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Abstract

In this dissertation we study how efficiently quantum computers can solve var-
ious problems, and how large speedups can be achieved compared to classical
computers. In particular we develop a generic quantum algorithmic framework
that we call “quantum singular value transformation”, and show how it unifies a
large number of prominent quantum algorithms. Then we show several problems
where quantum singular value transformation leads to new quantum algorithms
or improves various aspects of earlier approaches.

In Chapter 2 we develop a new quantum singular value transformation al-
gorithm capable of working with exponentially large matrices, that can apply
polynomial transformations to the singular values of a block of a unitary. The
proposed quantum circuits have a very simple structure, often give rise to optimal
algorithms and have appealing constant factors, while typically only using a con-
stant number of ancilla qubits. We prove several properties of quantum singular
value transformation, including its robustness.

In Chapter 3 we show that quantum singular value transformation leads to
novel algorithms. We propose a new method for singular value estimation, and
also show how to exponentially improve the complexity of implementing fractional
queries to unitaries with a gapped spectrum. Finally, as a quantum machine
learning application we show how to efficiently implement principal component
regression. We also show that quantum singular value transformation leads to
a unified framework of quantum algorithms incorporating a variety of quantum
speed-ups. Using this framework we can describe many quantum algorithms on
a high level, hopefully making them accessible to researchers even outside the
quantum algorithm community. We illustrate this by showing how our meta-
algorithm generalizes a number of prominent quantum algorithms, and quickly
derive the following algorithms: optimal Hamiltonian simulation, implementing
the Moore-Penrose pseudoinverse (i.e., the HHL algorithm) with exponential pre-
cision, fixed-point amplitude amplification, robust oblivious amplitude amplifi-
cation, fast QMA amplification, fast quantum OR lemma, certain quantum walk

xv



results and several quantum machine learning algorithms. In order to exploit
the strengths of the presented method, it is useful to know its limitations too,
therefore we also prove a bound on the efficiency of quantum singular value trans-
formation, which often gives optimal lower bounds.

In Chapter 4 we develop an improved quantum algorithm for computing the
gradient of a multivariate real-valued function f : Rd → R by evaluating it at only
a logarithmic number of points in superposition. Our algorithm is an improved
version of Jordan’s gradient computation algorithm [Jor05], providing an approxi-
mation of the gradient∇f with quadratically better dependence on the evaluation
accuracy of f , for an important class of smooth functions. Furthermore, we show
that most objective functions arising from a class of quantum optimization proce-
dures satisfy the necessary smoothness conditions, hence our algorithm improves
the runtime of prior approaches for training quantum auto-encoders, variational
quantum eigensolvers (VQE), and quantum approximate optimization algorithms
(QAOA). Finally we prove that in a continuous phase-query model, our gradient
computation algorithm has essentially optimal query complexity, for a class of
smooth functions. For our lower bound we derive a continuous input version of
the so-called hybrid method.

In Chapter 5 we study to what extent quantum algorithms can speed up
solving convex optimization problems. Following the classical literature we as-
sume access to a convex set via various oracles, and we examine the efficiency
of reductions between the different oracles. In particular, we show how a sepa-
ration oracle can be implemented using Õ(1) quantum queries to a membership
oracle, which is an exponential quantum speed-up over the Ω(n) membership
queries that are needed classically. We show that a quantum computer can very
efficiently compute an approximate subgradient of a convex Lipschitz function.
Combining this with a simplification of recent classical work of Lee, Sidford, and
Vempala [LSV18] gives our efficient separation oracle. This in turn implies, via a
known algorithm, that Õ(n) quantum queries to a membership oracle suffice to
implement an optimization oracle (the best known classical upper bound on the
number of membership queries is quadratic). We also prove several lower bounds:
Ω(
√
n) quantum separation (or membership) queries are needed for optimization

if the algorithm knows an interior point of the convex set, and Ω(n) quantum
separation queries are needed if it does not.

InChapter 6 we take a new perspective on quantum SDP-solvers, introducing
several new techniques, and improve on all prior quantum algorithms for SDP-
solving. Our new input model generalizes all prior input models, and assumes
that the input matrices are provided as block-encodings. In this model we give
a Õ((

√
m+

√
nγ)αγ4) algorithm, where n is the size of the matrices, m is the

number of constraints, γ is the reciprocal of the scale-invariant relative precision
parameter, and α is a normalization factor of the input matrices. In particular
for the standard sparse-matrix access model, the above result gives a quantum

xvi



algorithm where α equals the sparsity s. We also improve on recent results of
Brandão et al. [BKL+18], who consider the special case when the input matrices
are proportional to mixed quantum states that one can query. For this model
Brandão et al. [BKL+18] showed that the dependence on n can be replaced by a
polynomial dependence on both the rank and the trace of the input matrices. We
remove the dependence on the rank and hence require only a dependence on the
trace of the input matrices. We also show an application to the problem of shadow
tomography, recently introduced by Aaronson [Aar18]. Finally we prove a new
Ω̃(
√
mαγ) lower bound for solving LPs and SDPs in the quantum operator model,

which also implies a lower bound for the model of Brandão et al. [BKL+18].
In Chapter 7 we study constructive versions of the Lovász Local Lemma

(LLL) and its quantum generalization. The quantum Lovász Local Lemma can
be stated in terms of frustration-free local Hamiltonians: these Hamiltonians have
the property that their ground state minimizes the energy of all local terms simul-
taneously. We improve on the previous constructive quantum results by designing
an algorithm that works efficiently for non-commuting terms as well, assuming
that the system is “uniformly” gapped, by which we mean that the system and
all its subsystems have an energy gap that is at least inverse polynomially large.
We generalize and simplify Moser’s classical “compression argument”, and derive
a non-commutative quantum version of the famous Moser-Tardos resampling al-
gorithm. Finally, in the so-called variable version of the classical LLL we find
optimal bounds for the “guaranteed-to-be-feasible” probabilities on cyclic depen-
dency graphs, and show that this region is always strictly larger than in the generic
non-variable version, where Shearer’s bound is optimal. This in turn shows a sep-
aration between the variable version of the classical and the quantum LLL.
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Samenvatting

In dit proefschrift bestuderen we hoe efficiënt quantum computers verschillende
problemen kunnen oplossen en de mate waarin dit sneller kan in vergelijking met
klassieke computers. In het bijzonder ontwikkelen we een algemeen raamwerk
voor quantum algoritmes dat we “quantum singulierewaardentransformatie” noe-
men, en we laten zien hoe dit een groot aantal prominente quantum algoritmes
unificeert. Vervolgens laten we een aantal problemen zien waarbij dit raamwerk
tot nieuwe quantum algoritmes of verbeteringen van bestaande algoritmes leidt.

In Hoofdstuk 2 ontwikkelen we een nieuw quantum algoritme voor de singu-
lierewaardentransformatie dat overweg kan met exponentieel grote matrices en
dat polynomiale transformaties kan toepassen op de singuliere waarden van een
blok van een unitaire matrix. De voorgestelde quantum circuits hebben een heel
simpele structuur, geven vaak optimale algoritmes en hebben aantrekkelijke con-
stante factoren, terwijl ze meestal maar een constant aantal ancilla qubits ge-
bruiken. We bewijzen verschillende eigenschappen van de quantum singuliere-
waardentransformatie waaronder haar robuustheid.

In Hoofdstuk 3 laten we zien hoe de quantum singulierewaardentransforma-
tie tot nieuwe algoritmes leidt. We stellen een nieuwe methode voor om singuliere
waarden te benaderen en we behalen exponentiële verbeteringen in de complex-
iteit van het implementeren van fractionele queries aan unitairen met een gapped
spectrum. Als toepassing voor quantum machine learning geven we ten slotte
een efficiënte implementatie van principale-componentenregressie. We laten ook
zien dat de quantum singulierewaardentransformatie leidt tot een geünificeerd
raamwerk van quantum algoritmes waar verscheidene quantum versnellingen bij
zitten. Met dit raamwerk kunnen we veel quantum algoritmes op een hoog niveau
beschrijven en daarmee zelfs toegankelijk maken voor onderzoekers buiten de
quantum algoritmes gemeenschap. We illustreren dit door een aantal promi-
nente quantum algoritmes te generaliseren in ons raamwerk en leiden kort de
volgende algoritmes af: optimale simulatie van Hamiltonianen, impementatie van
de Moore-Penrose pseudoinverse (d.w.z. het HHL algoritme) met exponentiële
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precisie, de zogeheten “fixed-point amplitude amplification”, robuuste “oblivious
amplitude amplification”, snelle QMA amplificatie, het snelle quantum OR lemma,
bepaalde quantum walk resultaten en een aantal quantum machine learning al-
goritmes. Om de methode volledig te benutten is het ook waardevol om de
beperkingen te kennen en daarom bewijzen we ook een grens op de efficiëntie
van de quantum singulierewaardentransformatie, die vaak optimale ondergrenzen
geeft.

In Hoofdstuk 4 ontwikkelen we een verbeterd quantum algoritme om de
gradiënt van een multivariate reëelwaardige functie f : Rd → R te berekenen door
deze hooguit op een logaritmisch aantal punten te evalueren in superpositie. Ons
algoritme is een verbeterde versie van Jordans algoritme [Jor05] en geeft een be-
nadering van de gradiënt∇f met kwadratisch betere afhankelijkheid van de evalu-
atienauwkeurigheid van f , voor een belangrijke klasse van gladde functies. Verder
laten we zien dat de meeste doelfuncties die voortkomen uit een klasse quantum
optimalisatieprocedures voldoen aan de benodigde gladheidseigenschappen. Hi-
erdoor verbetert ons algoritme de looptijd van bestaande algoritmes voor het
trainen van zogeheten quantum auto-encoders, variationele quantum eigensolvers
(VQE) en quantum approximate optimization algorithms (QAOA). Ten slotte be-
wijzen we dat in een continu fase-query model ons algoritme een optimale query
complexiteit heeft voor een klasse van gladde functies. Voor onze ondergrens
leiden we een continue invoer versie af van de zogeheten hybride methode.

InHoofdstuk 5 onderzoeken we in hoeverre quantum algoritmes het oplossen
van convexe optimalisatie problemen kunnen versnellen. Net als in de klassieke
literatuur beschouwen we verschillende manieren van toegang tot de convexe
verzameling (zogeheten oracles), en we bestuderen de efficiëntie van de reducties
tussen de verschillende oracles. In het bijzonder laten we zien hoe een “separatie
oracle” kan worden geïmplementeerd met Õ(1) quantum queries naar een “mem-
bership oracle”, wat een exponentiële verbetering is ten opzichte van de Ω(n)
queries die klassiek nodig zijn. We laten zien dat een quantum computer heel
efficiënt een benadering kan uitrekenen van een subgradiënt van een convexe Lip-
schitz functie. Dit combineren we met een versimpelde versie van het recente
klassieke resultaat van Lee, Sidford, en Vempala [LSV18] om efficiënt een sepa-
ratie oracle te krijgen. Vervolgens impliceert dit, via een bekend algoritme, dat
Õ(n) quantum queries aan een membership oracle voldoende zijn om een opti-
malisatie oracle te implementeren (de best bekende klassieke bovengrens op het
aantal membership queries is kwadratisch). We bewijzen ook verschillende on-
dergrenzen: Ω(

√
n) quantum separatie (of membership) queries zijn nodig voor

optimalisatie als het algoritme een intern punt van de convexe verzameling weet,
en Ω(n) quantum separatie queries zijn nodig als dat niet zo is.

In Hoofdstuk 6 geven we een nieuwe kijk op quantum algoritmes voor het
oplossen van SDPs. We introduceren verschillende nieuwe technieken en ver-
beteren voorgaande quantum algoritmes voor het oplossen van SDPs. Ons nieuwe
invoermodel generaliseert alle voorgaande modellen en berust op de aanname dat
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de invoer matrices als blok-codering worden gegeven. In dit model geven we een
Õ((
√
m+

√
nγ)αγ4) algoritme, waarbij n de grootte van de matrices is, m het

aantal randvoorwaarden, γ is de reciproke van de schaal-invariante precisiepa-
rameter, en α is een normalisatiefactor van de invoermatrices. In het bijzonder,
voor het standaard sparse-matrixtoegangsmodel geeft het genoemde resultaat een
quantum algoritme waar α gelijk is aan de zogeheten sparsity s. We geven ook
een verbetering van een recent resultaat van Brandão et al. [BKL+18], die een
speciaal geval bekijken waar de invoermatrices proportioneel zijn aan quantum
dichtheidsmatrices. Voor dit model laten Brandão et al. [BKL+18] zien dat de
afhankelijkheid van n vervangen kan worden door een polynomiale afhankelijkheid
van de rang en het spoor van de invoermatrices. Ons resultaat haalt de afhanke-
lijkheid van de rang weg en we houden alleen afhankelijkheid van het spoor over.
We laten ook een toepassing zien voor het probleem van schaduwtomografie, re-
cent geïntroduceerd door Aaronson [Aar18]. Ten slotte bewijzen we een nieuwe
Ω̃(
√
mαγ) ondergrens voor het oplossen van LPs en SDPs in het quantum oper-

ator model, wat ook een ondergrens impliceert voor het model van Brandão et
al. [BKL+18].

In Hoofdstuk 7 bestuderen we constructieve versies van het Lovász Local
Lemma (LLL) en de quantum generalisatie ervan. Het quantum Lovász Local
Lemma kan worden geformuleerd in termen van zogeheten frustratievrije lokale
Hamiltonianen. Deze Hamiltonianen hebben de eigenschap dat hun grondtoe-
stand de energie van alle lokale termen tegelijk minimaliseert. We verbeteren de
voorgaande constructieve quantum resultaten door een algoritme te ontwikkelen
dat ook efficiënt met termen kan omgaan die niet commuteren, onder de aanname
dat het systeem “uniformly gapped” is. Dit betekent dat het systeem en alle deel-
systemen een energiekloof hebben die ten minste invers-polynomiaal groot is. We
generaliseren en versimpelen Mosers klassieke “compressie-argument” en leiden
een niet-commutatieve quantum versie af van het bekende Moser-Tardos resamp-
ling algoritme. Ten slotte, in de zogeheten variabele versie van het klassieke LLL
verkrijgen we optimale grenzen voor de kansen op cyclische afhankelijkheidsgrafen
die een oplossing garanderen, en we laten zien dat dit gebied altijd strikt groter is
dan in het algemene niet-variabele geval, waar de grens van Shearer optimaal is.
Dit laat vervolgens een scheiding zien tussen de variabele versie van het klassieke
en quantum LLL.
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Kivonat

E disszertáció azt járja körül, hogy a kvantumszámítógépek mennyire hatékonyan
tudnak megoldani különböző problémákat, illetve mekkora „kvantumos gyorsí-
tás” érhető el a klasszikus számítógépekhez viszonyítva. Ennek érdekében fel-
építjük a „kvantumos szingulárisérték-transzformáció” általános algoritmikus ke-
retrendszerét, amivel számos nevezetes kvantumalgoritmus egységesen leírható.
Több fontos számítási feladattal illusztráljuk, hogy a kvantumos szingulárisérték-
transzformáció új algoritmusok kifejlesztését teszi lehetővé, illetve korábbi meg-
oldások különböző aspektusain képes javítani.

A 2. fejezetben felépítünk egy új szingulárisérték-transzformációs kvantum-
algoritmust, ami képes exponenciálisan nagy mátrixokkal dolgozni, oly módon,
hogy egy unitér mátrix bizonyos blokkjának szinguláris értékein hajt végre va-
lamilyen polinomiális transzformációt. A felvázolt kvantumáramkörök nagyon
egyszerű struktúrájúak, gyakran optimális algoritmusokhoz vezetnek, méretük
kedvező konstans faktorokkal skálázódik, valamint tipikusan csak konstans sok
ancilla kvantumbitet használnak. A kvantumos szingulárisérték-transzformáció
számos tulajdonságát vizsgáljuk, többek között bebizonyítjuk hogy a bement ap-
ró pontatlansága mellett is megbízhatóan működik.

A 3. fejezetben demonstráljuk, hogy a kvantumos szingulárisérték-transzfor-
máció új algoritmusok kifejlesztését teszi lehetővé. Új módszert adunk kvantu-
mos szingulárisérték-becslésre, és exponenciális mértékben javítunk spektrális rés-
sel bíró unitér operátorok törthatványú alkalmazásának korábbi megvalósításain.
Végül a főkomponens-regresszió hatékony implementálása által a kvantumos gépi
tanulás területén is adunk egy alkalmazást. Megmutatjuk azt is, hogyan vezet a
kvantumos szingulárisérték-transzformáció egy olyan algoritmikus keretrendszer-
hez, amiben különböző kvantumos gyorsítási módszerek egységesen kezelhetőek.
Ez a keretrendszer többféle kvantumalgoritmus magas szintű leírását teszi lehe-
tővé, ezáltal remélhetőleg a kvantumalgoritmusok szakértőin kívül mások számá-
ra is megközelíthetővé téve az eredményeket. Ezt illusztrálandó, megmutatjuk
miként általánosítja metaalgoritmusunk számos korábbi nevezetes kvantumalgo-
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ritmus működését, és röviden levezetjük a következő algoritmusokat: optimá-
lis Hamilton-szimuláció, a Moore-Penrose pszeudóinverz implementálása (vagyis
az HHL algoritmus) exponenciális precizitással, fixpontú amplitúdó-amplifikáció,
robusztus hanyag (oblivious) amplitúdó-amplifikáció, gyors QMA-amplifikáció,
gyors kvantumos VAGY lemma, bizonyos kvantumbolyongásos eredmények, és
különböző kvantumalgoritmusok gépi tanulásra. Módszerünk erősségeinek kiak-
názásához hasznos ismerni annak határait is, ezért egy korlátot is bizonyítunk a
kvantumos szingulárisérték-transzformáció hatékonyságára, ami gyakran optimá-
lis eredményekre vezet.

A 4. fejezetben konstruálunk egy optimalizált algoritmust többváltozós
f : Rd → R függvények gradiensének számítására, amely a függvényt egymás
után mindössze logaritmikusan sok pontban értékeli ki, de szuperpozícióban. Al-
goritmusunk Jordan gradiens-számító algoritmusát [Jor05] fejleszti tovább, és a
∇f gradiens approximációját kvadratikusan javítja f kiértékelési pontosságának
függvényében, egy fontos sima függvényosztály esetében. Bebizonyítjuk, hogy
a kvantumos variációs optimalizációban megjelenő célfüggvények kielégítik a si-
masági kritériumainkat, ezért algoritmusunk javítja a korábbi tanítási eljárá-
sok futásidejét, többek között kvantumos autoenkóderek, variációs kvantumos
sajátérték-algoritmusok (variational quantum eigensolvers) és kvantumos közelí-
tő optimalizációs algoritmusok (quantum approximate optimization algorithms)
esetében. Végül bebizonyítjuk, hogy egy folytonos fázislekérdezési modellben a
sima függvények egy bizonyos osztályára nézve gradiensszámító algoritmusunk
lényegében optimális. Az alsó korlát bizonyításához levezetjük az úgynevezett
hibrid módszer egy folytonos változójú verzióját.

Az 5. fejezetben azt vizsgáljuk, hogy mekkora mértékű kvantumos gyorsítás
érhető el konvex optimalizációs problémák esetében. A klasszikus szakirodal-
mat követve a konvex halmazokhoz való hozzáférést különböző orákulumokkal
modellezzük, és az orákulumok közötti visszavezetések hatékonyságát vizsgáljuk.
Bebizonyítjuk, hogy egy ún. szeparációs orákulum implementálható egy ún. tagsá-
gi orákulum mindössze Õ(1) kvantumlekérdezése segítségével, ami exponenciális
kvantumos gyorsítást eredményez a szükséges Ω(n) klasszikus lekérdezésszámhoz
képest. Ezt a hatékony szeparációs orákulumot úgy kapjuk meg, hogy először
megmutatjuk, hogy egy kvantumszámítógép nagyon hatékonyan tudja konvex
Lipschitz függvények szubgradiensét közelíteni, majd ezt kombináljuk Lee, Sid-
ford és Vempala [LSV18] friss eredményeinek egy egyszerűsített verziójával. Egy
korábbi ismert algoritmus révén mindebből az is következik, hogy egy ún. opti-
malizációs orákulum implementálható egy tagsági orákulum Õ(n) kvantumlekér-
dezése által; ez kvadratikus kvantumos gyorsítást eredményez a legjobb ismert
klasszikus eredményhez képest. Több alsó korlátot is bizonyítunk: az optimalizá-
cióhoz Ω(

√
n) szeparációs (vagy tagsági) kvantumlekérdezés szükséges a konvex

halmaz egy belső pontjának ismeretében, nélküle pedig Ω(n).
A 6. fejezetben új megvilágításban vizsgáljuk a szemidefinit programok (rö-

viden SDP-k) megoldására szolgáló kvantumalgoritmusokat, és valamennyi ko-
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rábbi kvantumalgoritmuson javítunk. Új bemeneti modellünk mindegyik korábbi
bemeneti modellt általánosítja, és azt feltételezi, hogy a bemeneti mátrixok bi-
zonyos unitér transzformációk blokk-beágyazásaként vannak megadva. Ebben
a kvantumoperátoros modellben adunk egy Õ((

√
m+

√
nγ)αγ4) komplexitású

kvantumalgoritmust, ahol n a kényszerfeltételeket leíró mátrixok méretét és m a
számukat jelöli, γ a skálainvariáns relatív precíziós paraméter, és α a bemeneti
mátrixok normalizációs faktora. A ritka mátrixok bemeneti modelljére vonatkozó
eredményünk úgy kapható meg ha a fenti formulában α-t lecseréljük s-re, a mátrix
ritkasági korlátjára. Algoritmusunk javít Brandão és tsai. [BKL+18] eredménye-
in is. Abban a speciális esetben, amikor a bemeneti mátrixok bizonyos kevert
kvantumállapotok lineáris kombinációjaként adottak, Brandão és tsai. [BKL+18]
megmutatták, hogy az n paramétertől való függés lecserélhető a bemeneti mátri-
xok rangjától és nyomától való polinomiális függésre. A mi megfelelő algoritmu-
sunk azonban nem függ a rangtól, így az n-től való függés kiváltható a bemeneti
mátrixok nyomától való polinomiális függéssel. Megmutatjuk azt is, hogy ered-
ményeink miként alkalmazhatóak az Aaronson által nemrégiben felvetett árnyék-
tomográfia (shadow tomography) [Aar18] problémájára. Végül bizonyítunk egy
új Ω̃(

√
mαγ) alsó korlátot lineáris programok (LP-k) és szemidefinit programok

(SDP-k) megoldásának komplexitására a kvantumoperátoros bemeneti modell-
ben, amiből hasonló alsó korlátot kapunk Brandão és tsai. [BKL+18] bemeneti
modellje esetében is.

A 7. fejezetben a Lovász-féle lokális lemmának és kvantumos általánosítá-
sának konstruktív verzióit vizsgáljuk. A kvantumos Lovász-féle lokális lemma
változókon alapuló verziója kimondható a frusztrációmentes lokális Hamilton-
operátorok segítségével: ezen Hamilton-operátorok azzal a tulajdonsággal rendel-
keznek, hogy alapállapotuk az összes lokális energiatagot külön-külön minimali-
zálja. A korábbi konstruktív eredményeken javítva egy olyan algoritmust adunk,
amely hatékonyan működik nemkommutatív tagok esetében is, feltéve hogy a
rendszer spektrális rése egyenletes (uniformly gapped), azaz a rendszernek és
minden részrendszerének spektrális rése legalább inverz polinomiális. Miközben
levezetjük a híres Moser-Tardos-féle újramintavételező algoritmus egy nemkom-
mutatív kvantumos megfelelőjét, általánosítjuk és egyszerűsítjük Moser klasszikus
„tömörítési érvelését” is. Végezetül a változókon alapuló (klasszikus) Lovász-féle
lokális lemma esetében körgráfokon optimális korlátokat adunk az egyes változók
valószínűségeire, amelyek mellett a rendszer garantáltan kielégíthető. A kapott
korlát tágabb mint a Shearer-korlát, noha ez utóbbi az általános - nem változókon
alapuló - esetben optimális. Ez egyben elkülöníti egymástól a változókon alapuló
kvantumos és klasszikus Lovász-féle lokális lemmát.
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Chapter 1

Introduction and preliminaries

1.1 Computation in the physical world

In the 1930s some influential mathematicians become interested in studying ques-
tions like “What problems are efficiently calculable?” and “What does it mean
that something is computable?”. They started formalizing models of the process
of computation, intending to grasp the essence of systematic problem solution.
There were three major angles of approach to this question. Kurt Gödel ap-
proached computability through the theory of recursive functions, while Alonzo
Church [Chu36a, Chu36b] defined the λ-calculus of functions and Alan Tur-
ing [Tur37] defined his famous model of computational machines, today known
as Turing machines. Church and Turing proved that these three seemingly dif-
ferent models of computation are all equivalent in the sense that if some function
is “computable” according to one of the models, then it is “computable” in the
other two models too. This result provided evidence that these three models are
describing the “right model of computation” capturing all realistic computation
method – this statement is called the Church–Turing thesis.

In the early 1900s some fundamental new physical discoveries dramatically
changed our understanding of the physical world surrounding us. The discovery
of relativity theory showed that space and time are intertwined in our universe,
and with the discovery of quantum mechanics it become clear that the elementary
particles look nothing like tiny balls, but rather like small waves. These discoveries
showed that our world behaves in a very counter-intuitive way at many levels,
and that our everyday experiences can paint a false image of how our world really
behaves.

Still, Turing machines model our classical computational devices: they op-
erate on some large data storage tape, and perform basic computational steps
according to their internal state, and the data they read from the tape. How-
ever, if we want to consider an appropriate computational model for our physical
world, then we should take into account its non-classical behavior. This is what
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2 Chapter 1. Introduction and preliminaries

Richard Feynman suggested in his famous paper [Fey82], realizing that in order
to understand and simulate various processes in our (quantum) physical world,
we should use quantum computational devices. Following up on this idea David
Deutsch defined quantum Turing machines [Deu85]. Although classical and quan-
tum Turing machines have quite different capabilities, it turns out that the set of
computable functions is the same for both of them.

There could still be a large difference in the efficiency of classical and quantum
Turing machines. The class of decision problems that can be efficiently solved
(in time upper bounded by a polynomial in the problem size) on a randomized
classical Turing machine is called BPP, and the quantum analogue is called BQP.
For example Peter Shor’s famous quantum algorithm [Sho97] shows that integer
factorization can be efficiently solved on a quantum computer, while no such
efficient classical algorithm is known. Therefore, many researchers believe that
BPP ( BQP, i.e., for some problems a quantum computer can provide very large
speedups compared to classical computers.

In this dissertation we study how efficiently quantum computers can solve
various problems, and how large speedups can be achieved compared to classical
computers. In particular we develop a generic quantum algorithmic framework
that we call quantum singular value transformation, and show how it unifies a
large number of prominent quantum algorithms. Then we show several problems
where quantum singular value transformation leads to new quantum algorithms
or improves various aspects of earlier approaches.

1.2 Quantum mechanical principles
In this dissertation we will use Dirac’s bra-ket notation, that is for a Hilbert
space (complex Euclidean vector space) H and a vector ψ ∈ H we will also use
the alternative notation |ψ〉, and will denote its adjoint by 〈ψ|. We will think
about |ψ〉 as a column vector, and 〈ψ| as a row vector. For ψ, φ ∈ H we denote
their inner product by 〈ψ|φ〉 ∈ C, alternatively |ψ〉〈φ| ∈ H ⊗H denotes a rank-1
matrix. In this dissertation we solely work with finite-dimensional Hilbert spaces.

Following the exposition of Jozsa [Jozs18] we list the four basic principles of
quantum mechanics, describing our physical model behind quantum computers.

(i) A d-dimensional quantum system is a Hilbert space H ' Cd, and a (pure)
quantum state |ψ〉 ∈ H is a vector of unit length, i.e., 〈ψ|ψ〉 = 1.

(ii) The composite system of two quantum systems H1,H2 is the tensor product
H1 ⊗H2 of the subsystems.

(iii) The coherent operations of a quantum system H are its unitary operators.

(iv) Let (|b1〉, |b2〉, . . . , |bd〉) be an orthonormal basis of H. If we measure the
pure quantum state |ψ〉=

∑d
i=1βi|bi〉 in this basis, then we get outcome i∈ [d]

with probability |βi|2, and the state of the quantum system then becomes |bi〉.
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The last principle (iv) is called the Born rule, while the extended Born-rule
states that if B = (|b1〉, |b2〉, . . . , |bd〉) is an orthonormal basis of H1 and |ψ〉 =∑d

j=1|bj〉 ⊗ |φj〉 ∈ H1 ⊗H2, then a measurement of the first system gives j ∈ [d]
with probability 〈φj|φj〉, and the post-measurement state of the quantum system
becomes |bj〉 ⊗ |φj〉/

√
〈φj|φj〉. Note that multiplying one of the components |φj〉

by a phase eiθ does not change the measurement statistics for measurements in
the B basis. Moreover, the quantum states |ψ〉 and eiθ|ψ〉 are indistinguishable
by any measurements, because they only differ by a global phase.

We call a two-dimensional quantum system C2 a qubit, and denote its com-
putational basis states by |0〉 and |1〉, which form an orthonormal basis. Thereby
a pure qubit state is α0|0〉 + α1|1〉, such that |α0|2 + |α1|2 = 1; α0 and α1 are
called the amplitudes of the |0〉 and |1〉 basis states. The composite system of
n qubits is called an n-qubit system, and its computational basis states are de-
noted by |b〉 : b ∈ {0, 1}n. In general a d-dimensional quantum system Cd with
computational basis states |0〉, |1〉, . . . , |d− 1〉 might be called a qudit.

We say that the pure state |ψ〉 ∈ H1⊗H2 is a product state if it can be written
as |ψ〉 = |ψ1〉 ⊗ |ψ2〉 for some |ψ1〉 ∈ H1, |ψ2〉 ∈ H2, and otherwise we say that
|ψ〉 is an entangled state. Finally, if |ψ〉 = α|φ〉 + β|ϕ〉 with α 6= 0 6= β, then
we say that |ψ〉 is a superposition of |φ〉 and |ϕ〉. When forming a superposition,
the amplitudes add up, which can lead to interference. Take for example the so-
called plus |+〉 := 1√

2
(|0〉+ |1〉) and minus |−〉 := 1√

2
(|0〉 − |1〉) states. For these

states a measurement in the computational basis leads to a uniformly random 0
/ 1 result. However, measuring their superposition 1√

2
(|+〉+ |−〉) = |0〉 we get

outcome 0 with certainty, which is the result of constructive interference of the
amplitudes of the |0〉 basis state.

1.3 The circuit model and quantum queries

In order to describe our quantum algorithms we will use the so-called quantum
circuit model. In this model a quantum computation is described on a fixed
number of qubits (or qudits), and a quantum circuit is simply a unitary operator
followed by a (partial) measurement in the computational basis. Typically it is
assumed that all qubits are set to the |0〉 state initially, except for the input
qubits. The circuits are built from a sequence of single-qubit gates and two-qubit
gates, that is unitary operators which act trivially except on a single- or two-
qubit subsystem. If U is a single- or two-qubit (unitary) quantum gate, it is
extended to the composite system by taking the tensor product with the identity
operator on the rest of the system. The gate complexity of a quantum circuit is
the number of single- and two-qubit gates it is built from. For simplicity we will
allow measurements in the middle of the circuits as well, but in principle all such
measurements can be deferred to the end of the circuit.
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One of the most important single-qubit quantum gates is the Hadamard gate,
denoted by

H =
1√
2

[
1 1
1 −1

]
.

The Pauli gates are also important quantum operations, denoted by

σx = X =

[
0 1
1 0

]
σy = Y =

[
0 −i
i 0

]
σz = Z =

[
1 0
0 −1

]
,

and the corresponding single-qubit rotations of angle θ are

eiθσx =

[
cos(θ) i sin(θ)
i sin(θ) cos(θ)

]
eiθσy =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
eiθσz =

[
eiθ 0
0 e−iθ

]
.

The circuit representation of a single-qubit quantum gate U is

U

The most important two-qubit gate is the controlled NOT gate, denoted by

CNOT = |0〉〈0| ⊗ I + |1〉〈1| ⊗X =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =
•

where the two wires correspond to the two qubits, with the first wire representing
the control qubit. The symbol ⊕ refer to the modulo 2 addition of the first bit to
the second bit.

We note that instead of allowing arbitrary single- and two-qubit gates one
could also build quantum circuits using a more restrictive universal gate set, which
allows any n-qubit unitary to be arbitrarily well approximated using only these
gates. A famous example of a universal gate set consists of H, T = eiπ/8e−iσzπ/8

and CNOT. This affects the gate complexity by at most a polylogarithmic factor,
because any single- or two-qubit gate can be ε-approximated using polylog(1/ε)
gates from the universal gate set, as shown by the Solovay-Kitaev theorem; for
more information see [NC00]. This restricted gate set is extremely useful when
one needs to deal with errors, because it shows that it is enough to find fault
tolerant implementations of these three quantum gates, and the measurement
in the computational basis. The theory of quantum error correction and fault-
tolerant quantum computation addresses this question, and shows that if error-
rates are below some constant threshold, then under various error models, errors
can be exponentially suppressed, hence a fault-tolerant implementation introduces
only logarithmic overheads in the circuit complexity.
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Classical computations. A classical Boolean circuit can be described as a
sequence of logical gates. Since all logical gates can be built from NOT and
AND gates using some ancilla bits initialized to 0, we can assume without loss of
generality that our Boolean circuits are built solely from these two gates. We can
define a reversible version of the AND gate that takes three input bits (b0, b1, b2)
and outputs the bits (b0, b1, b2⊕(b0 ·b1)), where the operation ⊕, denotes1 addition
modulo 2. This reversible version of the AND gate is called the Toffoli gate, which
also corresponds to a unitary operator, since it describes a permutation on 3-bit
strings, and permutations are unitaries.

Since every Boolean circuit can be transformed into a reversible circuit, built
from NOT and Toffoli gates, while introducing only constant overheads, every
classical circuit can be simply transformed to a quantum circuit of roughly the
same size. This shows that quantum circuits are at least as powerful as classical
Boolean circuits. In particular, if we have a Boolean function f acting on n-bits
f : {0, 1}n → {0, 1}, that has a circuit C built from s NOT and AND gates, we
can efficiently convert it to a quantum circuit Q that acts as |b0, b1, . . . , bn〉 7→
|b0 ⊕ f(b1, . . . , bn), b1, . . . , bn〉, with gate complexity of order s and using at most
order s additional ancilla qubits. Ancilla qubits are assumed to have |0〉 state
initially, and are required to be returned to |0〉 after the circuit is applied.

Quantum queries. It is often useful to think about quantum algorithms in
a modular fashion, and study how efficiently a problem can be solved using a
particular subroutine. Since we want to separate the implementation issues of
the subroutine from the higher-level algorithms we often assume that we have
access to a quantum subroutine in the form of a quantum oracle O, which is
essentially a black-box unitary circuit. The only way the quantum circuit is
allowed to extract information from such an oracle O is by using it on some of
the circuit’s qubits. We usually assume that both the oracle and its inverse can
be applied in a controlled fashion, i.e., the circuit can use |0〉〈0| ⊗ I + |1〉〈1| ⊗ O
and |0〉〈0| ⊗ I + |1〉〈1| ⊗O† gates as well.2 If O is, say, a 4-qubit unitary, then the
corresponding controlled quantum gate is denoted by

controlled-O = |0〉〈0| ⊗ I + |1〉〈1| ⊗O =

•

O

The query complexity of a particular quantum circuit that solves a problem
using an oracle O is the number of uses of controlled-O and controlled-O† gates

1In the context of vector spaces we will also use the symbol ⊕ to denote the direct sum;
however, the meaning of the symbol ⊕ should always be clear from the context.

2For a linear operator A we use A† to denote its adjoint; A is unitary if and only if A† = A−1.
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in the circuit, whereas the gate complexity is the number of additional single-
and two-qubit gates used. The quantum query complexity of some problem is
the minimum query complexity over all quantum circuits that solve the problem
(whatever that means in the given context).

In some cases, we also assume access to quantum read-only memory (QROM),
which is essentially an oracle that gives cheap access to a vector x ∈ {0, 1}N and
for all i ∈ {0, 1, . . . , N − 1} provides access to xi by mapping |i〉|b〉 7→ |i〉|b⊕ xi〉.
In some cases when we explicitly say it, we count QROM queries just as simple
quantum gates and incorporate them as part of the gate complexity. However, in
general building a QROM requires roughly N single- and two-qubit gates.

Grover search and amplitude amplification. In the black-box search prob-
lem, we are promised that there is a single good element among N elements, and
we have a black box which can tell for each element whether it is good or not. It
is not hard to show that classically one needs to make at least around N queries
to the black box in order to find the marked element with high probability. How-
ever, if we can make quantum queries to the black-box, then roughly

√
N queries

suffice, as shown by Grover’s search algorithm [Gro96]. This is essentially opti-
mal, as shown by the hybrid-method argument of Bennett et al. [BBBV97],3 see
also Theorem 4.1.2. Thus the quantum query complexity of black-box search is
about

√
N .

Grover’s search algorithm follows from a more general technique called am-
plitude amplification. Suppose that we have a black-box unitary U : |0〉⊗k 7→
|ψ〉 =

√
p|1〉|ψgood〉 +

√
1− p|0〉|ψbad〉 that prepares some state |ψgood〉 with suc-

cess probability p, and marks success with a |1〉 flag qubit. For example, in the
search problem one can first prepare a uniform superposition 1√

N

∑N−1
j=0 |j〉 over all

elements, and then make a query. If the marked element is m ∈ {0, 1, . . . , N−1},
then the resulting state is

1√
N
|1〉|m〉+

√
N − 1√
N
|0〉

(
1√

N − 1

∑
j 6=m

|j〉

)
,

so that |ψgood〉 = |m〉 is the basis state for the unique marked element. The
classical approach for preparing the state with high probability would be to use
the procedure roughly 1/p times, and stop once the flag qubit is measured in the
|1〉 state. However, the problem can be solved with only roughly

√
1/p uses of U

and U † with the help of the Grover operator

GU := U
(
2|0〉〈0|⊗k − Ik

)
U †((2|0〉〈0| − I1)⊗ Ik−1),

where I` denotes the identity operator on ` qubits.

3Note that this result provides evidence for the widely believed conjecture NP 6⊂ BQP.
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|0〉|ψbad〉

|1〉|ψgood〉

|ψ〉

θ

√
p

Figure 1.1. Geometric illustration of the Grover operator GU .

Let θ := arcsin(
√
p), then we get that GU acts as a rotation by angle 2θ on

the subspace spanned by |1〉|ψgood〉, and |0〉|ψbad〉. Indeed, within this subspace
((2|0〉〈0| − I1)⊗ Ik−1) is a reflection about |0〉|ψbad〉, and U

(
2|0〉〈0|⊗k − Ik

)
U † is

a reflection about |ψ〉. The product of these reflections is a rotation by angle 2θ,
which can be seen for example considering the image of |0〉|ψbad〉 and |ψ〉, see
Figure 1.1.

Thus G
π
4θ
− 1

2
U U |0〉⊗k = |1〉|ψgood〉. So applying GU roughly π

4θ
− 1

2
times solves

the problem with high probability. However, if p is only a lower bound on the
success probability then this operator might apply too much rotation, and the
success probability might be small. This issue can be overcome by applying GU

a random number of times, and repeating the procedure a few times to boost the
success probability. A more direct solution to this problem is to use the so-called
fixed-point amplitude amplification algorithm of Theorem 3.2.4, which provides a
single-shot solution without using multiple repetitions.

Grover operator GU

|0〉 Z · · ·

U

Z

U † U

· · ·
· · ·
· · ·
· · ·

|0〉⊗k

Figure 1.2. Amplitude amplification using the Grover operator. In quantum
circuit diagrams the “time flows from left to right”, i.e., in the above circuit we
start with the quantum state |0〉⊗k and append a single ancilla qubit, then we
apply U . The following gates implement the Grover operator GU with the help
of the ancilla qubit. The empty dots denote control on the |0〉 state and so the
(k + 1)-qubit gates surrounding the second Z gate are reversible OR gates, but
we can also think about them as (inverted) generalized Toffoli gates.



8 Chapter 1. Introduction and preliminaries

Quantum Fourier transform. The Quantum Fourier Transform (QFT) on
N elements is the quantum analogue of the Discrete Fourier Transform (DFT)
on ZN . If N = 2n, then QFT becomes an n-qubit unitary defined as follows:

QFTn : |j〉 7→ 1√
2n

∑
k∈{0,...,2n−1}

e2πi jk
N |k〉.

This unitary can be built using about n2 single- and two-qubit gates, which
number can be reduced to about n log(n) if one only needs a 1

poly(n)
-approximation.

(In contrast the classical Fast Fourier Transform (FFT) algorithm has complexity
about 2nn, which is exponentially larger.)

The fact that QFT has such an efficient implementation provides the basis of
many important quantum algorithms including Shor’s famous integer factoring
algorithm.

1.4 Mixed quantum states and distances
Sometimes it is useful to work with probabilistic mixtures of pure states, called
mixed quantum states. It turns out that the right way of representing such mix-
tures is to use density operators. If (pi)

k
i=1 is a probability distribution over pure

states |ψj〉 ∈ Cn, then the corresponding density operator ρ ∈ Cn×n is

k∑
j=1

pj|ψj〉〈ψj|.

Equivalently an n-dimensional mixed quantum state / density operator4 is a
positive-semidefinite matrix of trace 1. An alternative way to think about density
operators is to consider a pure state on a larger composite system, and view a
density operator as an object that describes the observable state on a subsystem.
Mathematically it translates to the fact that for any density operator ρ ∈ Cn×n
and all k ≥ n there exists a |ψ〉 ∈ Ck ⊗ Cn = HA such that TrHA [|ψ〉〈ψ|] = ρ,
where TrHA denotes the partial trace over the first subsystem HA = Ck. Such a
pure state |ψ〉 is called a purification of ρ.

A related concept is Schmidt decomposition. A pure state |ψ〉 ∈ H1 ⊗H2 can
also be viewed as a linear operator Ψ ∈ H1 ⊗ H∗2 via the natural isomorphism
between H2 and its dual vector space H∗2. The rank of Ψ is called the Schmidt
rank of |ψ〉. The singular values ςj in the singular value decomposition (see
Section 1.6) of Ψ =

∑k
j=1 ςj|ϕj〉〈φj| are called the Schmidt coefficients of |ψ〉 and

|ψ〉 =
∑k

j=1 ςj|ϕj〉|φj〉 is called the Schmidt decomposition of |ψ〉. Finally, the
reduced density operator of |ψ〉 on H2 is ρ = TrH1 [|ψ〉〈ψ|] =

∑k
j=1 ς

2
j |φj〉〈φj|.

4Note that classical probability distributions correspond to diagonal density operators.
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If we measure a mixed quantum state ρ ∈ Cn×n in the orthonormal basis
(b1, . . . , bn), then the probability of measurement outcome j is Tr[ρ|bj〉〈bj|]. If
ρ = |ψ〉〈ψ|, we can see that this recovers the Born rule (iv): Tr[|ψ〉〈ψ||bj〉〈bj|] =
Tr[〈bj|ψ〉〈ψ|bj〉] = |〈bj|ψ〉|2. In general a projective measurement is described by
a list of k orthogonal projectors (Π1,Π2, . . . ,Πk) which sum up to the identity
operator in Cn. The probability of measurement outcome j is pj = Tr[ρΠj], and
the corresponding post-measurement state is ΠjρΠj/pj.

An even more general notion of measurement is a positive operator valued
mesurement (POVM). Such a measurement is defined by a list of k positive-
semidefinite operators (Mj)

k
j=1 satisfying

∑k
j=1Mj = I. The probability of mea-

surement outcome j is Tr[ρMj]. We note that every POVM can be implemented
by a projective measurement on a larger system.

Quantum channels. A quantum channel is a linear map that maps density
operators to density operators. The concept of a quantum channel is a common
generalization of all allowed physical operations, including coherent (unitary)
operations and measurements. A unitary U implements the quantum channel
ρ 7→ UρU †, and a projective measurement according to the orthogonal projectors
(Πj)

k
j=1, implements the quantum channel ρ 7→

∑k
j=1 ΠjρΠj.

All quantum channels can be viewed as the result of the following three-step
procedure. First extend ρ to a composite system with a known auxiliary state
|ψ0〉, i.e., map ρ 7→ |ψ0〉〈ψ0| ⊗ ρ. Then apply a unitary transformation U on the
extended state, and finally take the reduced density operator on the original space
by taking the partial trace over the auxiliary system. (A quantum channel can in
principle also change the dimensionality of the state, in which case the last step
should be slightly modified.)

Distances. For two pure states |ψ〉 and |φ〉 we measure their distances by the `2-
norm of their differences ‖|ψ〉 − |φ〉‖ =

√
(〈ψ| − 〈φ|)(|ψ〉 − |φ〉). For two density

operators ρ and σ we measure their distance by the trace distance, which is
defined as 1

2
‖ρ− σ‖1, where for an operator A we define ‖A‖p as the Schatten

p-norm, i.e., the `p-norm of the singular values of A. Finally, for measuring the
distance between unitary matrices U and V we use the operator norm ‖U − V ‖ =
‖U − V ‖∞ which equals the Schatten ∞-norm.

Unless otherwise stated we use these distance notions for the above objects. In
particular if we say that object A is ε-close to object B, or that A ε-approximates
B, we mean that their respective distance is at most ε. Similarly, if we say that
the unitary quantum circuit U is an ε-precise implementation of the unitary V
we mean that ‖U − V ‖ ≤ ε.

These distance notions have several remarkable properties. For example if∥∥∥U − Ũ∥∥∥ ≤ ε and
∥∥∥V − Ṽ ∥∥∥ ≤ δ, then

∥∥∥UV − Ũ Ṽ ∥∥∥ ≤ ε + δ as can be seen from∥∥∥UV − Ũ Ṽ ∥∥∥ =
∥∥∥UV − ŨV + ŨV − Ũ Ṽ

∥∥∥ ≤ ∥∥∥(U − Ũ)V
∥∥∥+
∥∥∥Ũ(V − Ṽ )

∥∥∥ ≤ ε+δ.
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Therefore, we also have∥∥∥∥∥
k∏
i=1

Ui −
k∏
i=1

Ũi

∥∥∥∥∥ ≤
k∑
i=1

∥∥∥Ui − Ũi∥∥∥.
The trace distance extends the notion of total variation distance on proba-

bility distributions. Indeed, for classical distributions the corresponding density
operators are diagonal, and it is clear that the trace distance corresponds to the
total variation distance. Moreover, the trace distance between ρ and σ is the
maximal total variation distance between the measurement statics corresponding
to arbitrary POVM measurements. Indeed if (M1,M2, . . . ,Mk) is a POVM, then

1

2

k∑
i=1

|Tr[ρMi]−Tr[σMi]|=
1

2

k∑
i=1

|Tr[(ρ−σ)Mi]| ≤
1

2

k∑
i=1

Tr[|ρ−σ|Mi]=
1

2
‖ρ−σ‖1.

Let Π be the orthogonal projector to the subspace of positive eigenvalues of ρ−σ,
then for the binary POVM (Π, I − Π) the above inequality becomes an equality.

The trace distance between two pure states |ψ〉,|φ〉 is always upper bounded
by their `2-distance, because

1

2
‖|ψ〉〈ψ| − |φ〉〈φ|‖1 =

√
Tr
[
(|ψ〉〈ψ| − |φ〉〈φ|)2]/2 =

√
1− |〈ψ|φ〉|2 ≤ ‖|ψ〉 − |φ〉‖,

where the first equality follows from the fact that |ψ〉〈ψ| − |φ〉〈φ| has trace 0 and
rank at most two, therefore it can have at most two non-zero eigenvalues, which
must sum to 0.

These observations make it easy to argue about the approximate correctness
of quantum algorithms. For example if a quantum algorithm consists of k steps
(Ui)

k
i=1, and outputs a desired answer with probability at least 5

6
, then it is enough

to implement each step Ui to precision 1/(6k). The resulting quantum circuit will
still output a correct answer with probability at least 2/3, since the final states
(before measurement) will differ by at most 1/6, and thus the output statistics
(after the measurement) will differ by at most 1/6 too.

1.5 Hamiltonians and Gibbs states
The Hamiltonian H of a d-dimensional quantum system is a Hermitian matrix
H ∈ Cd×d describing the quantum system’s physical characteristics. If these
characteristics do not change in time, then the Hamiltonian is time-independent,
and the quantum states of the system evolve in time according to the unitary
map e−itH , as follows from Schrödinger’s equation5

d

dt
|ψ(t)〉 = −iH|ψ(t)〉.

5For the sake of simplicity we ignore the factor ~, i.e., work with units where it becomes 1.
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The eigenvalues (λj)
d
j=1 of H are the energy levels of the quantum system, and the

corresponding eigenvectors are also called energy eigenstates. The smallest energy
level is called the ground-state energy and the corresponding eigenvector(s) is(are)
called ground state(s). The other energy eigenstates and their superpositions are
sometimes called excited states.

In order to physically implement, say, a single-qubit rotation gate e−iθZ , one
could for example turn on some external interaction which changes the Hamilto-
nian from 0 to Z, and apply it for time θ, then disable the external interaction to
reset the Hamiltonian to 0. However, in this dissertation we will not consider the
question of physical implementation, but will still work with Hamiltonians due to
their important connections to computer science, which we discuss in more detail
in Chapter 7.

Finally, we note that a quantum system in thermal equilibrium at finite inverse
temperature β has density operator e−βH/Z, where Z = Tr

[
e−βH

]
is the partition

function. Such a mixed quantum state is called a Gibbs state. As temperature
goes to 0, β goes to infinity and the Gibbs state converges to the ground state
(or to a uniform mixture of the ground states in case there are multiple ground
states). Apart from its physical relevance, it turns out that Gibbs states can play
an important role in convex optimization, as we discuss in Chapter 6.

1.6 Singular Value Decomposition (SVD)

It is well known that for every matrix A ∈ Cm×n there exists a pair of unitaries
W ∈ Cm×m, V ∈ Cn×n and Σ ∈ Rm×n such that Σ is a diagonal matrix with
non-negative non-increasing entries on the diagonal, and A = WΣV †. Such a
decomposition is called a singular value decomposition of A. Let k := min[m,n],
then we use ςi := Σii for i ∈ [k] to denote the singular values of A, which are the
diagonal elements of Σ. The columns of V are called the right singular vectors of
|ψ〉, and the columns of W are called the left singular vectors.

In the next chapter we often define the matrix A as the product of two or-
thogonal projectors Π̃,Π and unitary U such that A = Π̃UΠ. In such cases we
will assume without loss of generality that the first rank(Π̃) left singular vectors
span img(Π̃) and the first rank(Π) right singular vectors span img(Π).

1.7 Some notation

For a number n ∈ N we use the notation [n] := {1, 2, . . . , n}. We write δij for the
Kronecker delta function, which is 1 if i = j, and 0 otherwise. We use ej for the
jth basis vector in the standard basis when the dimension of the space is clear
from context. We denote by End(H) the set of linear maps H → H.
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We use the following definition for Õ:

Õd,e(f(a, b, c)) := O(f(a, b, c) · polylog(f(a, b, c), d, e)),

and define Ω̃ in a similar way for lower bounds and Θ̃ as the intersection of the
two.

Polynomials and functions. In this dissertation we will often work with poly-
nomial approximations, and therefore we introduce some related notation. We de-
note the set of real polynomials in variable x with R[x], and similarly the complex
polynomials with C[x]. Let P ∈ C[x] be a complex polynomial P (x) =

∑k
j=0 ajx

j,
then we denote by P ∗(x) :=

∑k
j=0 a

∗
jx

j the polynomial with conjugated coeffi-
cients. The real part of P is denoted by <[P ](x) :=

∑k
j=0<[aj]x

j which we get
by taking the real part of the coefficients, similarly we define the imaginary part
of P as =[P ](x) :=

∑k
j=0=[aj]x

j. We say that P is even if all coefficients cor-
responding to odd powers of x are 0, and similarly we say that P is odd if all
coefficients corresponding to even powers of x are 0. For an integer number z ∈ Z
we say that P has parity-(z mod 2) (or simply parity-z) if z is even and P is
even or z is odd and P is odd. We will denote by Td ∈ R[x] the d-th Chebyshev
polynomial of the first kind, defined by Td(x) := cos(d arccos(x)).

For a function f : R → C and a subset I ⊆ R we use the notation ‖f‖I :=
supx∈I |f(x)| to denote the sup-norm of the function f on the domain I. We
say that a function f : R → C is even if for all x ∈ R we have f(−x) = f(x),
and that it is odd if for all x ∈ R we have f(−x) = −f(x). The even part of a
function is defined as (f(x) + f(−x))/2 and the odd part of a function is defined
as (f(x) − f(−x))/2 which gives the unique decomposition of f to a sum of an
even and an odd function.

We define the sign function sign(x) as

sign(x) :=


−1 for x < 0

0 for x = 0
1 for x > 0.

Matrices and matrix functions. Whenever we present a matrix and put a
. in some place we mean a matrix with arbitrary values of the elements in the
unspecified block. For example [.] just denotes a matrix with completely arbitrary
elements, similarly

U =

[
A .
. .

]
denotes an arbitrary matrix whose top-left block is A.



1.7. Some notation 13

For a Hermitian matrix H we write Spec(H) for its spectrum (set of eigenval-
ues). For a function f : R→ R we write f(H) for the matrix we get by applying
f to the eigenvalues of H, so that if U is a unitary diagonalizing H, then

f(H) = U

f(λ1)
. . .

f(λn)

U † where H = U

λ1

. . .
λn

U †.





Chapter 2

Quantum singular value transformation

Quantum computing is powerful because unitary operators describing the time-
evolution of a quantum system have exponential size in terms of the number
of qubits present in the system. In this chapter we develop a new “Quantum
singular value transformation” algorithm capable of harnessing this exponential
advantage, that can apply polynomial transformations to the singular values of a
block of a unitary, generalizing the optimal Hamiltonian simulation results of Low
and Chuang [LC17a]. This quantum “meta-algorithm” generalizes several quan-
tum algorithmic constructions. Moreover, the proposed quantum circuits have a
very simple structure, often give rise to optimal algorithms and have appealing
constant factors, while typically only using a constant number of ancilla qubits.

2.1 Introduction

It is often said in quantum computing that there are only a few quantum algo-
rithms [Sho03] that are known to give speed-ups over classical computers. While
this is true, a remarkable number of applications stem from these primitives.
The first class of quantum speedups is derived from quantum simulation, which
was originally proposed by Feynman [Fey82]. Such algorithms yield exponen-
tial speedups over the best known classical methods for simulating quantum
dynamics, as well as probing electronic structure problems in material science
and chemistry. The two most influential quantum algorithms developed later in
the ’90s are Shor’s algorithm [Sho97] (based on quantum Fourier transform) and
Grover’s search [Gro96]. Other examples have emerged over the years, however,
arguably the quantum walk algorithm of Ambainis [Amb04] and Szegedy [Szeg04]
together with the quantum linear systems algorithm of Harrow, Hassidim and
Lloyd [HHL09] are the most important other primitives that provide speed-ups

This chapter is based on [GSLW19].

15
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relative to classical computing. An important question that remains is “are these
primitives truly independent or can they be seen as examples of a deeper underly-
ing concept?” The aim of this chapter, and the first part of the dissertation, is to
provide an argument that a wide array of techniques from these disparate fields
can all be seen as manifestations of a single quantum idea that we call “quantum
singular value transformation” generalizing all the above-mentioned techniques
except for quantum Fourier transform (and thus Shor’s algorithm).

Of the aforementioned quantum algorithms, quantum simulation is arguably
the most diverse and rapidly developing. Within the last few years a host
of techniques have been developed that have led to ever more powerful meth-
ods [CMN+17]. The problem in quantum simulation fundamentally is to take
an efficient description of a Hamiltonian H, an evolution time t, and an er-
ror tolerance ε, and find a quantum operation V such that

∥∥e−iHt − V ∥∥ ≤ ε
where the implementation of V should use as few resources as possible. The
first methods introduced to solve this problem were Trotter formula decomposi-
tions [Llo96, BACS07] and subsequently methods based on linear combinations
of unitaries were developed [CW12] to provide better asymptotic scaling of the
cost of simulation.

An alternative strategy was also developed concurrently with these methods
that used ideas from quantum walks. Asymptotically, this approach is perhaps the
favored method for simulating time-independent Hamiltonians because it is capa-
ble of achieving near-optimal scaling with all relevant parameters. The main tool
developed for this approach is a walk operator that has eigenvalues e−i arcsin(Ek/α)

where Ek is the kth eigenvalue of H and α is a normalizing parameter. While
early work adjusted the spectrum to recover the desired eigenvalues e−iEk by us-
ing phase estimation to invert the arcsin, subsequent work achieved better scal-
ing using linear combination of quantum walk steps [BCK15]. Recently another
approach, called qubitization [LC16, LC17a], was introduced to transform the
spectrum in a more efficient manner based on a technique called quantum signal
processing [LYC16].

Quantum simulation is not the only field that uses such spectral transfor-
mations. Quantum linear systems algorithms [HHL09], as well as algorithms
for semi-definite programming [BS17, vAGGdW17], use these ideas extensively.
Earlier work on linear systems used a strategy similar to the quantum walk sim-
ulation method: use phase estimation to estimate the eigenvalues of a matrix λj
and then use quantum rejection sampling to rescale the amplitude of each eigen-
vector |λj〉 via the map |λj〉 7→ λ−1

j |λj〉. This enacts the inverse of a matrix, and
generalizations to the pseudoinverse are straightforward. More recent methods
eschew the use of phase estimation in favor of linear combination of unitary meth-
ods [CKS17] which typically approximate the inversion using a Fourier series or
Chebyshev series expansion. Similar ideas can be used to prepare Gibbs states
efficiently [CS17, vAGGdW17].

These improvements typically result in exponentially improved scaling in terms
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of precision in various important subroutines. However, since these techniques
work on quantum states, and usually one needs to learn certain properties of these
states to a specified precision ε, a polynomial dependence on 1

ε
is unavoidable.

Therefore these improvements typically “only” result in polynomial savings in the
complexity. Nevertheless, for complex algorithms this can make a huge difference.
These techniques played a crucial role in improving the complexity of quantum
semi-definite program solvers, where the scaling with accuracy was improved from
the initial O(1/ε32) of [BS17] to O(1/ε4), see Chapter 6.

A unifying perspective. We develop a new technique that we call quantum
singular value transformation, which unifies qubitization and quantum signal pro-
cessing. The central object for this result is projected unitary encoding, which is
defined as follows. Suppose that Π̃,Π are orthogonal projectors and U is a uni-
tary, then we say that the unitary U and the projectors Π̃,Π form a projected
unitary encoding of A := Π̃UΠ. The encoding is called symmetric if Π̃ = Π.

Roughly speaking qubitization turns a symmetric projected unitary encoding
ΠUΠ = H of a Hermitian operator H into a unitary V which is the square-
root of a (Szegedy-type) quantum walk operator U(2Π − I)U †(2Π − I), so that
each eigenvector |ψ〉 of H with eigenvalue λ becomes a superposition of two1

eigenvectors |ψ±〉 of V with eigenvalues e±i arccosλ. If U happens to be a Hermitian
unitary (i.e., a reflection operator), then one can use V := U(2Π− I); otherwise
one can replace U by a suitable Hermitian unitary Ũ using a controlled-U and
controlled-U † gate. Finally, using quantum signal processing one can transform
the spectrum of the unitary V , resulting in a new circuit U ′, which is a projected
unitary encoding of a transformed operator P (H), see Figure 2.1.

(Hermitian) projected
unitary encoding:
ΠUΠ=H=

∑
j λj|ψj〉〈ψj|

Quantum walk operator:
V V = U(2Π− I)U †(2Π− I),
where V |ψ±j 〉 = e±i arccosλj |ψ±j 〉,
and |λj〉 = (|ψ+

j 〉+ |ψ−j 〉)/
√

2

Transformed projected
unitary encoding:
Π′U ′Π′=P (H)=

∑
jP (λj)|ψj〉〈ψj|

Qubitization

[LC16, LC17a]

(Flexible)
Quantum
Signal
Processing

[LYC16]
[LC17b]
[LC16]
[LC17a]

Quantum
Singular

Value
Transf.

Theorem 2.3.7

Figure 2.1. Schematic comparison of QSVT with previous approaches.

1This justifies the name qubitization: each eigenvector of H splits into two eigenvectors of V ,
and so the resulting two-dimensional subspace is isomorphic to a qubit.
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We generalize and unify the above two steps in quantum singular value trans-
formation by directly implementing the transformation on the singular values
of H. Our result works for arbitrary matrices and does not require symmetric
encodings, (i.e., Π̃ 6= Π is allowed). Moreover, we do not need U to be Hermitian,
and in case P is an even or odd polynomial, we do not even require access to
controlled versions of U or U †.

Quantum Singular Value Transformation (QSVT). We define singular
value transformation by a polynomial P ∈ C[x] in the following way: if P is an
odd polynomial and A = WΣV † is a singular value decomposition (SVD), then
P (SV )(A) := WP (Σ)V †, where the polynomial P is applied to the diagonal entries
of Σ. Our main result is that for any degree-d odd polynomial P ∈ R[x] that is
bounded by 1 in absolute value on [−1, 1], we can implement a unitary UΦ with
a simple circuit using U and its inverse a total number of d times such that

A = Π̃UΠ =⇒ P (SV )(A) = Π̃UΦΠ. (2.1)

We prove a similar result for even polynomials as well, but with replacing Π̃ by Π
in the above equation, and defining P (SV )(A) := V P (Σ)V † for even polynomials.

The result is based on quantum signal processing, which was introduced by
Low, Yoder and Chuang [LYC16]. They asked the following question: suppose
we can implement single-qubit gate sequences of the form

eiφ0σzW (x)eiφ1σzW (x)eiφ2σz · . . . ·W (x)eiφkσz ,

where

W (x) :=

[
x i

√
1− x2

i
√

1− x2 x

]
= ei arccos(x)σx

is a “signal unitary”. Which single-qubit unitary operators can we build this way
if we can choose the angles φ0, φ1, . . . , φk arbitrarily, but x ∈ [−1, 1] is unknown to
us? They give a characterization of the unitary operators that can be constructed
this way, and find that the set of achievable unitary operators is quite rich, for
example it includes single-qubit gates of the form[

P (x) .
. .

]
,

where the real part of P can be an arbitrary polynomial that maps [−1, 1] to
[−1, 1] and has degree and parity matching the number of uses of W (x). We pro-
vide a self-contained treatment of quantum signal processing, then show that the
analysis can be extended to the case when x is replaced by a (possibly rectangular)
matrix of norm at most 1, if the phase gates are properly extended and the signal
unitary and its inverse are applied alternatingly, see Figure 2.2 and Figure 3.1.
With a bit of additional work it yields the above described quantum singular
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value transformation result of Eq. (2.1). Based on this result we will be able to
quickly recover well-optimized variants of several prominent quantum algorithms
in Chapter 3, and derive new quantum algorithms in the later chapters.

Projector-controlled NOT gate. For an orthogonal projector Π we will fre-
quently use the Π-controlled NOT gate, denoted by CΠNOT, which flips the value
of the first (single-qubit) register whenever the state of the second register is in
the image of Π. For example if Π = |1〉〈1| is the projector to the single-qubit basis
state |1〉, then we just get back the CNOT gate controlled by the second qubit.

2.1.1. Definition (CΠNOT gate). For an orthogonal projector Π let us define
the Π-controlled NOT gate as the unitary operator

CΠNOT := X ⊗ Π + I ⊗ (I − Π).

This operator can be used for instance for implementing a coherent (unitary)
analogue of a projective measurement. Also note that up to a conjugation by a
Hadamard gate on the first qubit, this gate is the same as the controlled reflection
(I − 2Π) gate.

2.2 Quantum signal processing
The methods in this section are based on the so-called “Quantum Signal Process-
ing” techniques introduced by Low, Yoder and Chuang [LYC16]. We present a
self-contained treatment of these techniques, significantly streamline the formal-
ism, and develop slightly improved versions of the results presented in [LYC16].
As a corollary of the results we also develop Corollary 2.2.6-2.2.8, which will be
the only results that we need in the rest of the dissertation. We suggest the
first-time reader to skip the proofs of this section, as they are not necessary for
understanding the main ideas of Section 2.3 and the later chapters.

2.2.1 Parametrized SU(2) unitaries induced by Pauli rota-
tions

In this section we review the results of Low, Yoder and Chuang [LYC16], who show
how to build 2× 2 unitary matrices whose entries are trigonometric polynomials
by taking products of various rotation and phase gates. They consider essentially
the following problem, which they call “Quantum Signal Processing”: suppose one
can apply a gate sequence

eiφ0σzeiθσxeiφ1σzeiθσxeiφ2σz · . . . · eiθσxeiφkσz , (2.2)

where θ is unknown (they call eiθσx the “signal unitary”) but one has control over
the angles φ0, φ1, . . . , φk; which unitary operators can we build this way? They
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give a characterization of the unitary operators that can be constructed this way,
and find that the set of achievable unitary operators is quite rich.

We find it more useful to work with the above matrices using a slightly mod-
ified parametrization. For x ∈ [−1, 1] let us define

W (x) :=

[
x i

√
1− x2

i
√

1− x2 x

]
= ei arccos(x)σx .

It is easy to see that if θ ∈ [0, π], then by setting x := cos(θ) Eq. (2.2) can be
rewritten as

eiφ0σzW (x)eiφ1σzW (x)eiφ2σz · . . . ·W (x)eiφkσz . (2.3)

Now we present the characterization of Low et al. [LYC16] using the above
formalism. Our formulation makes the statement simpler and reduces the number
of cases. We also present a succinct simplified proof which can be conveniently
described using our formalism.

2.2.1. Theorem. Let k ∈ N and Φ = (φ0, φ1, . . . , φk) ∈ Rk+1. Then there exist
P,Q ∈ C[x] such that for all x ∈ [−1, 1] we have

eiφ0σz
k∏
j=1

(
W (x)eiφjσz

)
=

[
P (x) iQ(x)

√
1− x2

iQ∗(x)
√

1− x2 P ∗(x)

]
, (2.4)

and

(i) deg(P ) ≤ k, deg(Q) ≤ k − 1 and

(ii) P has parity-(k mod 2), Q has parity-(k − 1 mod 2) and

(iii) ∀x ∈ [−1, 1] : |P (x)|2 + (1− x2)|Q(x)|2 = 1.

Moreover, if P,Q ∈ C[x] satisfy (i)-(iii), then we can find a Φ ∈ Rk+1 satisfying
Eq. (2.4).

Proof:
“=⇒”: For the k = 0 case the unitary on the left-hand side of (2.4) is eiφ0σz , so
that P ≡ eiφ0 and Q ≡ 0 satisfy the properties (i)-(iii). Now we prove (i)-(ii) by
induction. The induction step can be shown as follows: suppose we have proved
for k − 1 that

eiφ0σz
k−1∏
j=1

(
W (x)eiφjσz

)
=

[
P̃ (x) iQ̃(x)

√
1− x2

iQ̃∗(x)
√

1− x2 P̃ ∗(x)

]
,
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where P̃ , Q̃ ∈ C[x] satisfy (i)-(ii). Then

eiφ0σz
k∏
j=1

(
W (x)eiφjσz

)
=

=

[
P̃ (x) iQ̃(x)

√
1− x2

iQ̃∗(x)
√

1− x2 P̃ ∗(x)

][
eiφkx ie−iφk

√
1− x2

ieiφk
√

1− x2 e−iφkx

]

=

[ P (x):=︷ ︸︸ ︷
eiφk
(
xP̃ (x) + (x2 − 1)Q̃(x)

)
ie−iφk

(
xQ̃(x) + P̃ (x)

)√
1− x2

ieiφk
(
xQ̃∗(x) + P̃ ∗(x)

)
︸ ︷︷ ︸

Q∗(x):=

√
1− x2 e−iφk

(
xP̃ ∗(x) + (x2 − 1)Q̃∗(x)

) ],
(2.5)

and it is easy to see that P,Q satisfy (i)-(ii). Finally note that the left-hand side
of (2.4) is a product of unitaries, therefore the right-hand side is unitary too,
which implies (iii).

“⇐=”: Suppose P,Q satisfy (i)-(iii). First we handle a trivial case: suppose
that deg(P ) = 0, then due to (iii) we must have that |P (1)| = 1 and thus P ≡ eiφ0

for some φ0 ∈ R. This again using (iii) implies that Q ≡ 0. Due to (ii) we must
have that k is even, and thus Φ = (φ0,

π
2
,−π

2
, . . . , π

2
,−π

2
) ∈ Rk+1 is a solution,

since

eiφ0σz
k/2∏
j=1

(
W (x)ei

π
2
σzW (x)e−i

π
2
σz
)

= eiφ0σz =

[
eiφ0 0
0 e−iφ0

]
.

This special case also covers the k = 0 case, providing the base of our induction.

Now we show the induction step, assuming that we proved the claim for k−1.
Note that (iii) can be rewritten as

∀x ∈ [−1, 1] : P (x)P ∗(x) + (1− x2)Q(x)Q∗(x) = 1. (2.6)

Since this equation holds for infinitely many points, the polynomial on the left-
hand side of (2.6) must be the constant ≡ 1 polynomial. Assume without loss of
generality that 1 ≤ deg(P ) = ` ≤ k, then we must have that deg(Q) = `− 1, and
the leading coefficients have equal magnitude |p`| = |q`−1|, since they cancel each
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other in (2.6). Let φk ∈ R be such that e2iφk = p`
q`−1

, and let us define P̃ , Q̃ via[
P̃ (x) iQ̃(x)

√
1− x2

iQ̃∗(x)
√

1− x2 P̃ ∗(x)

]
:=

[
P (x) iQ(x)

√
1− x2

iQ∗(x)
√

1− x2 P ∗(x)

]
e−iφkσzW †(x) =

=

[
P (x) iQ(x)

√
1− x2

iQ∗(x)
√

1− x2 P ∗(x)

][
e−iφkx −ie−iφk

√
1− x2

−ieiφk
√

1− x2 eiφkx

]

=

[ P̃ (x)=︷ ︸︸ ︷
e−iφkxP (x) + eiφk(1− x2)Q(x) iQ̃(x)

√
1− x2

i
(
e−iφkxQ∗(x)− eiφkP ∗(x)

)︸ ︷︷ ︸
Q̃∗(x)=

√
1− x2 P̃ ∗(x)

]
(2.7)

where

P̃ (x) = e−iφkxP (x) + eiφk(1− x2)Q(x) = e−iφk
(
xP (x) +

p`
q`−1

(1− x2)Q(x)

)
(2.8)

and

Q̃(x) = eiφkxQ(x)− e−iφkP (x) = e−iφk
(
p`
q`−1

xQ(x)− P (x)

)
. (2.9)

It is easy to see that the highest-order terms in (2.8)-(2.9) cancel out, and there-
fore deg(P̃ ) ≤ ` − 1 ≤ k − 1, deg(Q̃) ≤ ` − 2 ≤ k − 2. Using (2.8)-(2.9) we
can also verify that P̃ , Q̃ satisfy (i)-(ii) for (k − 1), moreover property (iii) is
preserved due to the unitarity of e−iφkσzW †(x). So by the induction hypothe-
sis we get that (2.7) equals eiφ̃0σz

(∏k−1
j=1 W (x)eiφ̃jσz

)
for some Φ̃ ∈ Rk, therefore

Φ := (φ̃0, φ̃1, φ̃2, . . . , φ̃k−1, φk) ∈ Rk+1 is a solution. 2

Note that the above proof also gives an algorithm that finds Φ using O(k2)
arithmetic operations. The following two characterizations and their proofs also
follow a constructive approach which can be translated to a polynomial-time
algorithm. However, they have the drawback that they rely on finding roots
of high-degree polynomials,2 which makes it harder in practice to execute the
resulting protocols.

In our algorithms we will mostly be concerned with the polynomial P , cor-
responding to the top-left corner of the matrices, and ignore Q. Therefore, it is
useful to characterize the attainable polynomials P if one can choose Q arbitrarily
in Theorem 2.2.1. These attainable polynomials can be characterized as follows.

2For a good bound on the complexity of approximate root finding see, e.g., the work of Neff
and Reif [NR96].
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2.2.2. Theorem. Let k ∈ N be fixed and let P ∈ C[x]. There exists some
Q ∈ C[x] such that P,Q satisfy properties (i)-(iii) of Theorem 2.2.1 if and only
if P satisfies properties (i)-(ii) of Theorem 2.2.1 and

(iv.a) ∀x ∈ [−1, 1] : |P (x)| ≤ 1

(iv.b) ∀x ∈ (−∞,−1] ∪ [1,∞) : |P (x)| ≥ 1

(iv.c) if k is even, then ∀x ∈ R : P (ix)P ∗(ix) ≥ 1.

Similarly, let Q ∈ C[x]. There exists some P ∈ C[x] such that P,Q satisfy
properties (i)-(iii) of Theorem 2.2.1 if and only if Q satisfies properties (i)-(ii) of
Theorem 2.2.1 and

(v.a) ∀x ∈ [−1, 1] :
√

1− x2|Q(x)| ≤ 1

(v.b) if k is odd, then ∀x ∈ R : (1 + x2)Q(ix)Q∗(ix) ≥ 1.

Proof:
“=⇒”: Trivially follows from (iii): ∀x ∈ C : P (x)P ∗(x) + (1− x2)Q(x)Q∗(x) = 1.
“⇐=”: First consider the case when k is odd, and consider the polynomial A(x) :=
1 − P (x)P ∗(x). Note that A ∈ R[x] and A is even, therefore A is in fact a
polynomial in x2. Let y = x2 and consider the real polynomial Ã(y) := A(

√
y).

Observe that ∀y ≥ 1: Ã(y) ≤ 0 due to (iv.b), ∀y ∈ [0, 1] : Ã(y) ≥ 0 due to (iv.a)
and ∀y ≤ 0: Ã(y) ≥ 1 since

Ã(y) = A(i
√
−y) (y ≤ 0)

= 1− P (i
√
−y)P ∗(i

√
−y) = 1 + P (i

√
−y)P ∗(−i

√
−y) (P is odd)

= 1 + P (i
√
−y)(P (i

√
−y))∗ = 1 + |P (i

√
−y)|2 ≥ 1.

Therefore all real roots have even multiplicity except for x = 1, moreover all
complex roots come in pairs. Thus Ã(y) = (1 − y)K2

∏
s∈S(y − s)(y − s∗) for

some K ∈ R and multiset S ⊆ C of roots. Let W (y) := K
∏

s∈S(y − s) ∈ C[y],
then Ã(y) = (1 − y)W (y)W ∗(y), and thus A(x) = (1 − x2)W (x2)W ∗(x2), i.e.,
1 = P (x)P ∗(x) + (1 − x2)W (x2)W ∗(x2). Setting Q(x) := W (x2) concludes this
case.

The other cases can be proven similarly, by examining the polynomial 1 −
P (x)P ∗(x) or 1− (1− x2)Q(x)Q∗(x) respectively. 2

The above characterization is still somewhat complicated, but it turns out
that there is a nice and simple characterization for the polynomials that we can
get by taking the real (or imaginary) part of P . It turns out that we can work
very smoothly with the real part of P in our quantum circuits, so we will mostly
build our algorithmic results on this characterization, proven below.
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The original proof of the next theorem in [LYC16] used the Weierstrass sub-
stitution, which made it difficult to understand, and made it hard to analyze the
numerical stability of the induced algorithm. Also the theorem was stated in a
slightly less general form requiring <[P̃ ](1) = 1. We roughly follow the approach
of [LYC16], but improve all of the mentioned aspects of the theorem and its proof,
while making the statement and the proof conceptually simpler.

2.2.3. Theorem. Let k ∈ N be fixed and let P̃ , Q̃ ∈ R[x]. There exists some
P,Q ∈ C[x] satisfying properties (i)-(iii) of Theorem 2.2.1 such that P̃ = <[P ]
and Q̃ = <[Q], if and only if P̃ , Q̃ satisfy properties (i)-(ii) of Theorem 2.2.1 and

(vi) ∀x ∈ [−1, 1] : P̃ (x)2 + (1− x2)Q̃(x)2 ≤ 1.

(NB the same holds if we replace <[P ] by =[P ] and/or <[Q] by =[Q] in the state-
ment. Also one might set Q̃=0 or P̃ =0 if one is only interested in P̃ or Q̃.)

Proof:
“=⇒”: Trivial.
“⇐=”: Apply Lemma 2.2.4 to the polynomial 1− P̃ (x)2− (1− x2)Q̃(x)2, and set
P := P̃ + iB, Q := Q̃+ iC. 2

2.2.4. Lemma. Suppose that A ∈ R[x] is an even polynomial such that deg(A) ≤
2k and for all x ∈ [−1, 1] we have A(x) ≥ 0. Then there exist polynomials
B,C ∈ R[x] such that A(x) = B2(x)+(1−x2)C2(x), deg(B) ≤ k, deg(C) ≤ k−1,
B has parity-(k mod 2) and C has parity-(k − 1 mod 2).

Proof:
If A = 0 the statement is trivial, so we assume in the rest that A 6= 0. Let S be
the multiset of roots, containing the roots of A with their algebraic multiplicity.
Note that if s ∈ S then also −s ∈ S and s∗ ∈ S since A is an even real polynomial.
(This statement holds considering multiplicities.) Let us introduce the following
subsets of S (these are again multisets):

S0 := {s ∈ S : s = 0}
S(0,1) := {s ∈ S : s ∈ (0, 1)}
S[1,∞) := {s ∈ S : s ∈ [1,∞)}

SI := {s ∈ S : Re(s) = 0 & Im(s) > 0}
SC := {s ∈ S : Re(s) > 0 & Im(s) > 0}.

Using the roots in S and some scaling factor K ∈ R+ we can write

A(x) = K2x|S0|
∏

s∈S(0,1)

(x2 − s2)
∏

s∈S[1,∞)

(s2 − x2)
∏
s∈SI

(x2 + |s|2)·

·
∏

(a+bi)∈SC

(
x4 + 2x2(b2 − a2) + (a2 + b2)2

)
. (2.10)
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Consider the following rearrangement of the above terms corresponding to the
roots in S[1,∞), SI , SC :

s2 − x2 = (s2 − 1)x2 + s2(1− x2) =
(√

(s2 − 1)x+ is
√

1− x2
)

︸ ︷︷ ︸
R(s)(x):=

R∗(s)(x)

(2.11)

x2 + |s|2 = (|s|2 + 1)x2 + |s|2(1− x2) =
(√

(|s|2 + 1)x+ i|s|
√

1− x2
)

︸ ︷︷ ︸
P(s)(x):=

P ∗(s)(x)

(2.12)

x4 + 2x2(b2− a2) + (a2 + b2)2 =
((
cx2− (a2+ b2)

)
+ i
√
c2 − 1x

√
1− x2

)
︸ ︷︷ ︸

Q(a,b)(x):=

Q∗(a,b)(x),

(2.13)

where3 c = a2 + b2 +

√
2(a2 + 1)b2 + (a2 − 1)2 + b4.

Let us define

W (x) := Kx|S0|/2
∏

s∈S(0,1)

√
(x2 − s2)

∏
s∈S[1,∞)

Rs(x)
∏
s∈SI

Ps(x)
∏

(a+bi)∈SC

Q(a,b)(x).

Note that the factor x|S0|/2
∏

s∈S(0,1)

√
(x2 − s2) is a polynomial, since every root

in S0 and S(0,1) has even multiplicity as A(x) ≥ 0 for all x ∈ (−1, 1). Also note
that W (x) is a product of expressions of the form B′(x) + i

√
1− x2C ′(x) where

B′, C ′ ∈ R[x] are polynomials having opposite parities (NB the zero polynomial
is both even and odd, thus it has opposite parity to any even/odd polynomial).
Since the product of expressions of such form can again be written in such a form,
we have thatW (x) = B(x)+ i

√
1− x2C(x) for some B,C ∈ R[x] having opposite

parities. Also note that deg(B) ≤ |S|/2 and deg(C) ≤ |S|/2− 1.
Finally observe that by (2.10)-(2.13) we have that A(x) = W (x) · W ∗(x),

thus A(x) = B(x)2 + (1 − x2)C(x)2. Since deg(B) ≤ |S|/2 ≤ k and deg(C) ≤
|S|/2 − 1 ≤ k − 1, in case deg(A) = 2k, we must have that B has parity-
(k mod 2) and C has parity-(k − 1 mod 2). If deg(A) ≤ 2k − 2 and B has
parity-(k − 1 mod 2), then consider W̃ (x) := W (x) ·

(
x+ i

√
1− x2

)
. Since(

x+ i
√

1− x2
)(
x+ i

√
1− x2

)∗
= 1 we still have that W̃ (x)W̃ ∗(x) = A(x). Now

let us denote W̃ (x) = B̃(x) + i
√

1− x2C̃(x), then we get that A(x) = B̃(x)2 +
(1 − x2)C̃(x)2, moreover deg(B̃) ≤ k, deg(C̃) ≤ k − 1, B̃ has parity-(k mod 2)
and C̃ has parity-(k − 1 mod 2). 2

3Observe that c ≥ 1 for all a, b ≥ 0 and thus
√
c2 − 1 ∈ R.
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Note that the proofs of Theorems 2.2.1-2.2.3 are constructive, therefore they
also give algorithms to find P,Q and Φ. The most difficult step in the proofs is to
find the roots of a given degree-d univariate complex polynomial. This problem
is fortunately well studied, and can be solved up to ε precision on a classical
computer in time O(poly(d, log(1/ε))), when the roots have bounded magnitude.
A rigorous analysis of numerical errors and an optimized algorithm for finding an
angle sequence corresponding to a given polynomial was recently developed by
Haah [Haa18]. This optimized algorithm runs in time4 Õ(d3polylog(1/ε)) for a
degree-d polynomial and returns the angle sequence for a uniform ε-approximating
polynomial over the interval [−1, 1].

Now we prove a corollary of the above results where we replace the W (x)
rotation operators with the following R(x) reflection gates, better fitting our
singular value formalism. We focus on the P polynomial because later the Q part
will be projected out in the projected unitary encodings that we use.

2.2.5. Definition (Parametrized family of single-qubit reflections). We define
a parametrized family of single-qubit reflection operators for all x ∈ [−1, 1] as

R(x) :=

[
x

√
1− x2

√
1− x2 −x

]
. (2.14)

2.2.6. Corollary (Quantum signal processing using reflections).
Let P ∈ C[x] be a degree-d polynomial, such that

• P has parity-(d mod 2),

• ∀x ∈ [−1, 1] : |P (x)| ≤ 1,

• ∀x ∈ (−∞,−1] ∪ [1,∞) : |P (x)| ≥ 1,

• if d is even, then ∀x ∈ R : P (ix)P ∗(ix) ≥ 1.

