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Ladderlike optical conductivity in the spin-fermion model
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In the nested limit of the spin-fermion model for the cuprates, one-dimensional physics in the form of half-
filled two-leg ladders emerges. We show that the renormalization group flow of the corresponding ladder is
towards the d-Mott phase, a gapped spin-liquid with short-ranged d-wave pairing correlations, and reveals an
intermediate SO(5) × SO(3) symmetry. We use the results of the renormalization group in combination with a
memory-function approach to calculate the optical conductivity of the spin-fermion model in the high-frequency
regime, where processes within the hot spot region dominate the transport. We argue that umklapp processes
play a major role. For finite temperatures, we determine the resistivity in the zero-frequency (dc) limit. Our
results show an approximate linear temperature dependence of the resistivity and a conductivity that follows a
nonuniversal power law. A comparison to experimental data supports our assumption that the conductivity is
dominated by the antinodal contribution above the pseudogap.

DOI: 10.1103/PhysRevB.99.115110

I. INTRODUCTION

The interplay between magnetism and superconductivity
seems to be at the heart of high-temperature superconductivity
in various families of materials [1]. It becomes particularly
interesting when, in special parameter regimes, the mutual
reinforcement of instabilities in magnetic and pairing chan-
nels impedes a definite description of the observed phase. A
prime example for such a situation is the anomalous behavior
of underdoped cuprates, where the mysterious pseudogap and
strange-metal phases appear [2–7].

Among many approaches to the problem of the underdoped
regime, let us focus on two phenomenological ones. The first
is based on the spin-fermion model [8], while the second
suggests an analogy between two-dimensional (2D) doped
Mott insulators and one-dimensional (1D) ladders, as put
forward by Dagotto and Rice [9]. Both approaches have been
quite successful, which gives rise to the question of whether
they can be brought, so to speak, to a common denominator?

One of the main motivations for invoking the physics of
two-leg ladders in the context of the cuprates is that these
systems represent the first step away from 1D towards 2D.
Despite moving towards 2D, in ladders one still has well-
controlled access to the strong coupling regime via power-
ful nonperturbative techniques peculiar to 1D [10–12]. Of
particular relevance to the pseudogap phase, ladder physics
provides a simple mechanism for the formation of both a
spin gap and superconducting pairing, with the two appearing
simulataneously in one of the phases of undoped fermionic
two-leg ladders. This so-called d-Mott phase describes a
Mott-insulating spin liquid with short-ranged d-wave pairing
correlations, which upon doping develop into (quasi-)long-
ranged superconductivity [13,14].

Alternatively, the spin-fermion model is a fully 2D theory
[8]. It is based on the assumption that the anomalous behavior
in the underdoped regime of the cuprates is caused by the

vicinity to a magnetic quantum critical point. It approaches
the anomalous phase from the high-doping side, where the
electronic state with a large Fermi surface becomes unstable
due to interactions in the spin channel. Below the critical
point, this leads to the antiferromagnetic state. At the same
time, the exchange of paramagnetic spin-fluctuations in the
nonmagnetic phase provides the pairing glue for d-wave su-
perconductivity. However, above antiferromagnetic and super-
conducting transitions, the physics is driven by the interaction
of electrons with collective spin excitations (paramagnons)
leading to an incoherent quantum-critical regime. An essential
ingredient of the spin-fermion model is the existence of so-
called hot spots on the Fermi surface, which are connected by
singular spin modes.

These two paradigms of cuprate physics appear, at first
glance, to be unrelated. Yet this is not the case. In previous
work by one of the authors [15], the spin-fermion model was
studied in a limit where the Fermi surface becomes nested
around the hot spots. It was argued that such a situation
emerges self-consistently when the bare interactions are suf-
ficiently strong, since the nesting leads to the gap formation
and the system benefits energetically from it. As such, the size
of the nested patches is determined, self-consistently, by the
competition between the size of the gap and the deviation of
the bare Fermi surface from the nesting condition. The para-
magnon exchange interaction inside and between these flat,
nested patches is singular in momentum space and effectively
decouples them from the rest of the Fermi surface, forming
an effective half-filled two-leg ladder in momentum space.
Thus the physics of 1D ladders is brought to bear on the 2D
spin-fermion model.

For superconductivity to emerge in this formulation of the
spin-fermion model, it is essential that the resulting ladder lies
in the region of parameter space describing the d-Mott phase.
This was explicitly demonstrated in Ref. [15], so providing
a mapping that unifies these two well-known approaches to
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the anomalous phases of the cuprates. Within this picture, the
excitation gap of the d-Mott phase relates to the pseudogap
and the cooperon excitations of the ladder play the role of
preformed pairs. These effects appear around the original
hot spots, i.e., in the antinodal region when considering the
cuprate Fermi surface below optimal doping. On the other
hand, electrons away from the hot spots, in the nodal region,
are not subject to the mapping to ladders and remain Fermi-
liquid-like. It was suggested that a coupling between the
ladder degrees of freedom and the nodal electrons promotes
the pairing correlations of the d-Mott phase to true supercon-
ductivity [15].

In other recent work [16], this ladder paradigm was ex-
ploited to develop a qualitative description of the transport
in underdoped cuprates. According to this description, the
electrons in the underdoped phase of the cuprates can be
separated into two weakly coupled liquids. The first is Fermi-
liquid-like, describing the nodal quasiparticles. The second,
however, describes electrons in the vicinity of the hot spots as
a quasi-1D strongly correlated liquid. These two liquids have
very different effective dimensionalities, and hence display
very different physics. The parameters of the phenomeno-
logical model in Ref. [16] were chosen such that the high-
temperature transport is dominated by contributions from the
hot spots, which at these temperatures can be described as a
Luttinger liquid. An essential characteristic of this quasi-1D
liquid is that vertex corrections play an important role in the
diagrammatic expansion, leading to a liquid that has excellent
transport properties whilst having no coherent quasiparticles.
This helps to explain the drastic difference between quasipar-
ticle lifetimes and transport lifetimes observed in experiments
[2,5]. The finite conductivity of electrons in the vicinity of
the hot spots arises from umklapp scattering, whose influence
grows with decreasing temperature until, eventually, spectral
gaps form in the quasi-1D liquid. At temperatures below this
gap formation, the transport becomes dominated by the nodal
quasiparticles. This scenario explains some of the charac-
teristic features of transport in the underdoped (pseudogap)
regime of the cuprates, including the different transport times
observed in the longitudinal and Hall conductivities [16]. The
latter of these arises only from the curved region of the Fermi
surface [17], and is thus governed by the nodal quasiparticle
Fermi-liquid-like transport time.

