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Abstract
This paper proposes a price adjustment process that converges globally for a set of pure
exchange economies, in which each agent has a Constant Elasticity of Substitution
utility function. In this process, the auctioneer approximates demand schedules by
assuming that each trader has a Cobb–Douglas utility function. The process generates
prices that cannot be represented by linear combinations of previous prices, and hence
precludes cycles. In the so-called unstable Scarf economies, prices spiral towards the
Walrasian equilibrium in the same direction as found by Scarf. Simulation in large
scale Scarf economies suggests that the speed of convergence may be polynomial in
the size of the economy.

Keywords Walrasian equilibrium · Scarf examples · CES preferences ·
Computation · Complexity

JEL classification D51

1 Introduction

Scarf (1960) presents three examples of small pure exchange economies, in which
prices either converge to or orbit around the competitive equilibrium (clockwise or
counter clockwise), depending on the initial allocation. These examples have inspired
different lines of research. First and foremost, they have raised the questionwhich price
adjustment processes do converge toWalrasian equilibria [e.g. Uzawa (1962), Negishi
(1962), Hahn and Negishi (1962), Scarf (1967), Scarf and Hansen (1973), Smale
(1976), Saari and Simon (1978), Van der Laan and Talman (1987), Herings (1997),
Herings (2002)]. But, the examples have also sparked an interest in the stabilization
of these so-called Scarf economies themselves.
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578 A. Ruiter

Oehmke and Oehmke (1991) argues that aggregate excess demand of any commod-
ity must become positive if its relative price goes to zero. This requirement can be used
to constrain the set of admissible initial allocations, ruling out the examples of Scarf
(1960). Kumar and Shubik (2004) considers the stabilization of the Scarf economies
as an exercise in designing an appropriate feedback controller. It shows that adding
higher order derivatives to the feedback mechanism can result in convergence. Ander-
son et al. (2004) is of particular interest. It submits the Scarf examples to experimental
trading in a continuous double auction.Despite introducing a fewcomplications, aimed
at making trading more challenging for human agents, its results resemble those of
Scarf (1960). Only in the stable example, prices closely fluctuate around the values
of Walrasian equilibrium prices. Prices in the clockwise and counter clockwise exam-
ples have similar, unstable dynamics, in opposite directions.1 Gintis (2007) claims
that the lack of stability in Anderson et al. (2004) is due to the continuous double
auction. It presents an agent-based model with bilateral trading and learning through
imitation. In the context of the unstable Scarf examples this leads to convergence.How-
ever, if expectations are updated in a coordinated manner, then instability emerges.2

Goeree and Lindsay (2016) succeeds in stabilizing an experimental Scarf economy by
introducing a schedules-market, in which traders reveal part of their demand sched-
ules to an auctioneer, who then uses the algorithm of Smale (1976) to compute new
prices.

Following the lead of Goeree and Lindsay (2016), this paper proposes a more parsi-
monious approach to obtaining demand schedules.We demonstrate that the auctioneer
can reliably approximate demand schedules by assuming that all agents have Cobb–
Douglas utility functions. Here, “reliable” means implying global convergence (i.e.
convergence from any starting point) to the Walrasian equilibrium. Demand at previ-
ously quoted prices suffices to identify the hypothetical Cobb–Douglas preferences.
This way, a Cobb–Douglas exchange economy can be associated with any exchange
economy under consideration. This Cobb–Douglas economy has unique equilib-
rium prices, which feed into the next iteration. We show convergence in exchange
economies, in which traders have preferences that can be represented by CES utility
functions, ranging from Leontief to Cobb–Douglas functions. This class covers the
examples of Scarf (1960). In the clockwise and counter clockwise economies, we find
prices spiraling towards the Walrasian equilibrium in the same direction as found by
Herbert Scarf. Convergence is due to the process generating prices that are not a linear
combination of previous prices.

If a price adjustment process converges globally and universally (i.e. for every econ-
omy) then it is called an effective price mechanism. Saari and Simon (1978) stipulates
that effective price mechanisms require knowledge of most elements of the Jacobian
of the aggregate excess demand function. This result is predicated on the trajectories
of prices following a differential equation. The amount of information required by our
process, P , consists of the initial allocation of commodities and individual demand at

1 Anderson et al. interpret the dynamic as a kind of orbiting. However, orbiting in the Scarf examples is
an expression of a feedback mechanism. Ruiter (2017) argues that the long term fluctuations are due to the
absence of a feedback mechanism.
2 Coordination is induced by having a fraction of the agents “listen” to an auctioneer. The claim that
instability is due to coordination may be overstated to the extent that it relies on t“atonnement.
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Approximating Walrasian Equilibria 579

a finite number of (arbitrary) prices. That may be more than is needed for an effective
price mechanism. However, absent any prior knowledge that a given economy is char-
acterized by a particular aggregate excess demand function, the latter (and possibly
its Jacobian) will have to be derived from individual demand before they can be used
in any algorithm. In that case, P allows a reduction of information.

The complexity of the proposed process depends on how the speed of convergence
relates to scale: in each iteration, solving the new prices in an associated Cobb–
Douglas economy requires at most m3/3 + m2n multiplications and additions, with
m the number of commodities and n the number of agents [c.f. Eaves (1985)]. We
explore the complexity of the process by simulating themaximumnumber of iterations
required for convergence in scaled-up versions of the Scarf economies. The speed of
convergence appears to be a polynomial function of the size of the economy.3 If
m = n is even, then large scale Scarf economies have an infinite number of equilibria
with prices p∗ = (1, α, . . . , 1, α), α > 0. Here, on average, the proposed algorithm
converges faster than if m = n is odd and α = 1. However, in the even-sized unstable
examples, there is also a small probability that an excessive number of steps is required
for reaching convergence (depending on how the equilibrium prices in the associated
Cobb–Douglas economy are computed).