Then there exists Φ ∈ Rd such that

d∏
j=1

(
eiφjσzR(x)

)
=

[
P (x) .
. .

]
. (2.15)

Moreover for x ∈ {−1, 1} we have that P (x) = xd
∏d

j=1 e
iφj , and for d even

P (0) = e−i
∑d
j=1(−1)jφj .

4This result also accounts for the complexity of implementing finite-precision arithmetics,
unlike our previously stated O

(
d2
)
arithmetic complexity statement following Theorem 2.2.1.
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Proof:
By Theorem 2.2.2 there exists Φ′ ∈ Rd+1 for some d ≥ 1 such that

eiφ
′
0σz

(
d∏
j=1

W (x)eiφ
′
jσz

)
=

[
P (x) .
. .

]
. (2.16)

Observe that
W (x) = ie−i

π
4
σzR(x)ei

π
4
σz , (2.17)

thus the left-hand side of (2.15) equals

eiφ
′
0σz

(
d∏
j=2

eiφjσzie−i
π
4
σzR(x)ei

π
4
σz

)
= idei(φ

′
0−

π
4

)σzR(x)

(
d∏
j=2

ei(φ
′
j−1−

π
2

)σzR(x)

)
ei(φ

′
d−

π
4

).

Therefore

ei(φ
′
0+φ′d+(d−1)π

2
)R(x)

(
d∏
j=2

ei(φ
′
j−1−

π
2

)σzR(x)

)
=

[
P (x) .
. .

]
.

So choosing φ1 := φ′0 + φ′d + (d − 1)π
2
and for all j ∈ {2, 3, . . . , d} setting φj :=

φ′j−1 − π
2
, results in a Φ ∈ Rd that clearly satisfies (2.15). The additional result

for x ∈ {−1, 1} follows from the fact that for x ∈ {−1, 1} every matrix in (2.15)
becomes diagonal.

The claim about P (0) follows from the observation that

eiφ1σzR(0)eiφ2σzR(0) = ei(φ1−φ2)σz . 2

One could directly show that Chebyshev polynomials satisfy the requirements
of Corollary 2.2.6, but instead we explicitly describe the corresponding Φ; by
Theorem 2.2.2 it actually proves that the conditions of Corollary 2.2.6 hold.

2.2.7. Lemma (Chebyshev polynomials in quantum signal processing).
Let Td ∈ R[x] be the d-th Chebyshev polynomial of the first kind. Let Φ ∈ Rd be
such that φ1 = (1 − d)π

2
, and for all i ∈ [d] \ {1} let φi := π

2
. Using this Φ in

equation (2.15) we get that P = Td.

Proof:
One can prove this, e.g., by induction using the substitution x := cos(θ). 2

In Corollary 2.2.6 the requirements on P are not very intuitive, but fortunately
we have a good understanding of the polynomials that can emerge by taking the
real part of these polynomials. This results in the following useful corollary:

2.2.8. Corollary (Real quantum signal processing).
Let P<(x) ∈ R[x] be a degree-d polynomial for some d ≥ 1, such that
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• P< has parity-(d mod 2), and

• for all x ∈ [−1, 1] : |P<(x)| ≤ 1.

Then there is a P ∈ C[x] of degree d satisfying the requirements of Corollary 2.2.6.
Moreover, given P<(x) and δ ≥ 0 we can find a P and a corresponding Φ,

such that |<[P ] − P<| ≤ δ for all x ∈ [−1, 1], using a classical computer in time
O(poly(d, log(1/δ))).

Proof:
The existence of such P follows directly from Theorem 2.2.1-2.2.3.

The complexity statement follows from the fact that we can find P and Φ′

using the procedures of Theorems 2.2.1-2.2.3 on a classical computer in time
O(poly(d, log(1/ε))) as noted above. Computing Φ from Φ′ as in the proof of
Corollary 2.2.6 only yields a small overhead. 2

2.3 Quantum singular value transformation

In this section we show how to leverage the results of the previous section to
perform quantum singular value transformation of projected unitary matrices,
with ideas coming from qubitization [LC16]. Qubitization was introduced by Low
and Chuang [LC16] in order to apply polynomial transformations to the spectrum
of a Hermitian (or normal) operator, which is represented as the top-left block of a
unitary matrix. Low and Chuang [LC17a] also showed how to use their techniques
in order to develop advanced amplitude transformation results. We generalize
their results, and develop the technique of singular value transformation, which
applies to any operator as opposed to only normal operators.

It turns out that by applying a unitary U back and forth interleaved with some
simple phase operators one can induce polynomial transformations to the singular
values of a particular (not necessarily rectangular) block-matrix of the unitary U .
The main idea behind our approach is to lift the quantum signal processing results
presented in the previous section by studying two-dimensional invariant subspaces
coming from Camille Jordan’s Lemma [Jor75]. Then by understanding how the
two-dimensional subspaces behave, one can infer the higher-dimensional behavior.

The original qubitization approach can be understood along the lines of Jor-
dan’s Lemma [Jor75] about the common invariant subspaces of two reflections.
Jordan’s result is most often presented stating that the product of two reflections
decomposes into one- and two-dimensional invariant subspaces, such that the op-
erator has eigenvalue ±1 on the one-dimensional subspaces, and the operator acts
as a rotation on the two-dimensional subspaces. This higher-dimensional insight
lies at the heart of Szegedy’s quantum walk results [Szeg04] as well as Marriott
and Watrous’s QMA amplification scheme [MW05].
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Motivated by a series of prior work on quantum search algorithms [Gro05,
Hø00, YLC14], Low and Chuang [LC16] replaced one of the reflections in Jordan’s
Lemma by a phase-gate, such as in Figure 2.2b. They examined the operators
arising by iterative application of the reflection- and phase-operator with applying
possibly different phases in each step. In this chapter we go one step further and
replace the other reflection5 by an arbitrary unitary operator U , and analyze the
procedure with carefully chosen one- and two-dimensional subspaces coming from
singular value decomposition similar to Jordan’s Lemma.

2.3.1. Definition (Singular value decomposition of a projected unitary).
Let HU be a finite-dimensional Hilbert space and let U,Π, Π̃ ∈ End(HU) be linear
operators on HU such that U is a unitary, and Π, Π̃ are orthogonal projectors,
and let A = Π̃UΠ. Let d := rank(Π), d̃ := rank(Π̃), dmin := min(d, d̃). By the
singular value decomposition of A we know that there exist orthonormal bases
(|ψi〉 : i ∈ [d]), (|ψ̃i〉 : i ∈ [d̃]) of the subspaces img(Π) and img(Π̃) respectively,
such that

A =

dmin∑
i=1

ςi|ψ̃i〉〈ψi|, (2.18)

and6 for all i ∈ [dmin] : ςi ∈ R+
0 . Moreover, ςi ≥ ςj for all i ≤ j ∈ [dmin].

2.3.2. Definition (Invariant subspaces associated to an SVD).
Assume the notation of Definition 2.3.1. Let r = rank(A); if ς1 < 1, then let
k = 0, else let k ∈ [dmin] be the largest index for which ςk = 1. We define

|ψ⊥i 〉 :=
(I − Π)U †|ψ̃i〉∥∥∥(I − Π)U †|ψ̃i〉

∥∥∥ =
(I − Π)U †|ψ̃i〉√

1− ς2
i

, and

|ψ̃⊥i 〉 :=
(I − Π̃)U |ψi〉∥∥∥(I − Π̃)U |ψi〉

∥∥∥ =
(I − Π̃)U |ψi〉√

1− ς2
i

.

For i ∈ [k] let Hi := Span(|ψi〉) and H̃i := Span
(
|ψ̃i〉

)
,

i ∈ [r] \ [k] let Hi := Span
(
|ψi〉, |ψ⊥i 〉

)
and H̃i := Span

(
|ψ̃i〉, |ψ̃⊥i 〉

)
i ∈ [d] \ [r] let HR

i := Span(|ψi〉) and H̃R
i := Span(U |ψi〉),

i ∈ [d̃] \ [r] let HL
i := Span

(
U †|ψ̃i〉

)
and H̃L

i := Span
(
|ψ̃i〉

)
.

5One could in principle merge U and U† into one of the projectors, leading to a product of
reflections as in Jordan’s Lemma, however we take a slightly different perspective.

6In singular value decomposition one usually requires that the diagonal elements of Σ are
non-negative. Here we could also allow negative reals, all the proofs of this section would
go through with minor modifications, e.g., defining the ordering of the singular values with
decreasing absolute value. This would enable one to treat spectral decompositions of Hermitian
matrices also as singular value decompositions.
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Finally let H⊥ :=
(⊕

i∈[r]Hi ⊕
⊕

i∈[d]\[r]HR
i ⊕

⊕
i∈[d̃ ]\[r]HL

i

)⊥
, and define H̃⊥

the same way, just putting a ˜ on top of every H symbol.

Now we show that the subspaces Hi : i ∈ [k], Hi : i ∈ [r] \ [k], HR
i : i ∈ [d] \ [r]

and HL
i : i ∈ [d̃] \ [r], are indeed pairwise orthogonal, by proving that their span-

ning bases described in Definition 2.3.2 form an orthonormal system of vectors.
(By symmetry it also implies that the spanning bases of the H̃ subspaces also
form an orthonormal system of vectors.) The proof is summarized in Table 2.1,
relying on the following observations:

∀i, j ∈ [d] 〈ψi|ψj〉 = δij (2.19)

∀i ∈ [d], j ∈ [r] \ [k] 〈ψi|ψ⊥j 〉 ∝ 〈ψi|(I − Π)U †|ψ̃j〉 ∝ 〈ψi|(I − Π) = 0 (2.20)

∀i ∈ [d], j ∈ [d̃] \ [r] 〈ψi|U †|ψ̃j〉 = 〈ψi|ΠU †Π̃|ψ̃j〉 = 〈ψi|A†|ψ̃j〉 ∝ A†|ψ̃j〉 = 0
(2.21)

∀i, j ∈ [r] \ [k] 〈ψ⊥i |ψ⊥j 〉 =
〈ψ̃i|U(I − Π)U †|ψ̃j〉√

(1− ς2
i )(1− ς2

j )
=
δij − 〈ψ̃i|AA†|ψ̃j〉√

(1− ς2
i )(1− ς2

j )
= δij

(2.22)

∀i ∈ [r] \ [k], j ∈ [d̃] \ [r]

〈ψ⊥i |U †|ψ̃j〉 =
〈ψ̃i|U(I − Π)U †|ψ̃j〉√

(1− ς2
i )

=
δij − 〈ψ̃i|AA†|ψ̃j〉√

(1− ς2
i )

=0

(2.23)

∀i, j ∈ [d̃] 〈ψ̃i|ψ̃j〉 = δij (2.24)

Hi ⊥ Hj

|ψj〉 ∈ Hj |ψj〉 ∈ Hj |ψ⊥j 〉 ∈ Hj |ψj〉 ∈ HR
j U †|ψ̃j〉 ∈ HL

j

j ∈ [k] j ∈ [r] \ [k] j ∈ [r] \ [k] j ∈ [d] \ [r] j ∈ [d̃] \ [r]

|ψi〉 ∈ Hi by (2.19) by (2.19) by (2.20) by (2.19) by (2.21)

i ∈ [k] 〈ψi|ψj〉 = δij 〈ψi|ψj〉 = 0 〈ψi|ψ⊥j 〉 = 0 〈ψi|ψj〉 = 0 〈ψi|U †|ψ̃j〉 = 0

|ψi〉 ∈ Hi by (2.19) by (2.20) by (2.19) by (2.21)

i ∈ [r] \ [k] 〈ψi|ψj〉 = δij 〈ψi|ψ⊥j 〉 = 0 〈ψi|ψj〉 = 0 〈ψi|U †|ψ̃j〉 = 0

|ψ⊥i 〉 ∈ Hi by (2.22) by (2.20) by (2.23)

i ∈ [r] \ [k] 〈ψ⊥i |ψ⊥j 〉 = δij 〈ψ⊥i |ψj〉 = 0 〈ψ⊥i |U †|ψ̃j〉 = 0

|ψi〉 ∈ HR
i by (2.19) by (2.21)

i ∈ [d] \ [r] 〈ψi|ψj〉 = δij 〈ψi|U †|ψ̃j〉 = 0

U †|ψ̃i〉 ∈ HL
i by (2.24)

i ∈ [d̃] \ [r] 〈ψ̃i|UU †|ψ̃j〉 = δij

Table 2.1. Orthonormality of the spanning bases described in Definition 2.3.2.
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Now we introduce some notation for matrices that represent linear maps acting
between different subspaces. This will enable us to conveniently express matrices
in a block-diagonal form. We will use the subspaces of Definition 2.3.2, because
they enable us to block-diagonalize the unitaries used for implementing singular
value transformation.

2.3.3. Definition (Notation for linear maps between different vector spaces).
For two vector (sub)spaces H,H′ let us denote by [ · ]HH′ the matrix of a linear
map that maps H 7→ H′. Moreover, if the subspaces are as in Definition 2.3.2
and we explicitly write down matrix elements, they are meant to be interpreted
in the spanning bases we used for defining H,H′ in Definition 2.3.2.

2.3.4. Lemma (Invariant subspace decomposition of a projected unitary).
Let HU be a finite-dimensional Hilbert-space and U,Π, Π̃ ∈ End(HU) be as in
Definition 2.3.1. Then using the singular value decomposition of Definition 2.3.2
we have that U equals⊕
i∈[k]

[1]HiH̃i ⊕
⊕

i∈[r]\[k]

[
ςi

√
1− ς2

i√
1− ς2

i −ςi

]Hi
H̃i

⊕
⊕

i∈[d]\[r]

[1]
HRi
H̃Ri
⊕
⊕

i∈[d̃]\[r]

[1]
HLi
H̃Li
⊕ [ · ]H⊥H̃⊥ .

(2.25)

Moreover, 2Π− I and eiφ(2Π−I) respectively can be written as⊕
i∈[k]

[1]HiHi ⊕
⊕

i∈[r]\[k]

[
1 0
0 −1

]Hi
Hi
⊕
⊕

i∈[d]\[r]

[1]
HRi
HRi
⊕
⊕

i∈[d]\[r]

[−1]
HLi
HLi
⊕ [ · ]H⊥H⊥ , (2.26)

⊕
i∈[k]

[
eiφ
]Hi
Hi
⊕
⊕

i∈[r]\[k]

[
eiφ 0
0 e−iφ

]Hi
Hi
⊕
⊕

i∈[d]\[r]

[
eiφ
]HRi
HRi
⊕
⊕

i∈[d]\[r]

[
e−iφ

]HLi
HLi
⊕ [ · ]H⊥H⊥ ,

(2.27)

similarly 2Π̃− I and eiφ(2Π̃−I) respectively can be written as⊕
i∈[k]

[1]H̃iH̃i ⊕
⊕

i∈[r]\[k]

[
1 0
0 −1

]H̃i
H̃i
⊕
⊕

i∈[d]\[r]

[−1]
H̃Ri
H̃Ri
⊕
⊕

i∈[d]\[r]

[1]
H̃Li
H̃Li
⊕ [ · ]H̃⊥H̃⊥ , (2.28)

⊕
i∈[k]

[
eiφ
]H̃i
H̃i
⊕
⊕

i∈[r]\[k]

[
eiφ 0
0 e−iφ

]H̃i
H̃i
⊕
⊕

i∈[d]\[r]

[
e−iφ

]H̃Ri
H̃Ri
⊕
⊕

i∈[d]\[r]

[
eiφ
]H̃Li
H̃Li
⊕ [ · ]H̃⊥H̃⊥ .

(2.29)

Proof:
For all i ∈ [r] \ [k] we can verify that

U |ψi〉 = Π̃U |ψi〉+(I−Π̃)U |ψi〉 = Π̃UΠ︸ ︷︷ ︸
A

|ψi〉+(I−Π̃)U |ψi〉 = ςi|ψ̃i〉+
√

1− ς2
i |ψ̃⊥i 〉,

(2.30)
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and√
1− ς2

i U |ψ⊥i 〉 = U(I − Π)U †|ψ̃i〉 = |ψ̃i〉 − UΠU †|ψ̃i〉 = |ψ̃i〉 − UΠU †Π̃︸ ︷︷ ︸
A†

|ψ̃i〉

= |ψ̃i〉 − Uςi|ψi〉 = (1− ς2
i )|ψ̃i〉 − ςi

√
1− ς2

i |ψ̃⊥i 〉, (2.31)

where in the last equality we used (2.30). Since U is unitary, it preserves the inner
product and therefore maps H⊥ onto H̃⊥. Now equation (2.25) directly follows
from (2.30)-(2.31). The other statements trivially follow from Definition 2.3.1. 2

2.3.5. Definition (Alternating phase modulation sequences).
Let HU be a finite-dimensional Hilbert space and let U,Π, Π̃ ∈ End(HU) be linear
operators on HU such that U is a unitary, and Π, Π̃ are orthogonal projectors.
Let Φ ∈ Rn; we define the alternating phase modulation sequences UΦ as follows

UΦ :=

 eiφ1(2Π̃−I)U
∏(n−1)/2

j=1

(
eiφ2j(2Π−I)U †eiφ2j+1(2Π̃−I)U

)
if n is odd, and∏n/2

j=1

(
eiφ2j−1(2Π−I)U †eiφ2j(2Π̃−I)U

)
if n is even.

(2.32)

2.3.6. Definition (Singular value transformation by even/odd functions).
Let f : R → C be an even or odd function. Let A ∈ Cd̃×d, let dmin := min(d, d̃)
and let

A =

dmin∑
i=1

ςi|ψ̃i〉〈ψi|

be a singular value decomposition of A.
We define the singular value transform of A, for an odd function f as

f (SV )(A) :=

dmin∑
i=1

f(ςi)|ψ̃i〉〈ψi|,

and for an even f as

f (SV )(A) :=
d∑
i=1

f(ςi)|ψi〉〈ψi|,

where for i ∈ [d] \ [dmin] we define ςi := 0.

The following theorem is a generalized and improved version of the “Flexible
quantum signal processing” result of Low and Chuang [LC17a, Theorem 4]. Our
result is more general because it works for arbitrary matrices as opposed to only
Hermitian (or normal) matrices. Another improvement is that we remove the con-
straint P<(0) = 0 for even d, thanks to our improved treatment of Theorem 2.2.3
and Corollary 2.2.6. Also we note that the following theorem can be viewed as a
generalization of the quantum walk techniques introduced by Szegedy [Szeg04].
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2.3.7. Theorem (QSVT by alternating phase modulation).
Let HU be a finite-dimensional Hilbert space and let U,Π, Π̃ ∈ End(HU) be linear
operators on HU such that U is a unitary, and Π, Π̃ are orthogonal projectors.
Let P ∈ C[x] and Φ ∈ Rn be as in Corollary 2.2.6. Then

P (SV )(Π̃UΠ) =

{
Π̃UΦΠ if n is odd, and
ΠUΦΠ if n is even.

(2.33)

Proof:
We first prove the odd case. Observe that P (1) =

∏n
j=1 e

iφj , and let eiφ0 :=

ei
∑n
j=1(−1)nφj , then UΦ = eiφ1(2Π̃−I)U

∏n/2
j=1

(
eiφ2j(2Π−I)U †eiφ2j+1(2Π̃−I)U

)
, which fur-

ther equals

⊕
i∈[k]

[ςnkP (1)]HiH̃i ⊕
⊕

i∈[r]\[k]

[
n∏
j=1

(
eiφjσzR(ς`)

)]Hi
H̃i

⊕
⊕

i∈[d]\[r]

[
eiφ0
]HRi
H̃Ri
⊕
⊕

i∈[d̃]\[r]

[
e−iφ0

]HLi
H̃Li
⊕[ · ]H⊥H̃⊥

(by Lemma 2.3.4)

=
⊕
i∈[k]

[P (ςi)]
Hi
H̃i
⊕
⊕

i∈[r]\[k]

[
P (ςi) .
. .

]Hi
H̃i
⊕
⊕

i∈[d]\[r]

[
eiφ0
]HRi
H̃Ri
⊕
⊕

i∈[d̃]\[r]

[
e−iφ0

]HLi
H̃Li
⊕[ · ]H⊥H̃⊥ .

(by Corollary 2.2.6)

Finally equation (2.33) follows from the fact that Π =
∑d

i=1 |ψi〉〈ψi| and Π̃ =∑d̃
i=1 |ψ̃i〉〈ψ̃i|, therefore

Π̃UΦΠ =
⊕
i∈[k]

[P (ςi)]
Hi
H̃i
⊕
⊕

i∈[r]\[k]

[
P (ςi) 0

0 0

]Hi
H̃i
⊕
⊕

i∈[d]\[r]

[0]
HRi
H̃Ri
⊕
⊕

i∈[d̃]\[r]

[0]
HLi
H̃Li
⊕ [0]H⊥H̃⊥

=

dmin∑
i=1

P (ςi)|ψ̃i〉〈ψi|.

The last equality follows from the observation that for odd n the polynomial P
is also odd, therefore P (0) = 0.

For the even case we can similarly derive that UΦ equals

⊕
i∈[k]

[P (ςi)]
Hi
Hi ⊕

⊕
i∈[r]\[k]

[
P (ςi) .
. .

]Hi
Hi
⊕
⊕

i∈[d]\[r]

[
e−iφ0

]HRi
HRi
⊕
⊕

i∈[d̃]\[r]

[
eiφ0
]HLi
HLi
⊕ [ · ]H⊥H⊥ .

(by Corollary 2.2.6)
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Finally equation (2.33) follows from the fact that Π =
∑d

i=1 |ψi〉〈ψi|, and therefore

ΠUΦΠ =
⊕
i∈[k]

[P (ςi)]
Hi
Hi ⊕

⊕
i∈[r]\[k]

[
P (ςi) 0

0 0

]Hi
Hi
⊕
⊕

i∈[d]\[r]

[
e−iφ0

]HRi
HRi
⊕
⊕

i∈[d̃]\[r]

[0]
HLi
HLi
⊕ [0]H⊥H⊥

=
d∑
i=1

P (ςi)|ψi〉〈ψi|.

The last equality uses the observation that for n even P (0) = e−iφ0 , as shown by
Corollary 2.2.6. 2

2.3.8. Corollary (Singular value transformation by real polynomials).
Let U,Π, Π̃ be as in Theorem 2.3.7. Suppose that P< ∈ R[x] is a degree-n polyno-
mial satisfying that

• P< has parity-(n mod 2) and

• for all x ∈ [−1, 1] : |P<(x)| ≤ 1.

Then there exist Φ ∈ Rn, such that

P
(SV )
<

(
Π̃UΠ

)
=


(
〈+| ⊗ Π̃

)(
|0〉〈0|⊗UΦ + |1〉〈1|⊗U−Φ

)(
|+〉 ⊗ Π

)
if n is odd,(

〈+| ⊗ Π
)(
|0〉〈0|⊗UΦ + |1〉〈1|⊗U−Φ

)(
|+〉 ⊗ Π

)
if n is even.

(2.34)

Proof:
By Corollary 2.2.8 we can find a Φ ∈ Rn such that <[P ] = P<. Observe that
−Φ gives rise to P ∗ in Corollary 2.2.6 as can be seen from equation (2.15). Let
Π′ = Π̃ for n odd and let Π′ = Π for n even. Then by Theorem 2.3.7 we get that
P (SV )

(
Π̃UΠ

)
= Π′UΦΠ, and P ∗(SV )

(
Π̃UΠ

)
= Π′U−ΦΠ. Therefore

(〈+| ⊗ Π′)(|0〉〈0| ⊗ UΦ)(|+〉 ⊗ Π) = P (SV )
(

Π̃UΠ
)
/2

(〈+| ⊗ Π′)(|1〉〈1| ⊗ U−Φ)(|+〉 ⊗ Π) = P ∗(SV )
(

Π̃UΠ
)
/2.

We can conclude by observing that P< = (P + P ∗)/2, and therefore

P
(SV )
<

(
Π̃UΠ

)
=
(
P (SV )

(
Π̃UΠ

)
+ P ∗(SV )

(
Π̃UΠ

))
/2.

2

Note that the above result is essentially optimal in the sense that each re-
quirement is necessary. It is obvious that the polynomial needs to be bounded
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within [−1, 1] since the matrix must have norm at most 1 as it is a projected
unitary. Also one cannot implement a degree-d Chebyshev polynomial with d− 1
uses of the unitary U , as shown by our lower bound in Section 3.5, because Td(x)
evaluates to 1 at x = 1 and has derivative d2. Indeed, by setting x := 1 and
y := 1− δ in equation (3.32) for some small enough δ > 0, Theorem 3.5.1 shows
that precisely implementing Td requires at least d uses of U .

Finally, regarding the parity constraint, note that every result in this subsec-
tion would stay valid if we would extend the concept of singular values by allow-
ing negative values as well. Then, changing a singular vector/singular value term
from ς|φ〉〈ψ| to−ς(−|φ〉)〈ψ| would result in a valid alternative decomposition, and
singular value transformation by a polynomial P could be evaluated using both
decompositions. For consistency it would require that P (ς)|ψ〉〈ψ| = P (−ς)|ψ〉〈ψ|,
and P (ς)|φ〉〈ψ| = P (−ς)(−|φ〉)〈ψ|, showing the necessity of the even/odd con-
straint. Equations (2.35)-(2.36) in the proof of Corollary 2.4.2 also show that the
even/odd case separation is quite natural.

What remains is to discuss how to efficiently implement alternating phase
modulation sequences. The operator eiφ(2Π−I)=CΠNOT

(
I⊗e−iφσz

)
CΠNOT can be

implemented using a single ancilla qubit, two uses of CΠNOT, and a single-qubit
phase gate e−iφσz , leading to an efficient implementation of UΦ, see Figure 2.2b.

Π...
...

(a) CΠNOT

|b〉 e−iφσz

Π Π...
...

...

(b) |b〉〈b| ⊗ e(−1)biφ(2Π−I)

|c〉 •

|b〉 e−iφ
(0)σz e−iφ

(1)σz

Π Π...
...

...

(c) |cb〉〈cb| ⊗ e(−1)biφ(c)(2Π−I)

U eiφn(2Π̃−I) U † eiφn−1(2Π−I) U

· · ·

U eiφ1(2Π̃−I)...
...

· · ·

(d) UΦ = eiφ1(2Π̃−I)U
∏(n−1)/2
j=1

(
eiφ2j(2Π−I)U †eiφ2j+1(2Π̃−I)U

)
(for odd n)

Figure 2.2. Gates and gate sequences used for singular value transformation
in Theorem 2.3.7. Figure 2.2a shows how to implement a CΠNOT gate, and
Figure 2.2b shows how to implement eiφ(2Π−I) using a single ancilla qubit, two
CΠNOT gates and an e−iφσz gate. Figure 2.2c demonstrates how to implement
a controlled version of the gate eiφ(c)(2Π−I), by only controlling the single-qubit
gate e−iφ(c)σz . Finally, Figure 2.2d summarizes the complete circuit used in The-
orem 2.3.7.
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2.3.9. Lemma (Implementating of alternating phase modulation sequences).
Let Φ ∈ Rn; the alternating phase modulation sequence UΦ of Definition 2.3.5
can be implemented using a single ancilla qubit with n uses of U and U †, n uses
of CΠNOT and n uses of CΠ̃NOT gates and n single-qubit gates. A controlled
version of UΦ can be built similarly just replacing the n single-qubit gates by con-
trolled gates, and in case n is odd replacing one U gate with a controlled U gate.
For a set of vectors {Φ(k) ∈ Rn : k ∈ {0, 1}m} a multi-controlled alternating phase
modulation sequence

∑
k∈{0,1}m |k〉〈k| ⊗ UΦ(k) can be implemented similarly by re-

placing the single-qubit gates with multiply controlled single-qubit gates of the form∑
k∈{0,1}m |k〉〈k| ⊗ eiφ

(k).

Proof:
See the constructions of Figure 2.2. 2

2.4 Robustness of singular value transformation
In this section we prove results about the robustness of singular value transforma-
tion. More precisely we prove bounds on the difference

∥∥∥P (SV )(A)− P (SV )(Ã)
∥∥∥

in terms of the magnitude of the initial “perturbation”
∥∥∥A− Ã∥∥∥.

First consider the generalization of ordinary R → C functions to Hermitian
matrices. One is tempted to think that if such a function is Lipschitz-continuous,
then the induced operator function is also Lipschitz-continuous, however this
turns out to be false. For a recent survey on the topic see the work of Aleksandrov
and Peller [AP16].

Although the Lipschitz property cannot be saved directly, one need not lose
more than some logarithmic factors in the modulus of continuity. We invoke a
nice result form the theory of operator functions, quantifying this claim. The
following theorem is due to Farforovskaya and Nikolskaya [FN09, Theorem 10].

2.4.1. Theorem (Robustness of eigenvalue transformation).
Suppose that f : [−1, 1]→ C is a function such that ω : [0, 2]→ [0,∞] is a modulus
of continuity, i.e., for all x, x′ ∈ [−1, 1]

|f(x)− f(x′)| ≤ ω(|x− x′|).

Then for all Hermitian matrices A,B such that ‖A‖, ‖B‖ ≤ 1, we have that

‖f(A)− f(B)‖ ≤ 4

[
ln

(
2

‖A−B‖
+ 1

)
+ 1

]2

ω(‖A−B‖).

Now we show how this general theorem implies a general robustness result for
singular value transformation.
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2.4.2. Corollary (Robustness of singular value transformation 1).
If f : [−1, 1] → C is an even or odd function such that ω : [0, 2] → [0,∞] is a
modulus of continuity, and A, Ã ∈ Cd̃×d are matrices of operator norm at most 1,
then we have that∥∥∥f (SV )(A)− f (SV )(Ã)

∥∥∥ ≤ 4

ln

 2∥∥∥A− Ã∥∥∥ + 1

+ 1

2

ω

(∥∥∥A− Ã∥∥∥).
Proof:
Let us assume that f is an even function and that d̃ ≤ d. Then, using singular
value decomposition, we can rewrite A as

A = W
[
Σ 0

]
V †,

where W ∈ Cd̃×d̃, V ∈ Cd×d are unitaries and Σ ∈ Rd̃×d̃ is a diagonal matrix with

nonnegative diagonal entries. Let A :=

[
0 A
A† 0

]
∈ C(d̃+d)×(d̃+d) be the Hermitian

matrix obtained from A. We claim that

f(A) =

[
f (SV )(A†) 0

0 f (SV )(A)

]
. (2.35)

To prove this claim, first note that

A =

[
0 A
A† 0

]
=

 0 W
[
Σ 0

]
V †

V

[
Σ
0

]
W †

[
0 0
0 0

]  =

[
W 0
0 V

]0 Σ 0
Σ 0 0
0 0 0

[W † 0
0 V †

]
and that [

0 Σ
Σ 0

]
=

1√
2

[
I I
I −I

][
Σ 0
0 −Σ

]
1√
2

[
I I
I −I

]
.

Therefore, if we denote

U =

[
W 0
0 V

] 1√
2

[
I I
I −I

]
0
0

0 0 I

,
we get

A = U

Σ 0 0
0 −Σ 0
0 0 0

U †,
which implies that

f(A) =U

f(Σ) 0 0
0 f(−Σ) 0
0 0 f(0)I

U † = U

f(Σ) 0 0
0 f(Σ) 0
0 0 f(0)I

U †
=

Wf(Σ)W † 0 0
0
0

V

[
f(Σ) 0

0 f(0)I

]
V †

 =

[
f (SV )(A†) 0

0 f (SV )(A)

]
.
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Thus, using Theorem 2.4.1 we get that∥∥∥f (SV )(A)− f (SV )(Ã)
∥∥∥ ≤ ∥∥∥f(A)− f(Ã)

∥∥∥
≤ 4

ln

 2∥∥∥A− Ã∥∥∥ + 1

+ 1

2

ω

(∥∥∥A− Ã∥∥∥)

= 4

ln

 2∥∥∥A− Ã∥∥∥ + 1

+ 1

2

ω

(∥∥∥A− Ã∥∥∥),
which completes the proof for the case where f is an even function and d̃ ≤ d.
The case d̃ ≥ d can be handled by symmetry. Finally, the remaining case where
f is odd can be handled similarly by observing that

f(A) =

[
0 f (SV )(A)

f (SV )(A†) 0

]
. (2.36)

2

We can also prove robustness results by bootstrapping our exact (non-robust)
results, enabling us to remove the log factor from the above corollary under
certain circumstances. We study two cases. First we make no extra assumptions,
and establish error bounds that scale with the square root of the initial error
‖A − Ã‖. Then we improve the dependence on the initial error to linear under
the assumption that the matrices have norm significantly less than 1.

2.4.3. Lemma (Robustness of singular value transformation 2).
If P ∈ C[x] is a degree-n polynomial satisfying the requirements of Corollary 2.2.6,
and A, Ã ∈ Cd̃×d are matrices of operator norm at most 1, then we have7 that∥∥∥P (SV )(A)− P (SV )(Ã)

∥∥∥ ≤ 4n

√∥∥∥A− Ã∥∥∥.
Proof:
Let ε =

∥∥∥Ã− A∥∥∥, and let B, B̃ ∈ C(d+d̃)×(d+d̃) be the matrices

B :=

[
A 0
0 0

]
, B̃ :=

[
Ã−A
ε

0
0 0

]
,

7Let us do a sanity check for d = d̃ = 1. Let A = 1 and Ã = 1 − 1
2n2 . For large n we have

that Tn(A) − Tn(Ã) ≈ 1 − cos(1) ≈ 0.46, whereas our upper bound gives 2
√

2, showing that
the upper bound is tight up to a constant factor, for arbitrary large n and for arbitrary small
ε. (However, the joint dependence on n and ε might not be optimal.)
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and let U ∈ C4(d+d̃)×4(d+d̃) be a unitary such that8

U =


B 0 . .

0 B̃ . .
. . . .
. . . .

.
Such U must exist because ‖B‖ ≤ 1 and

∥∥∥B̃∥∥∥ ≤ 1. Let Π be the orthogo-

nal projector projecting to the first d coordinates, and let Π̃ be the orthogonal
projector projecting to the first d̃ coordinates. Observe that Π̃UΠ = A. Let
W ∈ C4(d+d̃)×4(d+d̃) be the unitary

W :=


√

1
1+ε

I −
√

ε
1+ε

I 0 0√
ε

1+ε
I

√
1

1+ε
I 0 0

0 0 I 0
0 0 0 I

.

Let Ū := W †UW , and observe that Π̃ŪΠ = Ã/(1 + ε). Also observe that

‖W − I‖ =

√
2− 2/

√
1 + ε ≤

√
ε,

therefore
∥∥U − Ū∥∥ ≤ 2

√
ε. Let Π′ = Π̃ if n is odd, and let Π′ = Π for n even.

Let Φ be as in Corollary 2.2.6, then Theorem 2.3.7 implies that∥∥∥P (SV )(A)− P (SV )(Ã/(1 + ε))
∥∥∥ =

∥∥Π′UΦΠ− Π′ŪΦΠ
∥∥ ≤ ∥∥UΦ − ŪΦ

∥∥
≤ n

∥∥U − Ū∥∥ ≤ 2n

√∥∥∥A− Ã∥∥∥.
Let B′ ∈ C(d+d̃)×(d+d̃) be the matrix

B′ :=

[
Ã 0
0 0

]
,

and let U ′ ∈ C4(d+d̃)×4(d+d̃) be a unitary such that

U ′ =


B′ 0 . .
0 0 . .
. . . .
. . . .

.
8We denote by · arbitrary matrix blocks and elements that are irrelevant for our presenta-

tion.
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Observe that Π̃U ′Π = Ã, and Ū ′ := W †Ṽ W is such that Π̃Ū ′Π = Ã/(1 + ε). By
the same argument as before we get that∥∥∥P (SV )(Ã)− P (SV )(Ã/(1 + ε))

∥∥∥ ≤ 2n

√∥∥∥A− Ã∥∥∥.
We can conclude using the triangle inequality. 2

Now we establish another lemma which improves on the previous results in
some cases, especially when the matrices have norm significantly less than 1.

2.4.4. Lemma (Robustness of singular value transformation 3).
If P ∈ C[x] is a degree-n polynomial satisfying the requirements of Corollary 2.2.6,
and A, Ã ∈ Cd̃×d are matrices of operator norm at most 1, such that∥∥∥A− Ã∥∥∥+

∥∥∥∥∥A+ Ã

2

∥∥∥∥∥
2

≤ 1,

then we have that∥∥∥P (SV )(A)− P (SV )(Ã)
∥∥∥ ≤ n

√√√√ 2

1−
∥∥∥A+Ã

2

∥∥∥2

∥∥∥A− Ã∥∥∥.
Proof:
Let B, B̃ ∈ C(d+d̃)×(d+d̃) be the matrices

B :=

[
A+Ã

‖A+Ã‖ 0

0 0

]
, B̃ :=

[
A−Ã
‖A−Ã‖ 0

0 0

]
.

Let x > 1 and let U ∈ C4(d+d̃)×4(d+d̃) be a unitary such that

U =


√

x−1
x
B

√
1
x
B̃ . .

. . . .

. . . .

. . . .

.
Let C :=

√
x−1
x
B ⊕

√
1
x
B̃ be the top-left block of U . It is easy to see that

‖C‖2 ≤ x− 1

x
‖B‖2 +

1

x

∥∥∥B̃∥∥∥2

=
x− 1

x
+

1

x
= 1,

therefore a unitary U must exist with C being the top-left block. Suppose that

x

x− 1

∥∥∥A+ Ã
∥∥∥2

4
+ x

∥∥∥A− Ã∥∥∥2

4
= 1. (2.37)
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Let W± ∈ C4(d+d̃)×4(d+d̃) be the unitary

W± :=


√

x
x−1

‖A+Ã‖
2

I ∓
√
x
‖A−Ã‖

2
I 0 0

±
√
x
‖A−Ã‖

2
I
√

x
x−1

‖A+Ã‖
2

I 0 0

0 0 I 0
0 0 0 I

.
Let Π be the orthogonal projector projecting to the first d coordinates, and let

Π̃ be the orthogonal projector projecting to the first d̃ coordinates. Observe that
Π̃UW+Π = A and Π̃UW−Π = Ã. Also observe that ‖W+ −W−‖ =

√
x
∥∥∥A− Ã∥∥∥,

thus ‖UW+ − UW−‖ =
√
x
∥∥∥A− Ã∥∥∥.

Let ε :=
∥∥∥A− Ã∥∥∥2

and let δ := 4−
∥∥∥A+ Ã

∥∥∥2

. We can rewrite (2.37) as

x

x− 1

4− δ
4

+ x
ε

4
= 1, (2.38)

which has a solution

x =
4

δ + ε

1 +

(
1− 8ε

(δ+ε)2

)
−
√

1− 16ε
(δ+ε)2

8ε
(δ+ε)2

. (2.39)

Now let y := 8ε/(δ + ε)2. If ε ≤ δ2/16, then y ≤ 1
2
, and so (1−y)−

√
1−2y

y
≤ 1.

Hence for ε ≤ δ2/16 by Eq. (2.39) we get that x ≤ 8/(δ + ε), and therefore
‖UW+ − UW−‖ =

√
8/(δ + ε)

∥∥∥A− Ã∥∥∥ ≤√8/δ
∥∥∥A− Ã∥∥∥.

Now we proceed similarly to the proof of Lemma 2.4.3. Let Π′ = Π̃ if n is odd,
and let Π′ = Π for n even. Let Φ be as in Corollary 2.2.6 and let U (±) := UW±,
then Theorem 2.3.7 implies that∥∥∥P (SV )(A)− P (SV )(Ã)

∥∥∥ =
∥∥Π′U+

Φ Π− Π′U−Φ Π
∥∥ ≤ ∥∥U+

Φ − U
−
Φ

∥∥ ≤ n
∥∥U+ − U−

∥∥
= n

√
8

δ

∥∥∥A− Ã∥∥∥.
Finally note that ε ≤ δ2/16 is equivalent to 4

√
ε ≤ δ, which by definition is

equivalent to ∥∥∥A− Ã∥∥∥+

∥∥∥∥∥A+ Ã

2

∥∥∥∥∥
2

≤ 1.

2





Chapter 3

Constructing quantum algorithms by QSVT

In this chapter we show that quantum singular value transformation leads to
novel algorithms. We propose a new method for singular value estimation, and
show how to exponentially improve the complexity of implementing fractional
queries to unitaries with a gapped spectrum. Finally, as a quantum machine
learning application we show how to efficiently implement principal component
regression.

We also show that quantum singular value transformation leads to a concep-
tually simple unified framework of quantum algorithms incorporating a variety
of quantum speed-ups. Our framework allows us to describe quantum algorithms
on a high level, hopefully making them accessible to researchers even outside the
quantum algorithms community. We illustrate this by showing how our meta-
algorithm generalizes a number of prominent quantum algorithms, and quickly
(re)derive the following algorithms: optimal Hamiltonian simulation, implement-
ing the Moore-Penrose pseudoinverse (i.e., the HHL algorithm) with exponential
precision, fixed-point amplitude amplification, robust oblivious amplitude ampli-
fication, fast QMA amplification, fast quantum OR lemma, certain quantum walk
results and several quantum machine learning algorithms.

In order to exploit the strengths of the presented method, it is useful to know
its limitations too, therefore we also prove a bound on the efficiency of quantum
singular value transformation, which often gives optimal lower bounds.

3.1 Introduction

We show that many prominent quantum algorithms can be viewed as an instanti-
ation of our quantum singular value transformation meta-algorithm, when applied
with an appropriately chosen polynomial. In order to illustrate the power of this

This chapter is based on [GSLW19], with extensions from [vAGGdW17, Appendix B,C].

43
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technique we briefly explain some corollaries, by showing natural examples of pro-
jected unitary encodings. For example suppose that U is a quantum algorithm
that, starting from the initial state |0〉⊗n, prepares a desired state with success
probability at least p, and indicates success by setting the first qubit to |1〉. Then
we can take Π̃ := |1〉〈1| ⊗ In−1 and Π := |0〉〈0|⊗n. Observe that A = Π̃UΠ is a
rank-1 matrix having a single non-trivial singular value which is the square root
of the success probability. If P is an odd polynomial bounded by 1 in absolute
value such that P is ε

2
-close to 1 on the interval [

√
p, 1], then by applying singular

value transformation we get an algorithm UΦ that succeeds with probability at
least 1 − ε. Such a polynomial can be constructed with degree O

(
1√
p

log
(

1
ε

))
providing a conceptually simple and efficient implementation of fixed-point am-
plitude amplification, which prepares the desired state in one shot. This improves
on ordinary amplitude amplification that potentially requires multiple repetitions
to achieve high success probability.

It also becomes straightforward to implement the Moore-Penrose pseudoin-
verse directly (i.e., the HHL algorithm). Suppose that A = WΣV † is an SVD,
then the pseudoinverse is simply A+ = V Σ−1W †, where we take the inverse of each
non-zero diagonal element of Σ. If we have A represented as a projected unitary
encoding, then simply finding an appropriately scaled approximation polynomial
of 1

x
and applying singular value transformation to it implements an approxima-

tion of the Moore-Penrose pseudoinverse directly. As an application in quantum
machine learning, we design a quantum algorithm for principal component regres-
sion, and argue that singular value transformation could become a central tool
in designing quantum machine learning algorithms.

Based on singular value transformation we develop some new algorithms as
well, including the singular vector transformation algorithm, which maps right
singular vectors to left singular vectors in a single-shot manner. This is a common
generalization and extension of fixed-point amplitude amplification [YLC14] and
oblivious amplitude amplification [BCC+14], described in Section 3.2.1.

3.1.1. Theorem (Informal version of Theorem 3.2.3). Call an application of the
unitary U , or the controlled reflection operators (2Π− I), (2Π̃− I) a “query”. If

Π̃UΠ =
k∑
i=1

ςi|φi〉〈ψi|

is a singular value decomposition, then we can transform an arbitrary input state

|ψ〉 =
k∑
i=i

αi|ψi〉 to |φ〉 =
k∑
i=i

αi|φi〉,

with precision ε, in query and gate complexity O
(

1
δ

log
(

1
ε

))
, under the assumption

that ςi ≥ δ for all αi 6= 0.
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This algorithm also gives an efficient solution to a form of “non-commutative
measurement” problem used for efficient ground-state preparation of certain lo-
cal Hamiltonians [GS17], and quadratically improves the gap dependence of this
algorithm. It can also be used for constructing a new method for singular value
estimation [KP17b, CGJ19].

As another application we develop singular value threshold projectors, which
project out singular vectors with singular value below a certain threshold. These
threshold projectors play a major role in quantum algorithms recently proposed
by Kerenidis et al. [KP17b, KL18], and our work fills a minor gap that was present
in earlier implementation proposals. Our implementation is also simpler and
applies in greater generality than the algorithm of Kerenidis and Prakash [KP17b].
As a useful application of singular value threshold projectors we develop singular
value discrimination, which decides whether a given quantum state has singular
value below or above a certain threshold.

Other algorithms can also be cast in the singular value transformation frame-
work, including optimal Hamiltonian simulation, robust oblivious amplitude am-
plification, fast QMA amplification, fast quantum OR lemma and certain quantum
walk results. Based on these techniques we also show how to exponentially im-
prove the complexity of implementing fractional queries to unitaries with a gapped
spectrum. We summarize in Table 3.1 the various types of quantum speed-ups
that are inherently incorporated in our singular value transformation framework.

Speed-up Source of speed-up Examples of algorithms

Exponential Dimensionality of the Hilbert space Hamiltonian simulation [Llo96]
Precise polynomial approximations Improved HHL algorithm [CKS17]

Quadratic
Singular value = square root of probability Grover search [Gro96]
Distinguishability of singular values Amplitude estimation [BHMT02]
Singular values close to 1 are more useful Quantum walks [Szeg04]

Table 3.1. This table gives an intuitive summary of the different types of speed-
ups that our singular value transformation framework inherently incorporates.
The explanations, examples and the cited papers are far from complete or rep-
resentative, the table only intends to give some intuition and to illustrate the
different sources of speed-ups.

3.1.1 Block-encoding

In order to harness the power of quantum singular value transformation one needs
to construct projected unitary encodings. A special case of projected unitary
encoding is called block-encoding, when Π̃ = Π = |0〉〈0|⊗a ⊗ I. In this case A is
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literally1 the top-left block of the unitary U :

A =
(
〈0|⊗a ⊗ I

)
U
(
|0〉⊗a ⊗ I

)
⇐⇒ U =

[
A .
. .

]
.

We call such a unitary U an a-qubit block-encoding of A. One can think of U as a
probabilistic implementation of A: given an input state |ψ〉, applying the unitary
U to the state |0〉⊗a|ψ〉, measuring the first a-qubit register and post-selecting on
the |0〉⊗a outcome, we get a state ∝ A|ψ〉 in the second register.

In Section 3.3 we provide a versatile toolbox for efficiently constructing block-
encodings, summarizing recent developments in the field. In particular we demon-
strate how to construct block-encodings of unitary matrices, density operators,
POVM operators, sparse-access matrices and matrices stored in a QROM2. Fur-
thermore, we show how to form linear combinations and products of block-
encodings, enabling the efficient implementation of quantum matrix arithmetics.
Quantum matrix arithmetics carries out all calculations in an operational way,
meaning that the matrices are represented by block-encodings, enabling exponen-
tial speed-ups in terms of the dimension of the matrices.

When we work with block-encodings, the circuits for quantum singular value
transformation become especially nice and easy to describe. Our main theorem
applied to block-encodings gives the following result:

3.1.2. Theorem (Special case of Theorem 2.3.7). Let P : [−1, 1] 7→ [−1, 1] be a
degree-d even/odd polynomial map. Suppose that U is a block-encoding of A that
has singular value decomposition A =

∑
i ςi|wi〉〈vi|. Let H denote the Hadamard

matrix, then (H ⊗ I)UΦ(H ⊗ I) is a block-encoding of

∑
i

P (ςi)|wi〉〈vi| if d is odd, and∑
i

P (ςi)|vi〉〈vi| if d is even,

where Φ ∈ Rd is (classically) efficiently computable given the coefficients of P ,
and UΦ is the following circuit:

1When we talk about block-encodings we omit the dimensions projected out by |0〉〈0|⊗a for
convenience, i.e., A and U have different sizes, unlike in projected unitary encodings.

2By QROM we mean quantum read-only memory, which stores classical data that can be
accessed in superposition.
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eiφ1σz eiφ2σz · · · eiφdσz

U U−1

· · ·

U((−1)d−1)

· · ·
· · ·

|0〉⊗a

· · ·
· · ·
· · ·

Figure 3.1. Circuits used for quantum singular value transformation. The empty
dots denote control by the |0〉 state, so that the corresponding gate is an “inverted”
Toffoli gate, where each qubit is conjugated by an X gate compared to the usual
Toffoli gate. The other gates are single-qubit rotations or applications of U or U †.
The structure is very similar to the amplitude amplification circuit of Figure 1.2.

In fact it turns out that some earlier quantum algorithms also constructed and
used block-encodings under the hood. For example we show that the update oper-
ator of a quantum walk corresponding to a reversible Markov chainM [MNRS11]
essentially implements a block-encoding of the “discriminant matrix” D(M) of the
Markov chain. Moreover, applying k steps of the quantum walk operator applies
the Chebyshev polynomial T2k to the discriminant matrix. In fact our quantum
singular value transformation circuit corresponds to a Szegedy [Szeg04] quantum
walk in the special case when all phases are set to φj := π

2
.

Using the above theorem we can reprove a recent result about quantum fast-
forwarding [AS18] of Markov chains in a few lines, while substantially improving
its complexity. As we discussed above, quantum walks provide block-encodings
of the discriminant matrix D(M). On the other hand we know [SV14], cf. The-
orem 3.4.9, that the monomial xt can be ε-approximated by a polynomial P of
degree

√
2t log(2/ε) on the interval [−1, 1]. Since the discriminant matrix is sym-

metric, by using this polynomial P in Theorem 3.1.2 we get an ε-approximate
block-encoding ofD(M)t. This solves the quantum fast-forwarding problem, since
in some sense it emulates t steps of the walk using only ∝

√
t quantum opera-

tions. Due to Theorem 3.1.2 the (query) complexity of this implementation is
O
(√

t log(1/ε)
)
, which is a significant improvement in terms of precision over the

complexityO
(√

t/ε log
(
1/ε
))

of the original3 result of Apers and Sarlette [AS18].
In the special case when the block-encoded matrix is Hermitian we can remove

the parity constraint from Theorem 3.1.2 by combining the even and odd parts
of the polynomials. This, e.g., enables us to give a simple proof of recent optimal
block-Hamiltonian simulation results [LC17b].

Since in our framework, designing quantum algorithms mostly boils down to
finding low-degree polynomial approximations to various functions we also de-
velop some general tools for finding such approximations. We build on existing
results from the theory of approximation polynomials, and develop some new re-
sults that are adapted to the boundedness requirement of Theorem 3.1.2. We also

3In the second arXiv version of their paper Apers and Sarlette also recovered this improved
result using an alternative method, but they also cite our approach [GSLW19].
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show that in general for smooth functions the error dependence is asymptotically
logarithmic.

To actually construct the quantum circuit corresponding to a given poly-
nomial one should first find the corresponding angle sequence. Our proofs are
constructive, so in principle they also provide an algorithm for finding the angles.
However, the described method requires finding roots of high-degree polynomi-
als, which can be computationally expensive. Fortunately, as we mentioned in
Chapter 2, recently Haah [Haa18] developed an optimized classical algorithm for
finding the angles, that has cubic dependence on the degree, and polylogarithmic
dependence on the error, which shows that the classical preprocessing can indeed
be efficiently performed.

3.1.2 A lower bound

We also prove a bound on the efficiency of singular value transformation. Our
lower bound suggests that the spectrum of a Hermitian block-encoded matrix
H lying close to ±1 is more “flexible” than the spectrum lying below, say, 1

2
in

absolute value. It also gives a lower bound on singular value transformation, as
Hermitian eigenvalue transformation is a special case of singular value transfor-
mation.

3.1.3. Theorem (Informal version of Theorem 3.5.1). Let I ⊆ [−1, 1] and sup-
pose a unitary U block-encodes an unknown Hermitian matrix H with the only
promise that the spectrum of H lies in I. Let f : I → R, and suppose that we have
a quantum circuit V that block-encodes f(H) with accuracy ε using T applications
of U or U †. Then for all x 6= y ∈ I ∩ [−1

2
, 1

2
] we have that T = Ω

(
|f(x)−f(y)|−2ε

|x−y|

)
.

This lower bound shows for example the optimality of our pseudoinverse im-
plementation. For simplicity let us assume that A is Hermitian, and suppose that
‖A−1‖ ≤ κ, then we can find a polynomial ε-approximation of 1

2κx
on the interval

[−1, 1] \ (− 1
κ
, 1
κ
) of degree O(κ log(1/ε)), which also gives the complexity of our

ε-approximate implementation of A−1

2κ
, the subnormalized inverse. On the other

hand the absolute value of the derivative of the function 1
2κx

at 1
κ
is κ

2
, which

shows that our implementation is essentially optimal up to the log(1/ε) factor.
Our lower bound also shows that our singular/eigenvalue projector implemen-

tations are essentially optimal. Suppose we have a block-encoding of a Hermitian
matrix. If we want to approximately implement a projector projecting out every
eigenvalue below say a and keeping every eigenvalue above b, then we need to use
the block-encoding Ω

(
1
b−a

)
, unless a or b is very close to ±1. However, if a = −1

or b = 1, then we can get a quadratic advantage [LC17a], which has implications
to ground state preparation [GTC17].
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3.1.3 Structure of the chapter

In Section 3.2 we show some direct applications of quantum singular value trans-
formation. In particular we introduce singular vector transformation and singular
value amplification in Subsection 3.2.1. Using these results we give simple deriva-
tions of fixed-point amplitude amplification and robust oblivious amplitude am-
plification. We then extend these ideas in Subsection 3.2.2 to solve the problem of
singular value threshold projection and singular value discrimination. This then
allows us to detect and find marked elements in a reversible Markov chain. Then
in Subsection 3.2.3 we provide an easy derivation of the quantum linear-systems
algorithm, and more generally the quantum least-squares fitting algorithm. In
Subsection 3.2.4, we design a quantum algorithm for principal component re-
gression, and show how various other machine learning problems can be solved
within our framework. Finally, in Subsection 3.2.5 we propose a new method for
quantum singular value estimation.

Section 3.3 shows how to efficiently construct block-encodings and contains a
discussion of how these techniques can be employed to perform matrix arithmetic
on a quantum computer. In particular we show how to perform basic linear alge-
bra operations on Hamiltonians using block-encodings; we discuss matrix addition
and multiplication in Subsections 3.3.3 and 3.3.4. We follow this up with a discus-
sion of how arbitrary smooth functions of Hermitian matrices can be performed in
Section 3.4. We give an elementary proof of the complexity of block-Hamiltonian
simulation in Subsection 3.4.1, discuss approximating piecewise smooth functions
of Hamiltonians in Subsection 3.4.2, and present the special cases of Gibbs-state
preparation and fractional queries in Subsection 3.4.3. We then conclude by prov-
ing lower bounds for implementing functions of Hermitian matrices in Section 3.5,
which in turn implies lower bounds on singular value transformation. Finally in
Appendix 3.A we derive a generalized version of the quantum minimum finding
algorithm of [DH96].

3.2 Some direct applications of quantum singular
value transformation

3.2.1 Singular vector transformation and singular value
amplification

In this subsection we derive some corollaries of singular value transformation.
We call the first corollary projected singular vector transformation, because it
implements a unitary that transforms the right singular vectors to the left singular
vectors above some singular value threshold. Then we show how to quickly derive
advanced amplitude amplification results using this general technique. Finally, we
develop a corollary called singular value amplification, showing how to uniformly
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amplify the singular values of a matrix represented as a projected unitary.
First we define singular value threshold projectors. We note that the singular

value decomposition is not necessarily unique, however these projectors are well
defined.

3.2.1. Definition (Singular value threshold projectors). Let A=Π̃UΠ=WΣV †

be a singular value decomposition of a projected unitary. For S ⊆ R we define
ΠS := ΠV ΣSV

†Π, and similarly Π̃S := Π̃WΣSW
†Π̃. For δ ∈ R we define Π≥δ :=

Π[δ,∞), also we define Π>δ,Π≤δ,Π<δ,Π=δ and Π̃>δ, Π̃≤δ, Π̃<δ, Π̃=δ analogously.

Then we invoke a result of Low and Chuang [LC17a, Corollary 6] about con-
structive polynomial approximations of the sign function. The error of the optimal
approximator, studied by Eremenko and Yuditskii [EY07], has similar scaling but
the result is non-constructive.

3.2.2. Lemma (Polynomial approximations of the sign function). For all δ > 0,
ε ∈ (0, 1/2) there exists an efficiently computable odd polynomial P ∈ R[x] of
degree n = O

(
log(1/ε)

δ

)
, such that

• for all x ∈ [−2, 2] : |P (x)| ≤ 1, and

• for all x ∈ [−2, 2] \ (−δ, δ) : |P (x)− sign(x)| ≤ ε.

Now we are ready to prove our result about singular value transformation.
Our singular vector transformation implements a unitary which maps a right
singular vector having singular value at least δ to the corresponding left singular
vector.

3.2.3. Theorem (Singular vector transformation). Let U,Π, Π̃ be as in Theo-
rem 2.3.7 and let δ > 0. Suppose that Π̃UΠ = WΣV † is a singular value
decomposition. Then there is an m = O

(
log(1/ε)

δ

)
and a Φ ∈ Rm such that∥∥∥Π̃≥δUΦΠ≥δ − Π̃≥δ(WV †)Π≥δ

∥∥∥ ≤ ε. Moreover, UΦ can be implemented using a
single ancilla qubit, with m uses of U and U †, m uses of CΠNOT and m uses of
CΠ̃NOT gates and m single-qubit gates.

Proof:
By Lemma 3.2.2 we can construct an odd polynomial P< ∈ R[x] of degree
m = O

(
log(1/ε2)

δ

)
that approximates the sign function with ε2/2 precision on

the domain [−1, 1] \ (−δ, δ). By Corollary 2.2.8 we know that there exists a poly-
nomial P of the same degree as P< such that <[P ] = P<, moreover P satisfies the
conditions of Corollary 2.2.6. Use singular value transformation Theorem 2.3.7 to
construct a Φ ∈ Rm such that Π̃UΦΠ = P (SV )

(
Π̃UΠ

)
up to error ε, and observe
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that
∥∥∥Π̃≥δP

(SV )
(

Π̃UΠ
)

Π≥δ − Π̃≥δ(WV †)Π≥δ

∥∥∥ ≤ ε. Conclude the gate complex-
ity using Lemma 2.3.9. 2

As an easy corollary we recover and improve upon fixed-point amplitude am-
plification results [Hø00, Gro05, AC12, YLC14]. In amplitude amplification we
are given a unitary U that maps |ψ0〉 7→

√
p|0〉|ψG〉 +

√
1− p|1〉|ψB〉, and the

goal is to prepare the state |ψG〉. Since ordinary amplitude amplification may
“overamplify” we need multiple repetitions in order to succeed, and if we want to
perform amplification coherently it creates a large garbage state attached to |ψG〉.
Fixed-point amplitude amplification provides a way to perform the |ψ0〉 7→ |ψG〉
mapping without creating a garbage state attached to |ψG〉.

Our solution combines the advantages of prior art. On the one hand, the query
complexity of O(1

δ
poly(1/ε)) by [AC12] is optimal with respect to target state

overlap δ, but converges slowly with respect to error ε. On the other hand, the
query complexity of O(1

δ
log (1/ε)) by [YLC14] is optimal and exhibits exponen-

tially fast convergence with respect to the error, but it introduces an unknown
phase on the amplified state, which can be problematic when used as a quan-
tum subroutine in superposition. Our presented approach has the same optimal
asymptotic scaling and also ensures that this phase error is ε-close to 0.

3.2.4. Theorem (Fixed-point amplitude amplification). For every δ > 0 there
is a unitary circuit Q, which uses a single ancilla qubit and consists of O

(
log(1/ε)

δ

)
U,U †, CΠNOT, C|ψ0〉〈ψ0|NOT and eiφσz gates, and has the following property:
If ΠU |ψ0〉 = a|ψG〉 for some a ≥ δ, then ‖|ψG〉 −Q|ψ0〉‖ ≤ ε. (The structure of
Q is independent of U and |ψG〉.)

Proof:
Set Π̃ := Π and Π′ := |ψ0〉〈ψ0| and observe that

Π̃UΠ′ = a|ψG〉〈ψ0|.

Now use Theorem 3.2.3 in order to get an algorithm Q that satisfies

‖|ψG〉〈ψG|Q|ψ0〉〈ψ0| − |ψG〉〈ψ0|‖ ≤ ε. 2

Another easy-to-derive corollary of our machinery is robust oblivious ampli-
tude amplification [BCC+15], which is a technique originally developed [BCC+14]
for Hamiltonians simulation.4 This algorithm solves the following problem: given
one copy of a quantum state |ψ〉, apply the unitary U to this state, having access
only to a subnormalized implementation of U in the form of a block-encoding
(〈0| ⊗ I)V (|0〉 ⊗ I) = U/100.

4Note that we could also easily derive a fixed-point version of oblivious amplitude amplifi-
cation based on Theorem 3.2.3, but we state the usual version instead for readability.
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If we would simply apply V to the quantum state |0〉|ψ〉, then by measuring
the first register, and only accepting the |0〉 outcome, we get a probabilistic im-
plementation. In order to boost the success probability we could use multiple
copies, or apply amplitude amplification. But we only have a single copy, and
ordinary amplitude amplification uses a reflection about the initial state |0〉|ψ〉,
which might be expensive to implement. Fortunately it turns out that the am-
plitude amplification circuit still works if replace the reflection about |0〉|ψ〉 by a
reflection about |0〉, acting non-trivially only on the ancilla register, resulting in a
circuit that is oblivious to the input state |ψ〉. The fact that this procedure works
crucially relies on the assumption that (〈0| ⊗ I)V (|0〉 ⊗ I) = U/100 is a subnor-
malized unitary. If the subnormalization factor is exactly sin(π/(2k+ 1)), then k
application of the oblivious amplification circuit solves the problem exactly. If the
subnormalization is known, we can always apply a bit of extra subnormalization
resulting in a subnormalization factor of this form. Finally, if we do not exactly
have a subnormalized unitary, just an operator close to it, we can still bound the
accumulating errors, giving a robust version of oblivious amplitude amplification.

3.2.5. Theorem (Robust oblivious amplitude amplification). Let n∈N+ be odd,
let ε ∈ R+, let U be a unitary, let Π̃,Π be orthogonal projectors, and let W :

img(Π) 7→ img
(

Π̃
)
be an isometry, such that∥∥∥sin

( π
2n

)
W |ψ〉 − Π̃U |ψ〉

∥∥∥ ≤ ε (3.1)

for all |ψ〉 ∈ img(Π). Then we can construct a unitary Ũ such that for all
|ψ〉 ∈ img(Π) ∥∥∥W |ψ〉 − Π̃Ũ |ψ〉

∥∥∥ ≤ 2nε,

which uses a single ancilla qubit, with n uses of U and U †, n uses of CΠNOT and
n uses of CΠ̃NOT gates, and n single-qubit gates.

Proof:
First we prove the ε = 0 case, by reproducing the polynomials stemming from
ordinary amplitude amplification. Let Tn ∈ R[x] be the degree-n Chebyshev
polynomial of the first kind. As discussed after Corollary 2.2.6 there is an easy
to describe Φ ∈ Rn which corresponds to Tn in equation (2.15).

Now observe that by (3.1) we have that Π̃UΠ = sin
(
π
2n

)
W . We can apply

singular value transformation using Tn to obtain UΦ such that

Π̃UΦΠ = Tn

(
sin
( π

2n

))
W = Tn

(
cos
(π

2
− π

2n

))
W = cos

(
n− 1

2
π

)
W = ±W.

After correcting the global phase ±1 (which depends on the parity of (n− 1)/2)
we get Ũ := ±UΦ such that for all |ψ〉 ∈ img(Π) we have Ũ |ψ〉 = W |ψ〉. The
complexity statement follows from Lemma 2.3.9.
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In the ε 6= 0 case we first handle some trivial cases. If n = 1 or ε > 1
3
we

simply take Ũ := U . Otherwise if n ≥ 3 and ε ∈ [0, 1
3
] the error bounds follow

from Lemma 2.4.4, in the following way: Let A := sin
(
π
2n

)
W and let Ã := Π̃UΠ,

by (3.1) we have that
∥∥∥A− Ã∥∥∥ ≤ ε. Then

∥∥∥A+ Ã
∥∥∥ ≤ ‖A‖+ ‖A‖+

∥∥∥Ã− A∥∥∥ = 2 sin
( π

2n

)
+ ε ≤ 2 sin

(π
6

)
+

1

3
=

4

3
,

thus
∥∥∥A+Ã

2

∥∥∥2

≤ 4
9
and

∥∥∥A− Ã∥∥∥ +
∥∥∥A+Ã

2

∥∥∥2

≤ 7
9
< 1. This also implies that√

2

1−
∥∥∥A+Ã

2

∥∥∥2 ≤
√

2
1− 4

9

=
√

18
5
< 2, and therefore by Lemma 2.4.4 we get that∥∥∥W − Π̃ŨΠ

∥∥∥ ≤ 2nε. 2

Now we turn to solving the linear singular value amplification problem. That
is, given a matrix in a projected encoding form, construct a projected encoding
of a matrix which has singular values that are γ times larger than the original
singular values.

In order to proceed we first construct some polynomials similarly that can be
used in combination with our singular value transformation results.

3.2.6. Lemma (Polynomial approximations of the rectangle function). Let δ′, ε′
∈ (0, 1

2
) and t ∈ [−1, 1]. There exists an even polynomial P ′ ∈ R[x] of degree

O
(
log( 1

ε′
)/δ′
)
, such that |P ′(x)| ≤ 1 for all x ∈ [−1, 1], and{

P ′(x) ∈ [0, ε′] for all x ∈ [−1,−t− δ′] ∪ [t+ δ′, 1], and
P ′(x) ∈ [1− ε′, 1] for all x ∈ [−t+ δ′, t− δ′]. (3.2)

Proof:
First let us take a real polynomial P which ε′

2
-approximates the sign function on

the interval [−2, 2] \ (−δ′, δ′), moreover for all x ∈ [−2, 2] : |P (x)| ≤ 1. Such a
polynomial of degree O

(
1
δ′

log
(

1
ε′

))
can be efficiently constructed by Lemma 3.2.2.

Now take the polynomial

P ′(x) := (1− ε′)P (x+ t) + P (−x+ t)

2
+ ε′.

It is easy to see that by construction P ′(x) is an even polynomial of degree
O
(

1
δ′

log
(

1
ε′

))
. Moreover |P ′(x)| ≤ 1 for all x ∈ [−1, 1] and (3.2) also holds. 2

Now we prove our result about uniform singular value amplification, which
is a common generalization of the results of Low and Chuang [LC17a, Theorems
2,8].
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3.2.7. Theorem (Uniform singular value amplification). Let U,Π, Π̃ be as in
Theorem 2.3.7, let γ > 1 and let δ, ε ∈ (0, 1

2
). Suppose that Π̃UΠ = WΣV † =∑

i ςi|wi〉〈vi| is a singular value decomposition. Then there is anm = O
(
γ
δ

log
(
γ
ε

))
and an efficiently computable Φ ∈ Rm such that5(
〈+| ⊗ Π̃≤ 1−δ

γ

)
UΦ

(
|+〉 ⊗ Π≤ 1−δ

γ

)
=

∑
i : ςi≤ 1−δ

γ

ς̃i|wi〉〈vi|, where
∥∥∥∥ ς̃iγςi − 1

∥∥∥∥ ≤ ε.

(3.3)
Moreover, UΦ can be implemented using a single ancilla qubit with m uses of U
and U †, m uses of CΠNOT and m uses of CΠ̃NOT gates and m single-qubit gates.

Proof:
Let us set in Lemma 3.2.6 t := 1−δ/2

γ
, δ′ := δ

2γ
and ε′ := ε

γ
in order to get

an even polynomial P of degree O
(
γ
δ

log
(
γ
ε

))
that is an ε

γ
-approximation of the

rectangle function. Let P<(x) := γ · x · P (x), which is an odd polynomial of
degree m = O

(
γ
δ

log
(
γ
ε

))
. It is easy to see that P< approximates the linear

function γ · x with ε-multiplicative precision on the domain
[
−1+δ
γ
, 1−δ

γ

]
, and

observe that |P<(x)| ≤ 1 for all x ∈ [−1, 1], thereby it satisfies the requirements of
Corollary 2.3.8. We use singular value transformation Corollary 2.3.8 to construct
a Φ ∈ Rm such that

(〈+| ⊗ Π̃)UΦ(|+〉 ⊗ Π) = P
(SV )
<

(
Π̃UΠ

)
=
∑
i

P<(σi)|wi〉〈vi|

which shows that equation (3.3) is satisfied because P<(x)
γ·x is ε-close to 1 on the

domain
[
−1+δ
γ
, 1−δ

γ

]
. We conclude the gate complexity using Lemma 2.3.9. 2

Finally, note that if ‖Σ‖ ≤ 1−δ
γ

in the above theorem then we get that∥∥∥γΠ̃UΠ− (〈+| ⊗ Π̃)UΦ(|+〉 ⊗ Π)
∥∥∥ ≤ ε,

thereby this procedure gives an efficient way to magnify a projected unitary en-
coding.

3.2.2 Singular value discrimination, quantum walks and
the fast OR lemma

First we show how to efficiently implement approximate singular value threshold
projectors, which will be the main tool of this section. Unfortunately, singular

5Here we implicitly assumed that UΦ is implemented as in Figure 2.2, with the phase gates
as in Figure 2.2b and the |+〉 ancilla state corresponds to the ancilla qubit in Figure 2.2b.
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values that are close to the threshold are hard to handle. Let V be the subspace
spanned by singular vectors which have singular value δ-close to the threshold t.
Then we can implement an operator for which V is an invariant subspace, and
which is ε-close to the desired projector on the orthogonal complement of V.

3.2.8. Theorem (Implementing singular value threshold projectors). Let U,Π,

Π̃ be as in Theorem 2.3.7 and let t, δ > 0. Suppose that Π̃UΠ = WΣV † is a sin-
gular value decomposition. Then there is an m = O

(
log(1/ε)

δ

)
and a Φ ∈ Rm such

that ‖Π≥t+δUΦΠ≥t+δ − I ⊗ Π≥t+δ‖≤ε, and5 ‖(〈+| ⊗ Π≤t−δ)UΦ(|+〉 ⊗ Π≤t−δ)‖≤ε.
Moreover, UΦ can be implemented using a single ancilla qubit with m uses of U
and U †, m uses of CΠNOT and m uses of CΠ̃NOT gates and m single-qubit gates.

Proof:
By Lemma 3.2.6 we can construct an even polynomial P< ∈ R[x] of degree
m = O

(
log(1/ε2)

δ

)
that approximates the rectangle function with ε2/4 precision

on the domain [−1, 1] \ (−t − δ,−t + δ) ∪ (t − δ, t + δ). By Corollary 2.2.8
we know that there exists a polynomial P of the same degree as P< such that
<[P ] = P<, moreover P satisfies the conditions of Corollary 2.2.6. Use singular
value transformation Theorem 2.3.7 to construct a Φ ∈ Rm such that Π̃UΦΠ =
P (SV )

(
Π̃UΠ

)
up to error ε and observe that ‖Π≥t+δUΦΠ≥t+δ − I ⊗ Π≥t+δ‖ ≤ ε,

and ‖(〈+| ⊗ Π≤t−δ)UΦ(|+〉 ⊗ Π≤t−δ)‖ ≤ ε. Conclude the gate complexity using
Lemma 2.3.9. 2

We note that the above complexity can be improved up to quadratically in
terms of scaling with δ, when the threshold t is close to 1, see, e.g., Lemma 3.2.12.
For the error of the optimal polynomial approximation of the step function see
the results of Eremenko and Yuditskii [EY11].

It is also possible to implement eigenvalue threshold projectors with essentially
the same complexity, using Theorem 3.4.1 and Corollary 3.2.5. This result has
implications to ground state preparation, and directly improves the results of Ge
et al. [GTC17].

The singular value discrimination problem is the following: find out whether a
given quantum state has singular value at most a or at least b, under the promise
that the singular value is not in (a, b). As we indicated above, whenever a and
b are O(|a− b|)-close to 1 we can get a quadratic improvement. A simple way
to achieve this quadratic improvement is to perform singular value projection on
the complementary singular values rather than on the original ones, by replacing
the matrix Π̃UΠ by the complementary projection (I − Π̃)UΠ.

3.2.9. Theorem (Efficient singular value discrimination). Let 0 ≤ a < b ≤ 1,
and let A = Π̃UΠ be a projected unitary encoding. Let |ψ〉 be a given unknown
quantum state, with the promise that |ψ〉 is a right singular vector of A with
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singular value at most a or at least b. Then we can distinguish the two cases with
error probability at most ε using singular value transformation of degree

O
(

1

max[b− a,
√

1− a2 −
√

1− b2]
log

(
1

ε

))
.

Moreover, if a = 0 or b = 1, then we can make the error one sided.

Proof:
Let us assume that b−a ≥

√
1− a2−

√
1− b2. First we apply an

√
ε-approximate

singular value projector on |ψ〉 using Theorem 3.2.8, with t := a+b
2

and δ := b−a
2
,

at the end measuring the projector |+〉〈+| ⊗Π. If we find the state in the image
of |+〉〈+| ⊗ Π we conclude that the singular value is at least b, otherwise we
conclude that it is at most a. The correctness and the complexity follow from
Theorem 3.2.8. If a = 0 then we make the error one-sided by using singular vector
transformation Theorem 3.2.3 with setting δ := b, and measuring Π̃ at the end.
Similarly as before, if we find the state in the image of Π̃ we conclude that the
singular value is at least b, otherwise we conclude that it is 0. The error becomes
one-sided because Theorem 3.2.3 uses an odd-degree singular value transformation
which always preserves 0 singular values.

The proof of the b−a <
√

1− a2−
√

1− b2 case works analogously by changing
Π̃ to Π′ := I − Π̃ in the proof, which leads to A′ := Π′UΠ. It is easy to see by
Lemma 2.3.2 that |ψ〉 is a singular vector of A′ with singular value at least

√
1− a2

in the first case or with singular value at most
√

1− b2 in the second case. Also
if b = 1 we can make the error one-sided since then the corresponding singular
value of |ψ〉 with respect to A′ is 0.

Finally note that if a = 0, then b−a = b ≥ 1−
√

1− b2 =
√

1− a2−
√

1− b2,
and if b = 1, then b − a = 1 − a ≤

√
1− a2 =

√
1− a2 −

√
1− b2, therefore we

covered all cases. 2

The above result can also be used when the input state is promised to be
a superposition of singular values, with the promised bounds. Also in order to
distinguish the two cases with constant success probability it is enough if most of
the amplitude is on singular vectors with singular vectors satisfying the promise.

Relationship to quantum walks

Now we show how to quickly derive the quadratic speed-ups of Markov chain
based search algorithms using our singular value transformation and discrimi-
nation results. Before doing so we introduce some definitions and notation for
Markov Chains.

Let P ∈ Rn×n be a time-independent Markov chain on discrete state space X
with |X| = n, which sends an element x ∈ X to y ∈ X with probability pxy. Thus
P is a row-stochastic matrix. We say that P is ergodic if for a large enough t ∈ N
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all elements of P t are non-zero. For an ergodic P there exists a unique stationary
distribution π such that πP = π, and we define the time-reversed Markov chain
as P∗ := diag(π)−1 · PT · diag(π). We say that P is reversible if it is ergodic and
P∗ = P . For an ergodic Markov chain P we define the discriminant matrix D(P)
such that its xy entry is

√
pxyp∗yx, where p∗yx stands for entries of the time-reversed

chain. It is easy to see that

D(P) = diag(π)
1
2 · P · diag(π)−

1
2 .

This form has several important consequences. First of all the spectra of P and
D(P) coincide, moreover the vector

√
π, that we get from π by taking the square

root element-wise, is a left eigenvector of D(P) with eigenvalue 1. Also from the
definition

√
pxyp∗yx of the xy entry it follows that for reversible Markov chains,

D(P) is a symmetric matrix, therefore its singular values and eigenvalues coincide
after taking their absolute value.

In the literature [Szeg04, MNRS11, KMOR16] quantum walk based search
methods are usually analyzed with the help of this discriminant matrix. Here we
directly use the discriminant matrix as opposed to the associated quantum walk,
significantly simplifying the analysis. Before deriving our versions of the Markov
chain speed-up results we introduce some definitions regarding sets of marked
elements.

For a set of marked elements M ⊆ X, we denote by DM(P) the matrix that
we get after setting to zero the rows and columns of D(P) corresponding to the
marked elements. For an ergodic Markov chain P we define the hitting time
HT(P ,M) as the expected number of steps of the Markov chain before reaching
the first marked element, if started from the stationary6 distribution π. We
denote the probability that an element is marked in the stationary distribution
by pM :=

∑
x∈M πx. Now we invoke some results about the connection between

the hitting time and the discriminant matrix, which are proven for example in
[KMOR16, Proposition 2] and [Gil14, Lemma 10].

3.2.10. Lemma (Hitting times and discriminant matrix). Let P be a reversible
Markov chain and M a set of marked elements. Let (vi, λi) be the eigenvector-
eigenvalue pairs of DM(P), then

HT(P ,M) =
n∑
i=1

|〈vi,
√
π〉|2

1− λi
− pM , and

n∑
i=1

|〈vi,
√
π〉|2

1− |λi|
≤ 2

n∑
i=1

|〈vi,
√
π〉|2

1− λi
(3.4)

The following result shows how the presence of marked elements can be de-
tected quadratically faster using singular value discrimination compared to using
the corresponding classical Markov chain. A slightly less general version of this
result was proven by Szegedy [Szeg04].

6Here we follow the convention of Szegedy [Szeg04, Equation (15)], and define hitting time
without conditioning on the stationary distribution to unmarked vertices.
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3.2.11. Corollary (Detecting marked elements in a reversible Markov chain).
Let P be a reversible Markov chain, and M ⊆ X a set of marked elements. Let
U be a unitary and Π̃,Π orthogonal projectors in End(H). Suppose that B, B̃ are
orthonormal bases of H, such that representing the matrix of Π̃UΠ in the bases
B → B̃ we have that

Π̃UΠ =

[
DM(P) 0

0 .

]
.

Suppose that we are given a copy of |
√
π〉 :=

∑
x∈X
√
πx|x〉, where (|x〉 : x ∈ X)

are the first n basis elements in B. Then we can distinguish with constant one-
sided error the cases HT(P ,M) ≤ K and M = ∅ (i.e., HT(P ,M) = ∞) with
singular value transformation of degree O

(√
K + 1

)
.

Proof:
Suppose that M 6= ∅. Let {(|vi〉, λi) : i ∈ [n]} be the eigenvector and eigenvalue
pairs of the DM(P) block of Π̃UΠ. By Lemma 3.2.10 we have that

n∑
i=1

|〈vi|
√
π〉|2

1− |λi|
≤ 2HT(P ,M) + 2pM ≤ 2(K + 1).

By Markov’s inequality we have that∑
i : |λi|≥1− 1

12(K+1)

|〈vi|
√
π〉|2 ≤ 1

6
,

and so
∥∥∥Π≤1− 1

12(K+1)
|
√
π〉
∥∥∥2

≥ 5
6
. On the other hand if M = ∅, then DM(P) =

D(P), and ‖D(P)|
√
π〉‖ = 1. Therefore we can apply our singular value discrimi-

nation result Theorem 3.2.9 to distinguish the two casesM = ∅ and HT(P ,M) ≤
K using singular value transformation of degree O

(√
K + 1

)
. 2

The above result shows how to detect the presence of marked elements quad-
ratically faster than the classical hitting time. In practice one usually also wants
to find a marked element, and quantum walks are also good at solving this prob-
lem. In order to show the connection to the literature of quantum walk based
search algorithms we define some additional notation.

First we define the standard implementation procedures for Markov chains
together with their associated costs following Magniez et al. [MNRS11]. We
slightly generalize the usual approach fitting our singular value transformation
framework. Let us fix an orthogonal basis B, such that the first n elements of B
are labeled by |x〉d : x ∈ X. The states |x〉d need not correspond to the first |X|
computational basis states, but can have some data structure attached helping
the updates, as suggested by the subscript d. We define the main operations with
their matrices represented in the basis B, and the associated costs as follows:
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U : Update cost U. The cost of implementing CΠNOT and U gates such that

ΠUΠ =

[
D(P) 0

0 .

]
. (3.5)

C : Checking cost C. The cost of implementing a CΠMNOT gate such that for
all x ∈M : ΠM |x〉d = |x〉d and for all x ∈ X \M : ΠM |x〉d = 0. This implies
that

(I − ΠM)ΠUΠ(I − ΠM) =

[
DM(P) 0

0 .

]
.

S : Setup cost S. The cost of preparing the stationary state in basis B:
|
√
π〉 :=

∑
x∈X
√
πx|x〉d.

First we would like to describe how these operators are usually implemented
in the literature. Usually P is represented using basis elements |x〉d = |0〉|x〉|dx〉,
where the |dx〉 register stores some data associated with the vertex x, which en-
ables efficient implementation of the update procedure. The unitary U is usually
implemented using a product of state-preparation unitaries U = U †LUR:

UR : |0〉|x〉|dx〉 →
∑
y∈[n]

√
pxy|x〉|y〉|dxy〉 ∀x ∈ X (3.6)

UL : |0〉|y〉|dy〉 →
∑
x∈[n]

√
p∗yx|x〉|y〉|dxy〉 ∀y ∈ X (3.7)

We assume for simplicity that 0 /∈ X, resulting in a helpful “free” label, and also
let us assume that the first register is (n+ 1)-dimensional and the second register
is n-dimensional. If the third register is one-dimensional (i.e., we can just trivially
omit it), then by equations (3.6)-(3.7) we get that

(|0〉〈0| ⊗ I)U(|0〉〈0| ⊗ I) =

[
D(P) 0

0 0

]
.

If the data structure register is non-trivial, we can still conclude that

(|0〉〈0| ⊗ I)U(|0〉〈0| ⊗ I) =

[
D(P) .
. .

]
.

However, we need a slightly stronger assumption about U . We assume that UL, UR
are implemented such that the block-matrices next to D(P) are 0 as in (3.5). This
is implicitly assumed7 in [MNRS11], and a sufficient condition is presented in the
work of Childs et al. [CJKM13, Footnote 1].

Before solving the above problem, we invoke a useful polynomial approxi-
mation result due to Dolph [Dol46]. This gives an explicit construction of the
optimal polynomial of degree n, that stays bounded by ε in absolute value on the
largest possible interval of the form [−λ, λ], while taking value (±1)n at x = ±1.

