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With the rise of data collection also comes the need for
methods to analyze the data, and for novel approaches of
leveraging the data to improve decision-making. Machine
learning is a set of algorithms with the primary purpose of
identifying patterns in data to accomplish specific tasks.
Since 2012, the number of Google searches containing
the term machine learning has increased by 7 fold, and
the data scientist, an occupation that often requires
machine learning skills, has been rated by Glassdoor as
the best job in America three years in a row. Academic
publications in machine learning have also enjoyed a
significant popularity boost. Although machine learning
has been wildly popular, its scientific success has mostly
been captured in the fields of computer science and
artificial intelligence. The use of machine learning in
business research, specifically in the areas of operations
management and digital marketing, has been limited. In
this dissertation, I study how machine learning can be
used to solve prominent problems in operations
management and digital marketing. The primary
motivation is to show that the application of machine
learning can solve problems in ways that existing
approaches cannot. In its entirety, this dissertation is a
study of four problems—two in operations management
and two in digital marketing—and develops solutions to
these problems via data-driven approaches by leveraging
machine learning. These four problems are distinct, and
are presented in the form of individual self-containing
essays. Each essay is the result of collaborations with
industry partners and is of academic and practical
importance. In some cases, the solutions presented in this
dissertation outperform existing state-of-the-art methods,
and in other cases, it presents a solution when no
reasonable alternatives are available.
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Chapter 1

Introduction

As the world becomes more and more digitized, we are now able to collect enormous

amounts of data about everything, from how customers shop for groceries to how

Formula One racecars behave throughout every millisecond of a 300km race. With

the rise of data collection also comes the need for methods to analyze the data, and

for novel approaches of leveraging the data to improve decision-making. Machine

learning is a set of algorithms with the primary purpose of identifying patterns in

data to accomplish specific tasks. It originated in computer science, and due to the

increase in available data and advance in computing power, has become immensely

popular in recent times. Since 2012, the number of Google searches containing the

term “machine learning” has increased by 7 fold, and the “data scientist”, an occu-

pation that often requires machine learning skills, has been rated by Glassdoor as the

best job in America three years in a row. Academic publications in machine learning

have also enjoyed a significant popularity boost. For example, the paper on image

classification using deep convolutional neural networks (a machine learning algo-

rithm) by Krizhevsky et al. (2012) has been cited over 35,000 times, an astronomical

number by academic standards. Although machine learning has been wildly popular,

its scientific success has mostly been captured in the fields of computer science and

artificial intelligence. The use of machine learning in business research, specifically in

the areas of operations management and digital marketing, has been limited. In this

dissertation, I study how machine learning can be used to solve prominent problems

in operations management and digital marketing. The primary motivation is to show

that the application of machine learning can solve problems in ways that existing

approaches cannot. In its entirety, this dissertation is a study of four problems—two

in operations management and two in digital marketing—and develops solutions to

these problems via data-driven approaches by leveraging machine learning. These

four problems are distinct, and are presented in the form of individual self-containing

essays. Each essay is the result of collaborations with industry partners and is of

academic and practical importance. In some cases, the solutions presented in this dis-

sertation outperform existing state-of-the-art methods, and in other cases it presents

a solution when no reasonable alternatives are available.
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The first problem studied in this dissertation is on consumer debt collection (Chap-

ter 3). For this problem, I develop a data-driven algorithm to optimize when and to

whom phone calls should be made to maximize the collection of delinquent debt cases.

This algorithm was tested in a controlled experiment at a Dutch collection agency

and was found to have increased the amount of debt collected per call by 47.2%.

The second problem studied is on contact center staffing and scheduling (Chapter 4).

For this problem, I develop a machine learning approach to accurately approximate

a complex simulation of contact centers, leading to a fast and reliable method for

identifying high-quality staffing schedules at low costs. Using numerical simulations

that represent real-life contact centers, it is found that my approach can improve

upon the existing approaches by over 4%, and is able to analyze more complex con-

tact centers than previously possible. The third problem studied in this dissertation

is on the attribution of online purchases to digital advertisements (Chapter 5). For

this problem I develop a new attribution model that extends a well-known existing

framework to incorporate customers’ web-browsing behavior when evaluating the

effectiveness of digital advertisements. Using data from a Dutch online travel agency,

it is shown that customers’ web-browsing behavior are highly predictive of purchas-

ing decisions, and thus should be taken into account when attributing purchases.

This solution is currently the only attribution model that is able to incorporate

web-browsing behavior at the individual customer level. The fourth problem I study

focuses on probabilistically matching web-browsing devices (or browser cookies) to

users based on browsing behavior. I consider two different instances of this problem,

one of devices browsing a single news publishing website (Chapter 6) and another

of devices captured by an ad exchange (Chapter 7), and develop solutions to them

separately. In both cases, I show that matching can be performed with good reliabil-

ity, and that display advertising firms can potentially use this technology to improve

their advertising effectiveness.

The essays presented in this dissertation (Chapters 3 to 7) assume that readers

already have some basic understanding of machine learning and predictive analytics.

For readers who are new to machine learning, either conceptually or practically,

Chapter 2 aims to provide you with such knowledge and discusses the essentials of

machine learning, such as the type of tasks it is able to perform, how it works to

perform certain tasks, and how its performance should be evaluated. It also provides

a brief overview of how machine learning is used in the remaining chapters of this

dissertation. Readers who already have a good understanding of machine learning

can skip Chapter 2 and start with Chapter 3.



13 1.1. Contribution and valorization

1.1 Contribution and valorization

This section describes the contributions of myself and my coauthors with respect to

the essays presented in this dissertation. Chapter 3 is based on the paper “Data-

driven Consumer Debt Collection via Machine Learning and Approximate Dynamic

Programming” (van de Geer et al. 2018), which is currently under review at Man-

agement Science. This paper is jointly authored with my colleague Ruben van de

Geer and Prof. Sandjai Bhulai. As agreed upon by myself and Ruben, the author-

ship of this paper is ordered alphabetically between the two of us to indicate equal

contribution as doctoral students. The conception of this project, together with

the ideation, mathematical modeling of the optimization approach, and writing are

shared between Ruben and me. The development of the machine learning solution,

together with the generation and analysis of the results can be solely attributed to

me. Prof. Bhulai contributed to verifying our approach and wrote small parts of the

paper. This paper has been presented multiple times at practitioner events (Kag-

gleDays in Warsaw, Data Science Meetups in Amsterdam and Utrecht), academic

conferences (POMS Sydney 2017, POMS Hong Kong 2018, StochMod 2018, MSOM

2018, INFORMS Annual Meeting 2018), and academic seminars at various research

institutions (University of Kansas, Vanderbilt University, Northwestern University,

HEC Montreal, McGill University, Chinese University Hong Kong at Shenzhen, City

University Hong Kong, University of Hong Kong, York University, University of

Maryland).

Chapter 4 is based on the paper “Optimal Contact Center Staffing and Scheduling

with Machine Learning” (Li et al. 2018). This paper is currently being edited and

finalized for eventual submission to Management Science, and is jointly authored

by my colleague Siqiao Li, myself, and our doctoral advisor Prof. Ger Koole. As

agreed upon by Siqiao and I, the authorship of this paper is ordered alphabetically

between the two of us to indicate equal contribution as doctoral students. The con-

ception of this project can be entirely attributed to myself, although the problem

of contact center staffing and scheduling is well-studied in the operations manage-

ment community and was first brought to my attention by Prof. Koole during a

seminar. The contact center modeling and simulation part is mostly performed by

Siqiao together with CCMath (a company specializing in workforce planning soft-

ware for contact centers), and I contributed by designing, implementing, and testing

of the machine learning algorithm together with the local-search optimization pro-

cedure. Prof. Koole’s contribution to this paper is primarily high-level supervision.

This paper has been presented at the INFORMS Service Science Conference 2018
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and the Service Engineering: From Theory to Practice workshop 2019 at the Israel

Institute of Technology (Technion).

Chapter 5 is based on the paper “Multi-channel Conversion Attribution: A

Machine Learning Approach” (Peeperkorn et al. 2019). This paper is currently being

edited and finalized for eventual submission to Marketing Science, and is jointly

authored by my colleague Piet Peeperkorn, my co-supervisor Dr. Maarten Soomer,

and myself. The authorship of this paper is ordered alphabetically. Multi-channel

conversion attribution is a well-studied problem in the marketing and computer

science fields, and it was initially proposed as the primary topic of my doctorate.

Beyond the initial proposal of the problem, most of the work in this paper can be

attributed to myself, including modeling, designing, and implementing the machine

learning approach, generation and analysis of the results, and most of the writing.

Piet provided expertise in understanding and writing about the Shapley value, and

Dr. Soomer wrote parts of the introduction of the paper. This paper has been pre-

sented at the Digital Marketing and Machine Learning Conference 2018 at Carnegie

Mellon University.

Chapter 6 is based on the paper “Recombining Customer Journeys With Prob-

abilistic Cookie Matching: A Supervised Learning Approach” (Wang 2017). This

paper was originally submitted to the INFORMS Data Science Workshop 2017 but

was unfortunately rejected, primarily because the practical impact of probabilistic

cookie matching has not been proven. Future work to extend this paper has been

planned for later in 2019. The work in this paper can be entirely attributed to me.

Chapter 7 is based on the paper “Improving Display Advertising With Predictive

Device Matching: A Machine Learning Approach” (Wang and Wijnsma 2018). This

paper is co-authored by myself and colleague Taco Wijnsma, and a similar version

of this paper was written as the MBA thesis of Taco Wijnsma under my supervision.

All work in this specific version of the paper can be attributed to me, although

discussions between Taco and I played a major role in certain algorithmic choices.

Moreover, as the manager of Adscience at the time, Taco provided the data used for

this project. This paper was presented at the POMS Hong Kong Conference 2018 at

the Chinese University Hong Kong.

1.2 Data requirements and industry collaboration

The research work in this dissertation are data-driven in nature. With the exception

of Chapter 4, real-life data is used for algorithm development and evaluation. Even

for Chapter 4, the data provided comes from a simulation based on real-life contact
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center scenarios. A primary challenge in data-driven research is obtaining the neces-

sary data to study the research question, often limiting the scope of the study or the

ability to conduct certain analyses. For this reason, collaboration and cooperation

from industry partners are crucial. I would like to acknowledge the industry part-

ners for providing the data needed to conduct the research in this dissertation. Data

collection, storage, and maintenance are extraordinarily time-consuming and costly.

Without high-quality data this dissertation would not be possible and data-driven

research of modern scale problems would remain nothing more than an idea.

Chapter 3 is in collaboration with a mid-sized Dutch collection agency. This com-

pany provided data in the form of basic information about a set of debt collection

cases, collection actions taken on debtors, and the ultimate collection results. They

also accommodated a controlled field experiment that was used to evaluate our algo-

rithm in a real-life setting. As a result of this collaboration, the paper described

in Chapter 3 is the first to validate the effectiveness of data-driven debt collection

algorithms in practice.

Chapter 4 is in collaboration with a small company that develops contact center

workforce planning software, and the simulation scenario used comes from a mid-

sized European contact center. This work is only possible because of the detailed

contact center simulation software provided by the partner, which generated the data

necessary to develop and evaluate our machine learning framework. This would not

have been possible with only observational data due to the required sample size.

Chapter 5 is in collaboration with a Dutch online travel agency. Any research

related to the prediction or attribution of conversion behavior at the user level

requires detailed data from websites that have tracked the browsing histories of their

users. The collection of this data is a challenging technical task as millions of users

visit the website and browse hundreds of millions of pages each year. This task typi-

cally cannot be performed by research teams, and therefore requires industrial level

engineering teams to collaborate in data collection. Our partner spent multiple years

on this process prior to the start of this research project to ensure that the data

collected is correct and reliable.

Chapter 6 is in collaboration with a large Dutch news publisher. The most chal-

lenging aspect of probabilistic device matching is obtaining labeled data for training

supervised learning algorithms. By combining user data from logged-in accounts

across multiple devices, the news publisher is able to deterministically map the brows-

ing histories of multiple devices to the user of the account. This provided the ground

truth required for development and evaluation of device matching algorithms. Our

partner spent multiple years on data collection, storage, and maintenance prior to

the start of this research project.



Chapter 1. Introduction 16

Chapter 7 is in collaboration with a small Dutch programmatic buyer of dis-

play advertisements. Programmatic buying of display advertisements is technically

demanding, requiring decisions to be made within milliseconds through an exchange

platform. Billions of decision requests are made every day for web users across the

Netherlands alone. For this project, our industry partner collected tens of billions

of decision requests from the Netherlands, and filtered it down to the hundreds of

millions of requests used to develop and evaluate the method used in our paper.



Chapter 2

Machine Learning Essentials

Machine learning generally deals with numerical data that is in tabular form stored in

an N -by-M matrix, where each row n= 1, ...,N represents an “observation” and each

column m= 1, ...,M represents a “feature”. Table 1 presents a simple example of the

data format used by machine learning algorithms. An observation is an entity or event

that is defined by a set of M features that describe this observation. For example,

it could be a customer of a fashion retailer, where relevant features of this customer

may include the customer’s age, gender, the products he or she has purchased in the

past, and loyalty programs the customer has subscribed to. Typically, non-numerical

features are converted into numerical representations (e.g., gender can be represented

by a binary value: 1 for female and 0 for male).

Based on a dataset, the tasks that machine learning algorithms perform can be

broadly categorized into two groups: supervised learning and unsupervised learning.

For supervised learning, the algorithm is used to map a dataset’s features to an

unknown target value of interest, commonly known as a “prediction”. Using the

example above, we may be interested in predicting which customers of the fashion

retailer will visit the store next week, possibly with the goal of sending a coupon

to these customers. Using information (the features) about each customer in our

dataset, a supervised learning algorithm may be used to predict the probability that

a customer will visit the store next week. For unsupervised learning, the algorithm

is used to find implicit categorizations of the observations based on their features.

Again using the same example, the fashion retailer may want to group its customers

based on their past purchases. An unsupervised learning algorithm can be used to

Table 1: Example of a data format for machine learning.

ID Feature 1 Feature 2 Feature 3 Feature ... Feature M

1 Value Feature 1 Value Feature 2 Value Feature 3 Value Feature ... Value Feature M
2 Value Feature 1 Value Feature 2 Value Feature 3 Value Feature ... Value Feature M
3 Value Feature 1 Value Feature 2 Value Feature 3 Value Feature ... Value Feature M
... Value Feature 1 Value Feature 2 Value Feature 3 Value Feature ... Value Feature M
N Value Feature 1 Value Feature 2 Value Feature 3 Value Feature ... Value Feature M
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recommend groupings of customers that most distinctively separate them based on

the data available. Human analysts can then annotate these groups based on their

general characteristics (e.g., high spenders vs. bargain hunters). This dissertation

focuses exclusively on supervised learning tasks due to the ability to objectively

evaluate and interpret the results. While unsupervised learning is undoubtedly useful,

human intuition is required to interpret results and therefore complicates analyses.

The next section provides more details about the supervised learning task.

2.1 Supervised learning

Typically, supervised learning is also synonymous with “predictive analytics”. A

supervised learning algorithm consists of a single or a set of functions that map

values for a set of features into a single target value of interest (prediction). The

parameters of the functions are initially unknown, and the automated process of

finding parameters that best map feature values to predictions is called “training” a

model. To train a model, we first require that labels of the target values be provided

together with the dataset of features1. This is often provided in historical data, where

not only the features, but also labels of the target value have been observed. Going

back to the example of the fashion retailer, if we record every time a customer visits

the store, then we can look back in time and construct the value of whether the

customer will visit the store one week in the future (from a particular point in time in

the past). The dataset with labeled target values constructed is called the “training

set” or “training data”. After a training set is provided, the supervised learning

algorithm finds parameters that best map the feature values to the labeled target

values for all observations. Equation (1) below presents a mathematical definition of

the supervised learning problem:

min
k

g
(
f(X,k), ytrue

)
, (1)

where g(·) is an error function that takes as input a function f(·) to predict the

target value from a matrix of feature values X and a vector of parameters k, and

the vector of true labeled target values ytrue. The goal is thus to find the parameters

k that minimize the error. The choice of error function g(·) and prediction function

f(·) is decided by the user and is both problem and data specific (i.e., some error

functions are more appropriate for some problems than others). The procedure to

find the best parameters k can either be mathematical or computational. After an

1The term “supervised” in supervised learning refers to the process of an algorithm “learning” from

labeled observations.
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algorithm is trained, predictions can then be made on a dataset where the feature

values are available but not the labeled target values (e.g., customers in the present

day). This dataset is called the “test set”.

Supervised learning problems or tasks are often divided into two types: “classi-

fication” and “regression”. The difference in these two types of problems depends

on whether the target variable is categorical (i.e., can only be one among a set of

numerically unrelated values), or numerical (i.e., can be any continuous quantity in

IR). In practical settings, classification and regression problems are not very differ-

ent, and mistakenly using a classification algorithm to solve a regression problem

or vice versa can still produce good results2. In fact, it is often straightforward to

extend many of the well-known supervised learning algorithms to appropriately han-

dle either problem. However, when applying supervised learning to specific problem

domains, it is important to understand the distinction between classification and

regression, and to use the correct method. In this dissertation, both classification

and regression problems play prominent roles so more details and some examples are

provided below.

2.1.1 Classification

When we think of classification we usually think of binary yes/no questions. Will

it rain tomorrow? Is this email genuine or is it spam? Is this an image of a cat or

a dog? Does this CT scan show cancer or healthy cells? Binary questions are the

most common form of classification problems. In other cases, there may be multiple

classes to choose from (e.g., which animal is this an image of)? This dissertation

only focuses on binary problems but it is simple to extend solutions for the binary

problem to solve multi-class problems.

In a binary classification problem, the target value can only be a class, typically

represented numerically by 1 if the observation belongs to one class, and 0 if it

belongs to the other class. The procedure to train an algorithm is based on finding

parameters for functions to best map feature values to the correct class. This is

usually evaluated as the fraction of correctly classified observations from the training

set, where a correct classification is made when the predicted class equals the labeled

class.

A different way of framing the binary classification problem is to treat it as a prob-

abilistic prediction problem. In this context, rather than predicting a binary class

(1 or 0) for an observation, we instead predict the probability that the observation

2Assuming reasonable post-processing of predictions.
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belongs to the class. The observed labels are still binary, but by predicting a prob-

ability, the algorithm is also able to demonstrate the confidence of its prediction.

Evaluation of this problem is done by considering the difference between the pre-

dicted probability of the observation belonging to the class and its true class label.

This means that if the true class label of an observation is 1, then a prediction of

0.99 will be better than a prediction of 0.65. On the contrary, if the true class label

was 0, then the prediction of 0.65 would be better than the prediction of 0.99. In

many cases, this approach is equal to the concept of maximum likelihood estimation

in statistics, where the algorithm is finding parameters with the objective of maxi-

mizing the likelihood of jointly observing the feature and labeled target values in the

training set. The probabilistic prediction problem can also be used to give binary

predictions. To do so, a threshold between 0 and 1 needs to be set such that all

predictions above the threshold are set to 1, and all predictions below the threshold

are set to 0.

Classification problems studied in this dissertation. In this dissertation,

Chapters 3, 5, 6, and 7 solve classification problems. In all cases, the classification

problem is framed as a probabilistic prediction problem, but two of the chapters

require actual class predictions so thresholding is also applied.

A major part of Chapter 3 requires the prediction of the probability that a debtor

will fully repay his debt based on details of his current state in the debt collection

process. Here, the probability of repayment is the focus, and we compare the dif-

ferences in predicted probabilities between taking two different actions—call or not

call. In this chapter, it is shown that even with very limited information (i.e., not

very informative features) about debtors and the nature of their debt, a classifica-

tion algorithm can predict repayment probability of debtors reasonably well across

various collection states. This ultimately allows collection decisions to be optimized

based on predicted responses.

The classification problem in Chapter 5 is to predict the probability that cus-

tomers of an online travel agency will purchase a vacation package. In this prob-

lem, a customer is defined by information extracted from his visits to the travel

agency’s website. For every visit made by the customer, his behavior during the

visit is recorded and afterward his purchase probability is predicted. The increase in

predicted purchase probability after each visit is then interpreted as the effect that

the visit had on the customer’s purchase decision. Similar to the debt repayment

prediction problem in Chapter 3, in the purchase prediction problem here we also

focus on the difference in probability between two actions—visit or no visit.
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Chapters 6 and 7 study the problem of matching browsing devices belonging to the

same user. Different contexts of this problem are considered in the two chapters, but

only a single classification problem is solved. The goal of this problem is to compare

each pair of browsing devices that have been used to browse a website (or set of

websites) and predict whether the pair of devices belong to the same user. Browsing

devices are tracked by websites as HTTP cookies, and it is typically assumed that a

unique cookie represents a unique user of the website. However, in practice a unique

cookie can only track a user on a single device for a certain period of time, so often a

user is tracked by multiple cookies at the same time (due to using multiple devices,

using multiple browsers, or refreshing cookies). By reliably predicting which devices

belong to the same user, tracking cookies can be combined and websites will have

more accurate information about their users, either for reporting purposes or to

better understand their users’ needs. For targeted online advertising, this can also

increase the pool of certain desirable targets, potentially increasing effectiveness.

2.1.2 Regression

Regression problems differ from classification in that the target value is not explicitly

constrained to within a limited set and can be any real number. There are many cases

of regression-based questions asked every day in businesses. How many customers

will visit my retail store next week? What will the temperature be tomorrow? How

severe in dollar value will an insurance claim be? Because the target value can in

principle be any real number3, it is unlikely for any prediction to be exactly correct,

so predictions are evaluated by how close they are to the true label. The regression

problem in machine learning is analogous to that of in statistics. However, a key

difference is that in machine learning the primary focus is on predictions made by

the algorithm, whereas in statistics the primary focus is on the parameters of the

functions for the purpose of statistical inference.

Regression problems studied in this dissertation. In this dissertation, Chap-

ter 4 studies a regression problem. In this chapter, a supervised learning algorithm

is developed to predict the weekly service level of a contact center given a staffing

schedule of customer service agents. The service level is labeled as a continuous value

between 0 (poor) and 1 (excellent), and predictions also follow the same format. It is

shown that weekly service levels of contact centers can be accurately predicted when

customer demand is stationary (i.e., does not exhibit large exogenous fluctuations).

3Sometimes there can be implicit constraints, e.g., there cannot be negative numbers of customers

visiting a retail store, or a negative dollar value of insurance claims.
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With reliable predictions of the service level, it becomes possible to more efficiently

compare the performance of different staffing schedules, allowing for the possibility

of finding better schedules within practical time constraints.

2.2 The predictive analytics process

Between when raw data is available and when an algorithm can be deployed in

practice, a number of steps need to be taken to ensure that predictions can be of high

quality for its intended purpose. The papers presented in Chapters 3 to 7 already

assume the reader has a basic understanding of this process. For readers who are not

familiar with various steps in the predictive analytics process, this section is intended

to provide the necessary background understanding.

Predictive analytics consists of three major components: choosing a supervised

learning algorithm, constructing features from raw data to best represent the avail-

able information, and evaluating the predictive performance of the algorithm. These

three components are considered in tandem, and multiple iterations are often

required to achieve good results.

2.2.1 Performance evaluation and validation

Although it may seem counterintuitive, it is often best to start a predictive analytics

project with performance evaluation. The first question to ask is: what is the objec-

tive, and how should predictions be evaluated? Recall function g(·) from Equation

(1), this can be called the error metric and it can be used to translate the practical

supervised learning problem into a mathematical function. It is important to select

the error function that is consistent with how the practitioner wishes to evaluate

predictions. For example, in a problem where an advertiser has limited ads he can

present to a large group of customers, he needs to select the customers that are most

likely to respond positively to his ad. In this problem, it is customary to first predict

the probability that each customer will respond to the ad, and then show the ad to

those most likely to respond. For this problem, it is not important to know if the

exact prediction of responding or not responding is correct, rather the group selected

to show the ad should be the most likely to respond. Therefore, to achieve better

prediction results, a metric abbreviated as AUC should be used. Some well-known

evaluation metrics are explained below.

Evaluation metrics for binary classification. A number of error functions for

binary classification problems rely on the “confusion matrix”. The confusion matrix

is a 2-by-2 table consisting of four elements: “true positive”, “true negative”, “false
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positive”, and “false negative”. Predictions for each observation can be assigned to

one of the elements. True positive (TP) is when the prediction is 1 and the true

label is 1, true negative (TN) is when the prediction is 0 and the true label is 0, false

positive (FP) is when the prediction is 1 and the true label is 0, and false negative

(FN) is when the prediction is 0 and the true label is 1. Within each element of the

confusion matrix, the number of prediction outcomes that matches the element is

recorded.

The most simple and intuitive evaluation metric for classification problems is

“accuracy”, defined by:

Accuracy :=
# TP + # TN

# TP + # TN + #FP + #FN
. (2)

Accuracy is a useful metric because it directly represents how often the algorithm

is correct versus how often it is wrong. This is easy to understand for humans,

and is a quick way of convincing people of an algorithm’s effectiveness. However,

in practice accuracy is a poor metric when the classes are imbalanced. In many

prediction problems there are few observations in one class compared to the other

class. For example, very few customers respond to advertisements in general, so the

responder class is much smaller than the non-responder class. In such cases, when

using accuracy as the evaluation metric, a naive algorithm would perform very well

(e.g., over 90%) by predicting all observations to be the dominant class. This leaves

little room for improvement by an intelligent algorithm, potentially decreasing the

efficiency of the algorithm to learn correct relationships. In another context, it may be

more important to be correct on positive observations than on negative observations

or vice versa. Accuracy treats all observations equally, but in problems such as cancer

classification, the value of correctly classifying cancer when it is present is far greater

than the cost of incorrectly classifying cancer when it is not present. A different

set of evaluation metrics are required for such situations: “precision”, “recall”, and

“Fβ-score”.

Precision can be interpreted as how correct the algorithm is when it predicts

positive. Mathematically it is defined by:

Precision :=
# TP

# TP + #FP
. (3)

Recall can be interpreted as the fraction of true positive observations the algorithm

is able to retrieve (i.e., predict as positive). It is mathematically defined as:

Recall :=
# TP

# TP + #FN
. (4)
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Note that with precision, observations where the algorithm predicted to be negative

are ignored. This means that if the fraction of the positive class is small, then naively

predicting all observations to be negative would yield poor precision. This is also the

case for recall, where only the observations that truly belong to the positive class

are considered, and only positive predictions can be correct for these observations.

Finally, the Fβ-score is used to combine precision and recall into a single metric

based on the harmonic mean as follows:

Fβ-score= (1 +β2) · Precision · Recall
β2 ·Precision+Recall

, (5)

where β is a parameter used to balance the values of precision and recall. If β = 1,

then precision and recall are equally weighted, and if β < 1 or β > 1 then precision

is weighted more or less than recall, respectively. Together, the precision, recall,

and Fβ-score are the most commonly used metrics for binary classification problems

that require exact class predictions. They are also used in Chapters 6 and 7 of this

dissertation.

For evaluating the quality of probability predictions, two commonly used metrics

are “logarithmic loss”, also known as “logloss”, and area under the Receiver Oper-

ating Characteristic curve, typically abbreviated to “AUC”. Logloss is defined as

follows:

Logloss :=−
N∑

i=1

(
ytruei · ln(ypredi ) + (1− ytruei ) · ln(1− ypredi )

)
, (6)

where i denotes an observation, ytruei is the true binary label of observation i (1 or 0),

and ypredi is the predicted probability for observation i. Intuitively, this error metric

considers two cases for each observation: the true label is 1, and the true label is

0. When the true label is 1, then the logloss of that prediction is ln(ypredi ). Since a

probability prediction is bounded within [0,1], ln(ypredi ) is a negative value and its

magnitude increases exponentially as ypredi decreases (i.e., moves away from 1). On

the contrary, when the true label is 0, the magnitude of logloss increases exponen-

tially as ypredi increases (i.e., moves away from 0). The negative sign is simply there

for interpreting the problem as minimizing an error. Overall, logloss ensures that

high-confidence correct predictions are rewarded more than low-confidence correct

predictions and high-confidence incorrect predictions are penalized more than low-

confidence incorrect predictions. Moreover, logloss assumes that it is better to have

more cases of being wrong by a little than fewer cases of being wrong by a lot.

Unfortunately, much like accuracy, the value of logloss can also be affected by the

distribution of positive and negative classes in the dataset. When the fraction of pos-

itive class observations is low, then naively predicting all observations to equal the



25 2.2. The predictive analytics process

Figure 1: Sample ROC curves of predictions from different classification models.

empirical fraction of positive classes yields low (good) logloss values. While this does

not limit the learning efficiency of the algorithm in the way that accuracy does, it

makes performance comparisons across datasets very difficult. For easier performance

comparisons across datasets, and even across problems, the AUC metric is much

more useful. AUC measures how well a classification algorithm is able to differentiate

between true positive observations from true negative observations. Specifically, it

can be interpreted as: given a randomly selected positive observation and a randomly

selected negative observation, what is the probability that the algorithm scores the

positive observation higher than the negative observation? The mathematical defini-

tion of AUC is complicated and therefore in practice it is observed graphically from

the Receiver Operating Characteristic (ROC) curve. Figure 1 presents an example

of ROC curves from two classifiers on the same dataset. The ROC curve is a tradeoff

between the true positive rate (y-axis) and the false positive rate (x-axis). The true

positive rate (TPR) is the fraction of true positives predicted among all positive

class observations, and the false positive rate (FPR) is the fraction of false positives

predicted among all negative class observations. Since the original predictions are

probabilities, a threshold is required to compute true positive and false positive pre-

dictions, but will be moved up and down between [0,1] to the range of TPRs and

FPRs. When the threshold is high, all predictions are false and therefore TPR and

FPR are both zero. As the threshold is decreased, both TPR and FPR increase, but

at different rates. The ROC curve plots the relationship between TPR and FPR,

and AUC is the area under this curve. If the model randomly guesses probabilities,

then the ROC curve is expected to be linear (i.e., the TPR and FPR rates increase
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at equal rates). In Figure 1, ROC curves of two algorithms are presented. The green

curve has an area of 0.79, and with this prediction algorithm a TPR of 0.60 can be

achieved with an FPR of only 0.20 (i.e., for every three correct positive predictions

the algorithm makes one mistake). The orange curve is much better with an area of

0.96, and a 0.90 TPR can be reached with an FPR of 0.10 (i.e., for every ten correct

positive predictions the algorithm makes one mistake).

Evaluation metrics for regression. Regression problems give supervised learning

algorithms more freedom to make predictions, making evaluation more complicated.

However, due to this additional complication, practitioners have actually simplified

how regression problems are evaluated and mostly relied on metrics based on the

numerical difference between the predicted and true label values. The most com-

monly used metric is “mean squared error” (MSE), defined by:

MSE :=
1

N

N∑

i=1

(
ytruei − ypredi

)2

. (7)

MSE compares the square of differences between the predicted and true values for

each observation, and computes their average. One major advantage of MSE is that

it is continuous and differentiable with respect to the predicted values, allowing

for supervised learning algorithms to more easily optimize its parameters. Like the

logloss metric for classification, MSE favors more smaller errors than fewer larger

errors. However, due to the unbounded nature of regression problems, MSE is less

robust to outliers as the extreme value can overly affect its predictions. When outliers

are a concern, it is often better to use “mean absolute error” (MAE) as the error

metric, defined by:

MAE :=
1

N

N∑

i=1

∣∣∣ytruei − ypredi

∣∣∣ . (8)

Instead of computing the square of differences between the predicted and true label

values, MAE uses the absolute value. This weighs all distances equally, thereby allow-

ing it to be more robust to extreme outliers than MSE. However, unlike the MSE,

MAE is not a continuous function so it is more challenging to optimize supervised

learning algorithms based on this metric. Both MSE and MAE assume that errors

are equal regardless of the magnitude of the true label value. However, in some cases

the same error magnitude on smaller values may be worse than for larger values.

The metric “mean average percent error” (MAPE) considers the error as a percent

of the true label value. For example, a prediction of 8 when the true label is 10
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results in 20% error, and is equivalent to a prediction of 80 when the true label is

100. Mathematically, MAPE is defined by:

MAPE :=
1

N

N∑

i=1

∣∣∣∣∣
ytruei − ypredi

ytruei

∣∣∣∣∣ · 100. (9)

One shortcoming of MAPE is that it could lead to precision problems for observations

where the true label value is small. If the magnitude of true label values in a dataset

ranges from 0 to 100, the supervised learning algorithm may not be precise enough

to predict with small error on observations where true value is small (e.g., less than

5). A simple method to deal with this problem is to instead use the average of ypredi

and ytruei in the denominator of Equation (9).

Finally, another representation of MSE is the coefficient of determination (R2),

defined by:

R2 := 1−
∑N

i=1(y
true
i − ypredi )2

∑N
i=1(y

true
i − ȳ)2

. (10)

R2 ranges from [−1,1] and is typically interpreted as how well an algorithm’s predic-

tions are related to the true label values, and the greater the magnitude the stronger

the relationship (0 means no relationship and 1 means perfect relationship). A pos-

itive or negative R2 value implies that the relationship is in the same or opposite

direction.

Validation. The purpose of supervised learning is to make accurate predictions on

new observations without having true label values. By definition, the performance

of these predictions on unseen data cannot be evaluated. One option is to evaluate

the algorithm’s prediction performance on the training dataset, for which the true

labels are already provided. However, this can lead to overfitting—the algorithm is

over-optimized for the training dataset and fails to generalize to unseen observations.

Recall from Equation (1) that the supervised learning algorithm minimizes an

error function with respect to parameters of a prediction function. The prediction

function can be as simple as a flat line with only one parameter determining its

position on the y-axis, or as complicated as a set of functions with as many param-

eters as there are observations4. The problem with evaluating an algorithm based

on its prediction performance on the training set is that error will always decrease

as the prediction function increases in complexity. In fact, the most powerful super-

vised learning algorithms such as gradient boosting and neural networks are complex

4It is also possible to have more parameters than the number of observations in the training set.
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enough to perfectly predict all training observations if uncontrolled. In practice, the

most commonly used method for evaluating algorithms is through a process called

“validation”. The validation process is intended to simulate real-life deployment of

the learning algorithm and appropriately evaluate its performance. It works by split-

ting the original training set into two parts: a new training set, and a validation set

(also called the holdout set or the out-of-sample set5). The new training set is used

to train the supervised learning algorithm, and the validation set is used to evaluate

predictions. Since the validation set was part of the original training set, true label

values are provided to evaluate predictions. Moreover, as the validation set is not

used to train the supervised learning algorithm, overfitting can be reflected by poor

prediction performance.

Since validation is used to simulate real-life deployment, the design of the vali-

dation framework is important. For many problems, simply randomly splitting the

training data into two equal halves is sufficient. However, for problems where time

plays a role and past data is used to train algorithms to predict the future, the vali-

dation framework also needs to reflect this, and splitting the training data into halves

by time is more appropriate. A cost of validation is that the amount of data that can

be used to train the algorithm is significantly decreased. Typically, the more data is

available to train the algorithm, the better it is able to generalize to unseen obser-

vations. By reducing the size of the training set, prediction error on the validation

may be overestimated. To reduce the cost of validation, a splitting ratio that favors

training can be used (e.g., 70% for training and 30% for validation). However, if the

validation set is too small, then it may not be a good representation of the unseen

observations it is intended to simulate. Ultimately, if computational resources are

abundant, k-fold cross validation is a good solution. k-fold cross validation works by

randomly splitting the original training data into k parts. Then for each part, the

other k−1 parts are used to train the algorithm and evaluated on that part. Finally,

the prediction error is averaged over each validation part. This way, all of the data

is used for both training and validation, but without overlap.

2.2.2 Feature engineering

Generally, for all predictive analytics problems, the raw data provided is not directly

suitable for training machine learning algorithms. This is because the structure of

the raw data is usually not directly translatable to the N -by-M matrix format of one

row per observation with M features. For example, in the debt repayment prediction

5Often the validation set is also called “test set”, but the test set sometimes also has a different

meaning.
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problem considered in Chapter 3, the raw data contains many rows per debtor, where

each row is an action taken by a debt collector on a debtor (e.g., phone call). However,

the goal is to make a prediction for each debtor (at a given point in time) and not

each action, and the features associated with each debtor should describe the debtor’s

state in the collection process. To construct an N -by-M dataset that is suitable for

the prediction problem, the raw data must be processed in a way that captures the

target appropriately, with features containing sufficient information to predict the

target value. This process is called “feature engineering”. Feature engineering is a

creative process that combines both intuition and science, and one of the greatest

advantages of having a reliable validation framework is to test the effectiveness of

various feature designs and combinations.

Timestamped events. In this dissertation, data in all chapters except one comes

in the format of sequences of timestamped events (e.g., collection actions and cus-

tomer website visits). To engineer a sequence of events into a single row of informa-

tion, a simple approach is to convert one type of event into one feature, and to record

the number of occurrences of that event. For example, when dealing with website

visits that came through a set of possible marketing channels, a feature for each

channel can be constructed to hold the number of times such a visit occurred for

the customer. With this feature, if the visitors through particular channels are more

likely to purchase a product, then the supervised learning algorithm could easily

capture this relationship.

Since events are usually timestamped, a substantial amount of information can be

extracted from when events occur. If predictions are also time-dependent, then the

amount of time since specific events can be important. For example, customers may

be more likely to purchase a product if their previous visit to the website was recent

versus further in the past. In addition, it is even possible to look back at multiple

past events and compute the density of their occurrences. Timestamped events also

allow the algorithm to capture seasonality effects, such as month of year, day of

week, or hour of day. For example, it has been hypothesized that online customers

browse during the day while at work, and only make purchases from home in the

evening. By including the hour of the most recent visit as a feature, the algorithm

might be better able to predict purchase behavior. Alternatively, if the ratio of visits

during specific times matter (i.e., many weekend visits may be indicative of bargain

hunters), then these specific times can be constructed as features and the number or

ratio of occurrences for each customer would be their values.
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Mathematical feature transformations. Sometimes, mathematical transforma-

tions of features or even the target variable can significantly improve the learning

efficiency of algorithms. Most supervised learning algorithms assume a particular

relationship between features and the target value. A classic example is the linear

relationship, defined by:

ypredi = β ·xi +α, (11)

where ypredi is the predicted value and xi is a feature value. In this mathematical

relationship, it is assumed that a unit increase in xi will always result in β units of

increase in ypredi . However, in practice a unit increase in x at low levels may affect the

target value more strongly than when x is already at high levels. This distorts the

assumed linear relationship between the feature and the target, resulting in a poorly

learned β and inferior prediction outcomes. One solution is to change the algorithm—

use a nonlinear relationship instead. However, a simpler approach to improve the

results in this case without changing the algorithm is to log-transform the feature,

i.e., using ln(xi) instead of xi. Often, log-transformed count features better fit linear

relationships than raw counts. Alternative transformations such as taking the square

root of x may also be effective. For some algorithms, it can be useful to perform

normalization—subtracting by the feature’s mean across all observations and then

dividing by the standard deviation—on all features. This is because some algorithms

are sensitive to the magnitude of feature values, so normalizing all features to a single

scale can help.

