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We show that confinement in the quantum Ising model leads to nonthermal eigenstates, in both
continuum and lattice theories, in both one (1D) and two dimensions (2D). In the ordered phase, the
presence of a confining longitudinal field leads to a profound restructuring of the excitation spectrum, with
the low-energy two-particle continuum being replaced by discrete “meson” modes (linearly confined pairs
of domain walls). These modes exist far into the spectrum and are atypical, in the sense that expectation
values in the state with energy E do not agree with the microcanonical (thermal) ensemble prediction.
Single meson states persist above the two-meson threshold due to a surprising lack of hybridization with
the (n ≥ 4)-domain wall continuum, a result that survives into the thermodynamic limit and that can be
understood from analytical calculations. The presence of such states is revealed in anomalous postquench
dynamics, such as the lack of a light cone, the suppression of the growth of entanglement entropy, and the
absence of thermalization for some initial states. The nonthermal states are confined to the ordered phase—
the disordered (paramagnetic) phase exhibits typical thermalization patterns in both 1D and 2D in the
absence of integrability.

DOI: 10.1103/PhysRevLett.122.130603

Introduction.—Thermalization, and the associated
scrambling of information, is considered to be a generic
feature of isolated quantum systems. Understanding how to
avoid this, and thus preserve quantum information on long
timescales, may prove useful in the development of
quantum computing technologies. Two well-studied coun-
terexamples to thermalization are known: integrable quan-
tum systems [1–3] and many-body localization [4–6].
In both cases, the existence of many local conservation
laws allows the system to retain an extensive amount of
information and thus avoid thermalization [2,7]. The
question of whether integrability is a crucial ingredient
in preventing thermalization and scrambling of information
has recently attracted much attention with the realization
that kinetic constraints, in the absence of integrability, can
also help avoid it [8–17]. In this Letter, we will show that
thermalization can be avoided in quantum magnets that
lack both integrable and kinetic constraints. This occurs in
both 1D and 2D, which suggests that nonthermal behavior
may be commonplace.
At the heart of understanding thermalization in isolated

quantum many-body systems is the eigenstate thermal-
ization hypothesis (ETH) [18–20]. This gives a simple set
of criteria under which eigenstate expectation values
(EEVs) of local operators agree with the thermal prediction
[18–36]. Of importance for this work, ETH proposes that
the EEV of a local operator in a state with energy E
becomes a smooth function of E as the system size

increases, with the spread in EEVs at a fixed E shrinking
to zero [20,21]. The EEV is then, by construction, thermal
and coincides with the microcanonical prediction [37].
It is known, however, that in finite systems nonthermal

states that violate the ETH can also exist [26,27,38–41],
usually being observed at the very edges of the spectrum
(though not always [38]). The presence of such states
can have important consequences for nonequilibrium
dynamics [20,40–44], in particular leading to an absence
of thermalization following a quantum quench [39,41].
Thermalization is used here in the sense that expectations
values in the longtime limit agree with the thermal result
[22,23]. Such predictions can now be routinely tested in
cold atomic gases, following groundbreaking progress in
isolating and controlling these systems [45–57]. We also
expect, with the ability to probe electronic degrees of
freedom on femtosecond timescales [58], to be able to
study questions of thermalization in materials, unaffected
by the electron-phonon coupling.
In this Letter, we show that nonthermal states exist away

from the edges of the spectrum in paradigmatic models of
quantum magnetism, in both 1D and 2D. These states are
present both on the lattice and in the continuum limit, and
the fraction of these states compared to the Hilbert space
dimension is consistent with a weak version of the ETH
[29,39,44]. In the continuum limit, which is not usually the
subject of ETH studies, we harness powerful numerical
techniques [59] to look at large system sizes, and we
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present systematic analytical calculations that support our
results. On the lattice, we use matrix product state methods
[60] to show that the observed physics is not a remnant of
the scaling limit and thus may be possible to probe in
experiments on low-dimensional quantum magnets (see,
e.g., Refs. [61–64]).
1D lattice and continuum theories.—Let us focus on a

particular example of a theory with confinement, the
quantum Ising chain with an additional longitudinal field,

Hlatt ¼
XN
j¼1

Jσzjσ
z
jþ1 þ hxσxj þ hzσ

z
j: ð1Þ

Here σαj (α ¼ x, y, z) are the Pauli matrices acting on the jth
site of the chain, J is the Ising exchange parameter, and hx
(hz) is the transverse (longitudinal) field strength. Taking
the scaling limit in the vicinity of the critical point (hx ¼ 1,
hz ¼ 0), one arrives at the field theory [65,66]

