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Review of Jovanovic et al.

One of the major hallmarks of Parkin-
son’s disease (PD) is the loss of dopamine
release in the striatum resulting from
progressive loss of mesodiencephalic
dopamine-producing (mdDA) neurons.
In PD, the most vulnerable neurons are in
the ventral tier of the substantia nigra
(SN); mdDA neurons in the adjacent ven-
tral tegmental area (VTA) are mostly
spared (Kalia and Lang, 2015). Studies
that have characterized the embryonic
pathways underlying mdDA neuron spec-
ification and differentiation, have shown
that numerous signaling molecules, in-
cluding sonic hedgehog, fibroblast growth
factors, and Wnts influence the differenti-
ation of mdDA neuronal subsets (Veenv-
liet and Smidt, 2014; Arenas et al., 2015).
This knowledge has guided the design of
protocols to differentiate stem cells into
DA neurons, for both transplantation and
in vitro PD models. Still, these protocols typ-
ically yield low numbers of fully differenti-
ated DA neurons. Therefore, the search
for more efficient protocols based on a
greater understanding of mdDA neuron

development in vivo continues (Arenas
et al., 2015).

A recent paper published in The Jour-
nal of Neuroscience investigated whether
the bone morphogenetic protein (BMP)/
SMAD signaling pathway plays a role in
the development of mdDA neurons (Jo-
vanovic et al., 2018). BMPs are members
of the transforming growth factor �
(TGF-�) superfamily and binding to the
BMP type I receptor results in phosphor-
ylation of receptor-regulated SMADs,
that is, SMAD1/5/8. The phosphorylated
(p)-SMAD protein establishes a complex
with a partner SMAD protein resulting
in nuclear translocation and subsequent
regulation of target genes (Katagiri and
Watabe, 2016). BMPs play an important
role in the development of the CNS,
contributing to processes such as neu-
rulation, neurogenesis, and neuronal
differentiation (for review, see Bond et
al., 2012).

Jovanovic et al. (2018) first demon-
strated the presence of p-SMAD1/5/8 pro-
teins together with transcript expression
of Bmp5/6/7 and the BMP receptor Ib in
the embryonic mesencephalic flexure (their
Fig. 1). Next, they used several combina-
tions of single and double BMP knock-
out (KO) animal strains (Bmp5, Bmp6,
Bmp7, Bmp5/6, and Bmp6/7) to investi-
gate the function of BMPs in mdDA de-
velopment. They found no effect on the
expression of the dopamine transporter

suggesting no changes in mdDA neuronal
formation in these mutants. In contrast,
the Bmp5/7 double mutant, which was in-
vestigated at embryonic day (E)10 be-
cause these animals do not survive past
this age (Solloway and Robertson, 1999),
revealed that expression of Nurr1, a tran-
scription factor that is required for the ex-
pression of tyrosine hydroxylase (Th),
a pivotal marker of the DA phenotype
(Zetterström et al., 1997; Smits et al.,
2003), was absent (Jovanovic et al., 2018,
their Fig. 1). Therefore, the authors con-
cluded that postmitotic DA neurons failed
to develop in the Bmp5/7 KO.

The authors next explored prolifera-
tion and neurogenesis, using the tran-
scription factor Lmx1a/b to mark a mdDA
progenitor region and phospho-HISTONE
H3 to visualize mitotic cells. Fewer mdDA
progenitors were present at E10.5 in
Bmp5/7 KO embryos than in controls
(Jovanovic et al., 2018, their Fig. 2). Im-
portantly, the reduction of neuronal
progenitors was restricted to the Lmx1a-
positive subset, suggesting that Bmp5/7
specifically regulates the proliferation of
mdDA progenitors. The authors subse-
quently showed that Msx1/2 and Ngn2,
two proneuronal transcription factors that
act sequentially to drive normal mdDA pro-
genitor development (Andersson et al.,
2006), were downregulated in Bmp5/7 mu-
tants. These data suggest that neurogenesis
is reduced in the Bmp5/7 mutant, and that
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Bmp5/7 promotes Msx1/2 expression. As
such Bmp5/7 could be included in a previ-
ously proposed developmental model (An-
dersson et al., 2006), in which Bmp5/7
drives Msx1/2 expression, and consequently
Ngn2 expression in the mdDA progenitor
domain.

To test whether receptor-regulated
SMAD signaling is required for mdDA
neurogenesis, the Nestin-cre driver was
used to conditionally delete Smad1 in
neural precursor cells (Smad1 Nes). Be-
cause Smad1 Nes mutants survived past
birth, the authors were able to investigate
SMAD function in postmitotic mdDA
neurons. This approach revealed a pro-
longed proliferation phase, which was ac-
companied by a reduction of postmitotic
mdDA neurons (Jovanovic et al., 2018,
their Fig. 5). To test whether the SN and
VTA were equally affected by the absence
of Smad1, the authors examined the ex-
pression of subset-specific markers within
Th-positive neurons, specifically Sox6
and Girk2 to identify SN neurons and
Calb to visualize VTA neurons (Poulin et
al., 2014). The number of Th�/Sox6�
and Th�/Girk2� double-positive neu-
rons were reduced in Smad1 Nes mutants,
whereas the ratio of Th�/Calb� double-
positive neurons remained unchanged,
suggesting that the loss of Smad1 affects
SN neurons more than VTA neurons (Jo-
vanovic et al., 2018, their Fig. 6).