Relationships across features may also be important. In statistics, this is referred

to as “feature interactions”, which mostly focuses on the product of features. For

supervised learning purposes, other relationships such as the sum and ratio of fea-

tures can also be considered. For example, website visits across the six hourly periods

between 6pm and midnight can be summed into a single feature for visits during the

evening. This allows for individual hourly visits to vary but not affect the prediction

as long as the evening visits remain constant.

Categorical features. All machine learning algorithms require data to be in

numeric form. Therefore, the natural method of encoding categorical features is to

assign a unique numeric value to each category. However, assigning numeric values

to categories already assumes a numerical relationship between them, which can-

not be generalized to all categorical features. A commonly used method to handle

categorical features is “one-hot encoding”, also known as “dummy encoding”. This

method transforms a categorical feature into a set of binary features, one for each
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category. Then, for each observation, the new feature that corresponds to the cat-

egory of the original feature has a value of 1, whereas the features that correspond

to the other categories all have values of 0. This allows the supervised learning algo-

rithm to learn the relationship between each category and the target value. One

problem with one-hot encoding is that a large number of binary features are created

from a single feature with many categories. This can potentially result in overfit-

ting, and at the very least introduces complexity to the management of the features.

Unfortunately, there are no other feature engineering methods that can more simply

represent categorical variables without requiring additional assumptions.

Pairwise comparisons. Many prediction problems rely on the comparison of fea-

tures across two entities. Some examples include document search (comparing the

search query and potential search result), product recommendation (comparing infor-

mation about a product and user), and device matching (presented in Chapters 6 and

7). For these problems, including features of the two entities independently is a good

start, but additional value can be derived from pairwise comparisons. Distance-based

metrics across features between the pairs, such as Euclidean or Manhattan distance

(for numeric features), cosine and Jaccard similarity (for text-based features), and

simple binary differences (e.g., whether two users visited the same website within

an hour) can be effective. Finally, for problems that rely on text or large numbers

of event occurrences of different types, “feature embeddings” have become power-

ful tools. Feature embedding is a way of summarizing a large set of features into a

much smaller set of features based on similarity or co-occurrence across all observa-

tions (e.g., the word2vec embedding). By replacing raw features with values from an

embedding, the pairwise distance-based metrics tend to convey more information.

2.2.3 Supervised learning algorithms

Throughout the years many supervised learning algorithms have been developed for

prediction problems. However, it should be noted that recency and popularity are

not reflective of an algorithm’s performance. Due to the exponential increase in data

availability and computing power, a number of advanced algorithms (e.g., neural net-

works, gradient boosting) have become much more effective than they initially were

when first developed, and have dominated the space. For this dissertation, gradient

boosting is the only algorithm used as it is most suitable for the problems considered.

Nevertheless, this section aims to provide the reader with a general understanding

and background for some well-known supervised learning algorithms.
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Linear models. Historically, it is often accepted that the first supervised learn-

ing algorithm was the “perceptron” (Rosenblatt 1958), which is the foundation for

modern-day neural networks. The perceptron is a simple linear threshold function

for classifying observations, defined by:

ypredi =





1 if w ·xi + b > 0,

0 otherwise,
(12)

where xi is a vector of feature values for observation i, w is a vector of weights,

and b is a bias term. For a given training set, there is an algorithmic procedure to

determine w and b that minimizes classification error.

However, even before the existence of computers, “linear regression”, the most

well-known supervised learning algorithm, was developed6. According to Yan and Su

(2009), linear regression can be dated back to Legendre in 1805 and Gauss in 1809.

Linear regression is very similar to the perceptron and is defined by:

ypredi = w ·xi + b. (13)

Here, the process of finding w and b focuses on minimizing the mean squared error as

defined in Equation (7), and it can be solved analytically via ordinary least squares

or maximum likelihood, or numerically via gradient descent. The weights w can be

interpreted as the magnitude of effect that one unit increase in feature x has on the

target value of y. Simple nonlinear transformations are possible by taking powers

or logarithms of various features. For classification problems, “logistic regression”—

which transforms predictions from linear regression via the sigmoid function—can be

used. A probability prediction is made, and the procedure to find w and b minimizes

the logloss function defined in Equation (6). Both linear and logistic regression are

fast, flexible, and generally highly effective. For this reason, it is often wise to start

with one of these two approaches for any supervised learning problem.

One major problem with linear and logistic regression is the potential for over-

fitting. Unlike some of the more modern supervised learning algorithms, the exact

nature of how linear and logistic regression find w and b often leads to the detection

of spurious relationships in the training data between some features and the target,

resulting in overfitting. Moreover, if the number of features in a dataset exceeds the

number of observations (common in images and text), linear and logistic regression

are guaranteed to perfectly fit the training data, which will almost always result in

6Linear regression is better known in statistics and econometrics, but is also regarded by the machine

learning community as a supervised learning algorithm.
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poor predictions on unseen observations. To combat this problem, a general frame-

work called “regularization” was developed to artificially reduce the magnitude of w

by including a penalty term λ‖w‖2 to the error function. Because the linear and logis-

tic regression algorithms are minimizing an error function, inclusion of the penalty

term penalizes larger values of w, thereby preventing the exact minimization of the

error function on the training data. When the L2-norm is used for the penalty term

the resulting algorithm is called “ridge regression” (Hoerl and Kennard 1970), and

when the L1-norm is used the resulting algorithm is called “LASSO” (Tibshirani

1996). It is also possible to use both penalty terms together, resulting in an algorithm

called “elastic net” (Zou and Hastie 2005). λ is a hyperparameter that controls the

strength of regularization, and needs to be tuned manually via trial and error dur-

ing validation. Although there are no theoretical arguments for why regularization

is effective, it has been practically useful when a dataset contains large numbers of

features.

Nonlinear models. Although supervised learning algorithms based on linear mod-

els are generally effective, and their parameters are easy to estimate, nonlinear models

provide greater flexibility in capturing the real-life relationships between features

and the target. The simplest nonlinear supervised learning algorithm is known as

“k-nearest neighbors” (Cover and Hart 1967), or kNN for short. The kNN algorithm

predicts observations to equal the target label of its k nearest labeled observations

based on feature values. For regression or probability prediction problems, the pre-

dicted label is an average of the nearest labels, and for binary classification the pre-

diction is by majority voting. How near observations are to each other is determined

by a distance metric, and common measures are: Euclidean distance, Manhattan

distance, and cosine similarity. The k in kNN is a hyperparameter, meaning that is

should be selected via validation. It generally trades off how local predictions should

be, with k= 1 suggesting that the closest neighbor should be solely responsible for

the predicted label of an observation, and more neighbors are included as k increases.

kNN has been shown to work well in some problems, but one major disadvantage is

that the distance metrics assume equal importance of the features. In reality, some

features are far more predictive of the target than other features, and therefore they

should be weighted differently. Unfortunately, kNN does not provide such flexibility.

Since the invention of the perceptron, AI researchers realized that multiple layers

of perceptrons where one fed into the next creates a nonlinear algorithm that is able

to classify more challenging classification problems. When many layers of percep-

trons are connected together, this concept was given the name of “artificial neural

networks”, or just “neural networks”. However, it was a challenge to efficiently learn
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the weights of neural networks. Rumelhart et al. (1988) popularized the backprop-

agation algorithm, which combined with gradient descent allowed the training of

neural networks to be more efficient, starting a decade-long interest in this algo-

rithm by AI researchers. Eventually, due to insufficient available data and computing

power, neural networks proved to be difficult to use successfully in practice and other

algorithms gained traction in the 2000s.

Using a different approach from neural networks, “support vector machines”

(Cortes and Vapnik 1995), also known as SVM, became the most popular super-

vised learning algorithm in the late 90s to the early 00s. Behind SVM is the notion

that if there is a binary-class dataset that is linearly separable (i.e., can be perfectly

classified by a hyperplane), then it is possible to find a hyperplane that maximizes

the distance between it and the closest observation of each class from it. The key

to this algorithm is that even when the data is not linearly separable based on the

dimensions specified by the feature space (e.g., two-dimensional space when there

are two features), it is possible to map the feature space into higher dimensions

through the use of kernels7. Some well-known kernels include the polynomial kernel,

radial basis function kernel, and string kernel. The advantage of kernels is flexibility

(able to model many complex relationships between features and the target) and

computational efficiency (orders of magnitude faster than explicitly transforming the

features).

In the late 2000s and early 2010s, thanks to the massive increase of data availabil-

ity and the power of graphical processing units, neural networks made a comeback

and have again become the most popular supervised learning algorithm. This coin-

cided with the success of two techniques, “convolutional neural networks” (CNN)

and “recurrent neural networks” (RNN) that significantly defeated the existing state-

of-the-art approaches for the problems of image recognition (Krizhevsky et al. 2012)

and speech recognition (Graves et al. 2013). These newly popularized approaches use

many more layers than the multi-layer perceptrons studied in the 80s, and as a result

have been re-branded as “deep neural networks”, or more generally known as “deep

learning”. As of right now, deep learning approaches are state-of-the-art for some

well-known problems in AI, particularly relating to images, text, and speech, and is

close to state-of-the-art for the supervised learning problems discussed in this dis-

sertation. However, the performance of neural networks heavily depend on its many

hyperparameters (e.g., number of layers, size of layers, types of activation functions),

and significant amounts of trial and error is required to find good hyperparameters

for any problem. For this reason it is still easier to rely on simpler or more stable

algorithms for practical use.

7It is also possible to use kernels for other algorithms such as the perceptron or linear regression,

but it is typically used in combination with SVM.
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Figure 2: Example of a simple decision tree.

Tree-based models. Based on human intuition, decision trees represent a set of

nested binary rules used for making predictions. Decision trees for supervised learn-

ing were first popularized by Breiman et al. (1984), under the name “classification

and regression trees” (CART). Figure 2 is an example of a decision tree for the

prediction of repayment probabilities of debtors. In this decision tree, two features

are considered: the number of days since last contact and whether the debtor has

answered a call previously. For any observation, its predicted probability can be

determined by simply traversing the tree from top to bottom. In the example, it can

be seen that if a debtor was last contacted 3 days ago and he did not answer a call

previously, his predicted repayment probability is 0.6. Alternatively, if the debtor

did answer a call previously, his predicted repayment probability would be 0.8. One

of the greatest advantages of decision trees is its flexibility to handle both numeri-

cal and categorical data without requiring feature engineering. Moreover, the nested

structure of trees can capture interaction effects if present. Although decision trees

are intuitive and flexible, the process of generating a tree that minimizes any error

function for a given dataset is intractable. Even when a tree has depth of one (i.e., a

single layer), all values of all features must be considered to determine the optimal

split. Due to the intractability, numerous heuristics have been developed over time

for practical use. Nevertheless, the predictive performance of a single classification

or regression tree is inconsistent and often quite poor.

The performance of decision trees was significantly improved through a process

called “bootstrapped aggregating”, also known as “bagging” (Breiman 1996). The
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idea of bagging is to train multiple instances of the same supervised learning algo-

rithm on randomly sampled subsets of the training data, and then aggregate their

predictions into a single value by averaging. This method works particularly well

when the base supervised learning algorithm is decision trees because the intractable

training process of decision trees results in large variations among trained trees when

small variations are made to the training data. Bagging helps to stabilize the pre-

dictions, and surprisingly, improved the overall performance through the wisdom of

crowds. Subsequently, Breiman (2001) took bagging one step further and introduced

“random forests”, which not only subsamples subsets of the training data, but also

subsets of the features. This further increased the variation among the learned deci-

sion trees, and led to additional performance improvement. For much of the 2000s

random forests is known to be one of the best supervised learning algorithms due to

ease of use and strong performance.

At the same time of random forests, Friedman (2001) developed the “gradient

boosting machine”, which combines decision trees with a popular technique known as

“gradient boosting”. Unlike bagging, gradient boosting follows the idea of iteratively

training instances of the same supervised learning algorithm by learning from the

errors of the previous iteration. Finally, the instances are aggregated to produce a

single prediction. Much like bagging, decision trees are again well-suited for gradient

boosting and it is also possible to subsample subsets of features for training each

instance of the tree. The resulting algorithm is known as “gradient boosted decision

trees” (GBDT). Thanks to fast implementations of GBDT in recent times, it has

become the dominant algorithm for most predictive analytics problems (Chen and

Guestrin 2016). It is also the algorithm of choice for all of the problems studied in

this dissertation. However, GBDT has received only a fraction of the popularity of

deep learning algorithms and is likely to be surpassed in the not-too-distant future.

Much of this chapter is only meant to provide readers with a basic understanding

of machine learning, supervised learning, and predictive analytics. For more compre-

hensive and detailed information, a number of excellent books on machine learning

have been published: Friedman et al. (2001), Bishop (2006), Barber (2012), Murphy

(2012), Goodfellow et al. (2016). These books focus on different aspects of machine

learning, but all from a theoretical perspective. Unfortunately, there are no compre-

hensive documents on the practical aspects of machine learning.



Chapter 3

Data-driven Consumer Debt Collection via
Machine Learning and Approximate Dynamic
Programming

Chapter Abstract

This chapter develops and tests a framework for the data-driven scheduling of out-

bound calls made by debt collectors. These phone calls are used to persuade debtors

to settle their debt, or to negotiate payment arrangements in case debtors are will-

ing, but unable to repay. We determine on a daily basis which debtors should be

called to maximize the amount of delinquent debt recovered in the long term, under

the constraint that only a limited number of phone calls can be made each day.

Our approach is to formulate a Markov decision process and, given its intractability,

approximate the value function based on historical data through the use of state-

of-the-art machine learning techniques. Specifically, we predict the likelihood with

which a debtor in a particular state is going to settle its debt and use this as a

proxy for the value function. Based on this value function approximation, we com-

pute for each debtor the marginal value of making a call. This leads to a particularly

straightforward optimization procedure, namely, we prioritize the debtors that have

the highest marginal value per phone call. We validate our proposed methodology in

a controlled field experiment conducted with real debtors. The results show that our

optimized policy substantially outperforms the current scheduling policy that has

been used in business practice for many years. Most importantly, our policy collects

more debt in less time, whilst using substantially fewer resources—leading to a large

increase in the amount of debt collected per phone call.

3.1 Introduction

3.1.1 Background and motivation

In the U.S., $605 billion of household debt was delinquent as of March 31, 2018

(Federal Reserve Bank of New York 2018). Of this amount, over $400 billion was
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delinquent for more than 90 days. For companies that rely on installment payments,

this means it is of great importance to manage the collection of installments effi-

ciently and collect as many payments as possible to assure business continuity and

drive profitability. The potential, but also the complexity of doing so, was already

recognized half a century ago by Cole (1968):

“Collection work would be easier and the results better if there were some magic

way in which each account could be immediately and accurately classified as

to the reason for nonpayment and the collection method which would be most

effective with that particular debtor. Sorting devices to perform such miracles

unfortunately are not yet available, and until such become economically and

mechanically feasible the responsibility for any classification, if made at all, rests

with the credit personnel involved.” (pp. 314-315).

With the increased availability of data and the development of sophisticated machine

learning techniques, such “sorting devices” have now become reality.

In this paper, we present a framework for the data-driven scheduling of outbound

phone calls made by debt collectors. That is, we determine on a daily basis which

debtors a debt collector should call to maximize the amount of delinquent debt

recovered in the long term, under the constraint that only a limited number of

phone calls can be made each day. These phone calls are used to persuade debtors

to settle their debt, or to negotiate payment arrangements (e.g., a payment plan)

in case debtors are willing, but unable to repay their debt. Scheduling these calls is

challenging as it is difficult to assess the value of making a phone call to a debtor.

This is because a priori the outcome of making a call is uncertain, and the extent to

which a call attributes to a repayment is non-trivial. In general, the effect of phone

calls on the repayment behavior of debtors depends on numerous interacting features,

such as the time since the previous phone call, whether the debtor answered the call

before, the amount of debt owed, the time of the month, and the persuasiveness of

the agent who is calling. It is unclear what the effect of these (interacting) features is

on the outcome of phone calls and, hence, on the effectiveness of a schedule of phone

calls. This lack of structure and understanding drives our belief that a flexible non-

parametric machine learning method would be most appropriate to leverage data for

optimizing actions.

To this end, we show that the problem of scheduling phone calls is naturally

formulated as a Markov decision process (MDP), but that a prohibitively large state

space is required to capture the dynamics of the collection process appropriately. To

alleviate this, we show how state-of-the-art machine learning methods can be used

in an approximate dynamic programming (ADP) framework that is interpretable,
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highly scalable, and data-driven. We validate our proposed approach by means of a

controlled field experiment with real debtors in a real business setting.

This research is carried out in collaboration with an anonymous debt collection

agency from the Netherlands, to which we refer to as the Collector. The Collector

provided the data required to estimate our models and implemented our methodology

to conduct the controlled field experiment. The Collector handles about 250,000

collection cases each year, with a principal (monetary value) of approximately e120

million. Currently, the Collector schedules phone calls according to a static policy in

which calls are scheduled based on a one-size-fits-all policy. Given that the Collector

has carefully tracked all of its historical efforts and outcomes, we can leverage this

data for the purpose of optimizing its collection process.

3.1.2 Main contributions

To the best of our knowledge, the current paper is the first to incorporate mod-

ern machine learning methods into an ADP framework that is validated through a

controlled field experiment in a real-life business setting. We take the problem of

dynamically scheduling outbound calls for a debt collector—as naturally described

by an MDP—and approximate state values using supervised machine learning. More

precisely, we construct a binary classification problem to predict—based on a debtor’s

state—the likelihood with which a debtor is going to repay its debt. The debtor’s

state space is high dimensional and incorporates all static and dynamic information

that characterizes a debtor at a given point in time. For the purpose of value function

approximation, we multiply the likelihood with which a debtor settles its debt by

the size of the debt—thereby obtaining an approximation for the expected value of a

debtor given its current state. In doing so, we overcome the curse of dimensionality

inherent to this problem by inferring the value of a debtor’s state based on historical

data in a highly scalable and flexible manner.

Based on our value function approximation, we compute for each debtor the

marginal value of a phone call, which is defined as the change in the value func-

tion if we spend another phone call on this debtor. This leads to a particularly

straightforward optimization procedure, namely, we prioritize the debtors that have

the highest marginal value per phone call. The result is a policy that is interpretable

(debtors with the highest marginal value on the effort are prioritized), highly scalable,

and data-driven. In addition, the optimization procedure allows for straightforward

implementation in business practice: arrivals of new debtors are naturally incorpo-

rated and an appropriate number of phone calls can be determined to be made on a

given day, depending on the debt collector’s capacity.
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We validate our proposed methodology in a controlled field experiment conducted

with real debtors. The results show that our optimized policy substantially out-

performs the current scheduling policy that has been used in business practice for

many years. Most importantly, our policy collects more debt in less time, whilst

using substantially fewer resources—leading to a 47.2% increase in the amount of

debt collected per phone call. We also identify a key managerial insight, namely that

capacity is best spent on debtors that are more difficult to collect from. These are

debtors that are in the collection process for a longer period of time, are less likely to

pick up the phone, and have not partially repaid or promised to do so. These insights

help managers better understand the dynamics of the debt collection process.

In summary, this paper contributes to the existing literature on business analyt-

ics, data-driven optimization, and that of ADPs in the following ways: i) we add

to the debt collection optimization literature by presenting a novel, scalable, and

flexible framework for daily data-driven scheduling of outbound calls; ii) we incorpo-

rate state-of-the-art machine learning methods to the ADP framework, which takes

advantage of higher-order feature interactions and results in superior out-of-sample

model fit for value function approximation compared to benchmark models; iii) we

open the proverbial machine learning black box and identify generalizable insights for

the improved scheduling of outbound debt collection phone calls; and iv) we validate

our methodology by means of a controlled field experiment with real debtors.

The following section contains a review of existing literature on debt collection and

debt collection optimization in particular. We discuss relevant literature that con-

cerns approximate dynamic programming in Section 3.4, together with our proposed

approximation method.

3.1.3 Relation to literature

Debt collection optimization. More than half a century ago, Mitchner and Peter-

son (1957) considered the problem of optimizing the collection of delinquent debt

at Bank of America for various types of loans, such as car loans, personal loans,

and real estate loans. They formulated the problem of collecting debt as an optimal

stopping problem, in which the duration with which the collector should pursue the

debtor was optimized, taking into account the cost of doing so. Their results show a

potential increase in net profit of 33%.

Fifteen years later, Liebman (1972) developed a simple Markov decision process

for optimizing credit control policies. They solve an example problem with four

delinquency states, two amount owed states, two recent experience states, and three

action strategies. However, the curse of dimensionality quickly becomes a significant
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challenge and no further progress on this topic was made until more recently by Abe

et al. (2010), De Almeida Filho et al. (2010), and Miller et al. (2012).

In Abe et al. (2010) and the accompanying paper Miller et al. (2012), a framework

for debt collection optimization is presented that, of the existing work, is closest

to the approach considered in this paper. In Abe et al. (2010) the collection pro-

cess is modeled as a constrained MDP, which explicitly takes business, legal, and

resource constraints into account. Subsequently, given the intractability of the MDP,

a constrained Q-learning algorithm is proposed by means of which a policy can be

obtained. In Miller et al. (2012) the deployment of this methodology at the New

York State Department of Taxation and Finance is described for which an increase

in collected delinquent debt by 8 percent is reported over the first year, where an

increase of 2-4 percent would otherwise have been projected.

Also from the operations domain, De Almeida Filho et al. (2010) present a study

on the optimization of debt collection in the context of consumer lending. In their

work, a dynamic programming approach is presented in which the monthly decision

epochs pertain to deciding which action to take in the month to come. The value

function corresponds to the future net discounted recovery rate and the transitions

are assumed to be deterministic. Since the model assumes homogeneous debtors, the

approach is especially useful to predict collection performance and resource require-

ments for aggregated portfolios of debtors for which it is reasonable to assume homo-

geneity. The authors refer to the importance and potential of tailoring the collection

process to the individual debtor, but note that the data required for this purpose

are hardly ever available in practice.

Credit scoring and valuation. In the field of finance, much research has been

done on the credit-granting decision, i.e., whether to grant a loan to a potential

new customer. Typically, the credit-granting decision for personal loans is made by

means of credit scoring, which is a standardized method of assigning a score to

potential customers that represent their creditworthiness—see Crook et al. (2007) for

a literature review and Lessmann et al. (2015) for a benchmarking study on existing

scoring models.

On the other hand, the valuation of existing credit—and existing unsecured credit

in particular—is more closely related to our work since the debt that the Collector

is trying to collect is essentially outstanding unsecured credit. Although much work

has been done on the valuation of corporate credit and secured customer credit, the

literature on unsecured consumer credit is sparse. The work of Chehrazi and Weber

(2015) on dynamic valuation of delinquent credit card accounts models stochastic

repayment behavior of individual debtors over time. They derive a self-exciting point
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process for repayment behavior and estimate the parameters of the process using

the generalized method of moments. This model is then used to construct a dynamic

collectability score to estimate the probability of collecting from a debt account, thus

allowing for the valuation of credit card debt. In a subsequent paper, Chehrazi et al.

(2018) formulates a stochastic optimal control problem from the self-exciting point

process established in Chehrazi and Weber (2015) and derives a semi-analytic solu-

tion. However, this solution was not analyzed empirically nor was it experimentally

validated.

3.1.4 Outline

In Section 3.2, we provide an overview of how debt collection works and what the

optimization problem is that debt collectors face. In Section 3.3 and Section 3.4,

we formulate an MDP and provide an approximation for this MDP, respectively.

Section 3.5 contains a description of the data used for model development and val-

idation. In Section 3.6, we present the results of model estimation and validation.

Section 3.7 presents the design and results of our controlled field experiment. We

conclude in Section 3.8.

3.2 Problem description

We first provide a high-level overview of the operations of a debt collector. Thereafter,

we provide more details on the actual collection process. This is all based on the

experiences of our industry partner (the Collector), but is illustrative for the debt

collection industry in general.

3.2.1 High-level overview

In practice, a client that has overdue debt with a company is placed “in collections”,

which means that the debtor is transferred to either a specialized debt collection

department within the company or to an external debt collecting agency that works

on behalf of the company. In this work, we refer to both as a debt collector, i.e.,

a debt collector can be either the debt owner itself or a third-party debt collection

agency working on behalf of the debt owner. The debtor typically incurs a collection

fee that is added to the original debt to cover the additional costs of recovering

the debt, and is regulated in many countries. In the problem that we consider, the

collection fee is independent of the amount of debt owed and constant across debtors.

Once placed in collections, the debt collector pursues the debtor to settle the

debt plus the collection fee by sending out letters and e-mails, and through phone
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calls made by its agents. Amongst the Collector’s clients are utility providers, credit

facilitators, and health care providers, which operate in the business-to-consumer

market.

The process of the Collector comprises two phases. Upon arrival, a debtor first

enters the collection phase, in which the Collector pursues the debtor to repay the

debt plus the collection fee through letters, e-mails, and phone calls. During this

phase, the collector acts cooperatively towards the debtor, and can offer payment

plans if debtors are willing, but not able to pay on a short-term notice. As such, this

phase can take from a few days (in case the debtor pays immediately) up to a few

months (in case the debtor does not pay at all or gets involved in a payment plan).

When the Collector is unsuccessful in recovering the debt during the collection

phase, it chooses to either write off the debt or invoke a legal procedure. The former

happens when, for example, the debtor is deceased or has declared bankruptcy. The

latter means that a bailiff is invoked, who will send out a subpoena and ultimately

can confiscate property if necessary. Whether a debtor is escalated to the legal phase

or written off is determined case by case and depends, amongst other things, on

the amount of outstanding debt and the likelihood of recovering the debt through

legal procedures. Since this phase requires legal assessment by an expert, it is very

expensive and the outcome is highly uncertain. Hence, recovering debt before the

legal phase is deemed beneficial for both collector and debtor. As such, the legal phase

is excluded from the optimization procedures proposed in this work and our objective

is to maximize recovered debt during the collection phase, which is described in

greater detail in the following section.

3.2.2 Collection phase

The collection phase is characterized by four sequential letters (sent via both post

and e-mail simultaneously), where each letter has a seven-day payment notice and

communicates with increasing urgency the necessity to repay the debt. The letters

are sent between seven to ten days of each other. The fourth and final letter com-

municates the severe (financial) consequences of the legal procedure that is possibly

invoked if the debtor does not settle.

In between the letters (or after the final letter), the Collector is free to call debtors

at its discretion. This is considered a vital tool during the collection process, as the

phone calls allow the agents to inform the debtor about the situation along with the

consequences of non-payment, and to make an assessment of whether the debtor is

willing and/or able to pay. Figure 1 provides a schematic illustration of the collection

process.
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Figure 1: The standard operating timeline of a debt collection agency.

The optimization problem that the Collector encounters, is deciding each day

which debtors should be called to maximize recovered debt, given the finite and

inflexible capacity of its workforce. In practice, this implies that the Collector has to

decide on a prioritization on the debtor portfolio that indicates which debtors should

be called first. Currently, the Collector’s policy is to schedule a phone call each time

a debtor has received a new letter. In addition, if a debtor agreed on a payment plan

and failed to comply with its conditions, a call is scheduled as well. In case capacity

is insufficient, the Collector’s managerial staff makes an assessment of which debtors

should be called first. Given the labor-intensive nature of the phone calls, the gains

from optimizing the prioritization of calls are potentially substantial.

3.3 Model description

The problem of optimizing debt collection efforts over time in the current context

is formulated as an MDP with an infinite time horizon and decision epochs in dis-

crete time. This suits the approach of the Collector, since in principle the Collector

operates indefinitely and decisions are made at discrete points in time (i.e., daily).

To formalize the MDP, we assume that at any given point in time, the Collector has

at most N ∈N debtors in its portfolio. Practically, this means we set N arbitrarily

large such that the Collector never has more than N debtors in its portfolio.

3.3.1 State space

We denote the state space of each of the (at most) N debtors by X and the state

space of the portfolio of debtors by X̄ := XN (i.e., the N -fold Cartesian product of

X ). In our formulation, each of the N parts of the state space is utilized by different

debtors over time—each part X of the state space X̄ functions as a slot for storing the

information of one of the debtors. A slot becomes available for new arriving debtors

once efforts on the existing debtor are terminated because the debt is recovered or

written-off.

The state space below is chosen to accommodate for the data to which we apply

our methodology (as described in Section 3.5). We divide the debtor state space



45 3.3. Model description

X into debtor-specific features, historical-interaction features, and seasonalities as

follows. The superscripts B, I, N, and C indicate whether it is a binary, integer,

numerical, or categorical variable, respectively.

Debtor specific: 1) initial debt amountN, 2) customer tenureI, 3) has partially

repaid debtB, 4) repayment plan in placeB, 5) phone number is availableB, 6) e-

mail address is availableB, 7) product typeC, 8) amount repaid alreadyN, 9)

Collector collected from debtor beforeB, 10) average income in the postal code

area of the debtorN, 11) share of people under 30 in postal code area of the

debtorN, 12) current substatusC, 13) passed final letterB.

Here, 2) indicates when the debtor became a customer of the debt owner:

the exact time was not provided, instead we have an integer that represents the

inverse order in which the debtor became a customer relative to all customers of

the debt owner (a larger value means the debtor was a customer of the debt owner

for a longer period of time); 5) pertains to whether the debt owner provided the

Collector with a phone number of the debtor. If this is not the case, the Collector

may still be able to call the debtor by searching manually in publicly available

resources for potential phone numbers that match to the name and address of

the debtor; 7) refers to the product or service that the debtor purchased and

led to the debt; 12) refers to a debtor’s state description used internally by the

Collector to characterize a debtor at a given point in time; 13) refers to whether

the debtors have received the final (i.e., fourth) letter.

Historical interaction: 1) has answered a phone callB, 2) promised to repayB,

3) number of previous collector-debtor interactionsI, 4) number of previous

phone callsI, 5) days since promise to repayI, 6) days since last collector-debtor

interactionI, 7) days since last phone callI, 8) days since last answered phone

callI, 9) days since last incoming contactI, 10) days since last incoming e-mailI,

11) days since last incoming phone callI.

Here, 2) and 5) refer to the event in which the debtor has (verbally) promised

the Collector to settle the debt; in 3) and 6) the word ‘interaction’ includes both

collector- and debtor-initiated communication efforts, and also phone calls that

did not get through count as an interaction—thereby using it in a broader sense

than usual.

Seasonality: day of weekC, week of monthC.

For features where missing values are possible, a unique integer is used as replacement

for missing values. An example of this is the feature days since last phone call for

cases where no phone calls have previously been made to the debtor.
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3.3.2 Action space and value function

Regarding the action space, for a given day let a ∈ {0,1}N describe which debtors

will be called: ai = 1 for i ∈ {1,2, . . . ,N} indicates that a call is made to debtor i,

and ai = 0 means no call is made on a given day. In some cases, it is undesirable

to call a debtor (e.g., when the debt is currently being further investigated because

the debtor disputed the debt). Therefore, we construct the action space as follows.

Let i ∈ {1, . . . ,N}, x= (x1, . . . , xN) ∈ X̄ with xi ∈X , and let A′(xi) denote the action

space pertaining to debtor i, so that A′(xi) equals {0} if no call is allowed and {0,1}
when a call to debtor i is allowed. In addition, let ct ∈N denote the (deterministic)

capacity on day t, i.e., the maximum number of phone calls that can be made on

day t, where t counts the number of days since the collection process was initiated.

Accordingly, we define

At(x) :=

{
(a1, . . . , aN) : ai ∈A′(xi), i= 1, . . . ,N,

N∑

i=1

ai ≤ ct

}

as the action space on day t. In case slot i of the state space is not used, A′(xi) = {0}
for all xi ∈X .

Furthermore, on day t, for x,y ∈ X̄ and a ∈At(x), let p(x,a,y) denote the proba-

bility of moving from state x on day t to state y on day t+1, when choosing action a

and let r(x,a,y) denote the amount of debt recovered (i.e., repaid and received) when

moving from state x to state y choosing action a. The possible arrival of new debtors

is implicitly incorporated in p(x,a,y). Then, the optimality equation becomes

Vt(x) = max
a∈At(x)

∑

y∈X̄
p(x,a,y) (r(x,a,y) +γVt+1(y)) , (1)

for t = 0,1,2, . . ., where Vt(x) denotes the total expected discounted reward when

being in state x ∈ X̄ at day t, and γ ∈ (0,1) denotes an appropriate discount rate.

The function Vt : X̄ →R is often referred to as the value function.

Since the state space X̄ consists of all debtor information, the formulated MDP

has a high-dimensional state space. Moreover, parts of the state space are unbounded

(e.g., the number of collector-debtor interactions). This makes it intractable to solve

the MDP even numerically. The MDP, however, has structural properties that facil-

itate the computation of near-optimal policies. First, the debtors in the portfolio

behave independently of each other, i.e., changes to the state and repayment prob-

ability of one debtor do not affect the repayment probability of the other debtors.

Second, the dependence in the problem formulation is only due to the capacity con-

straint ct on day t. Hence, a natural approximation that breaks the dependence arises
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when the Collector solves a stochastic knapsack problem based on the state of the

debtors in the portfolio on that day. The knapsack has size ct on day t, and the

expected value of each item in the knapsack will be given by the expected gain in the

value function from calling the debtor. Note that in this formulation, the discount

factor naturally disappears since future arrivals do not affect current decisions. In

the next section, we elaborate on how to estimate the value function of each debtor.

3.4 Value function approximation with machine learn-

ing

We use value function approximation (VFA) to approximate the value of the states of

the MDP described in the previous section. Any function can be used to approximate

the value function, including radial basis functions, polynomials, neural networks,

and decision trees (Bertsekas and Tsitsiklis 1995). VFA has been successfully applied

in optimization in a variety of problems, such as large-scale resource allocation (Pow-

ell and Topaloglu 2006), multi-priority patient scheduling (Patrick et al. 2008), and

autonomous inverted helicopter flight (Ng et al. 2006). Recent breakthroughs in

machine learning—notably convolutional neural networks—have sparked the field

of deep reinforcement learning, which allows for VFA through visual images. For

example, AlphaGo was able to exploit this approach by successfully approximating

the 10170 state space in the game of Go and defeat the world’s best human players

(Silver et al. 2016).

In this paper we use another state-of-the-art machine learning algorithm for VFA,

namely, gradient boosted decision trees (GBDT). This is a more suitable algorithm

for prediction problems that are arranged in the standard tabular structure and has

been the dominant algorithm in winning well over half of all machine learning compe-

titions in 2015, including the KDD Cup (Chen and Guestrin 2016). It was also found

by Olson et al. (2018) to be the best algorithm when benchmarked against twelve

other algorithms for 165 publicly available classification problems. In Section 3.4.3,

we provide details on the GBDT algorithm.

We use the GBDT model to construct a mapping V̂ : X̄ → R that approximates

the value function, thereby circumventing the problem of having to solve (1). This

approximation is used to optimize the actions, i.e., to determine which debtors are

to be called on a given day. In the following two sections, we show how we construct

the mapping V̂ (Section 3.4.1) and optimize actions based on this approximation

(Section 3.4.2).
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3.4.1 Estimating the predicted repayment probability

To approximate the value of a debtor being in a particular state, we estimate the

debtor’s predicted repayment probability (PRP), which is defined as the likelihood

of recovering the full debt during the collection phase. Partially repaid cases are

considered to be unpaid as the Collector only receives credit for fully collected cases.

Our approach is to estimate the PRP based on historical data by means of a GBDT

model as follows. Suppose a certain debtor is k ∈N days into the collection process,

and consider all closed cases that once were k days into the collection process as well,

i.e., all closed cases that either did not settle their debt within k days or were not

written off within k days. We use these closed cases to train a GBDT model that

predicts the likelihood of recovering the debt of the debtor currently considered. We

formalize this procedure as follows.

Let n ∈N be the total number of closed cases in our dataset, i.e., cases for which

the debt was either recovered or written off, and for which the debtor is no longer

being contacted. Let i ∈ {1,2, . . . ,n} and define τi ∈ N as the total number of days

debtor i spent in the collection process. For all s ∈ {1,2, . . . , τi}, let x(s)
i ∈ X be the

state of debtor i at s days since arrival. We optimize the phone calls during the first

K ∈ N days of the collection process of each debtor. Although, theoretically, K is

unbounded, in our practical implementation we set K such that virtually all calling

efforts take place in the first K days. For all k ∈ {1, . . . ,K}, denote by

Ik := {i : k≤ τi, i∈ {1, . . . ,n}}

the index set containing all the closed cases in the dataset that were still in the

collection process k days after arrival.

Furthermore, we denote by yi ∈ {0,1} the eventual outcome of the collection pro-

cess: yi = 1 if the debt of debtor i was fully recovered after τi days, i.e., during the

collection phase, and yi = 0 otherwise, meaning that the debt was either written off or

recovered after legal actions. Hence, x(k)
i and yi are the state of debtor i after k days

and the eventual outcome of the collection process, respectively, for all k ∈ {1, . . . ,K}
and all i∈ Ik.

Our approach is to train one GBDT model for each number of days since arrival k ∈
{1, . . . ,K} as follows. Let k ∈ {1, . . . ,K}. Then, we train model k by using (x(k)

i )i∈Ik
as features (or independent variables) and (yi)i∈Ik as target (or dependent) variables.

We denote the trained GBDT model by fk :X → (0,1), where fk maps the state of

a debtor after k days to a prediction for the likelihood that the debt is eventually

recovered. This likelihood is exactly the PRP that we introduced earlier on, i.e., if

debtor i∈ Ik is in state x∈X after k days, then fk(x) represents its PRP.
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We train a single model for each number of days since arrival because the data is

imbalanced in a sense that there are many more observations for debtors that are

earlier in the collection process (i.e., |Ik| ≥ |Ik+1| for each k ∈ {1, . . . ,K − 1}). This is

because cases are closed as soon as the debt is fully recovered or written off. If we

train a single model, this could cause the GBDT model to be biased toward better

predicting the early part of the process at the expense of the later part. To alleviate

this, we follow the aforementioned approach in which we split the data by days after

arrival into K sets and train K models.

Summarizing, we compute the PRP of a debtor on a given day by considering

debtors that once were in a similar situation before, given that the days since arrival

is highly correlated with the rest of the collection process.

3.4.2 Approximating the value function

To approximate the value of the state of a particular debtor, we multiply the debtor’s

PRP by its outstanding debt. More precisely, let x= (x1, . . . , xN)∈ X̄ be the state of

the debtor portfolio at a certain point in time and let ki ∈N denote the number of

days debtor i∈ {1, . . . ,N} has been in the collection process. Our approximation for

the value of being in state x is

V̂ (x) :=
N∑

i=1

fki(xi) ·debti, (2)

where debti denotes debtor i’s current outstanding debt. When slot i ∈ {1, . . . ,N}
of the state space is not used, we set debti = 0. Observe that, when the objective is

to maximize the number of fully collected cases (irrespective of the amount of debt

recovered), we can accommodate for this by setting debti = 1 for all i∈ {1, . . . ,N}.
Our proposed approximation in Equation (2) implies that we consider the Col-

lector’s portfolio on a particular day as an assortment of independent debtors in

different states of the collection process, and compute the value of the portfolio as

a sum of their individual values. This approximation allows us to evaluate policies

by computing the difference in PRP with and without making a phone call to a

particular debtor.