This paper is organized as follows. After deriving some auxiliary results (Sect. 2),
we will prove convergence (Sect. 3). In Sect. 4, we apply our approach to the exam-
ples proposed by Scarf (1960). Here, we also simulate the relation between speed of
convergence and scale. Finally, Sect. 5 offers some concluding thoughts.

2 Preliminaries

Consider an exchange economy, ξ , consisting of n agents, i = 1, 2, . . . , n, and m
commodities, j = 1, 2, . . . ,m. Traders have non-negative endowments, wi ∈ R

m+.4
Each agent i has preferences over commodity bundles, x ∈ R

m+, that can be represented
by a CES utility function, ranging from Leontief to Cobb–Douglas utility functions.5

That is, for each agent i we have:

ui (x) =
⎛
⎝∑

j

α j i x
ρi
j i

⎞
⎠

1/ρi

(2.1)

with parameters α j i being weights that add up to one, ∀i : ∑
j α j i = 1 and ρi < 1,

ρi �= 0. It will be convenient to define σi = 1
1−ρi

. Below, we will consider CES

preferences with σi ≤ 1.6 By assumption, prices, p, are non-negative and add up to

3 That would be consistent with Codenotti and Varadarajan (2004) showing that for economies, in which
traders have Leontief utility functions, it takes polynomial time to determine whether an equilibrium exists.
4 By assumption, trivial cases are excluded; e.g., an economy in which each trader exclusively prefers the
commodity of which he is already the sole owner.
5 Lemmas 1 to 5, however, do not require that agents in ξ have CES utility functions.
6 Tâtonnement does well for values σi > 1, but our argument requires σi ≤ 1.

123



580 A. Ruiter

1, p ∈ Sm−1 =
{
p ∈ R

m+| ∑ j p j = 1
}
. Given prices p, trader i’s optimal demand for

commodity j can be written as:

x ji (p,wi ) = α
σi
j i p

1−σi
j∑

r α
σi
r i p

1−σi
r

p · wi

p j
. (2.2)

The terms α
σi
j i p

1−σi
j /

∑
r α

σi
r i p

1−σi
r represent the fraction of the budget p ·wi that is spent

on commodity j by trader i .With aCES-utility function, this fraction can depend on all
prices. If σi = 1 (i.e., if ρi → 0), then CES preferences coincide with Cobb–Douglas
preferences. In this case, the fraction of the budget that is spent on commodity j
reduces to α j i . If σi → 0, the CES preferences approximate Leontief preferences.

An equilibrium of ξ is a pair {X (p∗) ,p∗}, consisting of an allocation X (p∗),
with columns xi (p∗,wi ), i = 1, 2, . . . , n, and a 1 × m vector of equilibrium prices,
p∗. The allocation X (p∗) is such that total demand at prices p∗ equals total supply∑

i xi (p
∗,wi ) = ∑

i wi . If z (p) = ∑
i (xi (p,wi ) − wi ) represents the aggregate

excess demand function, then p∗ satisfies z (p∗) = 0. Walras’ Law stipulates that for
all p we have p · z (p) = 0. This is due to the fact that each trader plans to spend his
budget completely [as is clear from Eq. (2.2)], ∀i : p · xi (p,wi ) = p · wi .

An aggregate excess demand function satisfies the gross substitute (GS) property
if p and p′ are two price vectors such that (i) ps > p′

s and (ii) pr = p′
r for r �= s

imply zr (p) > zr
(
p′) for r �= s. If all individual excess demands satisfies GS,

then the aggregate excess demand function z (p) also satisfies GS. In pure exchange
economies, if z (p) satisfies GS, then the equilibrium is unique, c.f. Mas-Colell et al.
(1995, 17.F.3). An aggregate excess demand function satisfies the Weak Axiom of
Revealed Preferences (WARP) if for any pair of price vectors p and p′:

z (p) �= z
(
p′) and p · z (

p′) ≤ 0 ⇒ p′ · z (p) > 0. (2.3)

Individual excess demand always satisfiesWARP, but this attribute does not aggregate.
With respect to aggregate excess demand, WARP does not imply GS, nor does GS
imply WARP. However, if the aggregate excess demand function satisfies GS, then a
restricted version of WARP applies:

z
(
p∗) = 0 and z (p) �= 0 ⇒ p∗ · z (p) > 0 (2.4)

see Mas-Colell et al. (1995, 17.F.3).
If an arbitrary trader i responds truthfully to prices pk > 0with demand xi

(
pk,wi

)
,

then he reveals how he wants to allocate his budget to each of the available commodi-
ties. As a matter of fact, i spends a fraction

α̂ j i = pkj x ji (p
k,wi )

pk · wi
(2.5)

of his budget pk · wi on commodity j . Hence, each trader’s demand at prices pk

reveals the parameters of a Cobb–Douglas utility function that could have generated
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Approximating Walrasian Equilibria 581

his observed demand at prices pk . Therefore, an auctioneer may hypothesize that
observed demand for all j and i was generated by:

x ji
(
p,wi |pk

)
= pkj x ji

(
pk,wi

)

pk · wi

p · wi

p j
. (2.6)

Note that indeed ∀i,∀ j : x ji (pk,wi |pk) = x ji
(
pk,wi

)
. By comparing Eqs. (2.2) and

(2.6) the similarity and difference between xi (p,wi ) and xi (p,wi |pk) become clear:
(i) in both cases demand for commodity j depends on the fraction of the budget that is
assigned to it and on its own price p j ; (ii) but in economy ξ the fraction depends on all
weightsα j i and all prices p j (assumingσi < 1),while the auctioneer takes “snapshots”
of the fractions that apply at pricespk , as expressed inEq. (2.5). In effect, the auctioneer
is able to associate a specific Cobb–Douglas exchange economy to prices pk , based
on observed demand. While ξ remains fixed, each different price vector pk induces
another, specific Cobb–Douglas exchange economy. Individual excess demand in pure
exchange Cobb–Douglas economies satisfies GS, and as a result so does aggregate
excess demand. Hence, the associated Cobb–Douglas economy induced by pk has a
unique equilibrium price vector, p∗

CD

(
pk

)
. This vector can be determined by solving

z
(
p∗
CD

(
pk

) |pk) = 0, with z
(
p|pk) = ∑

i xi
(
p,wi |pk

)−∑
i wi the aggregate excess

function of the associated Cobb–Douglas economy induced by pk .7 LetP be the price
adjustment process that maps pk to pk+1 = p∗

CD

(
pk

)
.