In this work, we take a more quantitative approach. We
explicitly calculate the RG flow for the effective ladder model
and show that also the more realistic intermediate energy
regime before the far infrared can be described by the same
quantum numbers as the d-Mott phase. With the help of
the RG, we then compute the contribution of the strongly
correlated hot spots to the optical conductivity. This provides
a self-consistency test of our theory and, more importantly, a
direct link to experiment. The optical properties of a material
reveal fundamental information about its excitation spectrum,
including the aforementioned pseudogap in the underdoped
cuprates, which breaks the Fermi surface into disconnected
nodal and antinodal sections [2–7,18]. Consistent with our
approach, experimental results observe two different compo-
nents to the optical response, one being Fermi-liquid-like and
the other being incoherent [19,20].

Previous calculations of the optical conductivity from the
spin-fermion model have been performed in the non-nested
situation [8,21–25], while calculations of the optical conduc-
tivity in fermionic two-leg ladder systems have considered
either doped situations [26,27], or the integrable, infrared limit
of the half-filled case [28]. In the first two cases, umklapp
processes are irrelevant away from half filling or for a non-
nested Fermi surface, which generally has consequences for
(dynamical) correlation functions. The integrable limit of the
half-filled ladder, on the other hand, is due to an emergent
higher symmetry in the far infrared [14] and potentially cannot
be reached for realistic values of the bare couplings or on
experimentally relevant energy scales. In this sense, we ac-
cess a nontraditional regime for the optical conductivity with
respect to both models. Another view is that the comparison
of observables calculated within this ladder approach with
the ones obtained from the self-consistent, nested solution of
the spin-fermion model will allow one to see if the mapping
between both [15] is really a unification or if it rather reveals
additional 1D-type physics that could mask the spin-fermion
behavior.

In addition to the motivation above, we would like to em-
phasize that both the spin-fermion model and ladder models
have many applications beyond the high-temperature cuprate
superconductors. The spin-fermion model represents a gen-
eral theory for an antiferromagnetic quantum critical point,
which, for example, can also occur in heavy-fermion materi-
als [29,30]. Ladders can also appear as key structural units
in other materials (see, e.g., the introduction of Ref. [31]).
Although our starting point is formally a ladder based on
a momentum space decomposition, our calculation remains
applicable for systems built of real-space ladders. In fact,
there are even ladder compounds in the cuprate family [32],
which provide another interesting connection between uncon-
ventional superconductivity in 1D and 2D.

To calculate the optical conductivity, we use a perturba-
tive memory function formalism [33,34] in combination with
the one-loop renormalization group (RG). This allows us
to accurately access the high-energy regime, at frequencies
or temperature significantly above the excitation gap. Such
an “RG-improved” perturbation theory has been previously
used to study the optical conductivity in the sine-Gordon
model, where it was shown to be accurate to a comparable
level to the exact solution at intermediate-to-high energy
[35,36]. The combination of the RG with a perturbative de-
termination of the memory function has also been used to
explain conductivity measurements in the ladder compound
Sr14−xCaxCu24O41 [37]. Our calculation appears similar, with
the important difference that umklapp processes are relevant
in our case and we account for the scale dependence of the
Luttinger parameters characterizing the bosonized version of
the ladder. As in the previous work [16], we assume that at
high energies/temperatures the processes within the antinodal
regions dominate the transport. This assumption has allowed
Ref. [16] to get a good qualitative fit to the experimentally
measured temperature dependence of the dc resistivity in
underdoped cuprates and helps to justify our focus on this
region in the mapping from the spin-fermion model to the
ladder.
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We find that umklapp processes play a major role in the
high-frequency behavior of the optical conductivity, leading to
a high-frequency tail that falls off like a power law ω−α with
a nonuniversal exponent α. If we consider finite temperatures
and the zero-frequency limit in turn, we find a resistivity that
appears to decrease linearly as the temperature is lowered,
before diverging at low temperatures. This confirms the as-
sumption in Ref. [16] and, as has been argued there, when this
is combined with the contribution from nodal quasiparticles,
the divergence is regularized and substituted by Fermi-liquid
scaling of the resistivity at low temperatures. Such behavior is
qualitatively consistent with that observed in experiments, see
Ref. [20].

In the following section, we explain the correspondence
between the hot spot regions of the spin-fermion model and
the half-filled, two-leg ladder. In Sec. III, we argue how the
RG flow reveals the d-Mott phase, even before the integrable
limit is reached in the far infrared. We present our results for
the optical conductivity in Sec. IV and discuss our conclusions
in Sec. V.

II. LADDER PHYSICS IN THE SPIN-FERMION MODEL

The formal link between the physics of the hot spots in
the spin-fermion model and half-filled, two leg ladders is
provided by recent work of one of the authors [15]. We
remind the reader of the basic ideas of this approach here.
The spin-fermion model [8] describes electrons interacting
with soft spin excitations (paramagnons) that emerge in the
vicinity of an antiferromagnetic quantum critical point. The
low-energy Lagrangian features electrons ψσ (k) with a large
Fermi surface and collective spin excitations Sq:

L =
∑

k

ψ†
σ (k)(iω − εk)ψσ (k) + 1

2

∑
q

S−qχ
−1(q)Sq

+ g
∑
k,q

ψ†
α (k + q)σαβψβ (k) · Sq . (1)

Here, σ is the vector of Pauli matrices. The spin susceptibility
χ (q) is

χ (q) = χ0

1 + ξ 2(Q − q)2
, (2)

where Q = (±π,±π ) are the antiferromagnetic wave vectors
that connect hot spots in the antinodal regions of the Fermi
surface (see Fig. 1), and ξ is the magnetic correlation length.
The Fermi surface associated with the dispersion relation εk

is shown (with exaggerated nesting deformation) in Fig. 1 in
orange.