7This assumption is necessary for the correctness of the analysis in [MNRS11], however it is
not explicitly stated.
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3.2.12. Lemma. For all ε ∈ (0, 1] and n ∈ N we have that8

argmax
P∈R[x]

(
max

{
λ : ‖P (x)‖[−λ,λ] ≤ ε

})
= εTn(xT1/n(1/ε)),

where argmax is over all real degree-n polynomials satisfying ‖P‖[−1,1] ≤ 1, and

P (±1) = (±1)n. Moreover, for any δ ∈ (0, 1) for some n = O
(

1√
δ

log(1
ε
)
)

we
have that ∥∥εTn(xT1/n(1/ε))

∥∥
[−1+δ,1−δ] ≤ ε.

Remarkably, the phase sequence required to implement this polynomial using
quantum signal processing is expressed in closed form in the work of Yoder et
al. [YLC14].

3.2.13. Theorem (Speed-up for finding marked elements of a Markov chain).
Let P be a reversible Markov chain, such that the singular value gap9 of D(P)
is at least δ, and the set of marked elements M is such that pM ≥ ε. Then
we can find a marked element with high probability in complexity of order S +
1√
ε

(
C +

√
1
δ

log
(

1
ε

)
U
)
.

Proof:
First we apply singular value transform on ΠUΠ using an ε-approximation of
the zero-function given by Lemma 3.2.12 in order to get UΦ with all 6= 1 sin-
gular values of D(P) shrunk below a level of O(ε). Then the top-left block of
ΠUΦΠ is O(ε)-close to |

√
π〉〈
√
π|, and the implementation of UΦ has complexity

O
(√

1
δ

log
(

1
ε

)
U
)
. We pretend that the top-left block is |

√
π〉〈
√
π|, in which case

we would have that ΠMΠUΦΠ =
√
pM |
√
πM〉〈
√
π|, where |√πM〉 :=

∑
x∈M

√
πx|x〉d√

pM
.

Then we apply singular vector transform to get a constant approximation of
|√πM〉〈

√
π| in the top-left block, and apply it to the state |

√
π〉 in order to find a

marked element with high probability. Finally, we use the robustness of singular
value transformation (Lemma 2.4.3) to show that we can indeed dismiss the O(ε)
discrepancy between ΠUΦΠ and |

√
π〉〈
√
π|. 2

Note that the above algorithm is simpler and more efficient than the phase
estimation based algorithm of Magniez et al. [MNRS11]. However, Magniez et
al. showed how to remove the log(1

ε
) factor completely using a more involved

8The standard generalization of Chebyshev polynomials to non-integer degree y is Ty(x) ≡
cosh(y arccosh(x)) ≡ cos(y arccos(x)).

9We define the singular value gap as the difference between the two largest singular values.
For a reversible Markov chain the singular values of D(P) are the same as the absolute values
of the eigenvalues of P. Note however, that this is not strictly necessary, we could work with
the eigenvalues too using eigenvalue transformation results, such as Theorem 3.4.1.
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procedure, which fine-tunes the precision-level of the utilized approximate reflec-
tions. Their approach can also be directly applied here, plugging our approximate
implementation of |

√
π〉〈
√
π| into their Lemma 2 [MNRS11].

Finally, we note that Krovi et al. [KMOR16] showed that a unique marked
element can be found quadratically faster than the classical hitting time10 by
using an interpolated quantum walk. However, for a long time it was an open
question whether in the presence of multiple marked elements the quadratic ad-
vantage can be retained. Very recently Ambainis et al. [AGJK19] gave a positive
answer to this question; their algorithm combines the interpolation idea of Krovi
et al. [KMOR16] with the fast-forwarding technique of Apers and Sarlette [AS18],
described in the introduction of this chapter. In some cases this result gives a
better complexity than Theorem 3.2.13

Fast QMA amplification and fast quantum OR lemma

The improved version of the Marriott-Watrous [MW05] QMA amplification pro-
cedure due Nagaj et al. [NWZ09] can be seen as a direct corollary of our singular
value discrimination results. In order to state the result we give the definition of
the complexity class QMA.

3.2.14. Definition (The complexity class QMA). Let L ⊆{0, 1}∗ be a language.
The language L belongs to the class QMA if there exists a uniform family of
quantum verifier circuits V (|x|) working on11 |x| + n = poly(|x|) qubits using
m = poly(|x|) ancillae, and numbers 0 ≤ b|x| < a|x| ≤ 1 satisfying 1

a|x|−b|x|
=

O(poly(|x|)), such that for all

x ∈ L : there exists an n-qubit witness |ψ〉 such that upon measuring the state
V |x〉|0〉⊗m|ψ〉 the probability of finding the (|x|+ 1)st qubit in state |1〉
has probability at least a|x|,

x /∈ L : for any n-qubit state |φ〉 upon measuring the state V |x〉|0〉⊗m|φ〉 the
probability of finding the (|x|+ 1)st qubit in state |1〉 has probability at
most b|x|.

Note that unlike in the classical setting, where a witness can be used arbi-
trarily many times, in the quantum case the verification procedure might destroy
the witness. If one would collect classical statistics, and the witness would be
destroyed at each trial, then in order to boost the success probability to 1− ε one
would require about log(1/ε)/(a− b)2 copies of the witness, and a proportionally
large number of computational steps.

10One can show that pM = Ω
(

1
HT(P,M)

)
, therefore using amplitude amplification one can

find a marked element quadratically faster, however with a large S cost. The appeal of the
quantum walk algorithms is that they use the setup procedure only very few times.

11By |x| here we denote the length of the string x, rather than its Hamming weight.
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However, Marriott and Watrous [MW05] showed that a single witness suffices,
and Nagaj et al. [NWZ09] additionally showed how to a improve the computa-
tional complexity of the gap-amplification. Now we are ready to reprove this.
(For readability we removed the |x| subscript from the success probabilities.)

3.2.15. Theorem (Fast QMA amplification). Suppose that L ∈ QMA as in Def-
inition 3.2.14. We can modify the verifier circuit V such that the acceptance
probability thresholds become a′ := 1 − ε and b′ := ε using singular value trans-
formation of degree O

(
1

max[
√
a−
√
b,
√

1−b−
√

1−a]
log
(

1
ε

))
.

Proof:
First note that we can assume without loss of generality that the first register
containing |x〉 does not get modified by V . Otherwise we can just copy |x〉 first
to an ancilla register and then run V using this copy of |x〉. Observe that by
Definition 3.2.14 for all x ∈ L we have that∥∥(〈x| ⊗ |1〉〈1| ⊗ In+m−1)V

(
|x〉 ⊗ |0〉〈0|⊗m ⊗ In

)∥∥ ≥ √a,
and for all x /∈ L we have that∥∥(〈x| ⊗ |1〉〈1| ⊗ In+m−1)V

(
|x〉 ⊗ |0〉〈0|⊗m ⊗ In

)∥∥ ≤ √b.
After applying a singular value discrimination circuit for discriminating singular
values below

√
b and above

√
a we get a circuit that in the former case accepts

some witness |ψ〉 with probability at least 1−ε and in the latter case rejects every
state |φ〉 with probability at least 1− ε. 2

Finally, we turn to discussing the quantum OR lemma, which has a some-
what similar flavor to the above QMA amplification problem. The problem is the
following: we are given a collection of m projective measurements, and a mixed
quantum state ρ, and would like to compute the OR function of the measurement
outcomes, under the promise that for each projective measurement the measure-
ment probability is either very close to 1 or very close to 0. The first question is
whether we can solve this problem using only a constant number of copies of ρ.
The quantum OR lemma of Harrow et al. [HLM17] shows that it is indeed possi-
ble, and the fast quantum OR lemma of Brandão et al. [BKL+17b] improves the
procedure’s computational complexity.

Now we show how to quickly derive a slightly improved version of the fast
quantum OR lemma. We use the main ideas of the proof of the original quantum
OR lemma in a way similar to the approach of Brandão et al.

3.2.16. Theorem (Fast quantum OR lemma). Let m ∈ N, let Πi : i ∈ [m] be
orthogonal projectors and let η, ν ∈ (0, 1

2
]. Suppose we are given one copy of a

quantum state ρ with the promise that either
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(i) there exists some i ∈ [m] such Tr[ρΠi] ≥ 1− η, or

(ii) 1
m

∑m
j=1 Tr[ρΠj] ≤ ν.

Suppose that we have access12 to an operator V such that (〈i| ⊗ I)V (|i〉 ⊗ I) =
CΠiNOT for all i ∈ [m]. Then for all ε ∈ (0, 1

2
] we can construct an algorithm

which, in case (i) accepts ρ with probability at least (1−η)2

4
− ε, and in case (ii) it

accepts ρ with probability at most 5mν + ε. Moreover, the algorithm uses V and
its inverse a total number of O

(√
m log

(
1
ε

))
times and uses O

(√
m log(m) log

(
1
ε

))
other gates and O(log(m)) ancilla qubits.

Proof:
Let us define A := 1

m

∑m
i=1(I − Πi). First observe that

I − Πi = (〈0| ⊗ I)CΠiNOT(|0〉 ⊗ I).

Let a := dlog2(m + 1)e + 1 and let U be a unitary that implements the map
|0〉⊗(a−1) → 1√

m

∑m
i=1|i〉, and let us define Ṽ :=

(
U † ⊗ I

)
V (U ⊗ I) and Π :=

|0〉〈0|⊗a ⊗ I. Then it is easy to see that A = ΠṼΠ.
Now let λ := 1−η

2m
, in case (i) Harrow et al. [HLM17, Corollary 11] proved that

Tr[ρΠ≤1−λ] ≥ (1− η)2/4. (3.8)

On the other hand in case (ii) we have that Tr[ρA] ≥ 1− ν. Using Markov’s
inequality we get

Tr
[
ρΠ≤1− 4

5
λ

]
≤ ν

4
5
λ

=
5mν

2(1− η)
≤ 5mν. (3.9)

Finally, we apply ε-precise singular value discrimination on ρ with a := 1− λ
and b := 1− 4

5
λ. The correctness follows from (3.8)-(3.9) and Theorem 3.2.9. The

complexity statement follows from Theorem 3.2.9, Lemma 2.3.9 and the fact that
U can be implemented using O(log(m)) one- and two-qubit gates. 2

3.2.3 Improving the HHL algorithm via a direct implemen-
tation of the Moore-Penrose pseudoinverse

The famous quantum algorithm of Harrow, Hassidim, and Lloyd [HHL09] solves
the system of linear equations Ax = b in a very quantum sense. Given suitable
access to the matrixA, and the ability to prepare a quantum state |b〉, it prepares a

12Brandão et al. [BKL+17b] assume access to controlled reflection operators instead of
CΠiNOT gates, but it is easy to see that these gates are the same up to conjugation by a
Hadamard gate on the control qubit, as we noted after Definition 2.1.1.



64 Chapter 3. Constructing quantum algorithms by QSVT

quantum state proportional to |x〉. The most common assumption for the matrix
A is that it is s-sparse and that the entries of the matrix are efficiently computable,
as well as the locations of the non-zero entries. Then the HHL algorithm runs in
time that depends polynomially on the sparsity and the condition number of A,
and polylogarithmically on the dimension and the desired precision. When A is
not invertible, then one can still prepare a state proportional to the least-square
solution A+|b〉, with appropriately defining a substitute for the condition number.
Now we derive a variant of this latter version, under the assumption that A is
given by a projected unitary encoding.

Suppose Π̃UΠ = A and A = WΣV † is a singular value decomposition. Then
the pseudoinverse of A is A+ = V Σ+W †, where Σ+ contains the inverses of the
non-zero elements of ΣT .

It is pretty straightforward to implement the pseudoinverse using singular
value transformation. Suppose that all non-zero singular values are at least δ.
Let P< be an odd real polynomial that ε-approximates the function δ/(2x) on
the domain [−1, 1] \ (−δ, δ), then P (SV )

< (A†) = ΠU †ΦΠ̃ ε-approximates δ
2
A+. The

only thing remaining is to construct a relatively low-degree odd polynomial P<
that achieves the desired approximation, and which is bounded by 1 in absolute
value on [−1, 1], in order to be able to apply Corollary 2.3.8. Childs et al. [CKS17,
Lemmas 17-19] constructed a useful polynomial for improving the HHL algorithm,
which we can use after some adjustments.

3.2.17. Lemma. (Polynomial approximations of 1/x, [CKS17, Lemmas 17-19])
Let κ > 1 and ε ∈ (0, 1

2
). For b = dκ2 log(κ/ε)e the odd function

f(x) :=
1− (1− x2)b

x

is ε-close to 1/x on the domain [−1, 1] \ (− 1
κ
, 1
κ
). Let J :=

⌈√
b log(4b/ε)

⌉
, then

the O
(
κ log(κ

ε
)
)
-degree odd real polynomial

P (x) := 4
J∑
j=0

(−1)j

[∑b
i=j+1

(
2b
b+i

)
22b

]
T2j+1(x)

is ε-close to f(x) on the interval [−1, 1], moreover |P (x)| ≤ 4J = O
(
κ log(κ

ε
)
)

on this interval.

3.2.18. Theorem (Implementing the Moore-Penrose pseudoinverse). Let U,Π,
Π̃ be as in Theorem 2.3.7 and let 0 < ε ≤ δ ≤ 1

2
. Suppose that A = Π̃UΠ =

WΣV † is a singular value decomposition. Let Π0,≥δ := Π=0 + Π≥δ and simi-
larly Π̃0,≥δ := Π̃=0 + Π̃≥δ. Then there is an m = O

(
1
δ

log(1
ε
)
)
and an efficiently

computable Φ ∈ Rm such that5∥∥∥∥(〈+| ⊗ Π0,≥δ

)
UΦ

(
|+〉 ⊗ Π̃0,≥δ

)
− Π0,≥δ

(
δ

2
· A+

)
Π̃0,≥δ

∥∥∥∥ ≤ ε. (3.10)
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Moreover, UΦ can be implemented using a single ancilla qubit with m uses of U
and U †, m uses of CΠNOT and m uses of CΠ̃NOT gates and m single-qubit gates.

Proof:
Using Lemma 3.2.17 we can construct an odd polynomial P (x) having degree
O(log(1/ε)/δ) that ε

3
-approximates the function δ

2x
on the domain [−1, 1]\(− δ

2
, δ

2
),

and is less than 1 on this domain. Let us define Pmax := maxx∈[−1,1] |P (x)|
and observe that Pmax = O

(
log(1

ε
)
)
. Let us also construct an even polyno-

mial P ′ of degree O(log(1/ε)/δ) using Lemma 3.2.6 setting t := 3
4
δ, δ′ := δ

4

and ε′ := min
(
ε
3
, 1
Pmax

)
that ε′-approximates the rectangle function. Finally let

P< := P · (1−P ′), which is an odd real polynomial of degree m = O(log(1/ε)/δ).
It is easy to see that P< ε-approximates δ

2x
on the domain [−1, 1]\ (− δ

2
, δ

2
), more-

over P< is bounded by 1 in absolute value on [−1, 1]. Finally, we apply real
singular value transformation on A† = ΠU †Π̃ using the polynomial P< by Corol-
lary 2.3.8, and conclude the gate complexity using Lemma 2.3.9. 2

The ε ≤ δ assumption in the above statement is quite natural, but it is not
necessary, and can be removed by using our general polynomial approximation
results, see Corollary 3.4.16.

3.2.4 Applications in quantum machine learning

The ability to transform singular values is central to the operation of many popu-
lar machine learning methods. Quantum machine learning methods such as quan-
tum support vector machines [RML14], principal component analysis [LMR14,
WK17], regression [HHL09, WBL12, CKS17, CGJ19], slow feature analysis [KL18],
and Gibbs-sampling [CS17, vAGGdW17] all hinge upon this idea. These results
are among the most celebrated in quantum machine learning, showing that sin-
gular value transformation has substantial impact on this field of quantum com-
puting.

Many quantum algorithms for basic machine learning problems, such as ordi-
nary least squares, weighted least squares, generalized least squares, were studied
in a series of works [HHL09, WBL12, CKS17, CGJ19]. We do not examine these
problems case-by-case, but point out that they can all be reduced to implement-
ing the Moore-Penrose pseudoinverse and matrix multiplication, therefore they
can be straightforwardly implemented by Theorem 3.2.18 and Lemma 3.3.10 (to
be discussed in Subsection 3.3.4) within our framework.

We demonstrate how to apply our singular value transformation techniques
to quantum machine learning by developing a new quantum algorithm for prin-
cipal component regression. This machine learning algorithm is closely related
to principal component analysis (PCA), which is a tool that is commonly used
to reduce the effective dimension of a model by excising irrelevant features from
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it. The PCA method is quite intuitive, it simply involves computing the covari-
ance matrix for a data set and then diagonalizing it. The eigenvectors of the
covariance matrix then represent the independent directions of least or greatest
variation in the data. Dimension reduction can be achieved by culling any com-
ponents that have negligibly small variation over them. This technique has many
applications ranging from anomaly detection to quantitative finance. Quantum
algorithms are known for this task and can lead to substantial speed-ups under
appropriate assumptions about the data and the oracles used to provide it to the
algorithm [LMR14, KLL+17].

Principal component regression is identical in spirit to principal component
analysis. Rather than simply truncating small eigenvalues of the covariance ma-
trix for a data set, principal component regression aims to approximately recon-
struct a target vector on a domain/range that is spanned by the right or left
singular vectors of the data set with large singular values. A least-squares type
estimation of the target vector within this subspace of the data can be found
by performing a singular vector transformation. This can provide a more flex-
ible and powerful approach to dimensionality reduction than ordinary principal
component analysis permits.

The problem of principal component regression can be formally stated as
follows [FMMS16]: given a matrix A ∈ Rn×d, a vector b ∈ Rn and a threshold
value 0 < ς, find x ∈ Rd such that

x = argminx∈Rd
∥∥∥Π̃≥ςAΠ≥ςx− b

∥∥∥, (3.11)

where Π̃≥ς ,Π≥ς denote left and right singular value threshold projectors. A closed-
form expression for the optimal solution of (3.11) is given by x = Π≥ςA

+Π̃≥ςb =

A+Π̃≥ςb.
As the following corollary shows, our singular value transformation techniques

give rise to an efficient quantum algorithm for implementing Π≥ςA
+Π̃≥ς , and thus

principal component regression.

3.2.19. Corollary (Implementing the threshold pseudoinverse). Let U , Π, Π̃
form a projected unitary encoding of the matrix A, and let ε, δ ∈ (0, 1

2
] and 0 <

ς < 1. Suppose that A = Π̃UΠ = WΣV † is a singular value decomposition of
the projected unitary encoding of A. Then there is an m = O

(
1
δ

log(1
ε
)
)
and an

efficiently computable Φ ∈ Rm such that5∥∥∥(〈+| ⊗ (Π− Π[ς−δ,ς+δ]
))
UΦ

(
|+〉 ⊗

(
Π̃− Π̃[ς−δ,ς+δ]

))
− Π≥ς

( ς
2
A+
)

Π̃≥ς

∥∥∥ ≤ ε.

(3.12)
Moreover, UΦ can be implemented using a single ancilla qubit with m uses of U
and U †, m uses of CΠNOT and m uses of CΠ̃NOT gates and m single-qubit gates.
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Proof:
We can implement this operator by first applying a singular value threshold pro-
jector Π̃≥ς according to Theorem 3.2.8, followed by performing the Moore-Penrose
pseudoinverse A+ as in Theorem 3.2.18.

Implementing these two operations separately is actually suboptimal. In order
to get the stated result we simply take the polynomials used for singular value
transformation in Theorem 3.2.8 and Theorem 3.2.18, then take their product and
implement singular value transformation according to the product polynomial.
The complexity statement can be proven similarly to the proofs of Theorem 3.2.8
and Theorem 3.2.18. 2

Given a unitary preparing a quantum state |b〉 we can approximately solve
principal component regression by applying an approximation of Π≥ς

(
ς
2
A+
)
Π̃≥ς

to |b〉, and then applying amplitude amplification to get |x〉. Strictly speaking, in
order for this to work as required by (3.11), we would need to have the promise
that |b〉 does not have an overlap with left singular vectors that have eigenvalues
in [ς − δ, ς + δ], while it does have a non-negligible overlap with left singular
vectors having singular value > ς + δ. In fact, due to the nature of singular
value transformation, for a left singular vector |wj〉 with singular value ςj ∈
[ς − δ, ς + δ] the procedure still performs a meaningful operation: it maps |wj〉 →
f(ςj)|vj〉, such that f(ςj) ∈ [−1, 1]. It is plausible that the transition behavior
on [ς − δ, ς + δ] would in practice not significantly degrade the performance of
typical machine learning applications, therefore the promise of not having singular
values in [ς − δ, ς + δ] is probably not crucial. Also note that an essentially
quadratic improvement to the runtime of the above procedure can be achieved
using variable-time amplitude amplification techniques [Amb12, CKS17, CGJ19].

Finally, we briefly discuss a recently developed quantum machine learning al-
gorithm which is significantly more complex then the previous algorithm, but can
still be easily fitted to our framework. Kerenidis and Luongo recently proposed a
quantum algorithm for slow feature analysis [KL18]. The main ingredient of their
algorithm is to apply a threshold projection on some input state, i.e., to project
onto the subspace spanned by the singular vectors of a matrix with singular val-
ues smaller than a certain threshold. Their algorithm is based on singular value
estimation, whereas our Theorem 3.2.8 approaches the same problem in a more
direct way, by transforming the singular values according to a threshold function.

In the first step of the quantum algorithm of Kerenidis and Luongo, the task
is to implement Y := V Σ−1V † for a given input matrix X = WΣV †. In our
framework this can be performed analogously to Theorem 3.2.18 using singular
value transformation; the only difference is that one needs to use an even polyno-
mial approximation of 1

x
, for example given by Corollary 3.4.13. In the next step,

one needs to implement singular value threshold projection using the matrix ẊY
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for a given “derivative” matrix Ẋ. Taking the product13 of the two matrices can
be implemented using Lemma 3.3.10, after which we can use our Theorem 3.2.8
to implement singular value threshold projection.

3.2.5 Singular value estimation

Finally, we turn to the singular value estimation results of Kerenidis and Prakash
[KP17b]. Kerenidis and Prakash mostly use singular value estimation in order
to implement singular vector projectors, with similar complexity to that of The-
orem 3.2.8. However, there is a subtle issue stemming from the ambiguity of
the phase labels produced by phase estimation, which is not explicitly handled
in their implementation [KP17b, Algorithm (5.)1, step 4]. Using our techniques
combined with ideas of Chakraborty et al. [CGJ19], we show an alternative ap-
proach to singular value estimation.

Suppose that A = Π̃UΠ, and we would like to perform singular value es-
timation of A. The main idea is to first implement an operator V such that
(I ⊗ Π)V (I ⊗ Π) =

∑2n−1
t=0 |t〉〈t| ⊗ T

(SV )
2t (A). This can be done by using con-

trolled quantum walk steps, i.e., using controlled alternating phase modulation
sequences with phases as in Lemma 2.2.7. Suppose that |ψj〉 ∈ img(Π) is a right
singular vector of A with singular value cos(θj), then

(I ⊗ Π)V
(
H⊗n ⊗ I

)
|0〉n|ψj〉 = (I ⊗ Π)V

1√
2n

2n−1∑
t=0

|t〉|ψj〉

=
1√
2n

2n−1∑
t=0

cos(2tθj)|t〉|ψj〉.

One can show that the norm of this state Nj is always bigger than some constant.
However, the problem is that the norm Nj depends on the singular value cos(θj).
Fortunately we can use singular vector transformation using the projected uni-
tary encoding (I ⊗ Π)V (H⊗n ⊗ I)(|0〉〈0|⊗n ⊗ Π) by Theorem 3.2.3 in order to
ε-approximate the map |0〉n|ψj〉 → 1√

2n

∑2n−1
j=0

cos(2tθj)

Nj
|t〉|ψj〉. Applying a Fourier

transform on the first (time) register, and taking half of the absolute value of the
resulting estimation solves the singular value estimation problem. The correctness
can be seen using the usual analysis of quantum phase estimation [CEMM98] by
utilizing the identity cos(x) = eix+e−ix

2
. For more details see [CGJ19, version 2].

3.3 Matrix arithmetics using blocks of unitaries
In this section we describe a generic toolbox for implementing matrix calculations
on a quantum computer, representing matrices by unitary circuits and vectors as

13In case we would have a subnormalized version of Ẋ, in order to get maximal efficiency, it
is usually worth amplifying Ẋ using Theorem 3.2.7 before taking the product ẊY .
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quantum states. The matrix arithmetics methodology we propose carries out all
calculations in an operational way, meaning that the matrices are represented
by blocks of unitary operators of the quantum system, thus can in principle
result in exponential speed-ups in terms of the dimension of the matrices. The
methodology we describe is a distilled version of the results of a series of works
on quantum algorithms [HHL09, BCC+15, CKS17, LC16, vAGGdW17, CGJ19].

We present the results in an intuitively structured way. First we define how
to represent arbitrary matrices as blocks of unitaries, and show how to efficiently
encode various matrices this way. Then we show how to implement addition and
subtraction of these matrices, and finally show how to efficiently obtain products
of block-encoded matrices. In order to make the results maximally reusable we
also give bounds on the propagation of errors arising from inaccurate encodings.

3.3.1 Block-encoding

We introduce a definition of block-encoding which we are going to work with in
the rest of the dissertation. As we already mentioned in the introduction, the
main idea is to represent a (subnormalized) matrix as the upper-left block of a
unitary.

U =

[
A/α .
. .

]
=⇒ A = α(〈0| ⊗ I)U(|0〉 ⊗ I)

3.3.1. Definition (Block-encoding). Suppose that A is an s-qubit operator,
α, ε ∈ R+ and a ∈ N, then we say that the (s+ a)-qubit unitary U is an (α, a, ε)-
block-encoding of A, if∥∥A− α(〈0|⊗a ⊗ I)U(|0〉⊗a ⊗ I)

∥∥ ≤ ε.

Note that since ‖U‖ = 1 we necessarily have ‖A‖ ≤ α + ε. Also note that using
the above definition it seems that we can only represent square matrices of size
2s × 2s. However, this is not really a restriction. Suppose that A ∈ Cn×m, where
n,m ≤ 2s. Then we can define an embedding matrix denoted by Ae ∈ C2s×2s such
that the top-left block of Ae is A and all other elements are 0. This embedding is a
faithful representation of the matrix A. Suppose that A,B ∈ Cn×m are matrices,
then Ae + Be = (A + B)e. Moreover, suppose C ∈ Cm×k for some k ≤ 2s, then
Ae · Ce = (A · C)e.

The block-encoding defined above is a special case of the projected-encoding of
Definition 2.3.1, therefore we can later apply our singular value transformation re-
sults for block-encoded matrices. In this manner the advantage of block-encoding
is that the CΠNOT gate which is required in order to implement the gates of
Figure 2.2 is just a Toffoli gate on a + 1 qubits, which can be implemented by
O(a+ 1) two-qubit gates and using a single additional ancilla qubit [HLZ+17].
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3.3.2 Constructing block-encodings

A unitary matrix is a (1, 0, 0)-block-encoding of itself, which we call a trivial block-
encoding. If we ε-approximately implement a unitary U using a ancilla qubits via
a unitary Ũ acting jointly on the system and the ancilla qubits, then Ũ is an
(1, a, ε)-block-encoding of U . This is also a rather trivial encoding. Note that we
make a slight distinction between ancilla qubits that are exactly returned to their
original state after the computation and the ones that might pick up some error.
The latter qubits we will treat as part of the encoding, and the former qubits we
usually treat separately as purely ancillary qubits.

Now we present some non-trivial ways for constructing block-encodings, which
will serve as a toolbox for efficiently inputting and representing matrices for arith-
metic computations on a quantum computer. We will denote by Iw a w-qubit
identity operator, and let SWAPw denote the swap operation of two w-qubit regis-
ters. When clear from the context we use the simple notation |0〉 to denote |0〉⊗w.

First we show, following Low and Chuang [LC16], how to create a block-
encoding of a purified density operator. This technique can be used in combi-
nation with the optimal block-Hamiltonian simulation result Theorem 3.4.3, in
order to get much better simulation performance, compared to density matrix ex-
ponentiation techniques [LMR14, KLL+17] which does not use purification. This
result can be generalized for subnormalized density operators too, for more details
see [vAG19].

3.3.2. Lemma (Block-encoding of density operators). Suppose that ρ is an s-
qubit density operator and G is an (a + s)-qubit unitary that on the |0〉|0〉 input
state prepares a purification |0〉|0〉 → |ρ〉, s.t. Tra|ρ〉〈ρ| = ρ. Then (G† ⊗ Is)(Ia ⊗
SWAPs)(G⊗ Is) is a (1, a+ s, 0)-block-encoding of ρ.

Proof:
Let r be the Schmidt rank of ρ, let {|ψk〉 : k ∈ [2s]} be an orthonormal basis,
let {|φk〉 : k ∈ [r]} be an orthonormal system and let p ∈ [0, 1]2

s be such that
|ρ〉 =

∑r
k=1

√
pk|φk〉|ψk〉 and p` = 0 for all ` ∈ [2s] \ [r]. Then for all i, j ∈ [2s] we
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have that

〈0|⊗a+s〈ψi|(G† ⊗ Is)(Ia ⊗ SWAPs)(G
† ⊗ Is)|0〉⊗a+s|ψj〉 =

= 〈ρ|〈ψi|(Ia ⊗ SWAPs)|ρ〉|ψj〉

=

(
r∑

k=1

√
pk〈φk|〈ψk|

)
〈ψi|(Ia ⊗ SWAPs)

(
r∑
`=1

√
p`|φ`〉|ψ`〉

)
|ψj〉

=

(
r∑

k=1

√
pk〈φk|〈ψk|〈ψi|

)(
r∑
`=1

√
p`|φ`〉|ψj〉|ψ`〉

)
=
√
pjpiδij

= 〈ψi|ρ|ψj〉.
2

Van Apeldoorn and Gilyén [vAG19] recently also showed that an implemen-
tation scheme for a binary POVM measurement {M, I −M} can also be easily
transformed to block-encodings of the POVM operators. By an implementation
scheme we mean a quantum circuit U that given an arbitrary input state ρ, sets
a flag qubit to 0 with probability Tr[ρM ]. (In the following lemma the CNOT
gate is controlled on the second qubit.)

3.3.3. Lemma (Block-encoding of POVM operators). Suppose that U is an (a+
s)-qubit unitary, which implements a POVM operator M with ε-precision such
that for all s-qubit density operators ρ∣∣Tr[ρM ]− Tr

[
U
(
|0〉〈0|⊗a ⊗ ρ

)
U †
(
|0〉〈0|⊗1 ⊗ Ia+s−1

)]∣∣ ≤ ε. (3.13)

Then (I1 ⊗ U †)(CNOT ⊗ Ia+s−1)(I1 ⊗ U) is a (1, 1 + a, ε)-block-encoding of the
matrix M .

Proof:
First observe that by the cyclicity of trace we have that

Tr
[
U
(
|0〉〈0|⊗a ⊗ ρ

)
U †(|0〉〈0| ⊗ Ia+s−1)

]
= Tr

[
U
(
|0〉⊗a ⊗ I

)
ρ
(
〈0|⊗a ⊗ I

)
U †(|0〉〈0| ⊗ Ia+s−1)

]
= Tr

[
ρ
(
〈0|⊗a ⊗ I

)
U †(|0〉〈0| ⊗ Ia+s−1)U

(
|0〉⊗a ⊗ I

)]
.

Together with (3.13) this implies that for all density operators ρ∣∣Tr
[
ρ
(
M −

(
〈0|⊗a ⊗ I

)
U †(|0〉〈0| ⊗ Ia+s−1)U

(
|0〉⊗a ⊗ I

))]∣∣ ≤ ε,

which is equivalent to saying that∥∥M − (〈0|⊗a ⊗ I)U †(|0〉〈0| ⊗ Ia+s−1)U
(
|0〉⊗a ⊗ I

)∥∥ ≤ ε.
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We can conclude by observing that(
〈0|⊗a ⊗ I

)
U †(|0〉〈0| ⊗ Ia+s−1)U

(
|0〉⊗a ⊗ I

)
=

=
(
〈0|⊗1+a ⊗ I

)(
I1 ⊗ U †

)
(CNOT⊗ Ia+s−1)

(
I1 ⊗ U

)(
|0〉⊗1+a ⊗ I

)
.
2

Now we turn to a more traditional way of constructing block-encodings via
state preparation. This is a common technique for example to implement quan-
tum walks. Now we introduce the notation [n]−1 to denote the set {0, 1, . . . , n−1}.

3.3.4. Lemma (Block-encoding of Gram matrices by state preparation unitaries).
Let UL and UR be “state preparation” unitaries acting on a + s qubits preparing
the vectors {|ψi〉 : i ∈ [2s]− 1}, {|φj〉 : j ∈ [2s]− 1}, s.t.

UL : |0〉|i〉 → |ψi〉
UR : |0〉|j〉 → |φj〉.

Then U = U †LUR is an (1, a, 0)-block-encoding of the Gram matrix A such that
Aij = 〈ψi|φj〉.

Based on the above idea one can efficiently implement block-encodings of
sparse-access matrices.

3.3.5. Lemma (Block-encoding of sparse-access matrices). Let A ∈ C2w×2w be a
matrix that is sr-row-sparse and sc-column-sparse, and each element of A has
absolute value at most 1. Suppose that we have access to the following sparse-
access oracles acting on two (w + 1) qubit registers

Or : |i〉|k〉 → |i〉|rik〉 ∀i ∈ [2w]− 1, k ∈ [sr], and
Oc : |`〉|j〉 → |c`j〉|j〉 ∀` ∈ [sc], j ∈ [2w]− 1, where

rij is the index for the j-th non-zero entry of the i-th row of A, or if there are less
than i non-zero entries, then it is j + 2w, and similarly cij is the index for the
i-th non-zero entry of the j-th column of A, or if there are less than j non-zero
entries, then it is i + 2w. Additionally assume that we have access to an oracle
OA that returns the entries of A in a binary description

OA : |i〉|j〉|0〉⊗b → |i〉|j〉|aij〉 ∀i, j ∈ [2w]− 1, where

aij is a b-bit binary description14 of the ij-matrix element of A. Then we can
implement a (

√
srsc, w+3, ε)-block-encoding of A with a single use of Or,Oc, two

uses of OA and additionally using O
(
w + log2.5( srsc

ε
)
)
one and two-qubit gates

while using O
(
b+ log2.5( srsc

ε
)
)
ancilla qubits.

14For simplicity we assume here that the binary representation is exact.
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Proof:
We proceed by constructing state preparation unitaries like in Lemma 3.3.4. We
will work with 3 registers the first of which is a single-qubit register, and the
other two registers have (w + 1) qubits. Let Ds be a (w + 1)-qubit unitary that
implements the map |0〉 →

∑s
k=1

|k〉√
s
. It is known that this operator Ds can be

implemented with O(w) quantum gates using O(1) ancilla qubits. Then we define
the 2(w + 1)-qubit unitary VL := Or(Iw+2 ⊗Dsr)SWAPw+1 such that

VL : |0〉w+2|i〉 →
sr∑
k=1

|i〉|rik〉√
sr

∀i ∈ [2w]− 1.

We implement the operator VR := Oc(Dsc ⊗ Iw+1) in a similar way acting as

VR : |0〉w+2|j〉 →
sc∑
`=1

|c`j〉|j〉√
sc

∀j ∈ [2w]− 1.

It is easy to see that the above unitaries are such that

〈0|w+2〈i|V †LVR|0〉
w+2|j〉 =

1
√
srsc

if aij 6= 0 and 0 otherwise.

Now we define UL := I1 ⊗ VL and define UR as performing the unitary I1 ⊗ VR
followed by some extra computation. After performing VR we get a superposition
of index pairs |i〉|j〉. Given an index pair |i〉|j〉 we query the matrix element
|aij〉 using the oracle OA. Then we do some elementary computations in order
to implement a single-qubit gate |0〉 → aij|0〉+

√
1− |aij|2|1〉 on the first qubit,

with precision O
(

poly
(

ε
srsc

))
. This can be executed with the stated complexity,

for more details see, e.g., the work of Berry et al. [BCK15]. Finally we also need
to uncompute everything, which requires one more use of OA. This way we get a
good approximation of

UR : |0〉w+3|j〉 →
sc∑
`=1

(
ac`jj|0〉+

√
1− |ac`jj|2|1〉

)
|c`j〉|j〉

√
sc

∀j ∈ [2w]− 1.
2

Note that in the above method the matrix gets subnormalized by a factor of
1√
srsc

. If we would know that for example ‖A‖ ≤ 1
2
, then we could amplify the

block-encoding in order to remove this unwanted subnormalization using singular
value amplification Theorem 3.2.7 using the block-encoding roughly

√
srsc times.

However, under some circumstances one can defeat the subnormalization more
efficiently by doing an amplification at the level of the state preparation uni-
taries. The idea comes from Low and Chuang [LC17a], who called this technique
“Uniform spectral gap amplification”. We generalize their results combining with
ideas of Kerenidis and Prakash [KP17a] and Chakraborty et al. [CGJ19], who used
similar ideas but assumed QROM-access to matrices rather than sparse-access.
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3.3.6. Lemma (Preamplified block-encoding of sparse-access matrices). Let A ∈
C2w×2w be a matrix that is sr-row-sparse and sc-column-sparse, and is given using
the input oracles defined in Lemma 3.3.5. Let ai. denote the i-th row of A and
similarly a.j the j-th column. Let q ∈ [0, 2] and suppose that nr ∈ [1, sr] is an
upper bound on ‖ai.‖qq and nc ∈ [1, sc] is an upper bound on ‖a.j‖2−q

2−q.
Let m = max[ sr

nr
, sc
nc

]. Then we can implement a
(√

2nrnc, w + 6, ε
)
-block-

encoding of A with O
(√

sr
nr

log( srsc
ε

)
)
uses of Or, O

(√
sc
nc

log( srsc
ε

)
)
uses of Oc,

O
(√

m log( srsc
ε

)
)
uses of OA, while using O

(√
m
(
w log( srsc

ε
) + log3.5( srsc

ε
)
))

ad-
ditional one and two-qubit gates and O

(
b+ log2.5( srsc

ε
)
)
ancilla qubits.

Proof:
The idea is very similar to the proof of Lemma 3.3.5, we implement the unitaries
VL, VR the same way. However, we define UR, UL slightly differently. Using a
similar method as in Lemma 3.3.5, we implement O

(
poly

(
ε

srsc

))
-approximations

of the maps UL, UR which for all i ∈ [2w]− 1 and j ∈ [2w]− 1 map

UL : |0〉w+4|i〉 →
sr∑
k=1

(
|airik |

q
2 |0〉+

√
1− |airik |q|1〉

)
|0〉|i〉|rik〉

√
sr

UR : |0〉w+4|j〉 →
sc∑
`=1

ac`jj

|ac`jj |
|0〉
(
|ac`jj|1−

q
2 |0〉+

√
1− |ac`jj|2−q|1〉

)
|c`j〉|j〉

√
sc

.

It is easy to see that the above unitaries are such that

〈0|w+4〈i|U †LUR|0〉
w+4|j〉 =

aij√
srsc

∀i, j ∈ [2w]− 1.

We can see that for all i ∈ [2w]− 1 the modified row vector
∑sr

k=1

|airik |
q
2 |0〉|0〉|i〉|rik〉√

sr

has squared norm at most nr
sr
, and a similar nc

sc
upper bound holds for the squared

norm of the modified column vector. Also observe that

(|0〉〈0| ⊗ I2w+3)UL(|0〉〈0|w+4 ⊗ Iw) =
2w−1∑
j=0

(
sr∑
k=1

|airik |
q
2 |0〉|0〉|i〉|rik〉√

sr

)
〈0|w+4〈j|,

which is a singular value decomposition with the singular values being the mod-
ified row norms. Therefore we can apply singular value amplification (Theo-
rem 3.2.7) with amplification γr =

√
sr√
2nr

and precision O
(

poly
(

ε
srsc

))
resulting

in an O
(

poly
(

ε
srsc

))
approximation of ŨL such that

(〈+| ⊗ |0〉〈0| ⊗ I2w+3)ŨL(|+〉 ⊗ |0〉〈0|w+4 ⊗ Iw)

= γr

2w−1∑
j=0

(
sr∑
k=1

|airik |
q
2 |0〉|0〉|i〉|rik〉√

sr

)
〈0|w+4〈j|.
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Similarly we apply singular value amplification with amplification γc =
√

sc√
2nc

and precision O
(

poly
(

ε
srsc

))
resulting in a O

(
poly

(
ε

srsc

))
approximation of ŨR

such that

〈++|〈0|w+4〈i|Ũ †LŨR|++〉|0〉w+4|j〉 = γrγc
aij√
srsc

=
aij√
2nrnc

∀i, j ∈ [2w]− 1.

Finally adding 4 Hadamard gates we can change the |+〉 states above to |0〉 states,
resulting in the

(√
1

2nrnc
, w + 6, ε

)
-block-encoding of A. The complexity state-

ment follows similarly as in the proof of Lemma 3.3.5, with the extra observation
that the singular value amplifications of UL and UR can be performed using degree
O
(
γr log( srsc

ε
)
)
and O

(
γc log( srsc

ε
)
)
singular value transformations respectively. 2

Finally, for completeness we invoke results of Kerenidis and Prakash [KP17a]
and Chakraborty et al. [CGJ19], who showed how to efficiently implement block-
encodings of matrices that are stored in a clever quantum data structure in
QROM. The QROM and the data structure for the matrix A enables performing
several useful tasks in time that is polylogarithmic in the size of the matrix and
the required precision. These tasks include: for any given row of A compute its
norm or prepare a quantum state that is proportional to it; compute the maximal
row norm and the Frobenius norm of the matrix, and prepare a quantum state
that has amplitudes proportional to the norms of the rows of the matrix A.

For q ∈ [0, 2] let us define µq(A) =
√
nq(A)n(2−q)(A†), where nq(A) :=

maxi‖ai.‖qq is the q-th power of the maximum q-norm of the rows of A. Let

A(q) denote the matrix of the same dimensions as A, with15 A
(q)
ij =

√
aqij. The

following was proven in [KP17a], although not in the language of block-encodings,
and was stated in this form by Chakraborty et al. [CGJ19]. The result can be
proven along the lines of Lemma 3.3.4.

3.3.7. Lemma (Block-encodings of matrices stored in quantum data structures).
Let A ∈ C2w×2w .

1. Fix q ∈ [0, 2]. If A(q) and (A(2−q))† are both stored in quantum-accessible
data structures16, then there exist unitaries UR and UL that can be imple-
mented in time O(poly(w log(1/ε))) and U †RUL is a (µq(A), w + 2, ε)-block-
encoding of A.

2. On the other hand, if A is stored in a quantum-accessible data structure16,
then there exist unitaries UR and UL that can be implemented in time
O(poly(w log(1/ε))) and U †RUL is an (‖A‖F , w + 2, ε)-block-encoding of A.

15For complex values we define these non-integer powers using the principal value of the
complex logarithm function.

16Here we assume that the data-structure stores the matrices with sufficient precision,
cf. [CGJ19].
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3.3.3 Addition and subtraction: Linear combination of block-
encoded matrices

We use a simple but powerful method for implementing linear combinations of
unitary operators on a quantum computer. This technique was introduced by
Berry et al. [BCC+15] for exponentially improving the precision of Hamiltonian
simulation. Later it was adapted by Childs et al. [CKS17] for exponentially
improving the precision of quantum linear equation solving. Here we present this
method from the perspective of block-encoded matrices.

First we define state-preparation unitaries in order to conveniently state our
result in the following lemma.

3.3.8. Definition (State preparation pair). Let y ∈ Cm and ‖y‖1 ≤ β. The
pair of unitaries (PL, PR) is called a (β, b, ε)-state-preparation-pair if PL|0〉⊗b =∑2b−1

j=0 cj|j〉 and PR|0〉⊗b =
∑2b−1

j=1 dj|j〉 such that
∑m−1

j=0 |β(c∗jdj)− yj| ≤ ε and for
all j ∈ m, . . . , 2b − 1 we have c∗jdj = 0.

Now we show how to implement a block-encoding of a linear combination of
block-encoded operators.

3.3.9. Lemma (Linear combination of block-encoded matrices).
Let A =

∑m
j=1 yjAj be an s-qubit operator and ε ∈ R+. Suppose that (PL, PR) is a

(β, b, ε1)-state-preparation-pair for y, W =
∑m−1

j=0 |j〉〈j|⊗Uj+((I−
∑m−1

j=0 |j〉〈j|)⊗
Ia⊗Is) is an (s+a+b)-qubit unitary such that for all j ∈ 0, . . . ,m we have that Uj
is an (α, a, ε2)-block-encoding of Aj. Then we can implement a (αβ, a+ b, αε1 +

αβε2)-block-encoding of A, with a single use of W , PR and P †L.

Proof:
Observe that W̃ = (P †L ⊗ Ia ⊗ Is)W (PR ⊗ Ia ⊗ Is) is a (αβ, a + b, αε1 + αβε2)-
block-encoding of A:∥∥∥A− αβ(〈0|⊗b ⊗ 〈0|⊗a ⊗ I)W̃ (|0〉⊗b ⊗ |0〉⊗a ⊗ I)

∥∥∥
=

∥∥∥∥∥A− α
m−1∑
j=0

β(c∗jdj)(〈0|
⊗a ⊗ I)Uj(|0〉⊗a ⊗ I)

∥∥∥∥∥
≤ αε1 +

∥∥∥∥∥A− α
m−1∑
j=0

yj(〈0|⊗a ⊗ I)Uj(|0〉⊗a ⊗ I)

∥∥∥∥∥
≤ αε1 + α

m−1∑
j=0

yj
∥∥Aj − (〈0|⊗a ⊗ I)Uj(|0〉⊗a ⊗ I)

∥∥
≤ αε1 + α

m−1∑
j=0

yjε2

≤ αε1 + αβε2. 2
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3.3.4 Multiplication: Product of block-encoded matrices

In general if we want to take the product of two block-encoded matrices we need
to treat their ancilla qubits separately. In this case, as the following lemma
shows, the errors simply add up and the block-encoding does not introduce any
additional errors.

3.3.10. Lemma (Product of block-encoded matrices). If U is an (α, a, δ)-block-
encoding of an s-qubit operator A, and V is an (β, b, ε)-block-encoding of an s-
qubit operator B then17 (Ib⊗U)(Ia⊗V ) is an (αβ, a+ b, αε+βδ)-block-encoding
of AB.

Proof:

∥∥∥AB − αβ(〈0|⊗a+b ⊗ I)(Ib ⊗ U)(Ia ⊗ V )(|0〉⊗a+b ⊗ I)
∥∥∥

=
∥∥∥AB − α(〈0|⊗a ⊗ I)U(|0〉⊗a ⊗ I)︸ ︷︷ ︸

Ã

β(〈0|⊗b ⊗ I)V (|0〉⊗b ⊗ I)︸ ︷︷ ︸
B̃

∥∥∥
=
∥∥∥AB − ÃB + ÃB − ÃB̃

∥∥∥
=
∥∥∥(A− Ã)B + Ã(B − B̃)

∥∥∥
≤
∥∥∥A− Ã∥∥∥β + α

∥∥∥B − B̃∥∥∥
≤αε+ βδ.

2

In the special case when the encoded matrices are unitaries and their block-
encoding does not use any extra scaling factor, then we might reuse the ancilla
qubits, however it introduces an extra error term, which can be bounded by the
geometrical mean of the two input error bounds.

3.3.11. Lemma (Product of two block-encoded unitaries). If U is an (1, a, δ)-
block-encoding of an s-qubit unitary operator A, and V is a (1, a, ε)-block-encoding
of an s-qubit unitary operator B then UV is a (1, a, δ+ ε+ 2

√
δε)-block-encoding

of the unitary operator AB.

Proof:
It is enough to show that for all s-qubit pure states |φ〉, |ψ〉 we have that∣∣〈φ|AB|ψ〉 − 〈φ|(〈0|⊗a ⊗ I)UV (|0〉⊗a ⊗ I)|ψ〉

∣∣ ≤ δ + ε+ 2
√
δε.

17The identity operators act on each other’s ancilla qubits, which is hard to express properly
using simple tensor notation, but the reader should read this tensor product this way.
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Observe that

〈φ|(〈0|⊗a ⊗ I)UV (|0〉⊗a ⊗ I)|ψ〉
=〈φ|(〈0|⊗a ⊗ I)U

(
(|0〉〈0|⊗a ⊗ I) +

((
I − |0〉〈0|⊗a

)
⊗ I
))
V (|0〉⊗a ⊗ I)|ψ〉

=〈φ|(〈0|⊗a ⊗ I)U(|0〉⊗a ⊗ I)(〈0|⊗a ⊗ I)V (|0〉⊗a ⊗ I)|ψ〉
+ 〈φ|(〈0|⊗a ⊗ I)U

((
I − |0〉〈0|⊗a

)
⊗ I
)
V (|0〉⊗a ⊗ I)|ψ〉

Now we can see that similarly to the proof of Lemma 3.3.10 we have∣∣〈φ|AB|ψ〉 − 〈φ|(〈0|⊗a ⊗ I)U(|0〉⊗a ⊗ I)(〈0|⊗a ⊗ I)V (|0〉⊗a ⊗ I)|ψ〉
∣∣

=
∣∣〈φ|(AB − (〈0|⊗a ⊗ I)U(|0〉⊗a ⊗ I)(〈0|⊗a ⊗ I)V (|0〉⊗a ⊗ I)

)
|ψ〉
∣∣

≤
∥∥AB − (〈0|⊗a ⊗ I)U(|0〉⊗a ⊗ I)(〈0|⊗a ⊗ I)V (|0〉⊗a ⊗ I)

∥∥
≤δ + ε.

Finally note that∣∣〈φ|(〈0|⊗a ⊗ I)U
((
I − |0〉〈0|⊗a

)
⊗ I
)
V (|0〉⊗a ⊗ I)|ψ〉

∣∣
=
∣∣∣〈φ|(〈0|⊗a ⊗ I)U

((
I − |0〉〈0|⊗a

)
⊗ I
)2
V (|0〉⊗a ⊗ I)|ψ〉

∣∣∣
≤
∥∥((I − |0〉〈0|⊗a)⊗ I)U(|0〉⊗a ⊗ I)|φ〉

∥∥ · ∥∥((I − |0〉〈0|⊗a)⊗ I)V (|0〉⊗a ⊗ I)|ψ〉
∥∥

=

√
1−
∥∥(|0〉〈0|⊗a ⊗ I)U(|0〉⊗a ⊗ I)|φ〉

∥∥2 ·
√

1−
∥∥(|0〉〈0|⊗a ⊗ I)V (|0〉⊗a ⊗ I)|ψ〉

∥∥2

≤
√

1− (1− δ)2 ·
√

1− (1− ε)2

≤2
√
δε.

2

The following corollary suggests that if we multiply together multiple block-
encoded unitaries, the error may grow super-linearly, but it increases at most
quadratically with the number of factors in the product.

3.3.12. Corollary (Product of multiple block-encoded unitaries). Suppose
that Uj is a (1, a, ε)-block-encoding of an s-qubit unitary operator Wj for all j ∈
[K]. Then

∏K
j=1 Uj is a (1, a, 4K2ε)-block-encoding of

∏K
j=1Wj.

Proof:
First observe that for the product of two matrices we get the precision bound 4ε
by the above lemma. If K = 2k for some k ∈ N. Then we can apply the above
observation in a recursive fashion in a binary tree structure, to get the upper
bound 4kε on the precision, and observe that 4k = K2.

If 2k−1 ≤ K < 2k, then we can just add identity operators so that we have 2k

matrices to multiply, giving the precision bound 4kε ≤ 41+log2Kε = 4K2ε. 2
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3.4 Implementing smooth functions of Hermitian
matrices

In the previous section we developed an efficient methodology to perform basic
matrix arithmetics, such as addition and multiplication. In principle all smooth
functions of matrices can be approximated arbitrarily precisely using such basic
arithmetic operations. In this section we show a more efficient way to transform
Hermitian matrices according to smooth functions using singular value transfor-
mation techniques. The key observation is that for a Hermitian matrix A we
have that P (SV )(A) = P (A), i.e., singular value transformation and eigenvalue
transformation coincide.

The following theorem is our improvement of Corollary 2.3.8 removing the
counter-intuitive parity constraint at the expense of a subnormalization factor
1/2, which is not a problem in most applications.

3.4.1. Theorem (Polynomial eigenvalue transformation of arbitrary parity).
Suppose that U is an (α, a, ε)-block-encoding of a Hermitian matrix A. If δ ≥ 0
and P< ∈ R[x] is a degree-d polynomial satisfying that

• for all x ∈ [−1, 1] : |P<(x)| ≤ 1
2
.

Then there is a quantum circuit Ũ , which is an (1, a+2, 4d
√
ε/α+δ)-encoding of

P<(A/α), and which consists of d applications of U and U † gates, a single appli-
cation of controlled-U and O((a+ 1)d) other one- and two-qubit gates. Moreover
we can compute a description of such a circuit with a classical computer in time
O(poly(d, log(1/δ))).

Proof:
First note that for a Hermitian matrix A and for any even/odd polynomial P ∈
C[x] we have that P (SV )(A) = P (A). Now let P (even)

< (x) := P<(x) + P<(−x) ≤ 1,
and let P (odd)

< (x) := P<(x)−P<(−x) ≤ 1. Then we can implement both P (even)
< (x)

and P (odd)
< (x) using Corollary 2.3.8 and we can take an equal 1

2
/1

2
linear combi-

nation of them by Lemma 2.4.3. Using the notation of Figure 2.2 the final circuit
is simply (H ⊗H ⊗ I)UΦ(c)(H ⊗H ⊗ I), where H denotes the Hadamard gate. 2

Note that a similar statement can be proven for arbitrary P ∈ C[x] that satisfy
|P (x)| ≤ 1

4
for all x ∈ [−1, 1]. The only difference is that for implementing the

complex part one needs to add a (controlled) phase ei
π
2 . The ≤ 1

4
constraint comes

from the fact that the implementation is a sum of 4 different terms (even/odd
component of the real/imaginary part).
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3.4.1 Optimal Hamiltonian simulation

Let us define for t ∈ R+ and ε ∈ (0, 1) the number r(t, ε) ≥ t as the unique
solution (in r) to the equation

ε =

(
t

r

)r
: r ∈ (t,∞). (3.14)

This equation is closely related to the Lambert-W function, and unfortunately
we cannot give the solution in terms of elementary functions. However, one can
see that the function

(
t
r

)r is strictly monotone decreasing for r ∈ [t,∞) and in
the limit r → ∞ it tends to 0. Since for r = t the function value is 1, the
equation (3.14) has a unique solution. In particular for any r, R ∈ [t,∞) such
that

(
t
r

)r ≥ ε ≥
(
t
R

)R we have that r ≤ r(t, ε) ≤ R. This is an important
expression for this section, since Low and Chuang proved [LC17b, LC16] that the
complexity of Hamiltonian simulation for time t with precision ε is Θ(r(|t|, ε)).

Low and Chuang also claimed [LC17b] that for all t ≥ 1 one gets r(t, ε) =

Θ
(
t+ log(1/ε)

log(log(1/ε))

)
, which led to their complexity statement. However, there is a

subtle issue in their calculations, and it turns out that this formula is invalid for
some range of values of t. We show in Lemma 3.4.4 how to correct the formula by
a slight modification of the log(log(1/ε)) term. This is the reason why we need
to give more complicated expressions for the complexity of block-Hamiltonian
simulation. First we show what is the connection between equation (3.14) and
the complexity of Hamiltonian simulation by constructing polynomials18 of degree
O(r(|t|, ε)), which ε-approximate trigonometric functions with t-times rescaled
argument.

3.4.2. Lemma (Polynomial approximations of the exponential function).
Let t ∈ R \ {0}, ε ∈ (0, 2

3
), and let R :=

⌊
r
(
e|t|, 3

2
ε
)⌋
, then the following degree-R

polynomial satisfies ∥∥∥∥∥eitx −
R∑
k=0

(itx)k

k!

∥∥∥∥∥
[−1,1]

≤ ε.

Proof:
For all x ∈ [−1, 1] and positive integer q ≥ |et|, by the Taylor series of eitx we get∣∣∣∣∣eitx −

q−1∑
k=0

(itx)k

k!

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=q

(itx)k

k!

∣∣∣∣∣ ≤
∞∑
k=q

|t|k

k!
≤ |t|

q

q!

∞∑
j=0

(
1

e

)j
<

8

5

|t|q

q!
. (3.15)

18By using the Jacobi-Anger expansion, one can achieve further constant improvements, as
shown in [GSLW19].
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By Stirling’s approximation for q ≥ 1 we have q! ≥
√

2πq
(
q
e

)q ≥ 5
2

(
q
e

)q, so
8

5

|t|q

q!
≤ 16

25

(
e|t|
q

)q
<

2

3

(
e|t|
q

)q
. (3.16)

If we choose q = R + 1 ≥ r
(
e|t|, 3

2
ε
)
, then q ≥ e|t|, so Eqs. (3.15)-(3.16) hold.

Moreover, we can upper bound the right-hand side of Eq. (3.16) by ε. 2

Now we are ready to reprove the optimal block-Hamiltonian simulation result
of Low and Chuang. The optimality is discussed in an earlier work of the same
authors [LC17b].

3.4.3. Theorem. (Optimal block-Hamiltonian simulation [LC16]) Let t ∈ R \
{0}, ε ∈ (0, 1) and let U be an (α, a, 0)-block-encoding of the Hamiltonian H.
Then we can implement an ε-precise Hamiltonian simulation unitary V which is
a (1, a+ 2, ε)-block-encoding of eitH , with 3r

(
eα|t|, ε

8

)
uses of U or its inverse, 3

uses of controlled-U or its inverse and with O
(
ar
(
eα|t|, ε

8

))
two-qubit gates and

using O(1) ancilla qubits.

Proof:
Use the polynomial of Lemma 3.4.2 to ε

12
-approximate eitx, and subnormalize it

by a factor (1 − ε
12

). Take the even (real) and the odd (imaginary) parts of the
resulting ε

6
-approximating polynomial, and combine them using the same method

as in Theorem 3.4.1 in order to get a (1, a+ 2, ε
6
)-block-encoding of eitH/2. Then

use robust oblivious amplitude amplification (Corollary 3.2.5) in order to get a
(1, a+ 2, ε)-block-encoding of eitH . 2

Now we prove some bounds on r(t, ε), in order to make the above result more
accessible.

3.4.4. Lemma (Bounds on r(t, ε)). For t ∈ R+ and ε ∈ (0, 1)

r(t, ε) = Θ

(
t+

ln(1/ε)

ln(e+ ln(1/ε)/t)

)
.

Moreover, for all q ∈ R+ we have that

r(t, ε) < eqt+
ln(1/ε)

q
.

Proof:
First consider the case t ≥ ln(1/ε)

e
and set r := et, then we get that

∀t ≥ ln(1/ε)

e
:

(
t

et

)et
=

(
1

e

)et
≤ ε =⇒ ∀t ≥ ln(1/ε)

e
: r(t, ε) ≤ et.

(3.17)
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Now we turn to the case t ≤ ln(1/ε)
e

, and try to find r = r(t, ε).(
t

r

)r
= ε ⇐⇒

(r
t

)r
t

=

(
1

ε

)1
t

⇐⇒ r

t
ln
(r
t

)
= ln

(
1

ε

)
1

t
.

(3.18)

Let us define x := r
t
≥ 1 and c := ln

(
1
ε

)
1
t
≥ e. We will examine the solution of the

equation x ln(x) = c for c ≥ e. The function x ln(x) is monotone increasing on
[1,∞), takes value 0 at 1, and in the x → ∞ limit it tends to infinity, therefore
the equation x ln(x) = c has a unique solution for all c ∈ R+. Moreover, if
b, B ∈ [1,∞) are such that b ln(b) ≤ c ≤ B ln(B), then b ≤ x ≤ B. Therefore we
can see that c

ln(c)
≤ x since

c

ln(c)
ln

(
c

ln(c)

)
=

c

ln(c)
(ln(c)− ln(ln(c))) = c

(
1− ln(ln(c))

ln(c)

)
≤ c.

By a similar argument we can see that x ≤ 5
3

e+c
log(e+c)

≤ 4c
log(e+c)

, since

5

3

e+ c

ln(e+ c)
ln

(
5

3

e+ c

ln(e+ c)

)
>

5

3

e+ c

ln(e+ c)
ln

(
e+ c

ln(e+ c)

)
=

5

3

e+ c

ln(e+ c)
(ln(e+ c)− ln(ln(e+ c)))

=
5

3
(e+ c)

(
1− ln(ln(e+ c))

ln(e+ c)

)
≥ 5

3
(e+ c)

(
1− 1

e

) (
∀y ∈ R+ : ln(y)

y
≤ 1

e

)
> e+ c

> c.

Thus for x ≥ 1, c ≥ e we get that the solution of the equation x log(x) = c
satisfies

c

log(e+ c)
≤ c

ln(c)
≤ x ≤ 4c

log(e+ c)
. (3.19)

Using x = r
t
⇒ r = tx and c = ln

(
1
ε

)
1
t
from (3.18)-(3.19) we get that

∀t ≤ ln(1/ε)

e
:

ln(1/ε)

ln(e+ ln(1/ε)/t)
≤ r(t, ε) ≤ 4 ln(1/ε)

ln(e+ ln(1/ε)/t)
. (3.20)

Combining (3.17) and (3.20) while observing t ≤ r(t, ε) and ln(1/ε)
ln(e+ln(1/ε)/t)

≤
ln(1/ε), we get that

∀ε ∈ (0, 1)∀t ∈ R+ : r(t, ε) = Θ

(
t+

ln(1/ε)

ln(e+ ln(1/ε)/t)

)
. (3.21)
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Finally note that for rq := eqt+ ln(1/ε)/q, then we get(
t

r1

)rq
≤
(
e−q
)rq ≤ e− ln(1/ε) = ε =⇒ r(t, ε) ≤ rq.

2

This enables us to conclude the complexity of block-Hamiltonian simulation.
Note that for t ≤ ε Hamiltonian simulation with ε-precision is trivial if ‖H‖ ≤ 1,
therefore we should assume that t = Ω(ε) in order to avoid this trivial situation.
Apart from this we can conclude the complexity of block-Hamiltonian simulation
for the entire range of interesting parameters.

3.4.5. Corollary (Complexity of block-Hamiltonian simulation). Let ε∈(0,1
2
),

t ∈ R and α ∈ R+. Let U be an (α, a, 0)-block-encoding of the unknown Hamil-
tonian H. In order to implement an ε-precise Hamiltonian simulation unitary V
which is an (1, a+2, ε)-block-encoding of eitH , it is necessary and sufficient to use
the unitary U a total number of times

Θ

(
α|t|+ log(1/ε)

log(e+ log(1/ε)/(α|t|))

)
.

Proof:
The upper bound follows from Theorem 3.4.3 and Lemma 3.4.4. The lower bound
follows from the argument laid out in [LC17b] using Lemma 3.4.4. 2

Note that the above corollary also covers the range t� 1, unlike the result of
Low and Chuang [LC16] who assumed t = Ω(1). Also note that this result does
not entirely match the complexity stated by Low and Chuang [LC17b, LC16]. For
example in the case t = log(1/ε)

log(log(1/ε))
the above corollary shows that the complexity

is Θ
(

log(1/ε)
log(log(log(1/ε)))

)
, whereas the expression of [LC17b, LC16] claims complexity

O
(

log(1/ε)
log(log(1/ε))

)
.

The following lemma of Chakraborty et al. [CGJ19, Appendix A] helps us to
understand error accumulation in Hamiltonian simulation, which enables us to
present a slightly improved claim in Theorem 3.4.7.

3.4.6. Lemma. Let H,H ′ ∈ Cn×n be Hermitian operators, then∥∥∥eiH − eiH′∥∥∥ ≤ ‖H −H ′‖.
Now we prove a robust version of Theorem 3.4.3 using Lemma 3.4.6, and also

substitute a simple expression of Lemma 3.4.4 bounding r(t, ε) in order to get
explicit constants.
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3.4.7. Corollary. (Robust block-Hamiltonian simulation) Let t ∈ R, ε ∈ (0, 1)
and let U be an (α, a, ε/|2t|)-block-encoding of the Hamiltonian H. Then we can
implement an ε-precise Hamiltonian simulation unitary V which is an (1, a+2, ε)-
block-encoding of eitH , with 10α|t|+15 log(16/ε) uses of U or its inverse, 3 uses of
controlled-U or its inverse, using O(a(α|t|+ log(2/ε))) two-qubit gates and using
O(1) ancilla qubits.

Proof:
Let H ′ = α(〈0|⊗a⊗I)U(|0〉⊗a⊗I), then ‖H ′ −H‖ ≤ ε/|2t|. By Theorem 3.4.3 we
can implement V , a (1, a+ 2, ε/2)-block-encoding of eitH′ , with 3r

(
eα|t|, ε

16

)
uses

of U or its inverse, 3 uses of controlled-U or its inverse and with O
(
ar
(
eα|t|, ε

16

))
two-qubit gates and using O(1) ancilla qubits. By Lemma 3.4.6 we get that V is
an (1, a + 2, ε)-block-encoding of eitH . Finally by Lemma 3.4.4 choosing q := 1

5

we get that

r
(
eα|t|, ε

16

)
≤ eqeα|t|+ ln(16/ε)

q
≤ 10

3
α|t|+ 5 ln(16/ε).

2

Finally, we prove a corollary about the complexity of controlled Hamiltonian
simulation which can be useful, for example if one wants to use phase estimation.

3.4.8. Corollary. Let T ≥ 2 be a power of 2, ε ∈ (0, 1) and α = Ω(1). Suppose
that U is an (α, a, ε/(8T log2

2(T )))-block-encoding of the Hamiltonian H. Then we
can implement a unitary V which is an (1, a+O(1), ε)-block-encoding of

T−1∑
t=0

|t〉〈t| ⊗ eitH ,

with O
(
αT + log(T ) log(1

ε
)
)
uses of (controlled) U , U † and O(a) times more two-

qubit gates. (Here t is assumed to be represented as a binary number.)

Proof:
Let T = 2θ, and observe that due to the binary representation19 t = tθ−1tθ−2 . . . t0

T−1∑
t=0

|t〉〈t| ⊗ eitH =
θ−1∏
τ=0

(
|0〉〈0|τ ⊗ I + |1〉〈1|τ ⊗ ei2

τH
)
.

We get the stated complexity by summing the complexities of implementing each
term with precision ε/(4 log2

2(T )) in the above product, using Corollary 3.4.7, and
then combining the implementations using Corollary 3.3.12. 2

19In the equation below for simplicity we omit the tensor factors of all but the relevant qubits
in the binary expansion of t. Thereby there are “hidden” identity factors in the formula.
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3.4.2 Bounded polynomial approximations of piecewise
smooth functions

We begin by invoking a slightly surprising result showing how to efficiently ap-
proximate monomials on the interval [−1, 1] with essentially quadratically smaller
degree polynomials than the monomial itself. The following theorem can be found
in the survey of Sachdeva and Vishnoi [SV14, Theorem 3.3].

3.4.9. Theorem (Efficient approximation of monomials on [−1,1]). For any pos-
itive integers s and d, there exists an efficiently computable degree-d polynomial
Ps,d ∈ R[x] that satisfies

‖Ps,d(x)− xs‖[−1,1] ≤ 2e−d
2/(2s).

If one wants to approximate smooth functions on the entire [−1, 1] interval
this result gives essentially quadratic savings. For example one can easily derive
Corollary 3.4.10 using the above result, as shown in [SV14].

3.4.10. Corollary (Polynomial approximations of the exponential function).
Let β ∈ R+ and ε ∈ (0, 1

2
]. There exists an efficiently constructable polynomial

P ∈ R[x] such that ∥∥e−β(x+1) − P (x)
∥∥

[−1,1]
≤ ε,

and the degree of P is O
(√

max
[
β, log(1

ε
)
]

log(1
ε
)
)
.

However, we often want to implement functions that are smooth only on some
compact subset of C ⊆ [−1, 1], which requires different techniques. The main
difficulty is to achieve a good approximation on C, while keeping the norm of the
approximating polynomial bounded on the whole [−1, 1] interval. We overcome
this difficulty by using Fourier approximations on C, which give rise to bounded
functions naturally. Later we convert these Fourier series to a polynomial using
Lemma 3.4.2 from the previous subsection.

Now we prove a useful technical result of [vAGGdW17, Lemma 37] about
approximating smooth functions by low-weight Fourier series. By low weight we
mean that the 1-norm of the coefficients is small. A notable property of the
following result is that the bound on the sum of Fourier coefficients does not
depend on the degrees of the polynomial terms. This can however be expected
since the terms that have large degree make negligible contribution due to the
restricted domain x ∈ [−1 + δ, 1 − δ], and therefore we can drop them without
loss of generality.

3.4.11. Lemma (Low-weight approximation by Fourier series). Let δ, ε ∈ (0, 1)

and f : R → C s.t.
∣∣∣f(x)−

∑K
k=0 akx

k
∣∣∣ ≤ ε/4 for all x ∈ [−1 + δ, 1 − δ]. Then
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∃ c ∈ C2M+1 such that ∣∣∣∣∣f(x)−
M∑

m=−M

cme
iπm
2
x

∣∣∣∣∣ ≤ ε

for all x ∈ [−1 + δ, 1 − δ], where M = max
(

2
⌈
ln
(

4‖a‖1
ε

)
1
δ

⌉
, 0
)

and ‖c‖1 ≤
‖a‖1. Moreover c can be efficiently calculated on a classical computer in time
poly(K,M, log(1/ε)).

Proof:
Let us introduce the notation ‖f‖∞ := sup{|f(x)| : x ∈ [−1 + δ, 1 − δ]}. First
we consider the case when ‖a‖1 < ε/2. Then ‖f‖∞ ≤

∥∥∥f(x)−
∑K

k=0 akx
k
∥∥∥
∞

+∥∥∥∑K
k=0 akx

k
∥∥∥
∞
< ε/4 + ε/2 < ε. So in this case the statement holds with M = 0

and c = 0, i.e., even with an empty sum.
From now on we assume ‖a‖1 ≥ ε/2. We are going to build up our approx-

imation gradually. Our first approximate function f̃1(x) :=
∑K

k=0 akx
k satisfies∥∥∥f − f̃1

∥∥∥
∞
≤ ε/4 by assumption. In order to construct a Fourier series, we will

work towards a linear combination of sines. To that end, note that ∀x ∈ [−1, 1]:

f̃1(x) =
∑K

k=0 ak

(
arcsin(sin(xπ/2))

π/2

)k
. Let b(k) denote the series of coefficients such

that
(

arcsin(y)
π/2

)k
=
∑∞

`=0 b
(k)
` y` for all y ∈ [−1, 1]. For k = 1 the coefficients are

just 2
π
times the coefficients of the Taylor series of arcsin so we know that b(1)

2` = 0

while b(1)
2`+1 =

(
2`
`

)
2−2`

2`+1
2
π
. Since

(
arcsin(y)
π/2

)k+1

=
(

arcsin(y)
π/2

)k(∑∞
`=0 b

(1)
` y`

)
, we obtain

the formula b
(k+1)
` =

∑`
`′=0 b

(k)
`′ b

(1)
`−`′ , so one can recursively calculate each b(k).

As b(1) ≥ 0 one can use the above identity inductively to show that b(k) ≥ 0.

Therefore
∥∥b(k)

∥∥
1

=
∑∞

`=0 b
(k)
` 1` =

(
arcsin(1)
π/2

)k
= 1. Using the above definitions

and observations we can rewrite

∀x ∈ [−1, 1] : f̃1(x) =
K∑
k=0

ak

∞∑
`=0

b
(k)
` sin`(xπ/2).

To obtain the second approximation function, we want to truncate the summation
over ` at L = ln

(
4‖a‖1
ε

)
1
δ2

in the above formula. We first estimate the tail of the
sum. We are going to use that for all δ ∈ [0, 1]: sin((1− δ)π/2) ≤ 1− δ2. For all
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k ∈ N and x ∈ [−1 + δ, 1− δ] we have:∣∣∣∣∣∣
∞∑

`=dLe

b
(k)
` sin`(xπ/2)

∣∣∣∣∣∣ ≤
∞∑

`=dLe

b
(k)
`

∣∣sin`(xπ/2)
∣∣

≤
∞∑

`=dLe

b
(k)
`

∣∣1− δ2
∣∣`

≤
(
1− δ2

)L ∞∑
`=dLe

b
(k)
`

≤
(
1− δ2

)L
≤ e−δ

2L

=
ε

4‖a‖1

.

Thus we have
∥∥∥f̃1 − f̃2

∥∥∥
∞
≤ ε/4 for

f̃2(x) :=
K∑
k=0

ak

bLc∑
`=0

b
(k)
` sin`(xπ/2).

To obtain our third approximation function, we will approximate sin`(xπ/2).
First observe that

sin`(z) =

(
e−iz − eiz

−2i

)̀
=

(
i

2

)̀ ∑̀
m=0

(−1)m
(
`

m

)
eiz(2m−`) (3.22)

which, as we will show (for M ′ much larger than
√
`) is very well approximated

by (
i

2

)̀ b`/2c+M ′∑
m=d`/2e−M ′

(−1)m
(
`

m

)
eiz(2m−`).

Truncating the summation in (3.22) based on this approximation reduces the
maximal time evolution parameter (i.e., the maximal value of the parameter t
in the exp(izt) terms) quadratically. To make this approximation precise, we
use Chernoff’s inequality [AS08, A.1.7] for the binomial distribution, or more
precisely its corollary for sums of binomial coefficients, stating

∑̀
m=d`/2+M ′e

2−`
(
`

m

)
≤ e−

2(M′)2
` .
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Let M ′ =
⌈
ln
(

4‖a‖1
ε

)
1
δ

⌉
and suppose ` ≤ L, then this bound implies that

b`/2c−M ′∑
m=0

2−`
(
`

m

)
=

∑̀
m=d`/2e+M ′

2−`
(
`

m

)
≤ e−

2(M′)2
` ≤ e−

2(M′)2
L ≤

(
ε

4‖a‖1

)2

≤ ε

4‖a‖1

,

(3.23)
where for the last inequality we use the assumption ε ≤ 2‖a‖1. By combin-
ing (3.22) and (3.23) we get that for all ` ≤ L∥∥∥∥∥∥sin`(z)−

(
i

2

)̀ b`/2c+M ′∑
m=d`/2e−M ′

(−1)m
(
`

m

)
eiz(2m−`)

∥∥∥∥∥∥
∞

≤ ε

2‖a‖1

.

Substituting z = xπ/2 into this bound we can see that
∥∥∥f̃2 − f̃3

∥∥∥
∞
≤ ε/2, for

f̃3(x) :=
K∑
k=0

ak

bLc∑
`=0

b
(k)
`

(
i

2

)` b`/2c+M ′∑
m=d`/2e−M ′

(−1)m
(
`

m

)
e
iπx
2

(2m−`), (3.24)

using
∑K

k=0 |ak|
∑bLc

`=0

∣∣∣b(k)
`

∣∣∣ ≤ ∑K
k=0 |ak| = ‖a‖1. Therefore we can conclude that

f̃3 is an ε-approximation to f :∥∥∥f − f̃3

∥∥∥
∞
≤
∥∥∥f − f̃1

∥∥∥
∞

+
∥∥∥f̃1 − f̃2

∥∥∥
∞

+
∥∥∥f̃2 − f̃3

∥∥∥
∞
≤ ε.

Observe that in (3.24) the largest value of |m − `| in the exponent is upper
bounded by 2M ′ = M . So by rearranging the terms in f̃3 we can write f̃3(x) =∑M

m=−M cme
iπm
2
x. Now let us fix a value k in the first summation of (3.24). Ob-

serve that after taking the absolute value of each term, the last two summations
still yield a value ≤ 1, since

∥∥b(k)
∥∥

1
= 1 and

∑`
m=0

(
`
m

)
= 2`. It follows that

‖c‖1 ≤ ‖a‖1. From the construction of the proof, it is easy to see that (an ε-
approximation of) c can be calculated in time poly(K,M, log(1/ε)). 2

Note that the above result can also be used to implement smooth func-
tions of a Hamiltonian H, based on Fourier series decompositions via the Lin-
ear Combinations of Unitaries (LCU) Lemma [BCK15] as shown by van Apel-
doorn et al. [vAGGdW17, Appendix B]. Accordingly the techniques developed
in [vAGGdW17, Appendix B] access H only through controlled-Hamiltonian sim-
ulation. If we are given a block-encoding of H, then the simulation step can be
omitted, and using a polynomial approximation of the function we can use sin-
gular value transformation techniques to directly implement the required trans-
formation. However, a very recent result by Low [Low18] suggests that in some
cases the controlled Hamiltonian simulation subroutine might be more efficient
than converting the entire Hamiltonian to a block-encoding.
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Our main idea here is to combine the above result with the polynomial ap-
proximation of the exponential function as in Lemma 3.4.2. The low weights are
useful because they let us reduce the precision required for approximating the
Fourier terms.

3.4.12. Corollary (Taylor series based bounded polynomial approximations).
Let x0 ∈ [−1, 1], r ∈ (0, 2], δ ∈ (0, r] and let f : [−x0 − r − δ, x0 + r + δ] → C
and be such that f(x0 + x) =

∑∞
`=0 a`x

` for all x ∈ [−r− δ, r+ δ]. Suppose B > 0
is such that

∑∞
`=0(r + δ)`|a`| ≤ B. Let ε ∈

(
0, 1

2B

]
, then there is an efficiently

computable polynomial P ∈ C[x] of degree O
(

1
δ

log
(
B
ε

))
such that

‖f(x)− P (x)‖[x0−r,x0+r] ≤ ε (3.25)

‖P (x)‖[−1,1] ≤ ε+ ‖f(x)‖[x0−r−δ/2,x0+r+δ/2] ≤ ε+B (3.26)

‖P (x)‖[−1,1]\[x0−r−δ/2,x0+r+δ/2] ≤ ε. (3.27)

Proof:
We proceed similarly to the proof of [vAGGdW17, Theorem 40]. Let L(x) := x−x0

r+δ

be the linear transformation taking [x0− r− δ, x0 + r+ δ] to [−1, 1]. Let g(y) :=
f(L−1(y)), and b` := a`(r + δ)` such that g(y) =

∑∞
`=0 b`y

`. Let δ′ := δ
2(r+δ)

and
let J =

⌈
1
δ′

log(12B
ε

)
⌉
, then for all y ∈ [−1, 1] we have that∣∣∣∣∣g(y)−

J−1∑
j=0

bjy
j

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
j=J

bjy
j

∣∣∣∣∣ ≤
∞∑
j=J

∣∣bj(1− δ′)j∣∣ ≤ (1− δ′)J
∞∑
j=J

|bj|

≤ (1− δ′)JB ≤ e−δ
′JB ≤ ε

12
.

Now we construct a Fourier-approximation of g for all y ∈ [−1 + δ′, 1− δ′], with
precision ε

3
. Let b′ := (b0, b1, . . . , bJ−1) and observe that ‖b′‖1 ≤ ‖b‖1 ≤ B.

We apply Lemma 3.4.11 to the function g, using the polynomial approximation
corresponding to the truncation to the first J terms, i.e., using the coefficients in
b′. Then we obtain a Fourier ε

3
-approximation g̃(y) :=

∑M
m=−M c̃me

iπm
2
y of g, with

M = O
(

1

δ′
log

(
‖b′‖1

ε′

))
= O

(
r

δ
log

(
B

ε

))
,

such that the vector of coefficients c̃ ∈ C2M+1 satisfies ‖c̃‖1 ≤ ‖b′‖1 ≤ ‖b‖1 ≤ B.
Let

f̃(x) := g̃(L(x)) = g̃

(
x− x0

r + δ

)
=

M∑
m=−M

c̃me
iπm

2(r+δ)
(x−x0) =

M∑
m=−M

c̃me
− iπm

2(r+δ)
x0e

iπm
2(r+δ)

x.

Since g(y) = f(L−1(y)) we have that f(x) = g(L(x)) thus we can see that f̃ is
an ε

3
-precise Fourier approximation of f on the interval [x0 − r − δ

2
, x0 + r + δ

2
].
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Now we define P̃ as the polynomial that we get by replacing each of the Fourier
terms e

iπm
2(r+δ)

x by ε
3B

-approximating polynomials given by Lemma 3.4.2. Using a
tiny rescaling we can assure that the polynomial approximations of e

iπm
2(r+δ)

x have
absolute value at most 1 on [−1, 1]. Moreover by Lemma 3.4.4 we know that the
degree of these polynomials are O

(
M
r+δ

+ log
(
B
ε

))
= O

(
1
δ

log
(
B
ε

))
. Since ‖c̃‖ ≤ B,

we get that the absolute value of the polynomial P̃ is bounded by B on the interval
[−1, 1]. Finally we define P as the product of P̃ and an approximation polynomial
of the rectangle function that is ε

3B
-close to 1 on the interval [x0 − r, x0 + r], and

is ε
3B

-close to 0 on the interval [−1, 1] \ [x0 − r − δ
2
, x0 + r + δ

2
], finally which is

bounded by 1 on the interval [−1, 1] in absolute value. By Lemma 3.2.6 we can
construct such a polynomial of degree O

(
1
δ

log
(
B
ε

))
. As we can see P has degree

O
(

1
δ

log
(
B
ε

))
, and by construction satisfies the properties (3.25)-(3.27). 2

Combining this polynomial approximation result with Theorem 3.4.1 we can
efficiently implement smooth functions of Hermitian matrices. As an application,
motivated by the work of Chakraborty et al. [CGJ19] we show how to construct
low-degree polynomial approximations of power functions.

3.4.13. Corollary (Polynomial approximations of negative power functions).
Let δ, ε ∈ (0, 1

2
], c > 0 and let f(x) := δc

2
x−c, then there exist even/odd poly-

nomials P, P ′ ∈ R[x], such that ‖P − f‖[δ,1] ≤ ε, ‖P‖[−1,1] ≤ 1 and similarly
‖P ′ − f‖[δ,1] ≤ ε, ‖P ′‖[−1,1] ≤ 1, moreover the degrees of the polynomials are

O
(

max[1,c]
δ

log
(

1
ε

))
.

