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4. Density-dependent selection in one-sex stage-structured populations

Abstract

The study of eco-evolutionary dynamics is based on the idea that ecological and

evolutionary processes may operate on the same, or very similar, time scales, and

that interactions of ecological and evolutionary processes may have important con-

sequences. Here we develop a model that combines Mendelian population genetics

with nonlinear demography to create a truly eco-evolutionary model. We use the

vec-permutation matrix approach, classifying individuals by stage and genotype.

The demographic component is female dominant and density-dependent. The ge-

netic component includes random mating by stage and genotype, and arbitrary

effects of genotype on the demographic phenotype. Mutation is neglected. The

result is a nonlinear matrix population model that projects stage × genotype

dynamics. We show that the results can include bifurcations of population dy-

namics driven by the response to selection. We present analytical criteria that

determine whether one allele excludes the other or if they persist in a protected

polymorphism. The analysis is based on local stability analysis of the homozygous

boundary equilibria.

As an example, we use a density-dependent stage-classified model of the flour

beetle Tribolium castaneum. Our model permits arbitrary life-cycle complexity

and nonlinearity. Tribolium has developed resistance to the pesticide malathion

due to a dominant allele at a single autosomal locus. Using parameters reported

from laboratory experiments, we show that the model successfully describes the

dynamics of both resistant and susceptible homozygotes, and the outcome of a

selection experiment containing both alleles. Stability analysis of the boundary

equilibria confirms that the resistant allele excludes the susceptible allele, even in

the absence of malathion, agreeing with previously reported results.
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4.1 Introduction

4.1 Introduction

The demographic processes of birth and death drive changes in gene frequencies

and changes in population density and structure. Demography is therefore cen-

tral to understanding ecology and evolution, and eco-evolutionary analyses always

strive to incorporate the fundamental demographic processes of birth, death, and

development (e.g., Coulson et al. 2006; Metcalf and Pavard 2007). de Vries and

Caswell (2018a) recently introduced an eco-evolutionary framework that combines

matrix population models with basic Mendelian genetics. Here we use this frame-

work to explore density-dependent selection.

Density dependence occurs when the per-capita vital rates (rates of birth,

mortality, and development) depend on population size or density. Density de-

pendence may be negative or positive (Allee effects). In models that contain de-

mographic structure, “density” is a multivariate concept. Vital rates may depend

on the abundance of a particular stage or age class, or on a weighted density that

gives distinct weights to different stages rather than the total population density

(Caswell et al. 2004) . For example, density-dependent effects due to difficulty

in finding mates leads to fertilities that depend on the abundances or densities of

reproducing stages. Cannabilism is usually restricted to large individuals eating

smaller conspecifics, so density-dependent effects due to cannibalism are size- or

stage-specific. We will assume that genotypes can differ in age- or stage-specific

rates of development, survival, or fertility anywhere in the life cycle. Thus, we

assume that pleiotropic effects are the rule rather than the exception.

Early theoretical work on density-dependent selection (MacArthur 1962;

Roughgarden 1971) combined population genetics with unstructured ecologi-

cal models by writing genotype fitnesses as a function of genotypic densities.

MacArthur and Wilson (1967) and Roughgarden (1971) extended the logistic

equation to multiple competing genotypes, and showed that selection leads to

an increase in population density in a constant environment because only alleles

with heterozygote advantage in the carrying capacity can invade, leading to the

ideas of r and K selection. Charlesworth (1971) showed this is true for any fitness

function that decreases with population densities. Charlesworth (1994) used dis-

crete difference equations to model density-dependent selection in age-structured

populations. In this paper, we will incorporate age or stage structure by using

matrix population models rather than scalar difference equations.

In this paper we show how to construct a density-dependent Mendelian matrix

population model, based on genotype-specific demographic measurements. We

show how to use that model to project stage×genotype dynamics, and determine

analytical conditions that determine whether alleles will coexist in a genetic poly-
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4. Density-dependent selection in one-sex stage-structured populations

morphism, or if one or another allele will go to fixation. We apply the analysis to a

study of pesticide resistance in Tribolium beetles, a species that is a pest of stored

grain products. We investigate the effect of incomplete dominance on the speed

of invasion and on the outcome of invasion using evolutionary stability analysis in

Section 4.5.

4.2 Model Construction

Individuals are jointly classified by stage (1, . . . , ω), and by genotype (1, . . . , g).

Each genotype is characterized by a survival and transition matrix, and a matrix of

fertility rates. Both the transition matrices and the fertility matrices are assumed

to be density dependent. In this section, we will consider general density depen-

dence without specifying a functional dependence. In Section 4.3, we apply the

general results obtained to a specific model with density-dependent demographic

rates.

We make the important assumption of female demographic dominance, i.e. we

assume that enough males are always present to fertilize all the females and that

the number of offspring produced in a mating is not affected by the stage or geno-

type (i.e. the i-state) of the male. This assumption can be relaxed by introducing

a marriage function, but we do not explore that here. We also assume that males

and females have the same survival and transition rates, and that male and female

offspring are produced in equal proportions. These two assumptions imply that

the male and female genotype×stage population vectors remain equal provided

they start equal (de Vries and Caswell 2018b). Therefore we can use the female

vector as representative of both the male and the female populations, and we can

calculate allele frequencies in the breeding population from the female population

vector. These assumptions make it possible to model sexual reproduction in a

one-sex model.

For a single locus with 2 alleles, say A and a, we will identify genotypes 1, 2,

and 3 as AA, Aa, and aa, respectively. The population state vector is

ñ(t) =

 nAA(t)

nAa(t)

naa(t)

 . (4.1)

where, e.g., nAA contains the numbers or densities of stages 1, . . . , s for genotype

AA.

The matrices, vectors and mathematical operations used in this paper are listed

in Table 4.1.
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4.2 Model Construction

Symbol Definition Dimension
a Number of alleles (2)
g Number of genotypes (3)
ω Number of stages
N Total population size
Nb Breeding population size
ci Indicator vector for breeding stages in genotype i ω × 1
ñ Joint stage-genotype vector ωg × 1
p̃ Joint stage-genotype frequency vector ωg × 1
pi Genotype frequency vector in genotype i g × 1
p′i Genotype frequency vector of offspring of genotype i g × 1
qi Gene frequency vector in genotype i a× 1
q Gene frequency vector in gametes a× 1
Iω Identity matrix ω × ω
1g Vector of ones g × 1
ei The ith unit vector, with a 1 in the ith entry and various

zeros elsewhere.
Eij A matrix with a 1 in the (i,j) position, and various

zeros elsewhere.
⊗ Kronecker product
vecX The vec operator, which stacks the columns of

an m× n matrix X
into a mn× 1 vector.