To formalize this, let ψ :X →X be the mapping that takes as input a debtor’s state

and then updates this state as follows: i) increase the feature number of previous

collector-debtor interactions by one; ii) increase the feature number of previous phone

calls by one; iii) set the feature days since last collector-debtor interaction to zero;

and iv) set the feature days since last phone call to zero (see also the state space
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description in Section 3.3.1). Our approach is to determine the marginal value of

making an additional call to debtor i∈ {1, . . . ,N} by computing

[fki(ψ(xi))− fki(xi)] ·debti. (3)

Recall that fki maps debtor i’s state to the PRP, i.e., to a prediction of the likelihood

that debtor i will eventually repay, without needing to explicitly consider potential

future states. Hence, Equation (3) provides us with a measure to compare the added

value of calling different debtors. Naturally, the policy on day t is to call the ct

debtors for which Equation (3) is the highest (recall that ct denotes the capacity of

the Collector on day t). In the following section, we provide background on GBDT

and discuss why it works well in this particular case.

3.4.3 Gradient boosted decision trees

GBDT, also called gradient boosting machines and multiple additive regression trees,

falls under the general paradigm of ensemble methods in machine learning (Diet-

terich 2000). The algorithm works by constructing multiple decision trees using the

classification and regression trees algorithm (CART, Breiman et al. 1984) and com-

bining these into a so-called committee, in which the predictions of the individual

trees are combined to form one prediction (usually via a weighted average). We first

describe how CART works and what its drawbacks are. Then, we explain how ensem-

bles of trees overcome these drawbacks. Finally, we describe the GBDT algorithm

and discuss why it works for our problem of predicting the repayment of debt.

The CART algorithm works by recursively partitioning the feature space into non-

overlapping rectangular subsets and making a prediction for the target variable for

each of these subsets. This is done by splitting, in each recursion, the feature that

minimizes a certain error metric (e.g., mean squared error or Gini impurity). This

procedure is myopic in a sense that the partitioning decision does not consider future

partitionings. As a result, CART does not guarantee a globally optimal partitioning.

A major drawback of CART is its propensity to overfit on training data, which

results in a model that generalizes poorly to unseen data. Ensembles of CART models

have been successfully used to overcome this. Early ensembling techniques, such

as bootstrapped aggregating, commonly referred to as bagging, work by generating

multiple versions of a prediction algorithm by using randomly selected subsamples

of the training data (Breiman 1996). The random forest algorithm is an example of

a bagging algorithm. Subsampling observations via bootstrapping adds variation to

the training data, which leads to significantly different trees being built, resulting in

reductions in error rate by 20-89% (Breiman 2001).
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Unlike bagging, where trees are built independently, GBDT builds trees sequen-

tially. This is called boosting and works as follows. The goal of GBDT is to minimize

a loss (or: objective) function that maps the predictions to a score that measures the

quality of the predictions. Theoretically, any differentiable function can be used as

a loss function. We use the logarithmic loss function, which is the standard choice

for binary classification problems and is defined as follows. Suppose we are training

model fk for k ∈ {1, . . . ,K}, then the logarithmic loss function L :R|Ik|→R is

L(z) :=−


∑

i∈Ik
yi · log(σ(zi)) + (1− yi) · log(1−σ(zi))


 , (4)

where σ : R→ (0,1) is defined by σ(u) := (1 + e−u)−1 for u ∈ R. The GBDT algo-

rithm repeats Step 1-3 below a prespecified number of times, where ε > 0 is set as a

hyperparameter:

Step 0. Initalize with zi← σ−1
(

1
|Ik|
∑

j∈Ik yj
)

for all i∈ Ik.
Step 1. Compute the gradient of the loss function ∂L(z)

∂zi
= σ(zi)− yi for all i∈ Ik.

Step 2. Train a regression tree using −(σ(zi) − yi) for all i ∈ Ik as the target

variables.

Step 3. Update z← z+ εz′, where z′ ∈R|Ik| are the predictions from Step 2. Go

to Step 1.

When the algorithm terminates, σ(zi) is GBDT’s prediction for yi for all i∈ Ik.
By iteratively building regression trees on the negative gradient in Step 2, newly

built trees are optimized for observations that are difficult to predict, thereby improv-

ing the overall model fit with each iteration. For a more detailed discussion on GBDTs

we refer the reader to Friedman (2001) and Friedman et al. (2001).

Improving the model fit of the training data does not guarantee generalization

to unseen data. Therefore, a cap in the number of iterations is required to prevent

overfitting. The cap in the number of iterations, along with other hyper-parameters,

such as maximum depth per tree, can be tuned using a training-validation framework.

The implementation of GBDT used in this paper is LightGBM, which is a fast and

distributed open source GBDT framework developed by Microsoft (Ke et al. 2017).

CART, and GBDT, in particular, is well suited for our prediction problem for

two reasons. First, since CART works by partitioning the data, it is invariant to

monotonic transformations of the features. This differs from models such as logistic

regression where substantial efforts in finding the best functional transformations

of the features are required to tune the model to achieve better prediction perfor-

mance. This means that we can directly use the debtor’s collection state as features

in a CART model without performing any functional transformations. Second, as
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Table 1: Observable collector-debtor interactions.

Variable Type Description

Debtor ID Integer -
Date Date -
Communication type Categorical Letter, e-mail, or phone call
Communication direction Binary In- or outbound (regards to ‘Communication type’)
Reached Binary In case of outbound phone call
Document type Categorical In case of outbound letter / e-mail
Promised to pay Binary If debtor promised to pay

a consequence of recursive partitioning, CART implicitly takes into account feature

interactions that can lead to improved prediction accuracy and better state-value

approximations. Again, for other models such as logistic regression, the feature inter-

actions must be defined manually.

3.5 Data description

To train and validate our proposed value function approximation method, described

in the previous section, we rely on a dataset provided by the Collector. This dataset

contains information on 80,138 debtors that arrived between January 1, 2014 and

September 30, 2016. All these debtors are individuals, who are clients of the same

insurance company. This insurance company offers all kinds of insurance products,

such as car and travel insurance plans. The dataset comprises four data sources: i)

debtor-specific information: customer tenure, the type of insurance product, whether

the Collector has tried to collect from the debtor on a previous occasion, date of

arrival, postal code, original debt, and the collection fee; ii) log of historical interac-

tions between the Collector and the debtor, see Table 1; iii) log of incoming payments;

and iv) log of status and substatus changes. The status and substatus changes per-

tain to information that is used by the Collector to characterize the current state

of a debtor. The status is active (the debtor is currently being pursued), inactive

(the debt has been paid or the debt has been written off), or on hold (the case is

currently being investigated, i.e., there is reason to believe that the debt has already

been paid or is inadmissible). The substatus describes the status in greater detail—it

indicates: in which stage of the process a debtor is (i.e., which document has been

sent most recently); if the debtor has agreed to a payment plan; if the debtor has

violated a payment agreement; if the contact details are incorrect; etc. In addition,

we enriched the dataset by adding for each debtor the average disposable income in

the postal code area where the debtor resides plus data on the distribution of age
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Figure 2: Distribution of debt amounts.

Note. For readability, we capped the debt at e500.

Figure 3: Full repayment over time.

Note. The y-axis pertains to the fraction of the debtors

that repaid their debt (in full) on the corresponding day.

groups by leveraging publicly available data1. Using these data sources we are able

to compile the state space features described in Section 3.3.1.

In Figure 2 to Figure 5, we illustrate the characteristics of the data that we used.

In Figure 2, we present a histogram of the initial debt amount including collection

fee (2,430 debtors, or 3%, have a higher initial debt than e500, with a maximum

of e4,779). The histogram reveals that most debts are in the e50–e200 range, but

that the distribution has a heavy right tail, with occasionally large amounts. It holds

that the smaller the debt, the greater the likelihood that the debt is recovered by

the Collector—of all amounts smaller than e300, for example, approximately 72%

is recovered in the first fifty days, whereas for amounts larger than e300 this is only

53%.

Figure 3 illustrates the fraction (or relative frequency) of repaying (the full

amount) during each of the first fifty days of the collection process. For example,

approximately one percent of all debtors pay off all of its remaining debt on the

twentieth day since arrival. The figure reveals that after the first week there is a

negative trend observable, but that jumps occur regularly, which are due to letters

that are sent and payment due dates that expire.

The bar chart in Figure 4 illustrates the number of outbound calls made on each of

the first fifty days of the collection process of all debtors. For example, approximately

20,000 calls are made to debtors on the third day after their arrival. The figure

clearly shows that the calls are clustered after letters have been sent—around day

2, 11, 21, and 30. The last cluster that is observable, around day 43, corresponds to

the payment due date of the fourth and final letter.

1Central Bureau of Statistics, https://www.cbs.nl/nl-nl/maatwerk/2017/15/besteedbaar-inkomen-

per-postcodegebied-2004-2014, accessed October 11, 2017.
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Figure 4: Number of outbound calls. Figure 5: Debt recovered for each day of the month.

Finally, in the bar chart in Figure 5 the inflow of money over different days of

the month is illustrated (e.g., the first bar corresponds to the amount of debt that

is paid on the first day of the month). The inflow of money peaks at the end of the

month after people have received their paycheck, and then gradually decreases again

over time.

3.6 Model estimation results

In this section, we describe how we train and validate the GBDT binary classification

models that predict if debtors are going to repay, based on their current state (see

Section 3.4.1). First, we set up a training and validation framework (Section 3.6.1).

Then, we evaluate the prediction performance (Section 3.6.2) and illustrate debtor-

specific prediction trajectories (Section 3.6.3). Section 3.6.4 contains an analysis of

feature importance. Finally, in Section 3.6.5, we analyze the marginal effect of phone

calls on PRP.

3.6.1 Training and validation data

We split the dataset into a training and validation set: debtors who arrived between

January 1, 2014 and July 19, 2015 are used for training, and debtors who arrived

between July 20, 2015 and September 30, 2016 are held out from training and used

for validation.2 The decision to split the training and validation set by date is to

mimic practice, where only data of the present is available when making predictions

about the future. We chose the specific split date arbitrarily, but in practice the split

is often made such that 60-70% of the data is used for training and the remaining 30-

40% is used for validation. As a result, the training and validation set contain 50,624

2There is often ambiguity between the definition of validation and test sets. In this paper, we define

the validation dataset as the holdout set which we use to evaluate our GBDT models.
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(a) (b)

Figure 6: Number of debtors (a) and percentage of debtors that repaid (b) for various days since arrival.

and 28,900 debtors, respectively. A small number of debtors had only inadmissible

statuses and therefore were not included for training or evaluation, hence the total

number of debtors between the training and validation set is less than the total

reported in Section 3.5.

Figure 6 (a) shows the number of debtors still in the collection process as time

passes for both the training and validation datasets. The figure reveals that the

number of debtors decreases as time goes by, which is the result of repayment,

writing-off debt, and legal action. There is a sudden drop in the number of debtors

around day 23 and day 37 in the training and validation set, respectively. This is due

to changes in the collection process on January 1, 2015, where the date of initializing

the legal phase was postponed from day 23 to a variable number between days 32

and 42.

Figure 6 (b) illustrates the relative frequency of debtors for various days since

arrival from the training and validation sets. For a specific number of days since

arrival k ∈ {1, . . . ,50}, the graph illustrates the percentage of debtors that eventually

repaid during the collection process given that the debtor is still in the collection

process after k days. The percentage of debtors that settles its debt completely

initially decreases as their cases are further into the collection process. This suggests

that debtors who are more able and willing to repay their debt will do so quickly,

while those who are less able or willing to repay may require more effort. Around

day 35, the percentage starts increasing again, which can be attributed to the fact

that the Collector starts writing-off debtors that are impossible to collect from and,

consequently, the remaining debtors are not written-off and are more likely to repay.
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3.6.2 Debt repayment prediction performance

We measure the quality of the GBDT binary classification models f1, . . . , fK by

their ability to distinguish repaying from non-repaying debtors. Recall that, for all

k ∈ {1, . . . ,K}, fk maps the state of a debtor after k days to a prediction for the

probability that this debtor repays its debt prior to legal action (i.e., the PRP, see

Section 3.4). Due to the low number of debtors remaining late in the collection

process, we limit our model to only consider debtors up to 50 days since arrival (where

only 1,147 and 620 debtors remain in the training and validation set, respectively),

thus we set K = 50. Finally, the first phone calls were made starting from day 2 so

no debtors are considered for day 1.

The models f2, . . . , f50 are trained using the training data as described in Sec-

tion 3.6.1. For details on the construction of the features (independent variables)

and the target (dependent) variable for each model, we refer to Section 3.4.1 and

Section 3.4.2. Using the trained models, for each debtor in the validation set we

compute the PRP for each day this debtor was in the collection process. To compare

the PRPs with the actual outcomes, we use the area under the receiving operator

curve (AUC). Here, the AUC can be interpreted as the probability that we rank a

randomly selected debtor that eventually settles its debt as more likely to repay than

a randomly chosen debtor that did not repay (Fawcett 2006). We achieve an AUC

of 0.689 where, in comparison, the AUC score of random guessing (i.e., predicting

0 or 1 with equal probability) or naively setting the repayment probability equal to

the empirical probability is equal to 0.5.

We use AUC since it measures how well we are able to rank debtors based on their

likelihood of repayment, which fits our optimization procedure in which we rank the

marginal effect of phone calls based on PRP (see Equation (3) and the discussion

below it). Moreover, alternatives like the logarithmic loss and accuracy depend on the

distribution of the two classes (paying and non-paying debtors), which is undesirable

as it varies over time.

We also compute the AUC over time by computing the AUC of each model

f2, . . . , f50 separately. More precisely, for each k ∈ {2, . . . ,50}, we use fk to compute

the PRP at day k for each debtor in the validation set that was still in the collection

process after k days since arrival. Figure 7 shows the AUC scores over time for the

GBDT model. We also compare it against two other benchmark models: GBDT with-

out collector-debtor interaction features (e.g., days since last phone call), and logistic

regression with all features.3 GBDT’s performance improves as debtors are further

in the collection process up to around day 40, and then deteriorates. In contrast,

3All categorical features are dummy encoded to ensure consistency across the three models.
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Figure 7: The AUC for GBDT, GBDT without historical interactions, and logistic regression.

GBDT without collector-debtor interaction features has consistently lower AUC and

does not improve for debtors further in the collection process. This suggests that

past collector-debtor interactions have explanatory power and that the predictive

power increases when more information about the debtor becomes available.

The logistic regression model exhibits a similar trend as the GBDT model in

Figure 7. However, it consistently underperforms both GBDT models up to day 29,

beyond which it surpasses the GBDT model without collector-debtor interaction

features, but still underperforms the GBDT model with the complete feature set.

Even though the logistic regression model uses the exact same features as GBDT, it

does not perform as well because it imposes a specific parametric specification on the

features and cannot use information from feature interactions (e.g., the combined

effect of five prior interactions and one prior phone call and eight days since the

previous phone call). The AUC scores of all three models deteriorate after day 40.

This is likely due to a decreasing number of training observations—by day 40 only

2,141 debtors (4.2%) remain in the training set.

3.6.3 Illustration of individual PRP trajectories

Our framework allows us to look back at individual debtor histories and observe the

PRP dynamics with respect to events during the collection process. Figure 8 depicts

the collection process for two debtors from the validation set: one which did not

repay its debt (panel (a)) and one which did repay (panel (b)).

The debtor in panel (a) starts with a PRP of around 0.80, which then gradually

decreases to around 0.30. Over time, no events occur that indicate that the debtor



Chapter 3. Data-driven Consumer Debt Collection 58

(a) (b)

Figure 8: PRP over time for a debtor that did not repay (a) and that did repay (b).

is going to settle and, consequently, the PRP declines gradually over time. It turned

out that the debtor in panel (a) had moved to a different address and could not be

found, explaining the unsuccessful collector-debtor interactions as they likely were

not with the actual debtor.

With a PRP of approximately 0.60 initially, the debtor in panel (b) starts with a

lower PRP than the debtor from panel (a). However, the PRP does not deteriorate

much over time and positive jumps occur frequently. These jumps are due to the

fact that events occur that positively influence its PRP. Specifically, the debtor both

answers calls and makes phone calls to the Collector itself, which are indications that

the debt will likely be recovered.

3.6.4 Feature importance for predicting PRP

A natural question to ask is which features are informative in predicting PRP. In

tree-based models, the (relative) importance of each of the features is not immedi-

ately observable. Unlike linear models, tree-based methods do not produce a set of

coefficients that represent the (linear) effects of the features on the (predicted) out-

come. A number of methods have been developed in recent times to help interpret

or explain the predictions of complex machine learning models (Ribeiro et al. 2016,

Lundberg and Lee 2017), but in this paper, we rely on a simpler approach that is

already included as part of the GBDT implementation. Given that trees are built

by sequentially partitioning the features that have the most predictive power (see

Section 3.4.3), it can be inferred as follows what the most informative features are.

Suppose we are training model fk for k ∈ {1, . . . ,K} and we are building a regression

tree at Step 2 from the algorithm description in Section 3.4.3. Suppose this tree has

T ∈ N terminal nodes and denote the rectangular, non-overlapping partitioning of
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the feature space by R1, . . . ,RT . Then, the so-called variance gain at a terminal node

t∈ {1, . . . ,T } from splitting feature j ∈ {1, . . . ,nf}, where nf ∈N denotes the number

of features, at dj ∈R, is equal to (Friedman 2001, Nielsen 2016, p.62):

(∑
i:xi∈Rt,xij≤dj(σ(zi)− yi)

)2

2|{i : xi ∈Rt, xij ≤ dj}|
+

(∑
i:xi∈Rt,xij>dj

(σ(zi)− yi)
)2

2|{i : xi ∈Rt, xij >dj}|
−
(∑

i:xi∈Rt
(σ(zi)− yi)

)2

2|{i : xi ∈Rt}|
.

(5)

This expression approximates the gain (i.e., decrease) in the logistic loss function

when, at node t ∈ {1, . . . ,T }, splitting feature j ∈ {1, . . . ,nf} at value dj ∈ R. The

regression tree from Step 2 of Section 3.4.3 is built by iteratively splitting the feature

so that (5) is maximized (the implementation of GBDT that we rely on (LightGBM)

uses an approximation of (5) that is more computationally efficient).

We use the variance gain, as implemented in LightGBM (Ke et al. 2017), to ana-

lyze the importance of features by summing, for each feature, the variance gains of

all the nodes in all the trees at which this feature was split. For easier interpretation,

we normalize the variance gain of each feature so that the sum of all feature variance

gains equals 100. Since we train one GBDT model for each of the forty-nine days

(days 2 to 50) into the collection process, there are forty-nine sets of feature impor-

tances. Table 2 presents the relative variance gain of each feature for five GBDT

models, namely for f5, f15, f25, f35, and f45 (corresponding to 5, 15, 25, 35, and 45

days since arrival, respectively). The average gain of each feature across all forty-

nine models is also included. Note that feature importance does not specify in which

direction a feature affects the model’s predictions. GBDT does not assume mono-

tonic feature effects so the same feature can have positive or negative effects under

different conditions.

Two observations can be made from Table 2. First, the features initial debt amount

and customer tenure are highly influential in predicting repayment probability of

debtors, especially early in the collection process. A reason for this may be that

debtors that owe more money are less likely to repay their debt, and debtors that

have been customers for a longer period of time are more likely to repay their debt

as they’ve probably had a better relationship with the debt owner. Indeed, when

we compute the correlation between PRP and initial debt amount and customer

tenure for debtors in the validation set for each model across all models we obtain an

average of -0.26 and 0.42, respectively. Conversely, a number of features have very

low impact, such as has partially repaid debt, repayment plan in place, and product

type. This is surprising because we expected the debtors that have already repaid

part of their debt or have agreed to a repayment plan would be more likely to fully

repay their debt. However, this seems to not be the case. A possibility that these
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Table 2: Feature importance.

Percent of the total variance gain of each feature

5 days 15 days 25 days 35 days 45 days Average

Initial debt amount 22.02 19.16 15.62 11.82 16.30 16.24
Customer tenure 24.07 18.98 15.92 14.78 11.75 15.96
Has partially repaid debt 0.00 0.05 0.00 0.07 0.00 0.08
Repayment plan in place 0.00 0.02 0.79 0.32 0.73 0.52
Phone number is available 19.65 10.73 2.97 0.82 0.18 6.65
E-mail address is available 2.80 1.44 1.11 1.21 0.96 1.43
Product type 0.00 0.00 0.00 0.00 0.00 0.00
Amount repaid already 0.00 0.17 0.05 0.17 0.47 0.44
Collector collected from debtor before 1.80 2.74 2.03 1.03 0.99 1.71
Average income in postal code area 11.44 9.89 8.79 8.62 7.32 9.00
Share of people under 30 in postal code area 5.75 5.21 6.21 6.49 7.84 6.34
Current substatus 0.02 2.66 5.76 5.50 2.59 3.29
Passed final letter 0.00 0.00 0.00 0.40 3.22 0.90
Has answered a phone call 0.67 0.35 0.60 0.14 0.09 0.42
Promised to repay 0.03 0.90 1.55 1.13 0.22 1.12
Number of previous collector-debtor interactions 1.47 2.34 2.38 2.65 2.67 2.32
Number of previous phone calls 0.61 1.23 1.42 1.46 1.83 1.50
Days since promise to repay 0.00 0.95 5.50 2.74 3.32 2.54
Days since last collector-debtor interaction 0.50 1.06 2.75 8.88 9.85 4.93
Days since last phone call 0.55 1.75 2.65 3.22 4.92 2.84
Days since last answered phone call 0.64 2.12 2.76 3.37 4.84 2.73
Days since last incoming contact 0.92 2.92 5.26 7.57 6.29 4.03
Days since last incoming e-mail 0.92 1.56 2.26 2.71 1.16 1.81
Days since last incoming phone call 3.86 10.53 10.77 11.41 5.98 8.95
Day of week 1.29 2.10 1.17 1.78 1.40 1.55
Week of month 0.99 1.15 1.70 1.69 0.87 1.28

The relative percent variance gain of each feature from the state space is tabulated for GBDT models trained on debtors that are 5, 15,
25, 35, and 45 days since arrival. The average gain for each feature across all models (days since arrival of 2 to 50 days) is tabulated in the
last column.

features have low impact is because there is little variation in the training data. In

particular, product type actually has zero variation in the training data as it was first

recorded in January of 2016, so that all observations in the training data have the

same value for this feature.

The second observation is that the impact of features varies for different days

since arrival. Debtor-specific features, such as phone number available, tend to have

relatively high impact in models that pertain to fewer days since arrival (e.g., five

days). On the contrary, features related to collector-debtor interactions, such as

days since last collector-debtor interaction, have more impact later in the collection

process. The GBDT predictions also reflect this, as the correlation coefficient between

phone number available and PRP in the validation set decreases from 0.50 at five

days since arrival down to 0.03 at forty-five days since arrival, and the magnitude of

correlation between days since last collector-debtor interaction and PRP increases

from -0.02 at five days since arrival to -0.19 at forty-five days since arrival. Finally,

some features, such as current substatus and days since last incoming phone call,
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have the bulk of their effect towards the middle of the collection process. This shows

that different features predict repayment in different ways throughout the collection

process.

3.6.5 Marginal effect of phone calls on PRP

Our approach to maximize the amount of debt collected is to compute the difference

in PRP between making and not making an additional phone call to a debtor—see

Section 3.4 and Equation (3) in particular. To analyze how the marginal effect of

a phone call on PRP (abbreviated to MEPC) depends on the state of a debtor, we

compute the MEPC for every debtor in the validation set for every day that the

debtor was eligible for receiving a phone call. We identified 432,555 of such potential

phone calls across the 28,900 debtors in the validation set over 497 days. The average

MEPC over these phone calls equals 0.92%, with a standard deviation of 3.73%. This

indicates that, on average, phone calls have a positive effect on PRP, but that the

effect varies substantially across debtor states.

Analyzing the impact of a feature on the MEPC is non-trivial, given that features

interact and correlate with each other. For example, current substatus and number of

previous collector-debtor interactions are highly correlated as they change in similar

directions with the amount of time spent in the collection process. This makes it

challenging to attribute MEPC to a single feature. Instead, we present some specific

insights to illustrate how MEPC can differ under different conditions. To do so, we

sort the 432,555 phone calls in the validation set by MEPC and compare average

feature values for each day since arrival between the top and bottom quintiles, which

represent the most and least effective phone calls. Figure 9 contains plots for two of

the features, days since last phone call and promised to repay.

For days since last phone call (Figure 9a), there is no difference between the most

and least effective phone calls in the first 10 days of the collection process. From

day 11 to 28, the debtors that have been called more recently seem to be better

options for the next call. Starting from day 29, the effect flips around and it becomes

better to call the debtors that were called less recently. Arguably, this has to do

with intrinsic differences in the types of debtors that remain earlier versus later

into the collection process. More debtors that are reachable and able to repay their

debt remain in collections between 10 and 28 days into the process (i.e., after the

first letter but before the final letter). These debtors likely require more persuasion

so calling them more often could increase collectibility. As these debtors eventually

repay their debt, the debtors that remain later into the collection process are more

likely to either be unreachable or unable to repay their debt, and as a result, there

is less value in calling them often.
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(a) (b)

Figure 9: Average values for the top and bottom quintiles by MEPC for days since last outbound phone call

(a) and fraction of debtors that promised to fully repay debt (b).

For promised to repay (Figure 9b), it seems in general better to call debtors that

have not previously promised to repay their debt. The fraction of debtors that have

promised to repay their debt is similar between the top and bottom quintile of

calls up to day 26 and differs significantly afterward. The intuitive explanation for

this observation is that debtors that have promised to repay their debt are already

likely to repay their debt without further intervention. Until they have broken their

promise, it is better to accept their promise and simply wait for repayment.

In Figure 10, we plot the MEPC against days since arrival. Phone calls seem to

have limited effect until day 20, and then become increasingly effective until day 37,

after which they become less effective again. Although there may be many reasons

causing this, we believe the increase in effectiveness is because the debtors that are

able and willing to repay their debt will likely do so early in response to the letters

and e-mails, so phone calls are unnecessary and add no value to the collectibility of

these cases. On the contrary, debtors that have not already repaid their debt two

or three weeks into the collection process are more likely to be unwilling to repay,

thus phone calls can add greater value. Phone calls begin to lose effectiveness after

day 37 as more of the debtors remaining are either unreachable or are unable to

repay the debt. In the former case, the debtor will be escalated to the legal phase,

and in the latter case, an agreement might be reached between the Collector and a

debt management intermediary. Neither of these cases will result in repayment via

the collection process and spending additional phone calls on these debtors will be

wasted effort.

We emphasize that both the training and validation datasets are realizations of the

Collector’s actual collection process and do not reflect any form of randomized exper-

imentation. Therefore, many of the possible states may have been under-observed
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Figure 10: MEPC for each day since arrival.

(e.g., zero phone calls made within the first 15 days of the collection process). More-

over, because the collection process is path-dependent and we do not know how

individual collectors select which debtors to call, we do not know what would have

happened had different actions been taken and cannot be sure that our MEPC esti-

mates are unbiased. Ultimately, a controlled field experiment is necessary to under-

stand the true value of using a data-driven prediction model to optimize phone calls.

3.7 Controlled field experiment

In this section, we present the results of a controlled field experiment that we con-

ducted. First, in Section 3.7.1, we discuss how we designed the experiment. Then,

in Section 3.7.2, we present the results and discuss the collection performance of our

proposed policy. Finally, in Section 3.7.3, we analyze how our proposed policy differs

from the incumbent policy by inferring how the (states of) debtors that our policy

calls differ from those called by the incumbent policy.

3.7.1 Experimental setup

To evaluate the performance of the GBDT-optimized calling policy (GOCP), which

is described in Section 3.4.2, we ran a controlled field experiment spanning a period of

102 days starting on January 19, 2018 and ending on April 30, 2018. The experiment

regards debtors that are clients of the same insurance company used for the data

analysis in Section 3.5 and the model development in Section 3.6.
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Starting from January 19, 2018, we assigned each newly arriving debtor randomly

to one of the following three collection policies: GOCP, the incumbent policy (IP)

currently used by the Collector (described in Section 3.2.2), or a third experimental

policy, which is not related to this paper. For our analysis, we consider debtors that

arrived between January 19, 2018 and February 28, 2018, since for these debtors

we observe the outcome of the collection process (given that the experiment ran

until April 30, 2018). As a result, a total of 921 debtors are within the scope of our

experiment, of which 455 were exposed to GOCP and 466 to IP.

The implementation of GOCP is as follows. At the start of each day, we train

fifty GBDT models, as described in Section 3.4.1, based on all the closed cases

from January 1, 2016 up to the present day. Then, according to Equation (3) in

Section 3.4.2, we compute the predicted marginal effect of making a phone call for

each of the open cases that are no more than fifty days into the collection process

and are eligible for receiving phone calls. Debtors are not eligible for receiving phone

calls if, e.g., the debt is currently being investigated because the debtor disputed the

debt (we use the substatus of debtors, see Section 3.5, to verify if a debtor is eligible

for receiving phone calls).

The Collector’s objective is to maximize the number of cases that are completely

recovered, since only in case of full recovery does the Collector receive a collection

fee, which is independent of the amount of debt. To this end, when computing the

marginal effect of phone calls according to Equation (3), we set debti = 1 for each

debtor i ∈ {1, . . . ,N} (note that the amount of debt is still part of the state space

of a debtor, since it does affect the likelihood of repayment). In this way, GOCP is

designed to maximize the number of fully recovered cases.

The cases are then sorted by the predicted marginal effect of calling, and the top

20% of these debtors is added to the pool of planned phone calls for that day. A

number of phone calls following other policies (including IP) are also added to this

pool. This is done in a way that the capacity of the Collector on a given day is

sufficient to make all the phone calls in the calling pool. Agents in the Collector’s call

center are free to call debtors from the calling pool at their discretion. To prevent

bias originating from behavioral changes of the agents, there is no identifier of which

debtors are following which policy within the pool of planned calls and the agents

were not aware of this experiment.

The Collector is required to always attempt at least one phone call before sending

out the next letter. To conform with this, when a specific debtor is not called for a

long time, it is artificially prioritized and scheduled for a phone call, so that the next

letter can be sent afterward.
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Table 3: Summary statistics on the results of the experiment.

IP GOCP

Key figures

Number of debtors 466 455
Number of outbound calls 1,119 876
Number of inbound calls 236 188
Fraction of total debt recovered 0.572 0.652
Amount collected per call (e) 31.80 46.30
Amount collected per outbound call (e) 38.53 56.72

Descriptive statistics

Fraction of debtors that is called at least once 0.916 0.831 ***

Fraction of outbound phone calls picked up 0.268 0.223
Fraction of fully collected cases 0.590 0.626
Average number of days until first phone call 4.5 7.7 ***

Average number of outbound calls per debtor 2.40 1.93 ***

Average number of days until full repayment 22.2 20.3
Average initial debt (e) 161.74 166.17

***, **, and * indicate a statistically significant difference at a significance level of 0.01,
0.05, and 0.10, respectively. Inbound calls are calls made by debtors to the Collector, e.g.,
after missing a phone call from the Collector or after receiving one of the letters.

3.7.2 Experimental results

We evaluate the performance of GOCP (relative to IP) by considering the state of

each of the 921 debtors in the scope of this experiment at the time the experiment

ended on April 30, 2018. In Table 3, we provide summary statistics on the perfor-

mance of IP and GOCP. In general, GOCP is able to (fully) recover more cases and

collect more debt in shorter time, whilst requiring much fewer resources.

To see this, observe that IP recovered only 57.2% of the total outstanding debt,

whilst GOCP was able to recover 65.2%, which is a substantial relative increase of

14.0%. This corresponded with 62.6% of the cases being fully recovered by GOCP

and 59.0% by IP. Of the fully recovered cases, the average number of days until

complete repayment is 22.2 for IP and 20.3 for GOCP, suggesting that GOCP is not

only more effective at collecting more debt, but that it also does so in less time.

The total number of phone calls made by GOCP is 21.8% lower than IP (876

vs 1,119 outbound calls). Together with the increased amount of debt recovered,

this leads to a 47.2% increase in the monetary amount collected per call made by

GOCP as compared to IP (e56.72 vs e38.53). When also including the inbound

phone calls—usually made by debtors after missing a call or receiving a letter from

the Collector—we see the same picture, namely an increase in 45.6% in euros col-

lected per call. Overall, this shows that the calls under our data-driven policy are

considerably more effective in terms of return on effort than the incumbent policy.

The (decrease in) number of outbound phone calls under GOCP is mostly the

consequence of the implementation of GOCP, in which the 20% of debtors is called
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that have the highest predicted marginal increase in PRP (see Section 3.7.1). Hence,

the decrease in number of phone calls on itself is not a direct consequence of GOCP.

However, it is due to GOCP that the most effective phone calls can be selected,

which, in this case, leads to more debt being recovered, whilst requiring fewer phone

calls.

Apart from the number of phone calls, the fraction of debtors that receive at least

one phone call is also substantially lower for GOCP than for IP, namely 83.1% vs

91.6%. Presumably, this is due to the fact that, on average, GOCP makes the first

phone call to a debtor only after 7.7 days, whilst IP does so after 4.5 days (recall

that IP always schedules a phone call immediately after sending out the first letter).

Consequently, IP calls debtors that would have settled on short-term notice without

requiring the persuasion of one of the Collector’s agents—thereby wasting expensive

capacity. On the other hand, GOCP postpones the first call, thereby allowing debtors

to settle and spending only effort on debtors that are not able or willing to pay.

All in all, the results reveal that the data-driven approach to debt collection that we

propose substantially outperforms the existing policy that is based on business rules.

As such, it shows that the historical data available contains sufficient information

to make better decisions in a highly automated manner and that our framework is

capable of operationalizing and monetizing this data.

3.7.3 Comparison of GOCP and IP

The previous section revealed that GOCP is much more effective as a calling policy

than IP. In this section, we analyze how the debtors that were selected by GOCP

differ from those selected by IP. To this end, we identified all phone calls that were the

first phone call to a debtor on a given day. These calls are most likely a result of the

respective policies and were not in response to an incoming call or a chain of phone

communication within a day. Based on these calls, we made a comparison between

the state of debtors called by GOCP and by IP, of which the results are presented

in Table 4 (see Section 3.3 for a full description of the state space). For example,

GOCP calls debtors that are on average 18.6 days into the collection process, whilst

for IP this is 15.6 days. Recall that telephone number available regards to whether

the phone number was known at the time the debtor arrived, i.e., whether it was

provided by the debt owner. In case it is not available, phone calls can still be made

if a phone number can be retrieved through, e.g., public telephone directories. In the

following sections, we discuss insights derived from Table 4.
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Table 4: Comparison of the state of debtors that IP and GOCP call.

Debtor state feature IP GOCP

Debtor specific

Days since arrival 15.6 18.6 ***

Initial debt (e) 167.67 173.08
Has partially repaid debt 0.005 0.006
Repayment plan in place 0.036 0.045
Phone number is available 0.712 0.634 ***

E-mail address is available 0.765 0.706 ***

Amount already repaid (percent of total) 0.002 0.001
Collector collected from debtor before 0.368 0.326 *

Average income in postal code area (thousands) 33.35 34.28 **

Share of people under 30 in postal code area 0.361 0.361
Passed final letter 0.001 0.000

Historical interaction

Has answered call before 0.231 0.162 ***

Promised to repay 0.104 0.069 **

Number of previous collector-debtor interactions 3.9 3.6 **

Number of previous phone calls 1.0 0.9 *

Days since promise to repay 19.5 22.1
Days since last collector-debtor interaction 2.8 5.9 ***

Days since last phone call 13.3 13.5
Days since last answered phone call 17.1 17.9
Days since last incoming contact 14.6 17.4 *

Days since last incoming e-mail 12.0 16.7 **

Days since last incoming phone call 18.0 20.8

Based on 830 and 642 calls initiated by IP and GOCP, respectively. ***, **, and * indicate a
statistically significant difference at a significance level of 0.01, 0.05, and 0.10, respectively.

GOCP spends more effort on difficult cases. The results in Table 4 indicate

that GOCP, as compared to IP, focuses on debtors that are more difficult to collect

from. To see this, first observe that, compared to IP, GOCP calls more debtors that

did not answer a phone call before. This suggests that GOCP calls debtors that are

more difficult to reach and likely more difficult to collect from. Second, GOCP calls

less frequently to debtors that have previously promised to settle their debt. Hence,

GOCP spends relatively more effort on debtors that have not yet shown willingness

to pay by acknowledging their debt to the Collector. Third, GOCP calls debtors that

have been in the process for a longer period of time (18.6 days vs 15.6 days), which

also suggests that GOCP focuses on the more difficult cases—given that debtors

with a high willingness to pay settle early in the process. Finally, compared to IP,

GOCP calls more often to debtors for which less information is available. Namely,

the fraction of debtors of which the phone number and e-mail address were known is

lower for GOCP. The unavailability of this information makes collection work more

difficult, but GOCP suggests that it is worthwhile pursuing those debtors (e.g., by

searching for their phone number elsewhere).
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Timing of phone calls. IP schedules debtors immediately after they receive one

of the four letters that are sent by the Collector, and are then “forgotten” until the

next letter has been sent. On the other hand, GOCP calls debtors at its discretion

based on the debtors’ states. As a result, from Table 4, we clearly see that the timing

of phone calls made by GOCP differs from that of IP: GOCP makes on average

the first phone call to a debtor 3.2 days later than IP (see Section 3.7.2) and also

calls debtors that have been in the collection process longer (18.6 days for GOCP

as compared to 15.6 days for IP, see Table 4). In addition, the number of days since

last collector-debtor interaction is much higher for GOCP (5.9 days for GOCP vs

2.8 days for IP).

These observations, together with the results from Section 3.7.2, suggest the fol-

lowing. After sending letters, it is worthwhile to give debtors some slack to settle

their debt, before spending expensive phone calls on these debtors. Hence, by waiting

longer before making the first call and waiting longer after the previous interac-

tion with the debtor, automatically only debtors that are unable or unwilling to

pay remain—these are exactly the debtors that the Collector would want to spend

capacity on.

Recall that the Collector requires that a phone call is made before debtors can be

escalated to the next letter, thereby setting an upper bound on the number of days

without a phone call (see Section 3.7.1). Without this business constraint, we expect

the results to be even more profound.

Similarities between GOCP and IP. Although GOCP and IP call debtors that

differ in several aspects, they are not significantly different in other aspects. It is

surprising to see that debtors called by both policies do not significantly differ in

outstanding debt (e173.08 vs e167.67 for GOCP and IP respectively). The difference

is almost identical to the difference in initial outstanding debt for debtors assigned

to the two policies. However, both policies actually select debtors with greater debt

than average (e163.93). This is likely due to the fact that debtors with smaller debt

amounts tend to repay earlier, and thus more calls are eventually made to debtors

with larger debt amounts.