Hft ¼
Z

R

0

dx½iðψ̄∂xψ̄ − ψ∂xψ þmψ̄ψÞ þ gσ�: ð2Þ

Here R is the system size, ψ̄ (ψ ) is the right (left)
moving Majorana fermion field, m is the fermion mass
(m ∼ 1 − hx), g is the continuum longitudinal field, and
σðxÞ is the spin operator in the continuum. For generic
values of the parameters, both the lattice (1) and the
continuum (2) models are nonintegrable [67,68]. Herein
we (mostly) focus on the ordered phase, jhxj < 1
and m > 0.
In the absence of a longitudinal field (hz ¼ 0, g ¼ 0),

low-energy excitations are spin flips (costing energy ∼2m),
which fractionalize into pairs of domain walls that are free
to independently propagate. Thus, at low energies, above
energy 2m there is a continuum of two-particle states. The
presence of a longitudinal field hz ≠ 0, g ≠ 0 profoundly
changes this. The energy cost of a domain of flipped
spins now grows linearly in the size of the domain. This
confining potential between domain walls (much like
quarks in quantum chromodynamics (QCD) [69]) leads
to a collapse of the low-energy continuum into discrete
“meson” excitations, formed from pairs of domain walls
[70,71]. This has been observed in two quasi-1D quantum
magnets, CoNb2O6 [61,62] and SrCo2V2O8 [63,64].
The presence of confinement leads to nonthermal states

appearing within the spectrum, despite the system being
nonintegrable. To show this, we construct eigenstates of the
two models, Eqs. (1) and (2), and measure the average
magnetization within each state [72]. On the lattice, we do
this via the density matrix renormalization group (DMRG)
[60] by targeting up to 100 low-lying eigenstates [73]. In
the continuum, we use truncated spectrum methods [59] to
construct thousands of low-lying eigenstates [82]. Sample
results are shown in Fig. 1; we see that there are two major
features in the EEV spectrum. First, there is a thermal-like

continuum of excitations on the right-hand side of the plot
[confirmed by comparison with the microcanonical ensem-
ble (MCE) in the continuum]. With increasing system size,
this continuum narrows as predicted from ETH; see
Ref. [41]. Second, there is a line of states that is well
separated and above this continuum (see the arrows in both
plots) whose EEVs do not coincide with the MCE results.
These states remain separated from the thermal continuum
up to the largest system sizes that we can reach; extrapo-
lation to infinite volume is consistent with the nonthermal
states possessing a different magnetization to the MCE, as
shown in the inset. These features are seen in both the
continuum and on the lattice; the similarity between the two
panels in Fig. 1 is striking.
One advantage of tackling this problem in the continuum

is that we have well-controlled analytical approaches, as
well as the numerical data, that allow us to understand these
nonthermal states. For example, in the upper panel we draw
arrows at the energies of the meson (linearly confined
domain walls) excitations, as predicted from a semiclassical
analysis [83–85]. We see that these coincide exactly with
the nonthermal states. We also have direct access to the

FIG. 1. (Upper panel) EEV spectrum of the spin operator σð0Þ
as a function of energy E for the 1D Ising field theory (2) with
m ¼ 1, g ¼ 0.1, R ¼ 35. Arrows show the energies of the first 40
meson states [83]. The MCE result is shown within the con-
tinuum, with error bars denoting the standard deviation of results
averaged over. (Inset) The average magnetization for the n ¼
11–15 meson states compared to the MCE at the same average
energy for a number of volumes R. (Lower panel) EEV spectrum
of

P
jσ

z
j=N as a function of energy E in the 1D lattice model (1)

with J ¼ −1, hx ¼ −0.5, hz ¼ 0.05 for N ¼ 40 sites, computed
with DMRG for open boundary conditions. The nonthermal
states are mesonlike and confined to the vicinity of a boundary.
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wave functions, and we see that these states are well
described by the two (domain wall) fermion sector of the
theory [59]. The nonthermal states are well approximated
by the meson form

jMni ¼
X

ν¼NS;R

X
pν

ΨnðpνÞa†pνa
†
−pν jνi; ð3Þ

where a†pν creates a fermion of momentum pν in the
ν ¼ NS, R [Neveu-Schwarz (half-integer momenta mod-
ing) and Ramond (integer momenta moding), respectively]
sector of the Hilbert space [86], and jνi is the vacuum
within a given sector. The wave function, ΨnðpÞ, and the
mass of the meson, Mn, can be determined analytically via
the Bethe-Salpeter equation; see Ref. [87] for details.
Meson stability above thresholds.—The persistence of