These results led Jovanovic et al.
(2018) to hypothesize that enhancing
BMP/SMAD signaling would increase pu-
rity when generating DA neurons from
induced neural stem cells (iNSCs). Im-
portantly, BMP/SMAD signaling is gener-
ally inhibited in early phases to convert
stem cells into neural stem cells (Cham-
bers et al., 2009). Consistent with their hy-
pothesis, adding BMP5 and BMP7 to the
final maturation phase of a standard pro-
tocol for the induction of DA neurons, but
without changing the intermediate differ-
entiation phase toward dopamine precur-
sors (Reinhardt et al., 2013), the authors
accomplished a 2- to 3-fold increase of
Th� neurons as a portion of total (TuJ�)
neurons. Furthermore, they observed a
higher percentage of Th� cells coexpress-
ing SN-marker Girk2 (�8%) than Th�
neurons that coexpressed VTA-marker
Calb (�3%; Jovanovic et al., 2018, their
Fig. 7). Whether this represented a sig-
nificant difference was not indicated
however. Nonetheless, the authors con-
cluded that the BMP/SMAD signaling
pathway could be used to program neu-
ronal stem cells into DA neurons more
efficiently.

How does the BMP/SMAD pathway
promote SN neuronal identity?

Jovanovic et al. (2018) provide com-
pelling data suggesting the importance of
BMP/SMAD signaling in mdDA neuronal
development. Moreover, they reveal that
this signaling pathway might be involved
in mdDA subset specification, as they re-
port a significant loss of Th� neurons that
express SN markers (i.e., Sox6�, Girk2�),
when BMP/SMAD signaling is disrupted.
In contrast, the percentage of Th�/Calb�
neurons, a VTA marker, remained un-
changed in SmadNes1 mutants (Jovanovic
et al., 2018, their Fig. 6). What might ex-
plain the reduction of SN neurons in
Smad1Nes mutants?

One clue is the reduced number of
Th� neurons that also express the tran-
scription factor Pitx3� at E14.5 and P0 in
Smad1 Nes mutants (Jovanovic et al., 2018,
their Fig. 6). Indeed, several papers have
shown that Pitx3 is essential for the devel-
opment of SN neurons (Nunes et al.,
2003; van den Munckhof et al., 2003;
Smidt et al., 2004). Whether the SMAD/
BMP pathway regulates Pitx3 expression
directly or indirectly in mdDA progeni-
tors is unclear. However, a candidate to
mediate indirect regulation is the tran-
scription factor En1, because the En1�
fraction of TH-neurons was reduced in
the experiments by Jovanovic et al. (2018)
(their Fig. 6), and En1 is a known regula-
tor of Pitx3 (Veenvliet et al., 2013; Kou-
wenhoven et al., 2017).

Another clue is the relationship be-
tween the temporal expression of Bmp5/7
in the mesencephalon and the different
time points at which SN and VTA neurons
are born. Previous work suggests that the
majority of SN neurons are born at E10,
whereas VTA neurons are predominantly
born between E10 and E12 (Bye et al.,
2012). From the Jovanovic et al. (2018)
study, it is clear that Bmp7 transcript,
BMP5, and p-SMAD1/5/8 proteins are al-
ready present within or very close to the
mdDA progenitor domain at E10 (their
Fig. 1). This means that at the peak of SN
neurogenesis, several components of the
BMP/SMAD pathway are present and
could thus shape the specific developmen-
tal profile of these cells. In contrast, a large
percentage of VTA neurons are born after
E10 and might therefore be exposed to a
lesser degree to BMP/SMAD signaling.
More detailed information on the temporal
expression of the BMP/SMAD components
in the mesencephalon could provide insight
regarding this hypothesis.

Improved iNSC protocol by
incorporating BMP/SMAD pathway
In the second part of their paper, Jo-
vanovic et al. (2018) focus on optimizing
the in vitro generation of DA neurons by
adding BMP5/7 to the maturation stage of
a typical protocol. Notably, this altered
protocol seems to generate a larger num-
ber of Th� neurons (as a portion of
Tuj1� cells). The reason for this improve-
ment is unfortunately not easily ex-
plained. The in vivo data (Jovanovic et al.,
2018, their Figs. 1–5) strongly support a
role for BMPs in developmental regula-
tion of early mdDA progenitors. How-
ever, the supplementation of BMPs to the
in vitro protocol occurs during the (later)
maturation phase. It is possible that the
increased Th� yield results from a neu-
rotrophic effect of BMPs, because it has
been shown that BMP7 can protect DA
neurons against toxins in vivo (Harvey et
al., 2004) and can be neuroprotective for
primary neurons as well (Cox et al., 2004;
Chou et al., 2008).

In addition to increasing Th� yield,
the supplementation of BMP5 and BMP7
could possibly form a new lead to a proto-
col that also produces Th� cells that more
often coexpress the SN-specific marker
Girk2 than the VTA-specific marker Calb.
Two recent studies described another ef-
fective method to promote the produc-
tion of differentiated DA neurons: the use
of the cell surface marker Corin (Doi et al.,
2014; Kikuchi et al., 2017). These are all
exciting results in terms of the search for a
protocol that generates in vitro DA neu-
rons with a SN character that could re-
place the SN neurons that have been lost
in PD. Notably however, are the results
of another recent paper (Kirkeby et al.,
2017), showing that striatal transplanta-
tion of DA progenitors with a caudal-
mesencephalic phenotype, i.e., expressing
markers generally more associated with a
VTA phenotype, represented more suc-
cessful grafts, than DA progenitors with a
diencephalic phenotype. Combined, these
studies suggest that it is essential to care-
fully choose appropriate DA neuron pro-
genitors for effective transplantation. In
light of this, the conclusion that BMP/
SMAD signaling influences mdDA progen-
itors in vivo and may potentially regulate SN
and VTA subsets through transcription fac-
tors such as En1 or Pitx3, is valuable for the
optimization of protocols that reprogram
neuronal stem cells.
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