Walras’ Law holds in the associated Cobb–Douglas economies, because each trader
in economy ξ plans to completely spend his budget.

Lemma 1 ∀p,pk ∈ Sm−1 : p · z (
p|pk) = 0.

Proof By definition, we have:

p · z
(
p|pk

)
(2.7)

=
∑
i

p · xi
(
p,wi |pk

)
−

∑
i

p · wi (2.8)

=
∑
i

∑
j

p j
pkj x ji (p

k,wi )

pk · wi

p · wi

p j
−

∑
i

p · wi (2.9)

=
∑
i

pk · xi (pk,wi )

pk · wi
p · wi −

∑
i

p · wi (2.10)

=
∑
i

pk · wi

pk · wi
p · wi −

∑
i

p · wi = 0. (2.11)

Equation (2.11) is due to pk · xi (pk,wi ) = pk · wi for all i in economy ξ . 
�
7 For proving convergence, it does not matter how the auctioneer computes pk+1 ; what matters is that pk+1

exists and that it is unique. In principle, pk+1 can be computed as an eigen vector, pk+1 · M = pk+1. We
apply this approach to the large scale stable Scarf economies. For the large scale unstable Scarf economies,
we have closed solutions, c.f. Sect. 4 for details on M and the solutions.
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582 A. Ruiter

In the associated Cobb–Douglas economy, we also have that equilibrium prices
cannot be revealed preferred to any non-equilibrium price vector p:

Corollary 1 If pk+1 = P (
pk

)
and if z

(
p|pk) �= 0, then pk+1 · z (

p|pk) > 0.

Proof By construction, (i) z
(
pk+1|pk) = 0 and (ii) z

(
p|pk) satisfies GS; hence (2.4)

applies, yielding the result. 
�
Together with z

(
pk+1|pk) = 0, Corollary 1 implies that the hyperplane pk+1 ·a = 0

is tangential to z
(
p|pk) in p = pk+1. The aggregate excess demand function z

(
p|pk)

does not need to be convex, but for all mixtures λp + (1 − λ)pk+1 with 0 < λ < 1
we have

Corollary 2 If pk+1 = P (
pk

)
, p �= pk+1, z

(
p|pk) �= 0 and if 0 < λ < 1, then

λz
(
p|pk

)
> z

(
λp + (1 − λ)pk+1|pk

)
. (2.12)

Proof Suppose the contrary, then there exists a λ∗ such that 0 < λ∗ < 1 and

λ∗z
(
p|pk

)
≤ z

(
λ∗p + (

1 − λ∗)pk+1|pk
)

(2.13)

⇒ λ∗ (
1 − λ∗) pk+1 · z

(
p|pk

)
≤ 0 (2.14)

This contradicts Corollary 1. The implication is due to multiplying both sides by
λ∗p + (1 − λ∗)pk+1 and by applying Lemma 1 twice. 
�

Next, we show that the intersection between the q · a = 0 hyperplane and the
aggregate excess demand function z

(
p|pk) is unique.

Lemma 2 If q > 0, z
(
p|pk) �= 0 and q · z (

p|pk) = 0, then q = p.

Proof Let p > 0,q > 0 and q �= p; furthermore suppose that z
(
p|pk) �= 0 and

q · z (
p|pk) = 0. From the latter and from the fact that z

(
p|pk) satisfies GS we have

z
(
p|pk) �= z

(
q|pk). Multiplying both sides by q would give 0 �= 0; hence q = p. 
�

The following lemma states that if z
(
q|pk) lies below the p · a = 0 hyperplane

for some p, then the intersection of p · a = 0 and z
(·|pk) lies above the q · a = 0

hyperplane.

Lemma 3 If p · z (
q|pk) < 0 and z

(
p|pk) �= 0, then q · z (

p|pk) > 0.

Proof Let p be a price such that p · z (
q|pk) < 0 and z

(
p|pk) �= 0. From Corollary

1, it follows that pk+1 · z (
q|pk) > 0; hence there exists a λ∗ such that 0 < λ∗ <

1 and
(
λ∗p + (1 − λ∗) pk+1

) · z (
q|pk) = 0. From Lemma 2, we find that λ∗p +

(1 − λ∗)pk+1 = q and therefore

q · z
(
p|pk

)
= (

1 − λ∗)pk+1 · z
(
p|pk

)
> 0. (2.15)

due to Corollary 1. 
�
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Approximating Walrasian Equilibria 583

Fig. 1 The function z
(
p|pk

)
passes through the origin O at prices pk+1; pk+1 ·q = 0 is a hyperplane that

is tangential to z
(
p|pk

)
. The pk · q = 0 hyperplane intersects z

(
p|pk

)
at z

(
pk

)
, which is a graphical

expression of Lemma 1. This is also why z
(
pk+1

)
lies somewhere on the pk+1 · q = 0 hyperplane.

Commodities u and d have the largest increase and decrease in prices in going from iteration k to k + 1.

Conditions zd
(
pk

)
< zd

(
pk+1

)
≤ 0 ≤ zu

(
pk+1

)
< zu

(
pk

)
are sufficient for having AO smaller

than OB (triangles AOz
(
pk+1

)
and OBz

(
pk

)
are congruent), i.e. pk · z

(
pk+1

)
+ pk+1 · z

(
pk

)
> 0,

implying that z (p) satisfies WARP in moving from pk to pk+1:
(
pk+1 − pk

)
·
(
z
(
pk+1

)
− z

(
pk

))
< 0

Figure 1 depicts a slice of z
(
p|pk) in R

m . Although z
(
p|pk) appears as a convex

function in Fig. 1, we do not assume it to be convex.

