come the gap by combining omics data sets. Over a 14-month period which also included

two viral infections (HRV: human rhinovirus and RSV: respiratory syncytial virus), dr.

Michael Snyder not only profiled his whole genome, but also the transcriptomes of his

PBMCs (Peripheral Blood Mononuclear Cells) at 20 different time points, proteomes from

PBMCs and serum across 14 time points, and metabolomes of his serum sampled 17 time
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Figure 6.1: Genetic mutations and environmental effects can only lead to disease phe-
notypes through perturbation of the human interactome, which is a complex network
constituted by gene regulatory network, protein interaction network, and metabolism.
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Table 6.1: Major SNP-trait association databases
Name Link
NHGRI GWAS Catalog www.genome.gov/gwastudies/
PharmGKB http://www.pharmgkb.org/
GWASdb http://jjwanglab.org/gwasdb
GWAS Central http://www.gwascentral.org/
HuGE Navigator http://www.hugenavigator.net/HuGENavigator/home.do
dbGaP http://www.ncbi.nlm.nih.gov/gap
VaDE http://bmi-tokai.jp/VaDE/

points, respectively. Integration of the data sets revealed the great potential of the individ-

ualized approach. In particular, the genetic variant information of dr. Snyder indicated

that he is at risk for developing coronary artery disease, basal cell carcinoma, hyper-

tryglyceridemia, and type 2 diabetes. At the same time, he was found carrying variants

that are associated with response to glucose lowering drugs, rosigitazone and metformin.

Interestingly, his time series measurements of transcriptome, proteome, and metabolome

across healthy states, response to RSV infection, and recovery, enabled the authors to

identify an alteration of the insulin signaling response following the RSV infection (Chen

et al. 2012).

The iPOP study also provided us with some important insights on omics-based individu-

alized medicine. First of all, as sequencing technologies vary considerably from each other

due to sensitivity, accuracy, coverage and resolution, the measurements may contain sys-

tematic errors. Fortunately, since the human genome is constant over time, profiling with

multiple DNA sequencing technologies is a way to improve the accuracy of genetic variant

detection in an individual genome. As shown in the iPOP study (Chen et al. 2012), a

genetic variant in the protein-coding genes can be trusted, if it is captured by the whole

genome sequencing as well as whole exome sequencing. Same as above, we can also trust

a genetic variant in the non protein-coding genes, if it is identified by different whole

genome sequencing platforms. In contrast to the genome which is static, transcriptome,

proteome, and metabolome are more dynamic and changes in their patterns represent the

most valuable information for individualized medicine. To minimize systematic errors,

the personal transcriptomes, proteomes, and metabolomes should be measured with stan-

dardized high-throughput methods at different time points and compared longitudinally.

The longitudinal design also allows to perform statistical analysis with a single sample
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Figure 6.2: The genotype-phenotype relationship is hierarchically bridged by DNA, RNA,
protein, metabolite and flux. These molecules are profiled in the genomics, epigenomics,
transcriptomics, proteomics, metabolomics, and fluxomics, respectively. Bioinformat-
ics and systems biology approaches try to translate these omics data sets into unified
knowledge. In particular, from genomics and epigenomics, one attempts to identify
the disease-associated genetic/epigenetic alterations. From transcriptomics, proteomics,
metabolomics, and fluxomics, one aims to identify the genes, proteins, pathways, and the
flux distributions involved in disease pathogenesis.
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Name Link
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Figure 6.2: The genotype-phenotype relationship is hierarchically bridged by DNA, RNA,
protein, metabolite and flux. These molecules are profiled in the genomics, epigenomics,
transcriptomics, proteomics, metabolomics, and fluxomics, respectively. Bioinformat-
ics and systems biology approaches try to translate these omics data sets into unified
knowledge. In particular, from genomics and epigenomics, one attempts to identify
the disease-associated genetic/epigenetic alterations. From transcriptomics, proteomics,
metabolomics, and fluxomics, one aims to identify the genes, proteins, pathways, and the
flux distributions involved in disease pathogenesis.
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through applying well-established time-series data analysis techniques, such as Fourier

spectral analysis and autocorrelation calculations (Chen et al. 2012). However, we have

to admit that although the cost of sequencing technologies has dramatically decreased,

sequencing with different platforms or multiple time points is unlikely to be performed

for more than economic reasons only. In addition, the large volume of omics data sets

will require substantial investments in data storage and management.

Topol (Topol 2014) rightfully indicated that individualized medicine needs translating

large-scale omics data sets into useful knowledge. The approaches of omics data analysis

can be roughly categorized as bioinformatics and network-based. Bioinformatics-based

approaches often use statistical techniques to assess significant difference or association

in the omics data. Their biological interpretation mainly relies on annotations in the

community databases. Due to the chosen scope of this review, we are not going into

details of these approaches. Network-based approaches, on the other hand, are mainly

used to integrate multi-omics simultaneously and the network itself is subsequently used to

explore biological insights. In general, network-based approaches first reconstruct biased

or unbiased networks in silico, and then use the reconstructed network to interpret the

omics data. A biased network indicates that prior biological knowledge is incorporated,

whereas an unbiased network is purely data-driven.

Network-based approaches enable us to link genotype to phenotype, and vice versa. The

constructed networks can be viewed as maps, in which we can locate GWAS results and

improve our understanding the roles of genetic/epigenetic alterations in disease predispo-

sition (Califano et al. 2012; Ghiassian, Menche, and Barabási 2015). At the same time,

these maps can also help us tracking back molecular mechanisms of given clinical pheno-

types. Like what has been shown by Bartel et al. (Bartel et al. 2015b), the “human blood

metabolome-transcriptome interface”, a network constructed based on the correlation be-

tween serum metabolomes and whole blood transcriptomes of 712 subjects, can identify

active pathways/modules with concentrations of blood cholesterol and triglycerides. In the

next sections, we focus on three types of network-based approaches, namely gene regula-

tory network, protein-protein interaction networks, and genome-scale metabolic modeling

and discuss them in a schematic manner: i.e. 1) definition and generation; 2) usage and

results; 3) strength and weakness. We also discuss their applicability for individualized

medicine.
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6.4 Gene regulatory networks

6.4.1 What are gene regulatory networks?

Thousands of gene products are produced from the human genome to support cell function

and survival. The protein-coding genes can induce protein synthesis, whereas the non

protein-coding genes encode noncoding RNAs (ncRNAs) as their gene products. Gene

regulatory networks (GRNs) ensure proper levels of gene products present at the right

time in the cell (Karlebach and Shamir 2008). In the GRN, nodes represent the genes

and edges indicate the interactions between gene products.

6.4.2 How are GRNs generated?

Similar to gene coexpression networks, GRNs are statistically inferred from a large num-

ber of gene expression data sets. However, gene coexpression networks and GRNs are

fundamentally different from each other. Pearson’s correlation coefficient is used to infer

coexpression networks, meaning that there is always a direct interaction for any pair of

genes when their expressions are statistically correlated (Stuart et al. 2003). In con-

trast, GRNs are inferred mainly based on mutual information, which explicitly specifies

direct or indirect interaction for each pair of genes. Mutual information defines how much

information one random variable X provides about another random variable Y (Cover

and Thomas 2006). For GRNs, the random variables refer to the gene expression levels.