Ui Demographic transitions for genotype i ω × ω
Fi Fertility matrix for genotype i ω × ω
F′i Male mating success matrix for genotype i ω × ω
Di Genotype transitions for stage i g × g
Hi (ñ) Parent-offspring genotype map for stage i g × g

Table 4.1: Mathematical notation used in this paper. Dimensions of vectors and
matrices are given where relevant.

The population vector ñ is projected from time t to time t + 1 by a denisty-

dependent matrix Ã (ñ), so that

ñ(t+ 1) = Ã (ñ) ñ(t), (4.2)

=
[
Ũ (ñ) + F̃ (ñ)

]
ñ(t) (4.3)

where Ũ describes survival and transition rates and F̃ describes the generation of

new individuals by reproduction. The projection matrix Ã depends on ñ because

of genetics (the genotypes of offspring depend on gene frequencies of parents)

and because of ecological nonlinearities due to density dependence. The genetic

component of the model depends on the normalized population distribution vector,
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4. Density-dependent selection in one-sex stage-structured populations

p̃(t), defined as

p̃(t) =
ñ(t)

‖ñ(t)‖
. (4.4)

The normalized population distribution vector consists of three genotype-specific

population vectors:

p̃(t) =

 pAA(t)

pAa(t)

paa(t)

 . (4.5)

The components of the projection matrix

The projection matrix is constructed from two sets of matrices describing de-

mographic transitions for each genotype, and one set of matrices describing the

parent-offspring map for each stage:

Ui (ñ) demographic transitions for females of genotype i, i = 1, . . . g ω × ω
Fi (ñ) fertility matrix for females of genotype i, i = 1, . . . , g ω × ω
Hj (ñ) parent-offspring map for stage j, j = 1, . . . , s g × g

The matrix Ui (ñ) contains the stage-specific (density-dependent) transition and

survival rates for females of genotype i. The matrix Fi (ñ) contains stage-specific

(density-dependent) fertility rates for females of genotype i. The matrices Hj (ñ)

map the genotype of a mother in stage j to the genotypes of her offspring. The

(k, `) entry of Hj is the probability that the offspring of a genotype ` mother,

of stage j, has genotype k. We assume that mating is random with respect to

stage and hence that the parent-offspring map is the same for all stages, i.e.

Hj (ñ) = H (ñ) (assortative mating by stage would lead to differences among the

Hj). The matrix H (n) is discussed in the next section. The model also formally

contains matrices describing the transitions of individuals among genotype classes

for each age or stage (Caswell et al. 2018), but since individuals do not change

genotypes these are identity matrices.

Mating: from genotypes of parents to genotypes of offspring1.

Non-reproductive (e.g., immature) stages play no role in mating, so we define the

breeding population by an indicator vector cj , for j = 1, . . . , g, that shows which

stages of genotype j take part in mating. The ith entry of cj is 1 if stage i of

genotype j reproduces, and 0 otherwise. The size of the breeding population is

then

Nb =

g∑
i=1

(
eT
i ⊗ cT

i

)
ñ, (4.6)

1Based on de Vries and Caswell (2018a)
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4.2 Model Construction

where ei is a vector (g × 1) with a 1 in position i and zeros elsewhere, and ⊗
indicates the Kronecker product. Breeding stages are allowed to differ among

genotypes, in order to study the fate of traits that change reproductive schedules.

In the special case where the genotypes do not differ in their reproductive stages,

ci = c for all genotypes i and

Nb =
(
1T
g ⊗ cT

)
ñ, (4.7)

where 1T
g is a vector of ones of dimensions 1× g.

The genotype frequency vector within the breeding population is

pb =
Xñ

Nb
. (4.8)

where

X =

g∑
i=1

(
Eii ⊗ cT

i

)
(4.9)

with Eii a matrix of dimension g × g with a 1 in the (i, i) location and zeros

elsewhere. If the breeding vectors are the same for all genotypes, ci = c, then

X =
(
Ig ⊗ cT

)
. (4.10)

The genotype frequency vector for genotype i is (trivially) pi = ei.

The gene frequencies in an individual of genotype i, qi, and the gene frequencies

in the breeding population, qb, are a function of the genotype frequencies, so that

qi = Wpi, (4.11)

qb = Wpb, (4.12)

where

W =

(
1 0.5 0

0 0.5 1

)
. (4.13)

Combining equations (4.8) and (4.12) yields the following expression for the gene

frequencies in the breeding population

qb =

(
qbA
qba

)
=

WXñ

Nb
. (4.14)

We set mutation rates to zero; see de Vries and Caswell (2018a) for details on how

mutation can be included.
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4. Density-dependent selection in one-sex stage-structured populations

The matrix H

When a female randomly picks an allele out of the gamete pool, she will pick allele

A with probability qbA, and allele a with probability qba . These probabilities there-

fore determine the distribution of genotypes in her offspring, which is captured in

the matrix H (p̃),

H (p̃) =


qbA

1
2q

b
A 0

qba
1
2 qbA

0 1
2q

b
a qba

 . (4.15)

The first column of H (p̃) contains the genotype distribution of the offspring of an

AA mother; she produces an AA offspring with probability qbA and an Aa offspring

with probability qba . The second and third columns give the genotype distributions

for mothers of genotypes Aa and aa. The matrix H is a homogenous of degree

zero function of its argument. Thus we can write it equally as a function of ñ or

p̃. For a step by step derivation of H, see section de Vries and Caswell (2018a,

Section 2.3 and Appendix A).

The population projection matrix

To project the eco-evolutionary dynamics, the component matrices, Ui (ñ) and

Fi (ñ) must be incorporated into the population projection matrix, Ã (ñ) (e.g.,

Caswell et al. 2018). To do so, create a set of block-diagonal matrices U, F, and

H that contain the corresponding demographic matrices on the diagonal, i.e.