Proof:
First note that for all y ∈ (−1, 1) we have that (1 + y)−c =

∑∞
k=0

(−c
k

)
yk. We

first find a polynomial P̃ ∈ C[x] such that
∥∥∥P̃ − f∥∥∥

[δ,1]
≤ ε

2
,
∥∥∥P̃∥∥∥

[−1,0]
≤ ε

2
and∥∥∥P̃∥∥∥

[−1,1]
≤ 1. We construct such a polynomial of degree O

(
max[1,c]

δ
log
(

1
ε

))
using

Corollary 3.4.12, with x0 := 1, r := 1− δ, δ′ := δ
2 max[1,c]

and B := 1. The choice
of B is justified by the observation that

δc

2

∞∑
k=0

∣∣∣∣(−ck
)∣∣∣∣(r + δ′)k =

δc

2

∞∑
k=0

(
−c
k

)
(−r − δ′)k =

δc

2
(1− r − δ′)−c

=
δc

2
(δ − δ′)−c =

1

2

(
1− δ′

δ

)−c
=

1

2

(
1− 1

2 max[1, c]

)−c
≤ 1.

Finally, we define P as the even real part of P̃ , and define P ′ as the odd real part
of P̃ . 2

Given a (1, a, 0)-block-encoding of A, with the promise that the spectrum of
A lies in [δ, 1], using the above polynomials and Theorem 3.4.1 we can implement
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a (1, a + 2, ε)-block-encoding of δc

2
A−c with O

(
max[1,c]

δ
log
(

1
ε

))
uses of the block-

encoding of A. Since the derivative of the function δc

2
x−c at x = δ is − c

2δ
, we get

by Theorem 3.5.1 that the δ and c dependence of the complexity of this procedure
is optimal.

Similarly to the case of negative powers we can also construct polynomials
approximating positive power functions. We only show how to do this for ex-
ponents which are at most 1, since if we have some exponent c we can always
take the fractional part c − bcc, approximate the corresponding power function,
and multiply with the monomial xbcc to get a polynomial approximation of the
original power function xc.

3.4.14. Corollary (Polynomial approximations of positive power functions).
Let δ, ε ∈ (0, 1

2
], c ∈ (0, 1] and let f(x) := 1

2
xc, then there exist even/odd poly-

nomials P, P ′ ∈ R[x], such that ‖P − f‖[δ,1] ≤ ε, ‖P‖[−1,1] ≤ 1 and similarly
‖P ′ − f‖[δ,1] ≤ ε, ‖P ′‖[−1,1] ≤ 1, moreover the degree of the polynomials are
O
(

1
δ

log
(

1
ε

))
.

Proof:
First note that for all y ∈ [−1, 1] we have that (1 + y)c =

∑∞
k=0

(
c
k

)
yk. We

first find a polynomial P̃ ∈ C[x] such that
∥∥∥P̃ − f∥∥∥

[δ,1]
≤ ε

2
,
∥∥∥P̃∥∥∥

[−1,0]
≤ ε

2
and∥∥∥P̃∥∥∥

[−1,1]
≤ 1. We construct such a polynomial of degree O

(
1
δ

log
(

1
ε

))
using

Corollary 3.4.12, with choosing x0 := 1, r := 1 − δ, δ′ := δ
2
and B := 1. The

choice of B is justified by the observation that

1

2

∞∑
k=0

∣∣∣∣(ck
)∣∣∣∣(r + δ)k =

1

2

∞∑
k=0

∣∣∣∣(ck
)∣∣∣∣ =

1

2
− 1

2

∞∑
k=1

(
c

k

)
(−1)k

= 1−
∞∑
k=0

(
c

k

)
(−1)k = 1− f(1− 1) = 1.

Finally, we define P as the even real part of P̃ , and define P ′ as the odd real part
of P̃ . 2

Finally we develop a theorem that is analogous to [vAGGdW17, Corollary 42],
and shows that any function that has quickly converging local Taylor series, can
be approximated with polynomials whose degree scales logarithmically with the
required precision. This result is useful when the function is piecewise smooth,
but does not have a single Taylor series covering the whole region of interest.

3.4.15. Theorem (Bounded polynomial approximation: multiple Taylor series).
Let J ∈ N, (xj, rj, δj) ∈ [−1, 1]×(0, 2]×(0, 1], such that (xj : j ∈ [J ]) is monotone
increasing, and δj ≤ rj for all j ∈ [J ]. Let I :=

⋃
j∈[J ][xj − rj, xj + rj] be the
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union of the intervals [xj − rj, xj + rj], and suppose that for all i < j ∈ [J ] such
that j − i ≥ 2 we have that rj + rj < xj − xj. Let

δ = min

[
min
j∈[J ]

δj, min
j∈[J−1]

|xj+1 − xj − (rj+1 + rj)|
]
.

Let f : I + [− δ
2
, δ

2
]→ C, B ∈ R+ be such that for all j ∈ [J ] we have f(xj + x) =∑∞

k=0 a
(j)
k xk for all x ∈ [xj − rj − δj

2
, xj + rj +

δj
2

] and
∑∞

k=0(rj + δj)
k|a(j)

k | ≤ B.
Let ε ∈

(
0, 1

2BJ

]
, then there is an efficiently computable polynomial P ∈ C[x] of

degree O
(
J
δ

log
(
BJ
ε

))
such that

‖f(x)− P (x)‖I ≤ ε

‖P (x)‖[−1,1] ≤ ‖f(x)‖I+[−δ/2,δ/2]

‖P (x)‖[−1,1]\(I+[−δ/2,δ/2]) ≤ ε.

Proof:
Use Corollary 3.4.12 to construct polynomials fj : j ∈ [J ] of degree O

(
1
δ

log
(
BJ
ε

))
such that

‖f(x)− fj(x)‖[xj−rj ,xj+rj ] ≤
ε

4J
‖fj(x)‖[−1,1] ≤ ‖f(x)‖I+[−δ/2,δ/2]

‖fj(x)‖[−1,1]\([xj−rj ,xj+rj ]+[−δ/2,δ/2]) ≤ ε.

Let us introduce a notation for the union of the intervals [xi − ri, xi + ri] as

I[j,k] :=
⋃

i∈{j,j+1,...,k}

[xi − ri, xi + ri].

We show inductively how to construct polynomials f[j,k] of degreeO
(
k−j+1
δ

log
(
BJ
ε

))
such that ∥∥f(x)− f[j,k](x)

∥∥
I[j,k]
≤ 2(k − j + 1)ε

2J
(3.28)∥∥f[j,k](x)

∥∥
[−1,1]

≤ ‖f(x)‖I+[−δ/2,δ/2] (3.29)∥∥f[j,k](x)
∥∥

[−1,1]\(I[j,k]+[−δ/2,δ/2]) ≤ ε. (3.30)

We already showed how to construct f[j,j] := fj : j ∈ [J ]. Suppose that we
already constructed f[1,j], then we construct f[1,j+1] as follows. We take a poly-
nomial S(x) of degree O

(
1
δ

log
(
BJ
ε

))
that approximates the shifted sign function

s.t.
∥∥S(x)− sign

(
x− xi+xj

2

)∥∥
[−1,1]\

[
xi+xj−δ

2
,
xi+xj+δ

2

] ≤ ε
8BJ

, moreover ‖S‖[−1,1] ≤ 1.

Then we define f[1,j+1] := 1−S(x)
2

f[1,j] + 1+S(x)
2

f[j+1,j+1]. It satisfies (3.29)-(3.30),
since f[1,j+1] is a point-wise convex combination of f[1,j] and f[j+1,j+1]. Similarly
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(3.28) is also easy to verify. Therefore by induction we can finally construct
P := f[1,J ], which satisfies (3.28)-(3.30) and therefore also the requirements of the
theorem.20 2

A direct corollary of this theorem is for example that for all ε ∈ (0, 1
2
] the

function δ
x
can be ε-approximated on the domain [−1, 1] \ [−δ, δ] with a polyno-

mial of degree O
(

1
δ

log
(

1
ε

))
. Although this also follows from Corollary 3.4.13, we

prove it directly using Theorem 3.4.15, in order to illustrate the versatility of this
Theorem 3.4.15.

3.4.16. Corollary (Polynomial approximations of 1
x
). Let ε, δ ∈ (0, 1

2
], then

there is an odd polynomial P ∈ R[x] of degree O
(

1
δ

log
(

1
ε

))
that is ε-approximating

f(x) = 3
4
δ
x
on the domain I = [−1, 1] \ [−δ, δ], moreover it is bounded by 1 in

absolute value.

Proof:
Take J := 2, (x1 := −1, r1 := 1−δ, δ1 := δ

2
), (x2 := 1, r2 := 1−δ, δ2 := δ

2
) and B =

1 in Theorem 3.4.15, observing that f(1 + x) = 3δ
4

∑∞
k=0−(1)kxk = −f(−1 + x).

Define P as the odd real part of the polynomial given by Theorem 3.4.15. 2

3.4.3 Applications: fractional queries and Gibbs-sampling

Scott Aaronson listed as one of “The ten most annoying questions in quantum
computing” [Aar06] the following problem: given a unitary U , can we implement√
U? This was positively answered by Sheridan et al. [SMM09]. We show how to

improve the complexity of the result of Sheridan et al. exponentially in terms of
the error dependence. We proceed following ideas of Low and Chuang [LC17a].

Suppose that we have access to a unitary U = eiH , where H is a Hamiltonian
of norm at most 1

2
. Low and Chuang [LC17a] showed how to get a (1, 2, ε)-

block-encoding of H with O
(
log
(

1
ε

))
uses of U . We reprove this result; our proof

becomes quite simple thanks to Corollary 3.4.12.

3.4.17. Lemma (Central polynomial approximations of the function arcsin(x)).
For all δ, ε ∈ (0, 1

2
] there is an efficiently computable odd real polynomial P ∈ R[x]

of degree at most
⌈

1
δ

ln
(

1
ε

)⌉
such that ‖P‖[−1,1] ≤ 1 and∥∥∥∥P (x)− 2

π
arcsin(x)

∥∥∥∥
[−1+δ,1−δ]

≤ ε.

20Note that this approach could be further improved to produce an approximating polynomial
of degree O

(
log(J)
δ log

(
B log(J)

ε

))
by combining the polynomial approximations on the different

intervals in a binary tree structure. Since J = O
(

1
δ

)
, we have log(J) = log

(
1
δ

)
and then this

gives at most a logarithmic overhead.
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Proof:
Observe that 2

π
arcsin(x) =

∑∞
`=0

(
2`
`

)
2−2`

2`+1
2
π
x2`+1 for all x ∈ [−1, 1]. Therefore

we also have
∑∞

`=0

∣∣∣(2`
`

)
2−2`

2`+1
2
π

∣∣∣ = 2
π

arcsin(1) = 1. Thus for K =
⌈

1
δ

ln
(

1
ε

)⌉
the

truncated series P (x) :=
∑K

`=0

(
2`
`

)
2−2`

2`+1
2
π
x2`+1 is an approximating polynomial

satisfying all the requirements. 2

3.4.18. Corollary (Implementing the logarithm of unitaries). Suppose that
U = eiH , where H is a Hamiltonian of norm at most π

2
−δ for some δ ∈(0, 1). Let

ε ∈ (0, 1
2
], then we can implement a (π

2
, 2, ε)-block-encoding of H with

⌈
8
δ2

ln
(

1
ε

)⌉
uses of controlled-U and its inverse, using O

(
1
δ2

log
(

1
ε

))
two-qubit gates and using

a single ancilla qubit.

Proof:
Let cU denote the controlled version of U controlled by the first qubit. Then

sin(H) = −i(〈+| ⊗ I)cU †(ZX ⊗ I)cU(|+〉 ⊗ I).

Now we apply singular value transformation (Corollary 2.3.8) using an ε-app-
roximating polynomial of 2

π
arcsin(x) on the domain [−1 + δ2

4
, 1− δ2

4
]. 2

Combining the above result with block-Hamiltonian simulation Corollary 3.4.7
we can implement fractional queries of unitaries with complexity O

(
log2

(
1
ε

))
. As

we show in the following corollary this complexity can be reduced toO
(
log
(

1
ε

))
by

directly implementing21 Hamiltonian simulation using a block-encoding of sin(H)
rather than H.

3.4.19. Corollary (Implementing fractional queries). Suppose that U = eiH ,
where H is a Hamiltonian of norm at most 1. Let ε ∈ (0, 1

2
] and t ∈ [−1, 1],

then we can implement an ε-approximation of U t = eitH with O
(
log
(

1
ε

))
uses

of controlled-U and its inverse, using O
(
log
(

1
ε

))
two-qubit gates and using O(1)

ancilla qubits.

Proof:
As we have shown in the proof of Corollary 3.4.18, one can implement a block-
encoding of sin(H) with a constant number of queries to U . Let us look at the Tay-
lor series of eit arcsin(x). One can see that the 1-norm of the coefficients of the Taylor
series of t arcsin(x) is |t| arcsin(1) = |t|π

2
. Therefore, for t ∈ [− 2

π
, 2
π
] we get that

the 1-norm of the Taylor series of eit arcsin(x) is at most e1 = e. Thereby, using The-
orem 3.4.15 we can construct polynomial O(ε)-approximations of sin(t arcsin(x))

21The method we describe uses the block-encoding formalism, but in fact one could implement
it more directly using a Fourier series based approach similarly to the one used for Hamiltonian
simulation by Low and Chuang [LC17b].
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and cos(t arcsin(x)) on the interval [sin(−1), sin(1)] of degree O
(
log
(

1
ε

))
, which

are bounded by 1 in absolute value on the interval [−1, 1]. We can combine
these polynomials in a similar way as in the proof of Theorem 3.4.3. This way
we can implement an ε-approximation of U t for all t ∈ [− 2

π
, 2
π
] with complexity

O
(
log
(

1
ε

))
. Implementing U t for all t ∈ [−1, 1] can be achieved by implementing

U
t
2 twice and taking their product. 2

Note that in the above corollary it is not essential that ‖H‖ ≤ 1. If we would
be promised that all eigenvalues lie in say the interval [1, 3], that would be fine as
well. We could just use the procedure of the corollary but applied to the unitary
e−2iU , and multiply the resulting unitary with e2it. Pushing this observation even
further, the above technique can be combined with an initial phase estimation
in order to implement fractional queries under the weaker promise ‖H‖ ≤ π −
δ. It suffices to perform a δ-precise phase estimation with success probability
1 − poly(ε), then use the approximate knowledge of the eigenvalues of H to
implement fractional queries using Corollary 3.4.19 and finally undo the initial
phase estimation. This leads to complexity O

(
1
δ

log
(

1
ε

))
, which exponentially

improves the complexity O
(
max[1

δ
, 1
ε
] log

(
1
ε

))
of Sheridan et al. [SMM09] in the

case of δ = Θ(1). We note that Sheridan et al. [SMM09] also proved a lower
bound on this problem, which shows that the δ-dependence of this algorithm is
actually optimal. We believe that the log(1

ε
) dependence in the runtime is also

necessary, therefore this algorithm is probably fairly close to optimal.
After implementing a fractional query, assuming that ‖H‖ ≤ 1 is satisfied,

one can use Corollary 3.4.19 to implement the logarithm of the unitary. Also
note the gap promise on the spectrum of U is necessary for implementing the
fractional queries, but it is not important that the gap is exactly at eiπ, one can
for example just add a phase gate to U in order to rotate the spectrum.

Gibbs-sampling. Here we describe how these techniques can be used for Gibbs-
sampling. If one first prepares a maximally entangled state on two registers and
applies the map e−

β
2

(H+I) on the first register, then one gets a subnormalized
Gibbs state e−β(H+I) on the first register. Then, using (fixed-point) amplitude
amplification one gets a purification of a Gibbs state. Each of these steps can be
compactly performed using singular value transformation techniques, providing
an efficient implementation.

An ε-approximation of the map e−
β
2

(H+I) can be implemented using Theo-
rem 3.4.1 and Corollary 3.4.10 with query complexity O

(√
β log (1/ε)

)
, and it

suffices to use O
(√

n
Z

)
amplitude amplification steps in order to prepare the

Gibbs state with constant success probability, where n is the dimension of H and
Z := Tr

[
e−β(H+I)

]
is the partition function. In the case when H does not have an

eigenvalue close to −1, but say λmin is the smallest eigenvalue, then one should im-
plement an approximation of e−β(H−λminI) on the domain [λmin, 1] in order to avoid
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unnecessary subnormalization, ensuring that Z ′ := Tr
[
e−β(H−λminI)

]
= Ω(1).

However note, that this restricted domain in general increases the complexity
and yields a linear dependence on β.

Now we derive our Gibbs-sampler with worst-case guarantees, having cost pro-
portional to

√
n. The following lemma is our first step, showing how to efficiently

implement the function e−βH for a block-encoding of 0 � H � I.

3.4.20. Lemma. Let β > 0, and ε ∈ (0, 1/40). There is polynomial P of degree
O((1 + β) log(1/ε)) such that ‖P (x)‖[−1,1] ≤ 1/2 and∥∥P (x)− e−βx/e

∥∥
[0,1]
≤ ε.

Proof:
We apply Corollary 3.4.12 to the function f(x) = e−βx/e, with setting x0 = 1,
r = 1, δ = min{1, 1

4β
} and B = 19

40
. Since

f(1 + x) = e−β(1+x)/e = e−β−1e−βx = e−β−1

∞∑
k=0

(βx)n

n!

the choice of B is justified by

B =
19

40
≥ e−3/4 = e−β−1eβ+1/4 = e−β−1

∞∑
k=0

(β(1 + 1/(4β)))n

n!
.

2

Now we show how to use the above polynomial in quantum singular value
transformation followed by (fixed-point) amplitude amplification to prepare a
Gibbs state with cost depending logarithmically on the precision parameter. To
our knowledge no prior Gibbs-sampler achieved logarithmic dependence on the
precision parameter without assuming access to the entries of

√
H as in [CS17].

This can yield a significant reduction in the complexity for SDP-solving; for more
details see Chapter 6.

3.4.21. Theorem. Let ε ∈ (0, 1/2), β = Ω(1) and suppose that U is an a-qubit
block-encoding of the Hamiltonian H ∈ Cn×n. Then we can prepare a pure state
on two registers, so that tracing out the first register yields a density operator
ε-close to the Gibbs state e−βH/Tr

[
e−βH

]
in trace distance, with

O
(
β
√
n log3

(n
ε

))
uses of (controlled) U , U † and O(a) times more two-qubit gates.
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Proof:
First we show how to prepare a purified sub-normalized Gibbs state. Then we use
(fixed-point) amplitude amplification to “postselect” on this sub-normalized state
in a similar fashion as in Algorithm 3.1. There is a possible caveat here: if we
postselect on a state with norm q, then it gets rescaled by 1/q and its preparation
error is rescaled by 1/q as well, therefore we need to work with increased precision.

Let H =
∑n

j=1Ej|φj〉〈φj|, where {|φj〉 : j ∈ [n]} is an orthonormal eigenbasis
of H and Ei ≤ Ej for i ≤ j. We begin with computing Ẽ1, a 1

β
-precise approxi-

mation of E1 using Lemma 3.A.4 and boost the success probability to 1 − O(ε)
by O(log(1/ε)) repetitions. Using Lemma 3.3.9 this enables us to construct a
block-encoding of H ′ := H−(Ẽ1−1/β)I

2
. Since the estimation procedure succeeds

with probability 1−O(ε), from now on we assume without loss of generality that
0 � H ′ ⊀ 1

β
I.

Now we describe how to approximately prepare a purified sub-normalized
Gibbs state e−2βH′−2I/n. Due to the invariance of maximally entangled states
under transformations of the form Q⊗Q∗ for unitary Q, there is an orthonormal
basis {|υj〉 : j ∈ [n]} such that

1√
n

n−1∑
j=0

|j〉A|j〉B =
1√
n

n∑
j=1

|υj〉A|φj〉B. (3.31)

Suppose we can implement a unitary U such that (〈0| ⊗ I)U(|0〉 ⊗ I) = e−βH
′−I .

If we apply U to the B-register of the state (3.31), then we get a state |γ〉 such
that TrA((〈0| ⊗ I)|γ〉〈γ|(|0〉 ⊗ I)) = e−2βH′−2I/n.

If we implement e−βH′−2I with precision O(ε/n2), then the subnormalized
Gibbs state will have error O(ε/n) in trace distance. Since Tr

[
e−2βH′−2I/n

]
=

Ω(1/n), after postselection the normalized approximate Gibbs state will be have
error at most O(ε) in trace distance. Moreover, the postselection can be per-
formed with success probability 1−O(ε) usingO(

√
n log(1/ε)) steps of fixed-point

amplitude amplification (Theorem 3.2.4).
The query complexity of boosted ground state energy estimation is upper

bounded by O
(
β
√
n log(n) log(1/ε) + log(β)

√
n log2(n) log(1/ε)

)
, as shown by

Lemma 3.A.4. The query complexity of implementing the block-encoding of
H ′ is 1, and the gate complexity is O(log(1/ε)). Due to Lemma 3.4.20 and
Theorem 3.4.1, an (1, a+O(1),O(ε/n2))-block-encoding of e−βH′−I can be imple-
mented using O(β log(n/ε)) queries and at most O(a log(1/ε))-times more two-
qubit gates. Finally fixed-pint amplitude amplification multiplies the cost with
at most O(

√
n log(1/ε)). Therefore we can upper bound the query complexity by

O
(
β
√
n log(n/ε) log(1/ε) + log(β)

√
n log2(n) log(1/ε)

)
, while the gate complex-

ity can be upper bounded by O
(
aβ
√
n log2(n/ε) log(1/ε)

)
. 2

Finally, note that in the special case when H has an eigenvalue O(1/β)-close
to −1, then a quadratic improvement can be achieved in β using Corollary 3.4.10.
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Similarly, if one has access to the square root of H, and H has an eigenvalue close
to 0, then one can achieve quadratically improved scaling with β as observed
by Chowdhury and Somma [CS17]. This can be also easily shown using our
techniques by noting that e−βH = e−β(

√
H)

2

, and that the function e−βx2 can be ε-
approximated on the interval [−1, 1] using a polynomial of degree O

(√
β log

(
1
ε

))
as follows from22 Corollary 3.4.10.

3.5 Limitations of smooth function techniques

In the classical literature there are many good techniques for lower bounding the
degrees of approximation polynomials [SV14]. There is an intimate relationship
between the degrees of approximation polynomials and quantum query complex-
ity [BBC+01]. In a recent result Arunachalam et al. [ABP17] showed that for
discrete problems certain polynomial approximations characterize the quantum
query complexity. There are also some results about lower bounds for continuous
problems [Aar09, Bel15, GAW19], however the literature on this is much more
sparse.

To advance the knowledge on lower bounds in the continuous regime, we prove
a conceptually simple lower bound on eigenvalue transformations, which guides
our intuition about what sort of transformations are possible. Intuitively speaking
if a function has derivative d on the domain of interest then we need to use the
block-encoding Ω(d)-times in order to implement the eigenvalue transformation
corresponding to f . This suggests that Theorem 3.4.15 applied together with
Theorem 3.4.1 often gives optimal results, since the δ parameter usually turns
out to be ∝ 1

d
, where d is the maximal derivative of the function on the domain

of interest.

3.5.1. Theorem (Lower bound for eigenvalue transformation). Let I ⊆ [−1, 1],
a ≥ 1 and suppose U is a (1, a, 0)-block-encoding of an unknown Hermitian matrix
H with the only promise that the spectrum of H lies in I. Let f : I → R,
and suppose that we have a quantum circuit V that implements a (1, b, ε)-block-
encoding of f(H) using T applications of U or U †, for all U fulfilling the promise.
Then for all x 6= y ∈ I ∩ [−1

2
, 1

2
] we have that

T = Ω

(
|f(x)− f(y)| − 2ε

|x− y|

)
.

22First approximate the function e−βy on [0, 1] using Corollary 3.4.10, then substitute y ← x2.
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More precisely for all x, y ∈ I we have that

T ≥
max

[
f(x)− f(y)− 2ε,

√
1− (f(y)− ε)2 −

√
1− (f(x) + ε)2

]
√

2
√

1− xy −
√

(1− x2)(1− y2)
(3.32)

≥
max

[
f(x)− f(y)− 2ε,

√
1− (f(y)− ε)2 −

√
1− (f(x) + ε)2

]
√

2 max
[
|x− y|,

∣∣∣√1− x2 −
√

1− y2

∣∣∣] . (3.33)

Proof:
First let us examine the case when H is a d × d matrix, a = 1 and U is of size
2d× 2d. Recall that in (2.14) we defined the two-dimensional reflection operator

R(x) =

[
x

√
1− x2

√
1− x2 −x

]
,

and note, that for all x, y ∈ [0, 1] we have that

‖R(x)−R(y)‖ =
√

2

√
1− xy −

√
(1− x2)(1− y2) (3.34)

≤
√

2 max
[
|x− y|,

∣∣∣√1− x2 −
√

1− y2

∣∣∣].
For all z ∈ [0, 1] let Uz :=

⊕d
i=1R(z), where the direct sum structure is arranged

in such a way that Uz is a (1, 1, 0)-block-encoding of Hz := zI. Let V [Uz] denote
the circuit V when using the input unitary Uz. Since V [Uz] uses Uz a total number
of T times we have that

‖V [Ux]− V [Uy]‖ ≤ T‖Ux − Uy‖ = T‖R(x)−R(y)‖. (3.35)

By the promise on V we get that V [Uz] is a (1, b, ε)-block-encoding of f(Hz) =
f(z)I. Let ςmax /min denote the maximal/minimal singular value of a matrix.
Using this notation we get that

ςmax

[
(〈0|⊗b⊗I)V [Uy](|0〉⊗b⊗I)

]
≤ f(y) + ε, (3.36)

ςmin

[
(〈0|⊗b⊗I)V [Ux](|0〉⊗b⊗I)

]
≥ f(x)− ε. (3.37)

Let us introduce the notation Π|0〉〈0| :=
((
Ib − |0〉〈0|⊗b

)
⊗ I
)
, then by (3.36)-(3.37)
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we have that ‖V [Ux]− V [Uy]‖ can be lower bounded by

≥
∥∥(|0〉〈0|⊗b ⊗ I)V [Ux](|0〉〈0|⊗b ⊗ I)− (|0〉〈0|⊗b ⊗ I)V [Uy](|0〉〈0|⊗b ⊗ I)

∥∥
≥ ςmin

[
(〈0|⊗b⊗I)V [Ux](|0〉⊗b⊗I)

]
− ςmax

[
(〈0|⊗b⊗I)V [Uy](|0〉⊗b⊗I)

]
≥ f(x)− f(y)− 2ε, (3.38)

and also by

≥
∥∥∥Π|0〉〈0|V [Uy](|0〉〈0|⊗b ⊗ I)− Π|0〉〈0|V [Ux](|0〉〈0|⊗b ⊗ I)

∥∥∥
≥ ςmin

[
Π|0〉〈0|V [Uy](|0〉⊗b⊗I)

]
− ςmax

[
Π|0〉〈0|V [Ux](|0〉⊗b⊗I)

]
=

√
1−ς2

max

[
(〈0|⊗b⊗I)V [Uy](|0〉⊗b⊗I)

]
−
√

1−ς2
min

[
(〈0|⊗b⊗I)V [Ux](|0〉⊗b⊗I)

]
≥
√

1− (f(y)− ε)2 −
√

1− (f(x) + ε)2. (3.39)

By combining (3.35) and (3.38)-(3.39) we get that

T ≥
max

[
f(x)− f(y)− 2ε,

√
1− (f(y)− ε)2 −

√
1− (f(x) + ε)2

]
‖R(x)−R(y)‖

.

Combining this inequality with (3.34) proves (3.32)-(3.33). Finally note that if
a > 1, then essentially the same argument can be used to prove (3.32)-(3.33),
one just needs to define Uz with additional tensor products of identity matrices
acting on the new ancilla qubits. 2

The above lower bound suggests that the spectrum of H lying close to 1 is
more “flexible” than the spectrum lying below say 1

2
in absolute value. Indeed it

turns out that the spectrum of H lying close to 1 is quadratically more useful
than the spectrum I ⊆ [−1

2
, 1

2
], cf. Corollary 3.4.10 and Lemma 2.4.3. This lower

bound also explains why is it so difficult to amplify the spectrum close to 1, cf.
Theorem 3.2.7. Finally note that since eigenvalue transformation is a special case
of singular value transformation, it also gives a lower bound in singular value
transformation.

3.6 Conclusion

Our main contribution in this chapter is to provide a paradigm, based on effi-
cient transformations of block-encoded matrices, that unifies a host of quantum
algorithms ranging from singular value estimation, linear equation solving, and
quantum simulation to quantum walks. Prior to our contribution each of these
algorithms would have to be understood independently, which makes mastering
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all of them a challenge. By presenting them all within the framework of quantum
singular value transformation, many of the most popular techniques in these fields
follow as a direct consequence. This greatly simplifies the learning process while
also revealing algorithms that were hitherto unknown.

The chapter describes several novel applications fitting this general paradigm,
including an exponentially improved algorithm for simulating fractional queries
to an unknown unitary oracle, a new method for singular value estimation, and
an improved algorithm for principal component regression.

We also give a novel view on quantum matrix arithmetics by summarizing
known results about block-encoded matrices, showing that they enable perform-
ing matrix arithmetic on quantum computers in a simple and efficient manner.
The described method in principle can give exponential savings in terms of the
dimension of the matrices, and perfectly fits into our framework.

An interesting question for future work involves the recent work by Dohotaru
and Høyer which shows that a wide range of quantum walk algorithms can be
unified within a single paradigm called controlled quantum amplification [DH17].
While the structure of the quantum circuits introduced by them bears a strong
resemblance to those used in qubitization, it is difficult to place their work within
the framework we present here. The question of how to unify their approach with
our techniques therefore remains open.

3.A Generalized minimum-finding algorithm
In this appendix we describe our generalized quantum minimum-finding algo-
rithm, which we are going to apply to finding an approximation of the ground
state energy of a Hamiltonian. This algorithm generalizes the results of Dürr and
Høyer [DH96] in a manner similar to the way amplitude amplification [BHMT02]
generalizes Grover search: we do not need to assume the ability to query individ-
ual elements of the search space, we just need to be able to generate a superposi-
tion over the search space. The algorithm also has the benefit over binary search
that it removes a logarithmic factor from the complexity.

The backbone of our analysis will be the meta-algorithm below from [DH96].
The meta-algorithm finds the minimal element in the range of the random variable
X by sampling, where by “range” we mean the values which occur with non-zero
probability. We assume X has finite range.

Meta-Algorithm 1 Minimum-finding
Input A discrete random variable X with finite range.
Output The minimal value xmin in the range of X.
Init t← 0; s0 ←∞
Repeat until st is minimal in the range of X
1. t← t+ 1
2. Sample a value st according to the distribution Pr(X = st | X < st−1).
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Note that the above algorithm will always find the minimum, since the ob-
tained samples are strictly decreasing.

3.A.1. Lemma. Let X be a finite discrete random variable whose range of values
is x1 < x2 < . . . < xN . Let S(X) = {s1, s2, . . . } denote the random set of
values obtained via sampling during a run of Meta-Algorithm 1 with input random
variable X. If k ∈ [N ], then

Pr(xk ∈ S(X)) =
Pr(X = xk)

Pr(X ≤ xk)
.

Proof:
The intuition of the proof is to show that

Pr(st = xk | t ∈ [N ] is the first time such that st ≤ xk) =
Pr(X = xk)

Pr(X ≤ xk)
. (3.40)

To formulate the statement more precisely23 we consider a fixed value t ∈ [N ].
For notational convenience let x := xk, xN+1 :=∞, we prove (3.40) by:

Pr(st = x | st ≤ x ∧ st−1 > x) =

=
Pr(st = x)

Pr(st ≤ x ∧ st−1 > x)

=
∑
x`>x

Pr(st = x ∧ st−1 = x`)

Pr(st ≤ x ∧ st−1 > x)

=
∑
x`>x

Pr(st = x ∧ st−1 = x`)

Pr(st ≤ x ∧ st−1 = x`)

Pr(st ≤ x ∧ st−1 = x`)

Pr(st ≤ x ∧ st−1 > x)

=
∑
x`>x

Pr(st = x | st−1 = x`)Pr(st−1 = x`)

Pr(st ≤ x | st−1 = x`)Pr(st−1 = x`)

Pr(st ≤ x ∧ st−1 = x`)

Pr(st ≤ x ∧ st−1 > x)

=
Pr(X = x)

Pr(X ≤ x)

∑
x`>x

Pr(st ≤ x ∧ st−1 = x`)

Pr(st ≤ x ∧ st−1 > x)

=
Pr(X = x)

Pr(X ≤ x)
.

This is enough to conclude the proof, since there is always a smallest t ∈ [N ] such
that st ≤ x, as the algorithm always finds the minimum in at most N steps. So

23Throughout this proof, whenever a fraction is 0/0, we simply interpret it as 0. Therefore
we also interpret conditional probabilities, conditioned on events that happen with probability
0, as 0.
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we can finish the proof by

Pr(x ∈ S(X)) =
N∑
t=1

Pr(st = x)

=
N∑
t=1

Pr(st = x | st ≤ x ∧ st−1 > x)Pr(st ≤ x ∧ st−1 > x)

=
Pr(X = x)

Pr(X ≤ x)

N∑
t=1

Pr(st ≤ x ∧ st−1 > x)

=
Pr(X = x)

Pr(X ≤ x)
Pr(∃t ∈ [N ] : st ≤ x ∧ st−1 > x)

=
Pr(X = x)

Pr(X ≤ x)
.

2

Now we describe our generalized minimum-finding algorithm which is based
on Meta-Algorithm 1. We take some unitary U , and replace X by the distribution
obtained if we measured the second register of U |0〉. We implement conditional
sampling via amplitude amplification and the use of the exponential search algo-
rithm of Boyer et al. [BBHT98]. If a unitary prepares the state |0〉|φ〉 + |1〉|ψ〉
where ‖φ‖2 + ‖ψ‖2 = 1, then this exponential search algorithm built on top of
amplitude amplification prepares the state |1〉|ψ〉 probabilistically using an ex-
pected number of O(1/‖ψ‖) applications of U and U−1 (we will skip the details
here, which are straightforward modifications of [BBHT98]).

Algorithm 3.1 Generalized minimum-finding
Input A number M and a unitary U , acting on q qubits, such that U |0〉 =∑N

k=1|ψk〉|xk〉, where xk is a binary string representing some number and
|ψk〉 is an unnormalized quantum state on the first register. Let x1 < x2 <
. . . < xN and define X to be the random variable with Pr(X = xk) = ‖ψk‖2.

Output Some |ψk〉|xk〉 for a (hopefully) small k.

Init t← 0; s0 ←∞
While the total number of applications of U and U−1 does not exceed M :

1. t← t+ 1

2. Use the exponential search algorithm with amplitude amplification on
states such that xk < st−1 to obtain a sample |ψk〉|xk〉.

3. st ← xk
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3.A.2. Lemma. There exists C ∈ R+, such that if we run Algorithm 3.1 indefi-
nitely (setting M =∞), then for every U and xk the expected number of uses of
U and U−1 before obtaining a sample x ≤ xk is at most C√

Pr(X≤xk)
.

Proof:
Let X<x` denote the random variable for which Pr(X<x` = x) = Pr(X = x |
X < x`). The expected number of uses of U and U−1 in Algorithm 3.1 before
obtaining any value x ≤ xk is

E[#uses of U before finding x≤xk] =

=
N∑

`=k+1

Pr(x`∈S(X))E[#uses of U for sampling from X<x` ]

=
N∑

`=k+1

Pr(X = x`)

Pr(X ≤ x`)
O

(
1√

Pr(X < x`)

)

= O

(
N∑

`=k+1

Pr(X = x`)

Pr(X ≤ x`)

1√
Pr(X < x`)

)

= O

(
1√

Pr(X ≤ xk)

)
,

where the last equality follows from Equation (3.46) below. The constant C
from the lemma is the constant hidden by the O. The remainder of this proof
consists of proving (3.46) using elementary calculus. Let us introduce the notation
p0 := Pr(X ≤ xk) and for all j ∈ [N − k] let pj := Pr(X = xk+j). Then the
expression inside the O on the second-to-last line above becomes

N∑
`=k+1

Pr(X = x`)

Pr(X ≤ x`)

√
1

Pr(X < x`)
=

N−k∑
j=1

pj∑j
i=0 pi

√
1∑j−1
i=0 pi

. (3.41)

The basic idea is that we treat the expression on the right-hand side of (3.41)
as an integral approximation sum for the integral

∫ 1

p0
z−3/2dz, and show that it

is actually always less than the value of this integral. We proceed by showing
that replacing a pj with two distinct probabilities pj/2, as in Eq. (3.42), always
increases the sum.

Let us fix some j ∈ [N − k] and define

p′i =


pi for i ∈ {0, 1, . . . , j − 1}
pi/2 for i ∈ {j, j + 1}
pi−1 for i ∈ {j + 2, . . . , N − k + 1}

(3.42)
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and observe that

N−k+1∑
j=1

p′j∑j
i=0 p

′
i

√
1∑j−1
i=0 p

′
i

−
N−k∑
j=1

pj∑j
i=0 pi

√
1∑j−1
i=0 pi

=

=
p′j∑j
i=0 p

′
i

√
1∑j−1
i=0 p

′
i

+
p′j+1∑j+1
i=0 p

′
i

√
1∑j
i=0 p

′
i

− pj∑j
i=0 pi

√
1∑j−1
i=0 pi

=
pj/2

pj/2 +
∑j−1

i=0 pi

√
1∑j−1
i=0 pi

+
pj/2

pj +
∑j−1

i=0 pi

√
1

pj/2 +
∑j−1

i=0 pi

− pj

pj +
∑j−1

i=0 pi

√
1∑j−1
i=0 pi

. (3.43)

We show that (3.43) is ≥ 0 after simplifying the expression by substituting a :=∑j−1
i=0 pi and b := pj/2:

b

a+ b

√
1

a
+

b

a+ 2b

√
1

a+ b
− 2b

a+ 2b

√
1

a
=

(
a+ b−

√
a
√
a+ b

)
b

(a+ b)3/2(a+ 2b)
≥ 0. (3.44)

Let us fix some parameter δ > 0. Recursively applying the halving procedure of
Eq. (3.42) for different indices, we can find some J ∈ N and p̃ ∈ RJ+1

+ such that∑J
j=0 p̃j = 1, p̃0 = p0 and p̃j ≤ δ for all j ∈ [J ], moreover

N−k∑
j=1

pj∑j
i=0 pi

√
1∑j−1
i=0 pi

≤
J∑
j=1

p̃j∑j
i=0 p̃i

√
1∑j−1
i=0 p̃i

.

Observe that for all j ∈ [J ]

√
1∑j−1
i=0 p̃i

=

√
1∑j
i=0 p̃i

√∑j
i=0 p̃i∑j−1
i=0 p̃i

=

√
1∑j
i=0 p̃i

√
1 +

p̃j∑j−1
i=0 p̃i

≤
√

1∑j
i=0 p̃i

√
1 +

δ

p̃0

≤
√

1∑j
i=0 p̃i

(
1 +

δ

p0

)
.

(3.45)
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Therefore

N−k∑
j=1

pj∑j
i=0 pi

√
1∑j−1
i=0 pi

≤
J∑
j=1

p̃j∑j
i=0 p̃i

√
1∑j−1
i=0 p̃i

(by (3.45)) ≤
J∑
j=1

p̃j∑j
i=0 p̃i

√
1∑j
i=0 p̃i

(
1 +

δ

p0

)

=

(
1 +

δ

p0

) J∑
j=1

p̃j(∑j
i=0 p̃i

)3/2

≤
(

1 +
δ

p0

) J∑
j=1

∫ ∑j
i=0 p̃i

∑j−1
i=0 p̃i

z−
3
2dz

=

(
1 +

δ

p0

)∫ 1

p0

z−
3
2dz

=

(
1 +

δ

p0

)[
−2z−

1
2

]1

p0

≤
(

1 +
δ

p0

)(
2
√
p0

)
.

Since this inequality holds for every δ > 0, we can conclude using (3.41) that

N∑
`=k+1

Pr(X = x`)

Pr(X ≤ x`)

√
1

Pr(X < x`)
≤ 2
√
p0

=
2√

Pr(X ≤ xk)
. (3.46)

2

It is not too hard to work out the constant by following the proof of [BBHT98]
providing something like C ≈ 25. The following theorem works with any C
satisfying Lemma 3.A.2.

3.A.3. Theorem (Generalized Minimum-Finding). If we run Algorithm 3.1 with
input satisfying M ≥ 4C/

√
Pr(X ≤ x) for C as in Lemma 3.A.2 and a unitary

U that acts on q qubits, then at termination we obtain an xi from the range of
X that satisfies xi ≤ x with probability at least 3

4
. This will require at most

M applications of U and U−1 and O(qM) other gates. Moreover the success
probability can be boosted to at least 1− δ with O(log(1/δ)) repetitions.

Proof:
Let xk be the largest value in the range ofX such that xk ≤ x. Then Lemma 3.A.2
says that the expected number of applications of U and U−1 before finding a value
xi ≤ xk is at most C/

√
Pr(X ≤ xk) = C/

√
Pr(X ≤ x), therefore by the Markov

inequality we know that the probability that we need to use U and U−1 at least
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4C/
√

Pr(X ≤ x) times is at most 1/4. The boosting of the success probability
can be done using standard techniques, e.g., by repeating the whole procedure
O(log(1/δ)) times and taking the minimum of the outputs.

The number of applications of U and U−1 follows directly form the algorithms
description. Then, for the number of other gates, each amplitude amplification
step needs to implement a binary comparison and a reflection through the |0〉
state, both of which can be constructed using O(q) elementary gates, giving a
total of O(qM) gates. 2

Note that this result is a generalization of Dürr and Høyer [DH96]: if we
can create a uniform superposition over N values x1 < x2 < . . . < xN , then
Pr(X ≤ x1) = 1/N and therefore Theorem 3.A.3 guarantees that we can find the
minimum with high probability with O(

√
N) steps.

Now we describe an application of this generalized search algorithm that we
use in the paper. This final lemma in this appendix describes how to estimate the
smallest eigenvalue of a Hamiltonian. A similar result was shown by Poulin and
Wocjan [PW09], but we improve on the analysis to fit our framework better. We
assume block-encoding access to the Hamiltonian H, and will count queries to
the unitary implementing the block-encoding. Due to our generalized minimum-
finding techniques the complexity has no 1

ε
log
(

1
ε

)
term.

3.A.4. Lemma. Let ε ∈ (0, 1/2), and suppose that U is an a-qubit block-encoding
of the Hamiltonian H ∈ Cn×n. Then we can find an ε-precise estimate of the
ground-state energy of H with success probability at least 2/3 with

O
(√

n

ε
log(n) +

√
n log2(n) log(1/ε)

)
uses of (controlled) U , U † and O(a) times more two-qubit gates.

Proof:
The general idea is as follows: we prepare a maximally entangled state on two
registers, and apply phase estimation [NC00, Section 5.2][CEMM98] to the first
register with respect to the unitary eiH . We then use Theorem 3.A.3 to find
the minimal phase. In order to guarantee correctness we need to account for
all the approximation errors coming from approximate implementations. This
causes some technical difficulty, since the approximation errors can introduce
phase estimates that are much less than the true minimum. We need to make
sure that the minimum-finding algorithm finds these faulty estimates only with
a tiny probability.

Let H =
∑n

j=1 Ej|φj〉〈φj|, be an eigendecomposition with eigenvalues E1 ≤
E2 ≤ . . . ≤ En. We first initialize two log(n)-qubit registers in a maximally
entangled state 1√

n

∑n−1
j=0 |j〉|j〉. This can be done using log(n) Hadamard and
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CNOT gates.24 Due to the invariance of maximally entangled states under trans-
formations of the form Q ⊗ Q∗ for unitary Q, there is an orthonormal basis
{|υj〉 : j ∈ [n]} such that

1√
n

n−1∑
j=0

|j〉|j〉 =
1√
n

n∑
j=1

|φj〉|υj〉.

Let T := Θ(1/ε), and first assume that we have access to a perfect unitary
V which implements V =

∑T−1
t=0 |t〉〈t| ⊗ eitH . If we apply phase estimation to

the quantum state |φj〉 using V , then we get some phase estimate |E〉 such that
|E−Ej| ≤ ε with high probability. If we repeat phase estimation O(log(n)) times,
and take the median of the estimates, then we obtain an E such that |E−Ej| ≤ ε
with probability at least 1− b/n, for some b = Θ(1).

Since in our maximally entangled state |φj〉 is entangled with |υj〉 on the
second register, applying phase estimation to the first register in superposition
does not cause interference on the phase register. Denote the above preparation-
estimation-boost circuit byW . Define Π to be the projector which projects to the
subspace of estimation values E such that there is a j ∈ [n] with |E−Ej| ≤ ε. By
the non-interference argument we can see that, after applying W , the probability
that we get an estimation E such that |E − Ej| > ε for all j ∈ [n], is at most
b/n. Therefore ‖(I − Π)W |0〉‖2 ≤ b/n. Also let Π1 denote the projector which
projects to phase estimates that yield E such that |E −E1| ≤ ε. It is easy to see
that ‖Π1W |0〉‖2 ≥ 1/n− b/n2.

Now let us replace V by Ṽ implemented via Corollary 3.4.8, with precision
such that ‖V − Ṽ ‖ ≤ c′/(n log(n)) for some c′ = Θ(1). Let W̃ denote the circuit
that we obtain from W by replacing V with Ṽ . Since in the repeated phase-
estimation procedure we use V in total O(log(n)) times, by using the triangle
inequality we see that ‖W − W̃‖ ≤ c/(2n), where c = Θ(1). We use the well-
known fact that if two unitaries are δ-close in operator norm, and they are applied
to the same quantum state, then the measurement statistics of the resulting states
are 2δ-close. Therefore we can upper bound the difference in probability of getting
outcome (I − Π):

‖(I − Π)W̃ |0〉‖2 − ‖(I − Π)W |0〉‖2 ≤ 2‖W |0〉 − W̃ |0〉‖ ≤ c/n,

hence ‖(I − Π)W̃ |0〉‖2 ≤ (b+c)/n, and we can prove similarly that ‖Π1W̃ |0〉‖2 ≥
1/n− (b+ c)/n.

Now let |ψ〉 := (I − Π)W̃ |0〉/‖(I − Π)W̃ |0〉‖ be the state that we would
get after post-selecting on the (I − Π)-outcome of the projective measurement
Π. For small enough b, c we have that ‖|ψ〉 − W̃ |0〉‖ = O(

√
(b+ c)/n) by

the triangle inequality. Thus there exists an idealized unitary W ′ such that
24If n is not a power of 2, then one might need to use a constant times more two-qubit gates,

involving a constant number of amplitude amplification rounds.
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|ψ〉 = W ′|0〉, and ‖W̃ −W ′‖ = O(
√

(b+ c)/n). Observe that ‖Π1W
′|0〉‖2 =

‖|ψ〉‖2 ≥ ‖Π1W̃ |0〉‖2 ≥ 1/n− (b+ c)/n.
Now suppose (b + c) ≤ 1/2 and we run the generalized minimum-finding

algorithm of Theorem 3.A.3 using W ′ with M = 6C
√
n. Since

Pr(E ≤ E1 + ε) ≥ ‖Π1U
′|0〉‖2 ≥ (1− b− c)/n ≥ 1/(2n) > 4/(9n)

we will obtain an estimate E such that E ≤ E1 + ε, with probability at least 3/4.
But since Π|ψ〉 = |ψ〉, we find that any estimate that we might obtain satisfies
E ≥ E1 − ε. So an estimate E ≤ E1 + ε always satisfies |E − E1| ≤ ε.

The problem is that we only have access to Ũ as a quantum circuit. Let
CMF (Ũ) denote the circuit that we get from Theorem 3.A.3 when using it with
Ũ and define similarly CMF (U ′) for U ′. Since we use Ũ a total of O(

√
n) times

in CMF (Ũ) and∥∥∥Ũ − U ′∥∥∥ = O
(√

(b+ c)/n
)
, we get that

∥∥∥CMF (Ũ)− CMF (U ′)
∥∥∥ = O

(√
b+ c

)
.

Therefore the measurement statistics of the two circuits differ by at mostO(
√
b+c).

Choosing b, c small enough constants ensures that CMF (Ũ) outputs a proper es-
timate E such that |E − E1| ≤ ε with probability at least 2/3.

The query complexity has an O(1/ε+ log(1/ε) log(n)) factor coming from the
implementation of Ṽ by Corollary 3.4.8. This gets multiplied with O(log(n)) by
the boosting of phase estimation, and by O(

√
n) due to the minimum-finding

algorithm. The gate complexity coming from Corollary 3.4.8 is at most O(a)-
times query complexity. The phase estimation (Fourier transform) can be per-
formed with O

(
log2(1/ε)

)
gates, and the comparisons in minimum finding take

O(log(1/ε)) gates, so both costs are dominated by the cost of implementing Ṽ .
2

Note that the minimum-finding algorithm of Theorem 3.A.3 can also be used for
state preparation. If we choose 2ε less than the energy-gap of the Hamiltonian,
then upon finding the approximation of the ground-state energy we also prepare
an approximate ground state. The precision of this state preparation can be
improved with logarithmic cost, as can be seen from the proof of Lemma 3.A.4.





Chapter 4

Faster quantum gradient computation

Gradient descent is a simple iterative method for optimization which makes dis-
crete steps in the direction of steepest descent, determined by the gradient, until
it finds an approximate local minimum. In this chapter we consider a generic
framework of optimization algorithms based on gradient descent. We develop
a quantum algorithm that computes the gradient of a multi-variate real-valued
function f : Rd → R by evaluating it at only a logarithmic number of points
in superposition. Our algorithm is an improved version of Jordan’s gradient
computation algorithm [Jor05], providing an approximation of the gradient ∇f
with quadratically better dependence on the evaluation accuracy of f , for an im-
portant class of smooth functions. Furthermore, we show that most objective
functions arising from quantum optimization procedures satisfy the necessary
smoothness conditions, hence our algorithm provides a quadratic improvement in
the complexity of computing their gradient. We also show that in a continuous
phase-query model, our gradient computation algorithm has optimal query com-
plexity up to poly-logarithmic factors, for a particular class of smooth functions.
Moreover, we show that for low-degree multivariate polynomials our algorithm
can provide exponential speedups compared to Jordan’s algorithm in terms of the
dimension d.

One of the technical challenges in applying our gradient computation proce-
dure for quantum optimization problems is the need to convert between a proba-
bility oracle (which is common in quantum optimization procedures) and a phase
oracle (which is common in quantum algorithms) of the objective function f . We
provide efficient subroutines to perform this delicate interconversion between the
two types of oracles, incurring only a logarithmic overhead, which might be of
independent interest. Finally, using these tools we improve the runtime of prior
approaches for training quantum auto-encoders, variational quantum eigensolvers
(VQE), and quantum approximate optimization algorithms (QAOA).

This chapter is based on [GAW19] c© 2019 SIAM.
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4.1 Introduction

Quantum optimization. Optimization is a fundamentally important task that
touches on virtually every area of science. Recently, there have been many
quantum algorithms that provide substantial improvements for several optimiza-
tion problems [Gro96, DHHM06, Jor05, HHL09, CKS17, BS17, vAGGdW17,
BKL+17b, vAG19, KP18, vAGGdW18, CCLW18]. However, applying non-Grover
techniques to real-word optimization problems has proven challenging, because
generic problems often fail to satisfy the delicate requirements of advanced quan-
tum techniques.

A different paradigm of quantum optimization is based on variational quan-
tum circuits. These circuits are usually based on heuristics, nevertheless they are
promising candidates for providing quantum advantage in real-word problems,
including quantum simulation [PMS+14, WHT15], optimization [FGG14], quan-
tum neural networks [FN18] and machine learning [SBSW18]. These variational
circuits usually try to optimize some objective function, which could correspond
to, e.g., the energy of a quantum state in a molecule or the prediction loss in
a learning model. These quantum circuits have the appealing feature that they
often have low depth, and therefore can potentially be implemented on NISQ
(noisy intermediate-scale quantum) hardware. The training is usually performed
by running the circuit several times and using classical gradient descent on the
parameter space.

In the long term it is expected that training could become a bottleneck as
the size of the variational quantum circuits grow, similarly to for example the
training of classical deep neural networks. However, the ultimate limitations of
variational training algorithms are not well understood. In particular it has been
unclear whether it is possible to achieve improvements beyond the simple quan-
tum speedups provided by amplitude estimation techniques. This underscores
the importance of understanding the performance of training algorithms as we
begin to push beyond NISQ-era devices. Our main contribution is showing that
non-trivial speedups can be achieved via quantum gradient computation of the
objective function. We remark that in this variational setting the prior works on
quantum gradient descent [RSPL16, KP17a] are not applicable.

It is usually difficult to reduce the number of iterations using quantum com-
puters in iterative algorithms such as gradient descent. We therefore focus on
the cost per iteration, and speed up gradient computation. Since in general very
little is known about the landscape of objective functions arising from variational
quantum circuits, we study the problem in a black-box setting where we can only
learn about the objective function by evaluating it at arbitrary points. This set-
ting simplifies the problem and allows us to reason about upper and lower bounds
on the cost of gradient computation.
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Classical gradient-based optimization algorithms. We first give a high-
level description of a basic classical gradient-based optimization technique. The
problem is, given p : Rd → R, compute

OPT = min{p(xxx) : xxx ∈ Rd}. (4.1)

A heuristic solution of the optimization problem (4.1) can be obtained by com-
puting the gradient of p:

∇p =

(
∂p

∂x1

,
∂p

∂x2

, . . . ,
∂p

∂xd

)
(4.2)

It is a well-known fact in calculus that p decreases the fastest in the direction
of −(∇p(xxx)). This simple observation is the basis of gradient-based optimiza-
tion algorithms. Given the generality of the optimization problem (4.1) and the
simplicity of the algorithm, gradient-based techniques are widely used in mathe-
matics, physics and engineering.

Probability oracles. Since quantum algorithms such as QAOA or VQE (see
Section 4.7) work with an objective function that needs to be learned by sampling,
we assume the function is given by a probability oracle, which for every xxx ∈ Rd
acts as:

Up : |~0〉|xxx〉 7→
(√

p(xxx)|1〉|ψ(1)
xxx 〉+

√
1− p(xxx)|0〉|ψ(0)

xxx 〉
)
|xxx〉 (4.3)

where the continuous variable xxx is represented binarily with some finite precision.1
The classical analogue of this model is when we get samples from the distri-

bution (p(xxx), 1 − p(xxx)). Using empirical estimation, O(1/ε2) samples suffice for
estimating p(xxx) with precision O(ε). If the function is sufficiently smooth, using
standard techniques we can compute an ε-approximation of ∇ip(xxx) using a loga-
rithmic number of such function estimations. Computing the gradient this way
uses Õ(d/ε2) samples.

Our main result shows that such an ε-approximate gradient estimate (in the
`∞-norm) can be computed with quadratically fewer quantum queries to a prob-
ability oracle. We remark that our quadratic speedup is not yet-another Grover
speedup, instead it comes from applying the Fourier transformation together with
some optimized interpolation techniques.

Our improved gradient computation algorithm. Jordan [Jor05] assumed
access to f : Rd → R by an oracle, which on input xxx, outputs f(xxx) binarily with
some finite accuracy, and constructed a quantum algorithm that outputs an ε-
coordinate-wise approximation of the gradient ∇f with a single use of this binary

1Note that this is a much weaker input model than the oracle model used by Jordan [Jor05].
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oracle. This demonstrates a striking quantum advantage, since classically one
needs Ω(d) queries. His algorithm prepares a uniform superposition of evaluation
points over a finite grid, then approximately implements a phase unitary

Of : |xxx〉 7→ e2πi
√
d
ε2
f(xxx)|xxx〉,

using a single O
(
ε2/
√
d
)
-accurate evaluation of f and then applies an inverse

Fourier transformation to obtain an approximation of the gradient. Although this
algorithm only uses a single query, the required precision of the function evalua-
tion can be prohibitive. Moreover, the original analysis of Jordan [Jor05] implic-
itly assumes that the function is essentially quadratic, by neglecting third and
higher-order contributions. Using Jordan’s algorithm in our framework, where we
assume access to a probability oracle, evaluating the function with the prescribed
precision using amplitude amplification would require Ω(

√
d/ε2) queries.

Our improvements are two-fold: our quantum algorithm requires only Õ(ε/
√
d)-

accurate evaluations of the function; on the other hand it also works for functions
with non-negligible higher-order terms, such as the objective functions arising
from variational circuits. The main new ingredient is the use of higher-degree
central-difference formulas, a technique borrowed from calculus. The heart of our
proof is showing that if f is sufficiently smooth, then by using central-difference
formulas we can approximately linearize the function on a diameter-1 hypercube
by performing only log(

√
d/ε) function evaluations. We prove this by bounding

the “second moment” of higher-order bounded tensors using Lemma 4.5.8, which
might be of independent interest.

Our algorithm works by evaluating the approximately linearized function
over a uniform superposition of grid points in the hypercube, followed by a d-
dimensional quantum Fourier transform, providing a classical description of an
approximate gradient, similarly to Jordan’s algorithm.

4.1.1. Theorem (See Theorem 4.5.10 & Theorem 4.6.3). Let ε > 0, d ∈ N, and
c = O(1). Suppose we are given probability (or phase) oracle access to a function2

f : Rd → R, such that |∂i1,i2,...,ikf(000)| ≤ ck
√
k! for every k ∈ N and (i1, i2, . . . , ik)∈

[d]k. The quantum query complexity of computing (with high probability) an ε-
coordinatewise-approximation of ∇f(000) is

Θ̃
(√

d/ε
)
.

Our algorithm is also gate-efficient; the gate complexity is Õ(Q+ d), where Q is
the query complexity.

2Such a function belongs to the Gevrey [Gev18] class G
1
2 .
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Our lower bound techniques. In order to prove the optimality of our algo-
rithm we prove an extended version of the so-called hybrid method [BBBV97].

4.1.2. Theorem. (Hybrid method for arbitrary phase oracles) Let G be a (finite)
set of labels and let H := Span(|x〉 : x ∈ G) be a Hilbert space. For a function
f̃ : G→ R let Of̃ be the phase oracle acting on H such that

Of̃ : |x〉 → eif̃(x)|x〉 for every x ∈ G.

Suppose that F is a finite set of functions G→ R, and the function f∗ : G→ R is
not in F . If a quantum algorithm makes T queries to a (controlled) phase oracle
Of̃ (or its inverse) and for all f ∈ F can distinguish with probability at least 2/3

the case f̃ = f from the case f̃ = f∗, then

T ≥
√
|F|
3

/√
max
x∈G

∑
f∈F

min
(
|f(x)− f∗(x)|2, 4

)
.

In order to prove the lower bound in Theorem 4.1.1, we exhibit a family of
functions F for which the functions can be well distinguished by calculating their
gradients with accuracy ε in the `∞-norm. Then, with the help of Theorem 4.1.2
we show that this requires Ω(

√
d/ε) queries.

Applications. We consider three problems to which we apply our quantum
gradient descent algorithm. We briefly describe below the problem of quantum
variational eigensolvers (VQE) [PMS+14, WHT15], quantum approximate opti-
mization algorithms (QAOA) [FGG14], and the quantum auto-encoding prob-
lem [WKGK16, ROAG17]. In each case we show how our gradient computation
algorithm can provide a quadratic speedup in terms of the dimension d of the
associated problem.

VQE is widely used to estimate the eigenvalue corresponding to some eigen-
state of a Hamiltonian. The main idea in VQE is to begin with an efficiently
parameterizable ansatz to the eigenstate. For the example of ground state energy
estimation, the ansatz state is often taken to be a unitary coupled cluster ex-
pansion, coming from quantum chemistry insights, cf. [MEAG+18]. The terms in
that unitary coupled cluster expansion are varied to provide the lowest energy for
the groundstate, and the expected energy of the quantum state is mapped to the
probability of some measurement outcome, making it accessible to our methods.

QAOA has a similar approach, the basic idea of the algorithm is to consider
a parametrized family of states such as |ψ(xxx)〉 =

∏d
j=1 e

−ixjHj |0〉. The aim is to
tune the parameters of |ψ(xxx)〉 in order to minimize some objective function, which
can, e.g., represent some combinatorial optimization problem. In particular, if H
is a Hermitian operator corresponding to the objective function then we wish to
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find xxx such that 〈ψ(xxx)|H|ψ(xxx)〉 is minimized. For example, in order to minimize
the number of violated constraints of a constraint satisfaction problem, we can
choose H =

∑M
m=1Cm to represent the number of violations: Cm is 1 if and

only if the mth constraint is violated, else Cm = 0 [FGG14]. After normalization
and using some standard techniques we can map this expectation value to the
measurement probability of a single qubit. Thus, from the perspective of our
algorithm, QAOA looks exactly like VQE.

The classical auto-encoder paradigm [Azo94] is an important technique in ma-
chine learning, which is widely used for data compression. An auto-encoder is
essentially a neural network architecture which is tuned for the following task:
given a set of high-dimensional vectors, we would like to learn a low-dimensional
representation of the vectors, so that computations on the original data set can
be “approximately” carried out by working only with the low-dimensional repre-
sentations. What makes auto-encoding powerful is that it does not assume any
prior knowledge about the data set. This makes it a viable technique in machine
learning, with various applications in natural language processing, training neural
networks, object classification, prediction or extrapolation of information, etc. In
this chapter, we consider a natural quantum analogue (which was also considered
before in the works of [WKGK16, ROAG17]) of the auto-encoder paradigm, and
show how to use our quantum gradient computation algorithm to quadratically
speed up the training of quantum autoencoders.

4.2 Organization of the chapter and preliminaries

In Section 4.3, we give a generic model of quantum optimization algorithms and
a detailed description of the classical gradient descent algorithm. In Section 4.4,
we describe how to convert a probability oracle to a phase oracle. In Section 4.5
we present our quantum gradient computation algorithm and prove our main
Theorem 4.5.10 regarding its complexity. In Section 4.6, we present query lower
bounds for algorithms that (approximately) compute the gradient of a function.
In Section 4.7 we describe some applications. We conclude with some directions
for future research in Section 4.8.

Notation. Now we describe some notation that we use throughout this chapter.
Let eee1, eee2, . . . , eeed ∈ Rd denote the standard basis vectors. We use bold letters for
vectors xxx ∈ Rd, in particular we use the notation 000 for the 0 vector, and 111 for the
all-1 vector (eee1 + eee2 + · · ·+ eeed). By writing yyy + rS we mean {yyy + rvvv : vvv ∈ S} for
vectors S ⊆ Rd, and use the same notation for sets of numbers. For xxx ∈ Rd, let
‖xxx‖∞ = maxi∈[d] |xi| and ‖xxx‖ = (

∑d
i=1 x

2
i )

1/2. For M ∈ Rd×d, let ‖M‖ denote the
operator norm of M .

In general, we use H to denote a finite-dimensional Hilbert space. For the
n-qubit all-0 basis state we use the notation |0〉⊗n, or simply write |~0〉 when we
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do not want to focus on the value of n.
We use the convention 00 = 1 throughout, and use the notation N0 = N∪{0}.

Higher-order calculus. Many technical lemmas in this chapter will revolve
around the use of higher-order calculus. We briefly introduce some notation here
and give some basic definitions.

4.2.1. Definition (Index-sequences). For d ∈ N and k ∈ N0 we call α ∈ [d]k

a d-dimensional length-k index-sequence. For a vector rrr ∈ Rd we define rrrα :=∏
j∈[k]rαj , and for a k-times differentiable function, we define ∂αf :=∂α1∂α2· · · ∂αkf.

Finally, we use the notation |α| = k for denoting the length of the index-sequence.

4.2.2. Definition (Analytic function). We say that the function f : Rd → R is
analytic if for all xxx ∈ Rd

f(xxx) =
∞∑
k=0

∑
α∈[d]k

xxxα
∂αf(000)

k!
. (4.4)

4.2.3. Definition (Directional derivative). Suppose f : Rd → R is k-times dif-
ferentiable at xxx ∈ Rd. We define the k-th order directional derivative in the
direction rrr ∈ Rd using the derivative of a one-parameter function parametrized
by τ ∈ R along the ray in the direction of rrr:

∂krrr f(xxx) =
dk

(dτ)k
f(xxx+ τrrr).

Observe that, using the definitions above, one has

∂krrr f =
∑
α∈[d]k

rrrα · ∂αf. (4.5)

In particular for every i ∈ [d], we have that ∂keeeif = ∂ki f .
Central difference formulas (see, e.g. [Li05]) are often used to give precise

approximations of derivatives of a function h : R→ R. These formulas are coming
from polynomial interpolation, and yield precise approximations of directional
derivatives too. Thus, we can use them to approximate the gradient of a high-
dimensional function as shown in the following definition.

4.2.4. Definition. The degree-2m approximate central-difference linearization
of a function f : Rd → R is:

f(2m)(xxx) :=
m∑

`=−m
` 6=0

(−1)`−1

`

(
m
|`|

)(
m+|`|
|`|

)f(`xxx) ≈ ∇f(000) · xxx. (4.6)
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We denote the corresponding central-difference coefficients for ` ∈ {−m, . . . ,m}
by

a
(2m)
` :=

(−1)`−1

`

(
m
|`|

)(
m+|`|
|`|

) except for a(2m)
0 := 0

In Appendix 4.A we prove some bounds on the approximation error of the above
formulas3 for generic m. Usually such error bounds are only derived for some
finite values of m, because that is sufficient in practice, but in order to prove our
asymptotic results we need to derive more general results.

4.3 A generic model of quantum optimization al-
gorithms

Variational quantum algorithms designed for quantum optimization and machine
learning procedures have the following core idea: they approximate an optimal
solution to a problem by tuning some parameters in a quantum circuit. The
circuit usually consists of several simple gates, some of which have tunable real
parameters, e.g., the angle of single qubit (controlled) rotation gates. Often,
if there are enough tunable gates arranged in a nice topology, then there exist
parameters that induce a unitary capable of achieving a close to optimal solution.

In such variational approaches, one can decompose the circuit into three parts
each having a different role (see Figure 4.1). The circuit starts with a state prepa-
ration part which prepares the initial quantum state relevant for the problem. We
call this part ‘Prep.’ in Figure 4.1. The middle part consists of tunable param-
eters x and fixed gates, which are together referred to as ‘Tuned’ in Figure 4.1.
Finally, there is a verification circuit that evaluates the output state, and marks
success if the auxiliary qubit is |1〉. We denote the verification process by V
in Figure 4.1. The quality of the circuit (for parameter xxx) is assessed by the
probability of measuring the auxiliary qubit and obtaining 1.

One can think of the tunable circuit as being tuned in a classical way as shown
in Figure 4.1a or a quantum way as in Figure 4.1b. In the classical case, the pa-
rameters can be thought of as being manually set. Alternatively, the parameters
can be quantum variables represented by qubits. The advantage of the latter is
that it allows us to use quantum techniques to speedup optimization algorithms.
However the drawback is that it requires more qubits to represent the parame-
ters and requires implementation of additional controlled-gates, see for example,
Fig. 4.1c.

Let us denote by U(xxx) the circuit in Figure 4.1a and the corresponding circuit
in Figure 4.1b as U :=

∑
xxx |xxx〉〈xxx|⊗U(xxx). The goal in these optimization problems

3One can read out the coefficients described in Definition 4.2.4 from the second row of the
inverse of the Vandermonde matrix, as Arjan Cornelissen pointed out to us.
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xxx

|~0〉 Prep. Tuned

V
|0〉 |1〉?

(a) A classically tunable circuit

|xxx〉

|~0〉 Prep. Tuned

V
|0〉 |1〉?

(b) A quantumly tunable circuit

R(x)︷ ︸︸ ︷

|x〉



|b(1)
x 〉 • . . .

|b(0)
x 〉 • . . .

|b(−1)
x 〉 • . . .

... . . .
|b(−n)
x 〉 . . . •

|ψ〉 R(2) R(1) R(2−1) . . . R(2−n)

(c) A 2−n precisely tunable rotation gate R(x) for the fixed-point binary parameter
x = b1b0.b−1 · · · b−n.

Figure 4.1. Two different approaches to tunable quantum optimization. The
circuit on the top left has classically set parameters |xxx〉 (represented as a vector
of fixed point binary numbers), whereas the circuit on the top right has parameters
xxx described by an array of qubits |xxx〉. The black squares connected to the ‘Tuned’
circuit indicate non-trivial control structure for which an example is presented on
the bottom figure, showing how to implement a quantumly tunable rotation gate
built from simple controlled rotation gates.

is to find the optimal parameters (i.e., xxx) which maximize the probability of
obtaining 1 after the final measurement, thereby solving the problem

argmax
xxx

p(xxx), where p(xxx) =
∥∥∥(|1〉〈1| ⊗ I)U(xxx)|~0〉

∥∥∥2

. (4.7)

A well-known technique to solve continuous-variable optimization problems
like the one above is gradient-ascent. In practice, gradient-based methods repre-
sent one of the most commonly used paradigms for solving continuous optimiza-
tion problems.
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4.3.1 Classical gradient ascent algorithm

As we discussed earlier, finding globally optimal parameters for optimization
problems (4.7) is often hard. Therefore in practice one usually relies on heuristics
to find an approximate solution xxxa such that p(xxxa) is close to optimal. There are
several heuristic optimization techniques that are often applied to handle such
problems. One of the most common techniques is gradient ascent, which follows
a greedy strategy to obtain the optimal solution. It simply follows the path of
steepest ascent on the landscape of the objective function to find a solution that
is, at least up to small local perturbations, optimal. Such solutions are called
locally optimal.

A naïve gradient-based algorithm4 can be described as follows: pick N ran-
dom points {x(0)

1 , . . . ,x
(0)
N }. For each i ∈ [N ], compute ∇p(x(0)

i ), and take a
δ-step in the direction of ∇p(x(0)

i ) leading to x
(1)
i = x

(0)
i + δ∇p(x(0)

i ) (for some
step size δ > 0). Repeat this procedure for T steps, obtaining x

(T )
i which has

hopefully approached some local maxima of (4.1). Finally, take the maximum of
{p(x(T )

1 ), . . . , p(x
(T )
N )} as an approximation to (4.1).

By using empirical estimation to evaluate the function to precision ε, under
some mild smoothness assumption, we can compute the gradient to ε-precision
in the `∞ norm using Õ

(
d
ε2

)
samples. This way the algorithm uses the quantum

circuit U(xxx) a total number Õ(NTd/ε2) times.

4.3.2 Quantum speedups to the classical algorithm

Now, let us consider the possible quantum speedups to this naïve gradient as-
cent algorithm discussed in the previous section. The most basic improvement
which works even for classically controlled circuits (Figure 4.1a) is to estimate
the probability p(xxx) in Step 5 using quantum amplitude estimation rather than
doing repeated measurements and taking the average. If one wants to determine
the value p(xxx) up to error ε for some fixed xxx, the quantum approach uses the cir-
cuit O(1/ε) times, whereas the classical statistical method would require Ω(1/ε2)
repetitions, due to the additive property of variances of uncorrelated random
variables. Although this is a natural improvement, which does not require much
additional quantum resources, many papers that describe a similar procedure do
not mention it.

Another quantum improvement can be achieved [Bul05a, LPL14] by using
Grover search, which requires a quantumly controlled circuit like in Figure 4.1b.
Let P (zzz) denote the probability that for a randomly chosen starting point xxx0

we get xxxT = zzz, i.e., we end up with zzz after performing T gradient steps. Let p̃
be a value such that P (p(zzz) ≥ p̃) ≥ 1/N . If we use N randomly chosen initial

4There are more sophisticated versions of gradient ascent, but for simplicity here we discuss
a very basic version.
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points, then with high probability at least one initial point will yield a point xxxT
with p(xxxT ) ≥ p̃.5 If we use the quantum maximum-finding algorithm [DH96]
or more precisely one if its generalizations [NW99, vAGGdW17], we can reduce
the number of repetitions to O(

√
N) and still find a point xxxT having p(xxxT ) ≥ p̃

with high probability. Due to reversability, we need to maintain all points visited
during the gradient ascent algorithm, thereby possibly introducing a significant
overhead in the number of qubits used.

However, there is a drawback using Grover search-based techniques. The dis-
advantage of quantum maximum finding approach over classical methods is, that
the amount of time it takes to reach a local maximum using the gradient ascent
might vary a lot. The reason is that classically, once we reached a local maximum
we can start examining the next starting point, whereas if we use Grover search
we do the gradient updates in superposition so we need to run the procedure
for the largest possible number of gradient steps. To reduce this disadvantage
one could use variable time amplitude amplification techniques introduced by
Ambainis [Amb12], however, we leave such investigations for future work.

Method: Sampling alg. +Amp. est. +Grover search +This work
Complexity: Õ(TNd/ε2) Õ(TNd/ε) Õ

(
T
√
Nd/ε

)
Õ
(
T
√
Nd/ε

)
Table 4.1. Quantum speedups for the naïve gradient-ascent algorithm

Our contribution. We show a quadratic speedup in d – the number of control
parameters. For this we also need to use a quantumly controlled circuit, but the
overhead in the number of qubits is much smaller than in the previous Grover-
type speedup. The underlying quantum technique crucially relies on the quantum
Fourier transform as it is based on an improved version of Jordan’s gradient
computation [Jor05] algorithm. We can optionally combine this speedup with
the above-mentioned maximum finding improvement, which then gives a quantum
algorithm that uses the quantumly controlled circuit (Figure 4.1b) Õ

(
T
√
Nd/ε

)
times, and achieves essentially the same guarantees as the classical algorithm.
Therefore we can achieve a quadratic speedup in terms of all parameters except
in T and obtain an overall complexity of Õ

(
T
√
Nd/ε

)
. For a summary of the

speedups see Table 4.1.

5I.e., with high probability, we will find a point from the top 1/N percentile of the points
regarding the objective function p(zzz).
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4.4 The three natural input oracle models

As we discussed in the previous section, the optimization problem associated with
Figure 4.1 was to maximize

max
xxx

p(xxx) = max
xxx

∥∥∥(|1〉〈1| ⊗ I)U(xxx)|~0〉
∥∥∥2

.

Typically, one should think of U as the unitary corresponding to some variational
quantum circuit or parametrized quantum algorithm. In more abstract terms, we
can view U as a probability oracle that maps |~0〉|xxx〉 to some state, such that the
probability of obtaining 1 on measuring the last qubit is p(xxx). This measurement
probability serves as a “benchmark score” for the corresponding unitary U with
respect to the vector of parameters xxx.

4.4.1. Definition (Probability oracle). We say that Up : Haux⊗H → Haux⊗H
is a probability oracle for the function p : X → [0, 1], if {|x〉 : x ∈ X} is an
orthonormal basis of the Hilbert space H, and for all x ∈ X it acts as

Up : |~0〉|x〉 7→
(√

p(x)|1〉|ψ(1)
x 〉+

√
1− p(x)|0〉|ψ(0)

x 〉
)
|x〉,

where |ψ(1)
x 〉 and |ψ(1)

x 〉 are arbitrary (normalized) quantum states.

This oracle model is not commonly used in quantum algorithms, therefore we
need to convert it to a different format, for example to a phase oracle, in order
to use standard quantum techniques.

4.4.2. Definition (Phase oracle). We say that Of : Haux ⊗H → Haux ⊗H is a
phase oracle for f : X → [−1, 1], if {|x〉 : x ∈ X} is an orthonormal basis of the
Hilbert space H, and for all x ∈ X it acts as

Of : |~0〉|x〉 7→ eif(x)|~0〉|x〉.

There is a third type of oracle that is commonly used in (quantum) algo-
rithms, namely the binary oracle that outputs a finite-precision binary represen-
tation of the probability [WKS15]. This is the input model used in the work of
Jordan [Jor05], but in fact the first step of his algorithm converts this oracle to a
phase oracle.

4.4.3. Definition (Binary oracle). For η ∈ R+, we say Bη
f : H ⊗Haux → H⊗

Haux is an η-accurate binary oracle for f : X → R, if {|x〉 : x ∈ X} is an
orthonormal basis of the Hilbert space H, and for all x ∈ X it acts as

Bη
f : |x〉|~0〉 7→ |x〉|f̃(x)〉,
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where |f̃(x)〉 is a fixed-point binary number satisfying |f̃(x) − f(x)| ≤ η. We
denote the cost of one query to Bη

f by C(η).6,7

Note that using amplitude estimation8 it is possible to turn a probability
oracle into a binary oracle and then convert a binary oracle to a phase oracle.
However, it is more efficient to avoid this analogue-digital-analogue conversion,
and directly convert a probability oracle to a phase oracle.

4.4.1 Converting a probability oracle to a phase oracle

We use block-encoding and Hamiltonian simulation techniques introduced in
Chapter 3 to implement the conversion efficiently. We implement (fractional)
phase oracles by first turning a probability oracle to a block-encoding of the di-
agonal matrix containing the probabilities, then use the Hamiltonian simulation
result described in Section 3.4.1.

Let Up be a probability oracle, observe that

(〈~0| ⊗ I)
(
U †p(Z ⊗ I)Up

)
(|~0〉 ⊗ I) = diag(1− 2p(x)).

Therefore U †p(Z⊗I)Up is a block-encoding of a diagonal matrix with diagonal en-
tries (1−2p(x)). Moreover, we can implement a controlled version of this unitary
by simply replacing Z with a controlled-Z. By Theorem 3.4.3 and Corollary 3.4.5
we get the following result:

4.4.4. Corollary (Probability to phase oracle). Suppose that we are given a
probability oracle for p(x) : X → [0, 1]. Let t ∈ R and f(x) = tp(x) for all
x ∈ X. We can implement an ε-approximate phase oracle Of with query com-
plexity O(|t|+ log(1/ε)), i.e., that many uses of Up and its inverse. Moreover,
if |~0〉 = |0〉⊗a is an a-qubit state, then this query complexity bound times O(a)
upper bounds the gate complexity.

Form this we see that a probability oracle can be efficiently converted to a
(fractional) phase oracle. As we have shown in Corollary 3.4.19, if |f | ≤ 1, then
with a similar logarithmic overhead a phase oracle can be converted to fractional
phase oracle. For these reasons, and for simplicity, throughout this chapter we
assume that a fractional phase query has the same cost as a non-fractional/full
phase query.

6One could also consider a more general definition allowing the oracle to output a superpo-
sition of η-accurate answers.

7The cost function would typically be polylog(1/η) for functions that can be calculated using
a classical circuit. However, when the binary oracle is obtained via quantum phase estimation
this cost is typically 1/η.

8In some cases people use sampling and classical statistics to learn this probability. How-
ever amplitude estimation is quadratically more efficient. Typically one can improve sampling
procedures quadratically using quantum techniques [Mon15, HM18].
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4.4.5. Definition (Fractional phase oracle). For r ∈ [−1, 1] we say that Orf :
Haux ⊗H → Haux ⊗H is a fractional query9 phase oracle for f : X → [−1, 1], if
{|x〉 : x ∈ X} is an orthonormal basis of the Hilbert space H, and for all x ∈ X
it acts as

Orf : |~0〉|x〉 7→ eirf(x)|~0〉|x〉.

4.4.2 Converting a phase oracle to a probability oracle

Using the techniques of Chapter 3 we can also implement the inverse conversion.
Starting from a phase oracle for 1

3
≤ p(x) ≤ 2

3
we can implement its logarithm

by Corollary 3.4.18, which results in the block-encoding of a diagonal matrix
with p(x) on the diagonal. We can then take the square-root of this operator
by Corollary 3.4.14, which then results in a probability oracle: apply the block-
encoding of diag(

√
p(x)) and check if the auxiliary qubits remained zero; if not

set the flag qubit to 1. This procedure can be slightly improved as follows.

4.4.6. Proposition. Let ε, δ ∈ (0, 1/2), and p : X → [δ, 1− δ]. Then with
O(log(1/ε)/δ) uses of the (controlled) Op, O†p oracles and other two-qubit gates,
we can implement a probability oracle

Up : |x〉|0〉⊗a|0〉 7→ |x〉 ⊗
(√

p̃(x)|0〉⊗a|0〉+
√

1− p̃(x)|Φ⊥〉|1〉
)
,

where
∣∣∣√p̃(x)−

√
p(x)

∣∣∣ ≤ ε for every x ∈ X, 〈0⊗a|Φ⊥〉 = 0 and a = O(1).

Proof: Let cU denote the controlled version of the unitary U := eiO†p controlled
by the first qubit. We use the trick of Corollary 3.4.18 and work with the operator

−i(〈+| ⊗ I)cU †(ZX ⊗ I)cU(|+〉 ⊗ I) = diag(sin(1− p(x))).

Applying singular value transformation (Corollary 2.3.8) using a bounded even
polynomial P̃ (z), ε-approximating

√
1−arcsin(z) on the domain [ δ

2
, sin(1) − δ

2
]

would solve our problem, since for p ∈ [δ, 1−δ] we have sin(1−p) ∈ [ δ
2
, sin(1)− δ

2
].

We finish the proof by constructing an even approximating polynomial of
degreeO(log(1/ε)/δ). For this we first analyze the Taylor series

√
1− arcsin(z) =∑∞

j=0 ajz
j, by observing that arcsin(z) =

∑∞
`=0 b`z

` =
∑∞

i=0

(
2i
i

)
2−2i

2i+1
z2i+1 for all

z ∈ [−1, 1], and
√

1− y =
∑∞

k=0 cky
k =

∑∞
k=0

(
1/2
k

)
(−y)k for all y ∈ [−1, 1]. Since

b` ≥ 0 for all ` ∈ N0 and ck ≤ 0 for all k ∈ N we get aj ≤ 0 for all j ∈ N. It is also
easy to see that for all z ∈ [sin(−1), sin(1)] we have

∑∞
j=0 ajz

j =
√

1−arcsin(z), so
∞∑
j=0

|aj| sinj(1) = |a0| − (
∞∑
j=0

aj sinj(1)− a0) = 1− (
√

1− arcsin(sin(1))− 1) = 2.

9 Note that this fractional query is more general than the fractional query introduced by
Cleve et al. [CGM+09], because we have a continuous phase rather than discrete. Thus, the
results of [CGM+09] do not give a way to implement a generic fractional query to our phase
oracle Of . However, we can use Corollary 3.4.19 instead.
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By Corollary 3.4.12 (choosing x0 ← 0, r ← sin(1) − δ/8, δ ← δ/8 and B ← 2)
we can construct an approximating polynomial P (z) of degree O(log(1/ε)/δ),
which is bounded by 2 in absolute value on the domain z ∈ [−1, 1], and for all
z ∈ [ δ

4
, sin(1) − δ

4
] it is (ε/16)-close to

√
1− arcsin(z). By Lemma 3.2.2 we can

construct a polynomial S(z) of degreeO(log(1/ε)/δ), such that S(z) ∈ [0, 1−ε/16]
for all z ∈ [−2, 2], S(z) ≤ ε/64 for all z ∈ [−2,−δ/8] and S(z) ≥ 1 − ε/8 for all
z ∈ [δ/8, 2]. Taking the even part of 2S(z− 3δ

8
)P (z)S(1− 3δ

8
−z) gives our desired

bounded polynomial approximation P̃ (z), which is ε-close to
√

1− arcsin(z) on
the domain [ δ

2
, sin(1)− δ

2
], and is bounded by 1 in absolute value on [−1, 1]. 2

4.5 Improved quantum gradient computation al-
gorithm

4.5.1 Overview of Jordan’s algorithm

Stephen Jordan constructed a surprisingly simple quantum algorithm [Jor05,
Bul05b] that can approximately calculate the d-dimensional gradient of a function
f : Rd → R with a single evaluation of f . In contrast, using standard classical
techniques, one would use d+ 1 function evaluations to calculate the gradient at
a point xxx ∈ Rd: one can first evaluate f(xxx) and then, for every i ∈ [d], evaluate
f(xxx + δeeei) (for some δ > 0) to get an approximation of the gradient in direction
i using the standard formula

∇if(xxx) ≈ f(xxx+ δeeei)− f(xxx)

δ
.