Almost all major algorithms developed for GRN inference are mutual information-based

and include ARACNe (Algorithm for the Reconstruction of accurate Cellular Networks)

(Basso et al. 2005; Margolin et al. 2006), CLR (Context Likelihood of Relatdeness)

(Faith et al. 2007), MRNET (Meyer et al. 2007), RN (Relevance Network) (Butte and

Kohane 2000), C3Net (Altay and Emmert-Streib 2010b), and BC3Net (de Matos Simoes

and Emmert-Streib 2012). Different inference algorithms above were used to reconstruct

human B cell GRNs and found the networks contained consistent biological information

(Altay and Emmert-Streib 2010a; de Matos Simoes, Dehmer, and Emmert-Streib 2013).

We refer readers to a recent review (Emmert-Streib, Dehmer, and Haibe-Kains 2014) for

more general concepts of GRN inference and applications. In this review, we focus on

ARACNe since it is the most widely used method. ARACNe makes use of two steps to
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93

16460-Zhang_BNW.indd   103 23-04-19   22:31



Chapter 6

infer a genome-wide GRN (Basso et al. 2005). First, ARACNe assesses all the pair of

genes by calculating their mutual information. Then, ARACNe discriminates whether

the pair of genes are directly linked or separated by any other genes through applying a

well-known property of mutual information called the data processing inequality (Basso

et al. 2005; Cover and Thomas 2006).

6.4.3 What are GRNs used for?

The rationale of the GRN lies in the idea that genetic/epigenetic alterations contribute

to disease phenotypes by inducing changes in a finite number of regulatory bottlenecks,

i.e. transcription factors (TFs) (Lefebvre et al. 2010; Califano et al. 2012). ARACNe-

inferred GRNs are used for identification of the crucial TFs (also called master regulators)

that affect the transition from healthy to diseased states and vice versa. The identified

master regulators then serve as starting points to search for the driver genetic/epigenetic

alterations upstream.

6.4.4 What has come out?

Lefebvre et al. (Lefebvre et al. 2010) applied ARACNe to infer a human B-cell specific

GRN from 254 B-cell microarray expression profiles representing 24 distinct phenotypes.

The ARACNe-inferred B-cell GRN was subsequently used to identify MYB and FOXM1

as the master regulators of B-cell proliferation. Similarly, an ARACNe-inferred glioblas-

toma GRN was created and used by Chen et al. (Chen et al. 2014) to identify two master

regulators, C/EBPβ and C/EBPδ that are known to be involved in mesenchymal subtype

of glioblastoma patients (Carro et al. 2010). Furthermore, by combining the genetic vari-

ants from the same glioblastoma patients, the authors identified that KLHL9 deletions

are upstream of the two identified master regulators and act as driver mutations (Chen

et al. 2014).

6.4.5 Strengths and weaknesses

One of the major advantages of ARACNe-inferred GRNs is that with whole genome

microarray or total RNA sequencing, the entire genome can actually be included in the
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ARACNe-inferred GRNs. Moreover, since it has been shown that the interactions inferred

by the ARACNe algorithm are very likely to represent real biophysical and biochemical

interactions (Basso et al. 2005; Lefebvre et al. 2010), ARACNe-inferred GRNs are suitable

to explore all the possible interactions related to ncRNAs. This represents an important

feature of ARACNe-inferred GRNs, as more or less 90% of the human genome is being

transcribed, but only about 3% encodes protein. It is known that long noncoding RNAs

(lncRNAs) can interact with DNA and proteins (Quinodoz and Guttman 2014), and some

lncRNA interactions are related to human diseases. For example, Hirata et al. (Hirata

et al. 2015) reported that interaction between lncRNA MALAT1 and histone-lysine N-

methyltransferase EZH2 is involved in renal cell carcinoma.

The major drawback of ARACNe is that a large number (≥ 100) of gene expression profile

data covering a broad range of phenotypes is required to infer the target GRNs (Basso

et al. 2005; Margolin et al. 2006). This is indeed necessary to explore a significant range

of gene expression dynamics in order to obtain adequate mutual information for inferring

GRNs (Margolin et al. 2006). Obviously, in practice it is costly and time-consuming.

6.5 Protein-protein interaction networks

6.5.1 What are protein-protein interaction networks?

Proteins exert their function through interactions with other molecules (e.g. DNA, RNA,

proteins, and metabolites). For instance, signal transduction is mediated through protein-

protein interactions (PPIs), whereas gene expression (transcription factor-DNA) and

metabolism (enzyme-substrate interaction) are mediated by protein-DNA and protein-

metabolite interactions, respectively (Sevimoglu and Arga 2014). PPIs can also refer

to formation of dimers, multi-protein complexes or supramolecular assemblies (e.g. actin

filaments). Since some proteins are shared by different PPIs, individual PPIs are inter-

connected. In the PPI network, nodes represent genes whereas edges refer to physical

interactions of the respective proteins.
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well-known property of mutual information called the data processing inequality (Basso

et al. 2005; Cover and Thomas 2006).

6.4.3 What are GRNs used for?

The rationale of the GRN lies in the idea that genetic/epigenetic alterations contribute

to disease phenotypes by inducing changes in a finite number of regulatory bottlenecks,

i.e. transcription factors (TFs) (Lefebvre et al. 2010; Califano et al. 2012). ARACNe-

inferred GRNs are used for identification of the crucial TFs (also called master regulators)

that affect the transition from healthy to diseased states and vice versa. The identified

master regulators then serve as starting points to search for the driver genetic/epigenetic

alterations upstream.

6.4.4 What has come out?

Lefebvre et al. (Lefebvre et al. 2010) applied ARACNe to infer a human B-cell specific

GRN from 254 B-cell microarray expression profiles representing 24 distinct phenotypes.

The ARACNe-inferred B-cell GRN was subsequently used to identify MYB and FOXM1

as the master regulators of B-cell proliferation. Similarly, an ARACNe-inferred glioblas-

toma GRN was created and used by Chen et al. (Chen et al. 2014) to identify two master

regulators, C/EBPβ and C/EBPδ that are known to be involved in mesenchymal subtype
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ARACNe-inferred GRNs. Moreover, since it has been shown that the interactions inferred
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filaments). Since some proteins are shared by different PPIs, individual PPIs are inter-

connected. In the PPI network, nodes represent genes whereas edges refer to physical

interactions of the respective proteins.

95

16460-Zhang_BNW.indd   105 23-04-19   22:31



Chapter 6

Table 6.2: Primary sources of protein-protein interactions
Name Link
HPRD http://www.hprd.org/
IntAct http://www.ebi.ac.uk/intact/
MINT http://mint.bio.uniroma2.it/mint/Welcome.do
DIP http://dip.doe-mbi.ucla.edu/dip/Main.cgi
BioGRID http://thebiogrid.org/
PDB http://www.rcsb.org/pdb/home/home.do

6.5.2 How are PPI networks generated?

There are three main resources of generic human PPI networks. The first resource is

from the literature mining. We listed six primary databases (Table 6.2) that store and

combine experimentally supported PPIs from small-scale studies. The second resource is

derived from large-scale yeast-two-hybrid (Y2H) screening. In 2005, the first generation of

Y2H-based human PPI network, HI-I-05, was introduced and included 2,700 high-quality

binary PPIs among 1,705 proteins (Stelzl et al. 2005; Rual et al. 2005). In 2014, the sec-

ond generation of Y2H-based human PPI network, HI-II-14, was released (Rolland et al.