U =

g∑
i=1

Eii ⊗Ui (ñ) , (4.16)

F =

g∑
i=1

Eii ⊗ Fi (ñ) , (4.17)

H = Iω ⊗H (p̃) . (4.18)

The fertility matrix F̃ (ñ) is constructed from the block matrix containing

genotype-specific fertility rates and from the parent-to-offspring genotype map,

F̃ (ñ) = KTH (p̃) KF (ñ) . (4.19)

where K is the vec-permutation matrix (Henderson and Searle 1981), which

changes the arrangement of the vector from stages-within-genotypes to genotypes-

within-stages. From right to left, the block-diagonal matrix F first produces off-

spring, possibly of different birth stages (e.g., seedlings of different sizes) as a

function of the genotype of the mother. When they appear, these offspring are

associated with the genotype of the mother. The vec-permutation matrix K rear-

ranges the vector, and then the block-diagonal matrix H (p̃) allocates the offspring
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4.3 Stage ×genotype dynamics of Tribolium

to their genotypes, based on the genotype of their mother and the genotype distri-

bution of the rest of the population. Finally, KT returns the vector to its original

orientation.

The fertility matrix F̃(n) captures the process of Mendelian inheritance. Sub-

stituting equation (4.15), (4.17) and (4.18) into equation (4.19) yields

F̃ (ñ) =


qbAFAA (ñ) 1

2q
b
AFAa (ñ) 0

qbaFAA (ñ) 1
2FAa (ñ) qbAFaa (ñ)

0 1
2q

b
aFAa (ñ) qbaFaa (ñ)

 . (4.20)

The first block column of F̃ (ñ) contains the offspring produced by an AA female.

The upper left block in the first column, qAFAA (ñ), gives the production of AA

offspring by AA females that randomly pick allele A from the gamete pool, which

happens with probability qA. The next block down, qaFAA (ñ), contains the pro-

duction of of Aa offspring by an AA female picking allele a from the gamete pool.

Similarly, the second and third row blocks contain offspring produced by an Aa

female and an aa female, respectively.

Since individuals do not change their genotype once they are born, the survival

matrix is the block diagonal matrices,

Ũ (ñ) = KTIωgKU = U, (4.21)

or written in terms of the genotype-specific block matrices,

Ũ (ñ) =

 UAA (ñ) 0 0

0 UAa (ñ) 0

0 0 Uaa (ñ)

 . (4.22)

We project the stage×genotype dynamics with Ũ(ñ) in equation (4.22) and F̃(ñ)

in equation (4.20), using equation (4.3).

4.3 Stage ×genotype dynamics of Tribolium

Flour beetles of the genus Tribolium have been used extensively to study popula-

tion dynamics and population genetics, see Costantino et al. (2005) for a review.

Tribolium is an economically important pest of flour and stored grain products.

A nonlinear matrix population model for Tribolium was developed by Cushing

and collaborators, see for example Cushing et al. (2002). The Tribolium model

contains three stages: larvae (L), pupae (P ), and adults (D). It is nonlinear

because, in addition to feeding on flour, Tribolium adults cannibalize eggs and

larvae; larvae in turn cannibalize eggs. These nonlinearities lead to a plethora of
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4. Density-dependent selection in one-sex stage-structured populations

interesting bifurcations, attractors, and transient and asymptotic dynamics, which

have been studied extensively (Costantino et al. 1995, 1997, 2005; Henson et al.

2002; Cushing et al. 2002; Edmunds et al. 2003).

We use the Tribolium model as the basis for a genetic model by including

one-locus, two allele (A and a) Mendelian genetics.

We define effective adult densities D∗ and D†, and an effective larval density

L†, as linear combinations of the genotype densities

D∗ = κAADAA + κAaDAa + κaaDaa, (4.23)

D† = ξAADAA + ξAaDAa + ξaaDaa, (4.24)

L† = χAALAA + χAaLAa + χaaLaa, (4.25)

and use these to express the density effects of pupa cannibalism by adults (4.23)

and egg cannibalism by adults (4.24) and larva (4.25). Each genotype i has a

survival and transition matrix,

Ui =

 0 0 0

(1− µi) 0 0

0 e−D
∗

(1− νi)

 , (4.26)

where µi is larval mortality rate and νi is adult mortality rate. In addition, each

genotype i has a fertility matrix,

Fi =

 0 0 βie
−L†−D†

0 0 0

0 0 0

 , (4.27)

where βi is the fecundity at low densities. This parameterization permits selection

to operate on any of the life-history characteristics; i.e. stage-specific viability,

fertility, and/or cannibalism rates.

Genotype×stage dynamics As an example of genotype×stage dynamics, we

use parameters estimated from a laboratory population of Tribolium by Dennis

et al. (1995) (Table 1). We introduce a hypothetical allele with additive effects

on fecundity (parameter β). The simulation was initialized with a population of

AA individuals with low fecundity at the equilibrium stage distribution. After

50 iterations, one larval heterozygote is introduced into the population with a fe-

cundity exactly in between the two homozygotes. The invading allele with larger

birthrate gradually takes over the population and becomes fixed. As the genetic

composition of the population changes (Fig 4.1C and 4.1D), the population struc-

ture changes (Fig 4.1A and 4.1B). Eventually, as the population approaches the aa
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4.4 The outcome of density-dependent selection: conditions for genotype coexistence
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Figure 4.1: Eco-evolutionary dynamics of the invasion of an allele with a higher
fecundity β (βAA = 5.68, βAa = 8.68, βaa = 11.68). All other parameters are
taken from Table 1 in Dennis et al. (1995) and are set equal for all three genotypes:
χi = 0.009264, ξi = 0.01097, κi = 0.01779, µi = 0.5129, νi = 0.1108 for all i. A:
abundance of the adult stage. B: abundance of larvae and pupae. C: frequencies
of the A and a alleles. D: frequencies of the three genotypes.

boundary, the dynamics bifurcate from a stable equilibrium to a two-point cycle.

Matlab code and parameters used for Figure 4.1 are in the Online Supplementary

Materials.

4.4 The outcome of density-dependent selection: conditions for

genotype coexistence

The most basic question about selection, density-dependent or otherwise, is the

question of whether genotypes coexist, so that the population retains some degree

of genetic diversity, or whether one allele becomes fixed. The question becomes

more complicated, but no less basic, when demographic structure and nonlin-

earity are included. In this section, we present a general analytical criterion for

determining the outcome of selection.