3.8 Conclusion

This paper considers the problem of deciding on a daily basis which debtors a debt

collection agency should call, given that only a limited number of calls can be made

by its agents. This is a challenging optimization problem since, at any given time,

a debtor portfolio consists of a large collection of heterogeneous debtors that are
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at different stages in the collection process. Our approach is to formulate an MDP

and approximate it through data-driven machine learning methods—thereby circum-

venting dimensionality issues by relying on historical data. This approach revolves

around computing, for each debtor at each state, the predicted repayment probabil-

ity (PRP) and inferring the marginal increase in PRP when making an additional

phone call. We find that in a holdout sample our machine learning technique achieves

0.689 AUC for the PRP estimates. Furthermore, we were able to obtain an improved

scheduling policy for our industry partner. We validated this policy in a controlled

field experiment conducted with real debtors. The results show that our data-driven

policy substantially outperforms the current scheduling policy. Most notably, our

policy leads to an increase in the amount of debt collected per outbound call from

e38.53 to e56.72, leading to a 47.2% improvement in return on calling effort. The

improvement comes mostly from selecting debtors that have been in the collection

process longer, have not been contacted recently, and have not previously answered

calls nor promised to repay their debt. In general, the proposed policy puts more

emphasis on debtors that are harder to collect from and calls are scheduled later in

the collection process.
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Chapter 4

Optimal Contact Center Staffing and
Scheduling with Machine Learning

Chapter Abstract

A fundamental challenge in staffing and scheduling of service systems is ensuring high

quality of service (QoS) at minimum costs. This challenge is particularly complex

when considering modern contact centers that have multi-skill agents and multi-class

customers with heterogeneous arrival rates. Moreover, the inclusion of modern chan-

nels such as chat and email further increases the complexity. In this setting, there

are no closed-form expressions for QoS measurements and well-known approxima-

tion techniques cannot integrally solve the staffing and scheduling problem, resulting

in significant over-staffing. Simulations are widely used to accurately provide QoS

expectations for staffing schedules, but they are computationally demanding and reli-

able optimization procedures cannot meet the time demands of practical use. A new

approach is required to efficiently find near-optimal staffing schedules for real-life use

in service systems. We show how machine learning can be used in combination with

simulation to solve the integral staffing and scheduling problem for multi-skill contact

centers. This has the potential to provide better solutions for the workforce planning

problem faced by contact center managers, and can also be applied to other service

systems. We develop a machine learning framework to approximate QoS expectations

by predicting simulation outcomes, allowing us to quickly produce a look-up table of

QoS for all candidate schedules. The QoS approximations are highly accurate, even

when the contact center includes non-traditional channels such as chat and email.

We then implement a simple deterministic optimization procedure to obtain sched-

ules that can satisfy QoS targets at low costs. Using numerical experiments based on

a real-life contact center scenario, we show that under reasonable time constraints,

our method substantially improves upon the best schedules obtained via simulation

optimization for multi-skill contact centers, both with and without chat and email.

Implementation of our method could result in significant reduction of staffing costs

for complex modern multi-skill contact centers.
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4.1 Introduction

Contact centers (or call centers), as one of the classical service systems, have been a

mainstay in operations management research for many years. One reason for the pop-

ularity of contact centers is their importance to the success of businesses. According

to a report by Global Industry Analysts, Inc. (2018), the contact center industry is

estimated to have generated $200 billion in revenue worldwide in 2017 and is expected

to reach over $400 billion by 2022. It is estimated that over 2 million people work

in contact centers in the U.S., with millions more working in other countries such as

India or the Philippines. Contact centers play an important role in customer service

as the first point of contact for customer inquiries and complaints, and sometimes

serve as the only method for customers to complete critical tasks (e.g., re-booking

flights after unexpected delays or terminating a mobile phone plan). Moreover, with

direct access to customers, contact centers also engage in marketing via cross selling

of products and customer churn prevention.

As technology progresses, customers are using more communication channels than

just the telephone, sometimes preferring to use self-help options, email, social media,

or chat. Moreover, customers rarely rely on a single channel, often selecting a chan-

nel based on their needs of the moment. For urgent requests that are difficult to

explain and require real-time response, a telephone call may still be the ideal option.

However, for problems where written instructions will suffice, email or chat could

be better as the customer does not have to hold for an agent and can refer back

to the discussion in the future. Communication preferences also differ for customers

across age groups. Young people, for example, prefer chatting online over talking to

strangers, while older people, on the other hand, are still more familiar with phone

conversations.

From the point of view of management, the diversity of channels can help smooth

workload, offloading non-urgent services to non-real time channels such as email

or text message so that agents can handle them during periods of lower calling

load. However, the operational challenges faced by contact centers are also more

complicated when the system offers more flexibility to customers. Handling telephone

requests already requires agents with different skills such as language (e.g., English

and Spanish) and product understanding (e.g., flight information and baggage rules).

The inclusion of new channels adds another dimension to the system, increasing the

difficulty of guaranteeing high quality of service at manageable costs. Furthermore,

customers arriving in non-real time channels behave differently, requiring all new

metrics of measuring quality of service.
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In this chapter, we investigate the staffing and scheduling problem for modern

multi-channel contact centers with multiple classes of customers and multi-skilled

agents. The problem is as follows—given a contact center with customers arriving

from different channels employing agents with different skills, how can the manager

staff and schedule agents to meet quality of service (QoS) objectives at minimum

costs? This is a fundamental challenge faced by contact center managers due to the

labor-intensive nature of customer service. Approximately 60-80% of the operating

budget of a contact center is comprised of agent costs (Aksin et al. 2007), thus it

is crucial to deploy the right number of agents with the right skills to the right

schedules so as to meet the uncertain, time-varying demand of service.

This task of staffing and scheduling agents is generally carried out weekly (or bi-

weekly) by the contact center’s workforce management team based on the following

steps. First, using historical data, a forecast of arrival requests for the next week is

obtained. The forecast predicts the incoming volume of each type of service request

for every interval (usually between 15 and 60 minutes). Then for each service type

independently, the forecasted call volume is translated to staffing level requirements

per interval such that a pre-specified QoS can be met. This step is known as staffing.

In practice, staffing level requirements are usually computed in one of two simple

ways:

1. multiply average handling time (AHT) with the forecasted call volume and then

offset by an experience-based safety ratio; or

2. leverage Erlang formulas from queuing theory and solve a linear program with

advanced call center software.

The first method is a heuristic often used in practice, and the second method is based

on the stationary independent period-by-period (SIPP) model of contact centers and

is well known in the literature (Gans et al. 2003). Once the interval-independent

staffing levels are determined, scheduling software is used to determine the optimal

shift configurations. This step is known as shift scheduling. Finally, the last step,

rostering, assigns the agents to shifts. Some extra agents may be added (hired) on

short notice if necessary.

While this approach works well in simple contact centers with only calls and

single-skilled agents, it becomes unreliable in modern contact centers with multi-

ple channels, multi-skilled agents and heterogeneous customers. First, by calculating

staffing levels per service type independently, it is assumed that agents are fully dedi-

cated to each service type (i.e., only single-skill agents are employed). However, most

agents are capable of performing multiple skills (e.g., bilingual or can answer both

calls and emails) and are shared by a blend of customers based on a routing policy.

Thus, the QoS of a service type is not only affected by the number of agents with
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the right skill, but also by the configuration of other multi-skilled agents and the

routing policy. A second problem arises from treating each interval independently.

The QoS targets are usually set for a sequence of many intervals (e.g., 48 intervals

for a day of 30-minute intervals or 336 intervals for a week), so optimizing staffing

independently for each interval can lead to over-staffing. This problem is amplified

when considering non-real time channels such as emails, where interval-independent

approaches perform especially poorly because emails are often handled in a differ-

ent interval from when they arrive. Finally, neglecting the transient effects between

consecutive intervals (i.e., not accounting for busy servers and queues at the end of

intervals when starting new intervals) also introduces errors (Ingolfsson et al. 2007).

To appropriately choose staffing levels so that scheduling costs can be minimized,

the staffing and shift scheduling problems should be considered integrally. Due to

complexity, few papers have studied the integrated problem in a setting with multi-

skill agents and heterogeneous customers. The key difficulty of this problem is the

lack of closed-form expressions for QoS measurements. Consequently, the papers that

study the integrated problem either rely on simulation (Cezik and L’Ecuyer 2008,

Avramidis et al. 2010) or approximate the QoS by modeling the system into certain

existing mathematical models such as fluid models or queuing models (Bodur and

Luedtke 2017). However, both methods are difficult to implement in practice.

The approximation methods often need strict conditions such as heavy-traffic sys-

tems, short service times, impatient customers, and specific routing policies. Thus

they can be less robust and in practice it is difficult to meet all of the requirements.

On the contrary, the advantages of using simulation are multi-folded: it tends to

produce more reliable results (Ingolfsson et al. 2010, Bodur and Luedtke 2017), takes

into consideration the transient effects between intervals, allows for more diversified

QoS measurements, makes fewer assumptions so as to be more realistic, and most

importantly is the only way to include non-traditional channels such as chat and

email. Unfortunately, simulation methods can be very time consuming, which is a

significant obstacle in practice as it is common for practitioners to iterate multiple

times between shift scheduling and rostering. As a result, we study whether there is

an approach that can efficiently (i.e., quickly and with acceptable accuracy) estimate

the QoS measurements without strict assumptions.

4.1.1 Contribution

In this chapter, we combine simulation with function approximation to accurately

and efficiently estimate QoS and integrally solve the staffing and shift scheduling

problems. However, instead of mathematically modeling the system, we develop a

framework to approximate the simulation by training a machine learning model using
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simulation outcomes. More specifically, we rely on a general simulation model for

contact centers, and under any given scenario, we use the simulation to randomly

generate a number of possible schedules and record their corresponding QoS. The

computational burden in this stage is still manageable as it does not need to be

performed in real time. Subsequently, we train a machine learning model on these

schedules and are then able to quickly produce a deterministic look-up table with

the predicted QoS of all possible schedules. Finally, we develop a simple local search

algorithm to search the look-up table of schedules to find optimal or near-optimal

staffing schedules in real time for the provided scenario.

Using numerical experiments, we show that first, our machine learning framework

is able to approximate QoS with very high accuracy, even though only the shift

schedule is provided. This is important because errors in QoS predictions propagate

to the subsequent optimization problem, potentially leading to falsely optimal results.

Next, we show that our framework performs well in finding near-optimal staffing

schedules. For the single-skill scenario, our framework is able to find staffing schedules

that are 3.8% better compared against the stationary independent period-by-period

(SIPP) model. For the multi-skill scenario, our framework is able to find staffing

schedules that are between 4.3% and 28.7% better compared to a simulation-based

optimization approach. Finally, For the multi-skill scenario that also includes non-

traditional channels (chat and email), our framework is able to find staffing schedules

that are between 7.5% and 72.5% better than simulation optimization. Moreover, our

local search algorithm is developed to work similarly to how contact center managers

manually optimize staffing schedules, thus providing locally optimal schedules and

removes the need for managers to perform additional checks.

4.1.2 Related literature

Call centers. Telephone call centers (we refer back to “call centers” instead of

“contact centers” to maintain consistency with existing literature) are prominent

applications of research in the operations management field. Two popular review

papers and countless research papers were written in the past twenty years, and the

term “call center” has appeared in over 350 INFORMS publications from 1998–2018.

Gans et al. (2003) review the literature on the operations and management of call

centers, including forecasting demand, routing of calls, and personnel planning. In

a more recent review paper, Aksin et al. (2007) discuss contemporary issues such

as the design of multi-skill call centers, outsourcing, and service contracting, and

interfaces with marketing.

The focus of this chapter is on the staffing and scheduling problems for multi-

skill contact centers, thus we review the existing literature on this problem and
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refer the reader to Gans et al. (2003) for work on single-skill contact centers or

other related problems such as demand forecasting, agent rostering, and call routing.

An effective staffing method for multi-skill call centers was proposed in Pot et al.

(2008). In their paper, evaluation under different configurations of multi-skill agents

for a single interval is approximated quickly based on the block queuing model.

The shift scheduling problem is solved later in Bhulai et al. (2008), and Bhulai

and Koole (2003) study how to balance emails and calls. There are many papers

studying the shift scheduling problem and most of them are based on the classical

set-covering problem proposed by Dantzig in 1954. A hybrid method that combines

scheduling heuristics with simulation to simultaneously solve both the scheduling and

the rostering problem is proposed in Fukunaga et al. (2002). Instead of considering

the objective function for each interval, Koole and Van Der Sluis (2003) develop a

scheduling methodology that meets only an overall service level objective over the

entire scheduling period.

However, the literature in this area has mostly focused on either determining the

staffing requirements or solving the scheduling problem separately. Integrally solving

the staffing and shift scheduling problem has only been studied recently as discussed

in the earlier part of this paper.

Machine learning for simulation. The use of models to model simulations for

faster execution is a well-studied topic called “simulation metamodeling” (Barton

2015). The term was popularized in Kleijnen (1975), and a number of methods have

been developed, such as polynomial regression, splines, and radial basis functions

(Barton and Meckesheimer 2006). Overlapping with the machine learning perspec-

tive, Sabuncuoglu and Touhami (2002) experimented with neural networks for meta-

modeling. A particularly successful approach was developed by Ankenman et al.

(2010), using stochastic kriging (also known as Gaussian processes) to model simu-

lations of queuing systems. Kriging is inherently non-linear and has the flexibility to

model complex response functions. Unfortunately it is computationally expensive—

scaling cubically with the number of samples—and is inappropriate for problems

with high throughput.

The development of deep learning has also led to powerful simulation metamodels

in the natural sciences. Tompson et al. (2016) use deep learning to obtain fast and

realistic simulations of Navier-Stokes equations for fluid flow. Pang et al. (2018)

use deep convolutional neural networks for relativistic hydrodynamic simulations

of heavy ion collisions in quantum physics. Finally, Gastegger et al. (2017) apply

machine learning to speed up molecular dynamics simulations in quantum chemistry.

Our approach uses a different state-of-the-art machine learning method—gradient

boosted decision trees. Details of our method are discussed later.
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Outline. The remainder of this paper is organized as follows. In Section 4.2 we

provide a description of contact center operations and a mathematical formulation of

our problem. In Section 4.3, we explain the simulation setup that is used to generate

data for training and testing our machine learning framework. Section 4.4 describes

our machine learning framework, including the algorithm used and corresponding

feature construction. Section 4.5 presents the QoS prediction performance of our

machine learning framework. Finally, we describe our optimization procedure and

show the results of our numerical experiments in Section 4.6, and conclude in Section

4.7.

4.2 Problem description

We first provide a high-level description of the operation of inbound contact centers.

Thereafter, we formulate the integral staffing and scheduling problem mathematically

as an optimization problem.

4.2.1 High level description of contact centers

A contact center consists mostly of agents, whose major responsibility is handling

customer requests from different channels (e.g., telephone, chat, email). Customers

are categorized to different service types according to their requirements, and each

service type corresponds to a specific skill that agents possess. For many contact

centers the most common type of skill is language (e.g., English, Spanish, French,

etc), and customers will select the language of the agent they wish to speak to. Multi-

skill agents are able to handle more than one service type, so in the language example

they would be multi-lingual. Often times multi-skill agents exhibit different levels of

proficiency among their skills, so there can be different priorities in the service types

that the agent will handle. An agent group is a set of agents who possess the same

skill set.

When a customer calls the contact center, various routing technologies can direct

the call to an available agent (if any) who has the skill to handle this call. However,

often there are no agents available and the customer needs to hold the call and

wait in a queue. The waiting time is usually unknown in advance and the customer

may abandon the queue at any time without receiving service. The length of time

a customer is willing to wait before abandonment is known as patience, which is

usually no more than a few minutes. Once connected to an agent, the customer will

be served until his/her problem is resolved and the time it takes to do so is called

handling time. While the call is being handled, an interruption by another call with

higher priority may arrive. This diverts the agent to the interrupting call, forcing
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the previous customer to hold until the agent has finished handling the interrupting

call. However, this situation is not preferred/allowed by most companies since it can

lead to long handling times or abandonment. When the call is completed, the agent

becomes available again and will handle the next routed call. The waiting time of a

customer is the time spent in the queue until he/she is connected to an agent, and

it plays a major role in the QoS indicators.

When a chat request arrives, again it will be routed to an agent who has the

corresponding skill. However, differing from calls, multiple chats can be handled in

parallel (up to a maximum number) by a single agent. This is because customers

also need time to reply and this time can be used by the agent to respond to other

customers. Therefore, a chat can be handled by an agent as long as his/her maximum

level of concurrency has not been reached. Although chats can be more efficient,

the handling time of ongoing chats can become longer when a new chat request is

accepted. In practice, the maximum number of parallel chats is limited to a number

(e.g., 2 or 3) such that the service time distributions will not be negatively affected

by the level of concurrency.

Emails, in contrast to the other two channels, are not necessarily answered in real

time since customers cannot abandon. We can consider the patience of an email

customer to be very long, thus the average waiting time of emails is much longer

than calls and chats. As a result, emails tend to have lower priorities than the

other channels and are often interrupted. When emails are not handled within the

day of arrival, backlogs are generated, which is an important measurement of email

QoS. Additionally, the waiting time of an email customer differs from phone and

chat customers in that it also includes the handling time since they must wait until

receiving the reply.

All customers share the same feature that arrivals are random and arrival rates

are time-varying. For most purposes, the arrival rate of each service type is usually

considered to be constant within a time interval (e.g., 15 or 30 minutes). On the

other hand, agents are working (and paid) by shifts instead of intervals. A common

shift type over a day is 8 hours long with a 30 minute break in between. Different

shift types according to the length, start/finish time, and other variables usually

have different costs. Multi-skill agents are also paid more than single-skill agents.

4.2.2 Mathematical formulation

We consider a contact center where arriving customers are categorized into I types

of service: {1, . . . , I}. These customers can be calls, emails or chats that are served

by agents divided into G groups: {1, . . . ,G}. Agents within the same group have the

same skill set, which gives the subset of service types that this agent can serve. To
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distinguish the costs of agent groups, we introduce cg. Finally, there are K different

shifts: {1, . . . ,K} with the corresponding costs ck. The schedule can be represented

easily by the decision variable ng,k, which is the number of agents staffed to group

g, and shift k.

We do not assume any particular arrival process, handling time distribution, or

patience distribution, instead we only need to be able to simulate them. In practice,

the arrival rates are normally derived from the forecast results, and redials and

reconnects can also be included. We only assume that service within the same type

will be served on a first-come-first-served (FCFS) basis.

In the multi-skill multi-class environment, the choice of routing rules is also impor-

tant for achieving good system performance. Again, we do not restrict our model to a

specific routing policy. In the built simulation model, on the basis of the longest-idle-

agent-first policy, static priority is used and preemption is allowed for some queues:

once an agent starts serving a customer, there can be an interruption by other calls

with higher priorities.

As mentioned in the previous section, the objective of our optimization problem

is reaching QoS targets at minimum costs. We choose service level (SL) as the QoS

measurement. It is defined as the proportion of customers who wait less than a

given time threshold among all arrived customers over a time period. The given

time threshold is also known as the acceptable waiting time (AWT). In practice,

managers often pay attention to daily or weekly SLs and set a target to each service

type or sometimes a set of service types. All of them are considered in our problem.

The QoS target is called service level agreement (SLA), and it is the minimum SL a

service type (or set) needs to meet. For emails, an additional QoS target related to

the backlog is considered. The backlog suggests the maximum percentage of emails

that can be transferred to the next day (or week). Other QoS measurements such as

abandonment and occupancy can also be evaluated.

The objective function is composed of two parts: the penalty cost caused by breach-

ing the QoS targets CQoS and the agent cost Cagent. It can be written as:

Coverall =CQoS +Cagent, (1)

CQoS =w1CSLAweek +w2CSLAday +w3Cbacklog, (2)

CSLAweek =
I∑

i=1

E(max{SLAweek
i −SLi,0}) +

S∑

s=1

E(max{SLAweek
s −SLs,0}), (3)

Cagent =
G∑

g=1

K∑

k=1

cgckng,k, (4)
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where w1, w2 and w3 are weights to adjust the importance between different targets

and s in Equation (3) represents the index of the set of service types. CSLAday and

Cbacklog can be calculated in a similar way as CSLAweek, therefore we do not write down

all the details for simplicity. Instead of setting the QoS targets as hard constraints,

we put it into the objective function as penalty costs. In this way, the local search

algorithm is easier to develop, and it helps to guarantee that a solution can be found.

Note that the weight of Cagent is set to 1 as a reference. In order to ensure that the

QoS targets are met, the weights in Equation (2) should be set much higher than

the agent costs. Finally, the optimization problem can be modeled as

min CQoS +Cagent

s.t. ng,k ∈N, ∀k ∈ {1, . . . ,K}, g ∈ {1, . . . ,G} (5)

4.3 Simulation setup

The operation of a contact center is modeled via a discrete-event simulation, where

the system can be described by a discrete sequence of events in time. The change of

system states is triggered by events, but different states also affect the time at which

an event happens. The input of the simulation model is the setting of the contact

center, and for a given staffing schedule the QoS is evaluated over a predefined period

of time. This period can be either a day or a week, divided into a number of intervals.

Contact centers in practice often prefer a weekly schedule due to the use of the

weekly shift patterns.

In the simulation model, three lists are constructed representing events, working

agents, and queues. All events are stored in the event list sequentially in time. We

first generate all customer arrivals according to the given arrival distribution per

interval. The end of an interval is also considered as an event and is inserted in the

list. When an arrival event happens, the simulation checks whether an agent with

the right skill is idle in the current agent list. If an agent is available, the arrival

event (i.e., customer) is handled and a departure event will be inserted into the event

list after a random handling time. If no agents are available, the customer will be

added to the queue and then an abandonment event will be inserted after a random

amount of patience to the event list. A customer will leave the queue if he/she has

not been served by the time the abandonment event occurs. When a departure event

happens, the formerly occupied agent becomes idle and then, according to a given

routing policy, the first customer from the selected queue will be removed from the

queue and occupy the agent. Re-dials are generated when abandonment (departure)

happens with given probabilities. During the simulation, all states related to QoS
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are recorded, and at the end of a single simulation run, the average performance of

each QoS is reported.

Similar simulation models that only consider calls have been built in other research.

However, this is the first one to deal with a blend of calls, emails, and chats. A

number of special points need to be treated differently when considering chat and

email. When a chat agent finishes a chat while handling other chats, he/she will not

become idle but search the queue to start a new chat (if any). If an agent can handle

both chats and calls, calls can be handled only if the agent is idle. Regarding email,

an initial backlog needs to be added to the queue at the beginning of the simulation

to avoid cold start.

4.4 Machine learning approach

In order to optimize staffing schedules, we need a method that can approximate con-

tact center service levels (SL) as accurately as possible given only information about

the staffing schedule. To do so, we train a machine learning model on a sample of

simulated results and use it to predict various service level metrics for each staffing

schedule. The simulated results correspond to a specific scenario so in principle we

train a machine learning model for each scenario. The method should be generaliz-

able to different scenarios and be invariant to simulation details, thus we can only

use information derived directly from the staffing schedule, which is defined by the

number of agents of each skill group assigned to each shift.

Since SL is a continuous variable between 0 and 1, we model this as a regression

problem and minimize the sum of squared error (SSE) between the true and predicted

SL values of simulated samples during the training process. The general formulation

of our problem can be written as

arg min
f

S∑

s=1

(
f(ns1,1,n

s
1,2, ...,n

s
1,k,n

s
2,1,n

s
2,2, ...,n

s
2,k, ...,n

s
G,1,n

s
G,2, ...,n

s
G,K)−SLstrue

)2

(6)

where S is the total number of simulated samples, and nsg,k is the number of agents

belonging to skill group g assigned to shift k. f is a function that produces a SL

prediction for inputs of a given staffing schedule. An example of a function f that can

minimize the SSE is least squares regression, where optimal weights for a linear com-

bination of the staffing variables are computed. However, while we expect changes

in SL to be monotonic with changes in the number of staff scheduled, least squares
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regression is not a suitable function to approximate the contact center staffing prob-

lem because SL does not respond linearly to the staffing number.

We use Gradient Boosted Decision Trees (GBDT) for this problem (Friedman

2001). It is also known by other names such as Multiple Additive Regression Trees

(MART), Gradient Boosting Machine (GBM) or Tree Boosting. They all refer to

the same technique which applies a framework called gradient boosting that uses

regression trees as base learners (Breiman et al. 1984). GBDT is one of the most

powerful machine learning algorithms and has been used to win most of the recent

predictive analytics competitions (Chen and Guestrin 2016).

4.4.1 Gradient boosted decision trees

GBDT works by starting with a naive prediction and then iteratively fitting regres-

sion trees on the residuals to obtain a linear combination of predictors for any regres-

sion (or classification) problem. A single regression tree works by finding partitions

in the feature space (i.e., independent variables) such that the target (dependent)

variable within the partition is as homogeneous as possible. A single value is derived

to label all observations within that partition and it becomes the model’s prediction

for that partition. This value is often the mean, median, or mode of the target vari-

able values for all observations within the partition. The measure of homogeneity is

defined by a loss function (e.g., mean squared error for regression or Gini impurity

for classification).

Building the optimal regression tree (i.e., determining the globally best possible

partitions) for a given dataset is an intractable problem because all possible com-

binations of partitions must be evaluated to find the best tree. Instead, in practice

regression trees are fit myopically, meaning that partitions are created one-by-one,

and the best partition from any point in time is determined without considering the

possibility of future partitions. As a result of this approach, a single regression tree is

likely to poorly fit the data, and could exhibit large variations with small changes to

the data. Gradient boosting alleviates the under-fitting problems of regression trees

by iteratively fitting trees on the residual (i.e., error) of previous trees. This allows

for greater focus on the difficult observations. Moreover, GBDT uses a method called

bagging, which subsamples observations and features for fitting regression trees every

iteration. This process leverages the large variations of myopically built regression

trees to further improve prediction power.

For more details on GBDT we refer the reader to Friedman (2001) and Friedman

et al. (2001). In this chapter, we use a fast and accurate implementation of GBDT

called LightGBM, which is currently used in most solutions to data science challenges

(Ke et al. 2017).
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4.4.2 Feature construction

The predictive capabilities of any machine learning algorithm depend on the features

that are provided to the algorithm. Equation (6) assumes that GBDT would use as

features the number of agents of each skill group assigned to each shift. These features

alone do not provide enough information to GBDT to yield sufficiently accurate

SL predictions due to two weaknesses of regression trees that are not adequately

addressed by gradient boosting. First, the splitting of regression trees cannot directly

account for non-binary operations across features such as summation, subtraction,

or division. For example, the total number of agents employed could be an important

predictor of SL as an insufficient number of agents will result in low SL regardless

of how the agents are assigned across skill groups and shifts. Compounding the first

weakness, regression trees also cannot directly account for deeper meaning of subsets

of features such as skill groups or shift types. A schedule with many agents assigned

to one skill group while neglecting another skill group is also likely to result in low

SL. The current formulation assumes that shifts within the same skill group are

unrelated, limiting the effectiveness of GBDT.

To account for these weaknesses and help GBDT more accurately model the rela-

tionship between the staffing schedule and SL, we construct an additional five sets

of features derived from staffing schedule information. First, to ensure that a staffing

schedule has a sufficiently large number of agents, we include the feature total agent

count which is the total number of agents in the schedule irrespective of group or

shift. Agents belong to different groups (i.e., have different skills) and work different

shifts (e.g., 9am to 5pm or 1am to 9am), therefore it is likely for staffing schedules

that have too few agents for specific skills or shifts to have low SL. To help GBDT

identify whether staffing schedules have sufficient capacity for specific skills and shifts

we include two sets of features, number of agents per agent group and number of

agents per shift. The feature set number of agents per agent group is constructed by

summing together the agents belonging to the same group (e.g., English speaking or

French speaking) across different shifts, so there are G new features added, where G

is the number of agent groups. Alternatively, the feature set number of agents per

shift is constructed by summing together the agents working the same shift (e.g.,

9am to 5pm) across different agent groups, so there are K new features added, where

K is the number of all possible shifts.

One problem with shifts is that it is difficult to directly identify when a combina-

tion of shifts leaves a particular time period poorly covered by a staffing schedule,

resulting in poor SL. To solve this problem we discretize shifts into a combination

of time intervals (of, e.g., 30 minutes) and compute the feature set number of agents
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Table 1: Features constructed from staffing schedule information

Feature set name Definition Number of features

Number of agents per shift per group ng,k G×K
Total agent count

∑
g∈G

∑
k∈K

ng,k 1

Number of agents per group
∑

k∈K
ng,k G

Number of agents per shift
∑

g∈G
ng,k K

Number of agents per interval
∑

G∈G
ng,i I

Number of agents per group per interval ng,i G× I

per interval. The number of features under number of agents per interval depends

on the time period under consideration and the length of each shift. For example,

if the length of each interval is 30 minutes and the time period under consideration

is one week, then there are 336 features, one for each time interval. Finally, we also

compute the number of agents per group per interval to further split by agent groups.

This increases the number of features by the number of intervals multiplied by the

number of agent groups.

Table 1 provides a summary of the complete feature set used in our GBDT model.

One concern is the large number of features that will be constructed for problems

of considerable size, potentially leading to significant overfitting of the training sam-

ples. Another concern is that the additionally constructed features are correlated

with each other and the initial number of agents per shift per group due to mono-

tonic relationships. Fortunately, unlike linear regression or neural networks, the tree

generating process of GBDT is iterative and does not optimize the loss function for

all features at once. During the GBDT tree generation process, a split is made for

a single feature on a single value without considering effects of other features. This

approach has the advantage of being more robust against the overfitting risk that

arises from having large numbers of features. To further protect against overfitting

in general, an appropriate train and validation framework should be used to select

hyperparameters (e.g., learning rate, max tree depth, feature subsampling frequency)

that maximizes generalizability.

4.5 Service level prediction performance

We train GBDT models on staffing schedules sampled from the simulation described

in Section 4.3. Three scenarios are considered: single-skill over one day, multi-skill

(only calls) with five agent groups over one week (seven days), and multi-skill (calls

plus chat and email) with five agent groups over one week (seven days). For the

single-skill scenario, we predict only one SL metric, for the multi-skill scenario with
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only calls we predict seven SL metrics, one for each skill and two set-level metrics,

and for the multi-skill scenario with chat and email, we predict nine SL metrics,

one for each skill plus chat and email, and two set-level metrics. One key aspect of

the multi-skill scenario is that the skill requirements differ systematically. All agent

groups can serve customers requiring the first skill, but only one agent group can

serve customers requiring the other four skills. Moreover, demand for the skills is

also different. The first skill is the most popular, accounting for over ten times the

demand for the other skills. Skills two, three, and four are similar and the fifth skill

is the least popular, accounting for about five percent of the demand as the others.

Finally, for the multi-skill scenario with calls plus chat and email, all agent groups

can also serve customers via chat and email, but with the same priority as calls of

the first skill.

4.5.1 Train and validation framework

An appropriate train and validation framework is required to evaluate model perfor-

mance for any prediction problem. In our framework, the complete set of simulated

staffing schedules (and outcomes) are randomly assigned to either a training or val-

idation dataset. The training dataset is used to train or fit the GBDT model and

the validation dataset is used as an out-of-sample test to evaluate the predictive

performance of the model. It is generally good practice to have more samples in the

training dataset so that the GBDT model can have more data to work with, but it

is also important to have enough samples in the validation dataset to ensure that

the performance scores generalize.

Sampling data from simulation. We simulate 40,731 sample outcomes for the

single-skill scenario, 66,217 sample outcomes for the multi-skill scenario with only

calls, and 90,000 sample outcomes for the multi-skill scenario with chat and email.

To ensure that the SL distributions are usable for our machine learning framework,

we generate simulation samples using the following procedure. First, two pairs of

parameters must be decided: (U,L), which is the upper and lower bound of the total

number of agents scheduled, respectively; and (u, l), which is the upper and lower

bound, respectively, of the number of agents scheduled for each agent group and

shift combination. We set U = 200, L = 0, u = 100, and l = 0 for the single skill

scenario, and U = 400, L= 0, u= 100, and l= 0 for the multi-skill scenarios. Next,

a random number of agent group and shift combinations are chosen to add agents,

so the combinations that are not chosen have zero agents. The maximum value for

this number is 50 for the multi-skill scenario and 10 for the single-skill scenario.

Then, for each of the agent group and shift combinations that have been chosen to
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add agents we randomly assign agents to a combination within the bounds of [u, l].

Finally, after all chosen combinations have been assigned agents, we check whether

the total number of agents assigned is between [U,L], if yes, the derived schedule is

simulated and otherwise it is thrown away.

4.5.2 Prediction performance

Following Section 4.5.1, we randomly select a 2 : 1 split of training and validation,

where 66.7% (24,774 for the single-skill scenario, 44,145 for the multi-skill scenario

with only calls, and 60,000 for the multi-skill scenario with chat and email) of the

simulated samples are used to train the GBDT model and 33.3% (15,956 for the

single-skill scenario, 22,073 for the multi-skill scenario with only calls, and 30,000

for the multi-skill scenario with chat and email) of the samples are used to evaluate

prediction performance. Three different evaluation metrics—root mean squared error

(RMSE), weighted mean absolute percent error (ωMAPE), and coefficient of deter-

mination (R2)—are used to measure how closely the predicted SL values relate to the

observed SL value from the simulation. The three evaluation metrics are as follows:

let ŜLs and SLs denote the predicted and observed service levels for observation s,

respectively, we compute the RMSE of the predictions for observations {1, ...,S} as

RMSE :=

√√√√ 1

S

S∑

s=1

(SLs− ˆSLs)2.

RMSE is the most commonly used error metric for evaluating prediction performance

for regression problems (i.e., when the target variable is numeric). To present the

error in the form of a percent value, we also compute the ωMAPE as

ωMAPE := 100 ∗
∑S

s=1(ωs ∗ |SLs− ˆSLs|)∑S
s=1(ωs ∗SLs)

, ωs =
SLs∑S
r=1SLr

.

The weight ωs is used weigh the samples to prevent errors made on samples with

low SL from dominating the average. Finally, we compute the R2 as

R2 =

( ∑S
s=1(SLs− S̄L)( ˆSLs− ¯̂

SL)√∑S
s=1(SLs− S̄L)2

√∑S
s=1(

ˆSLs− ¯̂
SL)2

)2

, S̄L=
1

S

S∑

r=1

SLr,
¯̂
SL=

1

S

S∑

r=1

ˆSLr.

Table 2 presents the prediction performance of GBDT for both the single- and

multi-skill scenarios with only calls. As a baseline, we also include the prediction

performance of a linear regression model estimated using the same data and features.
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Table 2: Prediction performance on single-skill and multi-skill scenarios with only calls.

s-SL m-SL1 m-SL2 m-SL3 m-SL4 m-SL5 m-Set1 m-Set2

GBDT

RMSE 0.019 0.013 0.017 0.018 0.018 0.055 0.013 0.014
ωMAPE(%) 1.9 1.1 2.2 2.2 2.3 5.5 1.1 1.9
R2 0.993 0.998 0.998 0.998 0.998 0.981 0.998 0.998

Linear regression

RMSE 0.132 0.143 0.197 0.203 0.202 0.239 0.143 0.170
ωMAPE(%) 15.8 14.2 23.8 24.1 24.0 25.6 14.2 22.0
R2 0.694 0.704 0.698 0.690 0.691 0.650 0.704 0.703

Only a single SL value is reported for the single-skill scenario and five skill-level plus

two set-level SLs are reported for the multi-skill scenario. Overall, GDBT predicts SL

very well, with RMSE under 0.02 and R2 over 0.99 for all measures with the exception

of SL5 for the multi-skill scenario. ωMAPE is also fairly consistent with RMSE and

R2, suggesting that the predictions are not too skewed in favor of either the high

or low SL samples. In comparison to GBDT, the linear regression predictions are

far worse, with RMSE and ωMAPE almost an order of magnitude higher than the

GBDT predictions. R2 is also lower by around 30% on average. These results suggest

linear models are likely to be poor approximations for SL, and that GBDT, given

its high accuracy in predicting SL, could be a suitable alternative to simulations.

Another observation is that both models perform differently for the different skills

in the multi-skill scenario. We believe this is due to the differences in demand for the

different skills. Calls requiring the first skill has the largest volume and thus results

in the most accurate SL predictions. Skills two, three, and four have similar volumes

so prediction accuracy of their SL is similar as well. Finally, skill five has very low

demand, likely resulting in large variations in SL and worse prediction performance.

It should be noted that the prediction performance for m-Set1 is exactly the same

as for m-SL1. This is because in this scenario, m-Set1 contains only m-SL1 and

therefore they are the same. We keep this set as a performance metric because it

plays its own role in calculating the objective for the ensuing optimization procedure.

m-Set2 is a combination of m-SL2, m-SL3, m-SL4, and m-SL5. We believe prediction

performance for m-Set2 is better than each of the individual SLs it comprises as a

result of larger aggregated volume.

Next we investigate the effect of adding different features to the base prediction

model for GBDT and linear regression. Table 3 shows how the prediction performance

changes as we include new feature sets for GBDT and linear regression. We first

start with the base prediction model specified in Equation (6), using only the number

of agents per shift per group features (96 features for the single-skill scenario and
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Table 3: Prediction performance by feature sets.

s-SL m-SL1 m-SL2 m-SL3 m-SL4 m-SL5 m-Set1 m-Set2

GBDT

Number of agents per shift per group 0.077 0.102 0.056 0.059 0.057 0.106 0.102 0.050
+Total agent count 0.079 0.069 0.055 0.057 0.056 0.097 0.069 0.044
+Number of agents per group NA 0.066 0.044 0.047 0.047 0.085 0.066 0.035
+Number of agents per shift NA 0.045 0.047 0.049 0.049 0.085 0.045 0.037
+Number of agents per interval 0.019 0.012 0.047 0.049 0.049 0.084 0.012 0.036
+Number of agents per group per interval NA 0.013 0.017 0.018 0.018 0.055 0.013 0.014

Linear regression

Number of agents per shift per group 0.132 0.143 0.197 0.203 0.202 0.239 0.143 0.170
+All other feature sets 0.132 0.143 0.197 0.203 0.202 0.239 0.143 0.170

480 features for the multi-skill scenario). Then, we cumulatively add feature sets

one-by-one and obtain the prediction performance for the two models. The feature

sets are added in the following sequence: (1) total agent count (one feature for both

single- and multi-skill scenarios); (2) number of agents per group (not applicable for

the single-skill scenario and 5 features for the multi-skill scenario); (3) number of

agents per shift (not applicable for the single-skill scenario and 96 features for the

multi-skill scenario); (4) number of agents per interval (48 features for the single-

skill scenario and 336 features for the multi-skill scenario); (5) number of agents per

group per interval (not applicable for the single-skill scenario and 1,680 features for

the multi-skill scenario)

The first thing that can be observed is that linear regression is unaffected by

the inclusion of new features. Prediction performance remained constant with the

inclusion of each feature set (when rounded to the third decimal), thus we collapsed

them into a single row. This is likely due to the fact that our new features are

mostly linear transformations of the baseline features, resulting in multicollinearity.