2014). This time 13,944 PPIs were identified among 4,303 proteins. Both HI-I-05 and HI-

II-14 can be downloaded (http://interactome.dfci.harvard.edu/H_sapiens/). In addition

to the Y2H system, affinity-purification mass spectrometry (AP-MS) is also developed to

profile PPIs in human cells (e.g. human HEK293T (Huttlin et al. 2015)). Compared to

Y2H which is mainly used to identify binary interactions between two proteins, AP-MS is

more focusing on deciphering the composition of protein complexes. The third resource of

the human PPI network is the computational prediction, in which machine learning algo-

rithms are applied to calculate the likelihood of interactions between two proteins based

on the known interactions in the databases (Table 6.2). STRING (Search Tool for the Re-

trieval of Interacting Genes, http://string-db.org/) (Snel et al. 2000) is such a web-server

including known and predicted protein interactions of over 2,000 organisms. In addition to

STRING, databases, such as PIPs (http://www.compbio.dundee.ac.uk/www-pips/) (Mc-

Dowall, Scott, and Barton 2009) and hPRINT (human Predicted Protein Interactome)

(Elefsinioti et al. 2011) also predict PPIs without priori experimental evidence. The

hPRINT results can be retrieved in STRING as well (Franceschini et al. 2013).

Human proteome studies have shown distinct proteome profiles in different cell and tis-
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sue types (Kim et al. 2014; Uhlén et al. 2015). This makes it necessary to specify

PPI networks in the target cell and tissue (Schaefer et al. 2013). TissueNet database

(http://netbio.bgu.ac.il/tissuenet/) provides such context-specific PPI networks for 16

human tissues (Barshir et al. 2013). A generalized way to construct such context-specific

PPI networks is introduced by Magger et al. (Magger et al. 2012), who developed a

specific algorithm integrating context-specific gene expression data (proteomics or tran-

scriptomics). Gene expression data are used to assess the probability of PPIs in the

generic PPI network. If a gene is not expressed, the algorithm can either remove the gene

from the generic PPI network or reduce the weight of the interactions associated with the

gene.

6.5.2.1 What are PPI networks used for?

Human PPI networks are used to identify genes, proteins and subnetworks associated with

diseases (Sevimoglu and Arga 2014). They are also used to systematically characterize PPI

network perturbations associated with disease mutations. The PPI network perturbations

include complete loss of gene products or alteration of PPI arrangement (Zhong et al.

2009; Sahni et al. 2013).

6.5.3 What has come out?

Goehler et al. (Goehler et al. 2004) generated a PPI network for Huntington’s disease by

using the Y2H. From there, they identified GIT1, a G protein-coupled receptor kinase-

interacting protein, which directly interacts with huntingtin and turns out to enhance

huntingtin aggregation. Based on the generic human PPI network derived from HPRD

(Human Protein Reference Database) (Keshava Prasad et al. 2009), Jia et al. (Jia and

Zhao 2014) focused on PPI subnetworks that contain multiple genes frequently mutated

in lung adenocarcinoma and melanoma patients. The results showed that the driver

mutations interrupted the PPIs that are involved in signaling pathways (e.g. EGF receptor

signaling pathway) and biological processes (e.g. DNA repair systems) (Jia and Zhao

2014). Based on the Y2H protein interaction assays, Sahni et al. (Sahni et al. 2015)

reported that common SNPs from healthy subjects rarely affected PPIs, but around 60%

of human disease-associated missense mutations perturbed PPIs. Furthermore, they also

97

16460-Zhang_BNW.indd   106 23-04-19   22:31



Chapter 6

Table 6.2: Primary sources of protein-protein interactions
Name Link
HPRD http://www.hprd.org/
IntAct http://www.ebi.ac.uk/intact/
MINT http://mint.bio.uniroma2.it/mint/Welcome.do
DIP http://dip.doe-mbi.ucla.edu/dip/Main.cgi
BioGRID http://thebiogrid.org/
PDB http://www.rcsb.org/pdb/home/home.do

6.5.2 How are PPI networks generated?

There are three main resources of generic human PPI networks. The first resource is

from the literature mining. We listed six primary databases (Table 6.2) that store and

combine experimentally supported PPIs from small-scale studies. The second resource is

derived from large-scale yeast-two-hybrid (Y2H) screening. In 2005, the first generation of

Y2H-based human PPI network, HI-I-05, was introduced and included 2,700 high-quality

binary PPIs among 1,705 proteins (Stelzl et al. 2005; Rual et al. 2005). In 2014, the sec-

ond generation of Y2H-based human PPI network, HI-II-14, was released (Rolland et al.

2014). This time 13,944 PPIs were identified among 4,303 proteins. Both HI-I-05 and HI-

II-14 can be downloaded (http://interactome.dfci.harvard.edu/H_sapiens/). In addition

to the Y2H system, affinity-purification mass spectrometry (AP-MS) is also developed to

profile PPIs in human cells (e.g. human HEK293T (Huttlin et al. 2015)). Compared to

Y2H which is mainly used to identify binary interactions between two proteins, AP-MS is

more focusing on deciphering the composition of protein complexes. The third resource of

the human PPI network is the computational prediction, in which machine learning algo-

rithms are applied to calculate the likelihood of interactions between two proteins based

on the known interactions in the databases (Table 6.2). STRING (Search Tool for the Re-

trieval of Interacting Genes, http://string-db.org/) (Snel et al. 2000) is such a web-server

including known and predicted protein interactions of over 2,000 organisms. In addition to

STRING, databases, such as PIPs (http://www.compbio.dundee.ac.uk/www-pips/) (Mc-

Dowall, Scott, and Barton 2009) and hPRINT (human Predicted Protein Interactome)

(Elefsinioti et al. 2011) also predict PPIs without priori experimental evidence. The

hPRINT results can be retrieved in STRING as well (Franceschini et al. 2013).

Human proteome studies have shown distinct proteome profiles in different cell and tis-

96

Chapter 6
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PPI networks is introduced by Magger et al. (Magger et al. 2012), who developed a
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Human PPI networks are used to identify genes, proteins and subnetworks associated with
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include complete loss of gene products or alteration of PPI arrangement (Zhong et al.

2009; Sahni et al. 2013).
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Zhao 2014) focused on PPI subnetworks that contain multiple genes frequently mutated
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signaling pathway) and biological processes (e.g. DNA repair systems) (Jia and Zhao
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reported that common SNPs from healthy subjects rarely affected PPIs, but around 60%

of human disease-associated missense mutations perturbed PPIs. Furthermore, they also
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noticed that different mutations in the same gene can influence different PPIs.

6.5.4 Strengths and weaknesses

Unlike the ARACNe-inferred GRNs, in which the interactions are statistically inferred

from the gene expression levels, PPI networks derived from the literature or Y2H screening

are experimentally supported. Therefore, perturbations in PPI networks can be used with

confidence to elucidate the molecular basis of diseases as described in the examples given

above.