The dynamics of ñ take place in an ωg-dimensional space defined by com-

binations of ω stages and g genotypes (with g = 3 in the present context). In

the absence of mutation, the ω-dimensional boundary subspaces defined by the
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4. Density-dependent selection in one-sex stage-structured populations

nAA
^

naa
^

AA aa 

Figure 4.2: Graphical depiction of the ωg-dimensional space defined by combi-
nations of ω stages and g genotypes. If both the homozygous boundaries are
unstable, then a homozygote state can never be reached again once both alleles
are present in the population (since both alleles grow when rare). Image by Jan
van Arkel.

homozygous genotypes AA and aa are invariant under the dynamics specified by

Ã [ñ], and are given by the nonlinear projection matrices for the homozygous

genotypes (Figure 4.2).

We assume the existence of a single equilibrium on each boundary, and that

this equilibrium is stable with respect to perturbations in the boundary subspace.

Coexistence of the two alleles in a protected polymorphism (Levene 1953; Prout

1968; see Nagylaki 1992, Chap. 6) results when the boundary subspaces are

both unstable to perturbations into the interior. That is, if allele A can invade a

population of aa individuals and allele a can invade a population of AA individuals,

then a homozygote state can never be reached again once both alleles are present

in the population (since both alleles grow when rare). Mutual invasibility therefore

leads to a protected genetic polymorphism.

In general, the dynamics in the interior are unknown, and could include multi-

ple equilibria, strange attractors, cycles, etc. Provided both boundary subspaces

are unstable to perturbations into the interior, we refer to any of the possible

exotic dynamics in the interior as a protected polymorphism.

In general, nonlinear models could possess multiple invariant sets (equilibria,

cycles, strange attractors) on the boundary. We will restrict our discussion to

models with a unique equilibrium on the boundary. Extending the analysis to

include a k-cycle on the boundary would be accomplished by transforming the
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4.4 The outcome of density-dependent selection: conditions for genotype coexistence

k-point cycle into an equilibrium of the k-point map, but we do not consider this

here.

Stability of the homozygote boundaries

The stability of a boundary equilibrium is determined by the eigenvalue with the

largest magnitude (i.e., the spectral radius) of the Jacobian matrix at the equilib-

rium. We denote this eigenvalue by ζAA and ζaa for the AA and aa boundaries,

respectively. If ζ < 1 the equilibrium is stable; otherwise it is unstable. We as-

sume that the boundary equilibria are locally stable to perturbations within the

boundary subspace, so if the equilibrium is unstable, the associated eigenvector

must point into the interior, which implies that the invading allele increases when

rare.

The Jacobian matrix,

M =
dñ(t+ 1)

dñT(t)

∣∣∣∣
n̂

, (4.28)

is obtained by differentiating equation (4.3) and evaluating the resulting derivative

at the boundary equilibrium. We analyze the Jacobian at the AA boundary; the

expression at the aa boundary can be derived afterwards by symmetry. The

Jacobian matrix at the AA boundary is

M = Ã (n̂) +
(
e1 ⊗ n̂T

AA ⊗ Iω

) ∂vec (UAA)

∂ñT

∣∣∣∣
n̂

+
(
e1 ⊗ n̂T

AA ⊗ Iω

) ∂vec (FAA)

∂ñT

∣∣∣∣
n̂︸ ︷︷ ︸

Ecological nonlinearity

+ (e1 ⊗ Iω) (FAAn̂AA)
∂qA
∂ñT

∣∣∣∣
n̂

− (e2 ⊗ Iω) (FAAn̂AA)
∂qA
∂ñT

∣∣∣∣
n̂︸ ︷︷ ︸

Genetic nonlinearity

, (4.29)

see Appendix 4.A for a derivation. The linearization reflects the two sources of

nonlinearity in the model: those due to ecological density dependence and those

due to the genetic frequency-dependence.

The matrix M is a block structured matrix with blocks corresponding to geno-

types and entries within the blocks corresponding to stages within genotypes,

M =

 M11 M12 M13

M21 M22 M23

M31 M32 M33

 , (4.30)

where block M11 represents the contribution of perturbations in the AA direction

to growth or decline of perturbations in the AA direction, block M12 represents
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4. Density-dependent selection in one-sex stage-structured populations

the contribution of perturbations in the Aa direction to growth or decline of per-

turbations in the AA direction, etc. All of the block terms in the Jacobian are

given, with their derivation, in Appendix 4.A.

Evaluated at the equilibrium on the AA boundary, the Jacobian matrix M is

block upper triangular, with

M21 = M31 = M32 = 0, (4.31)

(See equation (4.A35) in Appendix 4.A). Thus the spectral radius of M depends on

the eigenvalues of the diagonal blocks. Block M33 = Uaa projects perturbations in

the aa direction, and since ρ(Uaa) < 1 this direction is always stable. Block M11

projects perturbations within the AA boundary. By assumption, the boundary

equilibrium is stable to such perturbations, so the spectral radius of M11 is less

than one. The stability of the AA boundary equilibrium therefore depends on the

eigenvalues of the submatrix M22,

M22 =

(
UAa (n̂) +

1

2
FAa (n̂) +

1

2Nb
(FAAn̂AA)⊗ cT

Aa

)
, (4.32)

where Nb is the number of individuals that are in a breeding stage at the equilib-

rium (see Appendix 4.A).

We denote the spectral radius of M22 as

ζAA = ρ (M22) (4.33)

where ρ(·) denotes the maximum eigenvalue of a matrix. By symmetry, the dom-

inant eigenvalue of the Jacobian matrix at the aa boundary, denoted by ζaa, is

obtained by replacing AA by aa in (4.32).

Criteria for a polymorphism A protected polymorphism occurs when both

boundaries are unstable, i.e. when

ζAA > 1 and ζaa > 1. (4.34)

Equation (4.34) is satisfied if and only if

ρ

(
UAa (n̂) +

1

2
FAa (n̂) +

1

2Nb
(FAAn̂AA)⊗ cT

Aa

)
> 1, (4.35)

ρ

(
UAa (n̂) +

1

2
FAa (n̂) +

1

2Nb
(Faan̂aa)⊗ cT

Aa

)
> 1. (4.36)

We note that the conditions for polymorphism in equations (4.35) and (4.36)

are a function of the nonlinear demographic rates of both the invading heterozy-

gote and the resident homozygote (through the Ui and Fi matrices) and of the

equilibrium structure of the homozygote equilibrium, n̂AA or n̂aa.
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4.5 Tribolium revisited: density-dependent selection and pesticide

resistance

Armed with these coexistence conditions, we return to Tribolium to study the

spread of malathion resistance in the red flour beetle, Tribolium castaneum.