well-separated single meson excitations above the two-
meson threshold is, at first glance, surprising. Analogously
to QCD (see, e.g., Ref. [69]), one might expect these single
mesons to be unstable, with open decay channels to
multimeson states. As shown in Fig. 1, this intuition is
incorrect. To shed some light on this, we consider the (two
domain wall) meson excitations, described by (3), and
compute the second order energy correction that comes
from hybridization with four domain wall states and
vacuum [88]. Below we will see that this correction is
exceedingly small compared to the bound state energy,
E ¼ Mn, in contrast to the second order correction coming
from the spin flip excitations within the disordered (para-
magnetic) phase, where confinement is absent [89]. We
find that the meson corrections are orders of magnitude
smaller than those of the paramagnetic spin flip.
We give explicit details of the second order energy

computation in the Supplemental Material [74] (see also
Ref. [41]), only schematically sketching the calculation
here. The problem is split into three parts, H ¼ Hmesonþ
Hfree þHint. The first part, Hmeson, describes the single
meson part of the problem, whose eigenstates are given by
Eq. (3). In Hfree, we describe the noninteracting part of
all of the other (n > 2) fermion sectors of the theory.
Finally, Hint contains all interaction vertices, except the
two-fermion-to-two-fermion case, which was taken into
account inHmeson. We specifically consider vertices involve
two-to-four fermions and two-to-zero fermions. A similar
calculation is performed for the second order correction of
the single particle excitations in the disordered phase.
We present results of our computations in Fig. 2,

showing the relative second order corrections to the zero
momentum energy for the first 19 meson states (the brown
circles). For comparison, we present the corresponding
computation for the zero momentum fermion in the
disordered phase (the blue square). We see that the energy
corrections for all of the mesons range from 10−5 to 10−3 of
their unperturbed energy. Moreover the energy corrections
for those mesons which lie above the four domain wall

continuum—i.e., that are not nominally kinematically
stable—are no larger than those below the threshold. We
also see that the meson energy corrections are at least 2
orders of magnitude smaller than the correction of the
fermion (spin flip) for the disordered phase. Thus, the
meson excitations, states of the form (3), appear quasistable
to mixing with four domain wall states. This supports the
results of the previous section; by slightly dressing the
states (3), we form completely stable nonthermal states in
the finite volume. Note that this is counter to the usual
intuition from QCD, where one would expect the single
meson to be unstable to kinematic decay above the two-
meson threshold. Even at higher orders in perturbation
theory, the two domain wall sector of the theory appears to
continue to mix only very weakly with the sectors con-
taining n ≥ 4 domain walls, despite there being scattering
processes induced by the longitudinal magnetic field that
remain finite into the thermodynamic limit. While we have
not extended our second order correction to account for
mixing with six domain wall states explicitly, we expect
such mixing to be considerably smaller because of phase
space considerations [90].
Extension to 2D.—Surprisingly, the above analysis in 1D

extends in a straightforward manner to higher dimensions.
Consider the following 2D Hamiltonian,

H2D ¼
X
j

�
Hj þ J⊥

Z
R

0

dxσjðxÞσjþ1ðxÞ
�
; ð4Þ

formed from individual Ising continuum chains

Hj ¼
Z

R

0

dxiðψ̄ j∂xψ̄ j − ψ j∂xψ j þmψ̄ jψ jÞ; ð5Þ

coupled by a local spin-spin interaction of strength J⊥. For
this system, the coupling J⊥ between neighboring ordered

FIG. 2. We plot the relative second order correction to the
energy of the first 19 zero momentum mesons (δE2=E) coming
from mixing with zero and four domain wall states in the 1D Ising
field theory (2) withm ¼ 1 and g ¼ 0.1. For comparison, we also
plot the energy correction to the zero momentum spin flip
excitation in the disordered phase. Note that the correction for
the mesons is from 10−2 to 10−4 that of spin flip excitation.
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(m > 0) chains provides a confining potential. Mesonlike
approximate eigenstates of Eq. (4), of the form

jEni ¼
X

νk¼NS;R

XN
j¼1

X
pνj

Ψfνg
n ðpνjÞA†

jðpνjÞA†
jð−pνjÞjfνgi;

ð6Þ

can be found via an analogous Bethe-Salpeter equation
[91]. Here N is the number of chains, A†

jðpνÞ creates a
fermion in the jth chain with momentum pν in the ν ¼ NS,
R sector, and jfνgi ¼ ⊗N

j¼1jνji are the vacuum states of the
system, formed from the individual νj vacua in each chain.