A weakness of the PPI networks is incomplete coverage. According to the up-to-date

GENCODE release 23, there are 19,797 protein-coding genes in the human genome. The

number of genes covered by the most comprehensive human PPI network, HI-II-14 (Rol-

land et al. 2014), is only 3,146 which suggests that there is still a long way to go. In

addition, PPIs are often evaluated under unphysiological conditions, leading to false posi-

tive and negative PPIs included in generic PPI networks (Schaefer et al. 2013). Kuchaiev

et al. (Kuchaiev et al. 2009) reported that the false positive and negative rate of Y2H

could be as high as 64% and 71%, respectively.

6.6 Genome-scale metabolic models

6.6.1 What are genome-scale metabolic models?

Metabolites are implicated in maintenance of cellular functions and production of building

blocks (e.g. purines and pyrimidines) for macromolecular biosynthesis. Computational

biologists have reconstructed all metabolic reactions into one large network and name it

“genome-scale metabolic model”. GEMs and GSMMs are typically used as abbreviations

in the literature.

6.6.2 How are GEMs generated?

In general, GEMs are constructed by using enzyme-mediated reactions, transporters and

intermediary metabolites (Bordbar et al. 2014). The first landmark studies in this field

98

Chapter 6

emerged in 2007 when Recon1 (Duarte et al. 2007) and EHMN (Edinburgh Human

Metabolic Network) (Ma et al. 2007) were manually reconstructed based on genomic and

experimental data in the literature. These two human metabolic networks were merged

into the HMR (Human Metabolic Reaction) database (Agren et al. 2012). In 2010, a

human hepatocyte-specific metabolic network, HepatoNet1, was reconstructed based on

experimental evidence for presence of metabolic reactions in human hepatocytes (Gille et

al. 2010). The experimental evidence was manually curated based on information from

over 1,500 scientific articles. In 2013, the continuing development of Recon1, EHMN,

and HepatoNet1 leads to the release of Recon2 (Thiele et al. 2013). A year later, an-

other reconstruction of human hepatocyte-specific metabolic network, iHepatocytes2322,

together with a new release of the Human Metabolic Reaction database, HMR2, were

published (Mardinoglu et al. 2014).

Recon2 (Thiele et al. 2013) and HMR2 (Mardinoglu et al. 2014) represents all current

knowledge of global human metabolism. Since different cell/tissue types may harbor

synonymous enzymes to catalyze the same reaction and different metabolic pathways may

result in the same product (Uhlén et al. 2015), it is important to reconstruct cell/tissue

type specific GEMs to characterize the metabolism of target cells and tissues. For this

purpose, algorithms, such as tINIT (task-driven Integrative Network Inference for Tissues)

(Agren et al. 2014), GIMME (Gene Inactivity Moderated by Metabolism and Expression)

(Becker and Palsson 2008), and mCADRE (metabolic Context-specificity Assessed by

Deterministic Reaction Evaluation) (Wang et al. 2012) are used to generate cell/tissue

type specific GEMs from the generic GEMs (e.g. Recon2 or HMR2). These algorithms use

abundances of transcripts and proteins to estimate the probability of presence of enzymes

in the generic GEMs. We refer readers to an excellent review (Machado and Herrgård

2014) for more details on the differences between the various algorithms.

6.6.3 What are GEMs used for?

Human GEMs, especially cell/tissue type specific GEMs, are mainly used as scaffolds

to analyze transcriptomics data obtained from patient samples, in order to identify the

metabolic pathways and metabolite biomarkers that are related to disease pathogenesis.
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6.6.4 What has come out?

Using the tINIT algorithm with proteomics and transcriptomics data of human my-

ocytes, Varemo et al. (Väremo et al. 2015) reconstructed a myocyte-specific GEM,

iMyocytes2419, which made it possible to reveal that type 2 diabetes patients show ex-

tensive transcriptional changes in reactions involved in pyruvate oxidation, branched-chain

amino acid catabolism, and tetrahydroflate metabolism. Mardinoglu et al. (Mardinoglu

et al. 2014) applied iHepatocytes2322 and their previously developed Reporter Metabo-

lite algorithm (Patil and Nielsen 2005) to analyze transcriptomics data of patients with

non-alcoholic fatty liver disease, and identified that concentrations of chondroitin and

heparan sulphates may represent novel biomarkers for diagnosing non-alcoholic steato-

hepatitis. Similar GEM-based analyses have been performed to study diseases such as,

Alzheimer’s disease (Lewis et al. 2010), obesity (Mardinoglu et al. 2013), and cancer

(Agren et al. 2014; Yizhak et al. 2014).

6.6.5 Strengths and weaknesses

In our opinion, the major advantage of GEMs is that it allows to study global metabolic

flux distributions. The rate of the metabolic reactions in a pathway (metabolic flux) is

determined by many aspects, such as protein concentration, protein interaction (signal

transduction), enzyme kinetics and metabolite concentrations (Winter and Krömer 2013).

Therefore, metabolic fluxes can be considered as the ultimate outcome of cellular regu-

lation at different levels (Nielsen 2003). When listing all the reactions as well as their

corresponding flux values under a particular condition, one can construct a metabolic flux

distribution that represents a particular cellular phenotype in detail.

Currently, 13C stable isotope labeling is the most popular experimental method to measure

in vivo fluxes (Blank and Ebert 2013). By performing 13C fluxomic experiments, Murphy

et al. (Murphy, Dang, and Young 2013) noticed that different levels of oncoprotein MYC

can induce distinct metabolic flux distributions in P493-6 B cells. They showed that high

MYC cells relied more heavily on amino acids and mitochondrial oxidative metabolism

than low MYC cells. 13C fluxomics also revealed distinct metabolic flux distributions in

different cell lines. Niklas et al. (Niklas, Sandig, and Heinzle 2011) reported that human

neuronal AGE1.HN cells had lower flux rates (around 2.3% of the glucose uptake flux)
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in the pentose phosphate pathway than other cell lines, such as HEK-293 cells (15%)

and hybridoma cells (20%). These 13C fluxomic studies illustrate that various biological

conditions can induce distinct metabolic flux distributions.

However, 13C fluxomics cannot deliver us a complete picture of flux distributions in the

metabolic network, since only a small number of reactions can be measured. Here, GEMs

provide a means to estimate metabolic flux distributions under different conditions relying

on a limited number of exchange fluxes, i.e. fluxes of substrates entering the cells and the

fluxes of metabolites that are secreted from the cells. It is beyond the scope of this review

to explain the related mathematical theory, but we recommend the article by Rossell et

al. (Rossell et al. 2011), in which they formulated how to compute complete set of fluxes

from the exchange fluxes.