The spin-fermion model has been intensively studied
[8,23,38–45] but, despite remarkable progress, the full RG
equations for a finite number of hot spots in 2D have not been
solved, even at one loop. RG calculations show a logarithmic
increase of the coupling constant and an increased tendency
to nesting at the hot spots [38]. These calculations also show a
decrease in the dynamical exponent z [23]. Recently, Schlief,
Lunts, and Lee argued that the theory with z = 1 is self-
consistent with the result that the coupling flows to zero. At
the same time, they claim that the theory remains strongly
coupled because the dimensionless coupling is of order

FIG. 1. Solid black lines show the noninteracting Fermi surface,
which intersects the magnetic Brillouin zone (dotted lines) at eight
isolated points, the hot spots (grey spots). The hot spots are nested
via the antiferromagnetic wave vector Q = (±π,±π ). Generically
the velocities at opposing hot spots are not equal and opposite. In the
presence of spin-fermion interaction, we consider a Fermi surface
that has deformed in the vicinity of the hot spots to increased nesting
(shown exaggeratedly in orange) and thus lower the overall energy
through the opening of spectral gaps.

one [44]. In our calculations, we assume that there is some
critical value of the bare coupling constant above which the
system scales to perfect nesting and strong coupling (meaning
a nonzero, dimensionful coupling constant). We justify this by
the fact that gap creation is energetically advantageous and, if
the gap is sufficiently large, it can win over the losses in the
kinetic energy caused by the imperfect nesting. This is similar
to the scenario envisaged by Rice to explain antiferromag-
netism at incommensurate fillings in Co alloys [46]. Recently,
a similar Fermi surface distortion has also been found in
a SU(2) gauge theory model of fluctuating incommensurate
spin density waves for the hole-doped cuprates [47].

In this limit, we focus on the physics in the vicinity of the
hot spots. We neglect any contribution from the nodal regions
(i.e., electrons away from the hot spots) but comment on
potential modifications of our results below. Doing so allows
us to project onto the hot spots via [15]

Rσa(x) = 1√
2π

∫
dk‖ ψ

(
ka

R + k‖e
)
eik‖x,

(3)

Lσa(x) = 1√
2π

∫
dk‖ ψ

(
ka

L + k‖e
)
eik‖x,

where ka
R/L denotes the coordinates of the hot spots, a =

+,−, and e = (1, 1)/
√

2 (see Fig. 1). Integrating out the para-
magnons under the assumption that the correlation length re-
mains finite, we arrive at the low-energy effective Lagrangian
density [15] of a 1D fermionic two-leg ladder without inter-
chain hopping, but with interchain interactions determined by
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the spin-fermion coupling

L = R†
σa(∂τ − iv∂x )Rσa + L†

σa(∂τ + iv∂x )Lσa

− γ

2
(R†

αaσαβLβa + L†
αaσαβRβa)

× (R†
γ bσγ δLδb + L†

γ bσγ δRδb), (4)

where γ ∼ g2χ0/ξ and v is the Fermi velocity, which only
has a component perpendicular to the Fermi surface in the
flat, nested limit that we consider. The model possesses
U(1) × U(1) × SU(2) × Z2 symmetry as a result of charge
conservation within each pair of patches, spin conservation,
and the symmetry under exchange of the two pairs of patches.

It is worth emphasizing here that Eq. (4), which describes
degrees of freedom in the vicinity of the hot spots, is an
emergent ladder model that arises from the shape of the Fermi
surface. As a result, there is no direct interchain hopping of
electrons in Eq. (4). This is in stark contrast to the ladder
models conventionally studied in the context of the cuprates,
which are directly motivated by the crystal structure of materi-
als [9] and feature interchain hopping of electrons. These lad-
der models with weak interchain tunneling have been studied
previously in a number of contexts [48,49]. We also note that a
duality between weak and strong interchain coupling has been
pointed out in Ref. [50]. The relation between our analysis and
previous results will be discussed in the next section.

With the help of bosonization [10,11], we can express the
Lagrangian in terms of four scalar fields via

Rσ p = κσ p√
2πa0

ei
√

π (ϕc+σϕs+pϕ f +σ pϕs f ), σ, p = ±1,

(5)

Lσ p = κσ p√
2πa0

e−i
√

π (ϕ̄c+σ ϕ̄s+pϕ̄ f +σ pϕ̄s f ),

with small-distance regularization a0 and Klein
factors {κσa, κσ ′b} = 2δσσ ′δab. In our convention,
κσaκσ−aκ−σ−aκ−σa = 1 and the correlators of the bosonic
fields satisfy

〈ϕa(x, τ )ϕb(0, 0)〉 = δa,b

4π
ln

(
a0

τ + ix/v

)
, (6)

〈ϕ̄a(x, τ )ϕ̄b(0, 0)〉 = δa,b

4π
ln

(
a0

τ − ix/v

)
. (7)

Here, τ is imaginary time. For convenience we are working
with bosonic fields describing charge (c), spin (s), flavor ( f ),
and spin-flavor (s f ) degrees of freedom, and it will also be
useful to introduce nonchiral fields �a = ϕa + ϕ̄a and their
duals �a = ϕa − ϕ̄a.

With these definitions at hand, the bosonized version of the
Lagrangian density becomes

L =
∑

μ=c, f ,s,s f

1

2Kμ

[
1

v
(∂τ�μ)2 + v(∂x�μ)2

]
+ 2gss f

(πa0)2
cos(

√
4π�s) cos(

√
4π�s f ) − gc f

(πa0)2
cos(

√
4π�c) cos(

√
4π� f )

+ 1

(πa0)2
[cos(

√
4π�c) + cos(

√
4π� f )][gcs cos(

√
4π�s) − gcs f cos(

√
4π�s f ) + 2gcs f cos(

√
4π�s f )] (8)

with 1/Kc( f ) = 1 + gc/(2πv) and 1/Ks(s f ) = 1 − gs(s f )/

(2πv). We list the bare values of the couplings below, see
Eqs. (11). As we consider a deformed Fermi surface with
increased nesting about the hot spots, terms proportional
to cos(

√
4π�c) appear in the Lagrangrian (8), which

derive from the umklapp processes shown in Fig. 2 and are
marginally relevant at half-filling. They appear on the same
footing as cos(

√
4π� f ) terms, because there is a symmetry

with respect to �c ↔ � f at half-filling. In contrast to the
cos(

√
4π�c) terms, however, the cos(

√
4π� f ) terms survive

finite doping away from half filling.

FIG. 2. Umklapp processes of the deformed 2D Fermi surface
that correspond to the relevant umklapp terms of the half-filled
ladder. They are proportional to the cos(

√
4π�c ) terms in Eq. (8)

with coupling (a) gc f and spin σ = σ ′, (b) gcs for σ = σ ′ and gcs f for
σ 	= σ ′, and (c) gcs f with σ 	= σ ′.