3 Price Dynamics

The proof of convergence of P exploits the difference in the amount of substitution in
economy ξ and the associated Cobb–Douglas economy induced by pk , while going
frompk topk+1. It will be shown thatP generates prices that cannot be represented by a
linear combination of previous prices. This has the immediate consequence that cycles,
or orbits, cannot occur. Since the class of exchange economies in which traders have
CES preferences with ∀i : σi ≤ 1 covers the examples of Scarf, the price adjustment
process P stabilizes these examples (c.f. Sect. 4).

Lemma 4 shows that convergence of the price adjustment process P occurs in an
equilibrium of the economy ξ . Furthermore, if P hits an equilibrium price vector p∗
of ξ , then the process remains in p∗.

Lemma 4 Let ξ = {
(ui ,wi )

n
i=1

}
be an exchange economy, and let pk+1 = P (

pk
)
.

If pk+1 = pk , then
{
X

(
pk

)
,pk

}
is a Walrasian equilibrium of ξ . Furthermore, if

{X (p∗),p∗} is a Walrasian equilibrium of ξ , and if ∃k : pk = p∗, then pk+1 = p∗.
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584 A. Ruiter

Proof If pk+1 = pk , then
∑

i wi = ∑
i xi (p

k+1,wi |pk) = ∑
i xi (p

k,wi |pk) =∑
i xi (p

k,wi ). Since optimal demand at pk clears all markets in ξ ,
{
X

(
pk

)
,pk

}
is a

Walrasian equilibrium of ξ . If p∗ is an equilibrium price vector of ξ and if ∃k : pk =
p∗, then z (p∗|p∗) = ∑

i xi (p
∗,wi |p∗) − ∑

i wi = ∑
i xi (p

∗,wi ) − ∑
i wi = 0;

pk+1 = p∗, because z
(
pk+1|p∗) = 0 has a unique solution. 
�

After starting with strictly positive prices, the price adjustment process keeps gen-
erating strictly positive prices, implying that P cannot result in a boundary solution.

Lemma 5 Let p0 > 0; if pk+1 = P (
pk

)
, then pk+1 > 0.

Proof By definition, prices pk+1 clear an associated Cobb–Douglas economy induced
by pk . Suppose pk+1

j = 0, then demand for commodity j in the associated Cobb–
Douglas economy would be infinite, which is inconsistent with an equilibrium; hence,
∀ j : pk+1

j > 0. 
�
Lemma 6 is the base case of an inductive argument in Lemma 7. By substituting

p = pk into Corollary 1, we see that aggregate demand at pk is no longer feasible at
pk+1. Lemma 6 states that aggregate demand at pk+1 in economy ξ is feasible at prices
pk . In going from pk to pk+1, agents take advantage of the possibility to substitute.
Having a CES utility function with 0 ≤ σi ≤ 1, the preferred amount of substitution
for trader i is bounded by the limiting cases of Leontief and Cobb–Douglas utility
functions. This provides us with a useful inequality, (3.7).

Lemma 6 If all agents have CES preferences with 0 ≤ σi ≤ 1, pk+1 = P (
pk

)
and

if pk+1 �= pk , then pk · z (
pk+1

) ≤ 0, with equality applying if and only if all agents
have Cobb–Douglas preferences.

Proof If a utility function is CES with 0 ≤ σi ≤ 1, then xi
(
pk+1,wi

)
lies on the pk+1

budget constraint between demand at pk+1 that would apply if σi = 0 and if σi = 1.
The latter corresponds with xi

(
pk+1,wi |pk

)
, and the former can be written as

xLi
(
pk+1,wi

)
= pk+1 · wi

pk+1 · xi
(
pk,wi

) xi
(
pk,wi

)
. (3.1)

This is simply re-scaling xi
(
pk,wi

)
so that xLi

(
pk+1,wi

)
lies on the pk+1 budget

constraint. We have

xi
(
pk+1,wi

)
= (1 − θi ) xLi

(
pk+1,wi

)
+ θixi

(
pk+1,wi |pk

)
(3.2)

with 0 ≤ θi ≤ 1. We can rewrite x Lji
(
pk+1,wi

)
as

x Lji

(
pk+1,wi

)
= pkj x ji

(
pk,wi

)

pk · wi

pk+1·wi
pk+1·xi(pk ,wi)

pk · xi
(
pk,wi

)

pkj
. (3.3)
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Approximating Walrasian Equilibria 585

Fig. 2 Graphical explanation of the proof of inequality 3.6. In response to prices pk , a trader demands A.
The auctioneer constructs hypothetical Cobb–Douglas preferences that rationalize this choice, represented
by the solid indifference curve I1. The auctioneer expects that the trader will demand C at the new prices
pk+1: The dotted indifference curve I3 is tangential to the new budget constraint. Point B is the demand at
prices pk+1 if the trader would have Leontief preferences (instead of the unknown CES or the hypothetical
Cobb–Douglas preferences). Inequality 3.6 expresses the fact that C is not affordable at prices pk for any
trader, with endowments B and with the hypothetical Cobb–Douglas preferences. The point is proved by
observing that such a trader prefers B at prices pk and that he prefers C if prices are equal to pk+1 (i.e., while
B is also affordable at pk+1). Hence, C is revealed preferred to B. The implication is that C is not affordable
at pk (otherwise C would have been have chosen instead of B). Hence, the dashed budget constraint through
B is part of a hyperplane that separates B and C

= pkj x ji
(
pk,wi

)

pk · wi

pk · xLi
(
pk+1,wi

)

pkj
(3.4)

= x ji
(
pk, xLi

(
pk+1,wi

)
|pk

)
(3.5)