Bordel et al. (Bordel, Agren, and Nielsen 2010) introduced a random sampling method

which can calculate means and standard deviations for each flux in the GEM under dif-

ferent experimental conditions, when a limited number of measurements of exchange

fluxes are given. By integrating changes in gene expression between different condi-

tions, metabolic reactions can be classified as either transcriptionally regulated (significant

changes in both flux and gene expression levels), post-transcriptionally regulated (signifi-

cant changes in gene expression levels but not flux), or metabolically regulated (significant

changes in flux but not gene expression levels). This random sampling method was ap-

plied together with the adipocyte-specific GEM, iAdipocytes1809, and helped identifying

the fluxes of glucose uptake, fatty acids uptake, oxidative phosphorylation, mitochondrial

and peroxisomal β-oxidation, fatty acid metabolism and tricarboxylic acid cycle as be-

ing differentially down regulated in obese subjects (Mardinoglu et al. 2013). Gavai et

al. (Gavai et al. 2015) developed a novel algorithm called Lsei-FBA (Lesat-squares with

equalities and inequalities Flux Balance Analysis), and identified the fluxes of glycolysis

and oxygen uptake as being decreased in brains of Alzheimer’s disease patients (29% and

46%, respectively) compared to healthy subjects. Similar to the random sampling method,

Lsei-FBA also requires tissue-specific GEMs, and measurements of gene expression as well

as exchange fluxes.

The second biggest advantage of GEMs is that up to now it is currently the only plat-

form that can integrate genomics, transcriptomics, proteomics, metabolomics, and flux-

omics data. Yizhak et al. (Yizhak et al. 2010a) integrated quantitative proteomics and
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metabolomics with a GEM of the human erythrocyte, and predicted metabolic flux dis-

tributions in red blood cells. The flux distribution predictions were found to be consistent

with the simulations made by a detailed kinetic model of human red blood cells. Bordbar

et al. (Bordbar et al. 2012) analyzed transcriptomics, proteomics, and metabolomics

data sets of LPS-stimulated RAW 264.7 cells with a GEM of the RAW 264.7 cell line, and

identified a suppressive role for de novo nucleotide synthesis in macrophage activation.

Last but not the least, it has been shown by Uhlen et al. (Uhlén et al. 2015) that

the minimum requirement of generating a cell/tissue type specific GEM is a single RNA

sequencing profile.

Naturally, GEMs also have their limitations. First of all, although novel metabolite

biomarkers for various diseases have been predicted by using cell/tissue type specific

GEMs, few of them have been validated in humans, because of either technical limitation

of measuring the metabolites in question or difficulty of accessing the patient materials.

Secondly, since GEMs focus on metabolic enzyme-coding genes, reactions and pathways,

GEMs cannot be used to study signal transduction pathways. Lastly, GEMs do not

contain detailed kinetics of enzymes and produce metabolic flux distributions only under

steady state conditions.

6.7 The future of individualized medicine

6.7.1 Role for GRNs

Regarding individualized medicine, longitudinal transcriptomics derived from cells/tissues

of an individual including healthy and diseased states are the ideal resources to assem-

ble an individualized GRN. Zoppoli et al. (Zoppoli, Morganella, and Ceccarelli 2010)

introduced TimeDelay-ARACNe to infer GRNs specifically from time-course data. Such

ARACNe-inferred GRN provides a personalized map, with which one can locate the ge-

netic mutations identified in the one-dimensional genome sequences in a multi-dimensional

network. By integrating gene differential expression information between healthy and

diseased states, one can also identify the crucial transcription factors controlling the phe-

notype transition. Taken together with the network location information, one can make
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the most of the personal genomic information and further prioritize the damaging effect

of genetic mutations.

6.7.2 Role for PPI networks

PPI networks are proposed playing a role in buffering the impact of genetic mutations and

environmental challenges (Forler, Klein, and Klose 2014; Garcia-Alonso et al. 2014). This

opinion has been investigated by Garcia-Alonso et al. (Garcia-Alonso et al. 2014), who

built up a human PPI network by merging generic PPI networks derived from three public

databases (BioGRID (Stark et al. 2006), IntAct (Orchard et al. 2014), and MINT (Licata

et al. 2012)). They used the reconstructed PPI network to study the effect of genetic

variants predicted to be deleterious in the subjects participating in the 1000 Genomes

Project, 252 healthy Spanish individuals, and 41 chronic lymphocytic leukemia patients.

Interestingly, most of the potentially damaging genetic variants in healthy individuals

were located in peripheral regions of the PPI network and did not really perturb the

structure of the PPI network. However, when investigating the somatic variants that

were predicted to be deleterious in chronic lymphocytic leukemia patients, they noticed

that these mutations tended to be in internal regions of the PPI network. The above

study indicates that PPI networks can help to identify whether genetic variants may be

disrupting PPIs and hence may be important in explaining diseases.

6.7.3 Role for GEMs

GEMs have already been used successfully for individualized medicine. Argen et al.

(Agren et al. 2014) reconstructed personalized GEMs for 6 hepatocellular carcinoma pa-

tients based on proteomics data, and used these models to identify potential anticancer

drug targets for the individual patients. Yizhak et al. (Yizhak et al. 2014) reconstructed

personalized GEMs for breast and lung cancer patients based on gene expression mea-

surements obtained from biopsy samples. These personalized GEMs were used to predict

the cancer cell growth rate, which was used to infer patient survival.

For successful individualized medicine, it should be realized that it is important to inte-

grate information of cell/tissue type specific GEMs, in an attempt to capture whole-body
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metabolism. Urine, plasma, and serum are the most common samples from human sub-

jects for diagnostic purpose (Nicholson et al. 2012). Metabolic measurements based on

these samples are the results of the crosstalk of many organs and can be regarded as

serving the readouts of whole-body metabolism.

Bordbar et al. (Bordbar et al. 2011) build a multi-tissue GEM by integrating adipocyte,

hepatocyte and myocyte-specific GEMs via a blood compartment. The assembled multi-

tissue GEM was used to study the metabolic differences between non-type 2 diabetes

obese and type 2 diabetes obese individuals. They reported that type 2 diabetes obese

individuals lack activity in reactions catalyzed by lactate dehydrogenase, catalase and

cysteine dioxygenase, comparing to the non-type 2 diabetes obese subjects. Besides in-

tegrating metabolism of different tissues and cells, the human gut microbiome is also

considered important for whole-body metabolism (Mardinoglu and Nielsen 2015). Shoaie

et al. (Shoaie et al. 2015) reconstructed five GEMs for five representative bacteria in

the human gut, including Bacteroides thetaiotanmicron, Eubacterium rectale, Bifidobac-

terium adolescentis, Faecalibacterium prausnitzii, and Ruminococcus bromii. These GEMs

were used to study 45 overweight and obese individuals who were subjected to an energy-

restricted, high-protein diet intervention for 6 weeks. The authors reported that the diet

intervention decreased the gut microbiota production of short chain fatty acids (acetate,

butyrate, and propionate) and amino acids (e.g. alanine, proline and glycine etc.).

6.8 Concluding remarks

Due to the central role of the interactome in cellular functions, we think that the roadmap

of individualized medicine is moving from human genomes to interactomes. However, con-

struction of a complete human interactome is extremely complex and it might take at least

another decade (Menche et al. 2015). This review shows that GRNs, PPI networks, GEMs

can characterize part of the interactome in cells. Integrating different type of networks

may contribute to better understanding of the interactome, and ultimately realizing true

individualized medicine.
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This dissertation focused on statistical analyses of high dimensional data in biomedical

research. We attempted to show that statistical analysis is a construction process with a

series of component decisions. From my perspective, components in statistical analyses

include data, prior knowledge as well as statistical methods.