Malathion was a commonly used pesticide in grain storage in the 1950s, and

malathion resistance has since become widespread in Tribolium castaneum. The

evolution of pesticide resistance is usually assumed to involve a fitness trade-off,

in which resistant genotypes are at a disadvantage in the absence of the pesticide.

However, there appears to be no fitness trade-off related to malathion resistance

in T. castaneum. The resistant strain appears to have higher fitness even in the

absence of malathion (Haubruge and Arnaud 2001; Cheung 2002; Arnaud et al.

2005). Arnaud et al. (2005) suggest that the higher fitness of malathion resis-

tant genes may be the result of posterior modification of the insect genome after

resistance became prevalent.

The genetics of malathion resistance varies among strains; sometimes resis-

tance is found to be polygenic, while in other strains, it is due to a dominant

allele at a single autosomal locus (Wool et al. 1982). Cheung (2002) studied a

Tribolium strain in which resistance is primarily controlled by a single, dominant

allele or closely linked set of alleles. We denote the resistant allele with r and the

susceptible allele with s, the genotypes are ss, rs, and rr. Since the resistant allele

is almost completely dominant, Cheung assumed that the demographic rates of

the rs genotype are identical to the demographic rates of the rr genotype, i.e.

Urr (ñ) = Urs (ñ) , (4.37)

Frr (ñ) = Frs (ñ) , (4.38)

for any population vector ñ.

Cheung estimated Uss, Fss, Urr, and Urr in the laboratory under three levels

of malathion exposure (0 ppm, 1.5 ppm, and 3 ppm). Experimental populations

were kept in 120 ml Wheaton vials containing 20 grams of media (92.5% bleached

white flour, 5% dry brewer’s yeast, 1.5% ground fumigation, and 1% sunflower

oil). The media containing 1.5 ppm and 3 ppm malathion was prepared by dilut-

ing malathion into the sunflower oil before adding to the flour. Each malathion

treatment was initiated with 250 larva, 5 pupa, and 250 adults.

Three treatment groups were established, with different initial allele frequencies

and four replicate populations in each treatment group. Populations in the two

homozygous boundary treatments were initiated with all ss and rr insects. In

the “evolving treatment” each population was initiated with all ss larvae and

pupae, and with 245 ss and 5 rs adults, resulting in an initial r allele frequency
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Table 4.2: Parameter estimates for malathion resistant and susceptible strains at
3 ppm malathion, from Table 2 in Cheung (2002). Heterozygote parameters are
assumed to be identical to the resistant homozygote.

Parameter rr ss
β 9.650 0.6564
χ 0.006730 0.005727
ξ 0.009901 0.0
κ 0.01051 0.01330
µ 0.1115 0.6586
ν 0.5 0.5

of 0.01 among adults. All life stages in each population were counted once every

two weeks for 80 weeks (t = 40). Adult mortality was set at 50% by removing

half the number of adults counted in the previous census minus the number of

dead adults found in the current census. One of the replicate populations in the

evolving treatment group was lost to disease at week 56 (t = 28). Parameters

for rr and ss genotypes were estimated from homozygous populations with a

maximum likelihood procedure, which is described in section 2 of Cheung (2002).

The parameter values are given in Table 4.2.

Dynamics under pesticide exposure

Figure 4.3 shows adult abundance data from Cheung’s experiments at 3 ppm

malathion and the results of projections from the Tribolium model using the pa-

rameters in Table 4.2. Under these conditions, a homozygous ss population goes

extinct (Figure 4.3a), and a population of homozygous rr individuals persists at

a stable equilibrium (Figure 4.3c). When a small number of heterozygote rs indi-

viduals are introduced into a susceptible population, evolutionary rescue saves the

population from extinction (Figure 4.3b).2 Matlab code and parameters used

for Figure 4.3 are in the Online Supplementary Materials.

Cheung (2002) estimated allele frequencies at the end of the experiment (t =

40) in the three surviving populations of the evolving treatment group by sampling

and isolating 45-50 large larva or pupa, mating them with ss genotypes, and testing

the survival of their offspring in malathion media to determine the genotypes of

the sampled insects. This yielded estimates of the frequency of the r allele of 0.857,

0.948, and 0.889, with a mean and standard error of 0.898±0.027. In comparison,

at t = 40, the model predicts a frequency of the r allele of 0.862, which is not

statistically different from the mean experimental value (p = 0.31).

2Noise-induced oscillations occur in the resistant Tribolium populations because the attractor
on the resistant boundary is near the bifurcation threshold to a stable period-two cycle.
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(a) Population of susceptible Tribolium individuals at
3 ppm malathion.
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(b) An evolving Tribolium population of individuals at
3 ppm malathion, initial frequency of r allele is 0.01.
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(c) Population of resistant Tribolium individuals at 3
ppm malathion.

Figure 4.3: Adult abundance summed over genotypes, solid black line is simulated,
dashed lines are data from replicates. 4.3a. Population dynamics on the suscep-
tible boundary at 3 ppm malathion. 4.3b. Population dynamics of an evolving
Tribolium population. Initially the frequency of the r allele among adults is 0.01.
4.3c. Population dynamics on the resistant boundary at 3 ppm malathion.
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Boundary stability

The stability of a population of the susceptible Tribolium to invasion by the re-

sistant allele is determined by the dominant eigenvalue ζss of the Jacobian. The

final term in (4.35) simplifies significantly because the Tribolium model contains

only one reproducing stage. If we denote the stage abundances at the susceptible

equilibrium by L̂ss, P̂ss, D̂ss, then

1

2Nb
(Fss (n̂) n̂ss)⊗ cT

rs =

(
βssÂsse

−κel,ssL̂ss−κea,ssÂss

)
e1 ⊗ eT

3

Âss
(4.39)

= Fss(n̂ss). (4.40)

Thus the ss equilibrium will be invaded by the resistant allele if

ζss = ρ

 0 0 1
2 (βrs + βss) e

−χssL̂ss−ξssD̂ss

(1− µrs) 0 0

0 e−κssD̂ss (1− νrs)

 > 1 (4.41)

At 3 ppm malathion, ζss = 1.8450, so the resistant allele is able to invade. In the

absence of malathion, ζss = 1.0265, so the resistant allele is superior, even without

the advantage of the presence of malathion.