That is, xLi
(
pk+1,wi

)
is the optimal demand at pk for a trader who (i) is endowed

with xLi
(
pk+1,wi

)
and (ii) who has Cobb–Douglas preferences with parameters

defined by (2.5). At pk+1, however, this trader prefers xi
(
pk+1,wi |pk

)
, even though

xLi
(
pk+1,wi

)
is also affordable. Since xi

(
pk+1,wi |pk

)
is revealed preferred to

xLi
(
pk+1,wi

)
, it must be the case that xi

(
pk+1,wi |pk

)
is not affordable at prices

pk . Hence,

pk · xLi
(
pk+1,wi

)
< pk · xi

(
pk+1,wi |pk

)
. (3.6)

For a graphical version of the proof of inequality (3.6), see Fig. 2. CombiningEqs. (3.2)
and (3.6) we obtain for all i :

123



586 A. Ruiter

pk · xi
(
pk+1,wi

)
≤ pk · xi

(
pk+1,wi |pk

)
(3.7)

with equality applying if σi = 1. Summing over i yields:

pk ·
∑
i

xi
(
pk+1,wi

)
≤ pk ·

∑
i

xi
(
pk+1,wi |pk

)
(3.8)

⇔ pk ·
∑
i

xi
(
pk+1,wi

)
≤ pk ·

∑
i

wi (3.9)

⇔ pk · z
(
pk+1

)
≤ 0. (3.10)

The second inequality is due to the fact that pk+1 is an equilibrium price vector of
the associated Cobb–Douglas economy. If ∀i : θi = 1, then the inequality in (3.10)
becomes an equality; otherwise the inequality is strict. 
�

The following lemma shows that z
(
pk+1

)
is constrained by all previous prices.

This rules out cycles and allows us to prove global convergence in Proposition 1.

Lemma 7 If pk+1 = P (
pk

)
, pk+1 �= pk , and some traders do not have Cobb–Douglas

preferences, then ∀r ≤ k : pr · z (
pk+1

)
< 0.

Proof For r = k, the result follows directly from Lemma 6. Suppose z
(
pk+1

) �= 0 and
pk−1 ·z (

pk+1
) ≥ 0; if 0 < pk−1 �= pk+1, then according to Lemma2pk−1 ·z (

pk+1
)

>

0. Therefore, there exists a θ∗, 0 < θ∗ < 1, for which

(
θ∗pk−1 + (

1 − θ∗) pk
)

· z
(
pk+1

)
= 0. (3.11)

But then, also due to Lemma 2, θ∗pk−1 + (1 − θ∗)pk = pk+1. This implies for
z
(
pk

) �= 0

pk+1 · z
(
pk

)
(3.12)

=
(
θ∗pk−1 + (

1 − θ∗) pk
)

· z
(
pk

)
(3.13)

= θ∗pk−1 · z
(
pk

)
< 0 (3.14)

which contradicts Corollary 1. Hence, pk−1 · z (
pk+1

)
< 0. This argument can be

repeated to obtain pr · z (
pk+1

)
< 0 for other r < k − 1. 
�

Proposition 1 Let ξ = {
(ui ,wi )

n
i=1

}
be a CES exchange economy with ∀i : 0 ≤

σi ≤ 1. Assume that at least one Walrasian equilibrium exists, then price adjustment
process P converges globally.

Proof We have ∀r ≤ k : pr · z (
pk+1

)
< 0 from Lemma 7. This implies pk+1 �=∑k

r=0 θrpr for any {θr }r with 0 < θr < 1 and
∑

r θr = 1. To see this, suppose
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pk+1 = ∑
r θrpr for appropriate {θr }r , thenpk+1 ·z (

pk+1
) = ∑

r θrpr ·z (
pk+1

)
< 0,

because, by assumption, each term pr · z (
pk+1

)
< 0; however, this violates Walras’

Law in economy ξ . Note that this also rules out the occurrence of cycles: pk �= pk+ j

for all k and j . Let

F (k) =
{
p|p =

k∑
r=0

θrpr , 0 < θr < 1,
k∑

r=0

θr = 1

}
⊂ Sm−1 (3.15)

be the set of “forbidden” subsequent prices. For as long as P has not yet converged, a
new pk+1 ∈ Sm−1− F (k)will be selected. We have F (k) ⊆ F (k + 1), with equality
applying only if pk+1 = pk . In that case, pk is a Walrasian equilibrium price vector,
andP remains at pk , due to Lemma 4. Convergence of F (k) implies that pk converges.

To the contrary, assume that F (k) converges, but that prices do not converge; then
there exist {θr }r with 0 < θr < 1 and

∑
r θr = 1, such that pk+1 = ∑k

r=0 θrpr +
δk+1 and where ||δk+1|| can be made arbitrarily small. As a result we would have
pk+1 · z (

pk+1
) = ∑

r θrpr · z (
pk+1

) + δk+1 · z (
pk+1

)
< 0 because the sum is

strictly negative and δk+1 · z (
pk+1

)
can be made arbitrarily small for suitable values

of k, because z
(
pk+1

)
is bounded. This violates Walras’ Law in ξ and hence prices

must convergewhenever F (k) converges. Since F (k) ⊆ Sm−1 this set cannot increase
beyond bounds; itmust converge and so prices converge to someWalrasian equilibrium
price vector pk . 
�

4 Application to the Scarf Economies

Herbert Scarf has demonstrated that tâtonnement may fail to converge to theWalrasian
equilibrium. Scarf (1960) provides three examples of small exchange economies with
three traders, i = 1, 2, 3, and three commodities, j = 1, 2, 3. The (Leontief) pref-
erences of the agents with respect to commodities can be described as follows:

u1(x1) = min(x11, x31)

u2(x2) = min(x12, x22)

u3(x3) = min(x23, x33). (4.1)

The examples differ in how endowments are allocated, in particular (commodities in
rows, traders in columns):

Wstb =
⎛
⎝
0 0 1
1 0 0
0 1 0

⎞
⎠ ; Wcw =

⎛
⎝
1 0 0
0 1 0
0 0 1

⎞
⎠ ; Wccw =

⎛
⎝
0 1 0
0 0 1
1 0 0

⎞
⎠ . (4.2)