7.1 Data

Current biomedical research is data intensive. But what are data? Surprisingly this can

be a question with multiple answers. For a clinician, data are spreadsheets in their SPSS

workspace. For a biologist, data can be images of PCR or western blot, as well as figures

in publications or slides. For machine learning engineers, data are anything with numeric

values. In this dissertation, we refer to quantitative measurements as data. Particu-

larly, we focused on high dimensional data generated by high-throughput technologies. I

highlighted two aspects of these data that are important for any subsequent data analysis.

7.1.1 Technology underlying measurements matters

Until now, no single technology can measure all molecules. Genomics, epigenomics and

transcriptomics analyse nucleic acids and rely on sequencing or array technologies. Pro-

teomics and metabolomics are dependent on mass spectrometry or NMR technologies.

Depending on technologies, measurements can have different physical meaning. For ex-

ample, microarray uses fluorescence signal values to represent gene expression levels, and

can have non-zero values even though a gene does not express (Zilliox and Irizarry 2007).

Next generation sequencing is another popular technology for gene expression quantifi-

cation. Measurements made by sequencing technologies represent the number of times

each RNA is observed in each sample. Because gene expression values given by these two

technologies have different physical meaning, different statistical models are used for data

analysis.

More specifically, linear regression is often used to analyze microarray-based gene expres-

sion data, whereas generalized linear models (e.g. negative binomial regression) are used

to analyze sequencing-based gene expression data.

In addition to different physical meaning, different technologies can give very different
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values when we measure the same variable. For example, in chapter 3 the concentrations

of circulating apolipoprotein B, LDL and HDL cholesterol were measured by clinical

chemistry and the Nightingale metabolomics platform. Although the two technologies

gave very similar HDL cholesterol measurements, a clear discrepancy in apoB and LDL

cholesterol concentrations was observed. According to the LDL cholesterol concentration

measured by clinical chemistry, all the subjects are hypercholesterolemic. However, based

on the LDL cholesterol concentration made by the Nightingale metabolomics platform,

none of them have hypercholesterolemia.

7.1.2 Batch effects and missing values

Sometimes biological samples were collected by different laboratories and processed by

different people. In that case, we had to combine data from different sources. In chap-

ter 4, we analyzed metabolomics data derived from subjects with European, Ghanaian

and African Surinamese background. These participants were from two cohort studies

with different times of sampling and measurement. Although all plasma samples of these

participants were profiled by the same metabolomics platform and the data sets looked

compatible with each other, we could not directly compare metabolite variables between

ethnic groups. This was because values of metabolite concentrations were not only in-

fluenced by ethnic backgrounds, but also affected by batch effects including laboratory

conditions and different personnel. If we ignore the batch effects, we could be easily mis-

guided by the false positives. To bypass this hurdle, we ran regression analyses to evaluate

relationships between HbA1c levels and circulating metabolites within each ethnic group

and compared the associations across ethnic groups qualitatively.

In the same study, we applied a Bayesian approach when we ran the regression analyses.

This was because the data set contained missing values. There were two types of missing

values: 1) when the concentration of a metabolite was below the limit of detection, or

2) when values were rejected by the automatic sample and measurement quality control

procedure in the Nightingale pipeline. The “standard” action in response to missing

data is to delete them. However, this action will almost certainly bias the results of

statistical analyses. Bayesian imputation is one of the ways to estimate missing values.

In the Bayesian framework, data are what we observed, whereas parameters are what
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we did not observe. Thus missing data were treated as parameters. Imputed values were

constrained between zero and the minimal observed value if the missing values were below

the limit of detection. We did not use this constraint for other type of missing values. I

should mention that there are other valid multiple imputation algorithms. Personally I

choose the Bayesian approach because it allows me to do missing value imputation and

parameter estimation simultaneously.

7.2 Prior knowledge

We consider prior knowledge as extra “data”. Prior knowledge is often well documented

in the introduction and discussion sections of research manuscripts, but often ignored in

the analysis of high-throughput omics data. Incorporation of prior knowledge can, how-

ever, provide better biological interpretation of statistical analysis outcomes (Reshetova

et al. 2014). In this dissertation, I showed that prior knowledge can be introduced into

the statistical analysis in various ways: 1) Prior knowledge was introduced in our anal-

ysis through biological databases. The KEGG pathway database and the genome-scale

metabolic model (e.g. HMR2) provide us with information of the genes that participate in

a particular pathway or that regulate the same metabolite. 2) Prior knowledge was also

the basis to motivate the choice of a statistical method. In chapter 3, our prior knowledge

that not all hypercholesterolemia cases were caused by known mutations in LDLR, APOB

and PCSK9, indicated to us that at least two subgroups in a cohort of 119 hypercholes-

terolemic females should exist. We ran hierarchical clustering analysis to discover these

subgroups using the metabolomics data. 3) Prior knowledge was introduced with prior

distributions. In chapter 4, based on a preceding study (Dekker et al. 2015) we specified

the prior distribution of HbA1c in Dutch population as a normal distribution with mean

value approximately 40 mmol/mol and standard deviation about 6 mmol/mol. This prior

was subsequently used as a basis of dealing with missing values. 4) Prior knowledge was

used as a probabilistic model. In chapter 5, we constructed a probabilistic model to mimic

the data generating process of human gut microbiome.

All these ways of introducing prior knowledge into statistical analyses have their limi-

tations. Various biological databases contain inconsistent information, requiring experi-

mental validations to evaluate the predictions based on the biological databases (Stobbe
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et al. 2011). Result of hierarchical clustering analysis can be affected by the choice of dis-

similarity measure, linkage statistic and decisions of cutting the dendrogram. Therefore,

extra theory and data are needed to evaluate such clustering results. Bayesian approaches

are often criticized for subjective prior distributions. In this thesis, we consider prior dis-

tributions as engineering components making Bayesian models running. Whenever we

have prior information for parameters, we intend to assign informative prior distribu-

tions. However, usually we could not assign informative prior distributions for all the

parameters. In chapter 4, we simply had no prior information for some parameters. For

other parameters, it was difficult to translate prior information into prior distributions.

In those scenarios, we used weakly informative priors, and applied prior predictive simu-

lations to evaluate the choice of prior distributions. (Gelman, Simpson, and Betancourt

2017) demonstrated that the prior can often only be understood in the context of the

likelihood. We confronted similar challenges when we constructed the generative model

to simulate human gut microbiome in chapter 5. We compared simulated data to the real

human gut microbiome data to make sure they had similar features.

7.3 Statistical methods

In this dissertation, we applied various statistical methods that were motivated by specific

research questions, data availability and prior knowledge. In this section, I would like

to point out that every statistical method has its own assumptions, and the choice of

statistical methods can affect the outcomes of analyses.

7.3.1 Assumptions

Assumptions in statistical methods can be either implicit or explicit. Implicit assumptions

are the ones implemented within a particular statistical software and often ignored by

users who run statistical programs. For example, diverse methods have been developed to

perform gene set enrichment analysis (Väremo, Nielsen, and Nookaew 2013b). Choosing

a specific gene set enrichment analysis method automatically decides two things: 1) how

to calculate the gene set summary statistics; 2) how to perform statistical inference.