To proceed further, we need to derive how the couplings
flow under the RG. To do so, it is convenient to refermionize
the Lagrangian (8) and to this end, we define four Majorana
fermions (organized into a singlet and a triplet) for the spin de-
grees of freedom ξi (i = 0, . . . , 3) and four Majorana fermions
that characterize the charge sector ηa and λa (a = c, f ). We
refermionize according to the identities:

Rs = 1√
2

(ξ̄1 + iξ̄2) = κs√
2πa0

ei
√

4πϕs ,

Ls = 1√
2

(ξ1 + iξ2) = κs√
2πa0

e−i
√

4πϕ̄s ,

Rs f = 1√
2

(ξ̄0 + iξ̄3) = κs f√
2πa0

ei
√

4πϕs f ,

Ls f = 1√
2

(ξ0 + iξ3) = κs f√
2πa0

e−i
√

4πϕs f ,

Ra = 1√
2

(η̄a + iλ̄a) = κa√
2πa0

ei
√

4πϕa ,

La = 1√
2

(ηa + iλa) = κa√
2πa0

e−i
√

4πϕa . (9)

Here, {κa, κb} = 2δa,b are new Klein factors. As one can see,
these new fermions are nonlocal with respect to the original
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ones (5). In terms of these new Majorana fermions, the Lagrangian density reads

L =
3∑

i=0

[ξ̄i(∂τ − iv∂x )ξ̄i + ξi(∂τ + iv∂x )ξi] +
∑

a=c, f

[η̄a(∂τ − iv∂x )η̄a + ηa(∂τ + iv∂x )ηa]

+
∑

a=c, f

[λ̄a(∂τ − iv∂x )λ̄a + λa(∂τ + iv∂x )λa] + gc

∑
a=c, f

η̄aηaλ̄aλa + gc f (η̄cηc + λ̄cλc)(η̄ f η f + λ̄ f λ f )

−
∑

a=c, f

(η̄aηa + λ̄aλa)(gcs,+ξ̄bξb + gcs,−ξ̄0ξ0) − gs,+
∑
a>b

(ξ̄aξa)(ξ̄bξb) − gs,−(ξ̄aξa)(ξ̄0ξ0). (10)

There are six couplings in total, with the bare values

g0
c = g0

c f = −g0
cs,− = 3γ , g0

cs,+ = g0
s,+ = g0

s,− = γ . (11)

These couplings are related to those of the bosonized La-
grangian density, Eq. (8), through

gs = gs+, gs f = gs−, gss f = gs+ + gs−
4

,

gcs = gcs+, gcs f = −gcs+ + gcs−
2

, gcs f = gcs+ − gcs−
4

.

Although the couplings gs+ and gs− satisfy gs+ = gs− at
the bare level, this can be broken under the RG flow.
As a result a new interaction term, which is proportional
to the coupling gss f = (gs+ − gs−)/2 will be generated,

gss f cos(
√

4π�s) cos(
√

4π�s f ).
In Eq. (10), an SO(5) × SO(3) symmetry becomes ap-

parent [51]. This can be made very explicit by collecting
ηc, f , λc, f , ξ0 fermions into a quintet denoted by χa (a =
1, 2, . . . , 5) and ξ1,2,3 fermions into a triplet. The interaction
term then reduces to the (obviously) symmetric form

V = −gc

∑
a>b

(iχ̄aχa)(iχ̄bχb) + gs,+
∑
a>b

(iξ̄aξa)(iξ̄bξb)

+ gcs,+(iχ̄aχa)(iξ̄bξb). (12)

As described in the next section, all of these excitations
develop a gap. It can be reasonably assumed (see Ref. [15]
and below) that the lowest excitations of this theory are the
same as those of the SO(8) Gross-Neveu model; in particular,
there are eight excitations having nonzero overlap with the
Majorana fermions [14,28]. They are approximately split into
a triplet and a quintet, with the triplet ones being related to
S = 1 magnetic excitations, and the quintet containing, among
other excitations, a gapped 2e-charged magnetic singlet—the
so-called cooperon. This is different from previously studied
SO(5) symmetry that combines spin and pairing excitations
into a quintet [14,52–55].

III. RG FLOW AND d-MOTT PHASE

The RG equations for different two-leg ladder models have
been studied in many previous works [13,14,37,50,56–58].
Although ladder models are frequently considered in the limit
of strong interchain tunneling, a strong-weak tunneling dual-
ity allows one, in principle, to relate the low-energy effective
action of the two limits with each other. With this in mind, we
present the RG equations here again for the model of Eq. (10)
to explicitly show the relation between the ladder physics

in the spin-fermion model and previous results for two-leg
ladders. Importantly, the RG flow reveals that the effective
ladder derived from the flat Fermi surface contains the correct
physics to describe the underdoped regime of the cuprates,
i.e., a spin and charge gap without long-ranged correlations
and a predisposition towards d-wave superconductivity. We
do not assume the enlarged SO(5) × SO(3) symmetry holds
from the beginning by allowing all six couplings to be differ-
ent. The RG equations have the following form:

d

dl
Gc = −2G2

c f − 3G2
cs,+ − G2

cs,−,

d

dl
Gc f = −2Gc f Gc − 3G2

cs,+ − G2
cs,−

d

dl
Gcs,− = −(Gc + 2Gc f )Gcs,− + 3Gs,−Gcs,+

d

dl
Gcs,+ = −(Gc + 2Gc f − 2Gs+)Gcs,+ + Gs−Gcs,−

d

dl
Gs− = 2Gs+Gs− + 4Gcs,+Gcs,−

d

dl
Gs+ = G2

s+ + G2
s− + 4G2

cs,+,

where G(l ) = g(l )/2πv and l = ln(k/�) characterizes the
RG trajectory (� is the UV cutoff). As is standard, we neglect
irrelevant chiral terms that are generated by the RG. This also
means that we neglect the renormalization of the velocity, and
in particular, the velocities in the different sectors (charge,
spin, flavor, spin-flavor) remain the same vc = v f = vs =
vs f = v, On the bare level, their equality comes from the
interchain hopping being zero.

The flow of the six couplings is shown in Fig. 3. In
agreement with previous RG studies of two-leg ladders, the
absolute values of all couplings grow. We stop the flow
when one of the couplings Gμ becomes of order one. The
system preserves the SO(5) × SO(3) symmetry of the initial
conditions, i.e.,

gc = gc f = −gcs,−, gcs,+ = gs,−,

while gs+ deviates from the other couplings and changes sign
during the flow. We also checked that the system flows to the
SO(5) × SO(3) symmetry when we perturb the initial cou-
plings away from it. In the strong coupling limit, the system
scales to the SO(8) Gross-Neveu model, where the absolute
values of all couplings are equal [14]. But this happens far
beyond the perturbative regime; on all relevant intermediate
scales, our system can be considered to be SO(5) × SO(3)
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FIG. 3. Flow of the couplings and Luttinger parameters for γ =
0.15v. All couplings flow to strong coupling, and we stop the RG
flow when one Gμ becomes of order one. The initial SO(5) × SO(3)
symmetry is maintained or emerges at intermediate scales when we
perturb the initial conditions.

symmetric. As a result, we cannot take advantage of the
integrable point which would be reached with the SO(8)
Gross-Neveu model [14]. However, as explained below, the
excitations can still be classified with the same quantum
numbers as in the SO(8) symmetric case, but with different
energies of the triplet and quintet.