The superscripts refer to the price dynamics under t“atonnement (see below). Demand
for commodity j by trader i by example is given in Table 2. All three examples have
the same Walrasian equilibrium, i.c.
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Fig. 3 Convergence of price adjustment process P to the equilibrium prices
(
p∗
2 , p∗

3
) = (1, 1), in the

stable, clockwise and counter clockwise examples (from left to right). The lower panel zooms in on the
equilibrium prices. Dashed arrows indicate the approximate direction of the t“atonnement process of Scarf
(1960) at pk . Convergence clearly depends on the initial allocation. In the unstable economies, the direction
of the spirals is consistent with Scarf’s findings

{
p∗,X∗} =

⎧⎪⎨
⎪⎩

(1, 1, 1) ,

⎛
⎜⎝

1
2

1
2 0

0 1
2

1
2

1
2 0 1

2

⎞
⎟⎠

⎫⎪⎬
⎪⎭

. (4.3)

The t“atonnement process leads to different price dynamics in each of the three
examples. In the stable version (stb), tâtonnement does converge to the Walrasian
equilibrium. The other two examples are unstable; here, tâtonnement leads to prices
orbiting around the Walrasian equilibrium values in perfect circles, either in a clock-
wise (cw) or counter-clockwise (ccw) direction.

Price adjustment process P always converges to the Walrasian equilibrium. Con-
vergence is fast: for instance, starting from p1 = (1, 3, 5), it takes 15 iterations to
obtain the equilibrium prices in three decimal places in the stable case and 28 and 27
iterations the clockwise and counter clockwise examples respectively, c.f. Fig. 3 and
Table 1.8

In order to gain a deeper understanding, Table 1 details the price dynamics in the
unstable economies. In the clockwise example, for k = 2, there is excess demand
for commodity 2, yet its price falls from p22 = 3.3333 to p32 = 2.9279. This is
due to the relatively large excess supply of commodity 3. Its price needs to decrease

8 The symmetry of the original Scarf examples contributes to the speed of convergence. In the unstable
Scarf examples, as implemented byAnderson et al. (2004),P requires about 65 iterations, c.f. Ruiter (2017).
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Table 1 Price dynamics in the unstable Scarf examples

k Clockwise Counter clockwise

pk2 pk3 z1
(
pk

)
z2

(
pk

)
z3

(
pk

)
pk2 pk3 z1

(
pk

)
z2

(
pk

)
z3

(
pk

)

1 3.0000 5.0000 −0.0833 0.3750 −0.2083 3.0000 5.0000 0.0833 −0.3750 0.2083

2 3.3333 2.0833 0.0936 0.1538 −0.2911 0.9143 3.4286 0.2966 −0.2671 −0.0153

3 2.9279 1.1564 0.2091 0.0286 −0.2531 0.6271 2.1926 0.3014 −0.1630 −0.0908

4 2.1064 0.8307 0.2243 −0.0391 −0.1709 0.6031 1.4973 0.2234 −0.0891 −0.1133

5 1.4096 0.7212 0.1660 −0.0766 −0.0805 0.6409 1.1409 0.1423 −0.0309 −0.1074

6 1.0096 0.7183 0.0844 −0.0819 −0.0023 0.7094 0.9724 0.0780 0.0068 −0.0852

7 0.8401 0.7755 0.0198 −0.0635 0.0432 0.7960 0.9078 0.0326 0.0240 −0.0570

8 0.8037 0.8582 −0.0163 −0.0380 0.0546 0.8854 0.9000 0.0041 0.0263 −0.0304

9 0.8330 0.9376 −0.0295 −0.0160 0.0456 0.9610 0.9205 −0.0108 0.0207 −0.0099

10 0.8870 0.9954 −0.0288 −0.0011 0.0299 1.0116 0.9504 −0.0156 0.0127 0.0029

11 0.9413 1.0264 −0.0216 0.0065 0.0151 1.0352 0.9781 −0.0142 0.0055 0.0087

12 0.9833 1.0352 −0.0129 0.0086 0.0042 1.0383 0.9978 −0.0100 0.0006 0.0094

13 1.0088 1.0306 −0.0053 0.0075 −0.0022 1.0300 1.0084 −0.0053 −0.0021 0.0074

14 1.0195 1.0206 −0.0003 0.0051 −0.0048 1.0182 1.0116 −0.0016 −0.0029 0.0045

15 1.0201 1.0104 0.0024 0.0026 −0.0050 1.0078 1.0104 0.0006 −0.0026 0.0019

16 1.0153 1.0028 0.0031 0.0007 −0.0038 1.0007 1.0071 0.0016 −0.0018 0.0002

17 1.0090 0.9983 0.0027 −0.0004 −0.0023 0.9970 1.0037 0.0017 −0.0009 −0.0008

18 1.0037 0.9965 0.0018 −0.0009 −0.0009 0.9959 1.0011 0.0013 −0.0003 −0.0010

19 1.0001 0.9964 0.0009 −0.0009 0.0000 0.9964 0.9995 0.0008 0.0001 −0.0009

20 0.9983 0.9973 0.0002 −0.0007 0.0004 0.9975 0.9988 0.0003 0.0003 −0.0006

21 0.9978 0.9984 −0.0002 −0.0004 0.0006 0.9987 0.9988 0.0000 0.0003 −0.0003

22 0.9981 0.9994 −0.0003 −0.0002 0.0005 0.9996 0.9991 −0.0001 0.0002 −0.0001

23 0.9987 1.0000 −0.0003 0.0000 0.0003 1.0002 0.9994 −0.0002 0.0001 0.0000

24 0.9994 1.0003 −0.0002 0.0001 0.0002 1.0004 0.9998 −0.0002 0.0001 0.0001

25 0.9998 1.0004 −0.0001 0.0001 0.0000 1.0004 1.0000 −0.0001 0.0000 0.0001

26 1.0001 1.0003 −0.0001 0.0001 0.0000 1.0003 1.0001 −0.0001 0.0000 0.0001

27 1.0002 1.0002 0.0000 0.0001 −0.0001 1.0002 1.0001 0.0000 0.0000 0.0000

28 1.0002 1.0001 0.0000 0.0000 −0.0001

The table shows convergence of price adjustment process P in the unstable examples (in three decimal
places). Prices are relative to the numeraire, good 1. New prices, due to current aggregate excess demand,

appear in the next row. By construction, (i) z
(
pk |pk

)
= z

(
pk

)
and (ii) z

(
pk+1|pk

)
= 0; so these can be

omitted. Prices corresponding to Scarf (1960) can be found by taking p̃kj = pkj + z j
(
pk