GBDT on the other hand is greatly improved by the new features and its response

to the inclusion of new features seems to depend on the specific SL type under

consideration. For example, when we added total agent count to the base model we

saw large improvements for m-SL1 and m-Set1, moderate improvements for m-SL5

and m-Set2, very small improvements for m-SL2, m-SL3, and m-SL4, and even a

small decline for s-SL. Alternatively, inclusion of the final feature set, number of

agents per group per interval, greatly improved m-SL2, m-SL3, m-SL4, m-SL5, and

m-Set2, while causing slight declines in performance for m-SL1 and m-Set1. This

suggests that different types of information are important for different skills. For

consistency we use the same features to train models for the different SL types, but

it is possible to use different features or even develop different models for each skill

individually.



89 4.6. Numerical experiments

Table 4: Prediction performance on multi-skill scenario with chat and email.

m-SL1 m-SL2 m-SL3 m-SL4 m-SL5 m-SLch m-SLem m-Set1 m-Set2

GBDT

RMSE 0.014 0.023 0.024 0.024 0.067 0.034 0.019 0.013 0.018
ωMAPE(%) 1.3 2.8 2.9 3.0 6.6 4.2 2.8 1.4 2.3
R2 0.997 0.994 0.994 0.994 0.962 0.989 0.995 0.998 0.996

Linear regression

RMSE 0.102 0.095 0.098 0.098 0.134 0.110 0.079 0.083 0.070
ωMAPE(%) 10.4 11.9 12.1 12.1 14.8 14.0 11.7 9.6 9.6
R2 0.866 0.900 0.897 0.897 0.848 0.879 0.916 0.904 0.937

Surprisingly, the inclusion of chat and email slightly decreases the prediction per-

formance of GBDT and improves the performance of linear regression. However, the

prediction performance of GBDT is still substantially better than linear regression.

Table 4 presents the results. The same pattern remains when comparing prediction

performance by skill. We can see that SL for skill one is fairly easy to predict, and

for skill five is particularly difficult. SL for chat also seems difficult to predict. This

may be due to the routing policy, where agents are assigned to serve customers via

chat for certain periods of time only, resulting in service level fluctuations even when

sufficient numbers of agents are present. Finally, we can also see that m-Set1 differs

from m-SL1 because this set also contains chat and email.

4.6 Numerical experiments

In this section, we show how the trained GBDT model can be used to optimize

staffing schedules. We present three numerical experiments, one for the single-skill

scenario and one each for the multi-skill scenario with and without chat and email

(see scenario definitions in Section 4.3). We first describe our optimization procedure

in Section 4.6.1, then we present the results in Section 4.6.3 and compare our results

against the SIPP and simulation optimized staffing schedules.

4.6.1 Optimization procedure

One disadvantage of GBDT is that there is no easy method to optimize a target vari-

able from the trained model. Because GBDT is non-parametric and does not enforce

any functional relationships between the features and the target variable, finding

the optimal staffing schedule from a trained GBDT is a combinatorial optimization

problem. We develop a simple algorithm (for details see Algorithm 1) based on local

search to find near-optimal staffing schedules. This algorithm iterates over a staffing

number (i.e., the number of agents), and performs local search over possible staffing
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schedules for the given staffing number. Note that instead of performing local search

from a single schedule, we search from N randomly sampled schedules to improve

diversity.

For practical purposes, five heuristics are introduced to Algorithm 1. First, we ter-

minate the local search procedure prematurely when it seems that the given staffing

number is insufficient to meet the SLAs. This is because the effect of not meeting the

SLAs far outweighs all other aspects of the objective, so staffing schedules that can-

not meet the SLAs are almost guaranteed to score poorly on the objective. Second,

since meeting the SLAs is so important, we increase the SLAs used in the objective

function of the optimization algorithm by two percent. This is to account for the

potential prediction error of GBDT and to ensure that the staffing schedules found

by the optimization algorithm have sufficient likelihood of meeting the SLAs. The

third heuristic is that instead of returning only the best schedule found by the algo-

rithm, we return the final locally-searched schedule for each of the N schedules that

are searched from. Fourth, we continue the algorithm for an additional three staffing

number values after the stopping criteria has been met. The fifth and final heuristic

is that we return the best schedules found from the last five staffing number values

that were evaluated. Together, the third, fourth, and fifth heuristics ultimately result

in a set of 50 schedules returned from the optimization procedure. The 50 schedules

are then fed back into the simulation for a final performance verification, and the

best staffing schedule from the verification is returned.

4.6.2 Mathematical approximation and simulation optimization
approaches

To verify the effectiveness of our machine learning optimization framework we com-

pare our solution against a mathematical approach—the stationary independent

period-by-period (SIPP) model—for the single-skill scenario and against a simulation

optimization approach for the multi-skill scenarios.

The SIPP model is based on the set-covering problem, proposed by Dantzig in

1954. In the single-class single-skill scenario, the result from the SIPP model is a

very good approximation of the optimal solution, as the only error is that introduced

by ignoring the transient effects between consecutive intervals. Using the same nota-

tion as in Section 4.2, the SIPP model for the integral staffing and shift scheduling

problem can be written as

min
K∑

k=1

cknk
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Algorithm 1 Local search algorithm for finding near optimal staffing schedules

1: procedure localSearch(GBDT)

2: initialize best overall score

3: for staffing number in 1 : inf do

4: for n in 1 :N do

5: staffing schedule[n]← choice(shift groups, staffing number)

6: staffing schedule SL[n]← predictSL(GBDT, staffing schedule[n])

7: staffing schedule score[n]← objective(staffing schedule SL[n])

8: best schedule[n]← staffing schedule[n]

9: best schedule score[n]← staffing schedule score[n]

10: best staffing score← max(best schedule score)

11:

12: while best staffing score not surpassed for 100 iterations do

13: for n in 1:N do

14: staffing schedule new [n]← swapShift(staffing schedule[n])

15: staffing schedule new SL[n]← predictSL(GBDT, staffing schedule new [n])

16: staffing schedule new score[n]← objective(staffing schedule new SL[n])

17:

18: if staffing schedule new score[n] better than staffing schedule score[n] then

19: staffing schedule score[n]← staffing schedule new score[n]

20: staffing schedule[n]← staffing schedule new [n]

21: best schedule score[n]← staffing schedule score[n]

22: if max(best schedule score) better than best staffing score then

23: best staffing score← max(best schedule score)

24:

25: if max(best staffing score) better than best overall score then

26: best overall score← max(best staffing score)

27: else

28: return best schedule corresponding to the best overall score

29:

30: procedure choice(shift groups, staffing number)

31: randomly assign the number of agents specified by staffing number to shift groups

32:

33: procedure swapShift(staffing schedule)

34: randomly swap one agent in the staffing schedule from one shift group to another

35:

36: procedure predictSL(GBDT, staffing schedule)

37: use the given GBDT to predict the SL for the given staffing schedule

38:

39: procedure objective(staffing schedule SL)

40: compute the objective value for a staffing schedule based on the given staffing schedule SL

41: see Equation 5 for the mathematical formulation
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s.t. at =
K∑

k=1

xk,tnk, ∀t∈ {1, . . . ,T }

T∑

t=1

λtSLt(at)/
T∑

t=1

λt ≥ SLAT

nk ∈N. ∀k ∈ {1, . . . ,K}

Since there is only one service type with a single-skill agent group, the decision

variable nk,g is simplified to nk, and the binary parameter xk,t equals to 1 if shift k

works in interval t. The main constraint guarantees that the SLA over T intervals

is met by the schedule nk, where at is the number of agents scheduled in interval

t. However, this model is non-linear because the main constraint is non-linear. A

formulation with only linear constraints is needed to solve the problem:

min
K∑

k=1

cknk

s.t.
K∑

k=1

xk,tnk =
M∑

m=1

ym,tm, ∀t∈ {1, . . . ,T }

M∑

m=1

T∑

t=1

ym,tSLm,t ≥ SLAT (
T∑

t=1

λt)

M∑

m=1

ym,t = 1, ∀t∈ {1, . . . ,T }

nk ∈N, ∀k ∈ {1, . . . ,K}

ym,t ∈ {0,1}, ∀m∈ {1, . . . ,M}, ∀t∈ {1, . . . ,T }

where a binary auxiliary variable ym,t is added. It equals to 1 ifm agents are scheduled

in interval t. The basic idea of the formulation is calculating beforehand the SL of

each interval for all m∈ {1, . . . ,M}: SLm,t. For this single-skill scenario, SLm,t can be

easily calculated via Erlang formulas. There is a good excel add-on offering various

Erlang formulas with regard to different scenarios and can be downloaded via http:

//software.ccmath.com/erlang/ErlangCCmath.xla. Since Erlang C does not take

abandonment into consideration, we use Erlang A here.

For the multi-skill setting the SIPP model becomes inappropriate and simulation

optimization is used to compare against our approach. Simulation optimization works

by intelligently exploring different decision variable values to eventually find the best

results for a problem. For the integral staffing and shift scheduling problem, the

decision variables are nk,g and the result is the objective in Equation (5). Given the

complexity of this problem, we use a heuristic based simulation optimization method

in the following way:
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1. a max flow problem is solved to obtain an initial schedule;

2. a heuristic-based algorithm is designed to add agents to one of the agent

group/shift combinations until either all SLAs are satisfied or the marginal cost

for adding new agents is too high.

The simulation optimization approach is reliable but, unfortunately, it requires a

large number of iterations to find good schedules. It is important for contact center

managers to get good staffing schedules in real time with minimal wait times.

4.6.3 Optimization results

Recall from Equation (5) that our objective is to minimize the cost of failing to meet

the SLAs plus the cost of agents. In our experiment, we use SLAs of 0.68 for each

individual skill, 0.65 for chat, 0.80 for email, and 0.74 for the sets (see Equation

(3)). The cost of agents is 1 unit for the first group and 1.5 units for each of the

other four groups. We set w1 to be 25 and only consider the SLA at the week level,

meaning that w2 and w3 are both set to zero (see Equation (2)). The parameters

for the single-skill objective are equivalent to the multi-skill case with the exception

that there is only one SLA for the first skill (no set SLA) and the cost is also 1 unit

for all agents.

Single-skill scenario. Using the SIPP model we are able to find a staffing schedule

with the objective score of 52. This schedule has an SL of 0.71 and employs 52 agents.

Since the SLA was 0.68, the schedule has likely over-staffed as its SL was 0.03 higher

than the agreement. Using a single run of our machine learning framework, we are

able to find 9 staffing schedules that are at least as good as the schedule found by

the SIPP model. Of the 9 schedules, 6 are better than the schedule found by the

SIPP model and the best schedule has an objective score of 50. This schedule has an

SL of 0.68—exactly meeting the SLA—and employs 50 agents. This result improves

upon the SIPP model by 3.8% and the runtime was approximately 50 seconds.

Multi-skill (calls only) scenario. To get a representative set of staffing schedules

from the simulation optimization approach, we ran the procedure 100 times to obtain

100 different schedules. On average each run took three minutes, with the objective

scores ranging from 104.5 to 140.2 (mean = 109.9 and median = 108.3). The best

schedule employs 73 agents and in all of the schedules, there were fewer agents of the

first group than the other four groups even though they cost 0.5 units less. Using a

single run of our machine learning framework (runtime of approximately 2 minutes),

we are able to find 11 staffing schedules that are at least as good the best schedule

found by simulation optimization, and 18 schedules that are better than the median



Chapter 4. Contact Center Staffing and Scheduling 94

schedule found by simulation optimization. The best schedule found by our machine

learning framework has an objective score of 100 and employs a total of 71 agents.

Given that an agent costs at most 1.5 units, the machine learning framework is

able to reduce costs not only through employing fewer agents but also by shifting

agents from the more expensive group to the cheaper group. Specifically, the best

schedules found via machine learning recognizes that the fifth skill is of low demand

and therefore employs fewer agents with that skill in favor of the first group which

is 0.5 units cheaper. This is an expected feature of the machine learning framework.

Multi-skill (calls plus chat and email) scenario. Similar to the calls-only

scenario, again we ran the simulation optimization procedure 100 times to obtain

100 different schedules. On average each run took three minutes, with the objective

scores ranging from 129 to 207.2 (mean = 140.5 and median = 135.5). The best

schedule employs 96 agents which is reasonable because the increase in workload

from chat and email customers is already equivalent to 21 agents when compared to

the scenario with only calls. Using a single run of our machine learning framework

(runtime of approximately 2 minutes), we are able to find 21 staffing schedules that

are at least as good as the best schedule found by simulation optimization, and 24

schedules that are better than the median schedule found by simulation optimization.

The best schedule found by our machine learning framework has an objective score of

120 and employs a total of 92 agents. We can see that the inclusion of chat and email

substantially increases the variance of simulation optimization results, decreasing

stability. On the contrary, our machine learning framework still performs very well

and is able to find a large number of high-performing staffing schedules.

4.7 Conclusion

In this chapter, we show how machine learning can be used in combination with sim-

ulation to solve the integral staffing and scheduling problem for multi-skill contact

centers. A machine learning model is trained on data samples generated via simula-

tion, and is then used to predict deterministic quality of service values for all possible

staffing schedules. Subsequently, an optimization procedure based on local search

is used to find near-optimal staffing schedules for a given objective with a variety

of QoS targets. We test our machine learning framework using simulation param-

eters derived from a real-life contact center scenario and find that the predictive

performance of QoS metrics is excellent. Subsequently, we compare the best staffing

schedules found via our optimization procedure against the best staffing schedule
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found by the stationary independent period-by-period model in the single-skill sce-

nario, and against a simulation optimization approach in two multi-skill scenarios.

The results show that our method outperforms both existing approaches. For the

single-skill scenario, it finds a staffing schedule that is 3.8% better than the best

schedule found by the stationary independent period-by-period model. For the multi-

skill (with only calls) scenario, it finds a staffing schedule that is 4.3% better than

the best schedule found via 100 simulation optimization runs, and is 7.7% better

than the median schedule of the 100 runs. Moreover, upon closer examination, we

find that the machine learning framework is able to realize the low demand for one

of the skills in the multi-skill scenario, and thus shift agents from that skill to a

highly demanded skill. This strategy was not observed from the schedules found by

simulation optimization. Finally, for the multi-skill (with calls plus chat and email)

scenario, it finds a staffing schedule that is 7.5% better than the best schedule found

via 100 simulation optimization runs, and is 12.9% better than the median schedule

of the 100 runs.
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Chapter 5

Multi-channel Conversion Attribution: A
Machine Learning Approach

Chapter Abstract

This chapter presents a novel machine learning approach to the problem of attribut-

ing online conversion credit. By incorporating customer behavior information that is

highly effective in predicting whether a customer journey will result in a conversion,

this approach achieves conversion prediction quality that significantly exceeds exist-

ing attribution models. Conversion credits are then assigned to different marketing

channels based on their relative contribution as defined by the Shapley value frame-

work, which is proven to ensure fairness and is easy to interpret. Our approach also

allows for attribution at the individual journey level instead of in aggregate at the

channel level. This provides practitioners with the ability to observe the contribution

of each individual touchpoint, allowing for more precise measurements of return on

investment of advertising by linking with the exact cost of the touchpoint. We test

our method on a real-life dataset of customer journeys for an online travel agency and

compare its attribution outcomes to four existing attribution methods. Our findings

suggest that the inclusion of customer behavior information greatly affects attribu-

tion outcomes, and that the intuition supporting rule-based attribution methods are

reasonable, but indeed overlooks important information.

5.1 Introduction

5.1.1 Background and motivation

The last few years have seen an enormous rise in the popularity of data-driven

conversion attribution (CA) models. This is no wonder considering the need for

insights into the effectiveness of individual digital marketing channels and campaigns.

Advertising spend in online advertising channels, such as search engine advertising,

display advertising, and social media advertising has become increasingly popular,

finally surpassing traditional offline spending (Recode 2017). With this increase, the

call for greater justification of digital advertising effectiveness is also apparent.
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Digital advertising is naturally more measurable than offline advertising. Detailed

customer-level data is usually available on the number of views (impressions) and

clicks on an advertisement and even the number of conversions (e.g., online pur-

chases) following a view or click. This allows marketers to gain detailed insights

regarding the effectiveness of digital advertising campaigns.

The insight in effectiveness is hampered by the fact that an individual consumer

often encounters multiple digital advertisements of the same advertiser and pays

multiple visits to the advertiser’s website before making a purchase. Suppose Janice

is looking to buy a new camera. In the process, she might visit the same e-commerce

website a few times before buying a camera (on that particular website or elsewhere).

First, she might search Google for ‘digital cameras’, and one of the search engine

advertisements shown on top of the search results leads her to the e-commerce web-

site. She then browses around to get familiar with the range of cameras they sell

but is not ready to buy yet. She also browses some other websites and compiles a

short list of cameras she is interested in. After a second Google search for a specific

type of camera, again a search engine advertisement leads her to the e-commerce

website. She takes note that this website sells the camera for an attractive price,

but still is not ready to make the purchase yet. Subsequently, the e-commerce com-

pany starts targeting her with display banners because they have noticed that she

seems to be interested. So when she visits the New York Times website a few days

later, she sees a display banner from the e-commerce site for the camera she was

interested in earlier. This reminds Janice that she still wanted to buy the camera, so

she clicks on the banner ad and purchases the camera on the e-commerce website.

From the perspective of the e-commerce site, Janice’s customer journey consisted of

3 touchpoints:

1. A website visit initiated by the Google search ad on the broad search term

(‘digital cameras’)

2. A website visit initiated by the Google search ad on the narrow search term

(specific type of camera)

3. A website visit initiated by the display advertisement on the New York Times

website. This website visit included the purchase of a camera (conversion).

To establish the effectiveness of the different advertisements, it is essential to know

what each of their contribution towards the eventual purchase decision is. Would

Janice have made the purchase if she did not see the first advertisement? Or the

last? How much of the credit should we assign to each of the three? The e-commerce

website has to pay for all three advertisements so they need to answer this question

to establish the return on marketing investment (ROMI) and cost per conversion

(CPA) of these advertisements. These and similar KPIs are then used as inputs to
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Figure 1: Five rule-based conversion attribution methods.

make decisions on future investments and allocation of the advertising spend that

maximize return. Should spend on display banners be increased? Should the search

advertising budget be reallocated from narrow search terms to broad search terms?

The problem of determining the contribution of individual advertisements towards

a conversion is known as conversion attribution (or multi-touch attribution). This

contribution cannot be directly observed from the customer journey unless the jour-

ney only has one touchpoint. All we know is which touchpoints were included in each

customer journey and whether the journey resulted in a conversion or not.

There are multiple methods to perform conversion attribution. We can distinguish

between assumption-based models and data-driven models. In an assumption-based

(or rule-based) model, attribution is performed based on a predefined rule. The most

commonly used method thus far in the industry is the Last Touch attribution rule

(LTA), where 100% of the credit is given to the last touchpoint of the customer jour-

ney. LTA, because of its simplicity, has been the industry standard for a long time. In

our example customer journey, the display banner would receive all the credit for the

conversion based on this method. Figure 1 provides an overview of some well-known

assumption-based attribution methods. First Touch and Last Touch attribution rules

award 100% of the credit to the first and last touchpoints in the customer journey,

respectively. The Linear attribution rule awards equal credit to all touchpoints in

the journey regardless of their position. The Time Decay rule awards credit based

on recency, with the more recent touchpoints receiving more credit, and finally the

U-Shaped rule assumes that the first and last touchpoints are both equally important

while the other touchpoints contribute less.

The problem with assumption-based attribution models is, naturally, that they

are based on assumptions. It is not known nor can it be verified whether these

assumptions are correct, and some of the methods have very basic assumptions

that are not realistic. Specifically, LTA is a poor method because: 1) it disregards

all other touchpoints in the journey, assuming that they add no value towards a

conversion and 2) it leads to free-riding or customer exploitation (Berman 2018).

Because spending budgets and allocation by advertisers are often determined by the

amount of conversion credit that a channel accounts for, ad suppliers are incentivized
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to be the last touchpoint in a customer journey more so than to affect conversion

when LTA is the attribution method.

In recent years, data-driven conversion attribution models have become popular

in marketing research and are increasingly adopted by practitioners. The primary

goal is to create an attribution model that can accurately explain the contribution

of channels, based on the observed data (customer journeys) instead of on assump-

tions. Different modeling approaches have been proposed, such as regression-based

models (Shao and Li 2011, Nottorf 2014, Danaher and van Heerde 2018), Markov

models (Abhishek et al. 2015, Anderl et al. 2016), and Shapley value-based models

(Dalessandro et al. 2012, Li and Kannan 2014). In Section 5.2 these type of models

will be discussed in more detail.

5.1.2 Shapely value-based attribution

Among the existing data-driven attribution models, the Shapley value attribution

model (SVA) has become widely adopted in practice, primarily due to Google’s offer-

ing of it in its Google Analytics 360 software (Google 2018). Nevertheless, SVA offers

three highly attractive advantages that differentiate itself from other models. First,

it is characterized by axioms to ensure fairness and is based on the causal attribution

framework (Dalessandro et al. 2012). The Shapley value is a concept from game the-

ory, providing a method to assign an average value to players of a game representing

their contribution. When applied to the attribution problem, the players are channels

in a customer journey, and SVA estimates the marginal contribution of each channel

by computing the conversion rates of the journey with the channel to the journey

without the channel. This means that if a channel positively contributes toward con-

versions, directly or indirectly (e.g., via spill-over or carry-over effects), regardless

of its position in the customer journey, SVA is able to appropriately estimate its

contribution. The second attractive property of SVA is its ability to estimate hetero-

geneous contributions of channels for different customer journeys, accounting for the

possibility that channels may affect conversion behavior differently under different

conditions (e.g., affiliate channels may be more effective in longer journeys where

it is the last touchpoint). On the contrary, statistical models that rely on regres-

sion or Markov models can only estimate channels’ contributions for a population

of customer journeys, assuming that a channel’s contribution towards conversion is

constant across all customer journeys. Finally, the third, but perhaps most attrac-

tive property of SVA is its relative ease to implement and evaluate in practice. A

number of the other data-driven models require complicated estimation techniques,

whereas SVA only requires comparisons of empirical conversion rates of customer
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journeys, resulting in simple estimation procedures that can also be parallelized for

computational efficiency.

Although SVA is well-received by practitioners, two disadvantages result from its

reliance on empirical conversion rates of customer journeys:

1. Empirical conversion rates are not reliable when based on a small number of

observations. This often is the case in conversion attribution, because usually

we have a large number of unique customer journeys (unique sequence/set of

channels), of which most are only observed a few times. This effect is further

amplified by the fact that conversion rates are typically low (e.g. 1%), which

increases the number of observations required to make a reliable estimate.

2. Empirical conversion rates take into account only the number of conversions

compared to the number of observations for each customer journey. They do

not consider underlying factors that influence (and/or explain) the observed

conversion rates, such as properties of the website visits (e.g., time on site, pages

visited), promotions, prices and external factors (weather, competition etc).

While the first disadvantage is unique to SVA, the second disadvantage is common

across all existing data-driven attribution models.

To illustrate the inadequacy of attribution models that only consider touchpoints

in customer journeys, Figure 2 presents two example journeys, Journey A and Jour-

ney B, both of which contain the exact same touchpoints and resulted in conversions.

Both journeys started with the customer clicking on a search ad, followed by a visit

via a display banner click, and finally a direct visit that culminated in a conversion.

However, we can see that the customers’ behaviors in the two journeys differ. In

Journey A, the customer browsed 6 pages for 15 minutes during the first visit, then

only browsed 1 page for 20 seconds during the second visit, and finally browsed 17

pages for 34 minutes in the third visit. Based on the customer’s behavior, we can

posit that the last visit likely contributed the most to the conversion. On the con-

trary, in Journey B, the customer browsed 2 pages for 2 minutes during the first

visit, browsed 22 pages for 41 minutes during the second visit, and browsed 3 pages

for 2 minutes in the third visit. We posit that for this customer it was likely the

second visit that contributed the most to the conversion. Under existing attribution

models, the three channels would be awarded the same amount of conversion credit

for Journey A as Journey B, based on the effectiveness of the path and sub-paths

of touchpoints in both journeys across all customer journeys of the website, without

considering individual differences in behavior across consumers.

5.1.3 Contribution

In this chapater, we extend the Shapley value attribution model by substituting

empirical conversion rates of customer journeys with predicted conversion rates made
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Figure 2: Two example customer journeys.

via a state-of-the-art supervised machine learning prediction model. The machine

learning model is able to automatically extract predictive characteristics (features)

from customer journeys under a general formulation, thereby providing confident

predictions of conversion rates even for rare-occurring journeys. Moreover, it allows

for the inclusion of customer behavior information such as visit duration or the

number of pages browsed within a visit. In sum, our approach eliminates the disad-

vantages of SVA while still maintaining its three attractive properties: fairness, able

to estimate heterogeneous contributions of channels, and ease of implementation.

Using data provided by a mid-sized online travel agency, we show that by incorpo-

rating information about customer behavior during a visit into our machine learning

model, we are able to increase the quality of conversion rate predictions on out-

of-sample customer journeys by 15% as compared to both the empirical conversion

rates based on SVA and the predicted conversion rates based on the Markov chain

attribution model. We find that customer behavior during website visits, namely the

number of pages browsed and visit duration, is far more predictive of conversions

than other available information. The resulting attribution values of our method dif-

fers from SVA by 31% across all customer journeys within a six-month period, and

by 40% for customer journeys with at least two unique channels.

Our method allows us to investigate the shortcomings of SVA, namely the attri-

bution distortion effects from rare-occurring customer journey compositions and the

negligence of customer behavior information. We find that over 20% of the con-

verted journeys in our dataset have a sub-journey that is relatively rare-occurring,

and for these journeys the average attribution difference between SVA and our pro-

posed machine learning-based attribution method is significantly larger than others,

suggesting a strong effect of rare-occurring journey compositions. Regarding the

negligence of customer behavior information, well over 40% of converting customer
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journeys contained a visit that was at least 90th percentile in visit duration or pages

viewed among visits by all customers. These journeys also had considerably differ-

ent attributions between the two methods, albeit not as pronounced as the effect of

rare-occurring sub-journeys.

Finally, using our method we can test the soundness of the rule-based attribu-

tion models. By comparing the estimated individual touchpoint effects of the first,

middle, and last touchpoints in converting customer journeys, we show that first

touch, last touch, and all touch attribution are all reasonable to varying degrees.

The last touchpoint in the converting customer journeys has a strong effect overall,

and the first touchpoint has a slightly stronger effect than the average of the middle

touchpoints. However, the sum of effects from all middle touchpoints is stronger than

even the last touchpoint. This suggests that a substantial amount of information is

omitted by each of the rule-based attribution models.

5.1.4 Outline

The remainder of this chapter is organized as follows. In Section 5.2 we provide an

overview of existing data-driven attribution models. Next, in Section 5.3 we explain

the Shapley value attribution framework, and show how it can be extended in com-

bination with a machine learning prediction model to incorporate customer behavior

information during website visits. Section 5.4 presents the dataset used to develop,

implement, and evaluate our attribution framework. In Section 5.5, we describe how

machine learning, namely Gradient Boosted Decision Trees is used to predict con-

version probability of customer journeys. Section 5.6 presents the results of our

attribution approach, together with a comparison against the results of some other

attribution methods. Finally, Section 5.7 concludes this paper.

5.2 Overview of existing data-driven attribution

methods

In the literature, many methods to solve the attribution problem exist. This section

provides an overview of data-driven conversion attribution models. We analyze vari-

ous papers in the literature that have focused on the attribution problem, and discuss

their performance, data usage, and disadvantages. The approaches can generally be

categorized into four groups: probabilistic models, Markov models, point processes,

and vector autoregression models. Most of these approaches focus on a specific part

of attribution such as spill-over, carry-over and dynamic effects, and consumer states.

They try to analyze the incremental impact of an advertisement directly, which is
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problematic due to the absence of validation. Only complete customer journeys have

some form of validation in the form of a conversion. Our method differs from the

existing papers by not assuming specific structures of conversion behavior, and relies

only on the data and out-of-sample conversion predictions to guide attribution.

5.2.1 Probabilistic models

The first data-driven attribution model presented in the literature is a bagged logis-

tic regression model (Shao and Li 2011). In this model, bagged logistic regression is

fitted on customer journeys with a conversion dummy as the dependent variable and

touchpoint occurrences as independent variables. The coefficients of the estimated

logistic regression model serve to explain the contribution of each marketing channel.

Next to the logistic regression model, Shao and Li (2011) also propose a simple prob-

abilistic model. The bagged logistic regression model has better predictive power,

but the probabilistic model has more stable estimates. To model spill-over effects in

the simple probabilistic model, they implemented first and second order probability

estimations. A disadvantage of both approaches is that they do not specify structure

and therefore may be inaccurate models of reality. Dalessandro et al. (2012) propose

a model that fits the Shapley value solution concept from cooperative game theory,

and show that it is a generalization of the probabilistic model introduced by Shao

and Li (2011). The Shapley value of a marketing channel equals its average impact

across all customer journeys. We discuss more details on the Shapley value approach

in Section 5.3. Li and Kannan (2014) develop an individual-level probabilistic model

to attribute online channels using estimates of spill-over and carry-over effects. They

model visit and purchase decisions via a two-level nested logit framework, and the

Shapley value is implemented to allocate value among channels in the customer jour-

ney. A major drawback of this approach lies in the complexity of both specifying and

estimating the model. Moreover, it is unclear how well the model is able to predict

future conversion behavior.

5.2.2 Markov models

Abhishek et al. (2015) model the conversion funnel through a hidden Markov model,

suggesting that there are three latent states (disengaged, active, and engaged)

which represent customer interest before ultimately converting. The latent states

are inferred from the customers research intensity as proxied by the number of page

views, where the disengaged state is represented by low intensity, the active state by

medium intensity, and the engaged state by high intensity. From each of the three

states, the customer has a probability of converting as defined by his/her state, adver-

tising related activities (i.e., touchpoints), and the number of pages viewed. Another
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Markov model with customer states is proposed by Anderl et al. (2016). Higher order

Markov chains are constructed, where a state in a kth order Markov chain represents k

consecutive channels observed in the customer journey. They implement the removal

effect to measure channel contribution, and find that the predictive power increases

with higher order Markov chains. The Markov chains also provide stable attribu-

tion results, especially for lower order Markov chains. A drawback of Markov-based

models is that attribution can only be performed at the population level.

5.2.3 Point processes

Chandler-Pepelnjak (2010) and Zhang et al. (2014) propose additive hazard models

based on survival theory for attribution analyses. They find that their method makes

good inference of the parameters. Ji et al. (2016) use the Weibull distribution to

describe the observed conversion delay and use the hazard rate of conversions to

measure the influence of an ad exposure. The primary advantage of models based

on point processes is the incorporation of time effects between visits. Both models

perform well in both effectiveness and conversion prediction analysis compared with

logistic regression, simple probabilistic, and standard Shapley value models. Xu et al.

(2014) develop a stochastic model based on mutually exciting point processes. It

models advertisement clicks and purchases as outcomes of univariate point Poisson

processes in continuous time. Furthermore, customer heterogeneity is accounted for

by incorporating individual random effects. In general, a limitation of point process

models is that the intensity of events is only defined by the occurrence and type

of touchpoints, and no effect is assumed from unobserved factors (e.g., customer

behavior).

5.2.4 Vector autoregression models

Wiesel et al. (2011), De Haan et al. (2016), and Kireyev et al. (2016) construct vector

autoregression (VAR) models to examine the long-term effectiveness and spill-overs

across online and offline advertisements. This approach allows for the capturing of

both carry-over and spill-over effects of advertising in online and offline channels.

Unfortunately, it can only be estimated on the aggregate data level rather than

individual customer journeys.

5.3 Attribution framework

In this section, we describe the Shapley value as an attribution framework. First, the

Shapley value for marketing attribution is introduced. Then, we adjust the Shapley
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value to incorporate user-level customer behavior information and combine it with

the use of machine learning prediction to estimate the conversion probabilities of

customer journeys. Finally, we show that the resulting modified Shapley value still

exhibits the set of desirable properties that maintains its ‘fairness’.

5.3.1 Shapley value

A situation in which a finite set of players can generate certain payoffs by cooperation

can be described as a cooperative game with transferable utility (TU-game). A famous

solution for TU games is the Shapley value (Shapley 1953). Each player is awarded

a value, which equals the average of his or her contribution to each subgroup in the

game. In this chapter, we consider weighted Shapley values as a marketing attribution

model, where players in the model are replaced by marketing channels, customer

journeys are the subgroups, and weights are assigned to specific subgroups based

on the number of conversions resulting from journeys containing that specific set of

channels. The Shapley value of a channel is thus estimated by computing the total

impact of a marketing channel across all converting journeys.

Formally, the game consists of a set of marketing channels C, where C =

{C1, ...,Cn}, and the conversion probability v for any given subset of marketing chan-

nels. A customer journey S is defined as a set of k different channels S = {C1, ..,Ck},
where S ∈ C. In game theoretical terms, a customer journey can be referred to as

a partnership of marketing channels. Naturally, the proportion of customers that

encounter and convert from specific journeys differ, and the conversion probability

of a specific journey is referred to as its worth. The worth of a journey is defined by

the characteristic function v which is typically estimated for a journey S using its

empirical conversion rate among a set of observed customer journeys. Let the weight

of a customer journey S be ωS, defined as the number of total conversions resulting

from journey S, then the weighted Shapley value for channel Ci is given by:

ψShCi
(C,v) =

∑

S⊆C\{Ci}
ωS E[v(S ∪Ci)− v(S)], ∀Ci ∈C. (1)

The Shapley value is ‘fair’ in that it is the unique value that satisfies certain

desirable properties: efficiency, linearity, additivity and the null-player property.

Under different assumptions however, the Shapley value is often characterized by

different properties (Young (1985); van den Brink and van der Laan (1998); van den

Brink (2002)). Since the weighted Shapley values differ by having a weight function

for every subgroup of players (or subsets of marketing channels), under this condition

two properties, positivity, and partnership, are added, and the linearity property is

omitted. In Section 5.3.3 we explain these properties in detail and generalize them

to marketing attribution.
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5.3.2 Shapley value modified for an ML predicted conversion rate

One problem with the straightforward application of the Shapley value for marketing

attribution is that the empirical conversion rate of customer journeys, as represented

by its set of marketing channels, gives inaccurate conversion predictions at the user

level. This is because the straightforward application of the Shapley value assumes

that the worth of a customer journey is equal to the number of customers that

converted divided by the number of customers that did not. However, each user

can experience his path to purchase differently. The Shapley value can be rewritten

by including heterogeneous customers, and the characteristic function can thus be

transformed into a summation of the conversion probabilities of individual customers

for this journey. The inclusion of heterogeneous customers significantly increases the

complexity of the customer journey, and therefore a machine learning (ML) model is

implemented to map all instances of customer journeys at the user level to a single

conversion rate prediction. The Shapley value is then extended to incorporate the

predictions from the ML model. More specifically we introduce weighted Shapley

values on user-level. In Section 5.3.3 we show that the fairness properties still hold

under this extension.

Let u ∈ U define a user from the set of all users and US ⊆ U be the set of users

that encountered a given converted customer journey S. Each converted customer

journey has been encountered by multiple users and each of these users has a spe-

cific conversion rate for that experience. Such a characteristic function is denoted as

vu ∈D, where D is the set of characteristic functions for all users and their encoun-

tered journeys. For each S, ωS characteristic functions are defined. Thus, under this

extension, the worth of customer journey S can be defined as:

v̄(S) =
∑

u∈US

vu(S), (2)

where v̄(S) is the sum of all individual characteristic functions of users that converted

via journey S. The term vu(S) represents the conversion probability of journey S for

user u. As such, the weighted Shapley value when considering customer journeys on

the user level is given by:

ψShCi
(C, v̄) =

∑

S⊆C\{Ci}
E[v̄(S ∪Ci)− v̄(S)], ∀Ci ∈C. (3)

Note that the weight factor ωS from Equation (1) is omitted, because v̄(S) already

sums over all converting journeys for a given subset of marketing channels.

In this construction of the weighted Shapley value, the subset S only consists of

information about the set of marketing channels encountered by the user. To account
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for user-level behavior information, such as the number of pages browsed or the

time spent on site, we include extra features denoted by X. Then, we rely on a

machine learning prediction model fML
u (S,XS) to estimate the user level conversion

probability vu(S) for journey S and the corresponding behavior features Xs for user

u while experiencing journey S. The Shapley value on the user level, where each

worth is estimated by an ML model, can be written as:

ψShML
Ci

(C, v̄) =
∑

S⊆C\{Ci}

∑

u∈US∪Ci

fML
u (S ∪Ci,XS∪Ci,u)− fML

u (S,XS,u), ∀Ci ∈C. (4)

5.3.3 Fairness of Shapley value attribution—five properties and
their axioms

In this section we show that the constructed ML-extended Shapley value, namely

ψShML
Ci

(C, v̄), is a unique solution and is in fact still the weighted Shapley value.

This means that it satisfies the following five properties: efficiency, additivity, posi-

tivity, partnership, and the null player property. Here we define the properties and

generalize them for the purpose of marketing attribution.

The property of efficiency entails that the total gain made by all players coop-

erating together is fully distributed among all individual players. For marketing

attribution, this means that the sum of the Shapley values of each marketing channel

should equal the total number of conversions. Thus, the sum of the attributed value

awarded to the marketing channels for a user should equal 1. This is fulfilled if the

following axiom is satisfied:

∑

Ci∈C
ψShCi

(C, v̄) = v̄(C), (5)

where the worth v̄ of the power set C equals all the conversions in the game. The

ML model estimates the incremental value of each channel in a customer journey,

therefore it does not fully attribute 100% of the total worth to its marketing channels.

Thus, the axiom of efficiency is not fulfilled as is. Ruiz et al. (1998) show that it

is possible to distribute the unattributed value among the players uniformly. We

construct an alternative approach to normalize the incremental values of marketing

channels within the customer journey on the user level. The normalized weighted

Shapley value is given by:

ψShCi
(C, v̄) =

∑

S⊆C\{Ci}
E

[
v̄(S ∪Ci)− v̄(S)

v̄(C)

]
, ∀Ci ∈C. (6)

The property of additivity states that if we can describe the game with a joint char-

acteristic function ψSh(C,v,w), then the distributed games of these characteristic
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functions should correspond to the games of these characteristic functions indepen-

dently:

ψShCi
(C,v,w) =ψShCi

(C,v) +ψShCi
(C,w). (7)

A characteristic function can be regarded as a model to estimate the conversion

rate of customer journeys. This axiom implies that if we have two models to pre-

dict conversion rates, then the sum of their predicted conversion rate should equal

the conversion rate of both models together. This axiom can become useful when

ensemble learning is implemented to better estimate the worth of specific customer

journeys. In our application, we divide the worth of a customer journey into indi-

vidual values for each user who has encountered that specific path. The axiom is

fulfilled because ψShCi
(C,
∑

u∈Us
vu(S)) =ψShCi

(C, v̄).