The development of a spectral gap is signaled by the
flow to strong coupling, where the SO(5) × SO(3)-symmetric
interaction takes the form

(πa0)2V

→
[

cos(
√

4π�c) + cos(
√

4π� f )

]

×
[

gcs,+ cos(
√

4π�s)+gc f + gcs,+
2

cos(
√

4π�s f )

]

− gc f cos(
√

4π�c) cos(
√

4π� f )

− |gs,+| + gcs,+
2

cos(
√

4π�s) cos(
√

4π�s f )

+ (incoherent terms ∝ cos(
√

4π�s f )).

When the interaction parameters gμ growing large, the fields
are pinned to the minima of the potential leading to finite

masses for charge and spin excitations. Note that gs,+ changed
its sign compared to the bare interaction. In the case of strong
coupling, there are two vacua with �c =� f = 0, �s = �s f =√

π/2 or �c = � f = √
π/2, �s = �s f = 0. Quantum num-

bers of the spectrum are determined by the distance between
the minima of the potential, e.g., the different “topological
charges”

Qμ ∝ 1√
π

∫
dx ∂x�μ, Qs f ∝ 1√

π

∫
dx ∂x�s f

for μ ∈ {c, s, f } are nonzero for field configurations that
approach the different minima at x = ±∞. Hence, they do
not change between the SO(8) and the SO(5) × SO(3) theory,
because the position of the minima remains the same also in
the SO(8) symmetric case when gc f , gcs,+,−gs,+ → g [14].
Consequently, we can transfer qualitative conclusions from
there.

This strong-coupling fixed point is not the only basin
of attraction of the RG equations. Depending on the initial
conditions, model (10) [and likewise the emergent SO(8)
theory] can belong to five different phases: a gapless Luttinger
liquid (realized when g0

c < 0 and, as consequence, all cou-
plings scale to zero), a charge-density-wave, a spin-Peierls,
an s-Mott, or a d-Mott phase. The latter two phases denote
Mott-insulating spin-liquid states which have short-ranged
pairing correlations with s- or d-wave symmetry. Consistent
with expectations from the spin-fermion model, our initial
conditions lie in the basin of attraction of the d-Mott phase
for any initial coupling strength γ . That is the RG evolves
our system to a phase with spin and charge gaps, and short-
ranged d-wave pairing correlations [15]. This becomes clear
when we consider the amplitude of the order parameter that
corresponds to d-wave pairing in the spin-fermion model

�d = R+↑L−↓ − R+↓L−↑ − R−↑L+↓ + R−↓L+↑

∝ ei
√

π�c [i cos(
√

π� f ) sin(
√

π�s) sin(
√

π�s f )

+ sin(
√

π� f ) cos(
√

π�s) cos(
√

π�s f )],

which is finite for both the aforementioned vacua. Quasi-long-
ranged pairing correlations are expected when the field �c

becomes gapless, e.g., upon doping the ladder away from half-
filling. By analogy, we relate the gap and pairing correlations
of the d-Mott phase to the pseudogap in the antinodal regions
and a tendency towards d-wave pairing, which cannot fully
develop because the coupling to the nodal quasiparticles is
neglected in our model.

IV. OPTICAL CONDUCTIVITY FROM RG-IMPROVED
MEMORY FUNCTION

A. Formalism

We expect our description to be valid in the perturba-
tive, high-frequency or high-temperature regime before a gap
opens in the charge and spin excitation spectrum. Thus, we
focus here on two cases: (i) the high-frequency tail of the real
part of the optical conductivity and (ii) the high-temperature
behavior in the zero-frequency limit. To improve the regime
of validity of our approach, we combine a purely perturbative
calculation of the optical conductivity with the RG results of
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the previous section, thereby taking higher orders into account
(see, e.g., Ref. [35]). This also allows us to detect signatures
of the pseudogap in the intermediate frequency regime above
the gap opening.

The optical conductivity is determined by the response of
the charge sector to an external electric field along the ladder
and can be related to the current-current correlation function
χ (ω) = 〈〈 j; j〉〉 via σ (ω) = i[χ0 + χ (ω)]/ω, where 〈〈A; B〉〉 =∫

dt exp(i(ω + i0+)t )〈[A(t ), B(0)]〉, with χ0 = 2vKc/π and
we set the electric charge e = 1. To compute the optical
conductivity, we use a memory function approach [33,34]

σ (ω) = iχ0
1

ω + M(ω)
,

M(ω) = 1

χ0ω
[〈〈F ; F 〉〉ω − 〈〈F ; F 〉〉ω=0].

F (t ) = [H, j(t )] is the commutator of the Hamiltonian and
the current operator j(t ), which in our theory is given by j =

√
2/π∂t�c. F (t ) is proportional to the scattering potential and

to lowest order we can approximate 〈〈F ; F 〉〉 ≈ 〈〈F ; F 〉〉0, i.e.,
the correlation function is evaluated in the absence of this
scattering [34]. Evaluating the optical conductivity in terms
of an approximated memory function is analogous to calculat-
ing particle propagators via approximated self-energies. This
approach is valid as long as the couplings of the cosines in
Eq. (8) remain sufficiently small.

We see that a finite optical conductivity is due to interaction
terms that do not commute with the current operator. In our
case, these are exactly the umklapp processes proportional
to cos(

√
4π�c) in Eq. (8) (see also Fig. 2). Let us note

that, although we started with a 2D Fermi surface at incom-
mensurate filling, the mapping of the nested Fermi surface
in the antinodal regions to the 1D ladder system leads to
commensurate filling in the effective 1D theory. As a result,
arguments [59] that prevent a finite resistivity due to a single,
dangerously irrelevant umklapp term do not apply here.

With these preliminaries, we obtain the memory function
for our system at finite frequency and temperature

M(ω, T ) ≈ fM (ω, T ) − fM (ω → 0, T ),

fM (ω, T ) = 1

ω

⎡
⎣ ∑

μ∈{ f ,s,s f }
cμ g2

cμ

(
2πa0T

v

)2(Kc+Kμ )−2

B2

(
− iω

4πT
+ Kc + Kμ

2
, 1 − Kc − Kμ

)

+4 cs f g2
cs f

(
2πa0T

v

)2(Kc+K−1
s f )−2

B2

(
− iω

4πT
+ Kc + K−1

s f

2
, 1 − Kc − K−1

s f

)]
, (13)

where B(x, y) is the Beta function and we define

cμ = 2Kc

χ0π4a2
0

sin(π (Kc + Kμ)), cs f = 2Kc

χ0π4a2
0

sin
(
π

(
Kc + K−1

s f

))
.