The basic idea of Jordan’s quantum algorithm [Jor05] is simple. First make
two observations. Observe that if f is twice differentiable at xxx, then f(xxx + δδδ) =
f(xxx) + ∇f · δδδ + O(‖δδδ‖2), which in particular implies that for small ‖δδδ‖, the
function f is very close to being affine linear. The second observation is that,
using the value of f(xxx+ δδδ), one can implement a phase oracle:

O2πSf : |δδδ〉 7→ e2πiSf(xxx+δδδ)|δδδ〉 ≈ e2πiSf(xxx)e2πiS∇f ·δδδ|δδδ〉 (4.8)

for a scaling factor S > 0, where the approximation uses f(xxx+δδδ) ≈ f(xxx) +∇f ·δδδ
for small ‖δδδ‖. The role of S is to make the phases appropriate for the final
quantum Fourier transform.

Sketch of the algorithm. Assume that all real vectors are expressed up to
some finite amount of precision. In order to compute the gradient at xxx, the
algorithm starts with a uniform superposition |ψ〉 = 1√

|Gdxxx |

∑
δδδ∈Gdxxx
|δδδ〉 over the

points of a sufficiently small discretized d-dimensional grid Gd
xxx around xxx, and
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applies the phase oracle O2πSf (in Eq. 4.8) to |ψ〉. Next, the inverse quantum
Fourier transform is applied to the resulting state and each register is measured
to obtain the gradient of f at xxx approximately. Due to approximate linearity of
the phase, as described in Eq. (4.8), applying the inverse Fourier transform will
approximately give us the gradient. This algorithm uses O2πSf once and Jordan
showed how to implement O2πSf using one sufficiently precise function evaluation.

In order to improve the accuracy of the simple algorithm above, one could
use some natural tricks. If f is twice continuously differentiable, it is easy to see
that the smaller the grid Gd

xxx becomes, the closer the function gets to being linear.
This gives control over the precision of the algorithm. However, if we “zoom-in”
to the function using a smaller grid, the difference between nearby function values
becomes smaller, making it harder the distinguish them and thus increasing the
complexity of the algorithm proportionally.

Also, it is well known that if the derivative is calculated based on the differ-
ences between the points (f(x−δ/2), f(x+δ/2)) rather than (f(x), f(x + δ)),
then one gets a better approximation since the quadratic correction term cancels.
To mimic this trick, Jordan chose a symmetric grid Gd

xxx around 000.

Complexity of the algorithm For Jordan’s algorithm, it remains to pick the
parameters of the grid and the constant S in Eq. 4.8. For simplicity, assume that
‖∇f(xxx)‖∞ ≤ 1, and suppose we want to approximate ∇f(xxx) coordinate-wise up
to precision ε, with high success probability. Under the assumption that “the 2nd

partial derivatives of f have a magnitude of approximately D2”, Jordan argues10

that choosing Gd
xxx to be a d-dimensional hypercube with edge length ` ≈ ε

D2

√
d
and

with N ≈ 1
ε
equally spaced grid points in each dimension, the quantum algorithm

yields an ε-approximate gradient by setting S = N
`
≈ D2

√
d

ε2
. Moreover, since the

Fourier transform is relatively insensitive to local phase errors it is sufficient to
implement the phase Sf(xxx+ δδδ) up to some constant, say 1% accuracy.

During the derivation of the above parameters Jordan makes the assumption,
that the third and higher-order terms of the Taylor expansion of f around xxx
are negligible. However, it is not clear from his work [Jor05], how to actually
handle the case when they are non-negligible. This could be a cause of concern
for the runtime analysis, since these higher-order terms potentially introduce a
dependence on the dimension d.

Finally, in order to assess the complexity of his algorithm, Jordan considers the
Binary oracle input model of Definition 4.4.3. This input model captures functions
that are evaluated numerically using, say, an arithmetic circuit. Typically, the
number of one and two-qubit gates needed to evaluate such functions up to n
digits of precision is polynomial in n and d. However, this input model does not

10We specifically refer to equation (4) in [Jor05] (equation (3) in the arXiv version), and
the discussion afterwards. Note that our precision parameter ε corresponds to the uncertainty
parameter σ in [Jor05].
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fit the quantum optimization framework that we introduced in Section 4.3.

Our improvements We improve on the results of Jordan [Jor05] in a number
of ways. Jordan [Jor05] argued that evaluating the function on a superposition
of grid-points symmetrically arranged around 000 is analogous to using a simple
central-difference formula. We also place the grid symmetrically, but we realized
that it is possible to directly use central-difference formulas, which is the main
idea behind our modified algorithm.

As discussed in the introduction, we realized that in applications of the gra-
dient descent algorithm for optimization problems, it is natural to assume access
to a phase oracle Of : |xxx〉 7→ eif(xxx)|xxx〉 (allowing fractional queries as well – see
Definition 4.4.5) instead of the Binary access oracle Bη

f . If we wanted to use
Jordan’s original algorithm in order to obtain the gradient with accuracy ε, we
need to implement the query oracle OS

f by setting S ≈ D2

√
d/ε2, which can be

achieved using dSe consecutive (fractional) queries. Although it gives a square-
root dependence on d it scales as O(1/ε2) with the precision. In this work, we
employ the phase oracle model and improve the quadratic dependence on 1/ε to
essentially linear. Additionally, we rigorously prove the square-root scaling with d
under reasonable assumptions on the derivatives of f . We describe our algorithm
in Section 4.5.3 and later also show that, for a class of smooth functions, the
Õ
(√

d/ε
)
-query complexity is optimal up to poly-logarithmic factors.

4.5.2 Analysis of Jordan’s algorithm

In this section we describe Jordan’s algorithm and provide a generic analysis of
its behavior. In the next subsection we combine these results with our finite-
difference methods. Before describing the algorithm, we introduce appropriate
representation of our qubit strings suitable for fixed-point arithmetics.

4.5.1. Definition. For every b ∈ {0, 1}n, let j(b) ∈ {0, . . . , 2n−1} be the integer
corresponding to the binary string b = (b1, . . . , bn). We label the n-qubit basis
state |b1〉|b2〉 · · · |bn〉 by |x(b)〉, where

x(b) =
j(b)

2n
− 1

2
+ 2−n−1.

We denote the set of corresponding labels as

Gn :=

{
j(b)

2n
− 1

2
+ 2−n−1 : j(b) ∈ {0, . . . , 2n − 1}

}
.

Note that there is a bijection between {j(b)}b∈{0,1}n and {x(b)}b∈{0,1}n , so we will
use |x(b)〉 and |j(b)〉 interchangeably in Claim 4.5.3. In the rest of this section we
always label n-qubit basis states by elements of Gn.
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4.5.2. Definition. For x ∈ Gn we define the Fourier transform of a state |x〉 as

QFTGn : |x〉 7→ 1√
2n

∑
k∈Gn

e2πi2nxk|k〉.

4.5.3. Proposition. This unitary is the same as the usual quantum Fourier
transform (QFTn) up to conjugation with a tensor product of n single-qubit gates.

Proof:
For bitstrings b, c ∈ {0, 1}n, let x(b) ∈ Gn and j(b) ∈ {0, . . . , 2n − 1} be as defined
in Definition 4.5.1. Then QFTGn acts on |j(b)〉 ≡ |x(b)〉 as

|x(b)〉 7→ 1√
2n

∑
x(c)∈Gn

e2πi2nx(b)x(c)|x(c)〉

≡ 1√
2n

∑
j(c)∈{0,...,2n−1}

e
2πi2n

(
j(b)

2n
− 1

2
+2−n−1

)(
j(c)

2n
− 1

2
+2−n−1

)
|j(c)〉

≡ 1√
2n

∑
j(c)∈{0,...,2n−1}

e
2πi

(
j(b)j(c)

2n
−(j(b)+j(c))( 1

2
+2−n−1)+(2n−2− 1

2
+2−n−2)

)
|j(c)〉.

Using the usual quantum Fourier transform

QFTn : |j(b)〉 7→ 1√
2n

∑
j(c)∈{0,...,2n−1}

e2πi2−nj(b)j(c)|j(c)〉

and the phase unitary U acting for every j(b) ∈ {0, . . . , 2n − 1} as

U : |j(b)〉 7→ e2πi(−j(b)( 1
2

+2−n−1)+(2n−2− 1
2

+2−n−2)/2)|j(b)〉,

it is easy to see that

QFTGn = U ·QFTn · U.

By writing j(b) in binary it is easy to see that U is a tensor product of n phase
gates. 2

Now we are ready to precisely describe Jordan’s quantum gradient computa-
tion algorithm.
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Algorithm 4.1 Jordan’s quantum gradient computation algorithm
Registers: Use n-qubit input registers |x1〉|x2〉 · · · |xd〉 with each qubit ini-
tialized to |0〉.
Labels: Label the n-qubit states of each register with elements of Gn as in
Definition 4.5.1.
Input: A function f : Gd

n → R with phase-oracle Of access such that

Oπ2n+1

f |x1〉|x2〉· · ·|xd〉 = e2πi2nf(x1,x2,...,xd)|x1〉|x2〉· · ·|xd〉.

1: Init Apply a Hadamard transform to each qubit of the input registers.
2: Oracle call Apply the modified phase oracle Oπ2n+1

f on the input registers.
3: QFT−1

Gn
Fourier transform each register individually:

|x〉 7→ 1√
2n

∑
k∈Gn

e−2πi2nxk|k〉.

4: Measure each input register j and denote the measurement outcome by kj.
5: Output (k1, k2, . . . , kd) as the estimation for the gradient.

4.5.4. Lemma. Let N = 2n, c ∈ R and ggg ∈ Rd such that ‖ggg‖∞ ≤ 1/3. If
f : Gd

n → R is such that
|f(xxx)− ggg · xxx− c| ≤ 1

42πN
, (4.9)

for all but a 1/1000 fraction of the points xxx ∈ Gd
n, then the output of Algorithm 4.1

satisfies:
Pr[|ki − gi| >4/N ] ≤ 1/3 for every i ∈ [d].

Proof:
First, note |Gn|=N from Definition 4.5.1. Consider the following quantum states

|φ〉 :=
1√
Nd

∑
xxx∈Gdn

e2πiNf(xxx)|xxx〉 and |ψ〉 :=
1√
Nd

∑
xxx∈Gdn

e2πiN(ggg·xxx+c)|xxx〉.

Note that |φ〉 is the state we obtain in Algorithm 4.1 after line 2 and |ψ〉 is its
“ideal version” that we try to approximate with |φ〉. Observe that the “ideal” |ψ〉
is actually a product state:

|ψ〉 = e2πiNc ·
( 1√

N

∑
x1∈Gn

e2πiNg1·x1|x1〉
)
⊗ · · · ⊗

( 1√
N

∑
xd∈Gn

e2πiNgd·xd |xd〉
)
.

It is easy to see that after applying the inverse Fourier transform to each
register separately (as in line 3) to |ψ〉, we obtain the state

e2πiNc ·
( 1

N

∑
x1,k1∈G2

n

e2πiNx1(g1−k1)|k1〉
)
⊗ · · · ⊗

( 1

N

∑
xd,kd∈G2

n

e2πiNxd(gd−kd)|kd〉
)
.
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Suppose we make a measurement and observe (k1, . . . , kd). As shown in the
analysis of phase estimation [NC00, Section 5.2.1], we have the following11: for
every i ∈ [d] (for a fixed accuracy parameter κ > 1), the following holds:

Pr
[
|ki − gi| >

κ

N

]
≤ 1

2(κ− 1)
for every i ∈ [d].

By fixing κ = 4, we obtain the desired conclusion of the theorem, i.e., if we had
access to |ψ〉 (instead of |φ〉), then we would get a 4/N -approximation of each
coordinate of the gradient with probability at least 5/6. It remains to show that
this probability does not change more than 1/3 − 1/6 = 1/6 if we apply the
Fourier transform to |φ〉 instead of |ψ〉. As shown in Chapter 1, the difference in
the probability of any measurement outcome on these states is bounded by twice
the trace distance between |ψ〉 and |φ〉 which is

1

2
‖|ψ〉〈ψ| − |φ〉〈φ|‖1 =

√
1− |〈ψ|φ〉|2 ≤ ‖|ψ〉 − |φ〉‖. (4.10)

Since the Fourier transform is unitary and does not change the Euclidean distance,
it is sufficient to show that ‖|ψ〉 − |φ〉‖ ≤ 1/12 in order to conclude the theorem.
Let S ⊆ Gd

n denote the set of points satisfying Eq. (4.9). We conclude the proof
of the theorem by showing ‖|ψ〉 − |φ〉‖2 ≤ (1/12)2:

‖|φ〉−|ψ〉‖2 =
1

Nd

∑
xxx∈Gdn

∣∣e2πiNf(xxx) − e2πiN(ggg·xxx+c)
∣∣2

=
1

Nd

∑
xxx∈S

∣∣e2πiNf(xxx) − e2πiN(ggg·xxx+c)
∣∣2+ 1

Nd

∑
xxx∈Gdn\S

∣∣e2πiNf(xxx) − e2πiN(ggg·xxx+c)
∣∣2

≤ 1

Nd

∑
xxx∈S

|2πNf(xxx)− 2πN(ggg · xxx+ c)|2+ 1

Nd

∑
xxx∈Gdn\S

4

(since |eiz − eiy| ≤ |z − y|)

=
1

Nd

∑
xxx∈S

(2πN)2|f(xxx)− (ggg · xxx+ c)|2+ 4
|Gd

n \ S|
Nd

≤ 1

Nd

∑
xxx∈S

(
1

21

)2

+
4

1000
(by the assumptions of the theorem)

≤ 1

441
+

1

250
<

1

144
=

(
1

12

)2

.

2

11Note that our Fourier transform is slightly altered, but the same proof applies as in [NC00,
(5.34)]. In fact this result can be directly translated to our case by considering the unitary
conjugations proven in Remark 4.5.3.
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In the following theorem we assume that we have access to (a high power of)
a phase oracle of a function f that is very well approximated by an affine linear
function ggg ·zzz+ c on a hypergrid with edge-length r ∈ R around some yyy ∈ Rd. We
show that if the approximation error is sufficiently low relative to the grid size r,
then Algorithm 4.1 can compute an approximation of ggg (the “steepness”, similar
to a gradient) with small query and gate complexity.

4.5.5. Theorem. Let c ∈ R, ε < M ∈ R+, r, ρ ∈ R+, and yyy,ggg ∈ Rd such that
‖ggg‖∞ ≤ M . Let nε := dlog2(4/(rε))e, nM := dlog2(3rM)e and n := nε + nM .
Suppose f :

(
yyy + rGd

n

)
→ R is such that

|f(yyy + rxxx)− ggg · rxxx− c| ≤ εr

8 · 42π

for all but a 1/1000 fraction of the points xxx ∈ Gd
n. If we have access to a phase

oracle O : |xxx〉 → e2πi2nεf(yyy+rxxx)|xxx〉 acting on H = Span{|xxx〉 : xxx ∈ Gd
n}, then we can

calculate a vector g̃gg ∈ Rd, simultaneously approximating all coordinates such that

Pr[ ‖g̃gg − ggg‖∞ >ε] ≤ ρ,

with O
(

log
(
d
ρ

))
queries to O and with gate complexity

O
(
d log

(
d

ρ

)
log

(
M

ε

)
log log

(
d

ρ

)
log log

(
M

ε

))
.

Proof:
Let NM := 2nM , N := 2n, and h(xxx) := f(yyy+rxxx)

NM
, then

∣∣h(x) − ggg r
NM

xxx − c
NM

∣∣ ≤
εr

8·42πNM
≤ 1

42πN
. Note that O = O2πN

h , therefore Algorithm 4.1 yields an output g̃gg,
which, as shown by Lemma 4.5.4, is such that that for each i ∈ [d] with probability
at least 2/3 we have

∣∣g̃i − r
NM

gi
∣∣ ≤ 4

N
. Thus also

∣∣NM
r
g̃i − gi

∣∣ ≤ 4NM
rN
≤ ε. By

repeating the procedure O(log(d/ρ)) times and taking the median coordinate-
wise we get a vector g̃ggmed, such that ‖g̃ggmed − ggg‖∞ ≤ ε with probability at least
(1− ρ).

The gate complexity statement follows from the fact that the complexity of
Algorithm 4.1 is dominated by that of the d independent quantum Fourier trans-
forms, each of which can be approximately implemented using O(n log n) gates.
We repeat the procedureO(log(d/ρ)) times, which amounts toO(d log(d/ρ)n log n)
gates. At the end we get d groups of numbers each containing O(log(d/ρ)) num-
bers with n bits of precision. We can sort each group with a circuit having
O(log(d/ρ) log log(d/ρ)n log n) gates.12 So the final gate complexity is

O(d log(d/ρ) log log(d/ρ)n log n),

which gives the stated gate complexity by observing that n = O(log(M/ε)). 2

12Note that using the median of medians algorithm [BFP+73] we could do this step with
O(log(d/ρ)n) time complexity, but this result probably does not apply to the circuit model,
which is somewhat weaker than, e.g., a Turing machine or the RAM model.
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4.5.3 Improved quantum gradient algorithm using higher-
degree methods

Theorem 4.5.5 shows Jordan’s algorithm works well if the function is very close
to linear function over a large hyprecube. However, in general even highly regular
functions tend to quickly diverge from their linear approximations. To tackle this
problem we borrow ideas from numerical analysis and use higher-degree finite-
difference formulas to extend the range of approximate linearity.

We will apply Jordan’s algorithm to the approximate finite-difference lin-
earization of the function rather than the function itself. We illustrate the main
idea on a simple example: suppose we want to calculate the gradient at 000, then
we could use the 2-point approximation (f(xxx)− f(−xxx))/2 instead of f , which has
the advantage that it cancels out even-order contributions. The corresponding
phase oracle |xxx〉 → e2nπi(f(xxx)−f(−xxx))|xxx〉 is also easy to implement as the product of
the oracles:

+ phase oracle: |xxx〉 = e2nπif(xxx)|xxx〉 and − phase oracle: |xxx〉 = e−2nπif(−xxx)|xxx〉.

We use high-order central-difference approximation formulas. There is a vari-
ety of other related formulas [Li05], but we stick to the central difference because
the absolute values of the coefficients in this formula scale favorably with the
approximation degree. Since we only consider central differences, all our approxi-
mations have even degree, which is sufficient for our purposes as we are interested
in the asymptotic scaling. Nevertheless, it is not difficult to generalize our ap-
proach using other formulas [Li05] that can provide odd-degree approximations
as well.

Algorithm 4.2 Improved quantum gradient computation

Input: A point xxx ∈ Rd and a function f : Rd → R with probability or
(fractional) phase oracle access
Parameters: m : interpolation order; R : rescaling
Function transformation: g(yyy) := R · f(xxx+ yyy/R)
Oracle implementation:

Ot
g(2m)

:=
m∏

`=−m

(
I ⊗ S†`

)
·OtRa

(2m)
`

f ·
(
I ⊗ S`

)
,

where OtRa
(2m)
`

f is implemented by Corollary 4.4.4 or as a product of (frac-

tional) phase oracles; I acts on the ancilla qubits used by O
tRa

(2m)
`

f , and
S` : |yyy〉 7→ |xxx+ `yyy/R〉 for all yyy ∈ G evaluation points used by Algorithm 4.1.
Use Jordan’s Algorithm 4.1: compute ∇g(2m)(000)
Output: Approximation of ∇g(2m)(000) = ∇f(xxx)
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In the following lemma, we show that if f : R → R is (2m + 1)-times con-
tinuously differentiable, then the central-difference formula in Eq. (4.6) of Defi-
nition 4.2.4 is a good approximation to the derivative f ′(0). Eventually we will
generalize this to the setting where f : Rd → R.

4.5.6. Lemma. Let δ ∈ R+, m ∈ N and suppose f : [−mδ,mδ]→ R is (2m+ 1)-
times differentiable. Then

∣∣f ′(0)δ − f(2m)(δ)
∣∣ =

∣∣∣∣∣f ′(0)δ −
m∑

`=−m

a
(2m)
` f(`δ)

∣∣∣∣∣ ≤ e−
m
2

∥∥f (2m+1)
∥∥
∞|δ|

2m+1,

(4.11)
where

∥∥f (2m+1)
∥∥
∞ := supξ∈[−mδ,mδ] |f (2m+1)(ξ)|. Moreover,

m∑
`=0

∣∣∣a(2m)
`

∣∣∣ < m∑
`=1

1

`
≤ ln(m) + 1. (4.12)

This lemma shows that for small enough δ the approximation error in (4.6)
is upper bounded by a factor proportional to δ2m+1. If

∥∥f (2m+1)
∥∥
∞ ≤ cm for all

m and we choose δ ≤ 1/c, then the approximation error becomes exponentially
small in m, motivating the use of higher-degree methods in our modified gradient
computation algorithm. We generalize this statement to higher dimensions in
Appendix 4.A, which leads to our first result regarding our improved algorithm
(for the definition of the directional partial derivative ∂2m+1

rrr f see Definition 4.2.3):

4.5.7. Theorem. Let m ∈ Z+, D ∈ R+ and B ≥ 0. Suppose f : [−D,D]d → R
is given with (fractional) phase oracle access. If f is (2m+1)-times differentiable
and for all xxx ∈ [−D,D]d we have that

|∂2m+1
rrr f(xxx)| ≤ B for rrr = xxx/‖xxx‖,

then using Algorithm 4.2 with setting

R = Θ

max

√d 2m

√
B
√
d

ε
,
m

D


we can compute an approximate gradient ggg such that ‖ggg −∇f(000)‖∞ ≤ ε with
probability at least (1− ρ), using O

((
R
ε

log(2m) +m
)

log
(
d
ρ

))
phase queries.

Suppose that D = Θ(1), and f is a multi-variate polynomial of degree k. Then
for m = dk/2e we get that B = 0, as can be seen by using (4.5), therefore the
above result gives an Õ

(
k
ε

log
(
d
ρ

))
query algorithm. If 2 ≤ k = O(log(d)), then

this result gives an exponential speedup in terms of the dimension d compared to
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Jordan’s algorithm. For comparison we note that other recent results concerning
quantum gradient descent also work under the assumption that the objective
function is a polynomial [RSPL16, KP17a].

However, as we argue in Appendix 4.A, for non-polynomial functions we can
have B ≈ dm even under strong regularity conditions. This then results in an
Õ
(
d
ε

)
query algorithm, achieving the desired scaling in ε but failing to capture

the sought
√
d scaling. In order to tackle the non-polynomial case we need to

introduce some smoothness conditions.

4.5.4 Approximation-error bounds for smooth functions

In this section we show how to improve the result of Theorem 4.5.7, assuming
some smoothness condition. The calculus gets a bit involved, because we need to
handle higher-dimensional analysis. In order to focus on the main results, we keep
this section concise and move the proof of some technical results to Appendix 4.A.
We show that under reasonable smoothness assumptions, the complexity of our
quantum algorithm is Õ(

√
d/ε) and in the next section show that for a specific

class of smooth functions this is in fact optimal up to polylog factors.
A key ingredient of our proof is the following lemma, bounding the “second

moment” of higher-order bounded tensors, proven in Appendix 4.A.

4.5.8. Lemma. Let d, k ∈ N+, and suppose H ∈
(
Rd
)⊗k is an order-k tensor of

dimension d, having all elements bounded by 1 in absolute value, i.e., ‖H‖∞ ≤ 1.
Suppose (x1, . . . , xd) is a vector of i.i.d. symmetric random variables bounded in
[−1/2, 1/2]. Then for every t > 0

Pr

∣∣∣∣∣∣
∑
α∈[d]k

Hαx
α

∣∣∣∣∣∣ ≥ √2

(
t

√
dk

2

)k ≤ 1

t2k
.

Using this lemma, we can prove the following result about analytic functions:

4.5.9. Theorem. If r ∈ R+, f : Rd→ R is analytic and for all k ∈ N, α ∈ [d]k

we have
|∂αf(000)| ≤ ckk

k
2 ,

then

|∇f(000)yyy − f(2m)(yyy)| ≤
∞∑

k=2m+1

(
8rcm

√
d
)k
,

for all but a 1/1000 fraction of points yyy ∈ r ·Gd
n.

We can use this result to analyze the complexity of Algorithm 4.1 when applied
to functions evaluated using a central-difference formula. In particular it makes
it easy to prove the following theorem, which is one of our main results.
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4.5.10. Theorem. Let xxx ∈ Rd, ε ≤ c ∈ R+ be fixed constants and suppose
f : Rd→ R is analytic13 and satisfies the following: for every k ∈N and α ∈ [d]k

|∂αf(xxx)| ≤ ckk
k
2 .

Using Algorithm 4.2 with setting m = log(c
√
d/ε) and

R = Θ
(
cm
√
d
)

we can compute an ε-approximate gradient ∇̃f(xxx) ∈ Rd such that∥∥∥∇f(xxx)− ∇̃f(xxx)
∥∥∥
∞
≤ ε,

with probability at least 1 − δ, using Õ
(
c
√
d
ε

log
(
d
δ

))
queries to a probability or

(fractional) phase oracle of f .

Proof:
Let g(yyy) := f(xxx + yyy). By Theorem 4.5.9 we know that for a uniformly random

yyy ∈ r · Gd
n we have |∇g(000)yyy − g(2m)(yyy)| ≤

∑∞
k=2m+1

(
8rcm

√
d
)k

with probability
at least 999/1000. Now we choose r such that this becomes smaller than εr

8·42π
.

Now let us define R := r−1 := 9cm
√
d
(

81 · 8 · 42πcm
√
d/ε
)1/(2m)

, then we get

8rcm
√
d = 8

9

(
81 · 8 · 42πcm

√
d/ε
)−1/(2m)

and so

∞∑
k=2m+1

(
8rcm

√
d
)k

=
(

8rcm
√
d
)2m+1

∞∑
k=0

(
8rcm

√
d
)k

≤ ε

81 · 8 · 42πcm
√
d

(
81 · 8 · 42πcm

√
d/ε
)−1
2m

∞∑
k=0

(
8

9

)k
(by our choice of r)

=
ε

9cm
√
d · 8 · 42π

(
81 · 8 · 42πcm

√
d/ε
)−1
2m

(since
∑∞

k=0

(
8
9

)k
= 9)

=
εr

8 · 42π
.

13 For convenience we assume in the statement that f can be evaluated at any point of Rd,
but in fact we only evaluate it inside a finite ball around xxx. It is straightforward to translate
the result to case where the function is only accessible on an open ball around xxx. However, a
finite domain imposes restrictions to the evaluation points of the function. If xxx lies too close to
the boundary, this might impose additional scaling requirements and thus potentially increases
the complexity of the derived algorithm. Fortunately in our applications it is natural to assume
that f can be evaluated at distant points too, so we don’t need to worry about this detail.
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By Theorem 4.5.5 we can compute an ε-approximation of ∇g(2m)(xxx) with O
(
log d

δ

)
queries to OS

g(2m)
, where S = O

(
1
εr

)
. Observe that

OS
g(2m)
|yyy〉 = eiSg(2m)(yyy)|yyy〉 = eiS

∑m
`=−m a

(2m)
` g(`yyy)|yyy〉.

Using the relation between f and g, it is easy to see that the number of (fractional)
phase queries to Of we need in order to implement a modified oracle call OS

g(2m)

is
m∑

`=−m

⌈∣∣∣a(2m)
`

∣∣∣S⌉ ≤ 2m+ S

m∑
`=−m

a
(2m)
`

(4.12)
≤ 2m+ S(2 log(m) + 2). (4.13)

Thus OS
g(2m)

can be implemented using O
(

log(m)
εr

+m
)
(fractional) queries to Of .

Picking m = log(c
√
d/ε) the query complexity becomes14

O

(
c
√
d

ε
m log(m)

)
= O

(
c
√
d

ε
log

(
c
√
d

ε

)
log log

(
c
√
d

ε

))
. (4.14)

2

The above achieves, up to logarithmic factors, the desired 1/ε scaling in the
precision parameter and also the

√
d scaling with the dimension. This improves

the results of [Jor05] both quantitatively and qualitatively.
We also show that the query complexity for this problem is almost optimal,

by proving a lower bound in Section 4.6 which matches the above upper bound
up to log factors.

4.5.5 Most quantum optimization problems are “smooth”

We now show that the condition on the derivatives in Theorem 4.5.10 is fairly
reasonable, i.e., a wide range of probability oracles that arise from quantum
optimization problems satisfy this condition. In particular, consider the function
p : Rd → R that we looked at (see Eq. (4.7)) during the discussion of a generic
model of quantum optimization algorithms:

p(xxx) = 〈000|U(xxx)†(|1〉〈1| ⊗ I)U(xxx)|000〉.

We will now show that for every k ∈ N and index-sequence α ∈ [d]k, we have15

|∂αp(xxx)| ≤ 2k when U(xxx) is a product of d (controlled) rotations

Rot(xj) =

(
cos(xj) sin(xj)
− sin(xj) cos(xj)

)
= exp

[
ixj

(
0 −i
i 0

)]
= eixjσy

14If we strengthen the ckk
k
2 upper bound assumption on the derivatives to ck, then we could

improve the bound of Theorem 4.5.9 by a factor of k−k/2. Therefore in the definition of R−1

we could replace m by
√
m which would quadratically improve the log factor in (4.14).

15This essentially means that the function p(xxx) in the probability oracle is in the
Gevrey [Gev18] class G0.
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and other fixed unitaries. In order to prove this, we use Lemma 4.5.11 to show
that ‖∂αU(xxx)‖ ≤ 1 for every index-sequence α, which by Lemma 4.5.12 implies∥∥∂α(U(xxx)†(|1〉〈1| ⊗ I)U(xxx)

)∥∥ ≤ 2k,

hence proving the claim. In fact, we prove slightly stronger statements, so that
these lemmas can be used later in greater generality.

4.5.11. Lemma. Suppose γ ≥ 0 and

U(xxx) = U0

d∏
j=1

(
Πj ⊗ eixjHj + (I − Πj)⊗ I

)
Uj,

where ‖U0‖ ≤ 1 and for every j ∈ [d] we a have that ‖Uj‖ ≤ 1, Πj is an orthogonal
projector and Hj is Hermitian with ‖Hj‖ ≤ γ . Then for every k ∈ N and
α ∈ [d]k, we have that ‖∂αU(xxx)‖ ≤ γk.

Proof:
We have that

∂αU(xxx) = U0

d∏
j=1

(
Πj ⊗ (iHj)

|{`∈[k]:α`=j}|eixjHj + 0|{`∈[k]:α`=j}|(I − Πj)⊗ I
)
Uj,

therefore

‖∂αU(xxx)‖ =

∥∥∥∥∥U0

d∏
j=1

(
Πj ⊗ (iHj)

|{`∈[k]:α`=j}|eixjHj + 0|{`∈[k]:α`=j}|(I − Πj)⊗ I
)
Uj

∥∥∥∥∥
≤

d∏
j=1

∥∥∥(Πj ⊗ (iHj)
|{`∈[k]:α`=j}|eixjHj + 0|{`∈[k]:α`=j}|(I − Πj)⊗ I

)∥∥∥
≤

d∏
j=1

γ|{`∈[k]:α`=j}| = γk.

2

4.5.12. Lemma. Suppose that A(xxx), B(xxx) are linear operators parametrized by
xxx ∈ Rd. If for all k ∈ N0 and α ∈ [d]k we have that ‖∂αA‖ ≤ γk and ‖∂αB‖ ≤ γk,
then for all k ∈ N0 and α ∈ [d]k we get that ‖∂α(AB)‖ ≤ (2γ)k.

Proof:
For an index-sequence α = (α1, α2, . . . , αk) ∈ [d]k and a set S = {i1 < i2 <
. . . < i`} ⊆ [k] consisting of positions of the index-sequence, we define αS :=
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(αi1 , αi2 , . . . , αi`) ∈ [d]|S| to be the index-sequence where we only keep indexes
corresponding to positions in S; also let S := [k] \ S. It can be seen that

∂α(AB) =
∑
S⊆[k]

∂αSA∂αSB,

therefore

‖∂α(AB)‖ ≤
∑
S⊆[k]

∥∥∂αSA∂αSB∥∥ ≤ ∑
S⊆[k]

γ|S|γk−|S| = (2γ)k.

2

4.5.13. Remark. Finally note that the unitary in Lemma 4.5.11 is an analytic
function of its parameters, therefore the probability that we get by taking prod-
ucts of such unitaries and some fixed matrices/vectors is also an analytic function.

4.6 Lower bounds on gradient computation
In this section we prove that the number of phase oracle queries required to
compute the gradient for some of the smooth functions satisfying the requirement
of Theorem 4.5.10 is Ω

(√
d/ε
)
, showing that Theorem 4.5.10 is optimal up to

log factors. As Proposition 4.4.6 shows, a probability oracle can be simulated
using a logarithmic number of phase oracle queries, therefore this lower bound
also translates to probability oracles.16

We first prove a useful theorem providing a lower bound on the number of
queries needed in order to distinguish a particular phase oracle from a family of
other phase oracles. This result is of independent interest, and has already found
an application for proving lower bounds on quantum SDP-solving [vAG19].

Then we prove our lower bound on gradient computation by constructing a
family of functions which can be distinguished from the trivial phase oracle I by ε-
precise gradient computation, but for which our hybrid-method based lower bound
shows that distinguishing the phase oracles from I requires Ω

(√
d/ε
)
queries.

4.6.1 Hybrid method for arbitrary phase orcales

Now we turn to proving our general lower bound result based on the hybrid
method, which was originally introduced for proving a lower bound for quantum

16A probability oracle can only represent functions which map to [0, 1], whereas the range of
the function f we use in the lower bound proof is a subinterval of [−1, 1]. However, by using the
transformed function g := (2 + f)/4 we get a function which has a range contained in [1/2, 3/4]
so it can in principle be represented by a probability oracle. Moreover for a function whose
range is contained in [1/2, 3/4] we can efficiently convert between phase and probability oracles
as shown by Corollary 4.4.4 and Proposition 4.4.6.
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search17 by Bennett et al. [BBBV97], and can be viewed as a special case of
the adversary method [Amb00, HŠ05, LMR+11, Bel15]. Our proof closely fol-
lows the presentation of the hybrid method in Montanaro’s lecture notes [Mon11,
Section 1].

4.1.2. Theorem. (Hybrid method for arbitrary phase oracles) Let G be a (finite)
set of labels and let H := Span(|x〉 : x ∈ G) be a Hilbert space. For a function
f̃ : G→ R let Of̃ be the phase oracle acting on H such that

Of̃ : |x〉 → eif̃(x)|x〉 for every x ∈ G.

Suppose that F is a finite set of functions G→ R, and the function f∗ : G→ R is
not in F . If a quantum algorithm makes T queries to a (controlled) phase oracle
Of̃ (or its inverse) and for all f ∈ F can distinguish with probability at least 2/3

the case f̃ = f from the case f̃ = f∗, then

T ≥
√
|F|
3

/√
max
x∈G

∑
f∈F

min
(
|f(x)− f∗(x)|2, 4

)
.

Proof:
Suppose that F = {fj : j ∈ {1, . . . , d}}, and let f0 := f∗. Let Aj denote the
algorithm which uses phase oracle Ofj and let |ψj〉 := Aj|~0〉 denote the state of the
algorithm before the final measurement. Since we can distinguish the states |ψ0〉
and |ψj〉 with probability at least 2/3, by the Holevo-Helstrom theorem [Wat18,
Chapter 3.1.1], it follows that

2

3
≤ 1

2
+

1

4
‖|ψ0〉〈ψ0| − |ψj〉〈ψj|‖1.

Since ‖|ψ0〉〈ψ0| − |ψj〉〈ψj|‖1 ≤ 2‖|ψ0〉 − |ψj〉‖, we have that 1/3 ≤ ‖|ψ0〉 − |ψj〉‖.
In general the quantum algorithm might use some workspaceW = Span

w∈W
{|w〉 :

w ∈ W} along with the Hilbert space H. To emphasize this we introduce the
notation O′f := Of ⊗ IW , and G′ := G ×W , so that the elements of H ⊗W can
be labeled by the elements of G′. It is well known that in a quantum algorithm
all measurements can be postponed to the end of the quantum circuit, so we can
assume without loss of generality that between the queries the algorithm acts in
a unitary fashion. Thus we can write A = UTO′fUT−1O′fUT−1 · · ·U1O′fU0.

17One might wonder why we do not make a reduction to a search problem, e.g., by considering
a function which has non-zero gradient only at some marked coordinates. We expect that this
approach is not going to lead to a good lower bound, because the phase oracle is too strong, and
by calculating the gradient one can actually solve exact counting, which problem has a linear
lower bound for usual search oracles.
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Let us define for t ∈ {0, 1, . . . , T}

|ψ(t)
j 〉 :=

(
t∏

τ=1

UτO
′
fj

)
U0|~0〉,

the state of algorithm Aj after making t queries. We now prove by induction that
for all t ∈ {0, 1, . . . , T}

∥∥∥|ψ(t)
j 〉 − |ψ

(t)
0 〉
∥∥∥ ≤ t−1∑

τ=0

∥∥∥(O′fj −O′f0)|ψ
(τ)
0 〉
∥∥∥. (4.15)

For t = 0 the left-hand side is 0, so the base case holds. Let us assume that (4.15)
holds for t− 1, we prove the inductive step as follows:∥∥∥|ψ(t)

j 〉 − |ψ
(t)
0 〉
∥∥∥ =

∥∥∥UtO′fj |ψ(t−1)
j 〉 − UtO′f0 |ψ

(t−1)
0 〉

∥∥∥
=
∥∥∥O′fj |ψ

(t−1)
j 〉 −O′f0|ψ

(t−1)
0 〉

∥∥∥
(since norms are unitarily invariant)

=
∥∥∥O′fj

(
|ψ(t−1)
j 〉 − |ψ(t−1)

0 〉+ |ψ(t−1)
0 〉

)
−O′f0|ψ

(t−1)
0 〉

∥∥∥
≤
∥∥∥O′fj

(
|ψ(t−1)
j 〉 − |ψ(t−1)

0 〉
)∥∥∥+

∥∥∥(O′fj −O′f0)|ψ
(t−1)
0 〉

∥∥∥
(triangle inequality)

=
∥∥∥|ψ(t−1)

j 〉 − |ψ(t−1)
0 〉

∥∥∥+
∥∥∥(O′fj −O′f0)|ψ

(t−1)
0 〉

∥∥∥
≤

t−1∑
τ=0

∥∥∥(O′fj −O′f0)|ψ
(τ)
0 〉
∥∥∥. (by the induction hypothesis)

Since |ψj〉 = |ψ(T )
j 〉, we additionally have that

1/9 ≤ ‖|ψ0〉 − |ψj〉‖2 ≤

(
T−1∑
τ=0

∥∥∥(O′fj −O′f0)|ψ
(τ)
0 〉
∥∥∥)2

≤ T

T−1∑
τ=0

∥∥∥(O′fj −O′f0)|ψ
(τ)
0 〉
∥∥∥2

,

where the last inequality uses the Cauchy-Schwarz inequality. Averaging the
above inequality over the different oracles, we have

1/9 ≤ T

d

T−1∑
τ=0

∑
j∈[d]

∥∥∥(O′fj −O′f0)|ψ
(τ)
0 〉
∥∥∥2

≤ T 2

d
max
τ

∑
j∈[d]

∥∥∥(O′fj −O′f0)|ψ
(τ)
0 〉
∥∥∥2

. (4.16)

We now upper bound the right-hand side of Eq. (4.16) for an arbitrary pure state
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|ψ〉 to conclude the proof of the theorem.

∑
j∈[d]

∥∥∥(O′fj −O′f0)|ψ〉
∥∥∥2

=
∑
j∈[d]

∥∥∥∥∥
(∑
x∈G′
|x〉〈x|

)
(O′fj −O′f0)

(∑
x′∈G′

|x′〉〈x′|

)
|ψ〉

∥∥∥∥∥
2

=
∑
j∈[d]

∥∥∥∥∥∑
x∈G′
|x〉〈x|(O′fj −O′f0)|x〉〈x||ψ〉

∥∥∥∥∥
2

(since 〈x|O′fj |x
′〉 = 0 for x 6= x′)

=
∑
x∈G′
|〈x|ψ〉|2

∑
j∈[d]

∣∣∣〈x|(O′fj −O′f0)|x〉
∣∣∣2

≤ max
x∈G′

∑
j∈[d]

∣∣∣〈x|(O′fj −O′f0)|x〉
∣∣∣2

= max
x∈G

∑
j∈[d]

∣∣eifj(x) − eif0(x)
∣∣2 (note the G′ → G change)

≤ max
x∈G

∑
j∈[d]

min
(
|fj(x)− f0(x)|2, 4

)
(since |eiz − eiy| ≤ min(|z − y|, 2))

Combining this upper bound with Eq. (4.16), we have

1

9
≤ T 2

d
max
x∈G

∑
j∈[d]

min
(
|fj(x)− f0(x)|2, 4

)
,

which in turn gives us the desired lower bound

T ≥
√
d

3

/√
max
x∈G

∑
j∈[d]

min
(
|fj(x)− f0(x)|2, 4

)
.

Finally note that a controlled phase oracle is also a phase oracle, and the inverse
oracles have the same operator distance as the non-inverted versions, therefore
the above lower bound holds even if we allow controlled phase oracles or inverse
oracle calls. 2

4.6.2 A family of functions for proving the gradient com-
putation lower bound

Now we prove our lower bound on gradient computation by constructing a family
of functions F for which the corresponding phase oracles {Of : f ∈ F} require
Ω(
√
d/ε) queries to distinguish them from the constant 0 function (as shown by
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Theorem 4.1.2), but the functions in F can be uniquely identified by calculating
their gradient at 000 with accuracy ε. In particular, this implies that calculating
an approximation of the gradient vector for these functions must be at least as
hard as distinguishing the phase oracles corresponding to functions in F .

4.6.1. Lemma. Let d ∈ N, ε, c ∈ R+ and let us define the following Rd → R
functions: f∗(xxx) := 0 and fj(xxx) := 2εxje

−c2‖xxx‖2/2 for all j ∈ [d]. Consider the
family of functions F :=

⋃
j∈[d]{fj(xxx)}, then for all xxx ∈ Rd we have that

∑
j∈[d]

|fj(xxx)− f∗(xxx)|2 ≤ 4ε2

ec2
.

Proof:

∑
j∈[d]

|fj(xxx)− f∗(xxx)|2 =
∑
j∈[d]

∣∣∣2εxje−c2‖xxx‖2/2∣∣∣2
= 4ε2‖xxx‖2e−c

2‖xxx‖2

≤ 4ε2

ec2
. (using ze−z ≤ 1/e with z := c2‖xxx‖2)

2

Now we prove bounds on the partial derivatives of the above functions to
determine their smoothness.

4.6.2. Lemma. Let d, k be positive integers, c ∈ R+ and xxx ∈ Rd. Then, the
function fj(xxx) := cxje

− c
2‖xxx‖2

2 satisfies the following: for every index-sequence α ∈
[d]k, the derivative of f is bounded by |∂αf(000)| ≤ ckk

k
2 . Moreover ∇fj(000) = ceeej.

Proof:
Observe that

f(xxx) = cxje
−
c2x2j

2

d∏
i 6=j

e−
c2x2i

2 , (4.17)

and as one can see from the Taylor series e−
(cx)2

2 =
∑∞

`=0

(
−1

2

)̀ (cx)2`

`!
we have for

k ≥ 0

∂ki e
− c

2x2i
2

∣∣∣∣
xi=0

=

{
(−1

2
)`c2` (2`)!

`!
for k=2`

0 for k=2`+ 1
, (4.18)

∂kj cxje
−
c2x2j

2

∣∣∣∣
xj=0

=

{
0 for k=2`

(−1
2
)`c2`+1 (2`+1)!

`!
for k=2`+ 1

. (4.19)
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Also observe that, for ` ≥ 0

(2`)!

`!
≤ (2`)` and

(
1

2

)̀
(2`+ 1)!

`!
≤ (2`+ 1)`+1/2. (4.20)

The statements of the lemma follow by combining the results (4.17)-(4.20). 2

Now we use the above lemmas combined with the hybrid method (Theo-
rem 4.1.2) to prove our general lower bound result.

4.6.3. Theorem. Let ε, c, d > 0 such that 2ε ≤ c and for an arbitrary finite set
G ⊆ Rd let

H = Span
xxx∈G
{|xxx〉 : xxx ∈ G}.

Suppose A is a T -query quantum algorithm (assuming query access to phase oracle
Of : |xxx〉 7→eif(xxx)|xxx〉, acting on H) for analytic functions f : Rd → R satisfying

|∂αf(000)| ≤ ckk
k
2 for all k ∈ N, α ∈ [d]k,

such that A computes an ε-approximation ggg of the gradient at 000 such that

‖ggg −∇f(000)‖∞< ε,

succeeding with probability at least 2/3. Then T > c
√
d

4ε
.

Proof:
Inspired by Lemma 4.6.1, we first define a set of “hard-to-distinguish” functions,
which we will use to prove our lower bound Let f∗ := f0 := 0 and fj(xxx) :=

2εxje
−c2‖xxx‖2/2 for all j ∈ [d]. Consider the family of functions F :=

⋃
j∈[d]{fj(xxx)}.

By Lemma 4.6.2, every f ∈ F satisfies |∂αf(000)| ≤ ckk
k
2 for all k ∈ N and α ∈ [d]k.

Suppose we are given a phase oracle Of acting on H, such that Of = Ofj :

|xxx〉 7→ eifj(xxx)|xxx〉 for some unknown j ∈ {0, . . . , d}. Since ∇f0(000) = 000 and
∇fj(000) = 2εeeej, using the T -query algorithm A in the theorem statement, one
can determine the j ∈ {0, . . . , d} for which fj = f with success probability at
least 2/3. In particular we can distinguish the case f = f∗ from f ∈ F , and thus
by Theorem 4.1.2 and Lemma 4.6.1 we get that

T ≥
√
d
c

ε

√
e

36
>
c
√
d

4ε
.

2
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4.6.3 Lower bound for more regular functions

Note that the functions for which we apply our results in this chapter tend to
satisfy a stronger condition than our lower bound example in Theorem 4.6.3.
They usually satisfy18 |∂αf(xxx0)| ≤ ck. We conjectured that the same lower bound
holds for this subclass of functions as well.

Very recently, Cornelissen [Cor18] managed to prove this conjecture, also
building on Theorem 4.1.2. Moreover, he showed an Ω

(
d

1
2

+ 1
p/ε
)
lower bound for

ε-precise gradient computation in p-norm for every p ∈ [1,∞]. Note that these
results shows that our algorithm is essentially optimal for a large class of gradi-
ent computation problems, because our algorithm provides an almost matching
upper bound via reducing `p-approximation to `∞-approximation.

Now we argue heuristically why Jordan’s algorithm should not be able to
calculate the gradient with significantly fewer queries for the above mentioned
class of functions. Algorithm 4.1 performs a Fourier transform, after applying a
phase oracle that puts a phase ∼ f̃(xxx)/ε to the state xxx ∈ Gd

n. We can prove that
for n ≥ log(3c/ε) the Fourier transform will provide the coordinates of ∇f(000) up
to error O(ε) with high probability, given that for most of the points xxx ∈ Gd

n we
have |f̃(xxx)/ε−∇f(000) · xxx/ε| � 1. Using a fractional phase oracle we can prepare
phases of the form f̃(xxx)/ε =

∑
yyy∈S λyyyf(xxx) for some S ⊆ Gd

n, and (λyyy) ∈ [−1, 1]|S|,
where S (and possibly (λyyy)) might depend on xxx. The query complexity is thus
driven by |S|.

Let us assume that ∇f(000) = c · 111, and observe that since Gd
n is symmetric

around 000 we get that the typical value of c · 111 · xxx = c
∑d

i=1 xi is Θ(c
√
d), as can

be seen for example by the central limit theorem. If we also assume that |f | ≤ 1,
then by the triangle inequality we see that |S| = Ω( c

√
d
ε

).
To conclude we still need to show that there exists an analytic function f :

Rd → R, which has |f | ≤ 1 and ∇f(000) = c · 111 while it also satisfies for all k ∈ N
and α ∈ [d]k that |∂αf | ≤ ck. At first sight this set of requirements seem slightly
contradicting, but we found a very simple example of such a function:

f(xxx) :=sin(cx1+cx2+. . .+cxd) for which ∂αf(xxx)=c|α| sin(|α|)(cx1+cx2+. . .+cxd).

The above argument also shows that placing the grid Gd
n symmetrically around

000 is of crucial importance. For example if the midpoint would be shifted by say
δ111, then the typical magnitude of 111 ·xxx = 111 ·

(
δ111 + xxx(symm.)

)
would be Θ(δd+

√
d),

which would give rise to an elevated lower bound when δ � 1/
√
d.

4.7 Applications
In this section, we first consider variational quantum eigensolvers and QAOA al-
gorithms, which can be treated essentially identically using our techniques. Then

18Without the k
k
2 factor – i.e., they are of Gevrey class G0 instead of G

1
2 .



4.7. Applications 145

we consider the training of quantum autoencoders, which requires a slightly dif-
ferent formalism. We show that our gradient descent algorithms can be applied
to these problems by reducing such problems to a probability maximization prob-
lem. For each application our quantum gradient computation algorithm yields a
quadratic speedup in terms of the dimension.

4.7.1 Variational quantum eigensolvers

In recent years, variational quantum eigensolvers and QAOA [PMS+14, WHT15,
FGG14] have been favored methods for providing low-depth quantum algorithms
for solving important problems in quantum simulation and optimization. Cur-
rent quantum computers are limited by decoherence, hence the option to solve
optimization problems using very short circuits can be enticing even if such al-
gorithms are polynomially more expensive than alternative strategies that could
possibly require long gate sequences. Since these methods are typically envisioned
as being appropriate only for low-depth applications, comparably less attention
is paid to the question of what their complexity would be, if they were executed
on a fault-tolerant quantum computer. In this section, we consider the case that
these algorithms are in fact implemented on a fault-tolerant quantum computer
and show that the gradient computation step in these algorithms can be per-
formed quadratically faster compared to the earlier approaches that were tailored
for pre-fault-tolerant applications.

Variational quantum eigensolvers (VQEs) are widely used to estimate the
eigenvalue corresponding to some eigenstate of a Hamiltonian. The idea behind
these approaches is to begin with an efficiently parameterizable ansatz to the
eigenstate. For the example of ground state energy estimation, the ansatz state
is often taken to be a unitary coupled cluster expansion. The terms in that
unitary coupled cluster expansion are then varied to provide the lowest energy
for the groundstate. For excited states a similar argument can be applied, but
minimizing a free energy rather than ground state energy is the most natural
approach.

For simplicity, let us focus on the simplest (and most common) example of
groundstate estimation. Consider a Hamiltonian of the form H =

∑
j ajUj where

Uj is a unitary matrix, aj > 0 and
∑

j aj = 1. This assumption can be made
without loss of generality by renormalizing the Hamiltonian and absorbing signs
into the unitary matrix. Let the state |ψ(xxx)〉 for xxx ∈ Rd be the variational state
prepared by the Prep. and Tuned circuits in Fig. 4.1b. Our objective function is
then to estimate

xxxopt = argmin
xxx

(
〈ψ(xxx)|

∑
j

ajUj|ψ(xxx)〉

)
, (4.21)

which is real-valued because H is Hermitian.
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In order to translate this problem to one that we can handle using our gradient
descent algorithm, we construct a verifier circuit that given |ψ(xxx)〉 sets an ancilla
qubit to 1 with probability p = (1 + 〈ψ(xxx)|H|ψ(xxx)〉)/2. This is possible since
‖H‖ ≤ 1 due to the assumption that

∑
j aj = 1. This motivates the definition of

new input oracles used for implementing the Hamiltonian.

prepareW: |0〉 7→
∑
j

√
aj|j〉, (4.22)

selectH :=
∑
j

|j〉〈j| ⊗ Uj. (4.23)

We can then use the unitaries (4.22)-(4.23) to define and compute the query
complexity of performing a single variational step in a VQE algorithm.

|xxx〉

|0〉⊗n Prep. Tuned

selectH

|0〉⊗n
′

prepareW prepareW†

|0〉 H • H |1〉?

Figure 4.2. Circuit for converting groundstate energy to a probability for
VQE. The dashed box denotes the verifier circuit, V , in Fig. 4.1b which cor-
responds here to the Hadamard test circuit. Probability of measuring 1 is
1/2 − 〈ψ(xxx)|H|ψ(xxx)〉/2. Note here Prep. circuit is the identity gate, which is
kept in the circuit only for clarity. Note that in this context, the final prepareW†

can be omitted.

4.7.1. Corollary. Let Tuned(xxx) =
∏d

j=1 e
−iHjxj for ‖Hj‖ = 1 and xxx ∈ Rd and

let Prep = I. If H =
∑M

j=1 ajHj for unitary Hj with aj ≥ 0 and
∑

j aj = 1
then the number of queries to prepareW, selectH and Tuned needed to output a
qubit string |yyy〉 such that |∇〈ψ(xxx)|H|ψ(xxx)〉 − yyy| ≤ ε with probability at least 2/3

is Õ
(√

d/ε
)
.

Proof:
First we argue that the circuit in Fig. 4.2 outputs the claimed probability. We
then convert this into a phase oracle, use our improvement over Jordan’s algorithm
(Theorem 4.5.10) and prove that c ∈ O(1) for this problem to show the claimed
complexity.

First, if we examine the gates in Fig. 4.2 we note that the Prep. and Tuned
gates by definition prepare the state |ψ(xxx)〉. In this context the prep circuit is



4.7. Applications 147

the identity. While this could be trivially removed from the circuit, we retain it
to match the formal description of the model that we gave earlier. Under the
assumption that

∑
j aj = 1 note that

〈0|〈ψ(xxx)|prepareW†(selectH)prepareW|0〉|ψ(xxx)〉 =

=
∑
j

∑
k

√
ajak〈k|j〉 ⊗ 〈ψ(xxx)|Uj|ψ(xxx)〉.

= 〈ψ(xxx)|
∑
j

ajUj|ψ(xxx)〉 = 〈ψ(xxx)|H|ψ(xxx)〉. (4.24)

Then because prepareW is unitary it follows that controlling the selectH operation
enacts the controlled prepareW†(selectH)prepareW operation.

The claim regarding the probability then follows directly from the Hadamard
test, which we describe below for completeness. Let Λ(U) be a controlled unitary
operation. Then

HΛ(U)H|0〉|ψ(xxx)〉 = H(|0〉|ψ(xxx)〉+ |1〉U |ψ(xxx)〉)/
√

2

= |0〉
(

(1 + U)|ψ(xxx)〉
2

)
+ |1〉

(
(1− U)|ψ(xxx)〉

2

)
. (4.25)

Thus it follows from Born’s rule that the probability of measuring the first register
to be 1 is (1 − Re(〈ψ|U |ψ〉))/2. Combining this result with (4.24) and recalling
that H is Hermitian gives us that the probability of measuring 1 in the output of
the circuit in Fig. 4.2 is 1/2−〈ψ|H|ψ〉/2 as claimed. Thus we have an appropriate
probability oracle for the approximate groundstate energy expectation.

Each query to the circuit of Fig. 4.2 requires O(1) queries to prepareW and
selectH. Thus the probability oracle can be simulated at cost O(1) fundamental
queries. Now if we remove the measurement from the circuit we see that we can
view the transformation as a circuit of the form

U |0〉 =
√

1/2− 〈ψ(xxx)|H|ψ(xxx)〉/2|ψgood〉|1〉+
√

1/2 + 〈ψ(xxx)|H|ψ(xxx)〉/2|ψbad〉|0〉.
(4.26)

The above unitary (4.26) is exactly of the form described by Definition 4.4.1. By
Corollary 4.4.4 for any δ ∈ (0, 1/3) we can simulate a δ-approximate query to
the phase oracle analogue of U using O(log(1/δ)) applications of U . Therefore,
this phase oracle can be implemented by O(log(1/δ)) uses of selectH, prepareW,
Tuned and Prep. and their (controlled) inverses.

From Theorem 4.5.10 it then follows that we can compute

∇(1/2− 〈ψ(xxx)|H|ψ(xxx)〉/2) = −∇〈ψ(xxx)|H|ψ(xxx)〉/2, (4.27)

within error ε/2 and error probability at most 1/3 using Õ
(
c
√
d/ε
)
applications

of selectH and prepareW. Our result then immediately follows if c ∈ Õ(1). This is
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equivalent to proving that for some c ∈ Õ(1) we have that |∂α1 · · · ∂αk〈ψ|H|ψ〉| ≤
ck holds for all k ∈ N and α ∈ [d]k.

We prove that for this application c ≤ 2. To see this, note that for any index
sequence α ∈ [d]k

|∂α〈ψ(xxx)|H|ψ(xxx)〉| ≤

∥∥∥∥∥∂α
(

1∏
j=d

eiHjxjH

d∏
j=1

e−iHjxj

)∥∥∥∥∥
≤

M∑
`=1

|a`|

∥∥∥∥∥∂α
(

1∏
j=d

eiHjxjH`

d∏
j=1

e−iHjxj

)∥∥∥∥∥. (4.28)

Lemma 4.5.11 directly implies that∥∥∥∥∥∂α
1∏
j=d

eiHjxj

∥∥∥∥∥ = 1, (4.29)

and similarly because H` is unitary and Hermitian for each ` Lemma 4.5.11 also
implies, ∥∥∥∥∥H`∂α

d∏
j=1

e−iHjxj

∥∥∥∥∥ = 1. (4.30)

Finally, Lemma 4.5.12 in concert with Eq. (4.29) and (4.30) then implies

M∑
`=1

|a`|

∥∥∥∥∥∂α
(

1∏
j=d

eiHjxjH`

d∏
j=1

e−iHjxj

)∥∥∥∥∥ ≤
M∑
`=1

|a`|2k = 2k. (4.31)

2

The application of this method to QAOA directly follows from the analysis
given above. There are many flavors of the quantum approximate optimization
algorithm (QAOA) [FGG14]. The core idea of the algorithm is to consider a
parametrized family of states such as |ψ(xxx)〉 =

∏d
j=1 e

−ixjHj |0〉. The aim is to
modify the state in such a way as to maximize an objective function. In particular,
if we let O be a Hermitian operator corresponding to the objective function then
we wish to find xxx such that 〈ψ(xxx)|H|ψ(xxx)〉 is maximized. For example, in the case
of combinatorial optimization problems the objective function is usually expressed
as the number of satisfied clauses: O =

∑m
α=1Cα where Cα is 1 if and only if the

αth clause is satisfied and 0 otherwise [FGG14]. Such clauses can be expressed as
sums of tensor products of Pauli operators, which allows us to express them as
Hermitian operators. Thus, from the perspective of our algorithm, QAOA looks
exactly like variational quantum eigensolvers except that the parameterization
chosen for the state may be significantly different from that chosen for variational
quantum eigensolvers.
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4.7.2 Quantum auto-encoders

Classically, one application of neural networks is auto-encoders, which are net-
works that encode information about a data set into a low-dimensional represen-
tation. Auto-encoding was first introduced by Rumelhart et al. [RHW86]. Infor-
mally, the goal of an auto-encoding circuit is the following: suppose we are given
a set of high-dimensional vectors, we would like to learn a representation of the
vectors hopefully of low dimension, so that computations on the original data set
can be “approximately” carried out by working only with the low-dimensional vec-
tors. More precisely the problem in auto-encoding is: Given K < N and m data
vectors {v1, . . . , vm} ⊆ RN , find an encoding map E : RN → RK and decoding
map D : RK → RN such that the average squared distortion ‖vi − (D ◦ E)(vi)‖2

is minimized:19

min
E,D

∑
i∈[m]

‖vi − (D ◦ E)(vi)‖2

m
. (4.32)

What makes auto-encoding interesting is that it does not assume any prior
knowledge about the data set. This makes it a viable technique in machine
learning, with various applications in natural language processing, training neural
networks, object classification, prediction or extrapolation of information, etc.

Given that classical auto-encoders are ‘work-horses’ of classical machine learn-
ing [Azo94], it is also natural to consider a quantum variant of this paradigm.
Very recently such quantum auto-encoding schemes have been proposed by Wan
Kwak et al. [WKGK16] and independently by Romero et al. [ROAG17]. Inspired
by their work we provide a slightly generalized description of quantum auto-
encoders by ‘quantizing’ auto-encoders the following way: we replace the data
vectors vi by quantum states ρi and define the maps E ,D as quantum channels
transforming states back and forth between the Hilbert spaces H and H′. A nat-
ural generalization of squared distortion for quantum states ρ, σ that we consider
is 1− F 2(ρ, σ),20 giving us the following minimization problem

min
E,D

∑
i∈[m]

1− F 2(ρi, (D ◦ E)(ρi))

m
. (4.33)

Since F 2(|ψ〉〈ψ|, σ) = 〈ψ|σ|ψ〉 in the special case when the input states are pure
states ρi = |ψi〉〈ψi|, the above minimization problem is equivalent to the maxi-
mization problem

max
E,D

∑
i∈[N ]

〈ψi|[(D ◦ E)(|ψi〉〈ψi|)]|ψi〉
m

. (4.34)

19There are other natural choices of dissimilarity functions that one might want to minimize,
for a comprehensive overview of the classical literature see [Bal12].

20Note that some authors (including [ROAG17]) call F ′ = F 2 the fidelity. The distortion
measure we use here is P (ρ, σ) =

√
1− F 2(ρ, σ), which is called the purified (trace) distance

[TCR10].
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Observe that 〈ψ|[(D ◦ E)(|ψ〉〈ψ|)]|ψ〉 is the probability of finding the output state
(D ◦ E)(|ψ〉〈ψ|) in state |ψ〉 after performing the projective measurement

{|ψ〉〈ψ|, I − |ψ〉〈ψ|}.

Thus we can think about this as maximizing the probability of recovering the
initial pure state after encoding and decoding, which is a natural measure of the
quality of the quantum auto-encoding procedure.

Training quantum auto-encoders

Similarly to [WKGK16, ROAG17] we describe a way to perform this optimization
problem in the special case when the input states are n-qubit pure states and they
are mapped to k-qubit states, i.e., H is the Hilbert space of n qubits and H′ is
the Hilbert space of k < n qubits. We also show how our gradient computation
algorithm can speed up solving the described optimization problem.

We observe that by adding a linear amount of ancilla qubits we can represent
the encoding and decoding channels by unitaries, which makes the minimization
conceptually simpler. Indeed by Stinespring’s dilation theorem [Wat18, Corollary
2.27], [Key02] we know that any quantum channel E that maps n qubit states to
k qubit states can be constructed by adding 2k qubits initialized in |~0〉 state, then
acting with a unitary UE on the extended space and then tracing out k+n qubits.
Applying this result to both E and D results in a unitary circuit representing the
generic encoding/decoding procedure, see Figure 4.3. (This upper bound on the
required number of ancilla qubits for D becomes 2n.)

|0〉⊗2k

UE

Ancillae

|0〉⊗n−k
Prepψ

for E

|0〉⊗k

UD

Prep−1
ψ

Result |0〉⊗n

|0〉⊗n−k indicates success

|0〉⊗n+k } Ancillae for D




Figure 4.3. A unitary quantum auto-encoding circuit: For the input |ψ〉, the
circuit prepares |ψ〉, applies a purified version of the channels E ,D and finally
checks by a measurement whether the decoded state is |ψ〉.

In order to solve the maximization problem (4.34) we could just introduce a
parametrization of the unitaries UE , UD and search for the optimal parameters
using gradient descent. Unfortunately a complete parametrization of the uni-
taries requires exponentially many parameters, which is prohibitive. However,
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analogously to, e.g., classical machine learning practices, one could hope that
a well-structured circuit can achieve close to optimal performance using only a
polynomial number of parameters. If the circuits UE , UD are parametrized nicely,
so that Lemma 4.5.11 can be applied, then we can use our gradient computation
algorithm to speed up optimization.

|xxx〉
1√
m

∑m
i=1|m〉

|~0〉

UE(xxx)|0〉⊗n−k
prepS

|0〉⊗k

UD(xxx)
prepS−1

|0〉⊗n−k

|~0〉

|0〉 |1〉?

Prep. Tuned V

Figure 4.4. Quantum circuit which outputs 1 with probability equal to the objec-
tive function (4.34). The structure of the circuit fits the generic model of quantum
optimization circuits (Figure 4.1), therefore we can use our gradient computation
methods to speedup its optimization.

We can do the whole optimization using stochastic gradient descent [JKK+17],
so that in each step we only need to consider the effect of the circuit on a single
pure state. Or if we have more quantum resources available we can directly
evaluate the full gradient by preparing a uniform superposition over all input
vectors. In this case the state preparation unitary Prep =

∑m
i=1 |i〉〈i| ⊗ Prepψi is

a controlled unitary, which controlled on index i would prepare |ψi〉. Graphically
we represent this type of control by a small black square in contrast to the small
black circle used for denoting simple controlled unitaries. See the full quantum
circuit in Figure 4.4.

Finally, note that in some application it might be desirable to ask for a co-
herent encoding/decoding procedure, where all the ancilla qubits are returned
to the |~0〉 state. In this case similarly to [WKGK16, ROAG17] one could define
UD = U−1

E and optimize the probability of measuring |~0〉 on the ancilla qubits
after applying UE .
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4.8 Conclusion and future research

We gave a new approach to quantum gradient computation that is asymptotically
optimal (up to logarithmic factors) for a class of smooth functions, in terms of the
number of queries needed to estimate the gradient within fixed error with respect
to the max-norm. This is based on several new ideas including the use of differ-
entiation formulæ originating from high-degree interpolatory polynomials. These
high-degree methods quadratically improve the scaling of the query complexity
with respect to the approximation quality compared to what one would see if the
results from Jordan’s work were used. In the case of low-degree multivariate poly-
nomials we showed that our algorithm can yield an exponential speedup compared
to Jordan’s algorithm or classical algorithms. We also provided lower bounds on
the query complexity of the problem for certain smooth functions revealing that
our algorithm is essentially optimal for a class of functions.

While it has proven difficult to find natural applications for Jordan’s original
algorithm, we provide in this chapter several applications of our gradient descent
algorithm to areas ranging from machine learning to quantum chemistry simula-
tion. These applications are built upon a method we provide for interconverting
between phase and probability oracles. The polynomial speedups that we see for
these applications is made possible by our improved quantum gradient algorithm
via the use of this interconversion process. It would be interesting to find appli-
cations where we can apply the results for low-degree multivariate polynomials
providing an exponential speedup.

A major open problem is to understand whether it is possible to reduce the
number of required iterations in gradient descent using quantum techniques. It
would be also interesting to see how quantum computers can speed up more
sophisticated higher-level methods such as stochastic gradient descent. Another
interesting question is whether quantum algorithms can provide further speedups
for calculating higher-order derivatives, such as the Hessian, using ideas related
to Jordan’s algorithm, see e.g. [Jor08, Appendix D]. Such improvements might
open the door for improved quantum analogues of Newton’s method and in turn
substantially improve the scaling of the number of epochs needed to converge to
a local optima in quantum methods.

4.A Error bounds on central-difference formulas

In this appendix we develop error bounds on finite-difference formulas using some
higher-dimensional calculus. The goal is to give upper bounds on the query
complexity of gradient computation of f under some smoothness conditions that
f satisfies. The main idea is to use Algorithm 4.1 in combination with central-
difference formulas and analyze the query complexity using some technical lemmas
involving higher-dimensional calculus. We first prove Theorem 4.5.7, which gives
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rise to a quantum algorithm that yields potentially exponential speedups for low-
degree polynomial functions. The query complexity bound that we can derive
for smooth functions using Theorem 4.5.7 scales as Õ(d/ε) (which is already an
improvement in 1/ε, but worse in d compared to Jordan’s algorithm), which we
later improve to Õ(

√
d/ε) via Theorem 4.5.9.

In the proof of the following lemma we will use Stirling’s approximation of
the factorial:

4.A.1. Fact (Stirling’s approximation). For every j ∈ N+, we have

√
2πj
(j
e

)j
≤ j! ≤ e

√
j
(j
e

)j
. (4.35)

As a first step towards proving Theorem 4.5.7 and Theorem 4.5.9 we derive
a bound on the following sum of coefficients which appears in central-difference
formulas (recall Definition 4.2.4):

4.A.2. Lemma. For all m ∈ N+ and k ≥ 2m we have21

m∑
`=−m

∣∣∣a(2m)
` `k+1

∣∣∣ ≤ 6e−
7m
6 mk+3/2, (4.36)

where a(2m)
0 = 0 and for ` 6= 0

a
(2m)
` =

(−1)`−1

`

(
m
|`|

)(
m+|`|
|`|

) .
Proof:
First we bound the left-hand side of (4.36) as follows,

m∑
`=−m

∣∣∣a(2m)
` `k+1

∣∣∣ = 2
m∑
`=1

(
m
`

)(
m+`
`

)`k ≤ 2m ·max
`∈[m]

(
m
`

)(
m+`
`

)`k. (4.37)

We now upper bound the binomial quantity on the right as follows. For every

21 Sometimes we will be interested in bounding
∣∣∣∑m

`=−m a
(2m)
` `k+1

∣∣∣ rather than the left-hand
side of (4.36). One could ask how good this bound is, do not we lose too much by dismissing the
(−1)` cancellations? It turns out that the most important case for us is when k = 2m. In this
case our numerical experiments showed that the quantity

∣∣∣∑m
`=−m a

(2m)
` `k+1

∣∣∣ is lower bounded
by (m/e)2m, providing evidence for showing that the proven upper bound is qualitatively right.
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` ∈ [m], we have(
m
`

)(
m+`
`

)`k =
(m!)2

(m+ `)!(m− `)!
`k

≤
e2m

(
m
e

)2m√
2π(m+ `)

(
m+`
e

)m+`(m−`
e

)m−` `k (using22Fact 4.A.1)

≤ 3
√
m

(
m
e

)2m(
m+`
e

)m+`(m−`
e

)m−` `k (since e2/
√

2π ≤ 3)

= 3
√
m

(
m
e

)2m(
(1+y)m

e

)(1+y)m(
(1−y)m

e

)(1−y)m
(ym)k (substitute y := `/m)

= 3
√
m

(
1

(1 + y)1+y(1− y)1−y

)m
(ym)k

= 3
√
m

(
yz

(1 + y)1+y(1− y)1−y

)m
mk (substitute z := k/m)

≤ 3
√
m

(
y2

(1 + y)1+y(1− y)1−y

)m
mk (y ≤ 1 and z ≥ 2)

≤ 3
√
m
(
e−

7
6

)m
mk. (by elementary calculus)

2

Now we are ready to prove Lemma 4.5.6 from Section 4.5.3, which we restate
here.

4.A.3. Lemma. Let δ ∈ R+, m ∈ N and suppose f : [−mδ,mδ]→ R is (2m+1)-
times differentiable. Then

∣∣f ′(0)δ − f(2m)(δ)
∣∣ =

∣∣∣∣∣f ′(0)δ −
m∑

`=−m

a
(2m)
` f(`δ)

∣∣∣∣∣ ≤ e−
m
2

∥∥f (2m+1)
∥∥
∞|δ|

2m+1,

(4.11)
where

∥∥f (2m+1)
∥∥
∞ := supξ∈[−mδ,mδ] |f (2m+1)(ξ)|. Moreover,

m∑
`=0

∣∣∣a(2m)
`

∣∣∣ < m∑
`=1

1

`
≤ ln(m) + 1. (4.12)

Proof:
We prove this lemma as follows: first we approximate f(x) using order-(2m)

22Additionally to Stirling’s approximation we also used that
(
m−`
e

)m−` ≤ (m− `)!, which is
true even for m− ` = 0.
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Taylor expansion, and bound the error using Lagrange remainder term. Then we
use Lagrange interpolation polynomials to re-express the Taylor polynomial, and
use this interpolation formula to approximately compute the derivative of f at
0 yielding the (2m)-th central-difference formula. Finally, we use Lemma 4.A.2
to upper bound the difference between f ′(0)δ and the (2m)-th central-difference
formula f(2m)(δ).

Recall that Taylor’s theorem with Lagrange remainder term says that for all
y ∈ R,

f(y) =
2m∑
j=0

f (j)(0)

j!
yj︸ ︷︷ ︸

:=p(y/δ)

+
f (2m+1)(ξ)

(2m+ 1)!
y2m+1 (4.38)

for some ξ ∈ [0, y] (in case y < 0, then ξ ∈ [y, 0]). Now let z := y/δ. We introduce
a δ-scaled version of the (2m)-th order Taylor polynomial at 0, which we will use
for re-expressing f ′(0):

p(z) := −
2m∑
j=0

f (j)(0)

j!
(zδ)j = f(zδ)− f (2m+1)(ξ)

(2m+ 1)!
(zδ)2m+1. (4.39)

Because deg(p) ≤ 2m we can use the following Lagrange interpolation formula to
represent it as:

p(z) =
m∑

`=−m

p(`)
m∏

i=−m
i 6=`

z − i
`− i

.

Using the above identity, it is not hard to see that p′(0) equals

m∑
`=−m
6̀=0

p(`)
(m!)2

−`
(−1)`

(m+ |`|)!(m− |`|)!
=

m∑
`=−m
` 6=0

(−1)`−1

(
m
|`|

)(
m+|`|
|`|

) p(`)
`

=
m∑

`=−m

a
(2m)
` p(`).

(4.40)
Observe that by definition p′(0) = f ′(0)δ, therefore

f ′(0)δ = p′(0)

(4.40)
=

m∑
`=−m

a
(2m)
` p(`)

(4.39)
=

m∑
`=−m

a
(2m)
`

(
f(`δ)− f (2m+1)(ξ`)

(2m+ 1)!
`2m+1δ2m+1

)
.
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Now we bound the left-hand side of (4.11) using the above equality:

∣∣∣∣∣
m∑

`=−m

a
(2m)
`

f (2m+1)(ξ`)

(2m+ 1)!
`2m+1δ2m+1

∣∣∣∣∣ ≤
m∑

`=−m

∣∣∣a(2m)
` `2m+1

∣∣∣∥∥f (2m+1)
∥∥
∞

(2m+ 1)!
|δ|2m+1

≤ 6e−
7m
6 m2m+3/2

∥∥f (2m+1)
∥∥
∞

(2m+ 1)!
|δ|2m+1

(Lemma 4.A.2 with k :=2m)

≤ 3e−
7m
6 m2m+1/2

∥∥f (2m+1)
∥∥
∞

(2m)!
|δ|2m+1

≤ 3e−
7m
6 m2m+1/2

∥∥f (2m+1)
∥∥
∞√

4πm(2m/e)2m
|δ|2m+1

(using Fact 4.A.1)

≤ e−
7m
6

(e
2

)2m∥∥f (2m+1)
∥∥
∞|δ|

2m+1

(since 3√
4π
≤ 1)

≤ e−
m
2

∥∥f (2m+1)
∥∥
∞|δ|

2m+1.

(since e−
7m
6

(
e
2

)2m ≤ e−m/2)

Finally, the first inequality23 in (4.12) holds element-wise and the second in-
equality is standard from elementary calculus, and can be proven using the inte-
gral of 1/x. 2

We now prove a version of Lemma 4.5.6 but for higher-dimensional functions,
by making the assumption that all the higher derivatives are bounded.

4.A.4. Corollary. Let m ∈ N, B > 0, xxx ∈ Rd and rrr := xxx/‖xxx‖. Suppose
f : [−m‖xxx‖∞,m‖xxx‖∞]d → R is (2m+ 1)-times differentiable and

|∂2m+1
rrr f(τxxx)| ≤ B for all τ ∈ [−m,m],

then ∣∣f(2m)(xxx)−∇f(000) · xxx
∣∣ ≤ Be−

m
2 ‖xxx‖2m+1.

Proof:

23We conjecture that the first inequality of (4.12) becomes an equality if we take half of the
middle term.
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Consider the function h(τ) := f(τxxx), then∣∣f(2m)(xxx)−∇f(000) · xxx
∣∣ =

∣∣h(2m)(1)− h′(0)
∣∣

≤ e−
m
2 sup
τ∈[−m,m]

∣∣h(2m+1)(τ)
∣∣ (by Lemma 4.5.6)

= e−
m
2 sup
τ∈[−m,m]

∣∣∂2m+1
xxx f(τxxx)

∣∣
= e−

m
2 sup
τ∈[−m,m]

∣∣∂2m+1
rrr f(τxxx)

∣∣‖xxx‖2m+1

≤ Be−
m
2 ‖xxx‖2m+1.

2

With this corollary in hand, we now show how to calculate the gradient of
f : Rd → R under a bounded higher derivative condition.

4.5.7. Theorem. Let m ∈ Z+, D ∈ R+ and B ≥ 0. Suppose f : [−D,D]d → R
is given with (fractional) phase oracle access. If f is (2m+1)-times differentiable
and for all xxx ∈ [−D,D]d we have that

|∂2m+1
rrr f(xxx)| ≤ B for rrr = xxx/‖xxx‖,

then using Algorithm 4.2 with setting

R = Θ

max

√d 2m

√
B
√
d

ε
,
m

D


we can compute an approximate gradient ggg such that ‖ggg −∇f(000)‖∞ ≤ ε with
probability at least (1− ρ), using O

((
R
ε

log(2m) +m
)

log
(
d
ρ

))
phase queries.

Proof:
Let ropt := 2√

d

2m

√
εe
m
2

B
√
d·4·42·π , and let r := min

(
ropt,

2D
m

)
. By Corollary 4.A.4 we

get that whenever ‖xxx‖∞ ≤ r/2 we have∣∣f(2m)(xxx)−∇f(000) · xxx
∣∣ ≤ Be−

m
2 ‖xxx‖2m+1

≤ Be−
m
2

(
r

√
d

2

)2m+1

= Be−
m
2

(
ropt

√
d

2

)2m+1(
r

ropt

)2m+1

=
εropt

8 · 42 · π

(
r

ropt

)2m+1

≤ εr

8 · 42 · π
.
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Assume without loss of generality that 1
εr

= 2n for some n ∈ N. In Theo-

rem 4.5.5, we showed that O
(

log
(
d
ρ

))
queries to the phase oracle O2n+1π

f(2m)
suffice

to compute an ε-precise approximation of the gradient with probability ≥ 1− ρ.
Now observe that the phase oracle

O2n+1π
f(2m)

(xxx) =
m∏

`=−m

O
2n+1πa

(2m)
`

f (`xxx) =
m∏

`=−m

O
a
(2m)
`

2π
εr

f (`xxx),

can be implemented using
m∑

`=−m

⌈
a

(2m)
`

2π

εr

⌉
≤ 2m+

2π

εr

m∑
`=−m

a
(2m)
`

(4.12)
≤ 2m+

2π

εr
(2 log(m) + 2)

= O
(
m+

R

ε
log(2m)

)
fractional phase queries to Of . 2

Let us elaborate on the above cost by making some strong regularity assump-
tions on f . Suppose that for every k ∈ [2m + 1], index-sequence α ∈ [d]k and
xxx ∈ Rd, we have |∂αf(xxx)| ≤ 1 (implying also B = 1). What can we say by using
the above corollary?

Well, it could happen24 that for every β ∈ [d]2m+1, we have ∂βf(000) = 1. Then
by Eq. (4.5), by picking rrr := 111/

√
d we have ∂(2m+1)

rrr f(000) = d
2m+1

2 . This is actually
the worst possible case under our assumptions, it is easy to show that whenever
‖rrr‖ ≤ 1, we must have |∂(2m+1)

rrr f(xxx)| ≤ B = d
2m+1

2 for all xxx ∈ Rd. In this case the
best complexity we can get from Theorem 4.5.7 is by choosingm = log(d/ε) which
yields an overall query complexity upper bound of O

(
d
ε

log(d/ρ) log log(d/ε)
)
.

This bound achieves the desired O(1/ε)-scaling precision parameter ε, but
fails to grasp the

√
d scaling. This failure is mainly due to the loose upper bound

on B. Also as we discussed in Section 4.6.3, we cannot really hope to achieve a√
d scaling with an algorithm that implements a phase oracle for an approximate

affine function that uniformly approximates an affine function for all points of
the hypergrid. But fortunately, as we showed in Theorem 4.5.5, it is sufficient if
the approximation works for most of the evaluation points.

In order to rigorously prove
√
d scaling with the dimension we assume that the

function is analytic. We will use the following lemma for answering the question:
Given a (complex) analytic function with its multi-dimensional Taylor series as
in (4.4), where do we need to truncate its Taylor series if we want to get a good
approximation on the d-dimensional hypercube [−1, 1]d?

24An example for such a function is f(xxx) := sin(x1 + x2 + . . .+ xd).
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4.A.5. Lemma. Let d, k ∈ N+, and suppose H ∈
(
Rd
)⊗k is an order-k tensor of

dimension d, having all elements bounded by 1 in absolute value, i.e., ‖H‖∞ ≤ 1.
Suppose (x1, . . . , xd) is a vector of i.i.d. symmetric random variables bounded in
[−1/2, 1/2]. Then for every t > 0

Pr

∣∣∣∣∣∣
∑
α∈[d]k

Hαx
α

∣∣∣∣∣∣ ≥ √2

(
t

√
dk

2

)k ≤ 1

t2k
.

Proof:

E

∑
α∈[d]k

Hαx
α

2 = E

 ∑
(α,β)∈[d]2k

HαHβx
(α,β)


≤ E

 ∑
(α,β)∈[d]2k

x(α,β)


(xi is symmetric i.i.d. and ‖H‖∞ ≤ 1)

= E
[
(x1 + x2 + . . .+ xd)

2k
]

=

∫ ∞
0

P
(

(x1 + x2 + . . .+ xd)
2k ≥ t

)
dt

=

∫ ∞
0

P
(
|x1 + x2 + . . .+ xd| ≥ t1/2k

)
dt

≤
∫ ∞

0

2e
−
(

2
d
t
1
k

)
dt (by the Hoeffding bound)

=

∫ ∞
0

2

(
d

2

)k
kyk−1e−ydy(
by change of variables y :=

((
2
d

)k
t
)1
k

)
= 2

(
d

2

)k
kΓ(k) (by definition of Γ(x))

= 2

(
d

2

)k
k! (main property of Γ(x))

≤ 2e
√
k

(
dk

2e

)k
(Stirling’s approximation)

< 2

(
dk

2

)k
. (for all k ≥ 1 :

√
ke1−k ≤ ke1−k ≤ 1)

Now use Chebyshev’s inequality to conclude. 2
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4.A.6. Remark. The dependence on d in Lemma 4.5.8 cannot be improved, as
can be seen using the central limit theorem: by choosing H ≡ 1 (the all-1 tensor)
it is not hard to see, that for a fixed k the typical value of

∣∣∣∑α∈[d]k Hαx
α
∣∣∣ =∣∣∣(x1 + x2 + . . .+ xd)

k
∣∣∣ = Θ(

√
d
k
). A natural follow-up question is whether we

can improve the k-dependence, in particular the kk/2 factor? While it is possible
that one can improve the above result we show in the next paragraph that the
typical value eventually becomes much larger than ∼ d

k
2 . (An interesting regime,

where our discussion does not imply a lower bound, is when k ∼
√
d.)