Positivity states that if the characteristic function v̄ is monotonic, then the worth

of R, where S ⊆R, should always be equal to or greater than the worth of S. Hence,

if an additional marketing channel is added to an existing customer journey, then the

conversion probability for the customer journey with the additional channel can only

be equal to or greater than the conversion probability of the original journey. Using

the ML model, we estimate the incremental value of a channel Ci as max(0,E[vu(S∪
Ci)−vu(S)]), thus the characteristic function is monotonic and the axiom is fulfilled.

Partnership assumes that a coalition of partners can behave as one individual.

This reduces the size of the game. Kalai and Samet (1987) prove that if S is a

coalition of p partners with a single characteristic function v, then the group of

partners receives a share in total and individuals receive their marginal contribution.

While this axiom is more suitable when decision making of players is considered,

one may apply it to a group of marketing channels, which forms a partnership (i.e.,

customer journey) and are treated as an individual entity. Our approach estimates

the conversion probability per customer journey on the user level. The weighted

Shapley value then allocates contribution to individual channels within the customer

journey. Since the allocation is based on the conversion probabilities caused by the

channels, the axiom is fulfilled.

Finally, the null player property requires that the Shapley value of a null-player o

in a game is zero. A null-player is a player who makes no marginal contribution to any

coalition in the game. For marketing attribution it means that if a marketing channel

does not contribute towards conversion in any customer journey, then its Shapley

value should also be zero. In our set of channels, no null-players exist. However, it

is straightforward that if a marketing channel with zero impact was included, then

the Shapley value of this marketing channel as computed from Equation (6) would

be zero. This axiom is satisfied if the Shapley value for null-player Co is ψShCo
= 0.
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5.4 Data description

To test our approach, we rely on a dataset provided by a Dutch online travel agency.

This agency sells all-inclusive vacation trips to a large number of destinations, with

flights mostly departing from the Netherlands. The products are divided into two

groups: summer holidays and winter holidays. We collected clickstream data aggre-

gated at the user (cookie) level for all users from January 1, 2018 to September 31,

2018. The users are then split into individual customer journeys, with the end of the

journey defined as either a conversion (purchase) or 30 days of inactivity. Customer

journeys contain only visits to the website of the online travel agency, and a visit is

characterized by the marketing channel that led to the visit, the number of pages

the user browsed (both visited and viewed), and the total duration of visit on the

site (difference in seconds between the first and last pages browsed). We do not have

information on marketing actions that did not result in a visit (e.g., display ban-

ner views or Google searches). For analysis, we consider all customer journeys that

ended in the six-month period between April 1, 2018 and September 31, 2018. Table

1 provides some basic summary statistics of the customer journeys in our dataset.

Table 1: Summary statistics.

Total number of journeys 5,597,382
Total number of visits 14,851,971
Total number of pages browsed 97,047,153
Average visit duration 330 seconds
Total number of conversions 67,757

In Figure 3 we explore how to the number of visits and the number of unique mar-

keting channels in a customer journey relates to the likelihood of conversion. Figure

3a plots the conversion rate of journeys with 1 to 30 visits. We observe consistent

increases of conversion rate as journeys get longer up to 10 visits. For journeys of

only one visit, the conversion rate is under 0.5%. On the contrary, journeys with 10

or more visits have conversion rates of over 5.5%. The relationship seems to still be

positive up to 30 visits, but becomes noisier as there are few journeys of such length.

This suggests that, not accounting for other possible factors, longer journeys are

more likely to convert. We believe that this may be due to the nature of the product

sold by the travel agency. Holiday packages are generally expensive and are unlikely

to be purchased impulsively. Customers tend to spend a significant amount of time

deliberating not only where to go for holiday, but also must consider a number of

other factors such as which dates to travel, and which hotel resort to stay at, and
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(a) (b)

Figure 3: The conversion rate of customer journeys with respect to the number of visits (a) and the number

of visits from unique marketing channels (b).

which vendor to purchase from. We do not expect such a purchase to be completed

during a single visit, hence interested customers are more likely to return multiple

times to browse a variety of products offered by the travel agency.

The focus of our paper is on marketing channels, and as such we consider a set

of fifteen channels defined by the travel agency. Table 2 lists the channels and their

occurrence frequencies. The most commonly occurring channel is direct at 38.6% of

the visits, followed by generic paid search at 19.4%. There is significant variation

in the position of visits in a customer journey from various channels. Table 2 also

presents the distribution of the position of visits by marketing channel, splitting

positions into four general categories: visit in a one-visit journey, the first visit in a

multi-visit journey, the last visit in a multi-visit journey, and a middle visit (neither

first nor last) in a multi-visit journey. Display visits predominantly occurred in single-

visit journeys, suggesting that users may have clicked on the advertisement due to

spur of the moment or by mistake. On the contrary, email, referral, and branded paid

search visits mostly occurred in multi-visit journeys, suggesting a greater relationship

between overall user engagement and these marketing channels. It should be noted

that only 2.6% of retargeting visits occurred in single-visit journeys, which is expected

because retargeting banners can only trigger for users who have previously visited

the website.

Another interesting observation is that direct visits are far more likely to be the

first visit in a journey than the last visit, whereas most of the other channels are

much more likely to be the last visit. It is not clear why this may be the case, but a

common belief is that when the referral source of a visit cannot be tracked properly

the visit is assigned to be a direct visit. This may include sources that are highly
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Table 2: Marketing channel statistics.

Frequencies Averages per visit

Marketing channel Num. occ. Single visit First visit Last visit Middle visit Pages Duration

Affiliates 481,467 33.1% 13.0% 17.2% 36.7% 6.3 231.9s
Branded Paid Search 1,583,691 16.4% 11.0% 17.0% 55.6% 13.7 515.1s
Email 798,168 11.5% 8.7% 10.1% 69.6% 5.3 183.5s
Direct 5,737,059 23.2% 13.9% 6.9% 55.9% 9.2 369.2s
Direct Deals 15,014 28.2% 11.4% 14.3% 46.1% 4.0 134.2s
Display 283,586 60.4% 8.7% 15.1% 15.8% 2.3 67.8s
Generic Paid Search 2,882,968 27.4% 13.7% 18.1% 40.9% 6.9 253.7s
Organic Search 1,624,718 34.5% 11.4% 19.3% 34.8% 9.6 374.5s
Paid Search 124,194 22.3% 4.1% 17.0% 56.5% 11.0 388.3s
Paid Social 625,680 31.8% 12.1% 16.8% 39.2% 5.1 141.2s
Redirects 15,221 25.5% 12.6% 14.7% 47.3% 9.5 354.3s
Referral 288,705 17.8% 13.2% 12.5% 56.5% 11.8 488.4s
Retargeting 271,042 2.6% 18.6% 1.9% 76.8% 4.8 153.2s
Social 72,676 36.3% 14.3% 13.7% 35.7% 5.0 168.1s
(Other) 47,782 33.1% 5.9% 19.0% 42.0% 6.5 241.4s

exploratory in nature. A primary reason for why 18.6% of the retargeting visits are

the first visit of multi-visit journeys is due to how the journeys are defined. When the

user clicks on a retargeting banner soon after converting or after 30 days since the

previous visit, the retargeting visit will be recorded as the first visit in the journey.

However, it is surprising that only 1.9% of retargeting visits are at the end of a

journey.

Finally, Table 2 also includes information on user engagement during visits from

each marketing channel. There is a large variation in both the number of pages

browsed and the total time on site for visits from different channels. branded paid

search and referral visits are effective channels for users who want to engage more

with the travel agency, and display banners are generally poor. We expect that this

is because different channels attract users from different parts of the purchase funnel.

Display banners are prospective in nature and do little in selecting users that are

more likely to engage. On the contrary, channels like branded search or referral are

attracting users that have already demonstrated an interest in the travel agency thus

visitors are more likely to engage. Surprisingly, email, direct deals, and social tend to

exhibit lower visitor engagement. We believe that users may visit the website from

promotional emails or direct deals just to browse the promotional products, but will

leave the website when no products of interest are found.

5.5 Conversion prediction with machine learning

Since every customer journey either ends in a conversion or a non-conversion, pre-

dicting the conversion probability of customer journeys can naturally be formulated
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as a classification problem. In a classification problem, a set of explanatory variables,

called features, are used to predict a target variable. To predict the target variable,

a machine learning model is trained by finding a functional relationship that best

maps a set of feature values to the corresponding target value in a labeled dataset.

For conversion prediction, the features include information about the customer jour-

ney (e.g., which touchpoints occurred in the journey), and the target value is binary:

one if the journey converted and zero otherwise. Although the target value is binary,

the predictions made by machine learning models are typically numeric between zero

and one, corresponding to the likelihood with which the model believes a journey

will convert. To evaluate the quality of the model’s predictions, a holdout dataset

is used. This dataset is also labeled but does not contain any observations used to

train the model. To evaluate prediction quality, the machine learning model predicts

the conversion likelihood of each customer journey in the holdout dataset, and the

predictions are compared against the true labels based on a pre-specified error func-

tion. In this section, we first describe the machine learning model used to predict

conversions. Then we provide the details of how features are engineered from the

raw data to be used by the model. Finally, we present the prediction performance of

the model and compare against other attribution methods.

5.5.1 Gradient boosted decision trees

We use Gradient Boosted Decision Trees (GBDT), also known as Gradient Tree

Boosting (GTB), Gradient Boosting Machines (GBM), and Multiple Additive

Regression Trees (MART). GBDT is widely known by the competitive predictive

analytics community to be the best performing prediction algorithm for datasets

that are arranged in tabular format (Chen and Guestrin 2016). More recently, Olson

et al. (2018) tested 13 algorithms on 165 public datasets and found GBDT to be the

best performing algorithm.

GBDT is a non-parametric prediction method and it works by starting with a

naive prediction for each observation in the training data and iteratively fits regres-

sion trees on the residuals of the predictions made in the previous iteration. The

newly fitted regression tree’s predictions are then added to the predictions made

from the previous iteration to form a new prediction. Two properties of GBDT make

it particularly suitable for conversion prediction. First, the tree structure of GBDT

allows for the model to implicitly capture feature interaction effects if they hold

predictive power. This means that the model can segment customer journeys into

different groups based on combinations of feature values if doing so can help predict

conversion. In comparison, other approaches such as defining interaction terms in a

logistic regression model or explicitly clustering customer journeys do not guarantee
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improvements in prediction performance, potentially leading to overfitting. Second,

since regression trees find specific points in the data to split on, it does not require

any functional relationships between the features and the conversion probability. In

particular, the effect that features such as the number of pages browsed or time

spent on website have on conversion likelihood may not follow a well-defined distri-

bution. Finally, as compared to other tree-based methods such as classification trees

or random forests, the iterative nature of GBDT allows individual trees to focus on

predicting different subsets of the data rather than having to predict all of the data

together.

5.5.2 Feature engineering

All machine learning or statistical models require data to be in the standard tabular

M -by-N format before it can be used to train (or estimate) the model and make

predictions. The purpose of feature engineering is two-fold. First, raw data in the

form of customer journeys must be converted into the M -by-N format, and second,

important predictive information must be encoded into the features so it can be

efficiently learned by the machine learning model. For some models (e.g., neural net-

works or logistic regression), this can include certain mathematical transformations

(e.g., standardization or log-transformation), but this is not required for GBDT.

Using the data described in Section 5.4, we engineer 44 features that in combina-

tion represent a customer journey. These features will be used by GBDT to predict

the likelihood that a customer journey will convert. We first construct a feature for

each marketing channel, where the value for each feature is the total number of times

a visit from that channel occurred in the customer journey. There are a total of 15

features in this group and we call it marketing channel count vectors. This set of

features encode the basic information of the customer journey as common to all data-

driven attribution models. A journey that has a single display visit and two direct

visits would have values of 1 and 2 in their respective vectors, and 0 in the other

thirteen vectors. Note that this formulation does not consider the order of which

the visits occur. The order of visits is a particularly difficult attribute to encode in

the tabular format without having to create an additional exponential number of

features. As such, we omit this attribute for the prediction of conversion rates.

From the marketing channel count vectors, we then construct two features, number

of visits and number of unique marketing channels, that better help GBDT use the

information from customer journeys. Number of visits is simply the row-wise sum of

marketing channel count vectors, representing the total number of visits a journey

contains. Number of unique marketing channels is the number of non-zero values

in each row of marketing channel count vectors. From Figure 3 we can see positive
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relationships between conversion rate and both the number of visits and number

of unique marketing channels, suggesting that they could help predict conversion

likelihood.

Next, we construct three features relating to the level of engagement of the user

with the travel agency’s website. For each journey, we compute the visit duration,

number of pages browsed, and number of pages viewed by the user. The values for

these features were already computed in the raw data, but for each visit. Here,

we sum over the values across all visits of the journey. From Table 2 we can see

significant variation for both the pages browsed and visit duration across visits from

different channels. Moreover, a quick calculation of the correlation between these

three features and conversion shows correlation coefficients of 0.14, 0.20, and 0.20 for

visit duration, number of pages browsed, and number of pages viewed, respectively.

Taken together, the three user engagement features could add predictive value on

top of the marketing channel related features.

Finally, we construct a set of features that correspond to the number of times for

each hour of day that visits in each session started from. There are a total of 24

features in this group and we call it hour of visit count vectors. These features might

not directly affect conversions, but could provide additional information about the

customer. We posit that visits during work hours are more likely to be for orientation

or product searches, whereas visits during evening hours result in greater likelihood of

purchase. We also include the feature number of unique hours of visit to differentiate

between users who always visit the website at the same time versus those who visit

at different times.

There are other features that we do not include. The primary reason for not

including them is their lack of predictive power. Since the focus of this step is on

prediction performance, we do not include features that do not improve prediction

quality on the validation dataset.

5.5.3 Prediction performance

To evaluate how well our model predicts conversion we randomly assigned 70% of

the customer journeys to a training set, and the other 30% of the customer journeys

to a held-out validation set. We compute the area under the receiving operator curve

(AUC) on our predictions for the validation set to assess the performance of the

model. Furthermore, we also compute the AUC on predictions made by six other

models: last touch, first touch, Markov model (orders 2, 3, and 4), and the empiri-

cal journey conversion rate from the standard Shapley value attribution approach.

Figure 4 presents the AUC scores of each of the models. It should be noted that a

model that predicts conversions well does not necessarily perform attribution well.
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Figure 4: Conversion prediction performance.

However, being able to predict conversions well is evidence that the model fits users’

conversion behavior well, and thus the attribution values derived from this model

are also likely to be better.

In terms of conversion prediction, both the last touch and first touch attribution

models perform poorly. This is both expected and surprising. Recall in Figure 3a

that there is a strong relationship between the journey length and conversion rate.

Naturally, by only considering a single visit, both first and last touch attribution

models are agnostic to this relationship, and thus predict conversions poorly. How-

ever, the fact that these two models have predictive power at all indicates that the

marketing channel for which visitors arrive from can indicate the journey’s conver-

sion likelihood. Indeed, given the large variation of user engagement in visits from

different channels, we could also expect variations in conversion behavior.

Compared to the first and last touch attribution models, the Markov models and

empirical journey conversion rate (used for SVA) performs substantially better at

predicting conversions. These models capture both the effect of marketing channels,

but also to a lesser degree the number of visits. For example, the second-order Markov

model computes the conversion likelihood from the sequence of the last two visits in

the journey. This approach can differentiate between single and multi-visit journeys.

Finally, these models can also capture the effect of having multiple unique marketing

channels in the journey.

The GBDT model performs considerably better compared to the other models,

with an AUC of 0.97. This shows that beyond journey length and marketing channels,

information about user engagement plays a significant role in determining whether or
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Table 3: Feature importance.

Feature name Relative importance
Time on site 48.71
Number of pages browsed 25.26
Number of visits 9.90
Number of direct channel occurrences 4.66
Number of pages viewed 3.61
Number of organic search channel occurrences 1.61
Number of visits starting between 15-16h 1.38
Number of generic paid search channel occurrences 0.68
Number of unique marketing channels 0.53
Number of visits starting between 10-11h 0.45

not a customer journey will convert. From a trained GBDT model, we can compute

the relative importance of features on predicting the target variable. This is derived

by computing the decrease in variance (known as variance gain) from each split in

each regression tree of the GBDT and normalizing it by 100. Table 3 presents the

relative importance of the ten most important features in our trained GBDT model.

Three of the top five features are related to user engagement within visits, combining

for 77.58% of the total variance gain. In particular, time on site alone accounts for

almost half of the variance gain and number of pages browsed accounts for over a

quarter.

One caveat about the AUC score is that it evaluates how well the model is able

to differentiate between converting and non-converting journeys. A high AUC score

does not mean that the model is as accurate in exactly predicting whether a con-

version will occur. This is because most customer journeys in our dataset have a

very low likelihood of converting, and the GBDT model is able to identify them with

confidence. However, for the journeys that have a reasonable predicted likelihood of

converting (e.g., between 5-50% chance), there is great uncertainty in whether they

actually will convert.

5.6 Attribution with machine learning

Using the trained GBDT, we can then proceed with attributing conversion credit

to the marketing channels. Recall from Section 5.3.2 that while the Shapley value

attribution method attributes conversion credit directly to channels, our method

attributes credit to touchpoints (i.e., visits), and then aggregates the credit from

visits to the channels that led to the visit. As defined in Equation (4), the relative

contribution of a touchpoint in a customer journey is proportional to the difference

in conversion likelihood of that journey immediately before and after its occurrence.

While the true conversion likelihood is unknown, predictions made by the trained
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GBDT can serve as a replacement. For all converted customer journeys, sub-journeys

of lengths 1 to K − 1, where K is the full length of the complete journey, must be

constructed together with their engineered features as described in Section 5.5.2.

We illustrate our attribution procedure using a simple example in Figure 5. Sup-

pose we have a converted journey with four touchpoints, occurring in the following

order led by the marketing channels: search ad, display ad, search ad, and direct.

For these four touchpoints, the customer browsed 6 pages for 3 minutes in the first

visit, browsed 3 pages for 1 minute in the second visit, browsed 14 pages for 12 min-

utes in the third visit, and browsed 2 pages for 3 minutes in the fourth visit. From

this journey, we can create three sub-journeys. Sub-journey 1 contains information

about only the first touchpoint (search ad, browsed 6 pages for 3 minutes), sub-

journey 2 contains information about the first two touchpoints (search ad, display

ad, browsed 9 pages for 4 minutes), and sub-journey 3 contains information about

the first three touchpoints (search ad, display ad, search ad, browsed 23 pages for 16

minutes). In this example, the relative contribution of the first touchpoint (search

ad) is fGBDT (sub-journey 1), where fGBDT represents the predicted conversion likeli-

hood from the trained GBDT model. The relative contribution of the second (display

ad), third (search ad), and fourth (direct) touchpoints are:

Contribution display := fGBDT (sub-journey 2)− fGBDT (sub-journey 1),

Contribution search (second) := fGBDT (sub-journey 3)− fGBDT (sub-journey 2),

Contribution direct := fGBDT (complete journey)− fGBDT (sub-journey 3),

respectively. We can interpret the relative contribution of a touchpoint as the

marginal increase in conversion likelihood of the customer as a result of the visit.

Note that since the channel search ad occurs twice in this journey, its contribution is

then the sum of the contributions for the two search ad touchpoints in the journey.

5.6.1 Attribution Results

We compute the attribution results for all converted journeys in the travel agency

dataset for five attribution methods: last touch attribution (LTA), all touch attri-

bution (ATA), first touch attribution (FTA), Shapley value attribution (SVA), and

machine learning-SV attribution (MLS). Table 4 presents the attribution results for

each marketing channel. In the first block, all converted journeys are attributed.

Since attribution results for single-channel journeys are the same regardless of attri-

bution method, in the second block we present the attribution results for only the

multi-channel journeys.
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Figure 5: Illustration of attribution procedure.

A clear observation from Table 4 is how different the attribution results are across

the attribution methods. When focusing on the multi-channel journey attributions,

we can see that some channels result in greater variation across the methods than

others. For example, referral has a large spread, where the difference in attributed

conversions between the two most similar methods (FTA and ATA) is over 22%,

and the difference between the two most dissimilar methods (FTA and SVA) is

almost six-fold. While the difference between the three rule-based methods are by

design and therefore could simply be a characteristic of the position of touchpoints

in customer journeys, it is surprising that both SVA and MLS would produce such

different results from both the rule-based methods and each other.

5.6.2 How SVA and MLS differ

Since both MLS and SVA are data-driven attribution methods, and moreover MLS

is an extension of SVA, one might expect these two methods to produce the most

similar attribution results. However, we can see from the absolute differences in
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Table 4: Attribution results.

All converted journeys Multi-channel converted journeys

Marketing channel LTA ATA FTA SVA MLS LTA ATA FTA SVA MLS

Affiliates 1,143 1,419 1,676 1,745 1,194 857 1,133 1,390 1,459 908
Branded Paid Search 12,992 13,729 15,820 16,275 14,682 7,836 8,573 10,664 11,119 9,526
Email 784 1,359 1,860 706 1,075 468 1,043 1,544 390 759
Direct 31,898 28,407 20,373 25,330 28,781 21,367 17,880 9,846 14,803 18,254
Direct Deals 12 18 31 21 15 9 15 28 18 12
Display 29 107 162 80 53 17 95 150 68 41
Generic Paid Search 6,996 9,564 12,262 5,590 8,147 4,468 7,036 9,734 3,062 5,619
Organic Search 9,091 9,543 12,656 10,912 9,532 5,876 6,328 9,441 7,697 6,317
Paid Search 198 351 845 359 415 107 260 754 268 324
Paid Social 113 206 272 138 129 65 158 224 89 81
Redirects 39 73 79 167 62 27 61 67 155 50
Referral 3,891 2,135 1,247 5,582 3,094 3,517 1,761 873 5,208 2,720
Retargeting 230 487 54 235 209 225 482 49 230 204
Social 145 142 138 266 137 100 97 93 221 92
Other 131 148 213 283 164 101 118 183 253 134

attributed conversions at the channel level that MLS is actually more similar to ATA

and LTA than it is to SVA. We believe that a primary reason for the difference is

due to the fact that SVA relies on empirical conversion rates of customer journeys.

Rare journey occurrences of SVA. A major part of the SVA’s calculation of

channel contribution relies on comparisons of conversion rates between sub-journeys.

Conversion rate is simply an empirical point estimate of the likelihood that a jour-

ney will convert, and therefore is noisy when the occurrences of specific journeys (as

defined by the marketing channels) is low. The noise can lead to abnormally high

empirical conversion rates for some sub-journeys, and can greatly outweigh the signal

when overall conversion rates are low. Since the overall conversion rate of customer

journeys in our dataset is only 1.2%, an abnormally high empirical conversion rate

(e.g., 10%) for a sub-journey can result in an exceptionally large share of contribu-

tion awarded to the last channel in that sub-journey. Since attributed conversions

for channels in a journey are proportional to their relative contributions, when an

abnormally large share of contribution is awarded to one channel, then that channel

is attributed an abnormally large share of the conversion, and the other channels are

attributed an abnormally low share of the conversion.

To investigate the effect of rare-occurring sub-journeys, we identified cases where

the occurrence of a sub-journey is less than 10, 50, 100, 500, and 1000. The con-

verted multi-channel journeys where these sub-journeys occurred are extracted and

we compared the attribution results between SVA and MLS for these journeys. Table

5 presents the findings. 3.8% of the converted journeys have a sub-journey that
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Table 5: Effect of rare sub-journeys on attribution differences between SVA and MLS.

Journeys with rare sub-journey All journeys

Def. rare sub-journey Percent of journeys Avg attr diff Avg attr diff
Fewer than 10 occurrences 3.8% 1.52
Fewer than 50 occurrences 7.5% 1.36
Fewer than 100 occurrences 10.0% 1.30 0.86
Fewer than 500 occurrences 16.6% 1.20
Fewer than 1000 occurrences 20.8% 1.15

occurred fewer than 10 times. For these journeys, the average sum of absolute differ-

ences in attribution across channels between SVA and MLS is 1.52, which is over 75%

higher than the average difference for all journeys. 20.8% of the converted journeys

have a sub-journey that occurred fewer than 1,000 times. While 1,000 occurrences

allow for much greater precision in the estimation of conversion rates, there is still

sufficient noise to greatly affect attribution. For these journeys, the sum of absolute

differences in attribution across channels between SVA and MLS is 1.15, which is

still 33% higher than the average difference for all journeys.

Effect of customer behavior information. The second challenge of relying on

empirical conversion rates of customer journeys is the difficulty of incorporating

customer behavior information during visits. For two converting journeys with touch-

points led by identical marketing channels, the customers are likely to have behaved

differently during their visits, suggesting that the conversion should be attributed

differently. SVA cannot easily incorporate customer behavior information, as doing so

would require creating multiple levels for the channels to reflect behavior, exponen-

tially increasing the number of combinations in the system and further exacerbating

the problem caused by estimating conversion rates.

MLS is able to incorporate customer behavior information by intelligently extract-

ing useful information that predicts conversion without needing to explicitly encode

all possible combinations of the information. Therefore, for the remainder of the

converted customer journeys in our dataset that did not have a rare sub-journey,

we can investigate the effect that customer behavior information has on attribution

results. From the feature importance values presented in Table 3, we can see that

the customer behavior features visit duration and number of pages browsed are most

important for predicting conversions. We posit that when these two features are

high, i.e., customers are more engaged with the travel agency website, the conver-

sion probability is also high. Thus, touchpoints where visit duration is long or many

pages were browsed should contribute more to the conversion and be attributed more

credit. However, because SVA is unable to consider customer behavior in visits, there
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Table 6: Effect of customer behavior information on attribution differences between SVA and MLS.

Percentile Value at percentile Percent journeys with Avg attr diff above Avg attr diff below

Visit duration 90th 3,701 sec 52.9% 0.87 0.69
Visit duration 95th 6,077 sec 29.5% 0.92 0.73
Visit duration 99th 14,301 sec 6.5% 1.03 0.77
Pages viewed 90th 64 pages 42.7% 0.88 0.72
Pages viewed 95th 103 pages 25.6% 0.92 0.74
Pages viewed 99th 205 pages 6.9% 1.00 0.77

would be a significant discrepancy in attributed conversions between SVA and MLS

for journeys where a single touchpoint had exceptionally long visit duration or many

page views.

From the converted customer journeys that did not have a rare-occurring sub-

journey, we identified journeys with at least one touchpoint that exceeds the thresh-

old for customer engagement. The average sum of absolute differences in attribution

across channels between SVA and MLS are then compared. We consider the two

behavior features (visit duration and page views) separately. Table 6 presents the

findings. First, we set customer engagement thresholds at three levels for both fea-

tures: 90th, 95th, and 99th percentile of converting journeys. For visit duration, the

90th percentile is at 3,701 seconds, or just over one hour. 52.9% of the remaining con-

verting journeys had a touchpoint with at least this visit duration, and the average

attribution difference for these journeys between SVA and MLS is 26% higher than

the journeys without such a touchpoint (0.87 versus 0.69, respectively). The 99th

percentile for visit duration is much longer, at 14,301 seconds, or almost four hours.

6.5% of the remaining converting journeys had a touchpoint with at least this visit

duration, and the average attribution difference for these journeys between SVA and

MLS is 34% higher than the journeys without such a touchpoint (1.03 versus 0.77

respectively). Note that a visit of 3,701 seconds does not necessarily imply that the

user was browsing the website for this whole duration, but that the user had kept

the browser/tab open and at least intermittently interacted with the website. Page

views exhibit similar effects as visit duration, which is expected as the two features

are highly correlated. A user that had a long visit is also likely to have browsed many

pages, so a touchpoint that falls into the high engagement category based on visit

duration probably also falls into the same category based on page views as well.

5.6.3 Which rule-based attribution methods are reasonable?

Rule-based attribution methods were developed from a variety of marketers’ intu-

itions. Using our dataset and GBDT predictions of touchpoint contributions, we can
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Table 7: Effect of first, middle, and last touchpoints.

Average touchpoint effect (L = journey length)

Touchpoint(s) L = 2 L = 3 L = 4 L = 8 L = 12 L = 16 L = 20 L = 24 Overall

First 0.048 0.043 0.039 0.033 0.025 0.027 0.024 0.021 0.037
Middle 0.045 0.040 0.023 0.016 0.011 0.008 0.007 0.029
Last 0.129 0.122 0.102 0.062 0.039 0.034 0.031 0.020 0.090

test which rule-based attribution methods, and therefore their corresponding mar-

keting intuition, are more reasonable. To do so, we compute the GBDT predicted

touchpoint contributions for each touchpoint in journeys of length 2 to 24. These

touchpoints are grouped into three categories: first touchpoint (the first touchpoint

in a journey), middle touchpoint (touchpoints that are neither first nor last in a

journey), and last touchpoint (the final touchpoint in a journey). The average con-

tribution as measured by gain in conversion probability of these touchpoints for a

variety of journey lengths is presented in Table 7.

A number of observations can be made from Table 7. Supporting the last touch

attribution method, the last touchpoint tends to contribute the most towards conver-

sion when compared against other touchpoints. The first touchpoint is significantly

worse than the last touchpoint, but is still slightly better than the middle touch-

points, providing some justification for the first touch attribution method. However,

also supporting the notion against the first and last touch attribution methods, the

middle touchpoints when combined contributes substantially to conversion. If we

focus on journeys where the middle touchpoint exists (i.e., lengths 3 to 24), the total

contribution of the middle touchpoints is almost equivalent to the total contribu-

tion of the first and last touchpoints together. This suggests that linear attribution,

also known as all touch attribution (ATA), would be the best option among the

rule-based attribution methods. Indeed, if we refer back to the attribution results in

Table 4, the results from ATA is the most similar to that of MLS.

Finally, it can be observed that touchpoints decrease in average contribution as

the customer journey becomes longer. This is because only converted journeys are

considered. For shorter journeys to convert, it is expected for their touchpoints would

have greater effect towards conversion than that of longer journeys.

5.6.4 Which channels are more effective?

The goal of conversion attribution is to facilitate return on investment (ROI) calcu-

lations of digital advertisement spend. From the attribution results, we compute the

attributed conversions per touchpoint occurrence for each channel, thereby providing

the net value of each channel. The findings are presented in Table 8.
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Table 8: Attributed conversions per 10,000 touchpoints.

Marketing channel LTA ATA FTA SVA MLS

Affiliates 24 29 35 36 25
Branded Paid Search 82 87 100 103 93
Email 10 17 23 9 13
Direct 56 50 36 44 50
Direct Deals 8 12 21 14 10
Display 1 4 6 3 2
Generic Paid Search 24 33 43 19 28
Organic Search 56 59 78 67 59
Paid Search 16 28 68 29 33
Paid Social 2 3 4 2 2
Redirects 26 48 52 110 41
Referral 135 74 43 193 107
Retargeting 8 18 2 9 8
Social 20 20 19 37 19
Other 27 31 45 59 34

Per touchpoint occurrence, we can see that there is great variation in effective-

ness across the channels. The worst performing channels are display and paid social,

accounting for only 2 conversions per 10,000 occurrences as per the MLS attribution.

Moreover, because a touchpoint is a visit, each occurrence represents a click and not

an impression. The best performing channels are referral and branded paid search,

accounting for around 100 conversions per 10,000 touchpoints as per the MLS attri-

bution. With the exception of these two channels, the other paid channels do not

outperform organic channels (direct and organic search) on a per-visit basis for the

travel agency. This is reasonable as organic channel visits are made by users who

either already knew about the travel agency or have searched for a product that

the agency offers, demonstrating prior interest in either the company or its product.

However, other channels such as affiliates, email, generic paid search, and paid social

are engineered to identify the users that are likely to be interested in the agency or

its products. For these channels to perform worse than the organic channels suggest

improvements are possible with regards to targeting the right potential customers

at the right time.

Since MLS relies heavily on the customer engagement features for attribution, we

can actually already predict the two best and worst channels by looking at the aver-

age duration per visit for the channels in Table 1. Just as the channel performance,

display and paid social visits have the shortest duration while branded paid search

and referral visits have the longest duration.
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5.7 Conclusion

The most commonly used data-driven conversion attribution algorithm is based on

the Shapley value. This approach is attractive because Shapley values have some

desirable properties that ensure fair and logical attribution results. Integral to the

Shapley value attribution approach is the use of conversion probabilities. Typically,

empirical probabilities (i.e., observed conversion rates) of customer journeys are used

to estimate conversion rates. However, empirical probabilities are not reliable due

to the size of the power set of customer journey combinations. Even with 5 million

customer journeys, we show empirically that many converting journeys (20.8%) have

rare-occurring sub-journeys that significantly distort the attribution results. Addi-

tionally, empirical probabilities do not consider underlying behavioral factors that

influence (and/or explain) the observed conversion rates, such as as properties of the

web-site visits (e.g., time on site, number of pages views).

In this chapter, we developed an approach that extends the Shapley value based

attribution. This approach entails estimating the conversion probabilities by a Gra-

dient Boosted Decision Tree (GBDT) model. Using data from a Dutch online travel

agency, we have shown that using this approach we can take into account additional

factors that explain conversion rates. This approach shows a considerable increase

in predictive power compared to other well-known attribution models, including the

Shapley value model with empirical conversion probabilities. The attribution results

of our model differ noticeably from the standard Shapley value attribution model

and three rule-based models. Finally, we show that all three rule-based models, last

touch, first touch, and all touch attribution models make reasonable assumptions

but all fail to capture the complete attribution picture.
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Chapter 6

Recombining Customer Journeys With
Probabilistic Cookie Matching: A Supervised
Learning Approach

Chapter Abstract

The gathering and analysis of online customer journey data is central to web-based

business success. Having an accurate understanding of customer behavior allows web

businesses to offer the right product or promotion to the right person at the right

time. Unfortunately, customer journey data is often gathered by following cookie

histories on web browsers or mobile apps. Although this works well when users access

the web with only one device, it results in fragmented customer journeys when multi-

ple devices are used. Such fragmentation biases models of customer behavior, leading

to incorrect user metrics, poor ad-targeting, and unintended promotions or product

recommendations. In this chapter, we introduce a supervised learning approach to

recombine customer journeys in the presence of multiple device usage and frequent

cookie wiping. We model customer journey recombination as a predictive cookie

matching problem and use machine learning methods to link different cookies of

the same user probabilistically based on commonly available information such as

time of use, IP address, location, device, and page content. Using a deterministically

matched dataset of cookies, we create cookie pairs and train on 50% of the data while

testing on the remaining 50% with masked labels. We find that performance can be

high, with over 0.9 F1-score when users are geographically sparsely populated and

moderate with over 0.5 F1-score when users are densely populated. We show that the

sharing of IP address has the strongest predictive power while other features can still

predict well in the absence of IP address information. Finally, we find that logistic

regression performs on par with the state-of-the-art machine learning method when

users are sparsely populated but significantly underperforms when user population

is dense.
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6.1 Introduction

As more devices become connected to the internet, consumers’ web behavior becomes

increasingly fragmented. The user can connect to the web through her mobile phone,

tablet, personal laptop, work desktop, TV, smart home device, and even car. Tradi-

tionally, web users have been tracked by storing cookies in the browser and analyses

are often conducted with the cookie representing the user. Since a cookie is con-

nected to the browser of a device, different devices will have different cookies, leading

to biases in online customer journeys when users are using multiple devices or are

frequently deleting cookies. In order to obtain a complete view of online customer

behavior, it is necessary to match cookies to their users so accurate browsing history

can be captured when no user identification is available.

Consider the following problem: user u1 visits a news content website with her

smartphone in the morning and browses article a1. A cookie c1 is placed in her phone

and tracks that she has browsed article a1. At night, she reads another article a2 on

her laptop, but because it is not via her smartphone a new cookie c2 is placed in her

laptop, tracking that she has browsed article a2. The news content website is unable

to know that cookies c1 and c2 belong to the same user u1, and therefore stores into

its database that two users visited the website, one browsed article a1 and the other

browsed article a2. As a result, simple metrics such as the average browsed articles

per user per day becomes biased, and support tools such as recommendation systems

would not be able to use information from c2 when recommending articles to her

smartphone and use information from c1 when recommending articles to her laptop,

thus hindering its effectiveness.

There are two methods of matching cookies to users: (1) deterministic matching

through login history (e.g., if cookie c1 and cookie c2 both logged into the same

account then they belong to the same user) and (2) probabilistic matching through

user behavior (e.g., the probability of cookie c1 and cookie c2 belonging to the same

user is probabilistic with respect to some predictors). While deterministic matching

is naturally precise, the number of cookies with user logins is usually small. Alter-

natively, probabilistic matching is able to assign match probabilities to all cookie

combinations but is dependent on the quality of the predictors. In this chapter,

we model probabilistic matching as a supervised classification problem. Using a

dataset of deterministically matched cookies from an online news content platform,

we develop and test a supervised learning approach to match cookies to users. We

find that using common information available to most websites (e.g., IP address,

location, timestamp, browser, device, content) it is possible to achieve over 95%

precision and 90% recall scores for cookies in sparsely populated geographic areas
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and over 50% precision and 65% recall scores for cookies in densely populated areas.

Furthermore, we show that in the absence of some information our approach can

still achieve reasonable performance.

6.2 Related work

As the use of non-personal computer devices (e.g., mobile phone, tablet, TV) became

more prevalent for web use, a number of papers have studied the behavior of users

across different channels, especially mobile. Ghose and Han (2011) look at how user

content generation relates to usage behavior on the mobile internet, Ghose et al.

(2012) and Tossell et al. (2012) explore how mobile browsing behavior differs from

personal computers, and Kamvar et al. (2009) and Manchanda (2015) analyze mobile

search behavior. Müller et al. (2012) try to understand and improve design for tablet

use, and more recently, Xu et al. (2016) look at the impact of the availability of tablets

on digital commerce. While these papers discover a number of differing aspects of

mobile device use behavior from personal computers, they do not consider the pos-

sibility of combining mobile use with personal computers to paint a more complete

picture of customer behavior.

In the computer science and social network analysis literature, link prediction

bears strong resemblance to the probabilistic cookie matching problem. Link predic-

tion focuses on inferring links between nodes in a graph, usually some form of social

network, using graph-based features formulated as a supervised learning problem

(Taskar et al. (2004), Al Hasan et al. (2006), Liben-Nowell and Kleinberg (2007),

Lichtenwalter et al. (2010)). A major difference between link prediction and proba-

bilistic cookie matching is that link prediction attempts to predict future association

between two distinct nodes whereas probabilistic cookie matching looks to connect

nodes from past behavior.