Similarly, the default settings of hierarchical clustering analysis often use the Euclidean

111

16460-Zhang_BNW.indd   120 23-04-19   22:31



Chapter 7

we did not observe. Thus missing data were treated as parameters. Imputed values were

constrained between zero and the minimal observed value if the missing values were below

the limit of detection. We did not use this constraint for other type of missing values. I

should mention that there are other valid multiple imputation algorithms. Personally I

choose the Bayesian approach because it allows me to do missing value imputation and

parameter estimation simultaneously.

7.2 Prior knowledge

We consider prior knowledge as extra “data”. Prior knowledge is often well documented

in the introduction and discussion sections of research manuscripts, but often ignored in

the analysis of high-throughput omics data. Incorporation of prior knowledge can, how-

ever, provide better biological interpretation of statistical analysis outcomes (Reshetova

et al. 2014). In this dissertation, I showed that prior knowledge can be introduced into

the statistical analysis in various ways: 1) Prior knowledge was introduced in our anal-

ysis through biological databases. The KEGG pathway database and the genome-scale

metabolic model (e.g. HMR2) provide us with information of the genes that participate in

a particular pathway or that regulate the same metabolite. 2) Prior knowledge was also

the basis to motivate the choice of a statistical method. In chapter 3, our prior knowledge

that not all hypercholesterolemia cases were caused by known mutations in LDLR, APOB

and PCSK9, indicated to us that at least two subgroups in a cohort of 119 hypercholes-

terolemic females should exist. We ran hierarchical clustering analysis to discover these

subgroups using the metabolomics data. 3) Prior knowledge was introduced with prior

distributions. In chapter 4, based on a preceding study (Dekker et al. 2015) we specified

the prior distribution of HbA1c in Dutch population as a normal distribution with mean

value approximately 40 mmol/mol and standard deviation about 6 mmol/mol. This prior

was subsequently used as a basis of dealing with missing values. 4) Prior knowledge was

used as a probabilistic model. In chapter 5, we constructed a probabilistic model to mimic

the data generating process of human gut microbiome.

All these ways of introducing prior knowledge into statistical analyses have their limi-

tations. Various biological databases contain inconsistent information, requiring experi-

mental validations to evaluate the predictions based on the biological databases (Stobbe

110

Chapter 7

et al. 2011). Result of hierarchical clustering analysis can be affected by the choice of dis-

similarity measure, linkage statistic and decisions of cutting the dendrogram. Therefore,

extra theory and data are needed to evaluate such clustering results. Bayesian approaches

are often criticized for subjective prior distributions. In this thesis, we consider prior dis-

tributions as engineering components making Bayesian models running. Whenever we

have prior information for parameters, we intend to assign informative prior distribu-

tions. However, usually we could not assign informative prior distributions for all the

parameters. In chapter 4, we simply had no prior information for some parameters. For

other parameters, it was difficult to translate prior information into prior distributions.

In those scenarios, we used weakly informative priors, and applied prior predictive simu-

lations to evaluate the choice of prior distributions. (Gelman, Simpson, and Betancourt

2017) demonstrated that the prior can often only be understood in the context of the

likelihood. We confronted similar challenges when we constructed the generative model

to simulate human gut microbiome in chapter 5. We compared simulated data to the real

human gut microbiome data to make sure they had similar features.

7.3 Statistical methods

In this dissertation, we applied various statistical methods that were motivated by specific

research questions, data availability and prior knowledge. In this section, I would like

to point out that every statistical method has its own assumptions, and the choice of

statistical methods can affect the outcomes of analyses.

7.3.1 Assumptions

Assumptions in statistical methods can be either implicit or explicit. Implicit assumptions

are the ones implemented within a particular statistical software and often ignored by

users who run statistical programs. For example, diverse methods have been developed to

perform gene set enrichment analysis (Väremo, Nielsen, and Nookaew 2013b). Choosing

a specific gene set enrichment analysis method automatically decides two things: 1) how

to calculate the gene set summary statistics; 2) how to perform statistical inference.

Similarly, the default settings of hierarchical clustering analysis often use the Euclidean
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distance as the measure of similarity between each pair of samples, and complete linkage

as dissimilarity quantify for each pair of groups. But default settings are not necessarily

the proper settings for our purpose. We need to make our choices depending on the

situations. In contrast to the implicit assumptions, the likelihood and prior distributions

required by Bayesian regression models as well as the generative model for simulating

human gut microbiome forced us to explicitly state all the assumptions.

7.3.2 Choice of statistical methods matters

Assumptions are part of statistical methods. In chapter 5, we used four methods that

are based on Poisson, negative binomial, zero-inflated Gaussian distributions, as well

as a weighted linear regression model to evaluate associations of nutrition intake with

microbial abundances. We showed that choosing different statistical methods can lead to

large differences in the outcomes of diet-microbe associations. Furthermore, a particular

statistical method can generate a number of significant associations that are not identified

by other statistical methods. “Which method should we choose?” is the immediate

question from many scientists. In order to answer the question, we simulated a large

number of microbiome data sets with known associations between microbial abundance

and dietary intake. Based on the simulations, we realized that no statistical method was

optimal for all microbiome data. In order to control false discovery rate, the best thing we

can do is to run all eligible methods and focus on the results that are robust to the choice

of statistical methods. “Why no statistical method is optimal?”. This is a challenging

question. “All models are wrong but some are useful.” by George Box is taught in every

school. Our measurements are noisy, and often not derived from any pure process assumed

by statistical models. Therefore, all statistical models have to omit something, but what

is omitted could be necessary for making useful and correct inferences.

7.4 Future perspective

The research examples in the dissertation focused on data analysis of single type omics,

such as transcriptomics (chapter 2), metabolomics (chapter 3 and 4) and gut microbiome

(chapter 5). These analyses of single omics data were limited to evaluate associations.
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Chapter 7

To reveal causal mechanistic information, integration across multiple omics data was

suggested as the next step (Hasin, Seldin, and Lusis 2017). In chapter 6, we discussed three

systems biology platforms for multi-omics integration. These systems biology platforms

include gene regulatory networks, protein-protein interaction networks and genome-scale

metabolic models. From my perspective, in addition to multi-omics data we also need

to study biological systems under multiple conditions. Why? Different conditions can

trigger different biological pathways in the same biological system. For example, plasma

branched-amino acids (BCAAs) are well-known to be associated with insulin resistance.

However, feeding animals with chow diet plus BCAAs did not cause insulin resistance

(Newgard 2012). In contrast, feeding animals with high fat diet plus BCAAs did induce

insulin resistance (Newgard 2012). A strategy to create such a compendium of conditions

is to use chemical compounds (e.g. statin and LPS) with known biological targets and

effects (O’Neill, Kishton, and Rathmell 2016).

Current statistical analysis in biomedical research relies heavily on methods such as statis-

tical tests (e.g. t test), generalized linear models (e.g. linear regression) and multivariate

methods (e.g. principal component analysis). These statistical techniques are very use-

ful for discovery of relationships between variables but often ignore the underlying data

generating processes. From my perspective, statistical models should contain more com-

ponents motivated by biological knowledge or assumptions. Such statistical models will

boost our understanding of biological mechanisms underlying a phenotype or disease. But

we need to take into account the limitation of our knowledge. A fine example is the case

of systems biology. Traditionally, systems biology uses ordinary differential equations to

describe a biological system, such as glycolysis, pentose phosphate pathway and TCA cy-

cle. However, this traditional systems biology modeling approach is often hampered by a

large number of parameters with unknown values. As a result, an optimization algorithm

is often used to estimate the parameters based on the experimental data. To take care

of the uncertainties in parameters, a Bayesian approach was introduced (Vanlier et al.