We can obtain simplified analytical results in two limits, T � ω and T � ω, as discussed below.

1. The low-temperature limit T � ω

In the low-temperature limit, T � ω, the memory function becomes

M(ω) ≈ 1

ω

⎡
⎣ ∑

μ∈{ f ,s,s f }
c0
μg2

cμω2(Kc+Kμ )−2 + 4 c0
s f (gcs f )2ω2(Kc+K−1

s f )−2

⎤
⎦

with

c0
μ = cμ

( a0

2v

)2(Kc+Kμ )−2
exp[iπ (1 − Kc − Kμ)]�2(1 − Kc − Kμ),

c0
s f = cs f

( a0

2v

)2(Kc+K−1
s f )−2

exp
[
iπ

(
1 − Kc − K−1

s f

)]
�2(1 − Kc − K−1

s f

)
,

with �(x) the Gamma function.

2. The high-temperature T � ω limit

In the opposite limit, T � ω, we find

M(T ) = i

T

⎡
⎣ ∑

μ∈{ f ,s,s f }
cT
μg2

cμ

(
2πa0T

v

)2(Kc+Kμ )−2

+ 4 cT
s f g2

cs f

(
2πa0T

v

)2(Kc+K−1
s f )−2

⎤
⎦,
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with

cT
μ = 2Kc

χ0π4a2
0

cos

(
π (Kc + Kμ)

2

)
B2

(
Kc + Kμ

2
, 1 − Kc − Kμ

)
,

cT
s f = 2Kc

χ0π4a2
0

cos

(
π

(
Kc + K−1

s f

)
2

)
B2

(
Kc + K−1

s f

2
, 1 − Kc − K−1

s f

)
.

3. RG-improvements

As we described above, we also calculate the “RG-
improved” expression to take into account higher order cor-
rections. Formally, iteration of the RG procedure for the
optical conductivity leads to the scaling relation

σ (ω, T ; {g}) = exp(l ) σ ( exp(l )ω, exp(l )T ; {g(l )}),

which in terms of the memory function is

σ (ω, T ) = iχ0

ω

1

1 + m[exp(l )ω, exp(l )T ; {g(l )}] ,

where we have defined m(ω, T ; {g}) = M(ω, T ; {g})/ω. In
this expression, we replace the bare couplings and exponents
{g} = {gμ, Kμ} by their scale-dependent analogues and iden-
tify the RG scale and frequency via l = ln(max(ω, T )/�)
with � = v/a0 being the UV cutoff. The lowest energies we
can reach are then determined by the scale l∗ at which the
couplings become of order one, where we consequently stop
the RG flow. This leads to ωlow, Tlow ∼ � exp(−l∗). In the
case of the exactly solvable sine-Gordon model, it was shown
that this RG-improved perturbation theory approximates the
exact optical conductivity very well [35].

B. Results

Let us first discuss the two different limits, ω � T and
T � ω. From the extrapolation of σ (ω) to ω → 0, we can
determine the dc resistivity

ρ(T ) = 1

Re σ (ω = 0, T )
= 1

χ0
Im M(ω = 0, T ). (14)

The RG-improved memory function scales like M(T ) ∝ T g2

in this limit. As a result, we can approximate our calculated
dc resistivity very well by

ρ(T ) ∝ g2(T ) T (15)

for any of the couplings g ∈ {gc f , gcs, gcs f , gcs f }; the illus-
trative example of gc f is shown in Fig. 4. Starting from
high temperatures the resistivity first decreases upon low-
ering the temperature, before rapidly increasing when the
temperature approaches the gap scale (where all the coupling
start to grow). We expect this increase to cross over to an
exponential increase below the gap, as there the number of
carriers becomes exponentially small. At intermediate-to-high
temperatures, we also show that a resistivity growing linearly
in the temperature fits the full expression well. Indeed, a
similar behavior was predicted in Ref. [16] using qualitative
arguments. As explained there, if the linear-in-temperature
component is complemented with the contribution from
the nodal Fermi liquid (not contained in our mapping), one
obtains behavior consistent with the resistivity observed in

many cuprates, ρ(T ) ∝ T [exp(−α/T ) + β/T ]−1. This gives
Fermi-liquid-like scaling with temperature at small T , which
becomes linear at higher temperatures.

The optical conductivity as a function of frequency in the
limit T → 0 is presented in Fig. 5. In this limit, the RG-
improved memory function becomes M(ω) ∝ ωg2, such that
the optical conductivity becomes

Re σ (ω, T = 0) ≈ χ0
Im M

ω2
∝ g2(ω)

ω
. (16)

Comparing the contributions from different couplings g ∈
{gc f , gcs, gcs f , gcs f }, we find again that they all lead to a
similarly good approximation. This reflects the fact that all
couplings are of the same order and so any difference is
essentially invisible on logarithmic scale.

The effect of the RG flow of the couplings is clearly
visible when comparing the RG-improved result to the bare
calculation, Fig. 5. Here, we also include the running of the
Luttinger parameters, which is frequently neglected because
of their weak scale dependence (Fig. 3). We find that such
approximation is justified at high frequencies, but changes
the behavior of the optical conductivity at intermediate-to-low
frequencies.

[T]

Tgcf(T)2

aT+b

0.0 0.2 0.4 0.6 0.8 1.0
0.03

0.04

0.05

0.06

0.07

0.08

T/

FIG. 4. The RG-improved resistivity as a function of tempera-
ture, ρ(T ) = Im M(ω = 0, T )/χ0. The gray dashed line represents
the approximation ∝ T g2(T ) with g ∈ {gc f , gcs, gcs f , gcs f } and gc f

chosen as an illustrative example (similarly good agreement is seen
for any choice of g). The dotted line is a linear fit, aT + b with a, b
fit parameters. The temperature (frequency) scale is set by the UV
cutoff of our theory, which corresponds to the energy where the
dispersion can no longer be approximated as linear. The increase
at small temperatures is rooted in the flow to strong coupling of g
when the gap scale is approached. Note that it is still in the regime
of validity of the RG because it appears before the couplings become
larger than order one, where we stop the RG flow.
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FIG. 5. The RG-improved optical conductivity σ (ω) in the zero-
temperature limit ω � T . We also show the bare expression (w/o
RG) and a 1/ω-tail (dotted line) for comparison. In the inset, the
inverse of the optical conductivity is approximated by a linear
function of frequency. The lower panel presents the same results on a
log-log scale. The RG-improved result approximately falls off like a
power law ω−α with a nonuniversal exponent, e.g., α ≈ 1.70 − 1.97
for γ = 0.15v − 0.3v. The contribution from the spin-flavor sector
Re σ (ω) ∝ g2

cs f (ω)/ω (gray, dash-dotted) is shown, with similar
behavior seen for any choice of g ∈ {gc f , gcs, gcs f , gcs f }.