Here is a counterexample to the ∼ d
k
2 scaling: suppose N 3 a ≥ 5, d ≥ 2a and

k = ad, then let H be the tensor which is 1 for index-sequences containing each
index with even multiplicity, and 0 otherwise. There are at least d(a−1)d such index
sequences since there are d(a−1)d index-sequences of length (a−1)d and each such
index-sequence can be extended to an even-multiplicity index-sequence of length
ad. Also suppose that Pr(|Xi| ≥ 1/4) ≥ 1/2, then this tensor evaluated at every
possible value of the random vector will yield at least d(a−1)d2−k = dk−d2−a(k/a) ≥
d(1− 1

a)kd−
k
a = d(1− 2

a)k � d
k
2 .

Now we are ready to prove Theorem 4.5.9. We restate the theorem for conve-
nience.

4.5.9. Theorem. If r ∈ R+, f : Rd→ R is analytic and for all k ∈ N, α ∈ [d]k

we have

|∂αf(000)| ≤ ckk
k
2 ,

then

|∇f(000)yyy − f(2m)(yyy)| ≤
∞∑

k=2m+1

(
8rcm

√
d
)k
,

for all but a 1/1000 fraction of points yyy ∈ r ·Gd
n.

Proof:
Because f is analytic it coincides with its d-dimensional Taylor series:

f(yyy) =
∞∑
k=0

∑
α∈[d]k

yyyα · ∂αf(000)

k!
. (4.41)

We are now going to use the central-difference formula defined earlier in Defini-
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tion 4.2.4:

f(2m)(yyy) =
m∑

`=−m

a
(2m)
` f(`yyy) (using Definition 4.2.4)

=
m∑

`=−m

a
(2m)
`

∞∑
k=0

1

k!

∑
α∈[d]k

(`yyy)α · ∂αf(000) (using Eq. 4.41)

=
∞∑
k=0

1

k!

∑
α∈[d]k

yyyα · ∂αf(000)
m∑

`=−m

a
(2m)
` `k︸ ︷︷ ︸
∗

.

Now, we apply Lemma 4.5.6 to the function xk with the choice δ := 1, to
conclude that (∗) is 0 if k ≤ 2m except for k = 1, in which case it is 1. This
implies that

∣∣∇f(000)yyy − f(2m)(yyy)
∣∣ =

∣∣∣∣∣∣
∞∑

k=2m+1

1

k!

∑
α∈[d]k

yyyα · ∂αf(000)
m∑

`=−m

a
(2m)
` `k

∣∣∣∣∣∣
≤

∞∑
k=2m+1

( e
k

)k 1√
4πm

∣∣∣∣∣∣
∑
α∈[d]k

yyyα · ∂αf(000)

∣∣∣∣∣∣
∣∣∣∣∣

m∑
`=−m

a
(2m)
` `k

∣∣∣∣∣
(Stirling bound (4.35))

≤
∞∑

k=2m+1

∣∣∣∣∣∣
∑
α∈[d]k

yyyα · ∂αf(000)

∣∣∣∣∣∣
( e
k

)k 3e−
7m
6 mk+ 1

2

√
πm

(Lemma 4.A.2 with k′:=k −1)

≤
∞∑

k=2m+1

∣∣∣∣∣∣
∑
α∈[d]k

yyyα · ∂αf(000)

∣∣∣∣∣∣ 1√
2

(em
k

)k
.

(using 3
√

2/πe−
7m
6 ≤ 1)

If we take a uniformly random yyy ∈ r ·G(n)
d , then yyy has coordinates symmetrically

distributed around zero, therefore by Lemma 4.5.8 (choosing t := 4) we know
that for all k ∈ N+ the fraction of yyy vectors such that∣∣∣∣∣∣

∑
α∈[d]k

yyyα

rk
· ∂αf(000)

ckk
k
2

∣∣∣∣∣∣ ≥ √2

(
4

√
dk

2

)k
(4.42)

is at most 4−2k. Since
∑∞

k=2m+1 4−2k ≤
∑∞

k=3 4−2k < 1/1000, it follows that apart
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from a 1/1000-th fraction of the yyy vectors, the other yyys satisfy the following:

∣∣∇f(000)yyy − f(2m)(yyy)
∣∣ ≤ ∞∑

k=2m+1

∣∣∣∣∣∣
∑
α∈[d]k

yyyα · ∂αf(000)

∣∣∣∣∣∣ 1√
2

(em
k

)k

≤
∞∑

k=2m+1

√
2

(
4

√
dk

2

)k
rkckk

k
2

1√
2

(em
k

)k
(using Eq. (4.42))

=
∞∑

k=2m+1

(
4
√
drcem√

2

)k

<

∞∑
k=2m+1

(
8rcm

√
d
)k
. (using 4e < 8

√
2)

2



Chapter 5

Convex optimization using quantum oracles

In this chapter we study to what extent quantum algorithms can speed up solving
convex optimization problems. Following the classical literature we assume access
to a convex set via various oracles, and we examine the efficiency of reductions
between the different oracles. In particular, we show how a separation oracle can
be implemented using Õ(1) quantum queries to a membership oracle, which is an
exponential quantum speed-up over the Ω(n) membership queries that are needed
classically. We show that a quantum computer can very efficiently compute an
approximate subgradient of a convex Lipschitz function. Combining this with a
simplification of recent classical work of Lee, Sidford, and Vempala [LSV18] gives
our efficient separation oracle. This in turn implies, via a known algorithm, that
Õ(n) quantum queries to a membership oracle suffice to implement an optimiza-
tion oracle (the best known classical upper bound on the number of membership
queries is quadratic). We also prove several lower bounds: Ω(

√
n) quantum sep-

aration (or membership) queries are needed for optimization if the algorithm
knows an interior point of the convex set, and Ω(n) quantum separation queries
are needed if it does not.

5.1 Introduction

Optimization is a fundamental problem in mathematics and computer science,
with many real-world applications. As people try to solve larger and larger op-
timization problems, the efficiency of optimization becomes more and more im-
portant, motivating us to find the best possible algorithms. Recent experimental
progress on building quantum computers draws attention to new approaches to
the problem: can we solve optimization problems more efficiently by exploiting
quantum effects such as superposition, interference, and entanglement? For many

This chapter is based on [vAGGdW18].
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discrete optimization problems [Gro96, DH96, Szeg04, DHHM06, AŠ06] signifi-
cant speed-ups have been shown, but less is known about continuous optimization
problems.

One of the most successful continuous optimization paradigms is convex opti-
mization, which optimizes a convex function over a convex set that is given explic-
itly (by a set of constraints) or implicitly (by an oracle). See Bubeck [Bub15] for a
recent survey. Quantum algorithms for convex optimization have been considered
before. In 2008, Jordan [Jor08] described a faster quantum algorithm for minimiz-
ing quadratic functions. Recently, for an important class of convex optimization
problems (semidefinite optimization) quantum speed-ups were achieved using al-
gorithms whose runtime scales polynomially with the desired precision and some
geometric parameters [BS17, vAGGdW17, BKL+17b, vAG19]. However, many
convex optimization problems can be solved classically using algorithms whose
runtime scales logarithmically with the desired precision and the relevant geomet-
ric parameters. We are aware of only one quantum speed-up which is partially in
this regime, namely the very recent quantum interior point method of Kerenidis
and Prakash [KP18]. In this chapter we look at general convex optimization prob-
lems, considering algorithms that have such favorable logarithmic scaling with the
precision.

The generic problem in convex optimization is minimizing a convex function
f : K → R ∪ {∞}, where K ⊆ Rn is a convex set. We consider the setting
where an interior point x0 ∈ int(K) is given and radii r, R > 0 are known such
that B(x0, r) ⊆ K ⊆ B(x0, R), where B(x0, r) is the Euclidean ball of radius r
centered at x0.

It is well-known that if the convex function is bounded on K, then we can
equivalently consider the problem of minimizing a linear function over a different
convex set K ′ ⊆ Rn+1, namely the epigraph K ′ = {(x, µ) : x ∈ K, f(x) ≥ µ}
of f . Accessing K ′ is easy given access to K and f , and the parameters involved
will be similar. Conversely, for any linear optimization problem over an unknown
convex set K, there is an equivalent optimization problem over a known convex
set (say, the ball), with an unknown bounded convex objective function f that
can be evaluated easily given access to K. From now on we therefore focus on
optimizing a known linear function over an unknown convex set.

We consider the setting where access to the convex set is given only in a
black-box manner, through an oracle. The five basic problems (oracles) in convex
optimization identified by Grötschel, Lovász, and Schrijver [GLS88] are: mem-
bership, separation, optimization, violation, and validity (see Section 5.2 for the
definitions). They showed that all five basic problems are polynomial-time equiv-
alent. That is, given an oracle O for one of these problems, one can implement an
oracle for any of the other problems using a polynomial number of calls to O and
polynomially many other elementary operations. Subsequent work made these
polynomial-time reductions more efficient, reducing the degree of the polynomi-
als. Recently Lee et al. [LSV18], in the classical setting, showed that with Õ(n2)
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calls1 to a membership oracle (and Õ(n3) other elementary arithmetic operations)
one can solve an optimization problem. They did so by showing that Õ(n) calls
to a membership oracle suffice to do separation, and then composing this with
the known fact [LSW15] (see also [LSV18, Theorem 15]) that Õ(n) calls to a
separation oracle suffice for optimization.

Our main result (Section 5.4) shows that on a quantum computer, Õ(1) calls
to a membership oracle suffice to implement a separation oracle, and hence (by
the known classical reduction from optimization to separation) Õ(n) calls to a
membership oracle suffice for optimization.2 Lee et al. [LSV18] use a geomet-
ric idea to reduce separation to finding an approximate subgradient of a convex
Lipschitz function. They then show that Õ(n) evaluations of a convex Lips-
chitz function suffice to get an approximate subgradient. Our contributions here
are twofold (Section 5.3 and 5.4). We slightly simplify the reduction of Lee et
al. [LSV18] from separation to finding an approximate subgradient of a convex
Lipschitz function: in contrast to theirs, our argument directly analyzes convex
Lipschitz functions without smoothing the function. More importantly, we give
a simplified algorithm for computing such an approximate subgradient that re-
covers the result of [LSV18], and that is suitable for a quantum speed-up using
known quantum algorithms for computing approximate (sub)gradients [Jor05],
see Chapter 4.

As a second set of results, in Section 5.5 we provide lower bounds on the
number of membership or separation queries needed to implement several other
oracles. We show that our quantum reduction from separation to membership
indeed improves over the best possible classical reduction: Ω(n) classical member-
ship queries are needed to do separation.3 We only have partial results regarding
the optimality of the reduction from optimization to separation. In the setting
where we are not given an interior point of the set K, we can prove an essentially
optimal Ω(n) lower bound on the number of quantum queries to a separation
oracle needed to do optimization. However, for the case of quantum algorithms
that do know an interior point, we are only able to prove an Ω(

√
n) lower bound.

In the classical setting, regardless of whether or not we know an interior point,
the reduction uses Θ̃(n) queries. This raises the interesting question of whether
knowing an interior point can lead to a better quantum algorithm. We therefore
view closing the gap between upper and lower bound as an important direction
for future work.

1Here, and in the rest of the chapter, the notation Õ(·) is used to hide polylogarithmic
factors in n, r,R, ε.

2Although not stated explicitly in our results, we also use Õ
(
n3
)
additional operations

for optimization using membership, like [LSV18]. This is because our quantum algorithm for
separation uses only Õ(n) gates in addition to the Õ(1) membership queries, and we use the
same reduction from optimization to separation as [LSV18].

3We are not aware of an existing proof of this classical lower bound, but it may well be
somewhere in the vast literature on convex optimization.
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Finally, we briefly mention (Section 5.6) how to obtain upper and lower bounds
for some of the other oracle reductions, using a convex polarity argument. As
we show, in the setting where we are given an interior point, the relation be-
tween membership and separation is analogous to the relation between validity
and optimization. In particular, our better quantum algorithm for separation
using membership queries implies that on a quantum computer Õ(1) queries to a
validity oracle suffice to implement an optimization oracle. That is, on a quantum
computer, finding the optimal value is equivalent to finding an optimizer. Also,
the same polarity argument shows that algorithms for optimization using sepa-
ration are essentially equivalent to algorithms for separation using optimization.
In particular, this turns our lower bound on the number of separation queries
needed to implement an optimization oracle into a lower bound on the reverse
direction.

MEM(K) SEP(K) OPT(K) VAL(K)

Classical:

Θ̃(n)

Θ(1)

Θ̃(n)

Θ̃(n)

Θ(1)

Θ̃(n)

MEM(K) SEP(K) OPT(K) VAL(K)

Quantum:

Θ̃(1)Θ̃(1)Θ̃(1)

Θ(1)

Õ(n)
Ω(n)∗Ω(n)∗Ω(n)∗

Ω(
√
n)Ω(
√
n)Ω(
√
n)

Õ(n)

Θ(1)

Θ̃(1)Θ̃(1)Θ̃(1)

Figure 5.1. The top and bottom diagram illustrate the relations between the
basic (weak) oracles for respectively classical and quantum queries, with boldface
entries marking our new results. All upper and lower bounds hold in the setting
where we know an interior point of K, except the ∗-marked Ω(n) lower bound
on the number of separation queries needed for optimization. Notice the central
symmetry of the diagrams, which is a consequence of polarity.

Figure 5.1 gives an informal presentation of our results; the upper bounds arise
from oracle reductions, the (change in) accuracy is ignored here for simplicity. The
above-mentioned polarity manifests itself in the central symmetry of the figure.

Related independent work. In independent simultaneous work, Chakrabarti,
Childs, Li, and Wu [CCLW18] discovered a similar upper bound as ours: com-
bining the recent classical work of Lee et al. [LSV18] with a quantum algorithm
for computing gradients, they show how to implement an optimization oracle via
Õ(n) quantum queries to a membership oracle and to an oracle for the objective
function. Their proof stays quite close to [LSV18] while ours first simplifies some
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of the technical lemmas of [LSV18], giving us a slightly simpler presentation and
a better error-dependence of the resulting algorithm.

5.2 Preliminaries
For p ≥ 1, ε ≥ 0, and a set C ⊆ Rn we let

Bp(C, ε) = {x ∈ Rn : ∃y ∈ C such that ||x− y||p ≤ ε}

be the set of points of distance at most ε from C in the `p-norm. When C = {x}
is a singleton set we abuse notation and write Bp(x, ε). We overload notation by
setting

Bp(C,−ε) = {x ∈ Rn : Bp(x, ε) ⊆ C}.

Whenever p is omitted it is assumed that p = 2.
Recall that a function f : C → R is Lipschitz if there exists a constant L > 0

such that
|f(y′)− f(y)| ≤ L‖y′ − y‖2 for all y, y′ ∈ C.

We write that f is L-Lipschitz. The inner product between vectors v, w ∈ Rn is
〈v, w〉 = vTw.

5.2.1. Definition (Subgradient). Let C ⊆ Rn be convex and let x be an element
of the interior of C. For a convex function f : C → R we denote by ∂f(x) the
set of subgradients of f at x, i.e., those vectors g satisfying

f(y) ≥ f(x) + 〈g, y − x〉 for all y ∈ C.

Note that in the above definition ∂f(x) 6= ∅ due to convexity.
If f : C → R is L-Lipschitz, then for any x in the interior of C and any

g ∈ ∂f(x) we have ‖g‖ ≤ L, as follows. Consider a y ∈ C such that y − x = αg
for some α > 0. Then since g is a subgradient of f at x we have

α‖g‖2 = 〈g, y − x〉 ≤ f(y)− f(x) ≤ L‖y − x‖ = αL‖g‖, (5.1)

and therefore ‖g‖ ≤ L.
Recall that a standard quantum oracle corresponds to a unitary transforma-

tion that acts on two registers, where the first register contains the query and the
answer is added to the second register. For example, a function evaluation oracle
for f : X → Y would map |x, 0〉 to |x, f(x)〉, where |x〉 and |f(x)〉 are basis states
corresponding to binary representations of x and f(x) respectively. Unlike clas-
sical algorithms, quantum computers can apply such an oracle to a superposition
of different y’s. They are also allowed to apply the inverse of a unitary oracle.

The standard quantum oracle described above models problems where there
is a single correct answer to a query. When there are multiple good answers (for
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instance, different good approximations to the correct value) and the oracle is
only required to give a correct answer with high probability, then we will work
with the more liberal notion of relational quantum oracles.

5.2.2. Definition (Relational quantum oracle). Let F : X → P(Y ) be a func-
tion, such that for each x ∈ X the subset F(x) ⊆ Y is the set of valid answers
to an x query. A relational quantum oracle for F which answers queries with
success probability ≥ 1− ρ, is a unitary that for all x ∈ X maps

U : |x, 0, 0〉 7→
∑
y∈Y

αx,y|x, y, ψx,y〉,

where |ψx,y〉 denotes some normalized quantum state and
∑

y∈F(x) |αx,y|2 ≥ 1−ρ.
Thus measuring the second register of U |x, 0, 0〉 gives a valid answer to the x
query with probability at least 1− ρ.

This definition is very natural for cases where the oracle is implemented by a
quantum algorithm that produces a valid answer with probability ≥ 1− ρ.

5.2.1 Oracles for convex sets

We consider the following five basic oracles for a convex set K (cf. [GLS88]).

5.2.3. Definition (Membership oracle MEMε,ρ(K)). Queried with a vector y ∈
Rn, the oracle, with success probability ≥ 1 − ρ, correctly asserts one of the
following

• y ∈ B(K, ε), or

• y 6∈ B(K,−ε).

5.2.4. Definition (Separation oracle SEPε,ρ(K)). Queried with a vector y ∈
Rn, the oracle, with success probability at least ≥ 1 − ρ, correctly asserts one
of the following

• y ∈ B(K, ε), or

• y 6∈ B(K,−ε),

and in the second case it returns a unit vector g ∈ Rn such that 〈g, x〉 ≤ 〈g, y〉+ ε
for all x ∈ B(K,−ε).

5.2.5. Definition (Optimization oracle OPTε,ρ(K)). Queried with a unit vec-
tor c ∈ Rn, the oracle, with probability ≥ 1− ρ, does one of the following:

• it returns a vector y ∈ Rn such that y ∈ B(K, ε) and 〈c, x〉 ≤ 〈c, y〉 + ε for
all x ∈ B(K,−ε),
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• or it correctly asserts that B(K,−ε) is empty.

Note that the above optimization oracle corresponds to maximizing a linear func-
tion over a convex set; we could equally well state it for minimization.

5.2.6. Definition (Violation oracle VIOLε,ρ(K)). Queried with a unit vector
c ∈ Rn and a real number γ, the oracle, with probability ≥ 1 − ρ, does one
of the following:

• it asserts that 〈c, x〉 ≤ γ + ε for all x ∈ B(K,−ε),

• or it finds a vector y ∈ B(K, ε) such that 〈c, y〉 ≥ γ − ε.

5.2.7. Definition (Validity oracle VALε,ρ(K)). Queried with a unit vector c ∈
Rn and a real number γ, the oracle, with probability ≥ 1 − ρ, does one of the
following:

• it asserts that 〈c, x〉 ≤ γ + ε for all x ∈ B(K,−ε),

• or it asserts that 〈c, y〉 ≥ γ − ε for some y ∈ B(K, ε).

If in the above definitions both ε and ρ are equal to 0, then we call the oracle
strong. If either is non-zero then we sometimes call it weak.

When we discuss membership queries, we will always assume that we are given
a small ball which lies inside the convex set. It is easy to see that without such a
small ball one cannot obtain an optimization oracle using only poly(n) classical
queries to a membership oracle (see, e.g., [GLS88, Sec. 4.1] or the example below).
As the following example shows, the same holds for quantum queries. We will
use a reduction from a version of the well-studied search problem:

Given z ∈ {0, 1}N such that |z| = 1, find b ∈ [N ] such that zb = 1.

It is not hard to see that if the access to z is given via classical queries i 7→ zi, then
Ω(N) queries are needed. It is well known [BBBV97] that if we allow quantum
queries, i.e., applications of the unitary |i〉|b〉 7→ |i〉|zi ⊕ b〉, then Ω(

√
N) queries

are needed. Now let N = 2n and consider an input z ∈ {0, 1}N to the search
problem. Let b ∈ {0, 1}n be the index such that zb = 1. Consider maximizing
the linear function 〈e, z〉 (where e is the all-1 vector) over the set Kz =×n

i=1
[bi−

1/2, bi]. Clearly the optimal solution to this convex optimization problem, even
with a small constant additive error in the answer, gives the solution to the search
problem. However, a membership query is essentially equivalent to querying a bit
of z and therefore Ω(

√
N) = Ω(2n/2) quantum queries to the membership oracle

are needed for optimization.
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5.3 Computing approximate subgradients of con-
vex Lipschitz functions

Here we show how to compute an approximate subgradient (at 0) of a convex
Lipschitz function. That is, given a convex set C such that 0 ∈ int(C) and a
convex function f : C → R, we show how to compute a vector g̃ ∈ Rn such
that f(y) ≥ f(0) + 〈g̃, y〉 − a‖y‖ − b for some real numbers a, b > 0 that will
be defined later (see Lemma 5.3.5 and Lemma 5.3.9). The idea of the classical
algorithm given in the next section is to pick a point z ∈ B∞(0, r1) uniformly at
random and use the finite difference ∇(r2)f(z) (defined below) as an approximate
subgradient of f at 0; the radii r1 and r2 need to be chosen small to make the
approximation good. This results in a slightly simplified version of the algorithm
of Lee et al. [LSV18]. In Section 5.3.2 we show how to improve on this classical
algorithm on a quantum computer.

5.3.1 Classical approach

5.3.1. Definition (Finite difference gradient approximations). For a function
f : C → R, and a point x ∈ Rn such that B1(x, r) ⊆ C, and i ∈ [n], we define
∇(r)
i f(x) := f(x+rei)−f(x−rei)

2r
, where ei ∈ {0, 1}n is the vector that has a 1 only in

its ith coordinate. Similarly we define

∇(r)f(x) :=
(
∇(r)

1 f(x),∇(r)
2 f(x), . . . ,∇(r)

n f(x)
)
.

5.3.2. Definition (Finite difference Laplace approximation). For a function f :
C → R, and a point x ∈ Rn such that B1(x, r) ⊆ C, and i ∈ [n], we define
∆

(r)
i f(x) := f(x+rei)−2f(x)+f(x−rei)

r2
. Similarly

∆(r)f(x) :=
n∑
i=1

∆
(r)
i f(x).

Note that for a convex function we have ∆
(r)
i f(x) ≥ 0 for all x such that B1(x, r) ⊆

C.
The next two lemmas will be needed in the proof of the main result of this

section, Lemma 5.3.5. In Lemma 5.3.3 we give an upper bound on the deviation∥∥g −∇(r2)f(z)
∥∥

1
of a finite difference gradient approximation ∇(r2)f(z) from an

actual subgradient g at the point z, in terms of the finite difference Laplace
approximation ∆(r2)f(z). Then, in Lemma 5.3.4 we show that in expectation,
the finite difference Laplace approximation is small. Together with Markov’s
inequality this gives us good control over the quality of a finite difference gradient
approximation.
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5.3.3. Lemma. If r2 > 0, z ∈ Rn, and f : B1(z, r2)→ R is convex, then

sup
g∈∂f(z)

∥∥g −∇(r2)f(z)
∥∥

1
≤ r2∆(r2)f(z)

2
.

Proof:
Fix a g ∈ ∂f(z). For every i ∈ [n], we have f(z + r2ei) ≥ f(z) + 〈g, r2ei〉 =
f(z) + r2gi, and, similarly, f(z − r2ei) ≥ f(z)− r2gi. Rearranging gives

f(z)− f(z − r2ei)

r2︸ ︷︷ ︸
:=A

≤ gi ≤
f(z + r2ei)− f(z)

r2︸ ︷︷ ︸
:=B

.

Note that |gi − A+B
2
| ≤ B−A

2
for any three real numbers A ≤ gi ≤ B. Moreover,

A+B
2

= ∇(r2)
i f(z) and B−A = r2∆

(r2)
i f(z), thus

∣∣∣gi −∇(r2)
i f(z)

∣∣∣ ≤ r2∆
(r2)
i f(z)

2
. Now

we can finish the proof by summing this inequality over all i ∈ [n]. 2

5.3.4. Lemma. If 0 < r2 ≤ r1, and f : B∞(x, r1 + r2) → R is convex and
L-Lipschitz, then

E
z∈B∞(x,r1)

∆(r2)f(z) ≤ nL

r1

.

Proof:
Below we show that E

z∈B∞(x,r1)
∆

(r2)
i f(z) ≤ L

r1
for all i ∈ [n], and then sum over i.

E
z∈B∞(x,r1)

∆
(r2)
i f(z) =

=
1

(2r1)n

∫
z∈B∞(x,r1)

f(z + r2ei)− 2f(z) + f(z − r2ei)

r2
2

dz

=
1

(2r1)n

∫
zj∈[xj−r1,xj+r1],

j∈[n],j 6=i

∫
zi∈[xi−r1,xi+r1]

f(z + r2ei)− 2f(z) + f(z − r2ei)

r2
2

dz

=
1

(2r1)n

∫
zj∈[xj−r1,xj+r1],

j∈[n],j 6=i

(∫
zi∈[xi−r1,xi−r1+r2]

f(z + r2ei)− f(z)

r2
2

dz

+

∫
zi∈[xi+r1−r2,xi+r1]

−f(z) + f(z − r2ei)

r2
2

dz
)

≤ 1

(2r1)n

∫
zj∈[xj−r1,xj+r1],

j∈[n],j 6=i

2Ldz =
L

r1

.

2

Note that the above lemma is stated and proved for continuous random variables,



172 Chapter 5. Convex optimization using quantum oracles

but the same proof holds if we have a uniform hypergrid over the same hypercube,
providing a discrete version of the above result. In the discrete case, in order to
get the same cancellations we need to assume that both r1 and r2 are integer
multiples of the grid spacing.

We are now ready to prove the main result of this section. Informally, the next
lemma proves that an approximate subgradient of a convex Lipschitz function f
at 0 can be obtained by an algorithm that outputs ∇(r2)f̃(z) for a random z close
enough to 0, where f̃ is an approximate version of f . In other words, this lemma
gives us a classical algorithm to compute an approximate subgradient of f using
2n classical queries to an approximate version of f .

5.3.5. Lemma. Let r1 > 0, L > 0, ρ ∈ (0, 1/3], δ ∈ (0, r1

√
nL/ρ], then r2 :=√

δr1ρ√
nL
≤ r1. Suppose f : C → R is a convex function that is L-Lipschitz on

B∞(0, 2r1), and f̃ : B∞(0, 2r1) → R is such that
∥∥∥f̃ − f∥∥∥

∞
≤ δ. Then for a

uniformly random z ∈ B∞(0, r1), with probability at least 1− ρ

f(y) ≥ f(0) + 〈∇(r2)f̃(z), y〉 − 3n
3
4

2

√
δL

ρr1

‖y‖ − 2L
√
nr1 for all y ∈ C.

Proof:
Let z ∈ B∞(0, r1) and g ∈ ∂f(z). Recall ‖g‖ ≤ L by Equation (5.1). Then for
all y ∈ C

f(y) ≥ f(z) + 〈g, y − z〉
= f(z) + 〈g, y − z〉+

(
〈∇(r2)f(z), y〉 − 〈∇(r2)f(z), y〉

)
+ (f(0)− f(0))

= f(0) + 〈∇(r2)f(z), y〉+ 〈g −∇(r2)f(z), y〉+ (f(z)− f(0)) + 〈g,−z〉
≥ f(0) + 〈∇(r2)f(z), y〉 −

∥∥g −∇(r2)f(z)
∥∥

1
‖y‖∞ − L‖z‖ − ‖g‖‖z‖

≥ f(0) + 〈∇(r2)f(z), y〉 −
∥∥g −∇(r2)f(z)

∥∥
1
‖y‖∞ − L

√
nr1 − L

√
nr1

≥ f(0) + 〈∇(r2)f̃(z), y〉 − δ
√
n

r2

‖y‖ −
∥∥g −∇(r2)f(z)

∥∥
1
‖y‖∞ − 2L

√
nr1.

Note that in the last line we switched from f to f̃ , using that ∇(r2)f(z) and
∇(r2)f̃(z) differ by at most δ/r2 in each coordinate. Our choice of r2 gives δ

√
n

r2
=

n
3
4

√
δL
ρr1

and by Lemma 5.3.3–5.3.4 we have

E
z∈B∞(x,r1)

∥∥g −∇(r2)f(z)
∥∥

1
≤ nLr2

2r1

=
n

3
4

2

√
δLρ

r1

.

By Markov’s inequality we get that
∥∥g −∇(r2)f(z)

∥∥
1
≤ n

3
4

2

√
δL
ρr1

with probability

≥ 1 − ρ over the choice of z. Plugging this bound on
∥∥g −∇(r2)f(z)

∥∥
1
into the

above lower bound on f(y) concludes the proof of the lemma. 2
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5.3.2 Quantum improvements

In this section we show how to improve subgradient computation of convex func-
tions via Jordan’s quantum algorithm for gradient computation [Jor05]. We use
the results of the previous chapter, in particular Lemma 4.5.4.

We show that Jordan’s Algorithm 4.1 allows us to compute an approximate
subgradient of a function f , even if we are only given standard oracle access to
a function f̃ which is sufficiently close to f . In particular, we will assume we are
given access to a standard unitary oracle of a function f̃ : Gn

m → R which satisfies
|f̃(x) − f(x)| ≤ δ for all x ∈ Gn

m. That is, we assume we are given access to a
unitary U acting as

U : |x〉|0〉 7→ |x〉|f̃(x)〉 (5.2)

Note that if we can classically efficiently evaluate f̃ , then it is well known that we
can construct such a unitary as a small quantum circuit (see [NC00, Sec. 1.4.1]).

The main idea is that, using one application of U , a phase gate corresponding
to the output register, and another application of U † to uncompute the function
value, we can implement a phase oracle for f̃ . Moreover, Equation (5.3) below
will also hold for f̃ , with a slightly worse right-hand side, since f is close to f̃ .
The following corollary is analogous to Theorem 4.5.5; we present it together with
a proof sketch, in order get a statement better fitting the setting of this chapter.

5.3.6. Corollary (Gradient computation by approximate function evaluation).
Let δ, B, r, c ∈ R, ρ ∈ (0, 1/3]. Let x0, g ∈ Rn with ‖g‖∞ ≤

B
r
. Let m :=⌈

log2

(
B

28πδ

)⌉
and suppose f : (x0 + rGn

m)→ R is such that

|f(x0 + rx)− 〈g, rx〉 − c| ≤ δ (5.3)

for 99.9% of the points x ∈ Gn
m, and we have access to a standard unitary oracle

U , providing O
(
log
(
B
δ

))
-bit fixed-point binary approximations f̃(z) s.t. |f̃(z) −

f(z)| ≤ δ for all z ∈ (x0 + rGn
m). Then we can compute a vector g̃ ∈ Rn such

that
Pr

[
‖g̃ − g‖∞ >

8 · 42πδ

r

]
≤ ρ,

with O
(

log
(
n
ρ

))
queries to U and U † and O

(
n log

(
n
ρ

)
log
(
B
δ

)
loglog

(
n
ρ

)
loglog

(
B
δ

))
additional gate complexity.

Proof:
As described above the corollary, we first implement a phase oracle for f̃ and
then we apply Jordan’s gradient computation algorithm (Lemma 4.5.4).

With a single query to U and its inverse we can implement a phase oracle O
that acts as O : |x〉 7→ e2πi M

3B
f̃(x0+rx)|x〉, where M := 3B

84πδ
, and4 m := log2(M).

4We can assume without loss of generality that the upper bound B is such thatM is a power
of two.
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Let h(x) := f̃(x0+rx)
3B

, then by (5.3) 99.9% of the points x ∈ Gn
m satisfy

∣∣h(x) −
〈 r

3B
g, x〉− c

3B

∣∣ ≤ 2δ
3B

= 1
42πM

. Since
∥∥ r

3B
g
∥∥
∞ ≤

1
3
, by Lemma 4.5.4 we can compute

a vector v ∈ Rn which is a coordinatewise 4
M
-approximator of r

3B
g: for each i ∈ [n]

we have
∣∣gi − 3B

r
vi
∣∣ ≤ 12B

rM
= 8·42πδ

r
with probability at least 2

3
.

Note that the above success probability is per coordinate of g. However,
repeating the whole procedure O

(
log(n

ρ
)
)
times and taking the median of the

resulting vectors coordinatewise gives a gradient approximator g̃ with the desired
approximation quality with probability at least 1 − ρ. For more details on the
proof of the gate complexity see5 Theorem 4.5.5. 2

Remark. With essentially the same approach, the above corollary of Jordan’s
quantum gradient computation algorithm can also be proven in the setting where
our access to an approximation of f is not given by a standard quantum oracle
but by a relational quantum oracle, see Appendix 5.A for both the definition of
this type of approximation to f and a proof of this corollary.

In terms of applications, we want to point out that if the membership oracle
used in Section 5.4 comes from a deterministic algorithm, then we get a stan-
dard quantum oracle. Only when the membership oracle itself is relational (for
example, when it is itself computed by a bounded-error quantum algorithm) do
we need the more general setting of Appendix 5.A.

In order to apply the above corollary, we need to find some function which is
sufficiently close to linear. Fortunately, convex Lipschitz functions can be very
well approximated by linear functions over most small-enough regions. Simi-
larly to the classical case (Lemma 5.3.5) we make this claim quantitative using
Lemma 5.3.4. In order to apply the more efficient quantum gradient compu-
tation of Corollary 5.3.6 we also need the following two lemmas to ensure that
Equation (5.3) holds.

5.3.7. Lemma. Let S ⊆ Rn be such that S = −S, and let conv(S) denote the
convex hull of S. If f : conv(S) → R is a convex function, f(0) = 0, and
|f(s)| ≤ δ for all s ∈ S, then

|f(s′)| ≤ δ for all s′ ∈ conv(S).

Proof:
Since f is convex and f(s) ≤ δ for all s ∈ S we immediately get that f(s′) ≤ δ
for all s′ ∈ conv(S). Because f(0) = 0 and S = −S, due to convexity we get that
f(s′) ≥ −f(−s′) ≥ −δ. 2

5The correspondence with the parametrization of Theorem 4.5.5 is ε↔ 8·42πδ
r , M ↔ B

r .
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5.3.8. Lemma. If r2 > 0, z ∈ Rn and f : B1(z, r2)→ R is convex, then

sup
y∈B1(0,r2)

∣∣f(z + y)− f(z)− 〈y,∇(r2)f(z)〉
∣∣ ≤ r2

2∆(r2)f(z)

2
.

Proof:
Let d(y) := f(z + y) − f(z) − 〈y,∇(r2)f(z)〉 be the difference between f(z + y)
and its linear approximator. Let S := {±r2ei : i ∈ [n]}. It is easy to see that
d(0) = 0, S = −S, and conv(S) = B1(0, r2). Also, for all s ∈ S we have
|d(s)| ≤ r2

2∆(r2)f(z)/2:

d(±r2ei) = f(z ± r2ei)− f(z)− 〈±r2ei,∇(r2)f(z)〉
= f(z ± r2ei)− f(z)∓ r2∇(r2)

i f(z)

= f(z ± r2ei)− f(z)∓ f(z + r2ei)− f(z − r2ei)

2

=
f(z + r2ei)− 2f(z) + f(z − r2ei)

2

= r2
2∆

(r2)
i f(z)/2 ≤ r2

2∆(r2)f(z)/2.

Therefore Lemma 5.3.7 implies that supy∈B1(0,r2) |d(y)| ≤ r2
2∆(r2)f(z)/2. 2

We can now state the main result of this section, the quantum analogue of
Lemma 5.3.5.

5.3.9. Lemma. Let r1 > 0, L > 0, ρ ∈ (0, 1/3], and suppose δ ∈ (0, r1nL/ρ],

then r2 :=
√

δr1ρ
nL
≤ r1. Suppose f : C → R is a convex function that is L-

Lipschitz on B∞(0, 2r1), and we have quantum query access6 to f̃ , which is a
δ-approximate version of f , via a unitary U over a (fine-enough) hypergrid of
B∞(0, 2r1). Then we can compute a g̃ ∈ Rn using O(log(n/ρ)) queries to U , such
that with probability ≥ 1− ρ, we have

f(y) ≥ f(0) + 〈g̃, y〉 − (23n)2

√
δL

ρr1

‖y‖ − 2L
√
nr1 for all y ∈ C.

Proof:
The quantum algorithm works roughly as follows. It first picks a uniformly7

random z ∈ B∞(0, r1). Then it uses Jordan’s quantum algorithm to compute an
approximate gradient at z by approximately evaluating f in superposition over a

6Using Corollary 5.A.2 instead of Corollary 5.3.6 shows that a relational quantum oracle
also suffices as input.

7A discrete quantum computer strictly speaking cannot do this, but (as noted after
Lemma 5.3.4) a uniformly random point from a fine enough hypergrid suffices.
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discrete hypergrid of B∞(z, r2/n). This then yields an approximate subgradient
of f at 0.

We now work out this rough idea. Since B∞(z, r2
n

) ⊆ B1(z, r2), Lemma 5.3.8
implies

sup
y∈B∞(0,r2/n)

∣∣f(z + y)− f(z)− 〈y,∇(r2)f(z)〉
∣∣ ≤ r2

2∆(r2)f(z)

2
. (5.4)

Also as shown by Lemma 5.3.4 and Markov’s inequality we have

∆(r2)f(z) ≤ 2nL

ρr1

(5.5)

with probability ≥ 1− ρ/2 over the choice of z. If z is such that Equation (5.5)
holds, then we get

sup
y∈B∞(0,r2/n)

∣∣f(z + y)− f(z)− 〈y,∇(r2)f(z)〉
∣∣ ≤ nLr2

2

ρr1

= δ.

Now apply the quantum algorithm of Corollary 5.3.6 with r = 2r2/n, c = f(z),
g = ∇(r2)f(z), and B = Lr. This uses O(log(n/ρ)) queries to U , and with
probability ≥ 1− ρ/2 computes an approximate gradient g̃ such that

∥∥∇(r2)f(z)− g̃
∥∥
∞ ≤

8 · 42πn

2r2

· δ = 4 · 42 · π

√
δn3L

ρr1

. (5.6)

Also, if z is such that Equation (5.5) holds, then by Lemma 5.3.3 we get that

sup
g∈∂f(z)

∥∥∇(r2)f(z)− g
∥∥

1
≤ r2∆(r2)f(z)

2
≤ nLr2

ρr1

=

√
δnL

ρr1

,

and therefore by the triangle inequality and Equation (5.6) we get that

sup
g∈∂f(z)

‖g − g̃‖∞ ≤ sup
g∈∂f(z)

∥∥g −∇(r2)f(z)
∥∥
∞ +

∥∥∇(r2)f(z)− g̃
∥∥
∞

≤ sup
g∈∂f(z)

∥∥g −∇(r2)f(z)
∥∥

1
+
∥∥∇(r2)f(z)− g̃

∥∥
∞

≤

√
δnL

ρr1

+ 4 · 42 · π

√
δn3L

ρr1

< 232

√
δn3L

ρr1

.

Thus with probability at least 1− ρ, for all y ∈ C and for all g ∈ ∂f(z) we have
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that

f(y) ≥ f(z) + 〈g, y − z〉
= f(0) + 〈g̃, y〉+ 〈g − g̃, y〉+ (f(z)− f(0)) + 〈g,−z〉
≥ f(0) + 〈g̃, y〉 − |〈g − g̃, y〉| − L‖z‖ − ‖g‖‖z‖
≥ f(0) + 〈g̃, y〉 − ‖g − g̃‖∞‖y‖1 − L

√
nr1 − L

√
nr1 (by (5.1))

≥ f(0) + 〈g̃, y〉 − 232

√
δn3L

ρr1

‖y‖1 − 2L
√
nr1

≥ f(0) + 〈g̃, y〉 − (23n)2

√
δL

ρr1

‖y‖ − 2L
√
nr1.

2

5.4 Algorithms for separation using membership
queries

Let K ⊆ Rn be a convex set such that B(0, r) ⊆ K ⊆ B(0, R). Given a member-
ship oracle8 MEMε,0(K) as in Definition 5.2.3, we construct a separation oracle
SEPη,ρ(K) as in Definition 5.2.4. Let x be the point we want to separate from K.
We first make a membership query to x itself, receiving answer x ∈ B(K, ε) or
x 6∈ B(K,−ε). Suppose x 6∈ B(K,−ε), then we need to find a hyperplane that
approximately separates x from K. Due to the rotational symmetry of the sep-
aration problem, for ease of notation we assume that x = −‖x‖en.9 For this x
define h : Rn−1 → R ∪ {∞} as

h(y) := inf
(y,yn)∈K

yn.

8For simplicity we assume throughout this section that the membership oracle succeeds with
certainty (i.e., its error probability is 0). This is easy to justify: suppose we have a classical
T -query algorithm, which uses MEMε,0(K) queries and succeeds with probability at least 1−ρ.
If we are given access to a MEMε, 13

(K) oracle instead, then we can create a MEMε, ρT
(K) oracle

by O(log(T/ρ)) queries to MEMε, 13
(K) and taking the majority of the answers. Then running

the original algorithm with MEMε, ρT
(K) will fail with probability at most 2ρ. Therefore the

assumption of a membership oracle with error probability 0 can be removed at the expense of
only a small logarithmic overhead in the number of queries. A similar argument works for the
quantum case.

9For the query complexity this is without loss of generality, since we can always apply a
rotation to all the points such that this holds. If we instead consider the computational cost
of our algorithm, then we have to take into account the cost of this rotation and its inverse.
Note, however, that this rotation can always be written as the product of n rotations on only
2 coordinates, and hence can be applied in Õ(n) additional steps.
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Our h is a bit different from the one used in [LSV18], but we can show that it
has many of the same properties. Since K is a convex set, h is a convex function
over Rn−1. As we show below, the function h is also Lipschitz (Lemma 5.4.1) and
we can approximately compute its value using binary search with Õ(1) classical
queries to a membership oracle (Lemma 5.4.2). Furthermore, an approximate
subgradient of h at 0 allows to construct a hyperplane approximately separating
x from K (Lemma 5.4.3). Combined with the results of Section 5.3 this leads
to the main results of this section, Theorems 5.4.4 and 5.4.5, which show how to
efficiently construct a separation oracle using classical (resp. quantum) queries to
a membership oracle.

Analogously to [LSV18, Lemma 12] we first show that our h is Lipschitz.

5.4.1. Lemma. For every δ ∈ (0, r), h is R
r−δ -Lipschitz on B(0, δ) ⊆ Rn−1, that

is, we have

|h(y′)− h(y)| ≤ R

r − δ
‖y′ − y‖ for all y, y′ ∈ B(0, δ).

Proof:
Observe that for all y ∈ B(0, r) we have −R ≤ h(y) ≤ 0, because B(0, r) ⊆
K ⊆ B(0, R). Let y, y′ ∈ B(0, δ) be arbitrary, and let z = y′−y

‖y′−y‖ . Observe that
y + (‖y′ − y‖+ (r − δ))z = y′ + (r − δ)z ∈ B(0, r), and that

y′ =
‖y′ − y‖

‖y′ − y‖+ (r − δ)
(y′ + (r − δ)z) +

r − δ
‖y′ − y‖+ (r − δ)

y,

and therefore due to convexity

h(y′)− h(y) ≤ [h(y′ + (r − δ)z)− h(y)]
‖y′ − y‖

‖y′ − y‖+ (r − δ)
≤ R

r − δ
‖y′ − y‖.

2

Now we show how to compute the value of h using membership queries to K.

5.4.2. Lemma. For all y ∈ B
(
0, r

2

)
⊂ Rn−1 we can compute a δ-approximation

of h(y) with O
(
log
(
R
δ

))
queries to a MEMε,0(K) oracle, where ε ≤ r

3R
δ.

Proof:
Let y ∈ B(0, r

2
), then (y, h(y)) is a boundary point of K by the definition of h.

Note that h(y) ∈ [−R,−r/2], our goal is to perform binary search over this
interval to find a good approximation of h(y). Suppose yn ≤ − r

2
is our current

guess for h(y). We first show that

(a) if (y, yn) ∈ B(K, ε), then yn ≥ h(y)− δ, and

(b) if (y, yn) 6∈ B(K,−ε), then yn ≤ h(y) + 2
3
δ.
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For the proof of (a) consider a g ∈ ∂h(y). Since g is a subgradient we have
that h(z) ≥ h(y) + 〈g, z − y〉 for all z ∈ Rn−1. Hence, for all z ∈ Rn−1 and zn
such that (z, zn) ∈ K we have〈(

−g
1

)
,

(
y

h(y)

)〉
≤
〈(
−g
1

)
,

(
z

h(z)

)〉
≤
〈(
−g
1

)
,

(
z
zn

)〉
where the first inequality is a rewriting of the subgradient inequality and the
second inequality uses that zn ≥ h(z) since (z, zn) ∈ K. Since (y, yn) ∈ B(K, ε)
it follows from the above inequality that〈(
−g
1

)
,

(
y
yn

)〉
≥
〈(
−g
1

)
,

(
y

h(y)

)〉
−ε
∥∥∥∥(−g1

)∥∥∥∥ ≥ 〈(−g1
)
,

(
y

h(y)

)〉
−ε(‖g‖+1).

Lemma 5.4.1 together with the argument of Equation (5.1) implies that ‖g‖ ≤ 2R
r
.

Since
ε(‖g‖+ 1) ≤ ε

(
2R

r
+ 1

)
≤ ε

3R

r
≤ δ,

we obtain the inequality of (a).
For (b), consider the convex set C which is the convex hull of B((y, 0), r/2)

and (y, h(y)). Note that B(C,−ε) is the convex hull of B((y, 0), r/2 − ε) and(
y, h(y)

(
1− 2ε

r

))
. Since C ⊆ K, we have B(C,−ε) ⊆ B(K,−ε). Therefore

(y, yn) 6∈ B(K,−ε) implies (y, yn) /∈ B(C,−ε), and

yn ≤ h(y)

(
1− 2ε

r

)
= h(y)− ε2h(y)

r
≤ h(y) + ε

2R

r
≤ h(y) +

2

3
δ.

Now we can analyze the binary search algorithm. By making O
(
log
(
R
δ

))
MEMε,0(K) queries to points of the form (y, z), we can find a value yn ∈ [−R,− r

2
]

such that (y, yn) ∈ B(K, ε) but (y, yn − δ
3
) 6∈ B(K,−ε). By (a)-(b) we get that

|h(y)− yn| ≤ δ. 2

The following lemma shows how to convert an approximate subgradient of h
to a hyperplane that approximately separates x from K.

5.4.3. Lemma. Suppose −‖x‖en = x /∈ B(K,−ε), and g̃ ∈ Rn−1 is an approxi-
mate subgradient of h at 0, meaning that for some a, b ∈ R and for all y ∈ Rn−1

h(y) ≥ h(0) + 〈g̃, y〉 − a‖y‖ − b,

then s := (−g̃,1)
‖(−g̃,1)‖ satisfies 〈s, z〉 ≥ 〈s, x〉 − aR+b

‖(−g̃,1)‖ −
2R
r

ε
‖(−g̃,1)‖ for all z ∈ K.

Proof:
Let us introduce the notation z = (y, zn) and s′ := (−g̃, 1) = ‖(−g̃, 1)‖s, then

〈s′, z〉 = zn − 〈g̃, y〉 ≥ h(y)− 〈g̃, y〉 ≥ h(0)− a‖y‖ − b

≥ −‖x‖ − 2R

r
ε− aR− b = 〈s′, x〉 − aR− b− 2R

r
ε,



180 Chapter 5. Convex optimization using quantum oracles

where the last inequality used claim (b) from the proof of Lemma 5.4.2. 2

We now construct a separation oracle using Õ(n) classical queries to a membership
oracle. In particular, for an η-precise separation oracle, we require an ε-precise
membership oracle with

ε =
η

676
n−2
( r
R

)3( η
R

)2
ρ

The analogous result in [LSV18, Theorem 14] uses the stronger assumption10

ε ≈ η

8 · 106
n−

7
2

( r
R

)6( η
R

)2
ρ3.

Compared to this, our result scales better in terms of n, r
R
and ρ.

5.4.4. Theorem. Let K be a convex set satisfying B(0, r) ⊆ K ⊆ B(0, R). For
any η ∈ (0, R] and ρ ∈ (0, 1/3], we can implement the oracle SEPη,ρ(K) using
O
(
n log

(
n
ρ
R
η
R
r

))
classical queries to a MEMε,0(K) oracle, where

ε ≤ η(26n)−2
( r
R

)3( η
R

)2
ρ.

Proof:
Let x 6∈ B(K,−ε) be the point we want to separate from K. Let us fix δ :=

η n
−2

9·24

(
r
R
· η
R

)2
ρ, then ε ≤ r

3R
δ. By Lemma 5.4.2 we can evaluate h to within

error δ using O
(
log
(
R
δ

))
queries to a MEMε,0(K) oracle. By Lemma 5.4.1 we

know that h is 2R
r
-Lipschitz on B(0, r/2). Let us choose r1 := r

12
√
n
η
R
, then

r1

√
n ≤ r

4
, therefore B∞(0, 2r1) ⊆ B(0, r/2). Also note that δ ≤ η

6ρ
= 2r1

√
nR

ρr
.

Hence by Lemma 5.3.5, using O
(
n log

(
R
δ

))
queries to a MEMε,0(K) oracle,

we can compute an approximate subgradient g̃ such that with probability at least
1− ρ we have

h(y) ≥ h(0) + 〈g̃, y〉 − 3n
3
4

2

√
δ2R

ρr1r
‖y‖ − 4R

r

√
nr1 for all y ∈ Rn−1.

Substituting the value of r1 and δ we get h(y) ≥ h(0) + 〈g̃, y〉− η
2R
‖y‖− η

3
, which

by Lemma 5.4.3 gives an s such that 〈s, z〉 ≥ 〈s, x〉 − 5
6
η − 2R

r
ε ≥ 〈s, x〉 − η for

all z ∈ K 2

Finally, we give a proof of our main result: we construct a separation oracle
using Õ(1) quantum queries to a membership oracle.

10It seems that Lee et al. [LSV18, Algorithm 1] did not take into account the change in
precision analogous to our Lemma 5.4.2, therefore one would probably need to worsen their
exponent of r

R from 6 to 7.
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5.4.5. Theorem. Let K be a convex set satisfying B(0, r) ⊆ K ⊆ B(0, R).
For any η ∈ (0, R] and ρ ∈ (0, 1/3], we can implement the oracle SEPη,ρ(K)

using O
(

log
(
n
ρ

)
log
(
n
ρ
R
η
R
r

))
quantum queries to a MEMε,0(K) oracle, where ε ≤

η(58n)−
9
2

(
r
R

)3( η
R

)2
ρ.

Proof:
Let x 6∈ B(K,−ε) be the point we want to separate from K. Let us fix δ :=

η 23−4

4·24
n−

9
2

(
r
R
· η
R

)2
ρ, then ε ≤ r

3R
δ. By Lemma 5.4.2 we can evaluate h to within

error δ using O
(
log
(
R
δ

))
queries to a MEMε,0(K) oracle. By Lemma 5.4.1 we

know that h is 2R
r
-Lipschitz on B(0, r/2). Let us choose r1 := r

12
√
n
η
R
, then

r1

√
n ≤ r

4
, therefore B∞(0, 2r1) ⊆ B(0, r/2). Also note that δ ≤ η

6ρ
= 2r1nR

ρr
.

Hence by Lemma 5.3.9, using O
(

log
(
n
ρ

)
log
(
R
δ

))
queries to a MEMε,0(K) oracle,

we can compute an approximate subgradient g̃ such that with probability at least
1− ρ we have

h(y) ≥ h(0) + 〈g̃, y〉 − (23n)2

√
2δR

ρr1r
‖y‖ − 4R

r

√
nr1 for all y ∈ Rn−1.

Substituting the value of r1 and δ we get h(y) ≥ h(0) + 〈g̃, y〉− η
2R
‖y‖− η

3
, which

by Lemma 5.4.3 gives an s such that 〈s, z〉 ≥ 〈s, x〉 − 5
6
η − 2R

r
ε ≥ 〈s, x〉 − η for

all z ∈ K. 2

5.5 Lower bounds
For a convex set K satisfying B(0, r) ⊆ K ⊆ B(0, R), we have shown in Theo-
rem 5.4.5 that one can implement a SEP(K) oracle with Õ(1) quantum queries
to a MEM(K) oracle if the membership oracle is sufficiently precise. In this sec-
tion we first show that this is exponentially better than what can be achieved
using classical access to a membership oracle. We also investigate how many
queries to a membership/separation oracle are needed in order to implement an
optimization oracle. Our results are as follows.

• We show that Ω(n) classical queries to a membership oracle are needed to
implement a weak separation oracle.

• We show that Ω(n) classical (resp. Ω(
√
n) quantum) queries to a separation

oracle are needed to implement a weak optimization oracle; even when we
know an interior point in the set.

• We show an Ω(n) lower bound on the number of classical and/or quantum
queries to a separation oracle needed to optimize over the set when we do
not know an interior point.



182 Chapter 5. Convex optimization using quantum oracles

In this section we will always assume that the input oracle is a strong oracle but
the output oracle is allowed to be a weak oracle with error ε. Furthermore, we
will make sure that R, 1/r, and 1/ε are all upper bounded by a polynomial in n.
This guarantees that the lower bound is based on the dimension of the problem,
not the required precision.

5.5.1 Classical lower bound on the number of MEM
queries needed for SEP

Here we show that a separation query can provide Ω(n) bits of information about
the underlying convex set K; since a classical membership query returns a 0 or
a 1 and hence can give at most 1 bit of information11, this theorem immediately
implies a lower bound of Ω(n) on the number of classical membership queries
needed to implement one separation query.

5.5.1. Theorem. Let ε ≤ 39
1600

. There exist a set of m = 2Ω(n) convex sets
K1, . . . , Km and points y, x0 ∈ Rn such that B(x0, 1/3) ⊆ Ki ⊆ B(x0, 2

√
n) for

all i ∈ [m], and such that the result of a classical query to SEPε,0(Ki) with the
point y correctly identifies i.

Proof:
Let h1, . . . , hm ∈ Rn be a set of m = 2Ω(n) entrywise non-negative unit vectors
such that 〈hi, hj〉 ≤ 0.51 for all distinct i, j ∈ [m]. Such a set of m vectors can for
instance be constructed from a good error-correcting code that encodes Ω(n)-bit
words into n-bit codewords with pairwise Hamming distance close to n/2.

Now pick an i ∈ [m] and define K̂i := {x : 〈hi, x〉 ≤ 0} ∩ B(0,
√
n) and

Ki := B(K̂i, ε). Then K̂i = B(Ki,−ε). We claim that a query to SEPε,0(Ki)
with the point y = 3εe ∈ Rn will identify hi. First note that y 6∈ B(Ki, ε), since
K̂i does not contain any entrywise positive vectors and y has distance at least
3ε from all vectors that have at least one non-positive entry. Hence a separation
query with y will return a unit vector g such that for all x ∈ K̂i

〈g, x〉 ≤ 〈g, y〉+ ε ≤ ‖g‖ · ‖y‖+ ε ≤ (3
√
n+ 1)ε ≤ 4

√
nε. (5.7)

Now consider the specific point x that is the projection of g onto h⊥i (the hyper-
plane orthogonal to hi) scaled by a factor

√
n, i.e., x =

√
n(g − 〈g, hi〉hi). Since

〈hi, x〉 = 0 and ‖x‖ ≤
√
n, we have x ∈ K̂i. Therefore (5.7) gives the following

inequality √
n(1− 〈g, hi〉2) = 〈g, x〉 ≤ 4

√
nε.

Hence |〈g, hi〉| ≥
√

1− 4ε ≥ 19
20
. This implies that g − hi or g + hi has length at

most
√

2− 2|〈g, hi〉| ≤
√

1
10
; assume the former for simplicity. Now for all j 6= i

11This is not true for quantum membership queries!
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we have

|〈g, hj〉| ≤ |〈g − hi, hj〉|+ |〈hi, hj〉| ≤
√

1

10
+ 0.51 <

9

10
.

Hence g uniquely identifies hi. Finally, for x0 = −e/3 we have B(x0, 1/3) ⊆ Ki ⊆
B(x0, 2

√
n). 2

5.5.2 Lower bound on number of SEP queries for OPT
(given an interior point)

We now consider lower bounding the number of quantum queries to a separation
oracle needed to do optimization. In fact, we prove a lower bound on the num-
ber of separation queries needed for validity, which implies the same bound on
optimization. We will use a reduction from a version12 of the well-studied search
problem:

Given z ∈ {0, 1}n such that either |z|=0 or |z|=1, decide which of the two holds.

It is not hard to see that if the access to z is given via classical queries, then Ω(n)
queries are needed. It is well known [BBBV97] that if we allow quantum queries,
then Ω(

√
n) queries are needed (i.e., Grover’s quantum search algorithm [Gro96]

is optimal). This was first proven using the hybrid-method, see Theorem 4.1.2.
We use this problem to show that there exist convex sets for which it is hard
to construct a weak validity oracle, given a strong separation oracle. Since a
separation oracle can be used as a membership oracle, this gives the same hardness
result for constructing a weak validity oracle from a strong membership oracle.

5.5.2. Theorem. Let 0 < ρ ≤ 1/3. Let A be an algorithm that can implement
a VAL(4n)−1,ρ(K) oracle for every convex set K (with B(x0, r) ⊆ K ⊆ B(x0, R))
using only queries to a SEP0,0(K) oracle, and unitaries that are independent of K.
Then the following statements are true, even when we restrict to convex sets K
with r = 1/3 and R = 2

√
n:

• if the queries to SEP0,0(K) are classical, then the algorithm uses Ω(n)
queries.

• if the queries to SEP0,0(K) are quantum, then the algorithm uses Ω(
√
n)

queries.

Proof:
Let z ∈ {0, 1}n have Hamming weight |z| = 0 or |z| = 1. We construct a set Kz

12Note that this is a slightly different version from the one used in Section 5.2.1.
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in such a way that solving the weak validity problem solves the search problem
for z, while separation queries for Kz can be answered using a single query to
z. The known classical and quantum lower bounds on the search problem then
imply the two claims of the theorem, respectively.

DefineKz := ×ni=1[−1, zi]. We first show how to implement a strong separation
oracle using a single query to z. Suppose the input is the point y. The strong
separation oracle works as follows:

1. If y ∈ [−1, 0]n, then return the statement that y ∈ B(Kz, 0) = Kz.

2. If y 6∈ [−1, 1]n, then return a hyperplane that separates y from [−1, 1]n (and
hence from Kz).

3. Let i be such that yi > 0. Query zi.

(a) If zi = 1 and i is the only index such that yi > 0, then return that
y ∈ B(Kz, 0) = Kz.

(b) If zi = 1 and there is a j 6= i such that yj > 0, return separating
hyperplane xj ≤ yj.

(c) If zi = 0, then return the separating hyperplane xi ≤ yi.

It remains to show that a query to a weak validity oracle with accuracy ε = 1
4n

can solve the search problem on z. We show that a validity query over Kz with
the direction c = 1√

n
(1, . . . , 1) ∈ Rn and value γ = 1

2
√
n
solves the search problem:

• If |z| = 0, then we claim validity will return that 〈c, x〉 ≤ γ + ε holds for all
x ∈ B(K0,−ε).

Indeed, we show there is no x ∈ B(K0, ε) with 〈c, x〉 ≥ γ − ε. For all points
x ∈ K0 we have 〈c, x〉 ≤ 0. Thus, for all points x ∈ B(K0, ε) we have
〈c, x〉 ≤ ε < γ − ε.

• If |z| = 1, then we claim validity will return that 〈c, x〉 ≥ γ − ε holds for
some x ∈ B(Kz, ε).

Indeed, we show there is an x ∈ B(Kz,−ε) for which 〈c, x〉 > γ + ε. The
point z ∈ Kz satisfies 〈z, c〉 = 1√

n
and therefore x = z − εe ∈ B(Kz,−ε)

satisfies 〈c, x〉 = 1√
n
−
√
nε > γ + ε.

Finally, we observe that if we set x0 = (−1/2, . . . ,−1/2), then B(x0,
1
3
) ⊆ Kz ⊆

B(x0, 2
√
n). 2
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5.5.3 Lower bound on number of SEP queries for OPT
(without interior point)

We now lower bound the number of quantum queries to a separation oracle needed
to solve the optimization problem, if our algorithm does not already know an
interior point of K. In fact we prove a lower bound on finding a point in K using
separation queries, which implies the lower bound on the number of separation
queries needed for optimization.

We prove our lower bound by a reduction to the problem of learning z with
first-difference queries. Here one needs to find an initially unknown n-bit binary
string z via a guessing game. For a given guess g ∈ {0, 1}n a query returns the
first index in [n] for which the binary strings z and g differ (or it returns n+ 1 if
z = g). The goal is to recover z with as few guesses as possible. First we prove
an Ω(n) quantum query lower bound for this problem.13

5.5.3. Theorem.(Quantum lower bound for learning z by first-difference queries)
Let z ∈ {0, 1}n be an unknown string accessible by an oracle acting as Oz|g, b〉 =
|g, b ⊕ f(g, z)〉, where f(g, z) is the first index for which z and g differ, more
precisely f(g, z) = min{i ∈ [n] : gi 6= zi} if g 6= z and f(g, z) = n + 1 otherwise.
Then every quantum algorithm that outputs z with high probability uses at least
Ω(n) queries to Oz.

Proof:
We will use the general adversary bound [HLŠ07]. For this problem, we call
Γ ∈ R2n×2n an adversary matrix if it is a non-zero matrix with zero diagonal
whose rows and columns are indexed by all z ∈ {0, 1}n. For g ∈ {0, 1}n let
us define ∆g ∈ {0, 1}2n×2n such that the [z, z′] entry of ∆g is 0 if and only if
f(g, z) = f(g, z′). The general adversary bound tells us that for any adversary
matrix Γ, the quantum query complexity of our problem is

Ω

(
‖Γ‖

maxg∈{0,1}n‖Γ ◦∆g‖

)
, (5.8)

where “◦” denotes the Hadamard product and ‖·‖ the operator norm.
We claim that Equation (5.8) gives a lower bound of Ω(n) for the adversary

matrix Γ defined as

Γ[z, z′] =

{
2f(z,z′) if z 6= z′

0 if z = z′

It is easy to see that Γ is indeed an adversary matrix since it is zero on the
diagonal and non-zero everywhere else. Furthermore, the all-one vector e is an

13Note that this is a strengthening of the Ω(n) quantum query lower bound for binary search
on a space of size 2n by Ambainis [Amb99], since first-difference queries are at least as strong
as the queries one makes in binary search.
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eigenvector of Γ with eigenvalue n2n:

(Γe)z =
∑

z′∈{0,1}n
Γ[z, z′] =

n∑
d=1

2d ·|{z′ ∈ {0, 1}n : f(z, z′) = d}| =
n∑
d=1

2d2n−d = n2n.

So Γe = n2ne and hence ‖Γ‖ ≥ n2n.
From the definition of ∆g it follows that

(Γ ◦∆g)[z, z
′] = 2f(z,z′)χ[f(g,z)6=f(g,z′)],

where χ[f(g,z)6=f(g,z′)] stands for the indicator function of the condition f(g, z) 6=
f(g, z′). Let Γg := Γ◦∆g. We will show an upper bound on ‖Γg‖. We decompose
Γg in an “upper-triangular” and a “lower-triangular” part:

ΓUg [z, z′] := 2f(z,z′)χ[f(g,z)<f(g,z′)] = 2f(g,z)χ[f(g,z)<f(g,z′)], (5.9)

ΓLg [z, z′] := 2f(z,z′)χ[f(g,z′)<f(g,z)] = 2f(g,z′)χ[f(g,z′)<f(g,z)].

So Γg = ΓUg + ΓLg and ΓUg = (ΓLg )T . Hence by the triangle inequality we have

‖Γg‖ ≤
∥∥ΓUg

∥∥+
∥∥ΓLg

∥∥ = 2
∥∥ΓUg

∥∥. (5.10)

It thus suffices to upper bound
∥∥ΓUg

∥∥. Notice that as (5.9) shows, ΓUg [z, z′] only
depends on the values f(g, z), f(g, z′). Since the range of f(g, · ) is [n+1], we can
think of ΓUg as an (n+ 1)× (n+ 1) block-matrix, where the blocks are determined
by the values of f(g, z) and f(g, z′), and within a block all matrix elements are
the same. Also observe that for all k ∈ [n] there are 2n−k bitstrings y ∈ {0, 1}n
such that f(g, y) = k, which tells us the sizes of the blocks. Motivated by these
observations we define an orthonormal set of vectors in R2n by vn+1 := eg, and
for all k ∈ [n]

vk :=
∑

y:f(g,y)=k

ey√
2n−k

.

Since the row and column spaces of ΓUg are spanned by {vk : k ∈ [n+ 1]}, we can
reduce ΓUg to a (n+ 1)× (n+ 1)-dimensional matrix G:

ΓUg =

(
n+1∑
k=1

vkv
T
k

)
ΓUg

(
n+1∑
`=1

v`v
T
`

)

=

(
n+1∑
k=1

vke
T
k

)(
n+1∑
k=1

ekv
T
k

)
ΓUg

(
n+1∑
`=1

v`e
T
`

)
︸ ︷︷ ︸

G:=

(
n+1∑
`=1

e`v
T
`

)
.
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It follows from the above identity, together with the orthonormality of the vectors
{v1, . . . , vn, vn+1}, that∥∥ΓUg

∥∥ =

∥∥∥∥∥
(
n+1∑
k=1

ekv
T
k

)
ΓUg

(
n+1∑
`=1

v`e
T
`

)∥∥∥∥∥ = ‖G‖. (5.11)

G ∈ R(n+1)×(n+1) is a strictly upper-triangular matrix, with the following entries
for k, ` ∈ [n]:

G[k, `] = vTk ΓUg v`

=

 ∑
z:f(g,z)=k

eTz√
2n−k

ΓUg

 ∑
z′:f(g,z′)=`

ez′√
2n−`


=

2
k+`
2

2n

 ∑
z:f(g,z)=k

eTz

ΓUg

 ∑
z′:f(g,z′)=`

ez′


=

2
k+`
2

2n

∑
z:f(g,z)=k

∑
z′:f(g,z′)=`

ΓUg [z, z′]

=
2
k+`
2

2n

∑
z:f(g,z)=k

∑
z′:f(g,z′)=`

2kχ[k<`] (by (5.9))

=
2
k+`
2

2n
2n−k2n−`2kχ[k<`]

= 2n−
`−k
2 χ[k<`].

Similarly for ` = n + 1 we get that G[k, `] =
√

2 2n−
`−k
2 χ[k<`] for all k ∈ [n + 1].

For each d ∈ [n] define Gd ∈ R(n+1)×(n+1) such that Gd[k, `] = G[k, `]χ[d=`−k].
This Gd is only non-zero on a non-main diagonal (namely the (k, `)-entries where
d = `− k), and its non-zero entries are all upper bounded by

√
2 2n2−

d
2 . We have

G =
∑n

d=1 Gd and therefore

‖G‖ ≤
n∑
d=1

‖Gd‖ =
n∑
d=1

√
2 2n2−

d
2 = 2n

n−1∑
d=0

(
√

2)−d ≤ 2n

1− 1/
√

2
≤ 2n+2. (5.12)

Inequalities (5.10)-(5.12) give that ‖Γg‖ ≤ 2n+3 and hence (5.8) yields a lower
bound of Ω

(
n2n

2n+3

)
= Ω(n) on the number of quantum queries to Oz needed to

learn z. 2

5.5.4. Theorem. Finding a point in B∞(K, 1/7) for an unknown convex set K
such that K ⊆ B∞(0, 2) ⊆ Rn requires Ω(n) quantum queries to a separation
oracle SEP0,0(K), even if we are promised there exists some unknown x ∈ Rn
such that B∞(x, 1/3) ⊆ K.
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Proof:
We will prove an Ω(n) quantum query lower bound for this problem by a reduction
from learning with first-difference queries. Let z ∈ {0, 1}n be an unknown binary
string, and let us define Kz := B∞(z, 1/3) ⊂ Rn as a small box around the corner
of the hypercube corresponding to z. Then clearly Kz ⊂ B∞(0, 2), and finding a
point close enough to Kz is enough to recover z.

We can also easily reduce a separation oracle query to a first-difference query
to z, as follows. Suppose y is the vector we query:

1. If y is outside [−1/3, 4/3]n, then output a hyperplane separating y from
[−1/3, 4/3]n.

2. If y is in [−1/3, 4/3]n, then let g be the nearest corner of the hypercube.

3. Let i be the result of a first-difference query to z with g.

(a) If z = g, then we know Kz exactly, so we can find a separating hyper-
plane or conclude that y ∈ Kz.

(b) If z 6= g, then return ei if gi = 1, and −ei if gi = 0.

Hence our Ω(n) quantum lower bound on learning z with first-difference
queries implies an Ω(n) lower bound on the number of quantum queries to a
separation oracle needed for finding a point in a convex set. 2

Since optimization over a set K gives a point in the set K, this also implies a
lower bound on the number of separation queries needed for optimization. This
theorem is tight up to logarithmic factors, since it is known that Õ(n) classical
separation queries suffice for optimization, even without knowing a point in the
convex set. Finally we remark that, due to our improved algorithm for optimiza-
tion using validity queries, this also gives an Ω̃(n) lower bound on the number of
separation queries needed to implement validity.14

5.6 Consequences of convex polarity

Here we justify the central symmetry of Figure 5.1 using the results of Grötschel,
Lovász, and Schrijver [GLS88, Section 4.4]. We first need to recall the definition
and some basic properties of the polar K∗ of a set K ⊆ Rn. This is the closed
convex set defined as follows:

K∗ = {y ∈ Rn : 〈y, x〉 ≤ 1 for all x ∈ K}.
14It is easy to modify Theorem 5.5.3 to prove a lower bound on computing the majority of

z, which would imply an Ω(n) lower bound on the number of separation queries needed to
implement a validity oracle, without the log factors.
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It is straightforward to verify that if B(0, r) ⊆ K ⊆ B(0, R), then B(0, 1/R) ⊆
K∗ ⊆ B(0, 1/r), moreover (K∗)∗ = K for closed convex sets.15 For the remainder
of this section we assume that K is a closed convex set such that B(0, r) ⊆ K ⊆
B(0, R).

We will observe that for the polar K∗ of a set K the following holds:

MEM(K∗)↔ VAL(K), SEP(K∗)↔ VIOL(K), (5.13)

where MEM(K∗) ↔ VAL(K) means we can implement a weak validity oracle
for K using a single query to a weak membership oracle for K∗, and vice versa.
Since VIOL(K) and OPT(K) are equivalent up to Θ̃(1) reductions (via binary
search), this justifies the central symmetry of Figure 5.1, because it shows that
algorithms that implement VIOL(K) given VAL(K) are equivalent to algorithms
that implement SEP(K∗) given MEM(K∗), and similarly algorithms that im-
plement SEP(K) given VIOL(K) are equivalent to algorithms that implement
VIOL(K∗) given SEP(K∗).

Grötschel, Lovász, and Schrijver [GLS88, Section 4.4] showed that the weak
membership problem for K∗ can be solved using a single query to a weak validity
oracle for K, and that the weak separation problem for K∗ can be solved using
a single query to a weak violation oracle for K. Using similar arguments one
can show the reverse directions as well, which justifies (5.13). Here we only
motivate the equivalences between the above-mentioned weak oracles by showing
the equivalence of the strong oracles (i.e., where ρ and ε are 0).

Strong membership on K∗ is equivalent to strong validity on K. First,
for a given vector c ∈ Rn and a γ > 0 observe the following:

c

γ
6∈ int(K∗) ⇐⇒ ∃y ∈ K s.t. 〈c/γ, y〉 ≥ 1 ⇐⇒ ∃y ∈ K s.t. 〈c, y〉 ≥ γ.

Hence, a strong membership query to K∗ with a point c can be implemented
by querying a strong validity oracle for K with the vector c and the value 1.
Likewise, a strong validity query to K with a point c and value16 γ > 0 can be
implemented using a strong membership query to K∗ with c/γ.

Strong separation on K∗ is equivalent to strong violation on K. To
implement a strong separation query on K∗ for a vector y ∈ Rn we do the
following. Query the strong violation oracle for K with y and the value 1. If
the answer is that 〈y, x〉 ≤ 1 for all x ∈ K, then y ∈ K∗. If instead we are given a

15Note that K∗ is a dual representation of the convex set K. Each point in K∗ corresponds
to a (normalized) valid inequality for K. This duality is not to be confused with Lagrangian
duality.

16Observe that queries with value γ ≤ 0 can be answered trivially, since 0 ∈ K.
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vector x ∈ K with 〈y, x〉 ≥ 1, then x separates y from K∗ (indeed, for all z ∈ K∗,
we have 〈z, x〉 ≤ 1 ≤ 〈y, x〉).

For the reverse direction, to implement a strong violation oracle for K on the
vector c and value16 γ > 0 we do the following. Query the strong separation
oracle for K∗ with the point c/γ. If the answer is that c/γ ∈ K∗ then 〈c, x〉 ≤ γ
for all x ∈ K. If instead we are given a non-zero vector y ∈ Rn that satisfies
〈c/γ, y〉 ≥ 〈z, y〉 for all z ∈ K∗, then ỹ = y/〈c/γ, y〉 will be a valid answer for the
strong violation oracle for K. Indeed, we have ỹ ∈ K because 〈z, ỹ〉 ≤ 1 for all
z ∈ K∗ and K = (K∗)∗, and by construction 〈c, ỹ〉 = γ.

5.7 Future work
We mention several open problems for future work:

• Can we improve our Ω(
√
n) lower bound on the number of separation queries

needed to implement an optimization oracle when our algorithm knows a
point in K? We conjecture that the correct bound is Θ̃(n), in which case
knowing a point in K does not confer much benefit for query complexity.

• Are there interesting convex optimization problems where separation is
much harder than membership for classical computers? Such problems
would be good candidates for quantum speed-up in optimization in the real,
non-oracle setting. It is known that given a deterministic algorithm for a
function, an algorithm with roughly the same complexity can be constructed
to compute the gradient of that function [GW08], so for deterministic ora-
cles separation is not much harder than membership queries. This, however,
still leaves randomized and quantum membership oracles to be considered.

• The algorithms that give an Õ(n) upper bound on the number of separation
queries for optimization (for example [LSW15, Theorem 42]) give the best
theoretical results for many convex optimization problems. However, due
to the large constants in these algorithms they are rarely used in a practical
setting. A natural question is whether the algorithms used in practice lend
themselves to quantum speed-ups as well. Recent work by Kerenidis and
Prakash [KP18] on quantum interior point methods is a first step in this
direction.

5.A Quantum gradient computation using rela-
tional oracles

In this appendix we extend the result of Corollary 5.3.6 to functions given by a
relational input oracle. As a direct consequence this shows that the algorithm
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from Theorem 5.4.5 also works when the input is given as a relational membership
oracle instead of a standard oracle.

5.A.1. Definition (Unitary δ-approximator). Let X be a finite set and let Y
denote a set of fixed-point b-bit numbers. Let f : X → Y be a function. We say
that a relational quantum oracle U on X is a b-bit unitary δ-approximator of f
if the valid answers for each x ∈ X differ at most δ from f(x) (i.e., F(x) = {y ∈
Y : |f(x)− y| ≤ δ}), and the success probability is at least 2

3
.

5.A.2. Corollary (Gradient computation using a unitary δ-approximator).
Let δ, B, r, c ∈ R, ρ ∈ (0, 1/3]. Let x0, g ∈ Rn with ‖g‖∞ ≤

B
r
, and let m :=⌈

log2

(
B

28πδ

)⌉
. Suppose f : (x0 + rGn

m)→ R is such that

|f(x0 + rx)− 〈g, rx〉 − c| ≤ δ

for 99.9% of the points x ∈ Gn
m, and we have access to U , an O

(
log
(
B
δ

))
-bit

unitary δ-approximator of f over the domain (x0 + rGn
m). Then we can compute

a vector g̃ ∈ Rn such that

Pr

[
‖g̃ − g‖∞ >

8 · 42πδ

r

]
≤ ρ,

with O
(

log
(
n
ρ

))
queries to U and U † and O

(
n log

(
n
ρ

)
log
(
B
δ

)
loglog

(
n
ρ

)
loglog

(
B
δ

))
additional gate complexity.

Proof:
The algorithm is the same as in the less general Corollary 5.3.6 presented in
Section 5.3.2, we just need to analyze it a bit more carefully. The main idea
is still to implement an approximate version of the phase oracle O : |x, 0, 0〉 7→
e2πi M

3B
f(x0+rx)|x, 0, 0〉, and then use Jordan’s gradient computation algorithm. We

approximate O by first approximately computing f using U , then applying17 a
controlled phase operation cP acting as cP: |y〉 7→ e2πi M

3B
y|y〉 (where M = 3B

84πδ

as in the proof of Corollary 5.3.6), and finally applying U † to approximately
uncompute f .

We can assume without loss of generality that our unitary δ-approximator is
such that the probability of |f(x)− y| > δ is at most 1

1200
. If this is not the case,

we can improve the success probability by querying U a few times and taking the
median of the results.

17If y is a b-bit fixed-point binary number, then this can be implemented using b single-qubit
phase gates as follows: we can assume without loss of generality that y = a0 + a ·

∑b
j=1 yj2

j for
some fixed a0, a ∈ R. Then e2πi M3B y = e2πi M3B a0

∏b
j=1 e

2πi M3B ayj2
j

. The global phase is irrelevant,
and the other phase factors can be implemented by using b single-qubit phase gates, each acting
as |yj〉 7→ e2πi M3B ayj2

j |yj〉.
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Let us define F(x) := {y ∈ Y : |f(x)− y| ≤ δ} as in Definition 5.A.1. Observe
that∥∥O|x, 0, 0〉 − U †(I ⊗ cP⊗ I)U |x, 0, 0〉

∥∥2
=

=
∥∥∥(I ⊗ (e2πi M

3B
f(x0+rx)I − cP)⊗ I

)
U |x, 0, 0〉

∥∥∥2

=

∥∥∥∥∥∑
y∈Y

(
e2πi M

3B
f(x0+rx) − e2πi M

3B
y
)
αx,y|x, y, ψx,y〉

∥∥∥∥∥
2

.

We bound the above quantity in two parts using the triangle inequality as follows:∥∥∥∥∥∥
∑

y∈Y \F(x)

(
e2πi M

3B
f(x0+rx) − e2πi M

3B
y
)
αx,y|x, y, ψx,y〉

∥∥∥∥∥∥
2

≤
∑

y∈Y \F(x)

|2αx,y|2 ≤
1

300
;

∥∥∥∥∥∥
∑
y∈F(x)

(
e2πi M

3B
f(x0+rx)− e2πi M

3B
y
)
αx,y|x, y, ψx,y〉

∥∥∥∥∥∥
2

≤
∑
y∈F(x)

∣∣∣∣2πiM3B
(f(x0+rx)−y)αx,y

∣∣∣∣2

≤
∑
y∈Yx

∣∣∣∣2πi M3Bδ
∣∣∣∣2|αx,y|2

≤
∣∣∣∣2πi M3Bδ

∣∣∣∣2 =
1

422
.

Thus for all x ∈ Gn
m we have that

∥∥O|x, 0, 0〉 − U †(I ⊗ cP⊗ I)U |x, 0, 0〉
∥∥ ≤√ 1

300
+

1

422
<

1

16
. (5.14)

We can assume without loss of generality that our approximate phase oracle
does not change the value of the input register. Otherwise we can just copy |x〉
to another register, then apply our approximate phase oracle on the second copy,
then (approximately) erase the second copy of |x〉 using mod 2 bitwise addition
with the first copy. Under this assumption by (5.14) we get that∥∥O|ψ〉− U †(I ⊗ cP⊗ I)U |ψ〉

∥∥< 1

16
, for any quantum state |ψ〉 =

∑
x∈Gnm

αx|x, 0, 0〉.

(5.15)
From now on the proof is the same as the proof of Corollary 5.3.6. In that

proof we showed that if we use the phase oracle O in Jordan’s gradient compu-
tation algorithm, then we would get a gradient estimate where each individual
coordinate has the required approximation quality with probability at least 2

3
.

Equation (5.15) implies that if instead we use our approximate implementation
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of the phase oracle, U †(I ⊗ cP ⊗ I)U , then the outcome probability distribution
changes by at most 1

16
in total variation distance. So one run of Jordan’s al-

gorithm using this approximate phase oracle still outputs a vector v ∈ Rn such
that

Pr

[∣∣∣∣gi − 3B

r
vi

∣∣∣∣ > 8 · 42πδ

r

]
≤ 1

3
+

1

16
<

2

5
for every i ∈ [n].

As in the proof of Corollary 5.3.6, repeating the whole procedure O
(

log(n
ρ
)
)

times, and taking the median of the resulting vectors coordinatewise, gives a gra-
dient approximator g̃ of the desired quality. The gate complexity analysis follows
similarly to the proof of Theorem 4.5.5, noting that each controlled phase opera-
tion cP can be implemented using O

(
log
(
B
δ

))
single-qubit phase gates. 2





Chapter 6
Quantum algorithms for solving SDPs

Semidefinite Programs (SDPs) generalize Linear Programs (LPs), and have im-
portant applications in optimization, computer science and quantum information.
They can be solved in polynomial time, but usually less efficiently than LPs. Fol-
lowing the first paper on quantum algorithms for SDP-solving by Brandão and
Svore [BS17] in 2016, rapid developments have been made on quantum optimiza-
tion algorithms. In this chapter we improve and generalize all prior quantum
algorithms for SDP-solving and give a simpler and unified framework.