Since the model assumes complete dominance, the rs and rr individuals have

identical parameters. This implies that ζrr = 1, and that linearization fails to

show the stability of the equilibrium. This is a well known phenomenon in models

for selection against recessive alleles (e.g., Nagylaki 1992, Sect. 4.2). Because

recessive homozygotes are so rare close to the dominant equilibrium, elimination

of the recessive is extremely slow. Simulations, however, show that the resistant

boundary is stable to invasion by the susceptible allele.

Evolutionary stability analysis The analytical expression for stability of the

homozygote boundaries allows us to study the effect of parameter changes on

stability; i.e., we can perform an evolutionary stability analysis. To demonstrate

such an analysis, we analyze the effects on stability of the degree of dominance

of the resistant allele. This analysis was inspired by Beeman (1983) who found

incomplete dominance of the resistant allele in the Rmal strain of Tribolium at

high concentrations of malathion.

We analyze the effect of incomplete dominance by writing the heterozygote

parameters as a convex combination of the parameters of the homozygotes; e.g.,

for mortality,

µrs = (1− x)µrr + xµss, (4.42)
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and likewise for all other parameters in the model. The parameter x weighs the

relative effect of the two alleles on all vital rates in heterozygotes. When x = 1,

the s allele is dominant and when x = 0 the r allele is dominant.

Figure 4.4a shows the dominant eigenvalue ζ evaluated at both boundaries as

a function of x. The ss boundary is unstable in the range [0, 1); the rr boundary

is stable in the range (0, 1].

Figure 4.4b shows the effect of dominance on the fixation time, defined as the

time required to reduce the frequency of the susceptible allele from 0.99 to 0.01 in

the larvae. Alternative definitions of fixation time involving sums of stages rather

than only the larval stage result in the same qualitative shape. Using a different

threshold to define allele fixation does effect the shape of the curve. The initial

increase of the resistant allele is faster at x = 0 than at x = 0.5, but the final

approach to the boundary is faster at x = 0.5. If we had defined competitive

exclusion as the susceptible allele having a frequency less than 0.2 in larvae, the

line in Figure 4.4b would be monotonically increasing with x.

4.6 Discussion

Demographic models classify individuals into i-states, such as age classes or de-

velopmental stages. The i-state captures all the relevant information about an

individual such that the fate of an individual depends only on its current i-state

and the environment (Metz 1977; Caswell and John 1992; Caswell 2001). In this

paper, we extended the i-state to include individual genotype. By treating geno-

type as a demographic state variable, the powerful mathematical machinery of

matrix population models becomes available to study genotype×stage dynamics

(Figures 4.1 and 4.3), and the powerful mathematical machinery of matrix calculus

becomes available to perform stability analysis via linearization (Sections 4.4 and

4.5). Using such a linearization, we obtained conditions for the coexistence of two

alleles at one locus for a general density-dependent demographic model with age-

or stage-structure. This opens new possibilities for eco-evolutionary analysis of

life history traits. It complements, but is not intended to replace, the quantitative

genetics approaches recently developed by Coulson et al. (2010).

We applied the model to study the genotype×stage dynamics of pesticide re-

sistance in Tribolium castaneum. The model does an excellent job of describing

experimental populations exposed to malathion, and successfully predicts the out-

come of selection (fixation of the resistant allele). Fixation would occur more

quickly for intermediate dominance than than for complete dominance (Figure

4.4b).
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(a) The effect of incomplete dominance on boundary stability
as measured by the dominant eigenvalue of the Jacobian. At
x = 0 the resistant allele is completely dominant, and at x = 1

the susceptible allele is completely dominant.
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(b) The effect of incomplete dominance on the time to allele
fixation. At x = 0 the resistant allele is dominant; at x = 1 the

susceptible allele is dominant.



4.6 Discussion

The invasion speed of a pesticide-resistant allele in an agricultural pest is an

important quantity for agriculturalists and/or policy makers. Pesticide resistance

in insects is often determined by only one or two loci (Roush and McKenzie 1987;

Ffrench-Constant et al. 2004). For example, a number of single gene mutations are

known to result in DDT resistance in Drosophila (Pittendrigh et al. 1997; Joußen

et al. 2008). Similarly, a single gene was found in houseflies that influences the rate

of penetration of DDT and dieldrin by Hoyer and Plapp Jr (1968). There are many

more examples, see reviews by Georghiou (1969), Roush and McKenzie (1987), or

Ffrench-Constant et al. (2004). The one locus, two allele model presented in this

paper could therefore be applicable to many cases of insecticide resistance.

Maximization principles Early work on density-dependent selection fo-

cused on the maximization of equilibrium population size (hence “K-selection”;

MacArthur (1962); MacArthur and Wilson (1967); Roughgarden (1971)).

Charlesworth (1994) extended this result to age-structured populations and

showed that density-dependent selection maximizes the abundance of the age class

that is exerting the density-dependent pressure on the population. For example,

if adults are cannibalizing juveniles and juvenile mortality is a nonlinear func-

tion of adult density, then a successful invasion will always lead to a higher adult

density. In deriving this result, Charlesworth assumes males and females have

identical demographic rates, i.e. there is no sexual dimorphism in any life-history

characteristics.

Because one cannot, in general, find expressions for equilibria in nonlinear ma-

trix population models, we do not consider maximization of density here. More-

over, we note that in a structured model there is no reason to assume that “den-

sity” is a single scalar quantity (e.g., Caswell et al. 2004). Each stage may have

its own effects on other stages; a total density obtained by adding together tiny

seedlings and big trees has little biological meaning. Equally, each vital rate may

be influenced by a different set of stages, as in the Tribolium model where fertility

is a function of larval and adult densities, but pupal survival depends only on

adult density. Thus maximization of “density” will not be as simple a concept in

structured models as it is in unstructured models.

Extensions The model presented here can be extended by relaxing a number of

assumptions. Our assumption of female dominance leads to the assumption that

male and female population vectors are proportional, so that the female population

vector can be used to calculate gene frequencies in the (male) mating population.

de Vries and Caswell (2018b) show that this assumption is met provided males
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and females have equal survival and transition probabilities, and are born at equal

proportions. Both these assumptions could be relaxed in a two-sex model.