2012). This is an important improvement although currently the model is computation-

ally expensive and limited to a single biological pathway. It is a promising development,

however, and I think the Bayesian approach should be further developed.

A second limitation of the traditional systems biology modeling approach is ignorance of

heterogeneity between biological systems. To account for heterogeneity, the deterministic
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differential equations model needs to be incorporated into a multi-level model or extended

into a stochastic differential equations model (Székely and Burrage 2014). These exten-

sions will make systems biology modeling even more computationally expensive. But the

increased reality of the models make it worthwhile to consider this direction.

114

Summary

This dissertation discusses translating data obtained in biomedical research into knowl-

edge through statistical analysis. To make the best inference based on collected data and

prior knowledge, one needs to make a series of decisions during statistical analysis.

In chapter 1 we introduce high dimensional data such as transcriptomics, metabolomics

and gut microbiome. We then highlight statistical analysis strategies such as permutation,

quantification of similarities, Bayesian imputation and statistical simulation. In the end,

we outline four research examples regarding inflammation, hypercholesterolemia, type 2

diabetes and microbe-diet associations.

In chapter 2 we discuss the first research example, in which gene expression data of

peripheral blood mononuclear cells (PBMCs) challenged by four pathogenic agents were

analyzed. By running gene set enrichment analysis in the context of either a human

genome-scale metabolic model or a biological database, we identified metabolic biomarkers

that discriminate different pathogenic stimulations.

In chapter 3 we discuss the second research example, in which plasma metabolomics

data of 119 hypercholesterolemic females were analyzed. By running hierarchical clus-

tering analysis, we showed that hypercholesterolemic subjects with and without known

mutations had different plasma metabolomic profiles. Furthermore, we showed that the

combination of metabolomics and genetic sequencing data can help us better understand

the hypercholesterolemic cases without defined genetic mutations.

In chapter 4 we discuss the third research example, in which plasma metabolomics data of

subjects with European, Ghanaian and African Surinamese background were analyzed. In
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order to answer the question “why subjects with African background are more vulnerable

to developing type 2 diabetes than subjects with European background?”, we performed

Bayesian regression analyses between HbA1c and plasma metabolites. We identified that

the relationship between HbA1c and circulating acetoacetate were different in subjects

with European and African background.

In chapter 5 we discuss the fourth research example, in which associations of gut micro-

biome with dietary intakes were analyzed. In this chapter, we showed that the choice

of statistical methods can induce bias in significant diet-microbe associations. By per-

forming a large number of simulation studies, we realized that no statistical method was

optimal for all microbiome data. In order to achieve the targeted false discovery rate, the

best we can do is to run multiple statistical analyses and focus on the significant results

identified by multiple methods.

In chapter 6 we discuss the multi-omics integration, the next step to achieve a holistic

picture of human phenotypes and disease. In this chapter, we discussed three systems

biology platforms for the task. These platforms include gene regulatory networks, protein-

protein interaction networks and genome-scale metabolic modeling.

In the last chapter (Chapter 7) we discuss “what are data in biomedical research?” and

“how can we introduce prior knowledge into statistical analysis?”. We then discuss the

future direction of developments in statistical methods.

116

Nederlandse samenvatting

Dit proefschrift behandeld het vertalen van data uit biomedisch onderzoek naar kennis

m.b.v. statistische analyse. Om de beste conclusie uit verzamelde data en bestaande

kennis te verkrijgen, dienen er logische keuzes gemaakt worden tijdens de statistische

analyse.

In hoofdstuk 1 introduceren we ‘high dimensional data’, zoals transcriptomics,

metabolomics en intestinale microbioom. Vervolgens worden er statistische analy-

ses uitgelicht, zoals permutation, quantification of similarities, Bayesian imputation

and statistical stimulation. Tenslotte worden er vier onderzoeken besproken die be-

trekking hebben tot inflammatie, hypercholesterolemie, diabetes mellitus type 2 en

microbe-dieetassociaties.

In hoofdstuk 2 bespreken we het eerste voorbeeld van onderzoek waarin de genexpressie

van perifere bloed mononucleaire cellen (PBMC) onder invloed van 4 pathogenen ge-

analyseerd werd. Door middel van een genset verrijkingsanalyse in de context van ofwel

een humaan metabool model op genoomschaal of een biologische database, vonden we

metabole biomarkers die de verschillende pathogene stimuli onderscheiden.

In hoofdstuk 3 bespreken we een tweede voorbeeld van onderzoek waarin het plasma

metaboloom van 119 vrouwen met hypercholesterolemie werd geanalyseerd. Door

het uitvoeren van een hiërarchische clusteranalyse lieten we zien dat hypercholes-

terolemiepatiënten met en zonder een bekende mutaties verschillende profielen in plasma

metaboloom hadden. Daarnaast lieten we zien dat de combinatie van metabolomics en

genomics ons kan helpen om hypercholesterolemie zonder duidelijke genetische mutaties
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beter te begrijpen.

In hoofdstuk 4 bespreken we een derde voorbeeld van onderzoek waarin het plasma

metaboloom van mensen met een Europese, Ghanese en Afrikaanse achtergrond geanaly-

seerd werd. Om de vraag “waarom zijn mensen van Afrikaanse afkomst gevoeliger voor het

ontwikkelen van type 2 diabetes dan mensen van Europese afkomst?” te beantwoorden,

hebben we een Bayesiaanse regressieanalyse tussen HbA1c en plasmametabolieten gedaan.

We stelden vast dat de relatie tussen HbA1c en circulerend acetoacetaat verschillend was

tussen mensen van Afrikaanse en Europeaanse afkomst.

In hoofdstuk 5 bespreken we een vierde voorbeeld van onderzoek waarin de associatie

tussen het intestinale microbioom en dieet werd geanalyseerd. In dit hoofdstuk laten

we zien dat de keuze voor de statistische methode bias kan introduceren in significante

dieet-microbioomassociaties. Door een groot aantal simulatiestudies uit te voeren, re-

aliseerden we dat geen enkele statische methode optimaal is voor alle microbioomdata.

Om de beoogde false discovery rate te behalen, is het aanbevolen om meerdere statistis-

che analyses uit te voeren en te focussen op de significante resultaten die door meerdere

methodes geïdentificeerd worden.

In hoofdstuk 6 bespreken we de integratie van multi-omics, de volgende stap in het verkri-

jgen van een holistisch beeld van humaan fenotype en ziekte. In dit hoofdstuk bedis-

cussieerden we drie systeembiologie platformen voor deze taak. Deze platformen omvat-

ten gen-regulatoire netwerken, eiwit-eiwitinteractie netwerken en metabole modellen op

een genoomschaal.

In het laatste hoofdstuk, hoofdstuk 7, bespreken we de vragen “wat zijn data in biomedisch

onderzoek?” en “hoe kunnen we bestaande kennis introduceren in een statistische anal-

yse?”. Vervolgens bediscussiëren we de toekomstige richting van ontwikkelingen in statis-

tische methodes.
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