We take a new perspective on quantum SDP-solvers and introduce several
new techniques. One of these is the quantum operator input model, which gen-
eralizes the different input models used in previous work, and arguably even any
other reasonable input model. This new model assumes that the input matrices
are provided as block-encodings. In this model we give an Õ((

√
m+

√
nγ)αγ4)

algorithm, where n is the size of the matrices, m is the number of constraints,
γ is the reciprocal of the scale-invariant relative precision parameter (which we
explain later), and α is a normalization factor of the input matrices. In particular
for the standard sparse-matrix access, the above result gives a quantum algorithm
where α = s. We also improve on recent results of Brandão et al. [BKL+18], who
consider the special case when the input matrices are proportional to mixed quan-
tum states that one can query. For this model Brandão et al. [BKL+18] showed
that the dependence on n can be replaced by a polynomial dependence on both
the rank and the trace of the input matrices. We remove the dependence on the
rank and hence require only a dependence on the trace of the input matrices.

After we obtain these results we show an application to the problem of shadow
tomography, recently introduced by Aaronson [Aar18]. Here we simultaneously
improve both the sample and computational complexity of the previous best
results. Finally we prove a new Ω̃(

√
mαγ) lower bound for solving LPs and SDPs

in the quantum operator model, which also implies a lower bound for the model
of Brandão et al. [BKL+18].

This chapter is based on [vAG19] with additions from its precursor [vAGGdW17] c© 2017 IEEE.
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6.1 Introduction

In this chapter we consider Semidefinite programs (SDPs). SDPs have many ap-
plications in optimization, notable examples include approximation of NP-hard
problems like MAXCUT [GW95] and polynomial optimization through the Sum-
Of-Squares hierarchy [Las01, Par00]. SDPs have also found applications in quan-
tum information theory. Examples include POVM measurement design [Eld03]
and finding the maximal winning probability of non-local games [CHTW04],
where the players can share entanglement.

We consider the basic (primal) form of an SDP which maximizes the objective
function Tr[CX] over a matrix valued variable X ∈ Cn×n as follows:

OPT = max Tr[CX] (6.1)
s.t. Tr[AjX] ≤ bj for all j ∈ [m],

X � 0,

where [m] := {1, . . . ,m}. The input to the problem consists of n × n Hermitian
constraint matrices A1, . . . , Am, an objective matrix C, and reals b1, . . . , bm. For
normalization purposes we assume ‖C‖, ‖Aj‖ ≤ 1. The number of constraints
is m (we do not count the standard X � 0 constraint for this). The variable X of
this SDP is an n× n positive semidefinite (psd) matrix. We assume that A1 = I
and b1 = R, giving a known bound on the trace of a solution: Tr[X] ≤ R. A
primal SDP of the above form (6.1) also has a dual, optimizing over y ∈ Rm,
which is the following SDP:

OPT = min bTy (6.2)

s.t.
m∑
j=1

yjAj − C � 0,

y ≥ 0.

We assume that the dual optimum is attained and that an explicit r ≥ 1 is
known such that at least one optimal dual solution y exists with ‖y‖1 ≤ r. These
assumptions imply that strong duality holds, i.e., the optimal value of the primal
(6.1) and dual 6.2 SDPs equal. Finally not that Linear programs (LPs) correspond
to the case where all constraint matrices are diagonal.

In this chapter we build on the observation that a normalized psd matrix can
be naturally represented as a quantum state. Since operations on log(n)-qubit
quantum states can sometimes be cheaper to perform on a quantum computer
than operations on classical descriptions of n × n matrices, this can give rise to
faster algorithms for solving SDPs on a quantum computer [BS17].
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We say an algorithm is an ε-approximate quantum SDP-solver if for all input
numbers g ∈ R and ζ ∈ (0, 1), with success probability 1− ζ, all of the following
hold:

(i) The algorithm finds a vector y′ ∈ Rm+1 and a number z ∈ R defining its
output

X := z
e−

∑m
j=1 y

′
jAj+y

′
0C

Tr
[
e−

∑m
j=1 y

′
jAj+y

′
0C
] . (6.3)

The output X is an ε-feasible primal solution with objective value at least
g − ε, i.e.,

∀j ∈ [m] : Tr[XAj] ≤ bj + ε,

and Tr[XC] ≥ g − ε. If the algorithm cannot find such an output X, then
it correctly concludes that no feasible solution exist (if we set ε = 0).

(ii) The algorithm finds a y ∈ Rm+1 that is an ε-feasible solution to the dual
problem with objective value at most g + ε, i.e.,

m∑
j=1

yjAj − C � −εI, (6.4)

and bTy ≤ g+ ε, or it correctly concludes that no feasible y exists (if we set
ε = 0).

(iii) The algorithm determines whether OPT ≤ g − ε or OPT ≥ g + ε. If
OPT ∈ (g − ε, g + ε) then it may output either. (Note that this essentially
follows from (i)-(ii).)

Notice that this solves a decision version of the problem. However, we can eas-
ily find an approximation of OPT using binary search on g if we have an ε-
approximate SDP-solver. Since ε is scale depended we actually care about the
dependence on the scale invariant parameter γ := Rr/ε. An algorithm that only
satisfies (i) will be called an ε-approximate SDP primal oracle. For such an algo-
rithm the relevant scale invariant parameter is γ := R/ε. Due to the form of the
objective value constraint in the first point, and to simplify statements like (6.3),
we write A0 := −C and b0 := −g.

6.2 SDP-solving frameworks
In this section we present two frameworks for SDP-solving. First we present
an algorithm to implement a primal oracle, and then the Arora-Kale framework,
which is used for finding a good approximation of the optimal value and an almost
feasible solution to the dual. These together implement a full SDP-solver.
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Both frameworks have a very similar iterative structure, with iteration count
Õn(γ2), where 1/γ is the relevant scale-invariant precision parameter (as we will
see the value of γ differs by a factor r in the two cases). The main difference
is that the iterative step of the primal oracle framework requires only a simple
search, whereas in the Arora-Kale framework one needs to solve a slightly more
complex task. Both algorithms start with y = 0, and in each step only a constant
number of indices of y are incremented, thus in both cases we will work with a y
vector that is non-negative and Õn(1/θ2)-sparse.

6.2.1 An SDP primal oracle

For the primal oracle we use the same algorithm as Brandão et al. [BKL+18]
following the proof of Lemma 4.6 of Lee, Raghavendra and Steurer [LRS15]. A
few small reductions are required to apply this technique. To be able to work
with density operators instead of X, the bjs in the constraints 1 . . .m are scaled
down by a factor R, such that every solution X ′ to the new SDP has trace at
most 1. Then, we add one new variable denoted by ω such that

ρ :=

[
X ′ 0
0 ω

]
.

Now Tr[ρ] = 1 and ρ � 0 imply that Tr[X ′] ≤ 1, and we get a new SDP that
is equivalent to the previous one. It can be shown that in our input models
this reduction does not introduce more than a constant factor overhead in the
complexity; note that this reduction also illustrates that for an SDP primal oracle
ε
R
is the relevant scale-invariant precision parameter.
The following meta-algorithm for an SDP primal oracle assumes access to

(some form of) a description of the SDP after the above-discussed reduction, and
provides an output as in Eq. (6.3) of (i)

1. Let y = 0 ∈ Rm+1 and θ = ε
2R

.

2. Repeat ln(n)
θ2

times the following:

(a) Define ρ := e−
∑m
j=0 yjAj/Tr

[
e−

∑m
j=0 yjAj

]
.

(b) Find an index j such that Tr[Ajρ] ≥ bj or conclude correctly that for
all j, Tr[Ajρ] ≤ bj + θ.

(c) If no j is found, then we are done and output y and z = RTr[X ′],
where Tr[X ′] is the probability1 of measuring ρ to be in the subspace
corresponding to the variable X ′.

(d) Otherwise update y ← y + θej.

3. Conclude that there is no solution for θ = 0.
1Note that a θ-approximation of Tr[X ′] is easy to compute by means of amplitude estimation

if ρ can be efficiently prepared as a quantum state – which is the case in our algorithms.
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6.2.2 The Arora-Kale framework

Similarly to previous work [BS17] we build our results on the Arora-Kale frame-
work. For a detailed description see the original paper by Arora and Kale [AK16].
For our application, the following broad overview suffices.2

Now we describe the Arora-Kale meta-algorithm. This algorithm assumes
access to (some form of) a description of the SDP, such that the first constraint
is Tr[X] ≤ R, i.e., A1 =I and b1 =R. It provides an output as in Eq. (6.4) of (ii).
(Remember that we set A0 = −C and b0 = −g.)

1. Let y = 0 ∈ Rm+1 and set θ = ε
6Rr

.

2. Repeat ln(n)
θ2

times the following:

(a) Define ρ := e−
∑m
j=0 yjAj/Tr

[
e−

∑m
j=0 yjAj

]
.

(b) Find a ỹ in the polytope

Pδ(ρ) :=
{
ỹ ∈ Rm+1 : bT ỹ ≤ 0,

m∑
j=0

ỹjTr[Ajρ] ≥ −δ,

ỹ ≥ 0, ỹ0 =
1

2r
, ‖ỹ‖1 ≤ 1

}
.

for δ=θ; if cannot find such a ỹ then conclude that none exists for δ=0.

(c) If no such ỹ exists, then conclude that OPT > g and stop.
(d) If such a ỹ exists, then update y ← y + θỹ.

3. Conclude OPT ≤ g + ε and output 2rθ
ln(n)

y + ε
R
e1 − e0 as a dual solution.

Note that in the above meta-algorithm, up to a constant factor, the θ parame-
ter is essentially γ−1 = rR

ε
, illustrating that γ−1 is the relevant scale-invariant pre-

cision parameter for SDP-solving, for a more detailed discussion see [vAGGdW17].
Brandão and Svore [BS17] observed that ρ := e−

∑
j yjAj/Tr

[
e−

∑
j yjAj

]
is a

quantum Gibbs state and this state can be prepared efficiently on a quantum
computer, allowing fast trace estimation, in particular resulting in a quadratic
speedup in n compared to classical methods.

A procedure that solves step (b) is called a θ-oracle, not to be confused with
the input oracles. In the rest of this chapter we will assume that the cost of
updating the y vector is no more than the cost of a θ-oracle call.

Below we give an oracle implementation that always outputs a 3-sparse ỹ.
The oracle is constructed using a geometric argument that boils down to mini-
mizing overm angles, one for each constraint. Each angle is easily computed from
the corresponding bj and Tr[Ajρ], where a θ

2
-additive error is allowed in the ap-

2For more discussion on general (quantum) SDP-solvers along this line, see [vAGGdW17].
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proximation of Tr[Ajρ]. We perform this minimization using quantum minimum
finding [DH96], or more precisely its generalization (Theorem 3.A.3), allowing for
a quadratic speedup in m. Previously Brandão and Svore [BS17] applied other
techniques to similarly get a quadratic speedup in m but this introduced a much
worse dependence on Rr/ε.

6.2.3 An efficient 3-sparse oracle

For all j ∈ {0, 1, . . . ,m} let aj := Tr[Ajρ] and let ãj ∈ R such that |ãj−aj| ≤ θ/2,
for some fixed θ ≥ 0. For convenience in this subsection we will only work with
m-dimensional vectors, and will think about the vectors b, y ∈ Rm with the 0-
th coordinate of the corresponding (m + 1)-dimensional vectors omitted. Let
ã := (ã1, . . . , ãm) and c′ := ã0

2r
− θ

2
, we define an approximate version of the

polytope from the Arora-Kale framework:

P̃(ã, c′) :=
{
y ∈ Rm : bTy ≤ g

2r
=: α,

m∑
j=1

ãjyj ≥
ã0

2r
− θ

2
= c′,

y ≥ 0,
m∑
j=1

yj ≤ 1− 1

2r

}
.

Observe that (y0, y1, . . . , ym) ∈ P0(ρ) =⇒ (y1, . . . , ym) ∈ P̃(ã, c′), (6.5)

moreover (y1, . . . , ym) ∈ P̃(ã, c′) =⇒ (1/(2r), y1, . . . , ym) ∈ Pθ(ρ). (6.6)

Therefore constructing a 3-sparse oracle for the Arora-Kale framework boils down
to finding a 2-sparse vector in P̃(ã, c′).

We first describe our quantum algorithm for finding a 2-sparse vector in
P̃(ã, c′) assuming access to a unitary which acts as |j〉|0〉|0〉 7→ |j〉|ãj〉|ψj〉, where
|ψj〉 is some workspace state depending on j. We then briefly discuss how to
modify the analysis when we are given an oracle which acts as |j〉|0〉|0〉 7→
|j〉
∑

i β
i
j|ãij〉|ψij〉 (where each ãij is an additive θ-approximation to Tr[Ajρ]), since

this is the output of the trace-estimation procedure of the previous section.
If α ≥ 0 and c′ ≤ 0, then y = 0 is a solution and our oracle can return it. If

not, then we may write y = Nq with N = ‖y‖1 > 0 and hence ‖q‖1 = 1. So we
are looking for an N and a q such that

bT q ≤ α/N (6.7)
ãT q ≥ c′/N

‖q‖1 = 1

q ≥ 0

0 < N ≤ 1− 1

2r
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We can now view q ∈ Rm+ as the coefficients of a convex combination of the points
pi = (bi, ãi) in the plane. We want such a combination that lies to the upper left
of gN = (α/N, c′/N) for some 0 < N ≤ 1 − 1

2r
. Let GN denote the upper-left

quadrant of the plane starting at gN .

6.2.1. Lemma. If there is a y ∈ P̃(ã, c′), then3 there is a 2-sparse y′ ∈ P̃(ã, c′)
such that ‖y‖1 = ‖y′‖1.

Proof:
Consider pi = (bi, ãi) and g = (α/N, c′/N) as before, and write y = Nq where∑m

j=1 qj = 1, q ≥ 0. The vector q certifies that a convex combination of the
points pi lies in GN . But then there exist j, k ∈ [m] such that the line segment
pjpk intersects GN . All points on this line segment are convex combinations of pj
and pk, hence there is a convex combination of pj and pk that lies in GN . This
gives a 2-sparse q′, and y′ = Nq′ ∈ P̃(ã, c′). 2

We can now restrict our search to 2-sparse y. Let G =
⋃
N∈(0,1− 1

2r
] GN . Then we

want to find two points pj, pk that have a convex combination in G, since this
implies that a scaled version of their convex combination gives a y ∈ P̃(ã, c′) and
‖y‖1 ≤ r.

6.2.2. Lemma. There is an oracle that returns a 2-sparse vector y ∈ P̃(ã, c′),
if one exists, using one search and two minimizations over the m points pj =
(bj, ãj). This gives a classical algorithm that uses O(m) calls to the subroutine
that gives the entries of ã and O(m) other operations, and a quantum algorithm
that (in order to solve the problems with high probability) uses O(

√
m) calls to

the subroutine that gives the entries of ã and Õ(
√
m) other gates.

Proof:
The algorithm can be summarized as follows:

1. Check if α ≥ 0 and c′ ≤ 0. If so, output y = 0.

2. Check if there is a pi ∈ G. If so, let q = ei and N = c′

ãi
.

3. Find pj, pk so that the line segment pjpk goes through G. This gives coeffi-
cients q of a convex combination that can be scaled by N = c′

ãT q
to give y.

The main realization is that we can search separately for pj and pk.

First we will need a better understanding of the shape of G (see Figure 6.1 for
illustration). This depends on the sign of α and c′. If we define sign(0) := 1, and
v := (α/(1− 1

2r
), c′/(1− 1

2r
)), we get the following intuitive characterizations:

3This is statement is essentially a corollary of Carathéodory’s theorem in convex geometry.
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(a) If sign(α) = −1, sign(c′) = −1. The corner point of G is v. One edge goes up
vertically and another follows the line segment λ · v for λ ∈ [1,∞) starting
at the corner.

(b) If sign(α) = −1, sign(c′) = 1. Here GN ⊆ G1− 1
2r

for N ≤ 1− 1
2r
. So G =

G1− 1
2r
. The corner point is again v, but now one edge goes up vertically and

one goes to the left horizontally.
(c) If sign(α) = 1, sign(c′) = −1. This is the case where y = 0 is a solution, G is

the whole plane and has no corner.
(d) If sign(α) = 1, sign(c′) = 1. The corner point of G is again v. From there one

edge goes to the left horizontally and one edge follows the line segment λ · v
for λ ∈ [1,∞).

(a) sign(α) = −1, sign(c′) = −1 (b) sign(α) = −1, sign(c′) = 1

(c) sign(α) = 1, sign(c′) = −1

c© 2017 IEEE

(d) sign(α) = 1, sign(c′) = 1

Figure 6.1. The region G in light blue. The borders of two quadrants GN have
been drawn by thick dashed blue lines. The red dot at the beginning of the arrow
is the point v = (α/(1− 1

2r
), c′/(1− 1

2r
)).
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Since G is always an intersection of at most 2 halfspaces, steps 1-2 of the
algorithm are easy to perform. In step 1 we handle case (c) by simply returning
y = 0. For the other cases v is the corner point of G and the two edges are simple
lines. Hence in step 2 we can easily search through all the points to find out
if there is one lying in G; since G is a very simple region, this only amounts to
checking on which side of the two lines a point lies.

L2

L1

pj

pk

∠L2`k

∠L1L2

∠`jL1
v

c© 2017 IEEE

Figure 6.2. Illustration of G with the points pj, pk and the angles
∠`jL1,∠L1L2,∠L2`k drawn in. Clearly the line pjpk only crosses G when the
total angle is less than π.

Now, if we cannot find a single point in G, we need a combination of two
points in step 3. Let L1, L2 be the edges of G and let `j and `k be the line
segments from v to pj and pk, respectively. Then, as can be seen in Figure 6.2,
the line segment pjpk goes through G if and only if (up to relabeling pj and pk)
∠`jL1 + ∠L1L2 + ∠L2`k ≤ π. Since ∠L1L2 is fixed, we can simply look for a j
such that ∠`jL1 is minimized and a k such that ∠L2`k is minimized. If pjpk does
not pass through G for this pair of points, then it does not for any of the pairs of
points.

Notice that these minimizations can be done separately and hence can be
done in the stated complexity. Given the minimizing points pj and pk, it is easy
to check if they give a solution by calculating the angle between `j and `k. The
coefficients of the convex combination q are then easy to compute. It remains to
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compute the scaling N . This is done by rewriting the constraints of (6.7):

c′

qT ã
≤ N ≤ α

qT b

So we can pick any value in this range for N . 2

The analysis above applies if we are given an oracle which acts as |j〉|0〉|0〉 7→
|j〉|ãj〉|ψj〉. However, our trace estimation procedure acts as

|j〉|0〉|0〉 7→ |j〉
∑
i

βij|ãij〉|ψij〉

where each |ãij〉 is an approximation of aj and the amplitudes βij are such that
measuring the second register with high probability returns an ãij which is θ

2
-

close to aj. Since we can exponentially reduce the probability that we obtain
an ãij which is further than θ

2
away from aj, we will for simplicity assume that

for all i, j we have |ãij − aj| ≤ θ
2
; the neglected exponentially small probabilities

will only affect the analysis in negligible ways. Note that while we do not allow
our oracle enough time to obtain classical descriptions of all ãjs (we aim for a
runtime of Õ(

√
m)), we do have enough time to compute ã0 and thus c′ once

initially. Knowing c′, we can compute the angles defined by the points (bj, ã
i
j)

with respect to the corner point of (α/(1 − 1
2r

), c′/(1 − 1
2r

)) and the lines L1, L2

(see Figure 6.2). We now apply our generalized minimum-finding algorithm with
runtime Õ(

√
m) (see Theorem 3.A.3) starting with a uniform superposition over

the js to find `, k ∈ [m] with points (ã`, b`) and (ãk, bk) approximately minimizing
the respective angles to lines L1, L2. It follows from Eq. (6.5) and Lemma 6.2.1
that if P0(ρ) is non-empty, then some convex combination of (ã`, b`) and (ãk, bk)
lies in G. On the other hand, if Pθ(ρ) is empty, then by Eq. (6.6) and Lemma 6.2.1
the respective angles will be such that we correctly conclude that P0(ρ) is empty.

6.3 High-level overview of the quantum algorithms
with some conceptual improvements

6.3.1 Input models & subroutines

We will consider three input models: the sparse matrix model, the quantum state
model, and the quantum operator model. The first two models were already stud-
ied in previous work. The quantum operator model is a common generalization
of the other two models, and in fact any other reasonable model for SDPs, as we
will show later.
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In all models we assume quantum oracle access to the numbers bj via the
input oracle Ob satisfying4 for all j ∈ [m] :

Ob|j〉|0〉 = |j〉|bj〉.

For all input oracles, we assume that we can apply both the oracle and its inverse5

in a controlled fashion.

Sparse matrix model. In the sparse matrix model the input matrices are
assumed to be s-row sparse for a known bound s ∈ [n], meaning that there are
at most s non-zero elements per row. The model is close to the classical model
for sparse matrices. Access to the Aj matrices is provided by two oracles, similar
to previous work on Hamiltonian simulation in [BCK15]. The first of the two
oracles is a unitary Osparse, which serves the purpose of sparse access. This oracle
calculates the index : [m]× [n]× [s]→ [n] function, which for input (j, k, `) gives
the column index of the `th non-zero element in the kth row of Aj. We assume
this oracle computes the index “in place":

Osparse|j, k, `〉 = |j, k, index(j, k, `)〉. (6.8)

(In the degenerate case where the kth row has fewer than ` non-zero entries,
index(j, k, `) is defined to be ` together with some special symbol indicating this
case.)

We also need another oracle OA, returning a bitstring4 representation of (Aj)ki
for every j ∈ [m] and k, i ∈ [n]:

OA|j, k, i, z〉 = |j, k, i, z ⊕ (Aj)ki〉. (6.9)

This model corresponds directly to a classical way of accessing sparse matrices.
In contrast, the following quantum state model is inherently quantum and has no
classical counterpart for SDPs. In order to introduce this other input model we
need the following definition:

6.3.1. Definition (Subnormalized density operators & Purification). A subnor-
malized density operator % is a psd matrix of trace at most 1.

A purification of a subnormalized density operator % is a 3-register pure state
such that tracing out the third register6 and projecting on the subspace where
the second register is |0〉 yields %.

We write “%” and “ς” for subnormalized density operators to distinguish them
from normalized density operators, for which we write “ρ” and “σ”.

4For simplicity we assume the bitstring representation has at most O(log(nmRr/ε)) bits.
5When we talk about samples, e.g. in Section 6.5, then we do not assume we can apply the

inverse operation.
6For simplicity we assume that for a d-dimensional density operator a purification has at

most polylog(d) qubits.
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Quantum state model. In this model we assume that each Aj has a fixed
decomposition of the form

Aj = µ+
j %

+
j − µ−j %−j + µIjI

for (subnormalized) density operators %±j , non-negative reals µ
±
j and real number

µIj ∈ R. We assume access to an oracle Oµ that takes as input an index j and
outputs binary representations4 of µ+

j , µ
−
j and µIj .

Furthermore we assume access to a state-preparing oracle O|·〉 that prepares
purifications6 |ψ±j 〉 of %±j :

O|·〉|j〉|±〉|0〉 = |j〉|±〉|ψ±j 〉.

Finally we assume that a bound B ∈ R+ is known such that

∀j : µ+
j + µ−j ≤ B.

Note that a tight upper bound B can easily be found w.h.p. using O(
√
m) quan-

tum queries to Oµ by means of maximum-finding [DH96], see also Appendix 3.A.

Quantum operator model. Motivated by recent work [LC16] and Chapter 3
we propose a new input model that we call the quantum operator model. In this
model the input matrices are given by a unitary that implements block-encodings
of the input matrices.

In the quantum operator model we assume access to an oracle OU that acts
as follows:

OU |j〉|ψ〉 = |j〉(Uj|ψ〉).

Where Uj is an a-qubit block-encoding7 of Aj/α, for some fixed8 α ∈ R and
a = O(log(nmRr/ε)).

As we have seen in Chapter 3, the sparse input model can be reduced to the
quantum operator model with α = s (Lemma 3.3.5) and we will also show that the
quantum state model can be reduced to the quantum operator model with α = B.
In Chapter 3, we have shown several other ways to construct block-encodings, e.g.,
based on Hamiltonian simulation [LC17a] (Lemma 3.4.18), or for matrices stored
in a QROM data structure [KP17b, CGJ19] (Lemma 3.3.7). In Lemma 3.3.3 we
have also shown that if one can perform a POVM measurement on a quantum
computer with a measurement operator M , then one can also implement a block-
encoding of M , and use it as an input matrix in our operator model. Thus if we
can perform a measurement corresponding to Aj � 0 using a ancilla qubits, i.e.,

7If n ∈ (2w−1, 2w) is not a power of 2, then we can simply extend Aj to a w-qubit operator,
by defining it to be zero on the additional 2w − n dimensions.

8Having a single normalization parameter α is not a serious restriction as it is easy to
make a block-encoding more subnormalized so that every Aj gets the same normalization,
cf. Lemma 3.3.9.
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accept a state ρ with probability Tr[Ajρ], then we can implement a (1, a+ 1, 0)-
block-encoding of Aj. Hence, the quantum operator input model is a common
generalization of all reasonable input models for SDPs, since at the very least an
input model should allow one to approximately compute Tr[AjX].

Computational cost. We analyze the query complexity of algorithms and sub-
routines, i.e., the number of queries to controlled versions of the input oracles and
their inverses. We will denote the optimal quantum query complexity of an ε-
approximate quantum SDP-solver with success probability 2/3 by TSDP (ε) (this
is a “meta quantity”, which becomes concrete once the input model is specified).
We only consider success probability 2/3 to simplify the notation and proofs.
However in all cases an ε-approximate SDP-solver with success probability 1− ζ
can easily be constructed using O(log(1/ζ)TSDP (ε)) queries.

In our algorithms we will assume access to a quantum-read/classical-write
RAM (QCRAM), and assume one read/write operation has a constant gate com-
plexity9; the size of the QCRAM will typically be Õn,m

((
Rr
ε

)2) bits. Most often
in our results the number of non-query elementary operations, i.e., two-qubit
gates and QCRAM calls, matches the query complexity up to polylog factors. In
particular, if not otherwise stated, in our results a T -query quantum algorithm
uses at most Õn,m(T ) elementary operations.

Subroutines. We will work with two major subroutines which need to be im-
plemented according to the specific input model. First, the algorithms will require
an implementation of a Gibbs-sampler.

6.3.2. Definition (Gibbs-sampler). A θ-precise Gibbs-sampler on bounded in-
put vectors y ∈ Rm+1

≥0 is a quantum circuit that works under the promise that the
support of y has size at most d, and ‖y‖1 ≤ K. It takes as input a data structure
storing the vector y, and for any input satisfying the promise, it creates as output
a purification of a θ-approximation of the Gibbs state

e−
∑m
j=0 yjAj/Tr

[
e−

∑m
j=0 yjAj

]
.

The minimum cost of such a circuit is denoted by TGibbs(K, d, 4θ) (this is again a
“meta quantity”, which becomes concrete once the input model is specified).

For technical reasons we also allow Gibbs-samplers that require a random
classical input seed S ∈ {0, 1}a for some a = O(log(1/θ)). In this case the output
should be a θ-approximation of the Gibbs state with high probability (≥ 4/5)
over a uniformly random input seed S.

9Note that read/write operations of a QRAM or QCRAM of size S can be implemented using
Õ(S) two-qubit gates, so this assumption could hide a factor in the gate complexity which is
at most Õ(S).
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We will use the approximate Gibbs states in order to estimate the quantity
Tr[Ajρ].

6.3.3. Definition (Trace estimator). A (θ, σ)-trace estimator is a quantum cir-
cuit that as input takes a quantum state ρ and index j. It outputs a sample from
a random variable Zj ∈ R which is an estimator of Tr[Ajρ] with bias at most θ/4:

|Tr[Ajρ]− E[Zj]| ≤ θ/4,

and the standard deviation of Zj is at most σ. We write T σTr(θ) for the minimum
cost of such a circuit (this is again a “meta quantity” as in the above definition).

6.3.2 Prior work

Classical SDP-solvers roughly fall into two categories: those with logarithmic
dependence on R, r and 1/ε, and those with polynomial dependence on these
parameters but better dependence on m and n. In the first category the best
known algorithm [LSW15] at the time of writing has complexity

ÕRr/ε
(
m(m2 + nω +mns)

)
.

where ω ∈ [2, 2.38] is the yet unknown exponent of matrix multiplication.
In the second category Arora and Kale [AK16] gave an alternative framework

for solving SDPs, using a matrix version of the “multiplicative weights update”
method. Their framework can be tuned for specific types of SDPs, allowing
for nearly linear-time algorithms, as shown by the example of the Goemans-
Williamson SDP for the approximation of the maximum cut in a graph [GW95].

In 2016 Brandão and Svore [BS17] used the Arora-Kale framework to imple-
ment a general quantum SDP-solver in the sparse matrix model. They observed
that the matrix

ρ :=
e−

∑m
j=0 yjAj

Tr
[
e−

∑m
j=0 yjAj

] ,
that is used for calculations in the Arora-Kale framework is in fact a log(n)-qubit
Gibbs state and can be efficiently prepared as a quantum state on a quantum
computer. Using this they achieved a quantum speedup in terms of n. Combining
this with a Grover-like speedup allowed for a speedup in terms ofm as well, leading
to an ε-approximate quantum SDP-solver with complexity

Õ

(
√
mns2

(
Rr

ε

)32
)
.

They also showed an Ω(
√
m+
√
n) quantum query lower bound for solving SDPs

when all other parameters are constant. This left as open question whether a
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better lower bound, matching the
√
mn upper bound, could be found. The upper

bound for the sparse input model was subsequently improved by van Apeldoorn
et al. [vAGGdW17] to

Õ

(
√
mns2

(
Rr

ε

)8
)
.

Van Apeldoorn et al. also gave an Ω(
√

max(n,m) min(n,m)3/2) lower bound, al-
beit for non-constant parameters R and r. This bound implies that there is no
general quantum SDP-solver that has a o(nm) dependence on n and m and log-
arithmic dependence on R, r and 1/ε. They also showed that every SDP-solver
whose efficiency relies on outputting sparse dual solutions (including their algo-
rithm and that of Brandão and Svore [BS17]) is limited, since problems with a lot
of symmetry (like maxflow-mincut) in general require non-sparse dual solutions.
Furthermore, they showed that for many combinatorial problems (like MAXCUT)
R and r increase linearly with n and m.

Recently Brandão et al. [BKL+17a] gave an improved SDP-solver for the quan-
tum state input model10 that has a complexity bound with logarithmic depen-
dence on n:

TSDP (ε) = Õn
(√

m poly
(
Rr

ε
,B, max

j∈{0,...,m}
[rank(Aj)]

))
.

Brandão et al. also applied their algorithm to the problem of shadow tomography,
giving the first non-trivial application of a quantum SDP-solver.

Subsequently these results where further improved by the introduction of the
Fast Quantum OR lemma by the same authors [BKL+18]. Approaches prior
to [BKL+18] searched for a violated constraint in the SDP using Grover-like
techniques, thereby multiplying the complexities of Gibbs-sampling and search-
ing. The Fast Quantum OR lemma can be used to separate the search phase from
the initial Gibbs-state preparation phase. This led to the improved complexity
bound [BKL+18] of

Õn
((√

m+ poly( max
j∈{0...m}

[rank(Aj)])

)
poly

(
Rr

ε
,B

))
.

We thank the authors of [BKL+18] for sending us an early draft of their paper,
that introduced the fast quantum OR lemma and applied it to the quantum state
model. This enabled us to work on some of the related improvements; during the
correspondence, the application of the fast OR lemma to the sparse matrix model
was independently suggested by Brandão et al. [Wu17] and by us.

10This model was already introduced in the first version of [BS17] together with a similar
complexity statement, but there were some unresolved issues in the proof, that were only fixed
by the contributions of [BKL+17a].
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6.3.3 Our results

In this chapter we present multiple results. The main contribution consists of
multiple improvements to the algorithms for SDP-solving, based on combining
various recent quantum algorithmic developments. Although some of these im-
provements require quite technical proofs, they come from simple new perspec-
tives and ideas, often combining previous works in new ways. We also apply the
resulting algorithms to a few problems in convex optimization. Finally, we prove
a new lower bound that fits the novel input models that we work with.

Improvements to earlier quantum SDP-solvers

In this chapter we build on the Arora-Kale framework for SDP-solving in a similar
fashion as [BS17] and also use results from [BKL+17a, LRS15] to construct a
primal oracle. We improve on the previous results about quantum SDP-solving
in three different ways:

Two-phase quantum search and minimum finding. We give a computa-
tionally more efficient version of the “Gentle Quantum Search Lemma” [Aar18]
using the fast quantum OR lemma (Lemma 3.2.16). We also extend this to min-
imum finding to get our two-phase quantum minimum finding (Lemma 6.4.2).
As independently observed by the authors of [BKL+18] the fast quantum OR
lemma gives a speed-up for SDP primal oracles in general. Moreover, using two-
phase quantum minimum finding, we show how to modify the upper bound on
the complexity of general SDP-solving from

TSDP (ε) = Õn
(√

mT σTr(γ)TGibbs(γ, γ
2, γ−1)γ3σ

)
(6.10)

as implied in previous work [BS17, vAGGdW17] to

TSDP (ε) = Õn
((√

mT σTr(γ) + TGibbs(γ, γ
2, γ−1)

)
γ4σ2

)
, (6.11)

where γ = Θ(Rr/ε). For the complexity of SDP primal oracles, the same upper
bounds holds. Note that this is usually an improvement unless γ is very large.

Quantum operator model and efficient data structures. We introduce
the quantum operator input model unifying prior approaches. We show that both
the sparse model and the quantum state model can be reduced to the quantum
operator model with a constant overhead and with the choices of α = s and
α = B respectively. Moreover, we show that for σ = Θ(1), we have that

T σTr(γ) = Õγ(α),

in the quantum operator model.
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The complexity bound on Gibbs-sampling in the sparse matrix input model
previously obtained in [vAGGdW17] was:

TGibbs(K, d, θ) = Õθ
(√

nKs2d2
)
.

By considering the operator model, we derive the new upper bound

TGibbs(K, d, θ) = Õθ,d
(√

nKα
)
,

which for the sparse input model (with α = s) gives a significant improvement.
This result is based on the idea of gradually building up an efficient data structure
for state preparation, following ideas of [KP17b]. This demonstrates that these
data structures can be used efficiently even if one does not assume preprocessed
data. Moreover, it shows that working in the operator model does not only unify
prior approaches but also inspires more efficient quantum algorithms due to its
conceptual clarity.

Gibbs-sampling for the quantum state model. We develop a new method
for Gibbs-sampling in the quantum state model. As noted in [BKL+18] this model
has the nice property that it is relatively easy to find the important eigenspaces
of the input matrices. We introduce a new technique for finding these important
eigenspaces that, in contrast to the approach in [BKL+18], does not introduce a
dependence on the rank of the input matrices in the complexity. In particular we
improve the complexity bound of [BKL+18]

TGibbs(K, d, θ) = O
(
poly(K,B, d, 1/θ, max

j∈{0,...,m}
[rank(Aj)])

)
,

to
TGibbs(K, d, θ) = Õd,θ,n

(
(KB)3.5

)
,

both making the polynomial dependence explicit and improving it.
An important consequence of this improvement is that we do not get a depen-

dence on the rank of the input matrices in the complexity of SDP-solving, unlike
Brandão et al. [BKL+18]. Since the most natural use for the quantum state model
is when the Aj matrices naturally correspond to quantum states, B is often just 1.
However, when the states are highly mixed, then the rank will be n, eliminating
the speedup of previous works over the sparse input model where a rank depen-
dence is present. Finally note that this Gibbs-sampling method is only beneficial
if
√
n ≤ (KB)2.5, otherwise the reduction to the quantum operator model with

α = B gives a better algorithm.

For the quantum operator input model the above results lead to the complexity
bound

TSDP (ε) = Õ
((√

m+
√
nγ
)
αγ4

)
, (6.12)
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where γ = Rr
ε
, providing a significant improvement for the sparse input model

(with α = s). The Ω(
√
n+
√
m) lower bound of [BS17] also applies to the quantum

operator model due to our reductions, matching the above upper bound (6.12)
up to polylog factors in n and m when γ and α are constant. For the quantum
state input model our improved Gibbs-sampler yields the complexity bound

TSDP (ε) = Õn
((√

m+B2.5γ3.5
)
Bγ4

)
.

In both cases, the same bound holds for an SDP primal oracle but with γ := R/ε.

With OR lemma / Two-Phase Search Without OR lemma / Two-Phase Search

Sparse input Quantum state input Sparse input Quantum state input

Õ
((√

m+
√
nsγ5

)
sγ4
)

Õn
((√

m+ poly(rk)
)
poly(γ,B)

)
Õ
(√
mns2γ8

)
Õn
(√
mpoly(γ,B, rk)

)
Theorem11 6.4.3 + [vAGGdW17] [BKL+18] [vAGGdW17] [BKL+17a]

Õ
((√

m+
√
nγ
)
sγ4
)

Õn
(
(
√
m+B2.5γ3.5)Bγ4

)
Õ
(√
mnsγ4

)
Õn
(√
mB3.5γ6.5

)
Theorem 6.4.9 Theorem 6.4.16 Corollary 6.4.10 Corollary 6.4.17

Table 6.1. Summary of the role of our various improvements. The first row of
complexity bounds use previous Gibbs-samplers, while the second row of com-
plexities follow from our new Gibbs-sampling techniques. The main new results
are on the bottom left, the other complexity statements represent partial results
following from only applying some of the improvements. We present the results
for the sparse matrix and quantum state input models for comparison to prior
work. However, note that our results presented for sparse input hold more gen-
erally for the quantum operator input model; to get the corresponding results
one should just replace s by α in the table. Hence similar bounds hold in the
quantum state input model too, after replacing s by B, which can be beneficial
when B2.5γ2.5 ≥

√
n. Notation: rk = maxj∈{0,...,m} rank(Aj) and γ = Rr

ε
.

Application to Shadow tomography

We extend the idea of applying SDP-solving to the problem of shadow tomog-
raphy: given samples of an unknown, n-dimensional quantum state ρ, find ε-
additive approximations of the expectation values Tr[E1ρ], . . . ,Tr[Emρ] of sev-
eral binary measurement operators. This problem was introduced by Aaron-
son in [Aar18], where he gave an efficient algorithm in terms of the number
of samples from ρ. In particular he proved that Õ

(
log4(m) log(n)/ε5

)
sam-

ples suffice. Brandão et al. [BKL+18] applied their SDP-solver to get a more
efficient algorithm in terms of computation time when the measurements Ei
are given in the quantum state model, while keeping the sample complexity as
low as poly(log(m), log(n), 1/ε,B). We simultaneously improve on both results,

11A similar result was independently proved by Brandão et al. [BKL+18].
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giving a sample bound of Õ
(
log4(m) log(n)/ε4

)
while also improving the best

known time complexity [Aar18, BKL+18] of the implementation for all input
models. Finally we show that if we can efficiently implement the measurements
Tr[E1ρ], . . . ,Tr[Emρ] on a quantum computer, then we can also efficiently repre-
sent E1, . . . , Em using the quantum operator input model, hence the computa-
tional complexity can be stated in terms of the number of measurements needed.

Lower bounds

We end the chapter by proving some new lower bounds. Lower bounds on
the quantum query complexity of SDP-solving for the sparse input model were
presented in previous works [BS17, vAGGdW17]. We add to this by giving
Ω(
√
mB/ε) and Ω(

√
mα/ε) bounds for the quantum state model and quantum

operator model respectively. These lower bounds show that the
√
m factor and

the polynomial dependence on the parameters B,α, and 1/ε are necessary.
Compared to problems with a discrete input, proving lower bounds on conti-

nuous-input quantum problems gives rise to extra challenges and often requires
more involved techniques, see for example the work of Belovs [Bel15] on gen-
eralizations of the adversary method. Due to these difficulties, fewer results
are known in this regime. Examples of known continuous-input lower-bound
results include phase-estimation related problems (cf. Bessen [Bes05]) and the
complexity-theoretic version of the no-cloning theorem due to Aaronson [Aar09].
We use the hybrid-method based approach presented in Chapter 4 in order to
handle continuous-input oracles, combined with efficient reductions between in-
put models stemming from the smooth functions of Chapter 3.

6.3.4 Subsequent work

A few months after the first version of our paper [vAG19] (providing the basis of
this chapter) was posted online, Kerenidis and Prakash [KP18] gave a quantum
interior point algorithm for solving LPs and SDPs. They work in an input model
where the input matrices are stored in QROM, which input model is also covered
by our quantum operator input model. However, it is hard to compare their com-
plexities to ours, because their final complexity statement depends polynomially
on the condition number of the matrices that the interior point method encoun-
ters, and they do not give explicit bounds for these condition numbers. Also they
have two accuracy parameters; while one accuracy parameter only appears as a
logarithmic factor, their complexity depends polynomially on the other.

6.4 Technical improvements
Here we present multiple improvements to quantum SDP-solvers. In Section 6.4.1
we show how recent work on the quantum OR lemma [HLM17, BKL+18] (see also
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Lemma 3.2.16) can be used to speed up minimum finding and search in certain
scenarios. In Section 6.4.2 we show how a combination of recent ideas, such as
using block-encodings [LC16, GSLW19], Linear combination of unitaries [CW12,
CKS17] and quantum data structures [KP17b] can be used to improve Gibbs-
sampling. Finally, in Section 6.4.3 we focus on the quantum state model[BKL+17a].
Similarly to quantum principal component analysis [LMR14], we use the input
states both operationally and as a quantum distribution. Utilizing the fact that
we can access purifications of the quantum states, we exponentially improve the
precision-dependence of some subroutines, and also remove the rank-dependence
that was previously present [BKL+18].

6.4.1 Two-Phase Minimum Finding

To speed up the SDP-solvers derived from the frameworks of Section 6.2 we use
a fast version of the quantum OR lemma (Lemma 3.2.16), and derive a slightly
extended version of it that we call two-phase quantum search.

In the setting of the two-phase quantum search we have m algorithms for
decision problems and we ask whether one of them evaluates to 1, and if so, we
want to find one. We also know that all algorithms start with preparing some
state ρ, followed by some procedure Uj that depends on the index of the decision
problem j ∈ [m]. In classical deterministic processes it is quite natural that only
one preparation of ρ is needed since the result can be stored. For bounded-error
classical processes O(log(m)) preparations of ρ suffice to get the error probability
of one decision problem much below 1/m. By the classical union bound this is
low enough that we can find a marked element with high probability. However,
if ρ is a quantum state and the Uj are quantum algorithms, then such a bound is
not so straightforward, since progress made in constructing ρ might be destroyed
when running one of the Uj. Nevertheless, using the Fast Quantum OR Lemma
it can be shown that Õ

(
log4(m)

)
samples from ρ suffice.

6.4.1. Lemma (two-phase quantum search). Let ξ ∈ (0, 1). Let ρ be a quan-
tum state and U1, . . . , Um be unitaries with the Uj accessible through a unitary
U that acts as U |j〉|ψ〉 = |j〉Uj|ψ〉. Then there is a quantum algorithm, that us-
ing Õ

(
log4(m) log(ξ)

)
samples of ρ and Õ(

√
m log(ξ)) applications of U and its

inverse, outputs with success probability at least 1− ξ either

• a j such that Tr
[
(I ⊗ |1〉〈1|)UjρU †j

]
≥ 1/3, i.e., a j such that Uj outputs 1

with probability at least 1/3 on input ρ,

• or concludes correctly that Tr
[
(I ⊗ |1〉〈1|)UjρU †j

]
< 2/3 for all j, i.e., no

unitary outputs 1 with probability at least 2/3 on input ρ.

Proof:
This follows from the proof of “Gentle Quantum Search” in [Aar18, Lemma 15]
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using the fast quantum OR lemma (Lemma 3.2.16) instead of the normal quantum
OR lemma.12

2

Using the above lemma we construct the two-phase quantum minimum finding
algorithm. It turns out that we need to use this algorithm in a situation where
different values have different error-scales, therefore the statement gets slightly
complicated. In typical use-cases one can probably just choose each error-margin
η equal to, say, δ resulting in a simpler statement.

6.4.2. Lemma (two-phase quantum minimum finding). Let δ, ν ′ ∈ (0, 1). Let ρ
be a quantum state and U1, . . . , Um be unitaries, with the Uj accessible through
a unitary U that acts as U |j〉|ψ〉 = |j〉Uj|ψ〉. Let a1, . . . , am, η1, . . . , ηm be real
numbers such that minj |aj|+ |ηj| ≤M . Assume that for all j with probability at
least 2/3, Uj computes a binary representation of aj up to additive error ηj using
one copy of ρ. Then, with probability at least 1 − ν ′, we can find a j such that
aj − ηj ≤ mini(ai + ηi) + δ using Õ

(
log4(m) log(M/δ) log(ν ′)

)
samples of ρ and

Õ(
√
m log(ν ′) log(M/δ)) applications of U and its inverse.

Proof:
Do a binary search on the value v to precision δ by checking whether there
is still an element with ai + ηi ≤ v using Lemma 6.4.1 in each round with
ν = Θ(ν ′/ log(M/δ)). This binary search will result in a value v ≤ mini(ai+ηi)+δ
with probability at least 1 − ν/2, and it is not hard to see that the last j found
by Lemma 6.4.1 during the binary search will be such that aj − ηj ≤ v with
probability at least 1−ν/2. Therefore this j satisfies the required inequality with
probability at least 1− ν. 2

This leads to the following general bound on SDP-solving.

6.4.3. Theorem. Assume that updating an entry of y ∈ Rm+1 in the data struc-
ture requires at most Õ(TGibbs(γ, γ

2, γ−1)) elementary operations, where γ :=
6Rr/ε. Then there is a quantum SDP-solver for which

TSDP (ε) = Õn
((√

mT σTr(γ
−1) + TGibbs(γ, γ

2, γ−1)
)
γ4σ2

)
,

similarly there is also a quantum algorithm with the same complexity, but with
γ := 6R/ε, that implements an SDP primal oracle.

12One might be wondering why the fourth power on the logarithm, is it not just a simple
binary search argument using the quantum OR lemma? The difficulty arises from the fact that
at each level of the binary search we can only answer a question like “is there a j with success
probability ≥ δ or every success probability is below δ + ε?” It turns out that one needs to
choose ε ≈ 1/ log(m), and δ decreasing at each step with ε. This then requires ≈ log3(m) copies
for every level of the binary search.
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Proof:
To construct an SDP-solver use both frameworks in succession, otherwise use only
the primal oracle. The frameworks run for Õn(γ2) iterations. In each iteration
we need to update at most three entries of the y vector, which takes at most
Õ(TGibbs(γ, γ

2, γ−1)) elementary operations by assumption. To search for a vio-
lated constraint when using the primal oracle framework, we use the Two-Phase
Quantum Search, and we use Two-Phase Minimum Finding to implement the
minimum finding needed in the Oracle for the Arora-Kale framework13, following
the geometric approach of Lemma 6.2.2 for implementing a γ−1-oracle.

Let ρ := ρ⊗kS where k = 6(4σγ)2, S is a uniform random seed and ρ̃S is a
density operator, that is a γ−1/4-approximation in trace distance of the Gibbs
state ρGibbs(y) corresponding to the current y vector (for at least a 4/5 fraction
of the possible input seeds). Let Uj be the operator that applies a (γ−1/4, σ)-
trace estimator to each copy of ρ̃S and takes the average of the outcomes. I.e.,
it obtains estimates of Tr[Aj ρ̃S] with bias at most γ−1/4 and standard deviation
at most σ independently k times, taking the average at the end. By Chebyshev’s
inequality we can see that this way Uj computes a 2γ−1/4-precise estimate of
Tr[Aj ρ̃S] with probability at least 5/6. Also with probability at least 4/5 we
have that

∥∥ρ̃S − ρGibbs(y)

∥∥ ≤ γ−1/4 and thus we get a 3γ−1/4-precise estimate of
Tr
[
AjρGibbs(y)

]
with probability at least 4/5 · 5/6 = 2/3. The preparation of ρ

can be performed using kTGibbs(γ, γ2, γ−1) queries by definition, whereas Uj can
be implemented with query complexity kT σTr(γ−1) .

By using Two-Phase Quantum Search and Two-Phase Quantum Minimum
Finding with ν = Õn(γ−2) we get that it takes

Õn
((

(
√
mT σTr(γ

−1) + TGibbs(γ, γ
2, γ−1)

)
γ2σ2

)
queries to implement an iteration. The stated final complexity follows considering
the number of iterations is Õn(γ2). 2

In the rest of this section we give upper bounds on TGibbs and T σTr for dif-
ferent input models. In particular, due to the results from the next section,
TGibbs(K, d, θ) will always depend only logarithmically on d and θ, and T σTr(θ)
will only depend logarithmically on θ. Nevertheless we left these parameters in
Theorem 6.4.3 for completeness and to allow for comparison with previous results.

6.4.2 SDP-solving using the quantum operator input model

In this subsection we first show how to convert the quantum state input model
to the quantum operator input model, then we show how to implement efficient

13In the Oracle implementation of Lemma 6.2.2 the minimum finding is not done over the
computed traces, but rather the angles calculated using these traces. The trace → angle con-
version suffices with precision δ = 1/poly(γ), and since the magnitude M of angles is bounded
by π, we get log(M/δ) = O(log(γ)) in Lemma 6.4.2.
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trace estimation and Gibbs-sampling in the quantum operator model.

Subnormalized density operators as block-encodings

We present a lemma based on ideas of [LC16, Corollary 9] showing how to im-
plement a block-encoding of a (subnormalized) density operator using purified
access to the density operator, slightly generalizing our earlier Lemma 3.3.2.

6.4.4. Lemma (Block-encoding of a (subnormalized) density operator [LC16]).
Let G be a (w + a)-qubit unitary which on the input state |0〉⊗w|0〉⊗a prepares
a purification |%〉 of the subnormalized w-qubit density operator %. Then we can
implement a (1, w+a, 0)-block-encoding of %, with a single use of G and its inverse
and with w + 1 two-qubit gates.

Proof:
Let us write |%〉 = α|ρ0〉 + β|ρ1〉, where α, β ∈ R, (I2w ⊗ |0〉〈0| ⊗ I2a−1)|ρ0〉 =
|ρ0〉 and (I2w ⊗ |1〉〈1| ⊗ I2a−1)|ρ1〉 = |ρ1〉. Moreover, without loss of generality
we can assume that |%0〉 =

∑D
j=1

√
pj|ψj〉|0〉|ψ̃j〉 such that 〈ψ̃i|ψ̃j〉 = δij and

% = α2
∑D

j=1 pj|ψj〉〈ψj|. Consider the (2w + a + 1)-qubit unitary V = (I2w+1 ⊗
G†)(SWAPw+1⊗I2a)(I2w+1⊗G), where SWAPw+1 denotes the unitary which swaps
the first (w + 1)-qubit register with the second (w + 1)-qubit register. Observe
that

(I2w⊗〈0|⊗1+w+a)V (I2w ⊗ |0〉⊗1+w+a) =

= (I2w ⊗ 〈0|〈%|)(SWAPw+1 ⊗ I2a)(I2w ⊗ |0〉|%〉)
= α2(I2w ⊗ 〈0|〈ρ0|)(SWAPw+1 ⊗ I2a)(I2w ⊗ |0〉|ρ0〉)

= α2

D∑
j=1

pj(I2w ⊗ 〈0|〈ψj|〈0|)(SWAPw+1 ⊗ I2a)(I2w ⊗ |0〉|ψj〉|0〉)

= α2

D∑
j=1

pj(I2w ⊗ 〈0| ⊗ 〈ψj|〈0|)(|ψj〉|0〉 ⊗ I2w ⊗ |0〉)

= α2

D∑
j=1

pj(|ψj〉 ⊗ 〈ψj|)

= α2

D∑
j=1

pj|ψj〉〈ψj|

= %.
2

The above corollary essentially shows that the quantum operator input model
generalizes the quantum state input model too, by choosing α = B (since µ+

j −
µ−j + |µIj | ≤ B). What is left is to show how to implement a linear combination
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of block-encodings, e.g., Aj = µ+
j %

+
j − µ−j %−j + µIjI. We show how to efficiently

implement such a block-encoding in the next subsection.

Efficient trace estimation

Now we show how to use a block-encoding of a Hermitian matrix A for efficient
trace estimation.

6.4.5. Corollary. Suppose −I � A � I, 0 < θ < 1 and α ≥ 1. We can
implement a trace estimator for A with standard deviation σ ≤ 6 and bias ≤ θ
with Õθ(α) uses of a block-encoding of A/α.

Proof:
Suppose that we are given a unitary U block-encoding A/α. By Theorem 3.2.7
we can convert it to a unitary U ′ that block-encodes an operator O(θ)-close to
A/2 with O

(
α log

(
α
θ

))
uses of U . Then by linear combination of block-encodings

(Lemma 3.3.9) we can construct a unitary U ′′ that block-encodes an operator
O(θ)-close to I/2 + A/4 with a single use of U ′. Finally by Corollary 3.4.14
(setting κ ≥ 4) and Corollary 2.3.8 we can implement a unitary Ũ block-encoding
of an operator O(θ)-close to

√
I/2 + A/4 with O(log(1/θ)) uses of U ′′, and apply

the block-encoding Ũ to ρ. Suppose Ũ is an a-qubit block-encoding, then the
probability of finding the ancilla qubits to be |0〉⊗a := |0̄〉 upon measurement is

Tr
[
(〈0̄| ⊗ I)Ũ †(|0̄〉〈0̄| ⊗ ρ)Ũ(|0̄〉 ⊗ I)

]
=

= Tr
(

(〈0̄| ⊗ I)Ũ(|0̄〉 ⊗ I)︸ ︷︷ ︸
≈
√
I/2+A/4

2

(〈0̄| ⊗ I)Ũ †(|0̄〉 ⊗ I)︸ ︷︷ ︸
≈
√
I/2+A/4

2

ρ
)

=
1

8
+

Tr[Aρ]

16
+O(θ).

Upon measuring the ancilla qubit and getting outcome |0̄〉 we output 16−2 = 14.
In case of any other measurement outcome we output −2. By choosing the right
constants so that Ũ is a precise enough block-encoding we can ensure that the
bias is less than θ/2, and the standard deviation σ ≤ 6. 2

6.4.6. Corollary. For σ = 6, we have that T σTr(θ) = Õn
ε
,θ(α) in the quantum

operator input model.

Implementing a linear combination of block-encodings

In the SDP-solving frameworks we need to prepare Gibbs states for Hamiltonians
of the form

∑m
j=0 yjAj. Our innovation is to first convert the matrices to block-

encodings and then directly construct linear combinations of block-encodings.
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Using linear combinations of block-encodings bypasses the entrywise summation
of the input matrices which was a major bottleneck in previous SDP-solvers for
the sparse input model [BS17, vAGGdW17].

This is done by using an efficient data structure as the intermediate storage
of y. This data structure has recently been used by many quantum algorithms
as part of their input model. However, as far as we are aware this is the first
use of it as an intermediate storage in a quantum algorithm. Combining these
techniques for block-encodings with the meta-algorithm of Theorem 6.4.3 leads
to an efficient quantum SDP-solver, see Theorem 6.4.9.

Now we describe how to use a quantum-access classical RAM (QCRAM) to ef-
ficiently implement a state-preparation-pair unitary (Definition 3.3.8) that can be
used to construct the linear combinations of the block-encodings (Lemma 3.3.9).
In the SDP-solver we use this data structure for the summation of constraint
matrices needed for Gibbs-sampling.

6.4.7. Lemma. There is a data structure that can store an m-dimensional d-
sparse vector y ∈ Rm with θ-precision (in `1-norm) using a RAM (or QCRAM)
of size Õm

θ
(d). Initialising the data structure costs Õm

θ
(1) binary operations,

furthermore:

• Given a classical s-sparse vector, adding14 it to the stored vector has classical
cost Õm

θ
(s).

• Querying the i-th element of the vector costs Õm
θ

(1) binary operations and
queries to the QCRAM.

• Given that β ≥ ‖y‖1 we can implement a (symmetric) (β, Õm
θ

(1), θ)-state-
preparation pair for y with Õm

θ
(1) queries to the QCRAM.

Proof:
We use the data structure of [KP17b, Appendix A]. 2

6.4.8. Corollary. Having access to the above data structure for y, we have
TGibbs(K, d, θ) = Õθ(αK

√
n) in the quantum operator input model.

Proof:
This can be proven using the Gibbs-sampler of Theorem 3.4.21, combined with
the above lemma and Lemma 3.3.9 for constructing a block-encoding of the linear
combination of the operators

∑m
j=0 yjAj. 2

This directly gives the following result for SDP-solving:
14In order to avoid error accumulation from repeated rounding, we assume for simplicity that

there can be at most O(poly(m/θ)) such calls to the data structure in total.
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6.4.9. Theorem. In the quantum operator input model

TSDP (ε) = Õ
(
(
√
m+

√
nγ)αγ4

)
,

where γ = Rr/ε is. For a primal oracle the same complexity can be accom-
plished with γ = R/ε. The input oracle of the quantum operator model can be
constructed using O(1) queries and Õmnαγ(1) elementary operations in the sparse
matrix model and also in the quantum state model with α = s or α = B respec-
tively. Therefore the above bound applies to these input models too.

Proof:
The complexity statement follows from Theorem 6.4.3 using Corollary 6.4.6 and
6.4.8. The reductions follow from Lemma 3.3.5 and Lemma 6.4.4. 2

If we do not apply two-phase minimum finding but use standard quantum
minimum finding [DH96] instead, then we get a result with a slightly better
dependence on γ, cf. (6.10):

6.4.10. Corollary. In the quantum operator input model

TSDP (ε) = Õ
(√

mnαγ4
)
,

where γ = Rr/ε for a full SDP-solver and γ = R/ε for a SDP primal oracle.

6.4.3 Exponentially improved Gibbs-sampling in the quan-
tum state input model

In this subsection we show how to harness the special structure of the quan-
tum state input model, to improve the complexity of Corollary 6.4.8. As shown
in [BKL+18] this allows for an SDP-solver with a polylog dependence on n. We
improve on the results of [BKL+18] by constructing a Gibbs-sampler with no ex-
plicit dependence on the rank of the input matrices. Moreover, we also improve
the dependence on precision from polynomial to logarithmic.

We will use the following lemma about projectors.

6.4.11. Lemma. Let 0 < q < 1, Π be a projector and % a subnormalized density
operator. Suppose that qΠ � % � I/2, (I −Π)%(I −Π) = 0 and we have access to
an a-qubit unitary U%̃ preparing a purification of a subnormalized density operator
%̃ such that ‖%− %̃‖1 ≤ 4ν. Then we can a prepare a purification of a subnor-
malized density operator %̃unif such that

∥∥ q
4
Π− %̃unif

∥∥
1
≤ Õ(ν/q), with Õν(1/q)

queries to U%̃ and its inverse and using Õν(a/q) two-qubit gates.

Proof:
First let us assume that we have access to U% instead of U%̃. Then, using Corol-
lary 3.4.13 we could implement a unitaryW which is a (1, a+2, 0)-block-encoding



6.4. Technical improvements 221

of V such that
∥∥∥(V − √

q

2
√
%

)
Π
∥∥∥ ≤ ν, with Õν(1/q) uses of U%. Note that since

qΠ � % and (I −Π)%(I −Π) = 0 we know that % is supported on the image of Π,
in particular Π%Π = %. Using Hölder’s inequality it is easy to see that∥∥∥∥V %V † − √q2

√
%
%

√
q

2
√
%

∥∥∥∥
1

≤ 2ν,

which is equivalent to ∥∥∥V %V † − q

4
Π
∥∥∥

1
≤ 2ν.

Considering that ‖%− %̃‖ ≤ ‖%− %̃‖1 ≤ 4ν, if in the implementation of the
controlled Hamiltonian simulation we replace U% by U%̃, then we make error
Õ(ν/q), as shown by Lemma 2.4.4. The resulting new unitary W̃ is therefore
an (1, a+ 2, Õ(ν/q))-block-encoding of V . Thus we can prepare a purification of
the a subnormalized density operator %̃unif such that∥∥∥q

4
Π− %̃unif

∥∥∥
1
≤ Õ(ν/q).

2

In the proof of the next lemma we will mostly be looking at Eigenvalue threshold
projectors.

6.4.12. Definition (Eigenvalue threshold projector). SupposeH is a Hermitian
matrix and q ∈ R. Let ΠH>q denote the orthogonal projector corresponding to
the subspace spanned by the eigenvectors of H that have eigenvalue larger than q.
We define ΠH≤q := I − ΠH>q.

We are now ready to prove the main lemma of this section, an improved
Gibbs-sampler in the quantum state model. In the proof we will use some specific
conventions and notation to simplify the proof. We say that two subnormalized
density operators are δ-close when their trace distance is at most δ, and that two
unitaries are δ-close when their operator norm distance is at most δ. We will
always work with purifications of subnormalized density operators, so when for
example we say that we apply an operator to a subnormalized density operator,
we mean that we apply the operator to its purification.

6.4.13. Lemma (Gibbs-sampling of the difference of density operators).Suppose
that we have unitaries U%± preparing a purification of the subnormalized density
operators %± using a = O(poly log(n)) qubits. Let15 H := (%+−%−)/2, β ∈ [1, n/2]
and δ, η ∈ (0, 1]. Assume we are given a point q ∈ [2/n, 1/β] that is η-far from
the spectrum of H, i.e.

|λ− q| ≥ η for all λ ∈ Spec(H).

15In case n is not a power of 2 we still represent H on dlog2(n)e qubits, but think about it
as an Cn×n operator.
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Then we can prepare a purification of an approximate Gibbs state ρ̃Gibbs such that∥∥∥∥ eβH

Tr[eβH ]
− ρ̃Gibbs

∥∥∥∥
1

≤ δ

with16 Õn
δ
(q−1.5/η) queries to controlled-U%± and their inverses.17

Proof:
The main idea of the proof is that we prepare (slightly subnormalized) density
operators corresponding to ΠH>q and ΠH≤q, i.e., uniform distributions over a
partition of eigenspaces of H. Utilising these states we prepare subnormalized
Gibbs states on the corresponding subspaces, then merge and amplify the states
in order to obtain the final Gibbs state. This is beneficial since on the subspace
corresponding to ΠH≤q the map eβH is nicely bounded. However, on the image of
ΠH>q the map eβH might behave wildly, and in the extreme case this map might
magnify the amplitude of some eigenvectors tremendously. This implies that we
need to “find” such magnified elements, as the Gibbs state is concentrated around
them. Fortunately the rank of ΠH>q is at most 1/q, which makes it easier to “find”
the extreme vectors then if we would apply the same procedure to the uniform
distribution I/n.

We start with implementing the unitary ṼH>q that labels eigenstates of H
according to which component of R \ {q} their eigenvalue lies in. More pre-
cisely, we set δ′ := Θ̃(δq2), and we want to implement a unitary ṼH>q which is a
(1, Õ n

ηδ′
(1), δ′)-block-encoding of (ΠH>q⊗ I + ΠH≤q⊗X). Due to the assumption

that q lies at least η-far from Spec(H) we can implement these unitaries using
Θ(η) precise phase estimation of the operator eiH , repeated O(log(1/δ′)) times.
This can be implemented with Õδ′(1/η) queries as shown by Lemmas 6.4.4 and
3.3.9.

Now let us consider Gibbs-sampling on the image of ΠH>q. Let ς+ := (%+ +%−)/2
be a subnormalized density operator, which we can prepare in a purified manner
using O(1) queries. Also let

ς+
H>q := ΠH>qς

+ΠH>q,

and observe that we can prepare ς̃+
H>q, such that∥∥ς̃+

H>q − ς
+
H>q

∥∥
1
≤ 2δ′(≤ q/4), (6.13)

by applying ṼH>q to ς+ (the second inequality can be assumed w.l.o.g. since
δ′ = Θ̃(δq2)).

16We think that it should be possible to improve the complexity to Õn
δ

(
q−1/η

)
using recent

results about variable-time amplitude amplification and estimation [CGJ19].
17If U%± are not controlled, then it is easy to construct a controlled version using O(a) extra

ancilla qubits.
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Observe that

qΠH>q = ΠH>q(qΠH>q)ΠH>q

� ΠH>q(H)ΠH>q

� ΠH>q(H + 2%−)ΠH>q

= ς+
H>q. (6.14)

This allows us to apply Lemma 6.4.11 to % := ς+
H>q, %̃ := ς̃+

H>q and Π := ΠH>q

with ν := δ′ so we get that we can prepare a state %̃unif such that∥∥∥q
4

ΠH>q − %̃unif

∥∥∥
1
≤ Õ(δ′/q)

using Õδ′(q−1/η) queries.
Now we can check if ΠH>q = 0 or not as follows. If it is not 0 then Tr[ΠH>q] ≥ 1

and hence by (6.13)-(6.14) we have Tr
[
ς̃+
H>q

]
≥ Tr

[
ς+
H>q

]
− q/4 ≥ q− q/4 = 3q/4.

Since ς+
H>q = Tr[ΠH>q]ς

+
H>qTr[ΠH>q], when ΠH>q = 0 it similarly follows that

Tr
[
ς̃+
H>q

]
≤ Tr

[
ς+
H>q

]
+ q/4 = q/4. Thus we can check whether ΠH>q = 0 by

checking whether Tr
[
ς̃+
H>q

]
≤ q/4 or Tr

[
ς̃+
H>q

]
≥ 3q/4. This can be done with

success probability at least 1− δ′ by using amplitude estimation with Õδ′(q−0.5)

calls to the procedure preparing ς̃+
H>q, costing Õδ′(q−0.5/η) queries in total. For

the final Gibbs-sampling we will consider the Gibbs state on the image of ΠH>q

and ΠH≤q separately. Therefore if ΠH>q = 0 we only need to consider the Gibbs
state on the image of ΠH≤q, which we do later in this proof. For now we assume
ΠH>q 6= 0 and consider the Gibbs state on its image.

Now we use binary search in order to find λmax the maximal eigenvalue of
H, with precision β−1/2 and success probability 1 − δ′. By our assumption
λmax ∈ (q, 1]. We start each iteration of the binary search by performing phase
estimation on ς̃+

H>q using the unitary eiH with precision β−1/4 and success prob-
ability 1 − q/4. By (6.13)-(6.14) we know that the eigenvector corresponding to
λmax is present with probability at least 3q/4 in ς̃+

H>q, and the other eigenvalues
are present with a probability at most 1 in total. Therefore the probability of
obtaining a phase estimate λ̃ such that λ̃ ≥ λmax− β−1/4 is at least q/2, whereas
the total probability of obtaining a phase estimate λ′ such that λ′ ≥ λmax +β−1/4
is at most q/4. Therefore we can perform each iteration of the binary search
with precision β−1/2 and success probability 1 − δ′/ log(q−1) by applying am-
plitude estimation to the probability of getting an eigenvalue estimate from the
current search interval, using Õβ(q−0.5) repetitions of the initial state prepara-
tion and phase estimation procedure. Thus each iteration has query complexity
Õβ(q−0.5(β + 1/η)) = Õ(q−1.5 + q−0.5/η), giving the same total query complexity
bound Õ(q−1.5 + q−0.5/η) for the complete binary search.

After finding the minimum up to precision 1/(2β) we can compute a number
λ̃max such that

λ̃maxI � H but (λ̃max − 1/β)I � H. (6.15)
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Using Lemmas 6.4.4,3.3.9, and 3.4.20 we can implement an (1/2, Õ β
δ′

(1), δ′)-block

encoding of eβ
H−λ̃maxI

2 using Õδ′(β) queries. Applying this map to %̃unif gives an
Õ(δ′/q)-approximation of the subnormalized density operator qe−βλ̃max

16
ΠH>qe

βH .
Observe that since we assumed Tr[ΠH>q] ≥ 1, by (6.15) we get that

Tr

[
qe−βλ̃max

16
ΠH>qe

βH

]
≥ q/(16e). (6.16)

Thus we can prepare a subnormalized Õ(δ′/q)-approximation of the Gibbs state
on the image of ΠH>q having trace at least q/(16e).

Now we consider the Gibbs state on ΠH≤q. First observe that we can prepare the
density operator I/n by preparing the maximal entangled state 1√

n

∑n
j=1|j〉|j〉

using Õ(log(n)) two-qubit quantum gates. With a single use of the unitary ṼH>q
we can prepare an O(δ′)-approximation of 1

n
ΠH≤q by simply marking the appro-

priate eigenstates of I/n, which takes Õ(1/η) queries. Then we apply the map
eβ

H
2 /(2
√
e) on the subspace ΠH≤q with δ′ accuracy. Since q ≤ 1/β all eigenvalues

of βH/2 that we are concerned with are smaller in absolute value than 1/2. As
shown by Lemma 3.4.20 this implies that implementing the map eβ

H
2 /(2
√
e) with

δ′ precision can be done using Õδ′(β) queries. Therefore we can prepare an O(δ′)

approximation of the state 1
4en

ΠH≤qe
βH with Õδ′(β + 1/η) ≤ Õδ′(q−1/η) queries.

Like before, we would like to lower bound the trace of the created subnor-
malized density operator. First note that ‖H‖1 ≤ 1, and so the number18 of
eigenvalues that are larger than q in absolute value is at most 1/q ≤ n/2, thus
Tr
[
Π|H|≤q

]
≥ n/2. Also note that ΠH≤qe

βH � Π|H|≤qe
βH , and for an eigenvalue

λ such that |λ| ≤ q we have eβλ ≥ e−βq ≥ 1/e. It follows that

Tr

[
1

4en
ΠH≤qe

βH

]
≥ Tr

[
1

4en
Π|H|≤qe

βH

]
≥ Tr

[
1

4e2n
Π|H|≤q

]
≥ 1

8e2
. (6.17)

As we can now Gibbs-sample on both parts of the spectrum, we are ready to
combine the two. Let19 ξ := min

(
qe−βλ̃max

16
, 1

4en

)
, then we can prepare a purifica-

tion of %̃G which is an Õ(δ′/q)-approximation of

%G :=
ξ

2
eβH =

(
ξ

2

16

qe−βλ̃max

)
︸ ︷︷ ︸

≤1/2

qe−βλ̃max

16
ΠH>qe

βH +

(
ξ

2

4en

1

)
︸ ︷︷ ︸
≤1/2

1

4en
ΠH≤qe

βH ,

18We count eigenvalues with algebraic multiplicity.
19In the special case when ΠH>q = 0 we simply set ξ := 1

4en .
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by mixing the two subnormalized Gibbs states on the corresponding subspaces
with appropriate (≤ 1/2) coefficients. This subnormalized Gibbs state %̃G can
be prepared at the same cost as the two partial Gibbs-state preparation, that is
Õ(q−1/η) queries20 as we have already shown.

Note that Tr[%G] = Ω(q) as shown by (6.16)-(6.17), therefore we can use
Õ
(√

1/q
)
amplitude amplification steps to prepare an Õ(δ′/q2) approximation

of %G
Tr[%G]

, which is clearly ρGibbs. In total this yields an Õ(q−1.5/η) query algorithm.
Since δ′ = Θ̃(δq2) this concludes the proof. 2

The following corollary expands our new Gibbs-sampling result, giving an ex-
ponential improvement in terms of the precision over the previous approach for
this input model by Brandão et al. [BKL+18]. The dependence on the success
probability is worse, but in our application to SDP-solving we only require suc-
cess for a constant fraction of random seeds. Furthermore, there is no longer a
dependence on the rank of the input matrices.

6.4.14. Theorem. Suppose we have query access to the a = polylog(n)-qubit
unitaries U%± preparing a purification of the (subnormalized) density operators
%± ∈ Cn×n, such that H = (%+ − %−)/2, β ≥ 1, θ, δ ∈ (0, 1]. Then there is
a quantum algorithm, that using21 Õθ(β3.5/δ) queries to controlled-U%± or their
inverses, prepares a purification of a quantum state ρS such that∥∥∥∥ρS − e−βH

Tr[e−βH ]

∥∥∥∥
1

≤ θ,

where S is an O(log(β/δ))-bit random seed, and the above holds for at least a
(1− δ)-fraction of the seeds.

Proof:
If β ≥ n/2, then we simply use the Gibbs-sampler from Theorem 6.4.9. Otherwise,
using the random seed S we generate a uniform random number qS from the
interval [1/(2β), 1/β]. Note that since Tr[|H|] ≤ 1 we have that

|Spec(|H|) ∩ [1/(2β), 1/β]| ≤ 2β.

Also the length of the interval is 1/(2β) therefore a random point in the interval
falls δ/(8β2)-close to Spec(|H|) with probability at most δ. Therefore the random
seed can be used in such a way that qS will be η = δ/(8β2)-far from any point

20Note that we do the maximum finding to find λ̃max only once, and we do not count its
complexity in the state preparation.

21Similarly to Lemma 6.4.13 we think that it should be possible to improve the complex-
ity to Õθ

(
β3/δ

)
using recent results about variable time amplitude amplification and estima-

tion [CGJ19] (maybe at the expense of worse dependence on the error).
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of Spec(|H|) with probability at least 1 − δ. If this is the case the procedure of
Lemma 6.4.13 prepares the sought Gibbs state with the stated complexity. 2

6.4.15. Corollary. Having access to the data structure of Lemma 6.4.7 storing
the vectors ν± ∈ Rm+1 such that ν±j = yjµ

±
j for all j ∈ {0, . . . ,m}, we have that

TGibbs(K, d, θ) = Õθ((BK)3.5) using the quantum state input model.

Proof:
To start, let us define

H :=
m∑
j=0

yjAj
KB

=
m∑
j=0

yj
KB

(
µ+
j %

+
j − µ−j %−j + µII

)
=

m∑
j=0

yjµ
+
j

KB
%+
j︸ ︷︷ ︸

%+:=

−
m∑
j=0

yjµ
−
j

KB
%−j︸ ︷︷ ︸

%−:=

+ I
m∑
j=0

yjµ
I
j

KB
.

Notice that we can ignore the identity terms since adding identities in the
exponent does not change a Gibbs state. Also let

β := KB ≥
m∑
j=0

yj(µ
+
j + µ−j ).

Using Lemma 6.4.7 we can see that a O(θ/β) approximation of %± can be pre-
pared with O(1) queries and using O(poly log(mβ/θ)) elementary operation. By
setting δ := 1/5 and using Theorem 6.4.14 the statement follows. 2

This directly gives the following result for SDP-solving in the quantum state
model

6.4.16. Theorem. In the quantum state input model

TSDP (ε) = Õ
((√

m+B2.5γ3.5
)
Bγ4

)
,

where γ = Rr/ε. The same bound holds for a primal oracle with γ = R/ε.

Proof:
This follows directly from Theorem 6.4.3 using Corollaries 6.4.6, 6.4.8, 6.4.15. 2

Also we could simply not apply two-phase minimum finding and use standard
quantum minimum finding [DH96] instead to get a slightly better dependence on
γ, cf. (6.10):

6.4.17. Corollary. In the quantum state input model

TSDP (ε) = Õ
(√

mB3.5γ6.5
)
,

where γ = Rr/ε. The same bound holds for a primal oracle with γ = R/ε.
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6.5 Application to shadow tomography
We apply the idea from Brandão et al. [BKL+18] to use an SDP primal oracle
to the problem of shadow tomography proposed by Aaronson [Aar18]. In shadow
tomography we are given the ability to sample from an n-dimensional quantum
state τ and we have a description of some measurement operators E1, . . . , Em; the
goal is to find ε-approximations of the corresponding expectation values Tr[Ejτ ]
for all j ∈ [m]. Aaronson showed that this can be done with only

Õ
(

log4(m) log(n)

ε5

)
samples from τ , but his method has high computational costs.

Brandão et al. [BKL+18] showed that a slightly relaxed problem can be effi-
ciently solved using an SDP primal oracle. The problem they solved is to find a
y ∈ Rm for which ρ := e−

∑m
j=1 yjEj/Tr

[
e−

∑m
j=1 yjEj

]
is such that |Tr[Ej(τ − ρ)]| ≤

ε/2 ∀j ∈ [m], i.e., ρ is in

Pε = {ρ : ρ � 0

Tr[ρ] = 1

Tr[ρEj] ≤ Tr[τEj] + ε/2 ∀j ∈ [m]

Tr[−ρEj] ≤ Tr[−τEj]− ε/2 ∀j ∈ [m]}.
We call the problem of finding a classical description of τ that suffices to solve the
shadow tomography problem without any more samples from τ the descriptive
shadow tomography problem. In particular if we get a vector y as above, then for
a given j ∈ [m] using Õm(1/ε2) invocations of a Gibbs-sampler for y, followed by
the measurement Ej, suffices to find an ε-approximation of Tr[τEj] with success
probability at least 1 − O(1/m). If we can coherently apply Ej, then using
amplitude estimation techniques the number of (coherent) Gibbs-sampler calls
can be reduced to Õm(1/ε).

Due to the output size of the shadow tomography problem, a trivial lower
bound of Ω(m log(1/ε)) can be given on the computational complexity. However,
this limitation does not exist for the descriptive shadow tomography problem.
Both problems clearly have the same sample complexity, furthermore the best
known lower bound on the sample complexity is Ω(log(m)/ε2) [Aar18].

6.5.1. Theorem. The descriptive shadow tomography problem can be solved us-
ing

Õ
(

log4(m) log(n)

ε4

)
samples from τ . Furthermore, when the Ej matrices are accessible in the quantum
operator model this can be done using

Õ
((√

m+

√
n

ε

)
α

ε4

)
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queries. It follows that the same bound holds with α = s for the sparse model and
with α = B for the quantum state model. When the measurements are given in
the quantum state model the query complexity can also be bounded by

Õn
((√

m+ min

(√
n

ε
,
B2.5

ε3.5

))
B

ε4

)
.

Proof:
The samples from τ are only used for calculating the values bj, i.e., (ε/4)-
approximations of Tr[τEj], when checking the constraints in the SDP primal
oracle. Like in [BKL+18] we make a small adjustment to our SDP primal oracle:
when Gibbs-sampling the Gibbs state ρ, we also sample τ to create the state
ρ ⊗ τ . Then, when checking the constraint, we measure (Ej ⊗ I − I ⊗ Ej)/2
to obtain an approximation of (Tr[Ejρ] − Tr[Ejτ ])/2. Notice that our SDP pri-
mal oracle uses Õ

(
log4(m) log(n)

ε4

)
Gibbs states (Õlog(n)

(
log4(m)/ε2

)
in each of the

O(log(n)/ε2) iterations) and hence the modified version uses that many samples
from τ too.

The statement about the computational complexity follows directly from The-
orem 6.4.9 and 6.4.16. 2

Finally note that Lemma 3.3.3 shows that if we can implement the measure-
ments Ej in a controlled fashion on a quantum computer, then we can also im-
plement the corresponding block-encoding with essentially the same cost. Hence
the descriptive shadow tomography problem can be solved with the same cost as
(
√
m+
√
n/ε)/ε4 controlled measurements of Ej, if the measurement is performed

on a quantum computer as we described above.

6.6 Lower bounds for the new input models

In [vAGGdW17] we showed an Ω
(√

max{n,m}min{n,m}3/2
)
lower bound for

the quantum query complexity of SDP-solving in the sparse input model. For
this bound s = 1, ε = 1/3 and R = r = min{n,m}2. By letting either n or m
be constant, the Ω(

√
n +
√
m) lower bound from [BS17] can be recovered. The

improved upper bounds of this chapter show that the dependence on n and m
is tight up to logarithmic factors. It remains an open question whether a lower
bound with an interesting dependence on s and Rr/ε can be proven.

In this section we prove lower bounds for the new input models: the quantum
state model and the quantum operator model. To do so, we first prove a lower
bound in the Hamiltonian input model, where we can time-evolve under the
matrices Aj, see Definition 6.6.1. In all cases the goal is to show that the term√
m/ε times the relevant normalization parameter (for example B in the quantum

state model) is necessary in the complexity upper bounds.
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6.6.1. Definition (Hamiltonian input model). In the Hamiltonian input model
for SDPs, we have access to two oracles for the Aj matrices. The first oracle, Ot,
gives a classical description of a real vector t ∈ Rj in the usual way

Ot|j〉|0〉 = |j〉|tj〉.

The second oracle, OH , performs the Hamiltonian simulation with Aj for time
1/tj:

OH |j〉|ψ〉 = |j〉eiAj/tj |ψ〉

Alongside the oracles we also require an upper bound τ ≥ maxj tj as part of the
input for an SDP. As in the other input models, we assume that we can also apply
the inverse of the oracles.

We will use the hybrid-method-based lower bound Theorem 4.1.2 of Chap-
ter 4, in order to lower bound on the number of queries needed for distinguishing
different phase oracles. In the spirit of Definition 6.6.1, we will view this as
the task of distinguishing a set of diagonal Hamiltonians. The following lower
bound follows naturally by reducing this “Hamiltonian discrimination problem”
to solving an SDP in the Hamiltonian input model.

6.6.2. Lemma. Let ε ∈ (0, 1/2], 2 ≤ m and 1 ≤ τ . Then there is a family of LPs
(and hence SDPs) (with R, r, n = 2) for which an ε-approximation of the optimal
value requires Ω(

√
m τ

ε
) queries to OH in the Hamiltonian input model.

Proof:
Let H1, . . . , Hm ∈ R2×2 be such that

(a) either all Hj are I/(2τ),

(b) or all but one of the matrices are I/(2τ), and there is one Hj that is equal
to [

1/(2τ) + ε/τ 0
0 1/(2τ)− ε/τ

]
=

1

2τ
I +

ε

τ
Z.

Let us assume that we have access to the phase oracle O : |j〉|b〉 → ei(Hj)bb|j〉|b〉.
In case (b) there are m possible different choices for this oracle. It is easy to see
by Theorem 4.1.2 that distinguishing case (a) form (b) requires Ω

(√
m τ

ε

)
queries

to O.
Now we show that using the above phase oracles we can define an SDP in the

Hamiltonian input model. Solving this SDP to ε-precision distinguishes case (a)
form (b), proving the sought lower bound.

Let us define Aj := τHj (and t = (τ, . . . , τ)), so all the Aj’s are either I/2 or
I/2 + εZ, furthermore let

C =

[
1 0
0 0

]
,
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and b = (1, . . . , 1)T the all-one vector. Note that since at least one of the Aj
matrices is I/2, we know that R = 2 suffices as an upper bound on the traces.
Furthermore, it is easy to verify from the dual that r = 2 suffices as well.

Now we analyze the optimal value. If all Aj matrices are I/2 then all con-
straints are the same:

X11/2 +X22/2 ≤ 1

from which it clearly follows that OPT = 2.
If one Aj matrix is not I/2, then the constraint

(1/2 + ε)X11 + (1/2− ε)X22 ≤ 1

is present. It follows that

(1/2 + ε)X11 ≤ 1⇒ X11 ≤
1

1/2 + ε

which will clearly be tight in the optimum. Using that

2− 4ε ≤ 1

1/2 + ε
≤ 2− 2ε

we conclude that 2− 4ε ≤ OPT ≤ 2− 2ε.
Hence solving this SDP up to ε-precision will distinguishing case (a) form (b)

and hence requires Ω
(√

m τ
ε

)
queries. 2

To prove the lower bounds for the quantum state model and the quantum
operator model we reduce the Hamiltonian input model to them.