The model could also be extended to include more ecological interaction, such

as time-dependent demographic rates, interactions among species, or dependence

on environmental resources. The genetic component of the model can be expanded

to include nonrandom mating, more than two alleles, or mutations.

At the cost of additional mathematics, our results could be extended to dy-

namics on the boundaries that are more exotic than fixed points. A k-point cycle,

for example, can be transformed into an equilibrium by studying the k-point map,

i.e. by applying the projection matrix k times.

We did not discuss frequency-dependent selection in this paper, in which the

vital rates of an individual would be a function of the frequencies of the other

genotypes in the population. Negative frequency-dependent selection, in which

the fitness of each genotype declines as its frequency increases, is often invoked

as a mechanisms for maintaining polymorphisms. In a structured population, the

demographic rates could depend on the genotype frequencies in some subset of

stages rather than in the entire population. In species with alternative mating

strategies, the mating strategies often show negative frequency dependence (e.g.,

studies of salmon by Gross 1985; Berejikian et al. 2010). Incorporating frequency

dependence in our model would permit analysis of such traits.

The model construction introduced in this paper remains unchanged for

frequency-dependent models, or for models with both frequency-dependence and

density dependence. However, a model with only frequency-dependence becomes

linear on the boundaries. Therefore the population is either exponentially growing

or shrinking rather than at equilibrium on the boundary. To calculate the stabil-

ity of the homozygote population to invasion by the other allele in a frequency-

dependent model, it is necessary to renormalize the population vector and to

project the resulting frequency vector instead, as is discussed in de Vries and

Caswell (2018a).

Conclusion We began this paper by emphasizing how demographic and genetic

processes combine to determine eco-evolutionary dynamics. At this point we have

shown several examples of how Mendelian genetics and density-dependent vital

rates, combined into a stage×genotype-structured matrix model, can be used to

this end. The genotypes determine survival, transitions, and fertility. The rules

of mating and segregation determine the genetic composition of offspring. The

model can project dynamics of joint stage×genotype distributions, for hypothet-

ical (Figure 4.1) and experimental (Figure 4.3) situations. The eventual genetic
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coexistence is determined by stability analysis of the homozygous boundary equi-

libria.
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Appendix 4.A Derivation of Jacobian matrix, general nonlinear

model

The stability of a homozygote boundary equilibrium is determined by the largest

absolute eigenvalue (spectral radius) of the Jacobian matrix of the nonlinear ma-

trix model evaluated at the boundary equilibrium. We denote the spectral radius

of the Jacobian at the AA boundary by ζAA, and at the aa boundary by ζaa. If the

magnitude of the dominant eigenvalue of the Jacobian matrix is larger than one

when evaluated at an equilibrium, then this equilibrium is unstable. The Jacobian

matrix,

M =
dñ(t+ 1)

dñT(t)

∣∣∣∣
n̂

, (4.A1)

is obtained by differentiating equation (4.3),

ñ(t+ 1) = Ã [ñ] ñ(t), (4.A2)

and evaluating the resulting derivative at the boundary equilibrium. This requires

a long series of matrix calculus operations (Magnus and Neudecker 1985; Caswell

2008). The analysis repeatedly takes advantage of the fact that n̂ at the AA

boundary contains zeros for the blocks corresponding to Aa and aa genotypes.

Differentiate equation (4.A2) to obtain

dñ(t+ 1) = Ãdñ(t) +
(

dÃ
)

ñ(t), (4.A3)

where the explicit dependence of Ã on ñ has been omitted to avoid a cluttering

of brackets. Multiply the second term by an ωg × ωg identity matrix,

dñ(t+ 1) = Ãdñ(t) + Iωg

(
dÃ
)

ñ(t). (4.A4)

and apply the vec operator to both sides, remembering that as ñ is a vector,

vecñ = ñ,

dñ(t+ 1) = Ãdñ(t) + vec
[
Iωg

(
dÃ
)

ñ(t)
]
. (4.A5)

Next apply Roth’s theorem (Roth 1934), vecABC = (CT ⊗A) vecB, to replace

the vec operator with the Kronecker product:

dñ(t+ 1) = Ãdñ(t) +
(
ñT(t)⊗ Iωg

)
dvec

[
Ã
]
. (4.A6)

The matrix Ã can be decomposed into nine ω × ω block matrices, which are

created by adding equations 4.22 and 4.20:

Ã(ñ) =

 UAA + qbAFAA
1
2q

b
AFAa 0

qbaFAA UAa + 1
2FAa qbAFaa

0 1
2q

b
aFAa Uaa + qbaFaa

 . (4.A7)
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The blocks are denoted by Aij , so that for example

A11 = UAA + qAFAA, (4.A8)

and

A31 = 0. (4.A9)

The matrix Ã can then be written as

Ã =

3∑
i,j=1

Eij ⊗Aij , (4.A10)

=

3∑
i,j=1

(
eie

T
j

)
⊗ (AijIω) , (4.A11)

where we have used the definition of the matrix Eij = eie
T
j . Using AC ⊗BD =

(A⊗B)(C⊗D), equation (4.A11) can be rewritten as

Ã =

3∑
i,j=1

(ei ⊗Aij)
(
eT
j ⊗ Iω

)
. (4.A12)

Next use the identity
∑
i (ei ⊗ Iω) Aij =

∑
i ei ⊗Aij to write

Ã =

3∑
i,j=1

(ei ⊗ Iω) Aij

(
eT
j ⊗ Iω

)
. (4.A13)

This yields the following formula for vecA:

vecÃ =

3∑
i,j

(ej ⊗ Iω)⊗ (ei ⊗ Iω) vecAij . (4.A14)

Armed with this expression for vecÃ, we analyze the term (ñT(t)⊗ Iωg) dvecÃ

in (4.A6). Replace the derivative of vecÃ with equation (4.A14), such that

(
ñT(t)⊗ Iωg

)
dvecÃ =

3∑
i,j=1

(
ñT(t)⊗ Iωg

) [
(ej ⊗ Iω)⊗ (ei ⊗ Iω)

]
dvecAij

(4.A15)

Use (A⊗B)(C⊗D) = AC⊗BD to rewrite(
ñT(t)⊗ Iωg

) [
(ej ⊗ Iω)⊗ (ei ⊗ Iω)

]
=
(
ñT (ej ⊗ Iω)

)
⊗(Iωg(ei ⊗ Iω)) , (4.A16)

substituting this expression into the right hand side of equation (4.A15) yields

(
ñT(t)⊗ Iωg

)
dvecÃ =

3∑
i,j=1

(
ñT (ej ⊗ Iω)

)
⊗ (ei ⊗ Iω) dvecAij . (4.A17)
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When we evaluate this expression on the boundary, only AA individuals are

present, i.e.

n̂T(t) =
(
n̂T
AA,0,0

)
. (4.A18)

Substituting this expression for ñT(t) into equation (4.A17), so that only terms

with j = 1 are nonzero, yields

[(
ñT(t)⊗ Iωg

)
dvecÃ

] ∣∣∣∣
n̂

=

3∑
i

n̂T
AA ⊗ (ei ⊗ Iω) dvecAi1

∣∣∣∣
n̂

. (4.A19)

The Ai1 matrices are the matrices in the first block column of Ã, see equation

(4.A7), i.e.