At high-to-intermediate frequencies, we find that the opti-
cal conductivity is best approximated by a frequency depen-
dence of the form

Re σ (ω) ∼ ω−α, α > 1 (17)

as becomes apparent on a log-log scale (see the lower panel
of Fig. 5). The exponent α is nonuniversal and depends on
the initial (bare) interactions. Numerically, we obtain α ≈
1.70–1.97 for bare γ = 0.15v–0.3v.

At smaller frequencies, the gap formation influences opti-
cal conductivity, which starts to deviate from the power-law
scaling. This is driven by the RG flow to strong coupling. We
can only observe the crossover regime within our formalism,
as we are limited to frequencies sufficiently above the exci-
tation gap. At low frequencies, we expect a suppression of
the optical conductivity by the excitation gap [28]. To capture
the correct form of the singularity around the optical gap, a
full knowledge of interacting matrix elements of the current
operator is needed in addition to the gap formation [28].
Furthermore, we have accounted only for contributions from

FIG. 6. The RG-improved optical conductivity σ (ω) for different
temperatures T = 0, 0.04�, and 0.1�. The inset shows the same
data on a log-log scale. A kink appears at ω = T due to our
identification of the RG scale with ln(max(ω, T )/�).

the antinodal region; after the formation of a gap in the antin-
odal, we would need to include the contribution to the optical
conductivity from the nodal quasiparticles. Here we expect a
Drude-like behavior above the superconducting transition due
to the Fermi-liquid character of the nodal quasiparticles.

For finite temperature and frequency (Fig. 6), the high-
frequency behavior follows that of the optical conductivity
at T = 0, with the proviso that at intermediate frequencies
it increases more steeply. At low frequencies, this increase
is slowed once again due to the RG flow of the couplings
and Luttinger parameters, and it is cut when ω becomes
smaller than T . The lower the temperature, the more the curve
approaches the zero-temperature limit and becomes almost
indistinguishable from it at the lowest temperatures we can
reach Tlow ∼ � exp(−l∗).

To make contact with the commonly used generalized
Drude model (see, e.g., Ref. [18,33]), we show the general-
ized dynamical relaxation rate 1/τ and mass renormalization
factor m∗/m in Fig. 7. They are obtained from the memory
function by

1

τ (ω, T )
= Im M(ω, T ),

m∗

m
= 1 + Re M(ω, T )

ω
. (18)

The mass renormalization factor remains close to one at
higher frequencies or temperatures, but increases close to the
gap opening where correlations become stronger. At zero tem-
perature, we observe a maximum in the frequency dependence
of the mass renormalization before the limiting value ωlow is
reached. At higher temperature, the maximal value of the mass
renormalization decreases.

The temperature dependence of the scattering rate for
different fixed frequencies follows the approximately linear
behavior of the zero-frequency limit shown earlier for the dc
resistivity. However, the divergence at low temperatures is cut
when the frequency exceeds the temperature ω > T . Simi-
larly, at fixed temperature the frequency-dependent scattering
rate is approximately a linear at high frequency, and grows
strongly at low frequencies. The low-frequency increase is
suppressed at higher temperatures, and is also cut when
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FIG. 7. Mass renormalization factor and relaxation rate as a
function of frequency and temperature. The abrupt kinks in the
scattering rate come from the artificially nonanalytic switch in
l = ln(max(ω, T )/�)

T > ω. For our calculations, the cuts appears nonanalytic, but
this is an artifact from our use of max(ω, T ) in the identifica-
tion of the RG scale with frequency or temperature. When an
analytic identification is used, We expect this cut to become
smoother.

The behavior of the generalized mass renormalization and
scattering rate is in qualitative agreement with measurements
of the memory function in underdoped cuprates [18,20] at
frequencies/temperatures above the pseudogap scale. How-
ever, let us note again, that at low frequencies or temperatures,
the contribution from nodal regions also has to be taken into
account.

Finally, we compare our result to measurements of the
optical conductivity in underdoped YBa2CuO6.6 for light po-
larized along the a axis [60]. According to our theory there is
a (T, ω) threshold below which the conductivity is a sum of
independent nodal and antinodal contributions. This threshold
is the energy at which flat portions of the Fermi surface form
in the antinodal regions. To isolate the nodal contribution, we
adopt the Fermi liquid expression for it:

Re σ (ω) = A
1/τ

ω2 + 1/τ 2
(19)

1

τ
= �0 + B[ω2 + (2πT )2], (20)

and we extract parameters A, B, �0 from experimental data
under the assumption that at T = 70 K the antinodal region is
completely gapped and does not significantly contribute to the
optical conductivity. The corresponding fit is shown in Fig. 8.

Having determined the fit parameters, we subtract the
Fermi liquid contribution to the optical conductivity at T =
295 K, revealing the antinodal contribution (under our as-
sumptions). We obtained �0 = 0, A = 80.508 eV �−1 cm−1,
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FIG. 8. The Fermi liquid fit to the experimental data [60] for
optical conductivity in underdoped YBCO (Tc � 57 K) at T = 70 K.

and B = 10.675 eV−1. Figure 9 indicates the consistency
of our original assumption [16]: above the pseudogap the
conductivity is dominated by the antinodal regions. Although
our theory provides an explanation of why spectral weight
is found at higher frequencies, we have difficulty fitting the
power law of the high-frequency tail we find. However, as we
have noted, this power law is nonuniversal and quantitative
statements about it are beyond our approach. There are several
potential reasons for the mismatch: coupling between the lad-
ders (R, L) and (R̄, L̄) in Fig. 1 or other excitations beyond the
1D picture may contribute at these frequencies. Furthermore
at high frequencies and temperatures above the pseudogap,
our assumption of a flat antinodal Fermi surface could become
invalid.