In joint efforts between Drawbridge and the 2015 IEEE International Confer-

ence on Data Mining (ICDM), and between the Data-Centric Alliance and the 2016

International Conference on Information and Knowledge Management (CIKM), two

public challenges were held with the goal of matching multiple cookies to the same

user. In the ICDM challenge, Drawbridge released a dataset of cookies and devices

with a set of anonymized features to describe attributes and behaviors of both the

cookies and devices. The CIKM challenge was simpler as competitors were asked to

find matches in a set of user ids provided by the Data-Centric Alliance with only

anonymized URLs, HTML titles, and timestamps. The top-performing teams in the

two challenges scored 0.895 (F0.5) and 0.420 (F1), respectively (Phan et al. 2017).
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Although both challenges were held in conjunction with academic conferences and

drew interest from researchers and practitioners alike, the winning solutions were

heavily engineered towards optimal performance for the specific datasets provided

and therefore holds limited value towards solving a general form of this problem.

Furthermore, the lack of information regarding how the data was generated along

with heavy anonymization of variables results in additional difficulty when analyzing

both the methods and results discussed in the challenges. This paper aims to provide

a clear understanding of how to perform probabilistic cookie matching and analyzes

the effect of various features on match performance.

6.3 Data description

Our data comes from a five-month use log of a Dutch online news content platform

from the start of December 2016 to the start of May 2017. Content from a number

of newspapers are aggregated to this platform and it is available as an application

accessible from the web, through a smartphone, or a tablet. The newspapers are all

in the Dutch language and users come primarily from The Netherlands and Belgium.

Login is required to use this application so all cookies and devices are deterministi-

cally matched to a user ID. Using this dataset we are able to develop our probabilistic

cross device matching method and test it against the ground truth. All page views

for each user are tracked with timestamps, including pages such as “my home page”

and the “payment portal”. Since the purpose of probabilistic cookie matching is to

match users who are not logged in, we keep only content page views, resulting in a

total of 124,883 users utilizing 453,574 cookies (3.63 cookies per user) across 347,551

IP addresses (3.81 per user). In total there are 9,735,894 page views. Figure 1 pro-

vides the distribution of cookies and IP addresses per user and Figure 2 provides the

distribution of page views per user, per cookie, and per IP address.

Beyond page views the dataset also includes information about the device (e.g.,

device type, operating system, browser, browser language, screen size) along with

the derived location coordinates of the device at the time of the page view. There

are 54 unique operating systems (OS) and 109 unique browsers (e.g., Chrome and

Mobile Safari) used. The most popular OS are Windows 10 and Mac OS X (iPad)

with 1,974,562 and 1,812,372 page views, respectively, while the most commonly

used browsers are Mobile Safari and Chrome with 2,273,871 and 2,076,049 page

views, respectively. There are a total of 2,245 unique device screen sizes ranging

from mobile (360-by-640) to standard laptop/monitor (1920-by-1080) to ultra-wide

monitors (3440-by-1440). Our users come from 11,863 different (recorded) cities with

Amsterdam being the most popular.
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Figure 1: Histograms of the number of cookies and IP addresses per user (maximum is constrained at 15).

Figure 2: Histogram of the number of page views per user, cookie, and IP (maximum is constrained to 100).

6.4 Supervised learning approach

Probabilistic cookie matching can be viewed as a pairwise classification problem,

where given information about two cookies as explanatory variables, a model is

trained to predict the binary response variable: 1 if the two cookies belong to the same

user, and 0 otherwise. This was also the predominant approach taken in the high-

performing solutions of the ICDM and CIKM competitions. First, a set of 4,100,814

matched cookies are created through matching their deterministic user IDs. From

this set of matched cookie pairs, we build a training and test dataset where 50% of

the pairs are randomly selected to be in either set based on their user IDs. To most

closely resemble real-life applications, we ensure that all matched cookie pairs of the

same user are in the same set to prevent user-level information from leaking between

the training and test sets. Finally, due to the large number of non-matching cookie

pairs as this is a 2-combination problem of 453,574 cookies, we randomly sample
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Table 1: The complete set of features used for the supervised learning algorithms and their descriptions.

Feature name Feature description

num events1 Number of events total for cookie 1

num events2 Number of events total for cookie 2

num events diff Absolute difference of number of events for cookie 1 and cookie 2

num unique ip1 Number of unique IP addresses for cookie 1

num unique ip2 Number of unique IP addresses for cookie 2

date overlap Dummy for whether the first and last dates of cookie 1 and cookie 2 overlaps

num ip shared Number of unique IP addresses appearing in both cookie 1 and 2

num lat shared Number of unique latitudes appearing in both cookie 1 and 2

num long shared Number of unique longitudes appearing in both cookie 1 and 2

avg diff lat Absolute difference between the mean latitudes of cookie 1 and cookie 2

avg diff long Absolute difference between the mean longitudes of cookie 1 and cookie 2

num br shared Number of unique browsers appearing in both cookie 1 and 2

num br lang shared Number of unique browser languages appearing in both cookie 1 and 2

num os shared Number of unique operating systems appearing in both cookie 1 and 2

num screen width shared Number of unique screen widths appearing in both cookie 1 and 2

num screen height shared Number of unique screen heights appearing in both cookie 1 and 2

num content author shared Number of unique content authors appearing in both cookie 1 and 2

num content length shared Number of unique content lengths appearing in both cookie 1 and 2

num content source shared Number of unique content sources appearing in both cookie 1 and 2

num events overlap1 Number of events for cookie 1 which falls in the period of cookie 2’s activity

num events overlap2 Number of events for cookie 2 which falls in the period of cookie 1’s activity

10,251,247 observations (0.01%) from the set of all possible non-matching cookie

pairs and evenly split them between the training and test datasets.

6.4.1 Feature engineering

A key to the supervised learning approach is feature engineering—creation of the

requisite features which hold predictive power on the response variable. For this

problem, simply using the original variables as explanatory variables is insufficient

as it is the comparison of these variables for both cookies which drives whether

they belong to the same user. For example, the set of locations of two cookies are

unimportant when considered independently, but from that we can derive the number

of common locations between the two cookies, which can have high predictive power

given that two cookies that are always in different cities are unlikely to have the same

user. We engineer a set of 21 features related to information about timestamps, IP

address, location, device, and content. Table 1 lists each feature and describes how

they are created.
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6.4.2 Learning algorithm

Although a number of supervised learning methods can be used for this task, we

select gradient boosted decision trees (with the logloss objective function for binary

classification) for its overall effectiveness in supervised learning problems in general

(Friedman 2001). It was also the dominant method used in the ICDM and CIKM

competitions and has been the most used method in winning data science com-

petitions (Chen and Guestrin 2016). Gradient boosted decision trees achieves top

performance from being able to readily exploit interactions in the features and does

not require monotonic transformations. Gradient boosting allows the algorithm to

focus on difficult-to-predict observations to more rapidly improve model estimation,

and overfitting is reduced by aggregating a large number of decision trees trained

on subsets of both features and observations. The specific implementation used is

LightGBM (Ke et al. 2017), which performs on par with other implementations such

as XGBoost (Chen and Guestrin 2016) but is an order of magnitude faster1. We also

compare LightGBM with logistic regression to more easily compute feature effects

and to give a general performance comparison between the two methods.

6.4.3 Evaluation metric

The key evaluation metrics of this problem are precision, recall, and the F1-score

which is the harmonic mean of precision and recall. In the scope of probabilistic

cookie matching, precision is the number of correct predictions of cookie matches

divided by the total number of predicted matches and recall is the number of cor-

rectly predicted cookie matches divided by the total number of true matches. Both

metrics are important because wrong predictions of matched cookies can result in

false inference of user behavior while failing to detect matched cookies limits the

completeness of the customer journey picture we want to infer. The F1-score provides

a balance between the two metrics.

6.5 Prediction results and evaluation

Using our complete set of features on the test set of 7,166,089 observations (0.01%

down-sampling of unmatched pairs) and setting cutoff threshold to 0.5, we achieve

F1-scores of 0.933 and 0.928 for LightGBM and logistic regression, respectively. The

corresponding precision and recall scores are 0.968 and 0.900 for LightGBM, and

0.956 and 0.901 for logistic regression. We can see that logistic regression performs on

1Performance comparisons at https://github.com/Microsoft/LightGBM/wiki/Experiments#

comparison-experiment
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Table 2: The complete set of features used for the supervised learning algorithms and
their descriptions.

Feature name Coef estimate Std. Err z-statistic Significance

num events1 -0.009 0.000 -28.113 ***

num events2 -0.009 0.000 -27.864 ***

num events overlap1 -0.004 0.000 -15.577 ***

num events overlap2 -0.003 0.000 -12.398 ***

num events diff 0.006 0.000 18.333 ***

date overlap -1.695 0.008 -217.875 ***

num unique ip1 -0.006 0.001 -5.317 ***

num unique ip2 -0.002 0.001 -1.664

num ip shared 10.638 0.074 144.532 ***

num lat shared 1.055 0.023 44.998 ***

num long shared 0.507 0.024 21.316 ***

avg diff lat 0.016 0.000 35.783 ***

avg diff long 0.005 0.000 23.491 ***

num br shared 1.074 0.005 227.978 ***

num br lang shared 0.898 0.004 204.287 ***

num os shared 1.542 0.004 351.254 ***

num screen width shared 0.402 0.012 33.439 ***

num screen height shared 0.601 0.012 50.549 ***

num content author shared 0.171 0.003 55.788 ***

num content length shared -0.075 0.002 -37.670 ***

num content source shared 0.078 0.002 33.711 ***

intercept -4.081 0.005 -906.650 ***

par with LightGBM, suggesting that the feature set is relatively simple and the fea-

tures have strong predictive power independently. Table 2 shows the logistic regres-

sion coefficients to provide further analysis of the feature effects. The features that

positively predict matched cookies are the number of shared IP addresses, locations,

browsers, operating systems, and screen sizes. These features focus on detecting cases

where the same device is used but due to either frequent cookie churning or privacy

restrictions, the cookie is removed resulting in new cookies added to the same device

many times. Conversely, when the two cookies have time overlaps in their activities

and as the number of page views increases in the overlapping time, the pair is less

likely to belong to the same user. This makes sense because many different users are

using the platform at the same time, but nevertheless we expect that cross-device

use would result in time overlaps of activity between cookies. This suggests that

cross-device use may be rarer than expected.

Since both LightGBM and logistic regression makes probabilistic predictions and

both precision and recall are computed with binary predictions, we must set cutoff

thresholds (e.g., 0.5) for which a prediction is 1 or 0. The thresholds greatly affect

precision and recall scores as increasing the threshold usually leads to increased pre-

cision but decreased recall. Figure 3 plots the precision and recall scores for both
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Figure 3: Precision and recall for LightGBM and logistic regression across different cutoff threshold values.

LightGBM and logistic regression across a range of thresholds. Both algorithms

exhibit the same patterns of inverse relationship between precision and recall. At low

cutoff thresholds, precision is low and recall is high, and as the threshold increases,

precision increases and recall decreases. While the F1-score favors balanced values of

precision and recall, selecting the optimal threshold depends on the relative costs of

false positives versus false negatives. If cookie matching is used to send personalized

promotions then it is probably worse to send the promotion to the wrong customer

than to miss a customer. Alternatively, if it is used to improve retargeting adver-

tisement campaigns then targeting the wrong user would be akin to a prospecting

advertisement which has minimal consequences. In both cases, the cutoff threshold

can be selected to best suit business needs.

6.5.1 Performance with feature subsets

Our complete feature set includes information about timestamps, IP address, loca-

tion, device, and content. However, in many practical settings, some of these features

may not be available. For example, due to privacy reasons, it may not be possible to

obtain the complete IP address or location of the user, and in other cases, information

about the webpage’s content may not be available. We carry out supervised learning

on subsets of the feature groups to test the performance of our approach under dif-

ferent feature availability. First, we assume that timestamps will always be available.

This is reasonable as any web-based application can always record the time of an

event. Next, we consider cases when each of the other features types (IP address,

location, device, content) are unavailable. Location is sometimes inferred through

the IP address so we also consider their combined unavailability. Finally, in a more

pessimistic setting, we also assume that content is unavailable so we consider the
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Table 3: Precision, recall, and F1-score of LightGBM and logistic regression when types of feature
information are not available. The scores are based on the best thresholds selected for each algorithm
and each case.

LightGBM Logistic Regression

Feature Setting Precision Recall F1-score Precision Recall F1-score

All Features 0.9633 0.9046 0.9330 0.9594 0.8988 0.9281

No IP Address 0.9042 0.8730 0.8883 0.9058 0.8253 0.8637

No Location 0.9671 0.8911 0.9276 0.9617 0.8936 0.9264

No Device 0.9715 0.8241 0.8917 0.9997 0.7978 0.8874

No Content 0.9620 0.9049 0.9326 0.9585 0.9000 0.9283

No IP Address, Location 0.8890 0.7941 0.8389 0.8635 0.8012 0.8312

No IP Address, Location, Content 0.8888 0.7925 0.8379 0.8731 0.7979 0.8338

case with only timestamps and device features. Table 3 summarizes the performance

of LightGBM and logistic regression for the above cases. We see that LightGBM

is consistently better than logistic regression but only slightly. Among the feature

types, IP address, contains the most predictive power as the F1-score decreased by

0.045 for LightGBM and 0.054 for logistic regression when it was removed. Another

important feature is device information as the F1-score decreased by 0.041 for both

LightGBM and logistic regression when it was removed. The other features have neg-

ligible importance in the presence of IP address and device information, but in the

absence of IP address both location and content information play important roles as

removing them individually decreased F1-score by 0.05 for LightGBM and 0.03 for

logistic regression. Finally, removing both location and content in the absence of IP

address decreases F1-score down to under 0.55, suggesting that they still hold strong

predictive power.

6.5.2 Using cookies from one city without down-sampling

Unlike other evaluation metrics (e.g., area under the receiver operating curve), the

F1-score can be affected by the distribution of true and false observations in the data.

Because we down-sampled the false observations by 10,000 times, we expect that

our prediction performance could be significantly different from the performance of

practical implementation of the cookie matching problem where all possible pairs

must be considered. Unfortunately, creating a full set of 104,582,453,185 cookie pairs

is infeasible so we constrain the set geographically, only including cookies that have

appeared in a specific city. This is reasonable because we do not expect two cookies

that have not both appeared in a single city to be a matching pair, therefore allowing

us to create a set of cookie pairs that is more reflective of practical use. The city we

choose is Haarlem, The Netherlands, with a population of approximately 150,000.

Constraining our dataset to only cookies that have appeared in Haarlem, we have
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Table 4: Precision, recall, and F1-score of LightGBM and logistic regression for the complete cookie
pair set for cookies from the city of Haarlem, Netherlands. Rows indicate when the specified feature
information type is not available. The scores are based on the best thresholds selected for each algorithm
and each case.

LightGBM Logistic Regression

Feature Setting Precision Recall F1-score Precision Recall F1-score

All Features 0.4263 0.7280 0.5377 0.4340 0.5602 0.4891

No IP Address 0.3701 0.3502 0.3599 0.0210 0.0001 0.0002

No Location 0.5351 0.6941 0.6043 0.5444 0.3831 0.4497

No Device 0.4887 0.6355 0.5525 0.3541 0.0038 0.0075

No Content 0.4259 0.7242 0.5363 0.5258 0.3449 0.4166

No IP Address, Location 0.0976 0.2194 0.1351 0.0036 0.0623 0.0068

No IP Address, Location, Content 0.0570 0.5153 0.1026 0.0273 0.2703 0.0496

a total of 9,556 cookies, 83,568 matched cookies pairs, and 45,570,222 unmatched

pairs. Similar to earlier, we randomly assign 50% of the cookie pairs to the training

set and evaluate performance on the other 50%, but we ensure that cookie pairs from

the same user are assigned to only the training or test set without any cross leakage.

Table 4 shows the performance of LightGBM and logistic regression with the full

dataset of Haarlem. In comparison to that of the down-sampled dataset of all cities,

performance is significantly worse for both algorithms. Furthermore, while Light-

GBM is still able to produce reasonable predictions when IP address or device is not

available, logistic regression fails to discriminate between matched and unmatched

pairs. Table 5 shows the coefficients of logistic regression. The direction of effects

is largely similar to when trained on the down-sampled data with the exception of

the number of content length shared, which changed from insignificant to negatively

significant. The consistency of logistic regression coefficients suggests that the same

pattern still remains. Unfortunately, because the geographic density of cookies is now

10,000 times higher, there is a larger proportion of unmatched cookies that share

IP addresses (through common workplaces or businesses open to public) and have

similar location. In order to improve prediction performance under higher density,

we look to include additional features such as content topic information which may

help discriminate between matched and unmatched cookie pairs.

6.6 Conclusion

This chapter attempts to recombine broken customer journeys via probabilistic

cookie matching. We formulate this problem as a supervised learning problem sim-

ilar to that of link prediction in social network analysis, and develop features from

commonly accessible information to predict pairwise matching of cookies. Using data
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Table 5: Logistic regression coefficients for the complete cookie pair set for cookies from
the city of Haarlem, Netherlands. All coefficients except for num content length shared
are significant at least at the 0.05 level.

Feature name Coef estimate Std. Err z-statistic Significance

num events1 -0.017 0.001 -17.468 ***

num events2 -0.016 0.001 -16.018 ***

num events overlap1 -0.004 0.001 -4.729 ***

num events overlap2 -0.002 0.001 -2.991 **

num events diff 0.013 0.001 14.430 ***

date overlap -1.663 0.027 -60.766 ***

num unique ip1 -0.049 0.004 -12.900 ***

num unique ip2 -0.042 0.003 -13.057

num ip shared 3.843 0.016 239.687 ***

num lat shared 0.370 0.174 2.127 **

num long shared 0.994 0.174 5.719 ***

avg diff lat 0.024 0.001 16.317 ***

avg diff long 0.011 0.001 19.394 ***

num br shared 1.137 0.018 63.143 ***

num br lang shared 0.438 0.016 27.694 ***

num os shared 0.998 0.016 61.255 ***

num screen width shared 0.581 0.045 12.891 ***

num screen height shared 0.800 0.044 18.047 ***

num content author shared 0.091 0.009 10.084 ***

num content length shared 0.009 0.006 1.420

num content source shared 0.134 0.007 19.402 ***

intercept -8.404 0.017 -486.996 ***

from a Dutch online new content platform, we train and test two supervised learn-

ing algorithms—gradient boosted decision trees with the LightGBM implementation

and logistic regression. We find that both algorithms perform excellently when the

geographic density of cookies is low from down-sampling (over 0.95 precision and

over 0.90 recall) but performance decreases as geographic density increases (down

to over 0.50 precision and over 0.65 recall). Moreover, LightGBM is able to better

distinguish between matched and unmatched pairs than logistic regression when the

signal is weaker. Finally, we show that information about IP address and device

are highly predictive and location and content are not important in their presence.

However, when IP address or device information are absent, location and content are

moderately predictive and thus become necessary. For future work, further improve-

ments can be made on developing predictive features to better discriminate matched

and unmatched cookies in close proximity. Our current feature set does not take

full advantage of usage patterns and content browsing, leaving two areas for inves-

tigation. We recommend that business practitioners consider the geographical den-

sity of cookies, information available, and the precision vs. recall tradeoff prior to
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implementation of this approach as they can all have profound effects on optimizing

performance for business needs.



Chapter 6. Recombining Customer Journeys 140



Chapter 7

Improving Display Advertising With
Predictive Device Matching: A Machine
Learning Approach

Chapter Abstract

Retargeting is a highly effective strategy of targeting display advertisements to poten-

tial online customers who have recently visited the advertiser’s website. Johnson

et al. (2017) estimate that retargeting campaigns can increase an online retailer’s

website visits and purchases by over 17% and 10%, respectively. However, retargeting

advertisements rely on tracking users with HTTP cookies which is unable to link dif-

ferent devices belonging to the same user, thus treating all devices as different users.

This limitation in tracking constrains the effectiveness of retargeting campaigns by

losing retargeting candidates when they switch devices or refresh cookies. To link

devices and expand the pool of retargeting candidates, we develop a machine learning

framework to predict device matches based on user browsing behavior. Using data

from an e-commerce website and a programmatic buying platform, we show that our

method is able to identify device matches for 10.5% of the e-commerce customers,

resulting in an increase in retargeting candidates by 75.4% and total retargeting

advertisements served by 104.4%.

7.1 Introduction

Display advertising is an online marketing method that consists of presenting banners

of advertisers on publisher websites (e.g., www.msn.com) to potential customers. The

banners can range in different sizes, be placed in different locations of the publisher’s

website (top-of-page or on the sidewall), and be embedded in different forms of media

such as text, video, or mobile apps. In 2016, the Interactive Advertising Bureau (IAB)

estimated that out of a total of $72.5 billion U.S. spending on internet advertising,

$31.7 billion was on display advertising, with $13.6 billion on desktop and $18.1

billion on mobile devices (Interactive Advertising Bureau 2016).
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A particularly effective strategy of display advertising is retargeting, which identi-

fies customers who have recently visited the advertiser’s website but did not make a

purchase (convert), and subsequently serves banners to them in hopes of maintaining

engagement and inducing an eventual conversion. Retargeting campaigns have the

advantage of targeting individuals who are already aware of the advertiser and have

demonstrated purchase intent. This results in higher rates of customer response (e.g.,

clicks) and sales, leading to increased efficiency in advertising spend. The effective-

ness of retargeting is well known in the industry, with advertisers investing significant

amounts of their online budget in this approach (Adroll 2017). Recent academic

studies have agreed with this notion, with Johnson et al. (2017) and Sahni et al.

(2017) finding that retargeting campaigns caused website visits to increase by 17.2%

and 14.6%, respectively, and Johnson et al. (2017) finding a causal increase in sales

by 10.5%.

Although retargeting campaigns have proven to be effective in boosting website

traffic and sales, its practical implementation is unable to recognize retargeting can-

didates when customers use different devices, thus failing to take full advantage of

all available candidates and leave potential revenue on the table. Retargeting cam-

paigns work by placing HTTP cookies into the web browser of customers when they

visit the advertiser’s website and then serve banners to those tracked customers after

they leave. However, because HTTP cookies are unique to a single browser, different

devices used by the same person are treated as different customers. If the customer

first visits the advertiser’s website on her mobile phone and subsequently browses

the web with her laptop, the retargeting campaign is unable to recognize her laptop

and will not serve banners to her. Between desktop and laptop computers, mobile

phones and tablets, and alternative connected devices such as video game consoles

and televisions, various industry measures have estimated the average user to own

more than three devices in 2016 (GlobalWebIndex 2016). Wang (2017) shows that

for a single Dutch news aggregation platform across a period of six months, the mean

number of devices per account was 3.63 and over 55% of the accounts were accessed

with at least two different devices.

Another problem with retargeting campaigns is the negative effect of harassing

customers with advertisements after he or she has recently made a purchase. This

is wasteful because a customer who has just bought a product is unlikely to buy

from the advertiser again within a short period of time. While existing technology

allows advertisers to avoid retargeting customers who have recently made purchases,

it also relies on HTTP cookies and only works on the device from which the purchase

was made. Therefore, if the customer visited the advertiser’s website on both her

desktop and mobile phone but made a purchase on her desktop, she will continue
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to be shown retargeting banners on her phone, leaving her feeling irritated while

still costing the advertiser money. Taken together, these two problems demonstrate

a strong need to link devices to users whether it is to maximize the potential for

retargeting effectiveness or to minimize the potential for customer frustration.

The tracking limitations of HTTP cookies have been well-known by digital mar-

keting practitioners and a number of commercial services to match devices have been

offered. There are generally two types of device matching methods: deterministic

and probabilistic. Deterministic matching is offered by online platforms with large

logged-in user-bases such as Facebook or Gmail. These platforms are able to match

devices to owners when they share a sign in to the same user account on the platform.

Probabilistic matching vendors gather data about device usage and develop models

to match devices based on information such as IP address, browsing behavior, and

geographical location. A probabilistic model is estimated on a small set of determin-

istically matched data and then is used to predict matches on all available devices.

The end product sold by both deterministic and probabilistic matching vendors is

a graph of matched devices, where nodes represent devices and edges between two

nodes represents a pairwise match.

Unfortunately, the device graphs provided by commercial services are rarely useful

for retargeting purposes due to recency requirements of matching active and track-

able devices. Delivering retargeting banners requires fast response to customer visits

so only a limited time window is allowed to gather sufficient data to predict device

matches. Existing services often need large numbers of user browsing sessions to

identify matches between devices, but this is inappropriate for retargeting as HTTP

cookies often do not remain active for very long. A sample of one day’s display

impressions from a programmatic buying platform show that over 66.6% of online

browsing events belong to devices which were not previously known, suggesting a high

degree of cookie churn and anonymous browsing behavior. Therefore, the portion of

the device graphs which do not contain active and track-able devices is outdated for

real-time use. Matching an active device to inactive or non-track-able devices does

not increase the number of retargeting candidates as display advertisements can only

be served to users during active browsing.

This paper asks the following two questions. First, with only a limited amount of

data due to recency requirements of matching active devices, how well can devices

belonging to the same user be matched based on only browsing behavior? This is

further complicated as the tracking of browsing behavior is limited to websites on

which display advertisements are auctioned so visits to many major websites are

excluded (e.g., Google and Facebook). Second, how many more devices can we add
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to the retargeting pool through matching devices to their users, and will the amount

and matching quality sufficiently improve the overall effect of retargeting campaigns?

To answer these questions, we develop a machine learning framework to iden-

tify active devices belonging to customers of a retargeting advertiser, allowing us to

serve retargeting banners to devices of customers which were not used to visit the

advertiser’s website. These devices would not have been targeted by the retargeting

campaign otherwise, hence the pool of retargeting candidates is expanded through

device matching. Due to the lack of ground truth device matches with which to

train and validate our framework, we simulate ground truth by artificially splitting

browsing history of existing devices. As a result, a number of device-related features

such as IP address, browser type, and operating system could not be used for device

matching. We base our framework on only the user’s browsing history which is rep-

resentative of the data available to programmatic buying platforms and also serves

as a lower bound on predictive ability.

In collaboration with ORTEC Adscience, a Dutch programmatic buying platform,

we test the effectiveness of our device matching framework and its impact on retar-

geting campaigns. Using browsing data obtained via bid requests from various ad

exchanges, we collect browsing histories of devices which have previously visited

Adscience’s advertising client in the past 14 days—actual retargeting candidates.

We train and validate our device matching framework by randomly assigning 50%

of devices to a train and validation set, achieving validation scores of 51% recall and

67% precision. We then collect another dataset of potential retargeting candidates—

devices which have not visited Adscience’s advertising client but shared an IP address

with the actual retargeting candidates. Our device matching framework is then used

to predict pairwise matches between the actual and potential retargeting candidates,

identifying new potential retargeting candidates for 10.5% of the actual retargeting

candidates, consequently increasing the pool of retargeting candidates by 75.4% and

total retargeting banner volume by 104.4%.

7.1.1 Relation to literature

This paper broadly falls under three streams of literature related to display adver-

tising. A large body of literature have studied real-time bidding, with the focus on

developing algorithms to either optimize budget over time (Cai et al. (2017), Ren

et al. (2018), Wang et al. (2017)) or to improve targeting through predicting user

response to individual banner ads (McMahan et al. (2013), Juan et al. (2017), Vasile

et al. (2017)). While this stream of literature is highly relevant to any program-

matic buying platform, ORTEC Adscience already employs variants of the proposed

state-of-the-art implementations.
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Another stream of literature focuses on understanding how display advertisements

work and under which conditions they perform better or worse. Specifically, the effec-

tiveness of retargeting campaigns has been of great interest due to widespread indus-

trial success. Using an econometric model, Ghose and Todri-Adamopoulos (2016)

found that retargeting increases the customer’s propensity to convert by 26%. Fur-

ther studies by Johnson et al. (2017) and Sahni et al. (2017) use controlled field

experiments to demonstrate the effectiveness of retargeting campaigns. Johnson et al.

(2017) used “ghost ads” to identify control-group counterparts of exposed consumers,

finding that retargeting ads lifted website visits by 17% and purchases by 11%. Sahni

et al. (2017) randomly assigned retargeting candidates to one group which sees the

relevant advertisement and another group which gets a public service announcement

that allows for tracking of the users in place of retargeting banners. They found

that 14.6% more users in the product-viewers retargeting campaign returned to the

website.

The third relevant stream of literature focuses on cookie churn and cross-device

matching. Dasgupta et al. (2012) noted that HTTP cookies are not persistent for

the same user, recognizing that internet users frequently delete cookies from their

browsers. They dubbed it the “cookie churn” problem and presented a constrained

clustering framework based on interval graph coloring and cookie similarities. While

their method performs reasonably well, it can only be applied to cases of deleted

cookies on the same device with the same browser. Others have also identified prob-

lems resulting from cookie churn, specifically with regards to measuring the effec-

tiveness of online advertising (Coey and Bailey (2016), Johnson et al. (2017)). As the

cookie churn problem became well-known and cross-device use became more pop-

ular, algorithms for cross-device matching (also referred to as probabilistic cookie

matching or cookie stitching) have become a popular topic among practitioners and

academics (Roy et al. (2015), Kim et al. (2017), Volkova (2017), Zimmeck (2017)).

Two international data science competitions were held in conjunction with the 2015

IEEE International Conference on Data Mining (ICDM) and the 2016 International

Conference on Information and Knowledge Management (CIKM Cup) to engineer

novel approaches for cross-device matching. Hundreds of teams competed in the two

competitions and a number of methods were published in the proceedings of the two

conferences (Cao et al. (2015), Dı́az-Morales (2015), Kejela and Rong (2015), Kim

et al. (2015), Landry et al. (2015), Lian and Xie (2016), Tran (2016), Phan et al.

(2017)).

With the exception of the CIKM Cup solutions, all of the other papers on cross-

device matching rely heavily on IP address as a key feature in device match pre-

diction. In this chapter, we do not have direct access to IP address in our data and
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therefore deviate from those solutions. The dataset provided by the CIKM Cup is

most similar to ours and therefore we base our cross-device matching methodology

on that of Phan et al (2017). However, we make modifications to improve match

quality and to satisfy the runtime constraints of industrialization.

Finally, while there has been a large body of literature on cross-device matching

methodology, to the best of our knowledge this is the first paper to study the implica-

tions of cross device matching, specifically with respect to retargeting advertising—

one of the most effective form of display advertising.

Structure of this chapter. The remainder of this chapter is structured as fol-

lows. In Section 7.2 we introduce background about how display advertising and

retargeting work in practice. We also describe the data used to develop and test

our device matching algorithm. Section 7.3 presents the machine learning framework

for cross-device matching. Details on candidate selection, feature engineering, and

the supervised learning algorithm for pairwise matching classification are provided.

Section 7.4 reports performance evaluations of the matching framework on a valida-

tion dataset. Section 7.5 presents the impact of cross device matching on retargeting

campaigns, suggesting potential economic gains in practice. Finally, we conclude in

Section 7.6.

7.2 Business process and data collection

Display advertising works by showing banners to consumers when they surf the web.

When a consumer lands on a website with display advertising, called a publisher,

the publisher selects a banner from one of its advertisers to show the user in hopes

of inducing the consumer to click on the banner, redirecting the consumer to the

advertiser’s landing page. An individual showing of a display banner is termed an

“impression”. Traditionally advertisers have bought impressions in bulk directly from

a single or network of many publishers. In the late 2000s, the prevalence of real-

time bidding (RTB) technology, also called programmatic buying allowed all display

impressions to be bought and sold individually through ad exchanges. While some

impressions are still sold in bulk directly to advertisers, most of the impressions are

now sent to various ad exchanges through a sell-side intermediary, called the supply

side platform (SSP). On the other end of the exchange is the buy-side intermediary,

the demand side platform (DSP) which buys impressions for its advertiser clients.

When a consumer lands on a publisher’s website but before loading into her

browser, a bid request is auctioned through the SSP to various ad exchanges request-

ing DSPs to bid for the available impressions. Often included with the bid request
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is a set of information including an SSP-specific identification code, the IP address

of the consumer, the browser and device type, geographical location, and the URL

of the website which is about to load. With this information, the DSPs have under

50 milliseconds to make bids representing the amount of money they are willing to

pay to show the ad of their clients in this impression. The highest bidder wins the

auction and pays the publisher money equal to the second highest bid or the floor

price, whichever is higher.

There are generally two strategies for which DSPs follow to purchase impres-

sions, prospecting and retargeting. In prospecting, the DSP evaluates all bid requests

and computes its attractiveness using a targeting algorithm. One popular targeting

approach is contextual targeting, where advertisers focus on specific types of websites

to purchase impressions. For example, an automobile seller would prefer to advertise

on the car-related pages of news outlets under the notion that consumers who read

about automobiles are more likely to be interested in buying a car. Another approach

is behavioral targeting, where the consumer is tracked and her browsing history and

previous response to display banners are used to decide whether to continue to serve

banners to her. While there is tremendous potential in both targeting methods, they

are difficult to implement in practice as DSPs usually receive limited information

about the website and the consumer in a bid request. A commonly used metric

for measuring effectiveness of display advertising is the click-through rate (CTR) of

banners. The CTR is the number of times customers clicked on the display banner

divided by the total number of times the banner is served to customers. Although

CTR varies by type of banner (e.g., top-of-page or on the sidewall), the overall CTR

of display banners is estimated to be 0.05%. Adscience’s targeting algorithm for

prospecting strategies is estimated to yield a CTR of 0.10%.

7.2.1 Retargeting advertising

The second strategy DSPs follow to purchase impressions is retargeting, which is

a special type of behavioral targeting. Retargeting is a simple but highly effective

strategy, requiring minimal user browsing history and no contextual information.

When consumers visit the advertiser’s website, HTTP cookies are placed in their

browsers by the advertiser’s DSP. Subsequently, when consumers enter another web-

site which has exchange-traded impressions, the DSP is able to identify them as

customers of its client, and bids to win those impressions, serving them ads of the

client which they recently visited. The advantage of retargeting is that consumers

who have visited a website are already far into the conversion funnel by having

demonstrated interest in the website’s brand or products. These consumers are more

likely to remain interested in the advertiser and respond to the banner. Based on
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experience at Adscience, the CTR and conversion rates of retargeting banners are

on average five times greater than that of banners in general, and more than twice

that of its prospecting campaigns.

7.2.2 Data collection and description

Our data comes from bid requests (events) of all visitors of an advertising client

of Adscience over a period of six weeks from July 15 to August 31 of 2017. These

visitors are true retargeting candidates, and the goal is to match other devices which

belong to these visitors so they can be served retargeting banners as well. Due to

the massive number of devices and events received from the ad exchange we only

collect events of devices which have shared an IP address with a true retargeting

candidate over the six week period. All devices accessing the internet from the same

network (e.g., in the same house, company, or public wifi) will share the same IP

so it is highly likely that devices belonging to the same user will have shared an IP

address within the six weeks. Kim et al (2016) and Wang (2017) also found sharing

an IP address to be the greatest predictor of belonging to the same user.

In total, we obtained 10,000,000 events from 50,000 unique visitors to the client

(true retargeting candidates) and 15,000,000 events from 65,000 visitors who have

shared an IP address with the true retargeting candidates (potential candidates).

In order to account for cases of users idling and refreshing pages, we combine con-

secutive events from the same URL within a 30-minute time frame. This reduced

our dataset to 6,000,000 events for the true retargeting candidates and 8,000,000 for

the potential candidates. We set aside the first two weeks of events from the true

retargeting candidates for developing (training and validating) our machine learning

model, and use the third week of events from both the true and potential retargeting

candidates to match devices. Although events data from longer periods are available,

we deliberately select a shorter period to align with the response time constraints of

matching active and track-able devices.

7.2.3 Ground truth data generation

In order to train a machine learning model for device matching prediction, it is neces-

sary to first have a dataset with device matching labels. These labels often come from

a deterministically matched dataset where users have self-identified their devices

by logging into online platforms (e.g., Facebook or Google) with multiple devices.

Unfortunately, we do not have access to deterministically matched device labels with

our bid request data so we simulate cross-device use by artificially splitting long

single-device browsing histories into multiple devices.
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From our first two weeks of events for the true retargeting candidates, we create a

device matching training set with cookies of over 100 events. The events are grouped

into sessions, characterized by consecutive browsing without a 30-minute break in

between. At the start of a new session, we simulate whether the session would be

assigned to the same pseudo-device or a new pseudo-device. A single cookie can only

belong to one device, so we use the term pseudo-device to represent the simulated

device after splitting a cookie. As part of the CIKM Cup 2016, the Data-Centric

Alliance released anonymized cross-device browsing events data with matched labels.

This dataset allows us to calibrate simulation parameters for device splitting. We

sample a two-week period of browsing events and compute the probability that a

user is using two or more devices based on the number of events from 100 to over 500

by increments of 50. We also compute the probability of whether the devices are used

across overlapping or distinct periods. These probabilities are used to determine the

number of pseudo-devices a cookie will be split into, and by which type (overlapping

versus non-overlapping). After simulating device splitting, we have a training set of

6,000,000 events from 50,000 unique visitors and 175,000 pseudo-devices.

7.3 Device-matching algorithm

Our device-matching algorithm primarily uses two types of information: the URL of

the websites visited, and the timing of web browsing behavior. The URL of websites

visited provides information about the content that is being browsed. We posit that

a single user will have overlaps in the websites he/she browses across his/her devices.

Therefore, we take a natural language processing (NLP) approach to handling the

URLs and construct metrics which can reflect the similarity of browsing pattern

across devices. The timing of web browsing behavior is also an indicator of whether

devices belong to the same user. For some users, different devices are never used

together at the same time (e.g., work versus home desktop) while other users tend to

use multiple devices together (e.g., mobile phone and laptop). We construct metrics

of browsing behavior for each device across the seven day-of-week and twenty-four

hour-of-day blocks.

Using the URLs visited information, we first filter pairwise device combinations

based on websites visited to reduce the number of potential device matches. Next, we

engineer a set of 1,200 predictive features suitable for a state-of-the-art decision-tree

based machine learning algorithm. Finally, we split our dataset of events from the

pseudo-devices to training and validation datasets for tuning model parameters and

estimating predictive performance. After training and tuning the machine learning

matching algorithm, we apply pairwise predictions to the devices in the test set,



Chapter 7. Improving Display Advertising 150

which consists of the set of devices that have previously visited the advertiser’s web-

site (actual retargeting candidates) and another set of devices which have not visited

the advertiser’s website but have shared an IP address with those who have (poten-

tial retargeting candidates). The devices from the potential retargeting candidates

set that are matched to the devices from the true retargeting candidates set are thus

included for retargeting campaigns in the future.

7.3.1 NLP approach to modeling website visits

Individual devices are characterized by a sequence of events which contains the

URLs and timestamps of the website visits. An example of an URL is http:

//www.msn.com/nl-nl/nieuws/binnenland, which is the Dutch landing site of

MSN’s domestic news page. From the URLs, we can infer a user’s behavior on a

device and compute similarity metrics with behavior on other devices. Device pairs

which share more URLs in common are defined to have greater similarity than pairs

that share fewer URLs in common. This is analogous to many applications in the

fields of natural language processing and information retrieval where text documents

are first transformed into numerical vectors and then are classified or retrieved via

operations on those vectors. We model devices’ event histories as documents of URLs

and transform them into numerical values using term frequency inverse document

frequency (Manning et al. 2010) and Doc2Vec (Le and Mikolov 2014). The result

of these transformations are used to compute similarity metrics and ranks for the

initial candidate selection and as features for the machine learning algorithm. We

describe the transformation process in more detail below.