A11 = UAA (ñ) + qbAFAA (ñ) , (4.A20)

A21 = (1− qbA)FAA (ñ) , (4.A21)

A31 = 0, (4.A22)

where we have used that qba = 1− qbA. Finally, using these expressions for the Ai1

matrices and equation (4.A19) to evaluate equation (4.A6) on the AA boundary

yields

dñ(t+ 1) = Ãdñ(t) +
(
n̂T
AA ⊗ e1 ⊗ Iω

)
dvec [UAA (ñ)]

+
(
n̂T
AA ⊗ e1 ⊗ Iω

)
dvec

[
qbAFAA (ñ)

]
+

(
n̂T
AA ⊗ e2 ⊗ Iω

)
dvec

[
(1− qbA)FAA (ñ)

]
, (4.A23)

where the differentials on both sides are evaluated at the boundary equilibrium.

Finally, using the first identification theorem and the chain rule together give the

following formula for the Jacobian (Magnus and Neudecker 1985; Caswell 2008),

M =
dñ(t+ 1)

dñ(t)

∣∣∣∣
n̂

, (4.A24)

= Ã (n̂) +
(
n̂T
AA ⊗ e1 ⊗ Iω

) ∂vec (UAA)

∂ñT

∣∣∣∣
n̂

+
(
n̂T
AA ⊗ e1 ⊗ Iω

)
vec (FAA)

∂qbA
∂ñT

∣∣∣∣
n̂

+
(
n̂T
AA ⊗ e1 ⊗ Iω

) ∂vec (FAA)

∂ñT

∣∣∣∣
n̂

−
(
n̂T
AA ⊗ e2 ⊗ Iω

)
vec (FAA)

∂qbA
∂ñT

∣∣∣∣
n̂

(4.A25)

Use that abT = a⊗bT = bT⊗a for two vectors a and b to write (n̂T
AA ⊗ e1 ⊗ Iω)

as (e1 ⊗ n̂T
AA ⊗ Iω), and likewise for the term (n̂T

AA ⊗ e2 ⊗ Iω). Also note that the

two terms with partial derivates of qA can be rewritten using
(
ZT ⊗X

)
vecY =
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vec (XYZ) to obtain the following expression

M = Ã (n̂) +
(
e1 ⊗ n̂T

AA ⊗ Iω

) ∂vec (UAA)

∂ñT

∣∣∣∣
n̂

+
(
e1 ⊗ n̂T

AA ⊗ Iω

) ∂vec (FAA)

∂ñT

∣∣∣∣
n̂

+ (e1 ⊗ Iω) (FAAn̂AA)
∂qA
∂ñT

∣∣∣∣
n̂

− (e2 ⊗ Iω) (FAAn̂AA)
∂qA
∂ñT

∣∣∣∣
n̂

(4.A26)

To proceed, we need an expression for the partial derivative of the frequency

of allele A in the breeding pool,
∂qbA
∂ñT

. (4.A27)

Differentiating equation (4.12) from the main text,

qbA = eT
1qb = eT

1Wpb, (4.A28)

yields

∂qbA
∂ñT

= eT
1W

∂pb
∂ñT

. (4.A29)

Combine equations (4.6) and (4.8) from the main text to write

pb =

∑g
i=1 (Eii ⊗ cT

i ) ñ∑g
j=1

(
eT
j ⊗ cT

j

)
ñ
. (4.A30)

The denominator is the number of individuals in the population that are in a

breeding stage, Nb. Taking the derivative of pb yields

∂pb
∂ñT

∣∣∣∣
n̂

=
Nb
∑3
i=1 (Eii ⊗ cT

i )−
∑3
i=1 (Eii ⊗ cT

i ) n̂
∑3
j=1

(
eT
j ⊗ cT

j

)
N2
b

. (4.A31)

Writing above expression as a matrix yields

∂pb
∂ñT

∣∣∣∣
n̂

=
1

Nb

 0 −cT
Aa −cT

aa

0T
ω cT

Aa 0T
ω

0T
ω 0T

ω cT
aa

 . (4.A32)

Substituting equation (4.A32) into equation (4.A29) leads to

∂qbA
∂ñT

∣∣∣∣
n̂

= eT
1W

∂pb
∂ñT

∣∣∣∣
n̂

(4.A33)

=
(

0 − 1
2
cTAa

Nb
−cTaa

Nb

)
. (4.A34)
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4. Density-dependent selection in one-sex stage-structured populations

Finally, plug equation (4.A34) back into the expression for the Jacobian, equa-

tion (4.A26), to write the Jacobian in terms of its block components,

M=

 UAA(n̂) + FAA(n̂) 1
2
FAa(n̂) 0

0 UAa(n̂) + 1
2
FAa(n̂) Faa(n̂)

0 0 Uaa(n̂)



+


(
n̂T
AA ⊗ Iω

) ∂vec(UAA+FAA)

∂nT
AA

(
n̂T
AA ⊗ Iω

) ∂vec(UAA+FAA)

∂nT
Aa

(
n̂T
AA ⊗ Iω

) ∂vec(UAA+FAA)

∂nT
aa

0 0 0

0 0 0



+


0 − 1

2Nb
(FAAn̂AA) ⊗ cTAa − 1

Nb
(FAAn̂AA) ⊗ cTaa

0 1
2Nb

(FAAn̂AA) ⊗ cTAa
1

Nb
(FAAn̂AA) ⊗ cTaa

0 0 0

 . (4.A35)

This is the block-structured Jacobian matrix that appears in equation (4.30).
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