)
(see also Fig. 3)

sharply, but this causes the other prices to rise rather than to fall (the relative price of
commodity 1 also increases). Opposite changes can also occur, e.g. in the clockwise
example, for k = 9: while there is excess supply of commodity 2 its price rises from
p22 = 0.8330 to p32 = 0.8870. This cannot happen in normal t“atonnement processes,
because each change in price is determined independently, conditional on the sign
of its own aggregate excess demand. In P , on the other hand, changes in prices are
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Table 2 Demand in the Scarf examples

Agent Stable Clockwise Counter clockwise

1 ( j = 1, 3) xstbj1 = p2
p1+p3

xcwj1 = p1
p1+p3

xccwj1 = p3
p1+p3

2 ( j = 1, 2) xstbj2 = p3
p1+p2

xcwj2 = p2
p1+p2

xccwj2 = p1
p1+p2

3 ( j = 2, 3) xstbj3 = p1
p2+p3

xcwj3 = p3
p2+p3

xccwj3 = p2
p2+p3

True demand per type of agent, by example. Trader 1 demands commodities 2 and 3. In the stable Scarf
economy, demand for each commodity depends on all three prices, while in the unstable examples demand
depends on two prices only. Demand for each commodity depends on its own price

Table 3 Estimated demand in the Scarf economies

Agent Stable Clockwise Counter clockwise

1 xstb11 = pk1
pk1+pk3

p2
p1

xcw11 = pk1
pk1+pk3

xccw11 = pk1
pk1+pk3

p3
p1

1 xstb31 = pk3
pk1+pk3

p2
p3

xcw31 = pk3
pk1+pk3

p1
p3

xccw31 = pk3
pk1+pk3

2 xstb12 = pk1
pk1+pk2

p3
p1

xcw12 = pk1
pk1+pk2

p2
p1

xccw12 = pk1
pk1+pk2

2 xstb22 = pk2
pk1+pk2

p3
p2

xcw22 = pk2
pk1+pk2

xccw22 = pk2
pk1+pk2

p1
p2

3 xstb23 = pk2
pk2+pk3

p1
p2

xcw23 = pk2
pk2+pk3

p3
p2

xccw23 = pk2
pk2+pk3

3 xstb33 = pk3
pk2+pk3

p1
p3

xcw33 = pk3
pk2+pk3

xccw33 = pk3
pk2+pk3

p2
p3

Estimated demand for commodity j by agent i , by example. In the stable economy, demand depends on
fewer (new) prices, c.f. Table 2. In the unstable economies, only one commodity is sensitive to new prices.
Demand for the other commodity is fixed at its previous value

mutually dependent, because new prices need to clear the associated Cobb–Douglas
economy.9 Moreover, this also implies that the auctioneer has to anticipate income
effects. By comparing Eqs. (2.2) and (2.6) it becomes clear that he does so correctly.

Tables 2 and 3 give the (estimated) demand functions. A comparison shows that
demand in the associated Cobb–Douglas economy is less sensitive to prices than
demand in economy ξ . For instance, in the stable example, demand depends on two
instead of three prices. In the unstable examples, demand for the one commodity that a
trader already owns is kept fixed at its current value. The reduced sensitivity of demand
to prices also contributes to a more stable evolution of prices.

The complexity of P depends on the speed of convergence and on the complexity
of determining equilibrium prices in an associated Cobb–Douglas economy. For each
iteration of P , the equilibrium prices of an induced pure exchange Cobb–Douglas
economyhave to be determined. The latter requires atmostm3/3+m2nmultiplications

9 To put it slightly differently, a t“atonnement process applies the Law of Demand and Supply to each indi-
vidual market, while in processP this law holds at the aggregate level (fromCorollary 1 it is straightforward

to derive
(
pk+1 − pk

)
· z

(
pk

)
> 0).
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Table 4 Endowments in Scarf
examples of size n

Example Endowments

Stable

⎧⎪⎨
⎪⎩

wi+1,i = 1 i = 1, . . . , n − 1

w1,n = 1 i = n

w j,i = 0 otherwise

Clockwise

{
wi,i = 1 i = 1, . . . , n

w j,i = 0 otherwise

Counter clockwise

⎧⎪⎨
⎪⎩

wn,i = 1 i = 1

wi−1,i = 1 i = 2, . . . , n

w j,i = 0 otherwise

Endowments per trader, by example. The first subscript refers to com-
modities, the second to agents. For n = 3, these formulae reduce to
the original Scarf examples, c.f. Eq. (4.2)

Table 5 Aggregate excess demand in scaled-up Scarf examples

Example z j
(
pk

)