The physical character of the wave function Ψfνg
n ðpνjÞ is

similar to the 1D case, Eq. (3).
With meson states (6) (i.e., approximate two fermion

eigenstates) defined, one can proceed in a similar manner to
the previous section and compute their self-energies. This
calculation is essentially identical to the previous case,
leading us to conclude that meson excitations in 2D are
extremely long-lived excitations. We can no longer con-
struct the EEV spectrum in 2D (cf. Fig. 1 in 1D), but a mean
field decoupling of the 2D system into 1D chains suggests
that these mesonlike excitations should behave similarly to
those analogous excitations in 1D; i.e., they are nonthermal
states. In the next section, we provide further evidence
of this.
Nonequilibrium dynamics in 2D.—Having argued that

nonthermal states exist in the 2D theory with confinement,
Eq. (4), we now support this with evidence that the non-
equilibrium dynamics is anomalous [92]. This is one of the
signatures of the presence of nonthermal states in the
spectrum. Nonequilibrium dynamics is induced by a
quench of the interaction J⊥ ¼ 0 → J⊥ ≠ 0. Both the
initial state and the subsequent time evolution are computed
in the chain array matrix product state (CHAINAMPS)
framework [59]. This methodology blends truncated spec-
trum methods with matrix-product-state algorithms, and it
has been used to study the entanglement entropy and
spectrum of the 2D Ising model [93], and to compute
the time evolution following a quantum quench [94].
In Fig. 3, we present results for the time dependence of

the connected spin correlation function between chains,
jhσiþyðx; tÞσiðx; tÞi − hσiþyðx; tÞihσiðx; tÞij, and the entan-
glement entropy SE for quenches from the J⊥ ¼ 0 ground
state to J⊥ ≠ 0, for both ordered (m > 0) and disordered
(m < 0) chains. Here SE is defined as the von Neumann
entanglement when the system is partitioned into two semi-
infinite arrays of chains. For ordered chains, the correlation
function does not show the usual light cone behavior
following the quench, with response instead being strongly
suppressed and correlations remaining local. In the pres-
ence of confinement, this is consistent with the quasipar-
ticle picture of Calabrese and Cardy [95,96]: the quench

generates pairs of quasiparticles with opposing momenta
(forming mesons) which propagate away from one another.
At fixed energy density (as set by the quench), the particles
can separate only a finite distance before the confinement
potential saturates the available energy, and hence the light
cone is suppressed. In contrast, the disordered case, where
confinement is absent, displays a clear light cone spread of
correlations. This suppression of the propagation of qua-
siparticles also impacts the growth of SE (with entangle-
ment being carried by these quasiparticles), as is shown
in Fig. 3.
Before concluding, we note that similar effects have been

observed in the 1D nonequilibrium dynamics of Eqs. (1)
and (2). In the lattice problem (1), Kormos et al. [97]
observed both a suppression of the light cone and the
growth of the entanglement entropy following a global
quantum quench. Nonequilibrium dynamics following
quenches in the field theory (2) have also shown clear
signatures of the meson excitations [41,98,99].
Conclusions.—In this Letter, we saw that nonthermal

states appear in the Ising model, in 1D and 2D, when
confinement is present. The nonthermal states have EEVs
that do not match the MCE prediction, highlighting their
nonthermal nature, despite an absence of integrability. We
saw this very explicitly in Fig. 1, in both the continuum and

FIG. 3. (Upper panels) The time evolution of the connected
correlation function, jhσiþyðx; tÞσiðx; tÞi − hσiþyðx; tÞihσiðx; tÞij,
following quenches in the 2D quantum Ising model (4) for R ¼ 8,
J⊥ ¼ 0 to −0.15, and (left panels) ordered chains m ¼ 1 and
(right panels) disordered chains m ¼ −1. Both cases start from a
J⊥ ¼ 0 ground state. Dynamics are computed via CHAINAMPS
[59]. (Lower panels) The time evolution of the entanglement
entropy SE following the same quenches. Note the y axis of the
lower left panel has been increased by a factor of 100. A detailed
discussion of the simulations is provided in the Supplemental
Material [74].
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on the lattice, by computing the EEV spectrum of the
longitudinal magnetization.
We identified the nonthermal states as being mesonlike,

in that the state is well approximated by linearly confined
pairs of domain walls, as expressed in Eqs. (3) and (6). The
mesons hybridize only very weakly with the thermal
continuum of multimeson states; see Fig. 2. From con-
trolled numerical and analytical calculation in 1D, we
turned our attention to 2D and argued that such meson
states exist there, with essentially the same calculations
applying in 1D and 2D. The presence of such nonthermal
states can lead to anomalous nonequilibrium dynamics,
illustrated in Fig. 3, such as suppression of the light cone
and entanglement growth, as well as an absence of
thermalization [100] (for a recent example of this in a
quantum quench of a 1D lattice model, see Ref. [101]).
While we focused on Ising models in 1D and 2D, it is

natural to expect that the physics of nonthermal states
carries over to other theories with confinement. Recently,
holographic theories with confinement have shown an
absence of thermalization [102], a hallmark of the presence
of nonthermal states. A natural test of this conjecture could
be provided by the Schwinger model in an electric field,
which has been the subject of a number of recent works
[103–108] (the disordered Schwinger model has also
recently been shown to display confinement driven non-
ergodic behavior [109,110]).
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