V. CONCLUSIONS

We have obtained analytical results for the conductivity of
the spin-fermion model with flat portions of the Fermi surface
at temperatures and frequencies above the pseudogap. Such a
problem can be mapped to a model of 1D half-filled ladder.
The 1D-like behavior emerges in the limit where the Fermi
surface around the hot spots becomes increasingly nested,
which was conjectured to be energetically favorable for strong

AN T=70K

AN T=295K

AN+N T=295K

N T=295

0.0 0.2 0.4 0.6 0.8 1.0
−500

0

500

1000

1500

/

[(
cm

)−1
]

FIG. 9. The nodal (N) and antinodal (AN) contribution to the
optical conductivity in underdoped YBCO at T = 70 and 295 K
obtained by subtraction of the Fermi liquid contribution.
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coupling because the nesting leads to the formation of a gap
[15]. We calculated the corresponding RG evolution of the
ladder model, which flows to strong coupling, with all exci-
tations developing a gap (the pseudogap). We showed that the
system possesses SO(5) × SO(3) symmetry in the relevant in-
termediate energy regime, where excitations can be classified
as in the well-known SO(8) symmetric limit. The low-energy
effective theory describes the d-Mott phase, where there is a
spin gap and short-ranged d-wave pairing correlations.

Our calculation of the optical conductivity falls in a differ-
ent regime of the spin-fermion model than previously studied,
because it assumes full nesting of the hot spots, together with
nonzero coupling to the collective spin excitations. At the
same time, it differs from previous theoretical studies of the
optical conductivity in ladder system because the ladder is
away from the integrable SO(8) limit where exact results can
be obtained. We argued that in the considered frequency and
temperature regime, the contribution of the antinodal regions
to the conductivity σan is determined by umklapp processes
(Fig. 2). By combining a perturbative memory function ap-
proach with one-loop renormalization group, we show that
the optical conductivity scales like Re σan ∝ g2(ω)/ω for zero
temperature. The dc resistivity follows from the zero fre-
quency limit, giving ρan(T ) ∝ g2(T )T . The coupling g deter-
mines the strength of the umklapp processes and its frequency
(temperature) dependence is given by its scale dependence as
obtained from the RG flow. Our results for the dc resistivity
support the qualitative picture presented in Ref. [16]: above

the pseudogap the conductivity is increasingly dominated by
the antinodal regions and the temperature dependence of the
resistivity becomes approximately linear, which reflects the
effective one dimensionality of the system.

In conclusion, we showed that the optical conductivity of
the spin-fermion model (with parameters above the pseudogap
phase) fits within the “two weakly coupled fluids” picture of
transport in the underdoped cuprates. In particular, the two
fluids have different effective dimensionalities, with one de-
scribing the 2D Fermi liquid of nodal electrons and the other
a quasi-1D strongly correlated liquid around the hot spots. In
future studies, it would be interesting to address the coupling
between the two liquids to study the mutual effect that both
components have on each other, e.g., with respect to Fermi-
surface deformation and long-ranged superconductivity.

ACKNOWLEDGMENTS

We acknowledge valuable discussions with Chris Homes
who also acquainted us with his data on the infrared opti-
cal conductivity. We are also grateful to Andrey Chubukov,
Gabriel Kotliar, Maurice Rice, and John Tranquada for
thoughtful comments and interest in the work. This project
has received funding from the Alexander-von-Humboldt foun-
dation (L.C.), the European Union’s Horizon 2020 research
and innovation program under Grant Agreement No. 745944
(N.J.R) and the US Department of Energy, Office of Basic En-
ergy Sciences, Contract No. DE-SC0012704 (A.M.T., L.C.).

[1] M. Akhavan, Interplay of magnetism and superconductivity,
Phys. Status Solidi A 203, 2956 (2006).

[2] T. Timusk and B. Statt, The pseudogap in high-temperature
superconductors: an experimental survey, Rep. Prog. Phys. 62,
61 (1999).

[3] M. R. Norman, D. Pines, and C. Kallin, The pseudogap: friend
or foe of high Tc? Adv. Phys. 54, 715 (2005).

[4] P. A. Lee, N. Nagaosa, and Xiao-Gang Wen, Doping a
Mott insulator: Physics of high-temperature superconductivity,
Rev. Mod. Phys. 78, 17 (2006).

[5] N. E. Hussey, Phenomenology of the normal state in-plane
transport properties of high-Tc cuprates, J. Phys. Condens. Matt.
20, 123201 (2008).

[6] M. Hashimoto, I. M. Vishik, R.-H. He, T. P. Devereaux, and
Z.-X. Shen, Energy gap in high-transition-temperature cuprate
superconductors, Nat. Phys. 10, 483 (2014).

[7] E. Fradkin, S. A. Kivelson, and J. M. Tranquada, Colloquium:
Theory of intertwined orders in high temperature superconduc-
tors, Rev. Mod. Phys. 87, 457 (2015).

[8] Ar. Abanov, A. V. Chubukov, and J. Schmalian, Quantum-
critical theory of the spin-fermion model and its application to
cuprates: Normal state analysis, Adv. Phys. 52, 119 (2003).

[9] E. Dagotto and T. M. Rice, Surprises on the way from one-
to two-dimensional quantum magnets: The ladder materials,
Science 271, 618 (1996).

[10] T. Giamarchi, Quantum Physics in One Dimension, Interna-
tional Series of Monographs (Clarendon Press, 2004).

[11] A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosoniza-
tion and Strongly Correlated Systems (Cambridge University
Press, 2004).

[12] A. J. A. James, R. M. Konik, P. Lecheminant, N. J. Robinson,
and A. M. Tsvelik, Non-perturbative methodologies for low-
dimensional strongly-correlated systems: From non-Abelian
bosonization to truncated spectrum methods, Rep. Prog. Phys.
81, 046002 (2018).

[13] L. Balents and M. P. A. Fisher, Weak-coupling phase diagram of
the two-chain Hubbard model, Phys. Rev. B 53, 12133 (1996).

[14] H.-H. Lin, L. Balents, and M. P. A. Fisher, Exact SO(8) sym-
metry in the weakly-interacting two-leg ladder, Phys. Rev. B 58,
1794 (1998).

[15] A. M. Tsvelik, Ladder physics in the spin fermion model,
Phys. Rev. B 95, 201112(R) (2017).

[16] T. M. Rice, N. J. Robinson, and A. M. Tsvelik, Umklapp
scattering as the origin of T -linear resistivity in the normal state
of high-Tc cuprate superconductors, Phys. Rev. B 96, 220502
(2017).

[17] N. P. Ong, Geometric interpretation of the weak-field Hall
conductivity in two-dimensional metals with arbitrary Fermi
surface, Phys. Rev. B 43, 193 (1991).

[18] A. V. Puchkov, D. N. Basov, and T. Timusk, The pseudogap
state in high-Tc superconductors: an infrared study, J. Phys.
Condens. Matt. 8, 10049 (1996).
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