Stable

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pk1
pk1+pkn

p2
p1

+ pk1
pk1+pk2

p3
p1

− 1 j = 1

pkj
pkj−1+pkj

p j+1
p j

+ pkj
pkj+pkj+1

p j+2
p j

− 1 j = 2, . . . , n − 2

pkn−1
pkn−1+pkn

p1
pn−1

+ pkn−1
pkn−2+pkn−1

pn
pn−1

− 1 j = n − 1

pkn
pk1+pkn

p2
pn

+ pkn
pkn−1+pkn

p1
pn

− 1 j = n

Clockwise

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pk1
pk1+pkn

+ pk1
pk1+pk2

p2
p1

− 1 j = 1

pkj
pkj−1+pkj

+ pkj
pkj+pkj+1

p j+1
p j

− 1 j = 2, . . . n

Counter clockwise

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pk1
pk1+pkn

pn
p1

+ pk1
pk1+pk2

− 1 j = 1

pkj
pkj−1+pkj

p j−1
p j

+ pkj
pkj+pkj+1

− 1 j = 2, . . . n

and additions, with m the number of commodities and n the number of agents [c.f.
Eaves (1985)]. Given this result, the complexity of P depends on how the speed of
convergence relates to scale.We explore this issue by simulating themaximumnumber
of iterations that is necessary for computing equilibrium prices of scaled-up versions
of the Scarf examples, with m = n commodities and agents. Let the agents have
preferences

ui (x) =
{
min (x1, xn) i = 1

min (xi−1, xi ) i > 1.
(4.4)
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Fig. 4 Simulated maximum number of iterations, by size (odd) as measured over 10,000 runs. There is no
indication that the worst case speed of convergence is an exponential function of the size of the economy,
i.e. of the number of commodities and agents. At n = 3, some 30 iterations are required; at n = 34, the
maximum number of iterations has increased to less than 302.42. The stable economies converge relatively
faster

The endowments depend on the example, c.f. Table 4. By maximizing utility, given
prices pk , one can determine individual demand and aggregate excess demand, c.f.
Table 5.

For the unstable economies, it is possible to derive simple solutions for the equi-
librium prices of the induced associated Cobb–Douglas economies. For the clockwise
examples, we have

⎧⎪⎨
⎪⎩

pk+1
j = 1 j = 1

pk+1
j = pkj−1+pkj

pkj−1

pkn
1+pkn

j = 2, . . . , n
(4.5)

and for the counter clockwise economies
⎧⎪⎨
⎪⎩
pk+1
j = pkj+pkj+1

pkj+1

pk1
pk1+1

j = 1, . . . , n − 1

pk+1
j = 1 j = n.

(4.6)

For the generalized stable Scarf economies, it is possible to derive recursive for-
mulae that have a fixed point that corresponds with the equilibrium prices. However,
this recursive process is not convergent. Setting z

(
p|pk) = 0 defines n equations that
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Fig. 5 Simulated maximum number of iterations in the stable examples of size 3–50 (10,000 runs). After
size = 20, convergence in even-sized economies is faster than in odd-sized economies

can be rewritten as p · Mn = p. For each j in Table 5, (i) set the entry equal to zero;
(ii) multiply both sides by p j , and (iii) carry p j to the right hand side. In case n = 4,
M4 would then be given by

M4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
pk3

pk3+pk4

pk4
pk3+pk4

pk1
pk1+pk4

0 0
pk4

pk1+pk4

pk1
pk1+pk2

pk2
pk1+pk2

0 0

0
pk2

pk2+pk3

pk3
pk2+pk3

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence, in the stable economies, the associated Cobb–Douglas economies can be
solved by computing the eigen vector of Mn corresponding to the eigen value 1. For
this the R function “eigen” has been used.

It is straightforward to verify that the large scale economies of size n, with n
an even number, admit an infinite amount of equilibrium price vectors of the form
p = (1, α, . . . , 1, α). If the size of the economy is odd, then α = 1 and we have
a unique equilibrium price vector. We therefore distinguish economies according to
whether n is even or odd. Figure 4 shows how many iterations at most are required for
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Fig. 6 Simulated densities of the number of iterations in the clockwise economies of size 3 and 4. The
irregularities indicate that many more runs are needed to obtain smooth density functions. However, two
salient facts already become clear: (i) on average, convergence is faster in economies with an even number
of commodities and agents; and, (ii) the expected maximum number of iterations required to achieve
convergence is greatest if the size is even

computing the unique equilibrium price in odd-sized economies up to three decimal
places.

Generally speaking, convergence is faster if the size of the large scale Scarf
economies is even, c.f. Figs. 5 and 6. This is due to the infinite number of equi-
libria (in the stable example, new prices of both the odd- and even-sized economies
are computed as eigen vectors). In the unstable examples, there is a remote chance
that the number of iterations required for convergence in even-sized economies is very
high. As a matter of fact, in case of m = n = 4 in the clockwise example, there was
one simulation (out of 10,000) that required 47,846 iterations. This is due to using the
exact solutions (4.5) and (4.6): if equilibria in the associatedCobb–Douglas economies
are determined by means of eigen vectors, then the even-sized unstable examples also
have a more concentrated distribution of the maximum number of iterations required
for obtaining convergence, compared to Fig. 6. Apparently, the speed of convergence
is quite sensitive to accuracy in these cases.

5 Discussion

Cobb–Douglas approximation provides a parsimonious implementation of a schedules
market, as proposed by Goeree and Lindsay (2016). Our proof of global convergence
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seems to be due to a combination of factors: (i) the determination of prices in P is
mutually dependent, because the newprices have to clear the associatedCobb–Douglas
economy (ii) the auctioneer correctly anticipates income effects and, (iii) estimated
demand in the associated Cobb–Douglas economies is less sensitive to prices than
demand in the underlying economy ξ .

For practical purposes, P requires less information than algorithms that rely on
the Jacobian of the aggregate excess demand function (after all, the aggregate excess
demand function typically is not given and has to be derived from individual demand).
From a computational point of view, the speed of convergence is of greater concern
than the amount of information that is needed. It is an open question how P compares
to other algorithms in this respect. We have only shown global convergence in a class
of economies that comprises the Scarf examples.

The so-called Sonnenschein–Mantel–Debreu-result [c.f. Sonnenschein (1973),
Mantel (1974), Mantel (1976), Debreu (1974)] is often interpreted as saying that
price dynamics can be as “bad” as desired.P shows that this interpretation is not com-
pelling: theremay exist a simple process that behaves nicely even though the aggregate
excess demand function does not satisfy the usual conditions for convergence.
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