6.6.3. Lemma. Let ε ∈ (0, 1]. Given an SDP in the Hamiltonian input model
with parameter τ ≥ 2 (for technical reasons also assume that tj ≥ 2 for all j),
an ε-approximate oracle call in the quantum operator model with α = 2τ can be
simulated using Õε(1) queries.

Proof:
For simplicity let us drop the index j. By applying Corollary 3.4.18 we get a
(π

2
t, 2, ε)-block encoding of H with O(log(1/ε)) controlled oracle calls. We can

then turn this into a (2τ, 2, ε) block-encoding of H by Lemma 3.3.9. 2

6.6.4. Corollary. Let ε ∈ (0, 1/2], 2 ≤ m and 2 ≤ α. Then there is a family
of LPs (and hence SDPs) (with R, r, n = 2) for which an ε-approximation of the
optimal value requires Ω̃(

√
mα

ε
) queries to OH in the quantum operator model.

For the quantum state input model we only give a reduction for LPs, i.e., the
case where all input matrices are diagonal.
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6.6.5. Lemma. Let ε ∈ (0, 1]. Given an LP in the Hamiltonian input model with
parameter τ ≥ 4 (for technical reasons also assume that tj ≥ 4 for all j), then
an ε-approximate oracle call in the quantum state model with B = 2nτ can be
simulated using Õε(1) queries.

Proof:
For simplicity let us drop the index j. By applying Corollary 3.4.18 we get a
(π

2
t, 2,O(ε))-block encoding ofH with O(log(1/ε)) controlled oracle calls. We can

then turn this to a (1, 2,O(ε)) block-encoding of I/2±H/(4τ) by Lemma 3.3.9.
By Corollary 3.4.14 and Corollary 2.3.8 we can turn this into a (1, 3,O(ε)) block-
encoding of

√
(I +H/(2τ))/2.

The state input oracles can be implemented as follows: controlled on the
state |±〉 we apply

√
(I ±H/(2τ))/2 to the first half of the state

∑n
i=1|i〉|i〉/

√
n,

resulting in subnormalized density operators %± = (I ± H/(2τ))/(2n), so that
%+ − %− = H/(2nτ). 2

6.6.6. Corollary. Let ε ∈ (0, 1/2], 2 ≤ m and 1 ≤ B. Then there is a family
of LPs (and hence SDPs) (with R, r, n = 2) for which an ε-approximation of the
optimal value requires Ω̃(

√
mB

ε
) queries to OH in the quantum state model.





Chapter 7
Quantum Lovász Local Lemma

The Lovász Local Lemma (LLL) is an important and powerful tool in combina-
torics and probability theory. It gives a sufficient condition under which the union
of some “sparsely dependent” events is guaranteed to have probability less than 1.
While early versions of the LLL were non-constructive, Moser [Mos09] gave an
algorithmic version in the so-called variable version. The variable version of the
Quantum Lovász Local Lemma (QLLL) can be stated in terms of frustration-
free local Hamiltonians: these Hamiltonians have the property that their ground
state minimizes the energy of all local terms simultaneously. In general, deciding
whether a Hamiltonian is frustration-free is a hard task, as it is closely related to
the quantum satisfiability problem (QSAT) – the quantum generalization of SAT,
the archetypal NP-complete problem in classical computer science. The QLLL
provides a sufficient condition for frustration-freeness.

Is there an efficient way to prepare a frustration-free state under the condi-
tions of the QLLL? Previous results showed that the answer is positive if all local
terms commute. These works were based on Moser’s “compression argument”
which was the original analysis technique of his celebrated classical resampling
algorithm. We generalize and simplify the “compression argument”, so that it
provides a simplified version of the previous quantum results, and improves on
some classical results as well. More importantly, we improve on the previous re-
sults by designing a quantum algorithm that works efficiently for non-commuting
terms as well, assuming that the system is “uniformly” gapped, by which we mean
that the system and all its subsystems have an energy gap that is at least inverse
polynomially large. Also, our analysis works under the most general condition for
the QLLL, known as the Shearer bound, which we describe later in the chapter.

Finally, in the variable version of the LLL we find optimal bounds for the
“guaranteed to be feasible” probabilities on any cyclic dependency graph, and
show that this region is always strictly larger than in the generic non-variable
version, where Shearer’s bound is optimal. This in turn shows a separation be-
tween the variable version of the classical and the quantum LLL.

This chapter is based on [GS17] c© 2017 IEEE, and [Gil16].
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7.1 Introduction

Frustration-free Hamiltonians and quantum satisfiability. Many physi-
cal systems and models are described by a local Hamiltonian H =

∑
iHi where

each term Hi is k-local, meaning that it acts non-trivially only on at most k
of its subsystems. Such a Hamiltonian is called frustration-free if its ground
state is also the ground state of each of the local terms Hi. Frustration-free
Hamiltonians appear in various areas, for example: quantum error correcting
codes [Got96], parent Hamiltonians for PEPS (a 2-D generalization of matrix-
product-states) [PVWC08], and various models in many-body quantum physics.

An equivalent way to ask whether a Hamiltonian H is frustration-free is
whether H ′ =

∑
i Πi is frustration-free, where Πi is the projector on the ex-

cited states of Hi. The quantum satisfiability problem1 (QSAT) is to deter-
mine whether H ′ in the above form is frustration-free or not. QSAT is QMA1-
complete [Bra11],2 and therefore intractable in general even for quantum comput-
ers (unless BQP = QMA1). In this work we tackle the search problem – finding
a ground state of a frustration-free Hamiltonian – which is, in general, an even
harder task than deciding frustration-freeness.3

The (spectral) gap of a Hamiltonian H, denoted by ∆(H), is the energy
difference between its two lowest distinct energy levels. The uniform gap of a
local Hamiltonian H =

∑m
i=1 Hi is defined by

γ(H) := min
S⊆[m]

∆

(∑
i∈S

Hi

)
. (7.1)

The spectral gap of Hamiltonians plays an important role both in physics and
computer science, particularly in Hamiltonian complexity theory, see for example
[Has07, FGGS00, AvDK+08, CPGW15].

The Classical and Quantum Lovász Local Lemma. We would like to un-
derstand the QSAT problem, so it is natural to first look at the classical SAT and
the techniques that were useful in studying it. A “local” version of SAT is called
k-SAT. It asks whether a Boolean formula of the following form can be satisfied:∧
i∈[m] ci, where each ci is a clause containing the OR (

∨
) of exactly k distinct

Boolean variables or their negation.
A natural question is, when can we be sure that a satisfying assignment exists?

Since each k-SAT constraint excludes a p = 2−k fraction of assignments, pm < 1

1For technical reasons, one might require a promise that if H ′ is not frustration-free, the
minimal energy of H ′ is at least inverse-polynomial in the number of qubits.

2QMA1 is similar to QMA (Definition 3.2.14), except that it requires perfect completness.
3SAT (as well as any other NP-complete problem) has a search-to-decision reduction [BG94].

No such reduction is known for QSAT.
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is a sufficient condition (by the union bound). If we have the additional infor-
mation that none of the constraints share variables, then the formula is clearly
satisfiable. What can we say in the intermediate regime, where each constraint
shares variables with at most d constraints (including itself)? The (symmetric)
Lovász Local Lemma [EL75, AS92, KST93, Sze13], applied to this setting, implies
that the (symmetric) Lovász condition

pde ≤ 1 (7.2)

is a sufficient condition for satisfiability.4 Shearer generalized the Lovász Local
Lemma and found the optimal sufficient condition in this framework [She85], see
Section 7.4.

How hard is it to find such a satisfying assignment? A series of works [Bec91,
Mos09, MT10, KSz11] have culminated in an efficient constructive algorithm.

It is natural to ask the analogous questions in the quantum setting, where
the Boolean variables are replaced by qubits and the clauses by rank-1 k-local
projectors. The connection between a k-SAT clause and a rank-1 projector is the
following: a k-SAT clause excludes one out of the 2k possible configurations of
the relevant variables, while a rank-1 k-local projector excludes one dimension
out of the 2k relevant dimensions. So given a set of k-local rank-1 projectors
acting on n qubits5, under what conditions can we guarantee that the system is
frustration-free? A “dimension-counting” argument can be used to show that the
Lovász condition (pde ≤ 1) [AKS12] is indeed sufficient, as is Shearer’s condi-
tion [SMLM16].

Is there an algorithm which efficiently prepares a ground state under these
conditions? In the past, such constructions have been achieved only for commut-
ing Hamiltonians, where [Πi,Πj] = 0 for all i, j. Commuting Hamiltonians are
somewhat “half-way” between classical and quantum. For example, the commut-
ing 2-local Hamiltonian problem is in (the purely classical class) NP for qudits of
all dimensions [BV05], whereas 2-local QSAT is QMA1-complete if the dimension
of the qudits is large enough [AGIK09]. Yet commuting Hamiltonians, such as the
toric code, can have the striking quantum property of topological order [Kit03].
In this work we extend the previous results to non-commuting projectors, thereby
entering the fully quantum regime.

Moser-Tardos type resampling algorithm. Following the seminal work of
Moser and Tardos [Mos09, MT10], a variety of algorithms and analysis tech-
niques were introduced for proving efficient versions of the Lovász Local Lemma
based on their resampling algorithm. The resampling algorithm starts with a
random state, and repeatedly checks the constraints that we want to satisfy. If

4The constant e in Eq. (7.2) is 2.71 . . ., the base of the natural logarithm.
5The uniform k-locality and rank-1 constraints are only for convenience, for a more general

treatment see our paper [GS16].
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a constraint c is violated, then it performs a “resampling”, which is some random
“local” change to the current state only affecting c and a few other constraints,
hopefully fixing c. Once all constraints are fixed, the algorithm returns a satisfy-
ing state. The main challenge is the analysis of the algorithm: proving a bound
on the expected number of resamplings needed. In Algorithm 7.1 we present a
meta-algorithm sketching this procedure, which captures the basic structure of
most related algorithms.

The algorithm can be interpreted both as a classical and as a quantum algo-
rithm. For example, in the case of SAT, the initial state is n uniformly random
Boolean variables, and a constraint is simply a clause, which is simple to check
by looking at the corresponding Boolean variables. In the quantum setting of
QSAT, the initial state is similarly n uniformly randomly initialized 0/1 qubits
(which is the maximally mixed state). A constraint c corresponds to an orthogo-
nal projector Πc. We say that |ψ〉 satisfies the constraint c if the quantum state
is in the kernel of Πc, and that c is unsatisfied if |ψ〉 is not in the kernel. Finally
we say that |ψ〉 violates c if it is in the image of Πc.

Algorithm 7.1 Moser-Tardos resampling meta-algorithm
input: set of constraints C

1: initialize system to a uniformly random starting state
2: F ← ∅ (F is the set of fixed (i.e., satisfied) clauses)
3: while F 6= C do
4: pick c ∈ C \ F and check if constraint c is satisfied
5: if “Satisfied”
6: update F ← F ∪ {c}
7: else if “Violated”
8: resample c (and thereby hopefully fix it)
9: update F ← F \Γ+(c) (? Γ+(c) denotes the constraints possibly

affected by resampling c, including c itself ?)
10: end while

In Algorithm 7.1, pick and check in line 4 and resample in line 8 need to be
specified in order to get a well-defined algorithm. In this chapter, all the results
apply for any deterministic strategy for executing pick, see Definition 7.2.2. In
order to get improved bounds, up to the optimal Shearer bound [She85], one
might need to be more careful regarding pick, for more details see the paper on
which this chapter is based [GS16]. In this article we mostly work in the so-called
variable framework [Mos09, MT10, KSz11], which is sufficient for the SAT and
QSAT applications. In this setting each constraint depends on some (qu)bits
of the system. (For simplicity we will only consider systems of n qubits, but
all the results generalize trivially to qudits.) In this binary variable framework
we simply define resample as reinitializing the specific constraint’s (qu)bits to
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uniformly random true-false (0-1) values. We define Γ+(c) as the set of constraints
c′ such that c and c′ both act non-trivially on some shared (qu)bit, and d =
maxc∈C |Γ+(c)|. In general one could also work with other models, as described
in [HV15].

The checking step in line 4 should be performed using some measurement
operator, corresponding to Πc. The algorithm implicitly assumes that all the
constraints in F are fixed (satisfied). This loop invariant is easy to maintain
in the classical and commuting quantum case by implementing check using the
two-outcome measurement {Πc, Id − Πc}. But, in the non-commuting setting,
using this two-outcome measurement can break the loop invariant: suppose that
all the constraints in F are fixed, and then another constraint Πc is checked (i.e.,
measured) and is found to be satisfied. A constraint which was fixed before, and
shares a qubit with Πc, may become unsatisfied because of the collapse caused by
the measurement. Because of this caveat the analysis of the previous quantum
algorithms [SCV13, SA15] worked only in the commuting case. Next, we explain
how to maintain this loop invariant also in the non-commuting case.

The progressive measurement channel. We first need one more notation.
We denote by ΠF the projection onto ker(

∑
c∈F Πc). Note that for c ∈ C the

states in the image of Πc violate c, whereas for F ⊆ C the states in the image of
ΠF satisfy all c′ ∈ F , e.g., Π{c} = I − Πc. We changed from sub- to superscript
to help avoid confusion caused by this difference.

Suppose that |ψ〉 satisfies all the constraints in F , i.e., |ψ〉 = ΠF |ψ〉, and
{ΠF∪{c}, Id − ΠF∪{c}} is measured. The unnormalized post-measurement state
associated with outcome ΠF∪{c} is ΠF∪{c}|ψ〉, which we obtain with probability
〈ψ|ΠF∪{c}|ψ〉. If instead {Πc, Id − Πc} is measured, the post-measurement state
|ϕ〉 associated with outcome Πc has the property that |ϕ〉 = Πc|ϕ〉, and due to
locality also |ϕ〉 = ΠF\Γ+(c)|ϕ〉. One of our key observations is that the outcomes
ΠF∪{c} and Πc are in some sense complementary to each other.

We call a quantum channel a progressive measurement channel, if it combines
these two properties:6 for an input state |ψ〉 ∈ im(ΠF ), it has two classically
labeled outputs (corresponding to measurement labels): the “Satisfied” output
is ΠF∪{c}|ψ〉, and the “Violated” output is ρ such that ρ = Πcρ = ΠF\Γ+(c)ρ

and Tr[ρ] = 1 −
∥∥ΠF∪{c}|ψ〉

∥∥2. Here, the name progressive is used to emphasize
that for a state which satisfies F , the channel either adds c to the set of fixed
constraints, or provides a state in which c is violated (but the state ρ keeps at
least F \ Γ+(c) satisfied).

We devised two different, but closely related constructions, which satisfy the
requirements of a progressive measurement channel. In Section 7.2.3 we show

6The formal definition is slightly different, and is adapted for our needs, see Definition 7.2.7.
The progressive measurement channel that we discuss in Section 7.2.3 satisfies these two prop-
erties.
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an explicit procedure and prove that it is a progressive measurement channel.
The construction itself and its analysis are fairly simple. In Section 7.3 we show
how to efficiently implement this progressive measurement channel using singular
value transformation techniques under a promise on the uniform gap. In the pa-
per [GS17], on which this chapter is based, we have another construction which
can be implemented using only (weak) measurements, but which has a quadrati-
cally worse gap-dependence.

The main idea of the latter variant is to use weak measurements coupled with
a quantum Zeno effect7. This variant uses only Πc and ΠF measurements, and the
number of measurements it performs depends on the spectral gap of

∑
c′∈F∪{c}Πc′ .

It repeats the following T times: (strongly) measure ΠF , followed by a weak
measurement of Πc. If Πc is found to be violated, we immediately return with
the classical “Violated” label. If we ever get measurement outcome I − ΠF , then
we immediately abort, otherwise we return “Satisfied”. We show that by choosing
the weak measurement parameter to be weak enough, the probability of “abort”
becomes proportionally small. Also if we choose T to be large enough, then
the procedure closely approximates a progressive measurement channel. Finally
we show how to appropriately approximate a ΠF measurement by repeated Πc′

measurements for c′ ∈ F .
We think that the definition and efficient construction of a progressive mea-

surement channel could be of independent interest, and might find applications
in other quantum algorithms.

New existential proof. Our work does not require any of the previous exis-
tential proofs, and therefore provides an alternative proof for the main results
in [AKS12] and [SMLM16].

Our contributions. We present three main results in this chapter.
Our first contribution is the adaptation of the “forward-looking” analysis tech-

nique of [HV15] to the quantum setting, which enables the generalization for the
non-commuting case, and makes it possible to extend the previous commuting
results up to Shearer’s bound (see our paper [GS16]). This is done via our Key
Lemma 7.2.8, which borrows ideas from [HV15, Kol16]. It is proved using semi-
definite inequalities which introduce quantum analogues of uniform probability
bounds.

Our second contribution is the generalization and simplification of Moser’s
“entropy compression argument” [Mos09] that was originally used for proving
efficiency of the classical resampling algorithm. This generalization simplifies
the proof of the previous commuting quantum results from [SCV13, SA15]. On
top of the quantum implications, it also improves the runtime analysis of some

7The quantum Zeno effect is a quantum technique which uses frequently repeated measure-
ments to prevent unwanted changes in the quantum state of some quantum system [MS77].
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classical algorithms, see the discussion in Section 7.2.1. Last, but not least, it gives
valuable insight through the “Log compression” Lemma 7.2.3 showing that the
core of the “entropy compression argument” can be distilled to a straightforward
counting argument.

Our third and most important contribution is that we prove a constructive
Quantum Lovász Local Lemma for non-commuting projectors. We construct
the appropriate progressive measurement channel which can handle the non-
commuting case in a way suggested by our Key Lemma 7.2.8.

The algorithm’s running time is polynomial in the number of the constraints
and qubits, but also depends inverse-polynomially on the uniform gap, see Eq.(7.1)
and the discussion there. The main open question left is whether this dependency
on the uniform gap is necessary. Specifically, given a Hamiltonian H which sat-
isfies the Lovász condition, and an energy bound ε, is there a quantum algorithm
which can output a state with energy at most ε in time poly(n, |C|, 1/ε)? (The
running time should not depend on any gap promise for the Hamiltonian.)

7.2 The ideal quantum algorithm

7.2.1 Generalized compression argument

The generalized compression argument that we present makes the proof signif-
icantly simpler compared to the original work of Moser [Mos09], probably pro-
viding the simplest known proof of any Moser-Tardos type algorithm. It works
for any deterministic constraint-selection rule, and can be applied beyond the
variable framework [HV15].

7.2.1. Definition (Logs). The log of the first T steps of Algorithm 7.1 is a
string L ∈ {S, V }T containing the first T outcomes of check (where S stands for
“Satisfied”, and V for “Violated”).

Let L(r) denote the set of all valid logs which contain exactly r V ’s, and end
with a V .

7.2.2. Definition. (Constraint-selection Strategy) A deterministic constraint-
selection strategy is a function s, which given the current log L, determines which
next constraint to pick at line 4 of Algorithm 7.1.

7.2.3. Lemma. (Log compression) Suppose we run Algorithm 7.1 using a deter-
ministic constraint-selection strategy. Then the log uniquely encodes the sequence
of resamples that happened during the algorithm. Moreover, if Γ+(c) ≤ d for all
c ∈ C, then for all r ∈ N we have |L(r)| ≤

(|C|+rd
r

)
.

Proof:
Since the constraint-selection strategy is deterministic and initially F = ∅, we can
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recover the content of the set F after each execution of the main loop at line 3 by
only looking at the binary log telling us whether a resampling happened or not.
Therefore the log compresses the whole resample history into a binary string.

Now observe that any log L ∈ L(r) contains at most |C|+ rd entries: Suppose
the algorithm performed k − 1 steps before the r-th resampling. At this step
0 < |C \ F | since a resampling is performed at the k-th step. On the other hand
F starts with 0 elements, and gains one element with the k− r successful checks,
and loses at most d − 1 elements after each resampling. Therefore |C \ F | ≤
|C| − (k − r) + (r − 1)(d− 1) ≤ |C|+ rd− k and so k < |C|+ rd.

Finally we map each L ∈ L(r) to a binary string of length |C| + rd by ex-
tending it with “S”s. Note that this mapping is injective, and observe that the
number of length (|C|+ dr) binary sequences containing r “V ”s is

(|C|+dr
r

)
, which

by injectivity proves the desired upper bound on |L(r)|. 2

7.2.4. Theorem. Let d = maxc∈C |Γ+(c)|. Suppose we run Algorithm 7.1 using
a deterministic constraint-selection strategy, and in each step we log the constraint
that we checked and whether it was satisfied or not. Let Lk = `1, `2, . . . , `k denote
the log obtained during the first k steps. Let r = 4|C|. If

(i) pde ≤ 1, and

(ii) Pr(seeing a specific log Lk ∈ L(r) during a run)≤ pr

then Algorithm 7.1 terminates with constant probability making less than 4|C|
resamplings. If also

(iii) during the algorithm the constraints in F remain fixed8 (i.e., satisfied),

then upon termination Algorithm 7.1 provides a satisfying state.

Proof:
Suppose we set a bound r = 4|C| on the number of resamplings, such that
we terminate with “timeout” upon the r-th resampling. The “Log compression”
Lemma 7.2.3 shows that the number of logs that we might obtain at “timeout” is
at most

(|C|+rd
r

)
. Using the bound

∀k, n ∈ N : k < n =⇒
(
n

k

)
≤
(en
k
− e

2

)k
(7.3)

from Appendix 7.A, we upper bound
(|C|+rd

r

)
by (d − 1/4)rer. Combining this

with (ii) using the union bound, we can see that the probability of termination
8This requirement is mostly trivial in the classical case, since constraints can only appear

after resamplings, which is handled by Algorithm 7.1. But in the non-commutative quantum
case it becomes problematic, as was discussed in the introduction.
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with “timeout” is at most

pr
(
d− 1

4

)r
er

(i)

≤
(
p(d− 1/4)e

pde

)r
=

(
1− 1

4d

)r
≤ e−

r
4d ≤ 1

e
.

Finally, note that if Algorithm 7.1 terminates normally (without “timeout”)
then F = C, and by (iii) it means that the final state is a satisfying state. 2

7.2.5. Remark. Since every randomized strategy is a convex combination of
deterministic strategies, the above theorem implies that for any randomized
constraint-selection strategy the probability of performing at least 4|C| resam-
plings is also at most 1/e.

Theorem 7.2.4 gives a fast algorithm whenever the conditions (i)-(iii) are met.
It is easy to show that properties (ii)-(iii) hold for the classical variable setting for
p which is the maximal probability of encountering a constraint in the uniformly
random distribution (so, for example, in a k-SAT formula, p = 2−k), and even for
more general settings if an appropriate resampling procedure is used, e.g., as in
[HV15]. This improvement partially answers an open question posed in [HV15],
by providing an improved upper bound on the number of resamplings for the case
of the symmetric Lovász condition.

In the quantum case, we can choose p to be the maximal probability, over all
constraints c ∈ C, that c is violated in the maximally mixed state (so, for example,
in a k-QSAT formula, p = 2−k). In the commuting case, if check is performed
using standard projective measurements of the constraint projectors, then (ii)
and (iii) hold (see Proposition 7.2.13), and therefore Theorem 7.2.4 implies the
results of [SCV13, SA15]. Our proof is not only simpler, but due to the use of
our optimized bound (7.3), our result does not require a slack in the condition
pde ≤ 1. (As shown above, we require slack in the condition p(d − 1/4)e ≤ 1,
which can actually be pushed to be a slack in p(d−1/2)e ≤ 1.) Since property (ii)
holds even in the non-commuting case, the algorithm is guaranteed to terminate
under the Lovász condition (i.e., when property (i) is satisfied), but the problem
is that the output may not be satisfying for all constraints.

7.2.2 The progressive measurement channel and the key
lemma

To adapt the algorithm to the quantum setting we introduce a quantum channel
MF

c , which performs some quantum operation on the n-qubit quantum register
determined by the classical input (F, c), where F is the set of already “fixed”
constraints, and c is the next constraint to address. In the case of commut-
ing projectors MF

c will be simply the application of a projective measurement
(Πc, Id − Πc) where the classical measurement outcomes are labeled with (V, S)
standing for (“Violated”, “Satisfied”) respectively.
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7.2.6. Definition. (Quantum-classical states) For the description of quantum-
classical states consisting of an N -dimensional quantum system and a k-dimen-
sional classical system we are going to use elements of CN×N ⊗ Rk. We can
interpret these as quantum states of restricted form via defining an embedding of
Rk into Ck×k using diagonal matrices.

For c ∈ C let b(c) ⊆ [n] be the set of qubits on which Πc acts non-trivially.
Let Πloc

c denote Πc restricted to b(c), so that we can write Πc = Πloc
c ⊗ Id[n]\b(c)

(up to ordering of the qubits).

7.2.7. Definition. We say thatM is a progressive measurement channel if the
following holds: Conditional on receiving classical information F ⊆ C and c ∈
C, the quantum channel MF

c performs the quantum operation MF
c : CN×N →

CN×N ⊗ R2, satisfying the following properties:

(i) The quantum channel labels its output with the classical labels (S, V ) cor-
responding to (“Satisfied”, “Violated”) outcomes, so that for input ρ the
output state is written as:
MF

c (ρ) =MF
c,S(ρ)⊗ S +MF

c,V (ρ)⊗ V .

(ii) For the (unnormalized) input state ΠF , the output state labeled as “Satis-
fied” is upper bounded by ΠF∪{c}:
MF

c,S(ΠF ) � ΠF∪{c}.

(iii) For the input state ΠF , the output state labeled as “Violated” is upper
bounded by a state of tensor product form:
MF

c,V (ΠF ) � Πloc
c ⊗ Π̃F\Γ+(c), where ΠF\Γ+(c) = Idb(c) ⊗ Π̃F\Γ+(c).

One might be puzzled why it is important to transform states to the “Violated”
image of Πc. (The weaker alternative to property (iii) would be MF

c,V (ΠF ) �
ΠF\Γ+(c). Since the qubits in c are resampled after c is found to be unsatisfied, it
might not be immediately clear why we set any conditions on these qubits.) The
reason is that it ensures that the resampling operation uniformly mixes quan-
tum states, for more details see the proof of Lemma 7.2.8. The resampling
operation on ρ in line 8 can be formally described as

Rc(ρ) = Trb(c)[ρ]⊗
Idb(c)

2k
. (7.4)

In order to state and prove the Key Lemma, we need to define several con-
cepts. For a log L, let ρL denote the unnormalized quantum state after having
seen and processed all measurement results in L, i.e., including the resampling
step in line 8 if the last result was “V ”. Let FL denote the inner variables F of Al-
gorithm 7.1 after it has seen and processed all the measurement results described
by L. Moreover, for X ∈ {S, V } let (L,X) ∈ {S, V }T+1 be the log obtained by
appending X to the end of log L. If the algorithm did not terminate after L,
then let cL denote the next constraint Algorithm 7.1 will address.
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7.2.8. Lemma. (Key lemma) If we run Algorithm 7.1 using a progressive mea-
surement channelM, then for every log L which contains r occurrences of V ,

ρL � pr · ΠFL

N
, (7.5)

where N = 2n.

Proof:
We prove (7.5) for a log L ∈ {S, V }T by induction on T . For T = 0 we have
ρL = ρ0 = Id/N , ΠFL = Id and pr = p0 = 1, so the relation holds with equality.
Now suppose that (7.5) holds for all logs L ∈ {S, V }T . For the induction step
it is enough to show that (7.5) also holds for (L, S) and (L, V ), whenever (L, S)
and (L, V ) are valid logs. Let us denote by r the number of “V”s in L, F = FL,
FS = FL ∪ {cL}, FV = FL \ Γ+(cL) and c = cL. Observe F(L,S) = FS and
F(L,V ) = FV . First we show the inductive step for (L, S):

ρ(L,S) =MF
c,S(ρL) (by definition)

�MF
c,S

(
pr · ΠF

N

)
(by the inductive hypothesis)

�pr · ΠFS

N
(by property (ii))

=pr · ΠF(L,S)

N
(F(L,S) = FL)

Indeed, the number of violations in (L, S) remains r.
Now we show the inductive step for (L, V ):

ρ(L,V ) =Rc

(
MF

c,V (ρL)
)

(by definition)

�Rc

(
MF

c,V

(
pr · ΠF

N

))
(induction hypothesis)

�p
r

N
·Rc

(
Πloc
c ⊗ Π̃FV

)
(by property (iii))

=
pr

N
Tr[Πloc

c ] ·
Idb(c)

2k
⊗ Π̃FV (Eq. (7.4))

=
pr+1

N
· Idb(c) ⊗ Π̃FV (Tr(Πloc

c ) = 1, p =
1

2k
)

=
pr+1

N
· ΠFV (by property (iii))

=
pr+1

N
· ΠF(L,V ) (F(L,V ) = FV )

Note that the number of violations in (L, V ) is r + 1, as required. 2

Taking the trace of Eq. (7.5) shows property (ii) in Theorem 7.2.4 for a progressive
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measurement channel, and property (iii) in Theorem 7.2.4 follows from Defini-
tion 7.2.7-(iii). Therefore, the only missing ingredient for an efficient algorithm
is to efficiently implement a progressive measurement channel. This is done in
two steps: we next define a progressive measurement channel (Definition 7.2.9),
and later, in Section 7.3 show how to implement it.

7.2.3 The exact measurement channel

We are now ready to provide the first explicit construction of a progressive mea-
surement channel, which we call the exact measurement channel. We argue that
this is probably the most faithful generalization of the commuting algorithm for
the non-commuting case. The proposed quantum operation applies a measure-
ment conditionally followed by a unitary operation. The combined procedure
respects the loop-invariant, and handles new constraints in a way which seems
essential for the resampling algorithm.

7.2.9. Definition. We define the exact measurement channel, denoted here
byM, in the following way: conditional on receiving classical information F ⊆ C
and c ∈ C, the quantum channelMF

c : CN×N → CN×N⊗R2 performs the projec-
tive measurement

(
ΠF∪{c}, Id− ΠF∪{c}). If the outcome is ΠF∪{c}, then it labels

its output with S (“Satisfied”). If the outcome is Id−ΠF∪{c}, then it labels its out-
put with V (“Violated”), and applies the unitary operation WU †, where WΣU †

is a singular value decomposition of ΠcΠ
F .9 For the output state corresponding

to pure input state |ψ〉 we use notationMF
c (|ψ〉) = |ψS〉 ⊗ S + |ψV 〉 ⊗ V , where

|ψS〉 = ΠF∪{c}|ψ〉 and |ψV 〉 = WU †
(
Id− ΠF∪{c})|ψ〉.

To keep things conceptually simple, in the following we present an example
where we calculate some of the important maps explicitly, although it diverges
from some of the conditions and assumptions we had before, namely the Lovász
condition does not hold, one of the projectors is not rank-1, and it uses a qudit
(not a qubit).

7.2.10. Example. Consider a qudit of of dimension 4, and the following 2 pro-
jectors: Π1 = |0〉〈0|, Π2 = 1

2
(|0〉 + |1〉)(〈0| + 〈1|) + |2〉〈2|. Let F = {1}, c = 2.

In this case, ΠcΠ
F = Π2Π{1} = 1

2
(|0〉 + |1〉)〈1| + |2〉〈2|. A possible choice for

W and U † yields WU † = 1√
2
(|0〉 + |1〉)〈1| + 1√

2
(|0〉 − |1〉)〈0| + |2〉〈2| + |3〉〈3|.

ΠF∪{c} = Π{1,2} = |3〉〈3|. The state |ψ〉 = 1√
3
(|1〉 + |2〉 + |3〉) satisfies F :

ΠF |ψ〉 = |ψ〉. The “Satisfied” post-measurement state is |ψS〉 = 1√
3
|3〉, which

9There is a choice of W and U† in the SVD decomposition, such that for R = WU† we get
ΠF∪{c} = RΠF∪{c}R†. In this case, the unitary R can be applied after both “Satisfied” and
“Violated” outcomes, but here we apply it only after “Violated” outcomes for convenience.
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occurs with probability 1
3
. The “Violated” post-measurement state is

|ψV 〉 = WU †(Id− ΠF∪{c}|ψ〉) = WU †
1√
3

(|1〉+ |2〉)

=
1√
3

(
1√
2

(|0〉+ |1〉) + |2〉
)

(7.6)

which occurs with probability 2
3
.

In the rest of this subsection, we show in Lemma 7.2.12 that the exact measure-
ment channel is a progressive measurement channel (and therefore respects the
loop invariants (ii)-(iii) in Definition 7.2.7). Then in Proposition 7.2.13 we show
that in the commuting case, the exact measurement channel can be implemented
by simply measuring {Id−Πc,Πc}. This shows that the exact measurement chan-
nel is a generalization of the simple projective measurement that is performed in
the classical and commuting algorithms [MT10, SCV13, SA15]. Before we prove
these results, we need some identities of the relevant subspaces.

7.2.11. Proposition. SupposeWΣU † is a singular value decomposition of ΠcΠ
F

(i.e., ΠcΠ
F = WΣU † with W † = W−1, U † = U−1 and Σ non-negative real and

diagonal), then the following identities hold:

Πim(ΠcΠF ) = W sign(Σ)W † (7.7)

ΠF − ΠF∪{c} =Usign(Σ)U † (7.8)

Πim(ΠcΠF ) �ΠcΠ
F\Γ+(c) (7.9)

In the above, sign(Σ) uses the natural extension of the sign function to diagonal
(and in this case, non-negative) matrices, moreover for a subspace S we denote
by ΠS the orthogonal projector to S.
Proof:
We prove the three properties (7.7)-(7.9) one-by-one:

(7.7): Note
(
W sign(Σ)W †)ΠcΠ

F =
(
W sign(Σ)W †)WΣU † = WΣU † = ΠcΠ

F .
As W sign(Σ)W † is an orthogonal projector it implies Πim(ΠcΠF ) � W sign(Σ)W †.
But also rank

(
Πim(ΠcΠF )

)
= rank

(
ΠcΠ

F
)

= rank
(
W sign(Σ)W †), thus Πim(ΠcΠF ) =

W sign(Σ)W †, which concludes the proof.
(7.8): Similarly to (7.7) Πim(ΠFΠc) = Usign(Σ)U †, so it is enough to show

that ΠF − ΠF∪{c} = Πim(ΠFΠc). Again Πim(ΠFΠc) � ΠF − ΠF∪{c}, since

(
ΠF − ΠF∪{c})ΠFΠc = ΠFΠc − ΠF∪{c}Πc = ΠFΠc.
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But

rank
(
Πim(ΠFΠc)

)
= rank

(
ΠFΠc

)
= rank

(
ΠcΠ

F
)

= rank
(
ΠF
)
− dim(ker(Πc) ∩ im(ΠF ))

= rank
(
ΠF
)
− rank

(
ΠF∪{c})

= rank
(
ΠF − ΠF∪{c}).

Here, the second equality is justified by rank(A) = rank
(
A†
)
, and the third

equality by rank(AB) = rank(B) − dim(ker(A) ∩ im(B)) (see, e.g. [Mey00, p.
210]).

So ΠF − ΠF∪{c} = Πim(ΠFΠc) and thus ΠF − ΠF∪{c} = Usign(Σ)U †.
(7.9): The proof follows from the following line of (in)equalities which are

justified below:

Πim(ΠcΠF ) = ΠcΠim(ΠcΠF )Πc

� ΠcΠ
F\Γ+(c)Πc

= Π2
cΠ

F\Γ+(c)

= ΠcΠ
F\Γ+(c).

First observe that Πc

(
ΠcΠ

F
)

= ΠcΠ
F so ΠcΠim(ΠcΠF ) = Πim(ΠcΠF ), implying the

first equality. The penultimate equality is due to ΠcΠ
F\Γ+(c) = ΠF\Γ+(c)Πc, which

follows from the fact that these operators act on disjoint qubits. Finally note
that ΠF\Γ+(c)ΠF = ΠF . Therefore, ΠF\Γ+(c)

(
ΠcΠ

F
)

= ΠcΠ
F\Γ+(c)ΠF = ΠcΠ

F so
Πim(ΠcΠF ) � ΠF\Γ+(c), which justifies the inequality. 2

Using the above proposition we can easily show in the following lemma that the
exact measurement channel is indeed progressive (see Definition 7.2.7).

7.2.12. Lemma. Suppose |ψ〉 = ΠF |ψ〉. If we apply the exact measurement chan-
nelMF

c on |ψ〉, then

(i) |ψS〉 = ΠF∪{c}|ψ〉, and the outcome “S” has probability Tr(ΠF∪{c}|ψ〉〈ψ|).

(ii) |ψV 〉 = Πloc
c ⊗ Π̃F\Γ+(c)|ψV 〉

(where ΠF\Γ+(c) = Idb(c) ⊗ Π̃F\Γ+(c)).

(iii) MF
c,V (ΠF ) � Πloc

c ⊗ Π̃F\Γ+(c).

Proof:
Property (i) is trivial by Definition 7.2.9.
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Assume the notation of Proposition 7.2.11. By Definition 7.2.9 we have that
|ψV 〉 = WU †

(
Id− ΠF∪{c})|ψ〉. Due to |ψ〉 = ΠF |ψ〉 we get(

Id− ΠF∪{c})|ψ〉 =
(
ΠF − ΠF∪{c})|ψ〉. (7.10)

Using (7.8) we can see WU †
(
ΠF − ΠF∪{c}) = WU †Usign(Σ)U † = W sign(Σ)U †.

Considering (sign(Σ))2 = sign(Σ) and U †U = Id we get

W sign(Σ)U † = W sign(Σ)W †WU †Usign(Σ)U †

and by (7.7)-(7.8) we get

W sign(Σ)W †WU †Usign(Σ)U † = Πim(ΠcΠF )WU †
(
ΠF − ΠF∪{c}).

Therefore, we proved WU †
(
ΠF − ΠF∪{c}) = Πim(ΠcΠF )WU †

(
ΠF − ΠF∪{c}). Also

by (7.9) we have Πim(ΠcΠF ) � ΠcΠ
F\Γ+(c) = Πloc

c ⊗ Π̃F\Γ+(c) which implies that

WU †
(
ΠF − ΠF∪{c}) =

(
Πloc
c ⊗ Π̃F\Γ+(c)

)
WU †

(
ΠF − ΠF∪{c})

proving |ψV 〉 = Πloc
c ⊗ Π̃F\Γ+(c)|ψV 〉 via (7.10).

For the proof of property (iii) note that MF
c,V (I) � I, which implies that

MF
c,V (ΠF ) � MF

c,V (I) � I. This together with property (ii) finally implies that
MF

c,V (ΠF ) � Πloc
c ⊗ Π̃F\Γ+(c). 2

For completeness we show that Definition 7.2.9 is indeed a generalization of the
commuting case.

7.2.13. Proposition. Suppose all local projectors commute in Definition 7.2.9,
and the input state |ψ〉 is such that |ψ〉 = ΠF |ψ〉, then the output of the exact
quantum channel MF

c coincides with the output of the projective measurement
(Id− Πc,Πc), i.e., |ψS〉 = (Id− Πc)|ψ〉 and |ψV 〉 = Πc|ψ〉.

Proof:
Since all local projectors commute we have ΠF =

∏
c′∈F (Id− Πc′). By Defini-

tion 7.2.9 |ψS〉 = ΠF∪{c}|ψ〉 and due to commutation we have ΠF∪{c} = (Id −
Πc)Π

F , so |ψS〉 = (Id− Πc)Π
F |ψ〉 = (Id− Πc)|ψ〉.

By Definition 7.2.9 |ψV 〉 = WU †
(
Id− ΠF∪{c})|ψ〉, furthermore similarly to the

proof of Lemma 7.2.12
(
Id−ΠF∪{c})|ψ〉=(Id−ΠF∪{c})ΠF |ψ〉=

(
ΠF−ΠF∪{c})|ψ〉

by our assumption on |ψ〉. Using (7.8) we get that |ψV 〉 = WU †Usign(Σ)U †|ψ〉 =
W sign(Σ)U †|ψ〉. By commutation we have that ΠcΠ

F = ΠFΠc is an orthogonal
projector and thus Σ = sign(Σ). Therefore, W sign(Σ)U † = WΣU † = ΠcΠ

F and
thus |ψV 〉 = ΠcΠ

F |ψ〉 = Πc|ψ〉. 2

An efficient implementation of the exact measurement channel, by Lemma 7.2.12,
Lemma 7.2.8 and Theorem 7.2.4, gives an efficient algorithm for preparing frus-
tration-free states, even in the non-commuting case.
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7.3 Implementation of the algorithm
In this section we describe and analyze our final algorithm. We will assume access
to a (controlled) unitary V which provides access to the projectors Πi : i ∈ [m]
that correspond to the constraints C; for notational simplicity we set C = [m].
Similarly to the fast quantum OR lemma (Lemma 3.2.16) we assume access to a
unitary V such that (〈i| ⊗ I)V (|i〉 ⊗ I) = CΠiNOT for all i ∈ [m]. In this section
we define a query as a (controlled) application of V or V †, and also assume that
the system is frustration-free. Therefore the gap of the sum of some constraints
projectors is equal to the smallest non-zero eigenvalue.

First we show how to implement the measurement ΠS for some S ⊆ [m].

7.3.1. Lemma. Let S ⊆ [m], and suppose that ∆
(∑

i∈S Πi

)
≥ δ. For every

ε ∈ (0, 1/2) we can ε-precisely implement a CΠSNOT gate with query complexity
O
(√

m
δ

log
(

1
ε

))
and gate complexity at most O(m) times higher.

Proof:
The main idea of the proof is very similar to our proof of the fast quantum OR
lemma (Lemma 3.2.16). Let us define A := 1

|S|
∑

i∈S(I − Πi), and observe that

I − Πi = (〈0| ⊗ I)CΠiNOT(|0〉 ⊗ I).

Let q := dlog2(|S| + 1)e + 1 and let U be a unitary that implements the map
|0〉q−1 7→ 1√

|S|

∑
i∈S|i〉, and let us define Ṽ :=

(
U † ⊗ I

)
V (U ⊗ I) and Π :=

|0〉〈0|q ⊗ I. Then it is easy to see that A = ΠṼΠ.
Finally, observe that singular value discrimination (Theorem 3.2.9) with a :=

1 − δ
|S| and b := 1 implements the required operation. The complexity state-

ment follows from Theorem 3.2.9, and the fact that U can be implemented using
O
(
m ·
√
m/|S|

)
one- and two-qubit gates. 2

Now we show how to implement the second step of an exact measurement
channel. Let WΣU † be a singular value decomposition of ΠcΠ

F ; the goal is to
implement the map = WU †. However, due to the structure of the algorithm we
need to do this only on the image10 of (ΠF −ΠS). So we will implement the map
WU †(ΠF − ΠS)

(7.8)
= W sign(Σ)U †.

7.3.2. Lemma. Let c ∈ [m], F ⊆ [m], S := F∪{c} and ε ∈ (0, 1/2). Suppose that
∆
(∑

i∈S Πi

)
≥ δ and WΣU † is a singular value decomposition of ΠcΠ

F . Then we

can ε-precisely implement the map W sign(Σ)U † with O
(√

1
δ

log
(

1
ε

))
CΠFNOT,

CΠcNOT and other two-qubit gates.
10Alternatively we could measure {ΠF , I − ΠF }, and only implement the map in case of

outcome ΠF , and do nothing in the other case.
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Proof:
First we lower bound the non-zero singular values. Let ς be the smallest non-zero
singular value, we show that ς2 ≥ min{δ, 1}. First observe that

min{δ, 1} · I � ΠS +
∑
i∈S

Πi. (7.11)

Then we conclude by

U ·min{δ, 1} · sign(Σ)U † =f(ΠF − ΠS) ·min{δ, 1} · I(ΠF − ΠS) (by (7.8))

�(ΠF − ΠS)

(
ΠS +

∑
i∈S

Πi

)
(ΠF − ΠS) (by (7.11))

=(ΠF − ΠS)

(∑
i∈S

Πi

)
(ΠF − ΠS)

=ΠF

(∑
i∈S

Πi

)
ΠF

=ΠFΠcΠ
F

=UΣ2U †.

Finally we apply singular vector transformation (Theorem 3.2.3) on ΠcΠ
F =

WΣU †, which gives the claimed complexity. 2

Let γ be the uniform gap of the constraint system, then we get the following
corollary.

7.3.3. Corollary. For every ε ∈ (0, 1/2) we can ε-precisely implement an exact

measurement channel with query complexity O
(√

|C|
γ

log
(

1
ε

))
and with O(|C|)

times higher gate complexity.

7.3.1 The final algorithm and its complexity analysis

To obtain a working quantum algorithm we just need to run Algorithm 7.1 per-
forming the checking step using the approximate exact measurement channel of
Corollary 7.3.3. We need to set the precision parameter small enough, so that the
overall error during the algorithm remains bounded. Since the implementation
of Corollary 7.3.3 depends logarithmically on the precision, this will give only
logarithmic overhead.

As Theorem 7.2.4 shows under the Lovász condition (pde ≤ 1), the expected
number of resamplings isO(|C|), and therefore as the proof of Lemma 7.2.3 shows,
the expected number of check operations performed by Algorithm 7.1 is O(|C|d).
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Thus we use the progressive measurement channel at most O(|C|d) times in ex-
pectation. Using Corollary 7.3.3 and some standard boosting techniques we get
a final algorithm that (in the non-commuting case) uses a total number of

Õ
(
|C|1.5 · d

γ
· log2

(
1

δ

))
,

queries and O(|C|) times more two-qubit gates, where γ is the uniform gap, and
δ is an upper bound on the trace distance of the output state from a density
operator which is supported on the ground space.

In the paper [GS16] on which this chapter is based, we also analyze our al-
gorithm’s runtime under Shearer’s condition. The exact formula for the runtime
bound we prove is more complicated, but it is easy to compare to classical results.
Let Rc be the upper bound of [KSz11] on the expected number of resamplings of
the classical Moser-Tardos algorithm. The number of queries performed by our
quantum algorithm is

Õ
(
Rc|C|1.5n

γ
log2

(
1

δ

))
,

where n is the number of qubits and the other parameters are as before.

7.4 Dependency structures: trees and cycles

The classical LLL gives a sufficient condition under which the union of some
“sparsely dependent” events is guaranteed to have probability strictly less than 1.
Shearer [She85] found the optimal bound on the probabilities of the bad events
regarding arbitrary dependency graph, i.e., the weakest possible condition under
which the general LLL holds. The bound is tight if we only force dependency
structure on the events.

However, the LLL is most often applied to problems where there is additional
restriction on the structure of the events, namely they are built on top of some
independent random variables; this is called the variable setting. In the variable
setting the Shearer bound may no longer be tight, as shown by Kolipaka and
Szegedy [KSz11]. We generalize their result and formulate the optimal bound in
the variable setting for tree and cyclic graphs. These results were also indepen-
dently discovered by He et al. [HLL+17].

State of the art (quantum) algorithms work up to the Shearer bound, but there
are only a few examples of algorithms potentially working beyond that, see for
example Harris [Har16]. Understanding the bounds under which the existence
of a solution is guaranteed in the variable setting could help to find efficient
algorithms that better exploit the variable structure.
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7.4.1 Shearer bound

Now we describe a general version of the Lovász Local Lemma which gives optimal
bounds in a generic (non-variable) setting.

7.4.1. Definition. We say that G = (V,E) is a dependency graph for events
{Av : v ∈ V } if for all v ∈ V , Av is (totally) independent from the collection of
events {Aw : w is not adjacent to v}.

7.4.2. Definition. Let G = (V,E), ~x = (xv : v ∈ V ) and let Indep(G) denote
the independent (vertex) sets of G. Then we call

I(G,~x) =
∑

S⊆Indep(G)

(−1)|S|
∏
v∈S

xv

the multivariate independence polynomial of G.

7.4.3. Definition. We say that the vector of probabilities (pv : v ∈ V ) = ~p ∈
R|V | is above the Shearer bound for a graph G if there is a vertex set V ′ ⊆ V
such that for the corresponding induced subgraph G′ = (V ′, E ′) : I(G′, (pv : v ∈
V ′)) ≤ 0. Otherwise we say ~p is below the Shearer bound.

The following is a simple reformulation of Shearer’s result [She85]:

7.4.4. Theorem. For a graph G = (V,E) and probabilities ~p ∈ R|V | the following
are equivalent:

(i) ~p is below the Shearer bound for G.

(ii) there exists a probability space Ω and a set of events {Av ⊆ Ω: v ∈ V } with
G as dependency graph, satisfying the extremal conditions ∀v ∈ V : Pr(Av)=
pv, ∀{v, w} ∈ E : Av ∩ Aw = ∅ and Pr(

⋃
v∈V Av) > 0.

(iii) for any probability space Ω′ and events {A′v ⊆ Ω′ : v ∈ V } having G as
dependency graph and satisfying Pr(Av) ≤ pv, we have Pr(

⋃
v∈V A

′
v) ≥

I(G, ~p) > 0.

To gain some intuition on this Theorem, note that in (ii) the inclusion-exclusion
formula applied to Pr(

⋃
v∈V Av) gives exactly I(G, ~p) > 0, due to the extremal

property of the events.



252 Chapter 7. Quantum Lovász Local Lemma

7.4.2 The variable version: tree and cycle graphs

The variable version of the Lovász Local Lemma is defined on probability spaces
which are products of independent random variables. Each “bad” event can de-
pend on a few of the variables, and two such events are considered dependent
if they share a variable. If one thinks about events as (hyper)graphs on the
variables, then the dependency graph is simply the line graph of the event (hy-
per)graph. The line graph of an undirected hypergraph G = (V,E) is denoted by
L(G), has vertex set E, and a pair of distinct a, b ∈ E forms an edge in L(G) if
and only if a and b share some vertex in G, formally speaking

G = (V,E) =⇒ L(G) = (E, {{a, b} ⊆ E : a ∩ b 6= ∅ ∧ a 6= b})

In this subsection we determine the optimal bounds on the variable version of
the Lovász Local Lemma for tree and cycle event (hyper)graphs, which can go
beyond the Shearer bound.

We analyze what are the vectors of probabilities for which we can always
avoid some “bad” events when they are coming from the variable setting. It turns
out that the trivial lower bound we get by applying Shearer’s theorem to the
line graph of the event (hyper)graph (see Proposition 7.4.6), is always tight for
tree graphs (see Theorem 7.4.7). However, our result (Theorem 7.4.17) states
that Shearer’s bound for the line graph L(Cn) = Cn is not tight in the variable
setting; the true bound equals the smallest of the Shearer bounds we can get after
deleting an edge of L(Cn). This is surprising because it tells that in the variable
setting the events cannot really make use of the cyclic structure.

For ease of notation in the following we denote both a probability space
(ΩX , SX , PX) and its base set ΩX by the same letter X. We also assume (with-
out loss of generality) that the base sets are disjoint (ΩX ∩ ΩY = ∅) for distinct
probability spaces X 6= Y . This enables us to interpret their products in a “com-
mutative” way in the following sense: Suppose we have disjoint base sets named
X, Y, Z. Then the product of events should be evaluated in some fixed (e.g. al-
phabetical) order of the corresponding base sets, e.g. let AXZ ⊆ X × Z when we
write Y ×AXZ it should be interpreted as a subset of X×Y ×Z. Also as standard
in probability theory, we will often not emphasize trivial extension of events and
write just AXZ instead of Y × AXZ when this is clear from the context.

In the rest of this section all graphs will refer to event (hyper)graphs, unless
otherwise stated.

7.4.5. Definition. We say that for the (hyper)graph G = (V,E) the proba-
bilities ~p = (pe : e ∈ E) ∈ [0, 1]|E| are above the variable bound if there exist
probability spaces Wv : v ∈ V , and events Ae ⊆×v∈eWv : e ∈ E such that
Pr(Ae) ≤ pe and Pr(

⋃
e∈E Ae) = 1. Otherwise we say ~p is below the variable

bound with respect to G.
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7.4.6. Proposition. If the probabilities ~p = (pe : e ∈ E) ∈ [0, 1]|E| are above the
variable bound for the graph G = (V,E) then ~p is above the Shearer bound with
respect to the line graph L(G).

Proof:
Observe that L(G) is always a dependency graph for events Ae : e ∈ E coming
from the variable setting, and so we can apply Theorem 7.4.4. 2

The following theorem states that for tree graphs the above bound is tight.

7.4.7. Theorem. The probabilities ~p = (pe : e ∈ E) ∈ [0, 1]|E| are above the
variable bound for the tree graph T = (V,E) if and only if ~p is above the Shearer
bound with respect to the line graph L(T ).

Proof:
Due to Proposition 7.4.6 it is enough to show that if ~p is above the Shearer bound
with respect to L(T ), then ~p is above the variable bound. First we assume without
loss of generality that V = [n]. We choose Wi = [0, 1)i := {{i}× [0, 1)} a disjoint
copy of [0, 1) with the Lebesgue measure. Let us define an ordering of the edges
in the following way: we choose 1 as root and do a breadth-first search on T .
Then let ei be the i-th edge traversed. Also without loss of generality we assume
i ∈ V is the i-th vertex reached by this breadth-first search. We are going to
construct the events Ae, one by one, in a recursive way in reversed order staring
with en−1, such that after Aek is defined we are going maintain the following:

• The pairs of already defined events which share a vertex are pairwise dis-
joint.

• There is a set of numbers bki ∈ [0, 1] such that the union of the already
defined events

⋃n−1
`=k Ae` =

⋃n
i=1[bki , 1)i.

• For ` ≥ k and e` = {i, j} : i < j, we have Ae` ⊆ [bki , 1)i.

Note that for k = n these are trivially satisfied with the choice bni = 1, so we can
start our recursion. Suppose we already defined Aen−1 , . . . , Aek+1

and we are about
to define Aek with ek = {i, j} : i < j. Then we set bki = max

(
0, bk+1

i − pi,j/bk+1
j

)
and for ` 6= i we set bk` = bk+1

` . We define Aek := [bki , b
k+1
i )i × [0, bk+1

j )j. Then
clearly Pr(Aek) ≤ pek and Aek ⊆ [bki , 1)i. Also Aek ⊆ [0, bk+1

i )i and Aek ⊆ [0, bk+1
j )j

so it is disjoint from all already defined events since if ` > k and e` = {i,m} then
i < m, and if e` = {j,m} then j < m due to the breadth-first structure.
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Finally

n−1⋃
`=k

Ae` =
n−1⋃
`=k+1

Ae` ∪ Aek

=
n⋃
`=1

[bk+1
` , 1)` ∪ [bki , b

k+1
i )i × [0, bk+1

j )j

=
⋃

`/∈{i,j}

[bk+1
` , 1)` ∪ [bk+1

i , 1) ∪ [bk+1
j , 1) ∪ [bki , b

k+1
i )i × [0, bk+1

j )j

=
⋃

`/∈{i,j}

[bk+1
` , 1)` ∪ [bki , 1)i ∪ [bkj , 1)j =

n⋃
`=1

[bk` , 1)`.

After the recursion ends we get A :=
⋃n−1
`=1 Ae` =

⋃n
i=1[b1

i , 1)i =×n

i=1
[0, b1

i )i.

• If for some i ∈ [n] : b1
i = 0, then A = ∅ so ~p is above the variable bound.

• Otherwise we have Pr(A) =
∏n

i=i b
1
i > 0, Pr(Ae) = pe and all events that

share a variable are disjoint, so we are below the Shearer bound by Theo-
rem 7.4.4.

2

Now we start proving our result about cycle graphs; for this we introduce a
few definitions and lemmas.

7.4.8. Definition. Let X, V be probability spaces. Then for every event A ⊆
X × V and x ∈ X we can define the cross section event Ax ⊆ V satisfying the
identity {x} × Ax = A ∩ {x} × V . Note that this is indeed an event in V , i.e., a
measurable set, see e.g. [Rie70, Fol99].

The following lemma slightly generalizes the key discretization idea introduced
in [KSz11], showing that it is sufficient to work with probability spaces on finite
sets.

7.4.9. Lemma. Let X,W1,W2, . . . ,Wn be probability spaces, and Ai ⊆ X ×Wi,
AW ⊆×n

i=1
Wi events, with the property Pr(

⋃n
i=1Ai ∪ AW ) = 1. Then there

exists m ∈ [n] and xk ∈ X, µk ∈ [0, 1] for all k ∈ [m] such that
∑m

k=1 µk = 1 and
∀i ∈ [n] :

∑m
k=1 µkPr(Ax

k

i ) ≤ Pr(Ai) while ∀k ∈ [m] : Pr(
⋃m
k=1 A

xk

i ∪ AW ) = 1.

Proof:
Let XBad = {x ∈ X : Pr(

⋃n
i=1A

x
i ∪ AW ) < 1}. Since Pr(

⋃n
i=1Ai ∪ AW ) = 1

we must have Pr(XBad) = 0 and we can assume without loss of generality that
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X

W1 W2

A1 A2

AW

Figure 7.1. The graph of events from Lemma 7.4.9 for the case when n = 2.

XBad = ∅ otherwise we can just remove a zero-probability set from X. Thus we
ensured that for any x ∈ X Pr(

⋃m
k=1 A

x
i ∪ AW ) = 1.

Let fi(x) = Pr(Axi ), which is a measurable function with EX [fi(x)] = Pr(Ai) as
implied by the Fubini-Tonelli Theorem [Rie70, Fol99]. Then f = (f1, f2, . . . , fn)
is a random variable over Rn. Also ~p : = (pi : i ∈ [n]) = EX [f ] ∈ conv({f(x) : x ∈
X}) (see e.g. [GT12]), and due to Carathéodory’s Theorem [Roc70] ~p is a con-
vex combination of some n + 1 points f(xi0) : i ∈ [n + 1]. If ~p lies in an affine
subspace spanned by at most n points of {f(xi0)} then we can find a convex com-
bination of at most n points by Carathéodory’s Theorem. Otherwise there is an
n-dimensional simplex Sn := conv({f(xi0) : i ∈ [n+ 1]}) such that ~p lies in its in-
terior. In this case we choose the largest t ∈ R+ such that ~r := ~p−t·1 ∈ Sn. Then
~r lies on a facet of Sn of dimension at most n − 1 and again by Carathéodory’s
Theorem there are xk, µk : k ∈ [n] such that they form a convex combination
~r =

∑n
k=1 µkf(xk) = ~p− t · 1 ≤ ~p. 2

Now we refine the above statement for the most relevant case for cycles: n = 2.

7.4.10. Lemma. If in addition to the conditions of Lemma 7.4.9 we also have
n = 2 then we can find ∀i ∈ {1, 2} : Ai1 ⊆ W1, Ai2 ⊆ W2, νi ∈ [0, 1] such that
A1

1 ⊆ A2
1, A1

2 ⊇ A2
2, ν1 + ν2 = 1, ∀j ∈ {1, 2} :

∑2
i=1 νiPr(Aij) ≤ Pr(Aj) and

∀i ∈ {1, 2} : Pr(Ai1 ∪ Ai2 ∪ AW ) = 1.

Proof:
Lemma 7.4.9 guarantees the existence of x1, x2 ∈ X such that Ax11 × Ax

1

2 ⊆ AW
and Ax21 × Ax

2

2 ⊆ AW almost surely. Now assume without loss of generality that
µ1 ≤ µ2.
Let us define Aa1 = Ax

1

1 ∩Ax
2

1 , Aa2 = Ax
1

2 ∪Ax
2

2 , Ab1 = Ax
2

1 , Ab2 = Ax
2

2 , Ac1 = Ax
1

1 ∪Ax
2

1 ,
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Ac2 = Ax
1

2 ∩ Ax
2

2 . Observe that

Aa1 × Aa2 = Ax
1

1 ∩ Ax
2

1 × Ax
1

2 ∪ Ax
2

2

=
(
Ax

1

1 ∪ Ax
2

1

)
×
(
Ax

1

2 ∩ Ax
2

2

)
=
(
Ax

1

1 ×
(
Ax

1

2 ∩ Ax
2

2

))
︸ ︷︷ ︸

⊆Ax11 ×Ax
1

2

∪
(
Ax

2

1 ×
(
Ax

1

2 ∩ Ax
2

2

))
︸ ︷︷ ︸

⊆Ax21 ×Ax
2

2

⊆ AW

almost surely. Due to symmetry we have Ac1 × Ac2 ⊆ AW almost surely as well,
whereas Ab1 × Ab2 ⊆ AW trivially holds (almost surely). Also

µ1Pr(Aa1) + (µ2 − µ1)Pr(Ab1) + µ1Pr(Ac1) =

= µ1Pr(Ax
1

1 ∩ Ax
2

1 ) + (µ2 − µ1)Pr(Ax
2

1 ) + µ1Pr(Ax
1

1 ∪ Ax
2

1 )

= µ1Pr(Ax
1

1 ) + µ1Pr(Ax
2

1 ) + (µ2 − µ1)Pr(Ax
2

1 )

= µ1Pr(Ax
1

1 ) + µ2Pr(Ax
2

1 ) ≤ Pr(A1).

Due to symmetry we also have µ1Pr(Aa2)+(µ2−µ1)Pr(Ab2)+µ1Pr(Ac2) ≤ Pr(A2).
A convexity argument such as in the proof of Lemma 7.4.9 shows that ∃k, l ∈
{a, b, c}, ν1 ∈ [0, 1] such that ∀i ∈ {1, 2} : ν1Pr(Aki ) + (1 − ν1)Pr(Ali) ≤ Pr(Ai).
Without loss of generality assume Ak1 ⊆ Al1, then since Aa1 ⊆ Ab1 ⊆ Ac1 and
Aa2 ⊇ Ab2 ⊇ Ac2 and k, l ∈ {a, b, c} we must have Ak2 ⊆ Al2. Now setting A1

i = Aki ,
A2
i = Ali for all i ∈ {1, 2} and ν2 = 1− ν1 satisfies all required conditions. 2

We introduce a monotonicity concept that plays a key role in our proof, helps
to avoid large case separations, and provides an alternative approach to [HLL+17].

7.4.11. Definition. We say that an event A ⊆ X × Y is X-monotone if for
each x, x′ ∈ X at least one of Ax ⊆ Ax

′ , Ax ⊇ Ax
′ holds.

7.4.12. Proposition. Let X ′ = {1, 2, 3}. If A ⊆ X × Y ×W is Y -monotone
then ∀x1, x2 ∈ X the event

A′ :=
(
{1}×

(
Ax

1 ∩ Ax2
))
∪
(
{2}×

(
Ax

2
))
∪
(
{3}×

(
Ax

1 ∪ Ax2
))
⊆ X ′×Y ×W

is X ′-monotone and also Y -monotone.

Proof:
X ′-monotonicity is trivial since

(
Ax

1 ∩ Ax2
)
⊆ Ax

2 ⊆
(
Ax

1 ∪ Ax2
)
. Let y1, y2 ∈

Y , then without loss of generality Ay1 ⊆ Ay
2 . Then

A′y
i

:=

(
{1} ×

(
Ax

1 ∩ Ax2
)yi)

∪
(
{2} ×

(
Ax

2
)yi)

∪
(
{3} ×

(
Ax

1 ∪ Ax2
)yi)

=
(
{1}×

(
A(yi,x1) ∩ A(yi,x2)

))
∪
(
{2}×

(
A(yi,x2)

))
∪
(
{3}×

(
A(yi,x1) ∪ A(yi,x2)

))
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so clearly A′y1 ⊆ A′y
2 . 2

7.4.13. Corollary. If ~p is above the variable bound for G = (V,E), then it is
above the variable bound even if Wv is restricted to |Wv| ≤ deg(v) for each v ∈ V
and we require for each v ∈ V with deg(v) = 2 that ∀e ∈ E : v ∈ e the event Ae
is Wv-monotone.

Proof:
Start with any probability spaces Wv : v ∈ V , and events Ae ⊆×v∈eWv : e ∈ E
showing ~p is above the variable bound. Then reduce each probability space
Wv using Lemma 7.4.9 above by choosing the new discrete probability space
Wv = {x1, . . . , xm} (where m ≤ deg(v)) with the elements having probabilities
µi : i ∈ m, and choose modified events Ae :=

⋃m
i=1{xi} × Ax

i

e . Except in case
deg(v) = 2 use the events coming from the Lemma 7.4.10. Note that due to
Proposition 7.4.12 already established monotonicity is preserved during the it-
erative application of Lemma 7.4.10 while reduction via Lemma 7.4.9, trivially
preserves monotonicity. 2

Note that the construction of Theorem 7.4.7 effectively also achieves this,
i.e. divides each node into d parts, and the root maybe into d + 1 parts, but
only if below the Shearer bound. Also we note that Lemma 7.4.9, 7.4.10 and
Corollary 7.4.13 hold for hypergraphs as well, the same proofs work.

Now we prove a simple corollary showing that the set of points above the
variable bound is closed.

7.4.14. Corollary. For a (hyper)graph G = (V,E) let us define the set VBG =
{~p = (pe : e ∈ E) ∈ [0, 1]|E| : ~p is above the variable bound corresponding to G}.
The set VBG is closed.

Proof:
First observe that if ~p ′ ∈ VBG, and ~p ′ ≤ ~p ′′, then by definition ~p ′′ ∈ VBG so
it is a monotone property. Note that there are finitely many configurations of
possible events of the form C` = (Ae ⊆×v∈e{(v, i) : i ∈ [deg(v)]} : e ∈ E). Also
for any such configuration C` the set of probability vectors allowed by this con-
figuration VBC`

G = {~p = (Pr(Ae) : e ∈ E) : Pr({(v, i)}) = p(v,i),
∑deg(v)

i=1 p(v,i) =
1, (p(v,i) : (v, i) ∈

⋃
v∈V {v} × [deg(v)]) ∈ [0, 1]

∑
v∈V deg(v)} is the image of a closed

set by a continuous function, so clearly closed. Due to Corollary 7.4.13, VBG =
{~p : ∃C` configuration and ~p ′ ∈ C` such that ~p ′ ≤ ~p} which is then a finite union
of closed sets, so closed itself. 2

We are almost ready to prove our main result about cycles, but first we need
to understand paths a bit better.
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7.4.15. Definition. Let Pk...` denote the path graph on vertex set V = {k, k +
1, . . . , `} with edges E = {{i, i+ 1} : i, i+ 1 ∈ V }. For k > ` let us interpret Pk...`
as the empty graph. Also let us introduce the notation

Ik...`(xv : v ∈ V ) =

{
0 if k ≥ `+ 3

I(Pk...`, (xv : v ∈ V )) otherwise.

When clear from context we may just write Ik...`(xv) or even simpler just Ik...`.

Later we are going to use the following identity considering Ik...` for k ≤ `+ 1:

Ik...`(xi : i ∈ {k, . . . , `}) = Ik...`−1 − x` · Ik...`−2 (7.12)

To prove this, observe that for k = `+ 1 the above is just 1 = `− x` · 0, and for
k ≤ ` we have

Ik...` =
∑

S⊆Indep(Pk...`)

(−1)|S|
∏
v∈S

xv

=
∑

S⊆Indep(Pk...`−1)

(−1)|S|
∏
v∈S

xv +
∑

S=S′∪{`}
S′⊆Indep(Pk...`−2)

(−1)|S|
∏
v∈S

xv = Ik...`−1 − x`Ik...`−2.

7.4.16. Proposition. Let n ≥ 3, ~p = (pi : i ∈ [n − 1]) ∈ [0, 1]n−1 and x, y ∈
(0, 1]. Then there exist probability spaces Wi : i ∈ [n], events Ai ⊆ Wi×Wi+1 with
Pr(Ai) = pi and X ⊆ W1, Y ⊆ Wn events with Pr(X) = x,Pr(Y ) = y satisfying
Pr(X × Y \

⋃n−1
i=1 Ai) = 0 if and only if the probabilities

~p ′ = (p1/x, p2, p3, . . . , pn−2, pn−1/y) (7.13)

are above the Shearer bound corresponding to the dependency graph P1...n−1.
Moreover, if ~p ′ is below the Shearer bound with respect to all induced proper

subgraphs of P1...n−1, then (7.13) is above the Shearer bound corresponding to the
dependency graph P1...n−1 if and only if

f~p(x) := pn−1 ·
x · I2...n−3(pi)− p1 · I3...n−3(pi)

x · I2...n−2(pi)− p1 · I3...n−2(pi)
≥ y,

and the derivative f ′~p(x) =
−p1 · p2 · · · pn−1

[x · I2...n−2(pi)− p1 · I3...n−2(pi)]
2 .

Proof:
=⇒: Suppose we have the probability spaces and events as required. Then

Pr(A1|X × Y ) =
Pr(A1 ∩X × Y )

Pr(X × Y )
=

Pr(A1 ∩X ∩ Y )

Pr(X ∩ Y )

=
Pr(A1 ∩X)Pr(Y )

Pr(X)Pr(Y )
= Pr(A1|X) ≤ p1/x
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and similarly Pr(An−1|X×Y ) ≤ pn−1/y. Also Pr(Ai) = pi for i ∈ {2, 3, . . . , n−2}.
Finally Pr(

⋃n−1
i=1 Ai|X×Y ) = 1 so by Theorem 7.4.7 the (conditional) probabilities

(p1/x, p2, p3, . . . , pn−2, pn−1/y) are above the Shearer bound.
⇐=: Suppose the probabilities (p′1, p

′
2, . . . , p

′
n−1) = (p1/x, p2, p3, . . . , pn−2, pn−1/y)

are above the Shearer bound. Then there exist probability spaces W ′
i and events

Ai with the right structure and satisfying P ′(Ai) ≤ p′i. Then we define X :=
W ′

1, Y := W ′
n,W1 := {x0}

.
∪ X,Wn := {y}

.
∪ Y and PW1({x0}) := 1 − x,∀A ⊆

X : PW1(A|X) := x · P ′W ′1(A) similarly. Also PWn({y0}) := 1 − y, ∀A ⊆ Y :

PWn(A|Y ) := y · P ′W ′n(A) finally Wi := W ′
i for i ∈ {2, 3, . . . , n− 2}. Then clearly

Pr(Ai) ≤ pi and the other conditions are also satisfied.
If ~p ′ is below the Shearer bound with respect to any induced proper subgraphs

of P1...n−1, then being above the Shearer bound is equivalent to I1...n−1(p′i : i ∈
[n− 1]) ≤ 0. Due to (7.12)

I1...n−1(p′i) ≤ 0⇐⇒ I1...n−2(p′i)−
pn−1

y
· I1...n−3(p′i) ≤ 0

⇐⇒ y ≤ pn−1
I1...n−3(p′i)

I1...n−2(p′i)

⇐⇒ y ≤ pn−1
I2...n−3(p′i)− p1/x · I3...n−3(p′i)

I2...n−2(p′i)− p1/x · I3...n−2(p′i)

⇐⇒ y ≤ pn−1
x · I2...n−3(pi)− p1 · I3...n−3(pi)

x · I2...n−2(pi)− p1 · I3...n−2(pi)
(7.14)

where in the first step we used (7.12) and in the third step we again used (7.12)
combined with the symmetry Ik...`(ri) = Ik...`(si = rk+`−i).

For the derivative consider
(
pn−1

x·a−p1·b
x·c−p1·d

)′
= pn−1

a·(x·c−p1·d)−c(x·a−p1·b)
(x·c−p1·d)2

= −p1 ·
pn−1 · ad−bc

(x·c−p1·d)2
. Applying this identity to (7.14) we see that the only thing we

need to show is that p2 · p3 · · · pn−2 = I2...n−3 · I3...n−2 − I2...n−2 · I3...n−3. This we
prove by induction on n. For the base case n = 3 observe that both the left and
the right-hand side is 1.

Induction step: Suppose we showed this for n = k, then for k + 1

I2...k−2 · I3...k−1 − I2...k−1 · I3...k−2 =

= I2...k−2 · [I3...k−2 − pk−1 · I3...k−3]− [I2...k−2 − pk−1 · I2...k−3] · I3...k−2

= pk−1 · [I2...k−3I3...k−2 − I2...k−2 · I3...k−3] =

= p2 · p3 · · · pk−2 · pk−1

where in the first equality we again used (7.12) whereas in the last equality we
used our inductive hypothesis. 2

The following is the main theorem in this section, giving the optimal value
of the variable bound for cyclic dependency graphs and showing the separation
from the bound we get from Proposition 7.4.6.
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7.4.17. Theorem. Let us consider the cyclic graph Cn = (V,E) where n ≥ 3,
V = [n] − 1, E = {{i, i + 1} : i ∈ [n] − 1} (the indices should be interpreted
mod n). Then the probabilities ~p = (pi,i+1 : i ∈ [n] − 1) ∈ [0, 1]n are above the
variable bound with respect to Cn if and only if ∃k ∈ [n]− 1 such that ~p ′ = (p′i =
pi+k,i+k+1 : i ∈ [n]−1) ∈ [0, 1]n is above the Shearer bound with respect to the path
graph P0...n−1.

Proof:
⇐=: Suppose ∃k ∈ [n] − 1 such that ~p ′ = (p′i = pi+k,i+k+1 : i ∈ [n] − 1) ∈ [0, 1]n

is above the Shearer bound with respect to the path graph P0...n−1. Then due to
Theorem 7.4.7 ∀i ∈ [n + 1] − 1 there are probability spaces W ′

i and ∀i ∈ [n] − 1
there are events A′i,i+1 ⊆ W ′

i ×W ′
i+1 such that Pr(A′i) ≤ p′i and Pr(

⋃n−1
i=0 A

′
i) = 1.

Now let us interpret indices mod n, and let Wk := W ′
0 × W ′

n and let W` =
W ′
`−k : ` ∈ ([n] − 1 \ {k}), and let Ak,k+1 := A′0 × W ′

n, Ak−1,k := W ′
0 × A′n−1

and A`,`+1 := A′`−k for ` 6≡ k, ` + 1 6≡ k. Then clearly A`,`+1 ⊆ W` × W`+1,
Pr(A`,`+1) = Pr(A′`−k) ≤ p′`−k = p`,`+1 and Pr(

⋃n−1
i=0 Ai) = 1 showing that ~p is

above the variable bound with respect to Cn.
=⇒: It is enough to show the statement for the set of minimal elements

min(VBCn) = {~p ∈ VBCn : @~p ′ ∈ VBCn \ {~p} : ~p ′ ≤ ~p} since VBCn is a closed
set due to Corollary 7.4.14, and thus ∀~p ∈ VBCn∃~p ′ ∈ min(VBCn) such that
~p ′ ≤ ~p. Our strategy is the following: we show that for ~p ∈ min(VBCn) there
are probability spaces Wv : v ∈ V and events Ae : e ∈ E with Pr(Ae) ≤ pe and
Pr(
⋃
e∈E) = 1 such that ∃e ∈ E and v ∈ e such that Ae is independent of Wv

(e.g. Ae = Wv × A′e). This is enough because then Ae is independent from Ae′ ,
where e′ is the other edge adjacent to v: e ∩ e′ = {v}. So the path graph we get
after deleting the edge {v − 1, v} from L(Cn \ {v}) is still a dependency graph,
thus due to Theorem 7.4.4 the conclusion holds with the choice k = v.

Suppose ~p ∈ min(VBCn), then due to Corollary 7.4.13 we can assume without
loss of generality that |Wv| ≤ 2 and Ai,i+1 ⊆ Wi × Wi+1 is monotone, while
Pr(Ae) = pe due to minimality and Pr(

⋃
e∈E Ae) = 1 as usual. Now we proceed

using case analysis:

(i) If ∃v ∈ V such that |Wv| < 1 or ∃w ∈ Wv : Pr(w) = 0, then no event can
be dependent on Wv so we are done.

(ii) If ∃e ∈ E such that |Ae| = 0 or |Ae| = 4, then clearly Pr(Ae) ∈ {0, 1} and
thus Ae is independent of any other event so we are done.

(iii) If ∃{v, v′} = e ∈ E such that |Ae| = 2, then due to monotonicity Ae is
independent of either Wv or Wv′ so we are done.

Assume (i),(ii) does not hold. We show that @{v, v + 1} = e ∈ E : |Ae| = 3.
First note that ∀e ∈ E pe ∈ (0, 1), because of (i),(ii). For simplicity assume v = 0,
due to cyclic symmetry the same argument works ∀v ∈ [n] − 1(= {0, 1, . . . , n −
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1}). Let us denote W0 = {w1
0, w

2
0}, W1 = {w1

1, w
2
1}. Assume without loss of

generality Ae = {w1
0} × {w1

1} and let us denote Pr({w1
1}) = x, Pr({w1

0}) = y.
Because of (i) we should have x, y ∈ (0, 1). Due to minimality y = 1−p0

x
, also

due to minimality, (ii) and Proposition 7.4.16 y = f~p(x). Here we used the
observation that if (p1/x, p2, p3, . . . , pn−2, pn−1/y) is above the Shearer bound for
a proper induced subgraph of P1...n−1 not containing some v′ ∈ [n − 1] then
due to Theorem 7.4.7 and Proposition 7.4.16 we can find events Av,v+1 ∈ Wv ×
Wv+1 : v ∈ [n− 1] \ {v′} such that Pr(A0 ∪

⋃
v∈[n−1]\v′ Av) = 1 implying pv′,v′+1 =

0 due to minimality. But since we assumed neither (i) nor (ii) holds, we can
conclude I1...n−1(p1/x, p2, p3, . . . , pn−2, pn−1/y) > 0 for proper subgraphs. Due to
minimality and because x, y ∈ (0, 1) we must also have

(
1−p0
x

)′
= f ′~p(x), where(

1−p0
x

)′
= p0−1

x2
< 0 since p0 < 1. Observe that

(
1−p0
x

)′′
=
(

1−p0
x

)′ · −2
x

and
f ′′~p (x) = f ′~p(x) · −2

x−p1·
I2...n−2(pi)

I3...n−2(pi)

where 0 < p1 · I2...n−2(pi)
I3...n−2(pi)

< x because we assumed

I1...n−1(p1/x, p2, p3, . . . , pn−2, pn−1/y) > 0 for proper subgraphs. Thus
(

1−p0
x

)′′
<

f ′′~p (x), contradicting minimality.
If none of (i)-(iii) holds then the only remaining case to check is ∀e ∈ E :

|Ae| = 1. Let us denote Wv = {w1
v, w

2
v}, then we can assume without loss of gen-

erality that Av,v+1 = {w1
v} × {w′v+1} for some w′v+1 ∈ Wv+1. Let A =×v∈V {w

2
v},

then clearly A ∩
⋃
e∈E Ae = ∅. Also since (i) does not hold, we have Pr(A) > 0,

contradicting Pr(
⋃
e∈E Ae) = 1. 2

We note that it seems a small miracle that the case Ae = X × Y can be
eliminated using this second derivative argument. It is surprising that the cor-
responding event structure is always suboptimal, as this initially might seem the
optimal configuration of the events. The statement of the theorem itself is also
surprising because it says there is always a useless link or connection in the case
of cyclic structure.

Finally note that Theorem 7.4.17 in the case n = 3 (the triangle) can be
seen as a geometric statement about the 3-dimensional unit cube if we choose the
probability spaces Wj = [0, 1] · ej. We can interpret the result as stating that the
geometric problem can always be reduced to an essentially 2-dimensional problem.

7.4.3 Shearer bound for subspaces

The Lovász Local Lemma was generalized for subspaces of vector spaces by
Ambainis et al. [AKS12] and later a tighter version was proved by Sattath et
al. [Sat15] recovering the bound of Shearer [She85] for subspaces. It is not diffi-
cult to show that this bound is tight for general vector states.

The quantum analogue of the variable version Lovász Local Lemma is when
we have a vector space with tensor product structure, and the “bad projectors” act
non-trivially only on a few of the tensor factors. Very recently it was shown by He
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et al. [HLSZ19] (who also explicitly use some of the insight of this section [Gil16]),
that in the quantum variable case Shearer’s bound remains tight. However, if the
projectors need to commute then Shearer’s bound can become loose, similarly to
the classical case.

The results of this paper about cyclic dependency graphs therefore provide
explicit examples of separation between the classical and quantum Lovász Local
Lemma in the variable setting. It seems that the largest separation for cyclic
graphs between the two bounds happens when we consider the uniform case for
the triangle graph. There the Shearer bound gives 1/3 whereas the tight bound
we proved is 3−

√
5

2
= 0.38... for the probabilities of the three events.

7.A Optimized upper bound on
(
n
k

)
7.A.1. Lemma. If 0 < k < n are positive integers, then(

n

k

)
<
(en
k
− e

2

)k
. (7.15)

Note that the above is an improvement of the more standard
(
n
k

)
<
(
en
k

)k bound.
Proof:
We use the following upper bound [Juk11, Corollary 22.9] on binomial coefficients

∀ 0 < k < n :

(
n

k

)
≤ 2n·H(k/n)

= 2n(−
k
n

log2( kn)−n−kn log2(n−kn ))

= e(k ln(nk )+(n−k) ln( n
n−k)).

(In the statement above, H(p) = −p log2(p) − (1 − p) log2(1 − p) denotes the
binary entropy.) We use this inequality to prove (7.15). It remains to show that

e(k ln(nk )+(n−k) ln( n
n−k)) <

(en
k
− e

2

)k
m

ln
(n
k

)
+
(n
k
− 1
)

ln

(
n

n− k

)
< 1 + ln

(
n

k
− 1

2

)
m

0 < 1 + ln

(
1− 1

2

k

n

)
+
(n
k
− 1
)

ln

(
1− k

n

)
. (7.16)

For x = k/n let f(x) := 1 + ln(1−x/2) + (1/x−1) ln(1−x) denote the right-hand
side of (7.16). In order to prove that f(x) > 0 for all x ∈ (0, 1), we first observe
that

lim
x→0

f(x) = 1 + lim
x→0

ln(1− x)

x
= 0.



7.A. Optimized upper bound on
(
n
k

)
263

Finally we prove f(x) > 0 by showing that f ′(x) > 0 for all x ∈ (0, 1):

f ′(x) = − 1

2− x
− 1

x2
ln

(
1

1− x

)
− (1/x− 1)

1

1− x

= − 1

2− x
+

1

x2
ln

(
1

1− x

)
+

1

x

=
1

x
− 1

2− x
+

1

x2
ln

(
1 + x/(2− x)

1− x/(2− x)

)
(7.17)
>

1

x
− 1

2− x
+

1

x2

2x

2− x
= 0.

The last inequality can be deduced using the Taylor series ∀y ∈ (−1, 1) ln(1+y) =∑∞
`=1

(−y)`

−` :

∀z ∈ (0, 1) : ln

(
1 + z

1− z

)
= ln(1 + z)− ln(1− z)

= 2z
∞∑
k=0

z2k

2k + 1
> 2z. (7.17)

2

Note that by using one more term in (7.17) one can strengthen (7.15) to
(
n
k

)
<(

en
k
− e

2
− ek

42n

)k.
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