URL structure and hierarchy. Due to the structure of URLs where common

information is stored in different parts of the URL (e.g., www.msn.com/nl-nl and

www.msn.com/en-us are both landing pages for MSN but one is for the Netherlands

and the other for the U.S.). It is not desirable to remove the common information

before the “/” symbol and assume that the Dutch and American landing pages for

MSN are completely different nor to remove the different information after the “/”

and assume that they are exactly the same. To account for the structural information

in URLs we first convert each URL into a set of four URLs using the hierarchical

structure illustrated in Phan et al. (2017). An URL is split into segments via the

“/” symbol and converted into a set of four URLs (H0-H3) as specified:

• H0: only keeping the domain (e.g., www.msn.com)

• H1: domain plus one additional segment (e.g., www.msn.com/nl-nl)

• H2: domain plus two additional segments (e.g., www.msn.com/nl-nl/nieuws)
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• H3: domain plus three additional segments (e.g., www.msn.com/nl-nl/nieuws/

binnenland)

URLs with fewer than four segments do not include the higher level hierarchies and

URLs with more than four segments are truncated as the information after the fourth

segment is often too specific. We use the converted URLs to perform both TF-IDF

and Doc2Vec transformations and compute similarity features.

Term frequency-inverse document frequency (TF-IDF). TF-IDF is a

method which creates a single vector for each URL and computes a numeric value

for the presence of this URL in each document. The value of each URL visited by

a device is defined by the frequency of occurrence of the URL in the device (term

frequency) multiplied by the logarithm of the inverse of the number of devices the

term appeared in (inverse document frequency). This transforms a device’s URLs

into an m×1 vector where m is the total number of unique URLs visited by all

devices. TF-IDF is preferred over simply keeping a vector of counts of each URL in

a device due to its ability to account for the overall popularity. Since we are using

TF-IDF vectors to compute behavioral similarity between two devices, URLs that

are less popular among devices should be awarded greater weight than more popular

URLs. The inverse document frequency part of TF-IDF accounts for this.

Doc2Vec representation of URLs. Doc2Vec (Le and Mikolov 2014) is the docu-

ment level analog of Word2Vec (Mikolov et al. 2013), a neural network based state-of-

the-art method of embedding words with a continuous vector representation. Using

the co-occurrence of words (and context words) in documents, Doc2Vec is able to

identify semantic structure in words such that the vector for “king” minus the vector

for “man” plus the vector for “woman” is equal to the vector for “queen”. Similar

relationships such as countries and capital cities can also be detected. Doc2Vec cre-

ates the vector representation using rolling windows of context words so different

URL hierarchy levels result in significantly different representations of URL vectors.

Therefore, we apply Doc2Vec to each of the four URL hierarchies. Two major param-

eters of Doc2Vec need to be set by the user, the number of vectors in the space and

the window size for how many URLs are included as context URL for a given word.

We use 300 for the number of vectors and a window size of 5 for hierarchy levels H0

and H1, and size of 10 for H2 and H3.

7.3.2 Initial candidate selection

A major challenge of device matching is the large number of device pairs which can

be created from a set of users. There are (n2) unique pairs in a set of n cookies,
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resulting in prohibitively large numbers of pairs for even a small number of devices

(e.g., 50,000 devices results in almost 1.25 billion pairs). Furthermore, the number of

true matches is linear with the number of devices so the ratio of false to true matches

grows quadratically, leading to a severely imbalanced dataset when the number of

devices is large. To reduce the data size to a linear factor of the number of devices,

we follow the method of Phan et al. (2017) and perform candidate selection using

a k-nearest neighbors (kNN) algorithm on TF-IDF and Doc2Vec transformations

of visited website URLs to filter out unlikely device pairs. For each device, (kNN)

identifies the k most similar devices to it based on the specified features and similarity

metric. Here our features are the numerical vectors computed either from TF-IDF

or Doc2Vec (resulting in two sets of candidates), and our similarity metric is the

Euclidean distance, as denoted by ‖devi − devj‖2 for all devices i and j where the

device is characterized by a numerical vector. We select the hyperparameter k which

maximizes the device matching performance on our validation dataset. Beyond using

kNN to do candidate selection we also use distances and ranks from both TF-IDF

and Doc2Vec transformations as features for pairwise prediction.

A drawback of filtering out unlikely device pairs is that we are implicitly assuming

that the excluded pairs are highly unlikely to be from the same user based on our

filtering algorithm. While this step lacks precision (i.e., it is weak at identifying true

device matches), it is still able to find over ninety percent of matched pairs in a

linear factor of the number of devices. This also leads to the advantage of providing

our pairwise matching algorithm with more difficult cases to train, thus improving

its discriminative power.

7.3.3 Pairwise device matching via machine learning

After the initial candidate selection step, we create pairwise features for each can-

didate pair and train a machine learning algorithm to predict whether the pair of

devices belong to the same user. We use gradient boosted decision trees (GBDT),

also called gradient boosting machines (GBM) and multiple additive regression trees

(MART). GBDT is a general purpose classification algorithm and has been the dom-

inant algorithm in winning machine learning competitions such as the KDD Cup

in 2015 (Chen and Guestrin 2016). Although a number of other machine learning

algorithms can be used for pairwise device matching (e.g., logistic regression, neural

networks, support vector machines), we rely exclusively on GBDT in this chapter,

due to its superior performance and flexibility.

GBDT is based around the classification and regression trees (CART) algorithm

(Breiman et al. 1984). The CART algorithm works by finding splits in the data

myopically to minimize the classification error in the training sample. It is prone
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to overfitting as a tree that is deep enough can perfectly the training sample while

generalizing poorly to the unseen test sample. It is also prone to underfitting because

myopic splitting works on one level at a time and is unable to reconsider better splits

from earlier levels. GBDT improves on the CART algorithm by combining many deci-

sion trees, each trained with bootstrapped aggregation of observations and features

(Breiman 1996, 2001). Furthermore, gradient boosting (Friedman 2001) is applied

which trains new decision trees using the residuals of previous trees, thus guiding

the algorithm towards better performance on observations which are more difficult

to predict. This indirectly circumvents the overfitting and underfitting problems of

the CART algorithm.

7.3.4 Feature engineering

A key component of any successful machine learning implementation is feature engi-

neering. Using the combination of websites visited and timing of web browsing

behavior, we create six groups of features used to predict device matches: similar-

ity between devices from numerical vectors of browsed URLs (Euclidean distance,

Manhattan distance, cosine similarity), rank of similarity between devices, indica-

tor for whether the candidate set was selected from the TF-IDF, Doc2Vec, or both

transformations, the number of events for both devices by day-of-week, hour-of-day,

and hour-of-day-of-week, the difference in number of events between the device pair

by day-of-week, hour-of-day, and hour-of-day-of-week, and the number of events the

pair of devices overlap in 5, 10, and 60 minute periods. In total, 1,200 features are

used.

7.4 Device matching performance

There are two steps to the process of measuring the performance of our frame-

work. First, to evaluate our ability to identify device matches, we randomly split

(evenly) the set of pseudo-devices into train and validation sets. For this, we perform

the complete process separately for the two sets, including TF-IDF and Doc2Vec

transformations, filtering for initial candidate selection, and feature engineering. We

subsequently train the GBDT using the train set and then predict device matches

on the validation set. This is the only method to evaluate match performance as true

device matches are unobserved. In the training set we have 17,476 pseudo-devices

from 7,390 pseudo-users and 13,456 true pseudo-device pairs. In the validation set we

have 17,356 pseudo-devices from 7,361 pseudo-users and 13,273 true pseudo-device

pairs.
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Predicted True Predicted False

Actual True 6,792 6,481

Actual False 3,365 468,120

Table 1: Confusion matrix of device match predictions of the validation set

7.4.1 Candidate selection

From the 17,476 and 17,356 pseudo-devices in the train and validation sets, a total

number of over 150 million pairs are possible in each set. This is prohibitively large

for practical purposes as the number of devices often exceed hundreds of thousands.

To reduce the number of potential device pairs we apply the (kNN) algorithm on

TF-IDF and Doc2Vec transformations of visited website URLs to filter out unlikely

device pairs. This results in a reduction to 491,225 candidate pairs for the train set

and 484,758 candidate pairs for the validation set. Unfortunately, the cost of the

reduction in candidate pairs is that some matched pairs are lost in the candidate

pairs which were filtered out. From the 13,456 and 13,273 matched pairs in the

train and validation sets, the total number of matched pairs retained in the selected

candidate pairs are 10,996 and 10,834, respectively. Overall, the initial candidate

selection process is successful as 99.7% of the potential candidate pairs were removed

while still recovering 81.7% of the true matched pairs.

7.4.2 Pairwise matching

The GBDT algorithm predicts a match probability for each of the candidate pairs in

the validation set. To evaluate the quality of the predictions we rely on the following

metrics: accuracy, precision, recall, and F1-score. These metrics reflect how good the

predictions are and they all rely on the confusion matrix which is a 2-by-2 table

(Table 1) of the number of occurrences of:

• True positives (TP): Correctly predicting a match between two devices (cell (1,

1))

• True negatives (TN): Correctly predicting a non-match between two devices (cell

(1, 2))

• False positives (FP): Wrongly predicting a match between two devices (cell (2,

1))

• False negatives (FN): Wrongly predicting a non-match between two devices (cell

(2, 2))
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Threshold Accuracy Precision Recall F1 AUC

0.20 0.977 0.577 0.562 0.569 0.973

0.25 0.979 0.627 0.534 0.577 0.973

0.30 0.980 0.669 0.512 0.580 0.973

0.35 0.980 0.706 0.491 0.579 0.973

0.40 0.981 0.738 0.468 0.573 0.973

Table 2: Evaluation metrics on the validation set

Using the cells from Table 1 we compute the accuracy, precision, recall, and F1-score

as follows:

Accuracy= TP+TN
TP+FP+TN+FN Precision= TP

TP+FP

Recall= TP
TP+FN F1 = 2 ∗ Precision∗RecallPrecision+Recall

Another evaluation metric is the area under the receiver operator characteristic curve

(AUC). The AUC focuses on the relative ranking of predicted match probabilities

of the candidate pairs, and can be interpreted as the probability that a randomly

selected true match pair will have predicted match probability higher than a ran-

domly selected true non-match pair.

The evaluation metrics are presented in Table 2. Note that other than AUC the

evaluation metrics require a threshold to be set, which determines at which predicted

probability the candidate pair is deemed to be a match versus non-match. Increasing

the threshold causes a decrease in the predicted match/non-match ratio. This often

has an indirect effect on the number of TP, TN, FP, and FN, and naturally affects

the accuracy, precision, recall, and F1-score. AUC is unaffected as it is based on the

probabilities and Table 2 shows that with the thresholds set in a range from 0.20 to

0.40, accuracy and precision increases as threshold is raised, while recall decreases.

When the threshold is increased the bar for predicted matches also increases, signif-

icantly decreases the number of FP and increases the number of TN, thus resulting

in improved accuracy and precision. Conversely, increasing the bar for predicted

matches also increases the number of FN which lowers recall. In practice, the metrics

of precision and recall are inversely related and they are often of equal value to the

business problem. The F1-score is used to find the optimal balance between precision

and recall and thereafter in this chapter we use 0.30 as our threshold of choice which

results in the optimal F1-score.
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Figure 1: Schematic of retargeting matched devices

7.5 Economic impact of cross-device matching

The primary purpose of this chapter is to use cross-device matching to identify a

wider audience for retargeting campaigns. To show the potential economic impact

of matching devices, we consider the number of new devices that can be served

retargeting banners and the number of banners that can be served as part of the

matched devices that were not previously retargeting candidates. Figure 1 provides

an example of the process for two devices. Let device A and device B be different

devices belonging to the same user. Using one week of browsing data, we match

device A and B using our machine learning framework. Afterward, when device A

visits the advertiser’s website we are able to subsequently serve retargeting banners

not only to device A but also to device B which did not visit the advertiser’s website,

thus increasing the reach and effectiveness of the retargeting campaign.

To quantify this effect, we apply cross-device matching to devices that have visited

a client of ORTEC Adscience. This client is the e-commerce division of a Dutch

electronics store that focuses on selling cameras, which we will refer to as the “e-

tailer”. There are over 100,000 weekly unique visitors to this e-tailer, of which about
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25,000 can be tracked through the ad-exchange. Devices that are not track-able by

the ad-exchange are excluded from all consideration as they are unavailable for all

display advertisements. These devices may be using browsers which are not track-

able or employ ad-blockers.

With our machine learning framework already fully trained, we first extract three

weeks of events data from all devices that have visited the e-tailer in the past two

months. Next, we also extract three weeks of events data from all devices that have

shared an IP address with devices that have visited the e-tailer, where the shared

IP address cannot be shared by more than 5 devices to exclude public wifi hotspots.

These devices are hereafter called “IP candidates”. We assume that devices that have

not shared an IP address with the e-tailer’s visitors are not shared devices. While

this assumption is strong, it prevents us from attempting to match an intractable

number of devices. Moreover, the sharing of an IP address was found to be the most

predictive feature for device matches (Kim et al 2016, Volkova 2017). In total, there

are 156,196 unique past visitors of the e-tailer and 446,089 IP candidates over the

two months. Using one week of browsing data we predict matches between all past

visitors of the e-tailer with all IP candidates. This resulted in 164,396 matched pairs

that exceeded the 0.3 match probability threshold.

We use the second and third weeks of browsing data to assess the volume of

retargeting candidates. In the second week, we find 25,962 unique devices to visit

the e-tailer that can be tracked on the ad-exchange. These devices made 32,350

total visits to the e-tailer and a total of 130,584 potential retargeting banners can

be served to them—assuming that a device can be retargeted within a seven-day

window of their most recent visit to the e-tailer and a highly conservative maximum

of 5 retargeting banners per device. Of the 25,962 devices to visit the e-tailer, we

find that 2,731 (10.5%) have matches to other devices (IP candidates) that did not

visit the e-tailer. A total of 29,261 device matches are found for those original 2,731

devices and these matches are associated with 48,918 visits to the e-tailer, resulting

in an additional 203,855 potential retargeting banners to be served following the

same rules for the original visitors.

In total, with cross-device matching we are able to potentially reach an additional

113% more devices and serve 156% more retargeting banners for a given retargeting

campaign. Following the precision score based on the validation dataset, we believe

that 66.9% of the additionally reached devices are true matches to the original retar-

geting candidates and the other 33.1% are not. However, since device matching is

performed based on similarity in browsing profiles, the devices that were wrongly

matched can still be excellent targeting candidates as they share similar browsing

profiles with visitors of the e-tailer. Therefore, even though they are not true retar-

geting candidates in the strict sense, the choice to target them may still be of great

benefit to the advertiser.
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7.6 Conclusion

In this chapter, we analyze the effect that predictive device matching could have

on retargeting banner advertisements. First, we show how HTTP cookies can be

matched based on user web browsing behavior information extracted from the ad-

exchange. Relying on a combination of distance metrics and natural language pro-

cessing techniques, we construct browsing patterns of HTTP cookies and make pair-

wise comparisons of the browsing patterns to determine whether two devices belong

to the same user. Using a dataset of cookies that visited an e-commerce website and

other cookies that shared an IP address with these visitors, we trained a supervised

learning algorithm to predict device matches. Results showed that our approach is

able to precisely identify device matches, although many potential matches are lost

due to the initial filtering process. Finally, we show that the economic impact of

cross-device matching can be substantial, leading to a potential increase of 75.4% in

the number of unique retargetable devices and 104.4% in the number of retargeting

advertisements served. Given the relative success of retargeting advertisements in

driving customers to purchase from e-commerce websites, predictive device matching

can significantly increase the overall advertising effectiveness of companies.



Chapter 8

Bibliography

Abe, N., Melville, P., Pendus, C., Reddy, C. K., Jensen, D. L., Thomas, V. P., Ben-

nett, J. J., Anderson, G. F., Cooley, B. R., Kowalczyk, M., et al. (2010). Opti-

mizing debt collections using constrained reinforcement learning. In Proceedings

of the 16th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 75–84. ACM.

Abhishek, V., Fader, P., and Hosanagar, K. (2015). Media exposure through the

funnel: A model of multi-stage attribution. Working paper.

Adroll (2017). State of performance marketing 2017. Available

on: https://www.adroll.com/assets/pdfs/guides-and-reports/

adroll-state-of-performance-marketing-17.pdf.

Aksin, Z., Armony, M., and Mehrotra, V. (2007). The modern call center: A multi-

disciplinary perspective on operations management research. Production and

Operations Management, 16(6):665–688.

Al Hasan, M., Chaoji, V., Salem, S., and Zaki, M. (2006). Link prediction using

supervised learning. In SDM06: Workshop on Link Analysis, Counter-terrorism

and Security.

Anderl, E., Becker, I., Von Wangenheim, F., and Schumann, J. H. (2016). Map-

ping the customer journey: Lessons learned from graph-based online attribution

modeling. International Journal of Research in Marketing, 33(3):457–474.

Ankenman, B., Nelson, B. L., and Staum, J. (2010). Stochastic kriging for simulation

metamodeling. Operations research, 58(2):371–382.

Avramidis, A. N., Chan, W., Gendreau, M., LEcuyer, P., and Pisacane, O. (2010).

Optimizing daily agent scheduling in a multiskill call center. European Journal

of Operational Research, 200(3):822–832.

Barber, D. (2012). Bayesian reasoning and machine learning. Cambridge University

Press.



Chapter 8. Bibliography 160

Barton, R. R. (2015). Tutorial: simulation metamodeling. In Proceedings of the 2015

Winter Simulation Conference, pages 1765–1779.

Barton, R. R. and Meckesheimer, M. (2006). Metamodel-based simulation optimiza-

tion. Handbooks in Operations Research and Management Science, 13:535–574.

Berman, R. (2018). Beyond the last touch: Attribution in online advertising. Mar-

keting Science, 37(5):771–792.

Bertsekas, D. P. and Tsitsiklis, J. N. (1995). Neuro-dynamic programming: an

overview. In Proceedings of the 34th IEEE Conference on Decision and Control,

volume 1, pages 560–564. IEEE.

Bhulai, S. and Koole, G. (2003). A queueing model for call blending in call centers.

IEEE Transactions on Automatic Control, 48(8):1434–1438.

Bhulai, S., Koole, G., and Pot, A. (2008). Simple methods for shift scheduling

in multiskill call centers. Manufacturing & Service Operations Management,

10(3):411–420.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Bodur, M. and Luedtke, J. R. (2017). Mixed-integer rounding enhanced benders

decomposition for multiclass service-system staffing and scheduling with arrival

rate uncertainty. Management Science, 63(7):2073–2091.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2):123–140.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification and

regression trees. CRC press.

Cai, H., Ren, K., Zhang, W., Malialis, K., Wang, J., Yu, Y., and Guo, D. (2017). Real-

time bidding by reinforcement learning in display advertising. In Proceedings

of the Tenth ACM International Conference on Web Search and Data Mining,

pages 661–670. ACM.

Cao, X., Huang, W., and Yu, Y. (2015). Recovering cross-device connections via

mining IP footprints with ensemble learning. In 2015 IEEE International Con-

ference on Data Mining Workshop (ICDMW), pages 1681–1686. IEEE.

Cezik, M. T. and L’Ecuyer, P. (2008). Staffing multiskill call centers via linear

programming and simulation. Management Science, 54(2):310–323.

Chandler-Pepelnjak, J. W. (2010). Modeling conversions in online advertising.

Chehrazi, N., Glynn, P., and Weber, T. A. (2018). Dynamic credit-collections opti-

mization. Management Science, Forthcoming.



161

Chehrazi, N. and Weber, T. A. (2015). Dynamic valuation of delinquent credit-card

accounts. Management Science, 61(12):3077–3096.

Chen, T. and Guestrin, C. (2016). XGBOOST: A scalable tree boosting system. In

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 785–794. ACM.

Coey, D. and Bailey, M. (2016). People and cookies: Imperfect treatment assignment

in online experiments. In Proceedings of the 25th International Conference on

World Wide Web, pages 1103–1111.

Cole, R. (1968). Consumer and Commercial Credit Management (Third Edition).

Richard D. Irwin; Nobleton: Irwin-Dorsey.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning,

20(3):273–297.

Cover, T. M. and Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE

Transactions on Information Theory, 13(1):21–27.

Crook, J. N., Edelman, D. B., and Thomas, L. C. (2007). Recent developments

in consumer credit risk assessment. European Journal of Operational Research,

183(3):1447–1465.

Dalessandro, B., Perlich, C., Stitelman, O., and Provost, F. (2012). Causally moti-

vated attribution for online advertising. In Proceedings of the Sixth International

Workshop on Data Mining for Online Advertising and Internet Economy, page 7.

ACM.

Danaher, P. J. and van Heerde, H. J. (2018). Delusion in attribution: Caveats in using

attribution for multimedia budget allocation. Journal of Marketing Research,

forthcoming.

Dasgupta, A., Gurevich, M., Zhang, L., Tseng, B., and Thomas, A. O. (2012). Over-

coming browser cookie churn with clustering. In Proceedings of the Fifth ACM

International Conference on Web Search and Data Mining, pages 83–92. ACM.

De Almeida Filho, A. T., Mues, C., and Thomas, L. C. (2010). Optimizing the

collections process in consumer credit. Production and Operations Management,

19(6):698–708.

De Haan, E., Wiesel, T., and Pauwels, K. (2016). The effectiveness of different forms

of online advertising for purchase conversion in a multiple-channel attribution

framework. International Journal of Research in Marketing, 33(3):491–507.

Dı́az-Morales, R. (2015). Cross-device tracking: Matching devices and cookies. In

2015 IEEE International Conference on Data Mining Workshop (ICDMW),

pages 1699–1704. IEEE.



Chapter 8. Bibliography 162

Dietterich, T. G. (2000). Ensemble methods in machine learning. In International

Workshop on Multiple Classifier Systems, pages 1–15. Springer.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters,

27(8):861–874.

Federal Reserve Bank of New York (Q1, 2018). Quarterly report on household debt

and credit. Available on: https://www.newyorkfed.org/microeconomics/

hhdc.html.

Friedman, J., Hastie, T., and Tibshirani, R. (2001). The elements of statistical

learning, volume 1. Springer Series in Statistics New York, NY, USA:.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting

machine. Annals of Statistics, pages 1189–1232.

Fukunaga, A., Hamilton, E., Fama, J., Andre, D., Matan, O., and Nourbakhsh, I.

(2002). Staff scheduling for inbound call and customer contact centers. AI

Magazine, 23(4):30.

Gans, N., Koole, G., and Mandelbaum, A. (2003). Telephone call centers: Tutorial,

review, and research prospects. Manufacturing & Service Operations Manage-

ment, 5(2):79–141.

Gastegger, M., Behler, J., and Marquetand, P. (2017). Machine learning molecular

dynamics for the simulation of infrared spectra. Chemical Science, 8(10):6924–

6935.

Ghose, A., Goldfarb, A., and Han, S. P. (2012). How is the mobile internet different?

search costs and local activities. Information Systems Research, 24(3):613–631.

Ghose, A. and Han, S. P. (2011). An empirical analysis of user content generation and

usage behavior on the mobile internet. Management Science, 57(9):1671–1691.

Global Industry Analysts, Inc. (April, 2018). Call centers - a global strategic business

report. Available on: https://www.strategyr.com/Call_Centers_Market_

Report.asp.

GlobalWebIndex (2016). Globalwebindex multi-device ownership. Avail-

able on: https://blog.globalwebindex.com/chart-of-the-day/

digital-consumers-own-3-64-connected-devices/.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Google (2018). Data-driven attribution methodology. https://support.google.

com/analytics/answer/3191594?hl=en. Accessed: 2018-07-25.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with deep

recurrent neural networks. In 2013 IEEE International Conference on Acoustics,

Speech and Signal Processing, pages 6645–6649. IEEE.



163

Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for

nonorthogonal problems. Technometrics, 12(1):55–67.

Ingolfsson, A., Akhmetshina, E., Budge, S., Li, Y., and Wu, X. (2007). A survey

and experimental comparison of service-level-approximation methods for non-

stationary M(t)/M/s(t) queueing systems with exhaustive discipline. INFORMS

Journal on Computing, 19(2):201–214.

Ingolfsson, A., Campello, F., Wu, X., and Cabral, E. (2010). Combining integer

programming and the randomization method to schedule employees. European

Journal of Operational Research, 202(1):153–163.

Interactive Advertising Bureau (2016). IAB internet advertising revenue

report. Available on: https://www.iab.com/wp-content/uploads/2016/04/

IAB_Internet_Advertising_Revenue_Report_FY_2016.pdf.

Ji, W., Wang, X., and Zhang, D. (2016). A probabilistic multi-touch attribution

model for online advertising. In Proceedings of the 25th ACM International

on Conference on Information and Knowledge Management, pages 1373–1382.

ACM.

Johnson, G. A., Lewis, R. A., and Nubbemeyer, E. I. (2017). Ghost ads: Improv-

ing the economics of measuring online ad effectiveness. Journal of Marketing

Research, 54(6):867–884.

Juan, Y., Lefortier, D., and Chapelle, O. (2017). Field-aware factorization machines

in a real-world online advertising system. In Proceedings of the 26th International

Conference on World Wide Web, pages 680–688.

Kalai, E. and Samet, D. (1987). On weighted Shapley values. International Journal

of Game Theory, 16(3):205–222.

Kamvar, M., Kellar, M., Patel, R., and Xu, Y. (2009). Computers and iPhones

and mobile phones, oh my!: a logs-based comparison of search users on different

devices. In Proceedings of the 18th International Conference on World Wide

Web, pages 801–810. ACM.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y.

(2017). Lightgbm: A highly efficient gradient boosting decision tree. In Advances

in Neural Information Processing Systems, pages 3149–3157.

Kejela, G. and Rong, C. (2015). Cross-device consumer identification. In 2015 IEEE

International Conference on Data Mining Workshop (ICDMW), pages 1687–

1689. IEEE.



Chapter 8. Bibliography 164

Kim, M. S., Liu, J., Wang, X., and Yang, W. (2015). Connecting devices to cookies

via filtering, feature engineering, and boosting. In 2015 IEEE International

Conference on Data Mining Workshop (ICDMW), pages 1690–1694. IEEE.

Kim, S., Kini, N., Pujara, J., Koh, E., and Getoor, L. (2017). Probabilistic visitor

stitching on cross-device web logs. In Proceedings of the 26th International

Conference on World Wide Web, pages 1581–1589.

Kireyev, P., Pauwels, K., and Gupta, S. (2016). Do display ads influence search? attri-

bution and dynamics in online advertising. International Journal of Research in

Marketing, 33(3):475–490.

Kleijnen, J. P. (1975). A comment on Blanning’s “Metamodel for sensitivity analysis:

the regression metamodel in simulation”. Interfaces, 5(3):21–23.

Koole, G. and Van Der Sluis, E. (2003). Optimal shift scheduling with a global

service level constraint. IIE Transactions, 35(11):1049–1055.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification

with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105.

Landry, M., Chong, R., et al. (2015). Multi-layer classification: ICDM 2015 Draw-

bridge cross-device connections competition. In 2015 IEEE International Con-

ference on Data Mining Workshop (ICDMW), pages 1695–1698. IEEE.

Le, Q. and Mikolov, T. (2014). Distributed representations of sentences and docu-

ments. In International Conference on Machine Learning, pages 1188–1196.

Lessmann, S., Baesens, B., Seow, H.-V., and Thomas, L. C. (2015). Benchmark-

ing state-of-the-art classification algorithms for credit scoring: An update of

research. European Journal of Operational Research, 247(1):124–136.

Li, H. and Kannan, P. (2014). Attributing conversions in a multichannel online

marketing environment: An empirical model and a field experiment. Journal of

Marketing Research, 51(1):40–56.

Li, S., Wang, Q., and Koole, G. (2018). Optimal contact center staffing and schedul-

ing with machine learning. Working paper.

Lian, J. and Xie, X. (2016). Cross-device user matching based on massive

browse logs: The runner-up solution for the 2016 CIKM Cup. arXiv preprint

arXiv:1610.03928.

Liben-Nowell, D. and Kleinberg, J. (2007). The link-prediction problem for social

networks. Journal of the American Society for Information Science and Tech-

nology, 58(7):1019–1031.



165

Lichtenwalter, R. N., Lussier, J. T., and Chawla, N. V. (2010). New perspectives

and methods in link prediction. In Proceedings of the 16th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 243–

252. ACM.

Liebman, L. H. (1972). A Markov decision model for selecting optimal credit control

policies. Management Science, 18(10):B–519.

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model

predictions. In Advances in Neural Information Processing Systems, pages 4765–

4774.

Manchanda, P. (2015). Consumer search behavior on the mobile internet: An empir-

ical analysis. Working paper.

Manning, C., Raghavan, P., and Schütze, H. (2010). Introduction to information

retrieval. Natural Language Engineering, 16(1):100–103.

McMahan, H. B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J., Nie, L.,

Phillips, T., Davydov, E., Golovin, D., et al. (2013). Ad click prediction: a

view from the trenches. In Proceedings of the 19th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 1222–1230. ACM.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed

representations of words and phrases and their compositionality. In Advances in

Neural Information Processing Systems, pages 3111–3119.

Miller, G., Weatherwax, M., Gardinier, T., Abe, N., Melville, P., Pendus, C., Jensen,

D., Reddy, C. K., Thomas, V., Bennett, J., et al. (2012). Tax collections opti-

mization for New York state. Interfaces, 42(1):74–84.

Mitchner, M. and Peterson, R. P. (1957). An operations-research study of the col-

lection of defaulted loans. Operations Research, 5(4):522–545.

Müller, H., Gove, J., and Webb, J. (2012). Understanding tablet use: A multi-method

exploration. In Proceedings of the 14th International Conference on Human-

Computer Interaction with Mobile devices and Services, pages 1–10. ACM.

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. MIT press.

Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E.,

and Liang, E. (2006). Autonomous inverted helicopter flight via reinforcement

learning. In Experimental Robotics IX, pages 363–372. Springer.

Nielsen, D. (2016). Tree boosting with XGBoost-why does XGBoost win “every”

machine learning competition? Master’s thesis, NTNU.



Chapter 8. Bibliography 166

Nottorf, F. (2014). Modeling the clickstream across multiple online advertising chan-

nels using a binary logit with bayesian mixture of normals. Electronic Commerce

Research and Applications, 13(1):45–55.

Olson, R. S., La Cava, W., Mustahsan, Z., Varik, A., and Moore, J. H. (2018).

Data-driven advice for applying machine learning to bioinformatics problems. In

Pacific Symposium on Biocomputing, volume 23, page 192. NIH Public Access.

Pang, L.-G., Zhou, K., Su, N., Petersen, H., Stöcker, H., and Wang, X.-N. (2018).
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Summary

With the rise of data collection also comes the need for methods to analyze the

data, and for novel approaches of leveraging the data to improve decision-making.

Machine learning is a set of algorithms with the primary purpose of identifying pat-

terns in data to accomplish specific tasks. Since 2012, the number of Google searches

containing the term machine learning has increased by 7 fold, and the data scien-

tist, an occupation that often requires machine learning skills, has been rated by

Glassdoor as the best job in America three years in a row. Academic publications in

machine learning have also enjoyed a significant popularity boost. Although machine

learning has been wildly popular, its scientific success has mostly been captured in

the fields of computer science and artificial intelligence. The use of machine learning

in business research, specifically in the areas of operations management and digital

marketing, has been limited. In this dissertation, I study how machine learning can

be used to solve prominent problems in operations management and digital market-

ing. The primary motivation is to show that the application of machine learning can

solve problems in ways that existing approaches cannot. In its entirety, this disserta-

tion is a study of four problems—two in operations management and two in digital

marketing—and develops solutions to these problems via data-driven approaches by

leveraging machine learning. These four problems are distinct, and are presented in

the form of individual self-containing essays. Each essay is the result of collabora-

tions with industry partners and is of academic and practical importance. In some

cases, the solutions presented in this dissertation outperform existing state-of-the-art

methods, and in other cases, it presents a solution when no reasonable alternatives

are available.

Chapter 2 provides an introduction to the basics of machine learning. Chapter

3 studies the problem of consumer debt collection. For this problem, I develop a

data-driven algorithm to optimize when and to whom phone calls should be made

to maximize the collection of delinquent debt cases. This algorithm was tested in a

controlled experiment at a Dutch collection agency and was found to have increased

the amount of debt collected per call by 47.2%. Chapter 4 studies the problem of

contact center staffing and scheduling. For this problem, I develop a machine learning

approach to accurately approximate a complex simulation of contact centers, leading

to a fast and reliable method for identifying high-quality staffing schedules at low

costs. Using numerical simulations that represent real-life contact centers, it is found

that my approach can improve upon the existing approaches by over 4%, and is able

to analyze more complex contact centers than previously possible.
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Chapter 5 studies the problem of attribution of online purchases to digital adver-

tisements. For this problem, I develop a new attribution model that extends a well-

known existing framework to incorporate customers’ web-browsing behavior when

evaluating the effectiveness of digital advertisements. Using data from a Dutch online

travel agency, it is shown that customers’ web-browsing behavior are highly predic-

tive of purchasing decisions, and thus should be taken into account when attribut-

ing purchases. This solution is currently the only attribution model that is able to

incorporate web-browsing behavior at the individual customer level. Finally, Chap-

ters 6 and 7 studies the problem of probabilistically matching web-browsing devices

(or browser cookies) to users based on browsing behavior. I consider two different

instances of this problem, one of devices browsing a single news publishing website

(Chapter 6) and another of devices captured by an ad exchange (Chapter 7), and

develop solutions to them separately. In both cases, I show that matching can be

performed with good reliability, and that display advertising firms can potentially

use this technology to improve their advertising effectiveness.

All in all, I hope that this dissertation can help the reader better understand how

machine learning can be used to solve operations management or digital marketing

problems.



173

Samenvatting

Met de opkomst van dataverzameling ontstaat ook de behoefte voor methodes om

de data te analyseren, en voor innovatieve benaderingen van het gebruik van de

gegevens om de besluitvorming te verbeteren. Machine learning is een verzameling

van algoritmes met als primair doel het identificeren van patronen in gegevens om

specifieke taken uit te voeren. Sinds 2012 is het aantal Google-zoekopdrachten met

de term machine learning met een factor 7 toegenomen en het beroep data scien-

tist, dat vaak vaardigheden in machine-learning vereist, is door Glassdoor, voor het

derde jaar op rij, beoordeeld als het beste beroep in Amerika. Academische publi-

caties in machine learning hebben ook een significante populariteits-groei genoten.

Hoewel machine learning razend populair is geweest, is het wetenschappelijke succes

ervan voornamelijk behaald op het gebied van computerwetenschap en kunstmatige

intelligentie. Het gebruik van machine learning in bedrijfsonderzoek, met name op

het gebied van operations management en digitale marketing, is tot nu toe beperkt

gebleven. In dit proefschrift bestudeer ik hoe machine learning toegepast kan wor-

den om prominente problemen in operations management en digitale marketing op

te lossen. De primaire motivatie is om te laten zien dat men met de toepassing

van machine learning problemen op kan lossen die bestaande methoden niet kun-

nen oplossen. Dit proefschrift is een studie van in totaal vier problemen—twee in

operations management en twee in digital marketing—en dit proefschrift ontwikkeld

oplossingen voor deze problemen via data-gedreven benaderingen met het gebruik

van machine learning. Deze vier problemen zijn verschillend, en worden gepresenteerd

in de vorm van opzichzelfstaande essays. Elke essay is het resultaat van samenwerkin-

gen met partners uit de industrie, en zijn van praktisch en academisch belang. In

sommige gevallen overtreffen de oplossingen in dit proefschrift de bestaande state-

of-the-art-methoden en in andere gevallen bieden ze een oplossing wanneer er geen

redelijke alternatieven beschikbaar zijn.

Hoofdstuk 2 biedt een introductie tot de basisprincipes van machine learning.

Hoofdstuk 3 bestudeert het probleem van incasso van consumenten. Voor dit prob-

leem ontwikkel ik een data-gedreven algoritme dat optimaliseert wanneer en met

wie telefoongesprekken moeten worden gevoerd om het verzamelde schuldbedrag van

delinquenten te maximaliseren. Dit algoritme is getoetst in een gecontroleerd exper-

iment bij een Nederlands incassobureau en bleek een de hoeveelheid gëıncasseerde

schuld per oproep met 47,2% te hebben doen toenemen. Hoofdstuk 4 bestudeert

het probleem van bezetting en planning van contactcentra. Voor dit probleem

ontwikkel ik een machine learning benadering om de complexe situatie van call cen-

ters nauwkeurig te benaderen, wat leidt tot een snelle en betrouwbare methode voor
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het identificeren van hoogwaardige personeelsplanning tegen lage kosten. Met het

gebruik van numerieke simulaties die realistische call centers representeren, is het

gebleken dat mijn aanpak de bestaande benaderingen met meer dan 4% kan ver-

beteren en in staat is om meer complexe call centers te analyseren dan voorheen

mogelijk was.

Hoofdstuk 5 bestudeert het probleem van attributie van online aankopen aan dig-

itale advertenties. Voor dit probleem ontwikkel ik een nieuw model dat een bekend

bestaand kader voor het evalueren van de effectiviteit van digitale advertenties uit-

breidt door het surfgedrag van klanten te integreren. Aan de hand van gegevens van

een Nederlands online reisbureau wordt aangetoond dat het surfgedrag van klanten

zeer goed voorspelbaar is bij aankoopbeslissingen en daarmee rekening moet worden

gehouden bij attributie van aankopen. De oplossing is momenteel het enige model dat

toewijzingen van aankopen aan advertenties doet, dat in staat is om surfgedrag van

individuele klanten te incorporeren. Tenslotte, hoofdstukken 6 en 7 bestuderen het

probleem van het probabilistisch vergelijken van mobiele apparaten (of browser cook-

ies) voor gebruikers, op basis van surfgedrag. Ik beschouw twee verschillende voor-

beelden van dit probleem, een waarbij ik mobiele apparaten beschouw die browsen op

een enkele website voor nieuwsuitgeverijen (hoofdstuk 6) en een waarbij ik een mobiel

apparaat beschouw dat is vastgelegd door een advertentie-uitwisseling (hoofdstuk 7).

Ik ontwikkel voor beide aparte oplossingen en laat in beide gevallen zien dat matches

met goede betrouwbaarheid kunnen worden gemaakt en dat display-reclamebureaus

deze technologie mogelijk kunnen gebruiken om de effectiviteit van hun advertenties

te verbeteren.

Al met al hoop ik dat dit proefschrift de lezer kan helpen om beter te begrijpen

hoe machine learning kan worden gebruikt om problemen in operations management

of digitale marketing op te lossen.


