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1
Introduction

“Oh, you are a real mathematical physicist.” R.K.
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Introduction

Let me take you to a most peculiar place where I have been busy..... building
elevators. It is a world called the skein category of the annulus. For the last five years
I have been in this world spending my time in a city called loop models. Along the
many different streets are buildings and towers that physicists call observables. They
are interested in these towers as they like to visit them to understand reality.

The physicists would like to be able to visit any floor in these buildings. However,
when you arrive at a building for the first time you have to take the stairs. But recall
that I said this is a peculiar place; the stairs are not uniform. For every successive
floor the stairs get longer and longer and it takes more and more time to ascend. As
an example, for one of the buildings I visited, it takes less than 5 minutes to reach
the 6th floor, but over an hour to reach the 7th and over a day for the 8th. Now
there’s the rub, because physicists would like to visit the 100th floor or even higher!
It would take them years, decades or even centuries to get there. What we need, is
an elevator.

A master elevator would allow anyone to reach any floor at the push of a button.
These elevators need to be built, but it is no simple task. In order to build a master
elevator we need simple elevators that can take us between two floors. However, for
some of these buildings you might need more than one type of simple elevator. What
I mean to say is that even if I had a simple elevator that could always take me up
one floor at a time, it might not be enough. Sometimes you need more than one type
of elevator, and this is what I faced.

I spent my time in the city called loop models concerned with two towers on a
particular street. These observable were called the current and the nesting number.
After spending some time taking the stairs, I soon found out that others had visited
this street before. These people had already built a simple elevator for the towers on
this street. Their elevator can take you up two floors at a time. However, this was
not enough to build the master elevator and so I set out to find a different one that
can take you up one floor at a time. I knew that if I could build this elevator I would
have enough simple elevators to build the master.

I could only achieve my goal when I realised that I was in this particular world. I
had to rely on the structure of the skein category of the annulus. Using this structure
and a blue print for building elevators I was able to achieve my result and finally
build the master elevator. Oh, and that blueprint I used, well it is named after two
individuals; Knizhnik and Zamolodchikov.

Now let me explain how my story fits in our reality of earth. Let us return to our
more familiar world that is not as peculiar. A world where many people spend hours
and hours watching videos... of cats.

2



1.1. Overview

1.1 Overview

Our original motivation for this research is to prove closed form expressions for ob-
servables of loop models. By closed form we mean expressing the observable in terms
of special functions (such as Schur functions or matrix determinants) that are indexed
by the system size of the model. The reason we seek closed form expressions is that
calculating the observable is computationally intensive. Usually we can only calculate
it for small system sizes; in the models we investigate this means up to system size 8.
In general one cannot expect nice closed form expressions for observables. One reason
that there is a chance for loop models is the fact that these models are integrable.

The difficult step in proving closed form expressions is coming up with a conjec-
ture for the expression. There is no sure methodology to this and it can sometimes
seem to be equal parts intuition, analysis, experimentation, guesswork, staring at it
long enough or even divine intervention. Thankfully, proving the expression is less
enigmatic.

For a system size n, the expressions for the observables we consider are polynomials
in variables z1, . . . , zn. These variables correspond to the rapidities of the loop model.
The technique we use for proving closed forms of these expressions is polynomial
interpolation. A polynomial of degree m in one variable can be determined exactly
if its value at m+ 1 interpolation nodes are known. So we view the observables as a
polynomial in zn (of degree m) and determine the “value" of the observable for m+1

specialisations of zn. Examples of the specialisations are zn = 0, ratios zn = tzi for
1 ≤ i < n and even taking the limit zn → ∞ in an appropriate way.

By specialising variables the polynomial factorises into a product of an elementary
factor and another polynomial in a smaller number of variables. To use polynomial
interpolation we must know this polynomial with fewer variables and in most cases
the strategy is to use special interpolation nodes such that the remaining unknown
polynomial factor is related to the same observable but for a smaller system size.
Hence, the interpolation nodes (or specialisations) are chosen from recursion relations
for the observables. Thus, the game becomes finding and proving recursion relations
for the observables.

We study the inhomogeneous dense O(1) loop model on an infinite cylinder. The
two observables we are interested in are the current and nesting number and we prove
closed form expressions for both of them. By experimenting with computations of
the nesting number a particular recursion was observed for low system sizes. It led
to a conjectured recursion relation for the observable for any system size. When we
set a variable equal to 0, the nesting number of systems of size n+1 is related to the
nesting number of size n. We call it the braid recursion.

An interesting property of the braid recursion is that it involves crossing paths
in its most natural formulation. This is surprising since, by definition, the dense
loop model consists of non-intersecting loops. It was Di Francesco et al. [23] who
first showed that the ground state of odd size 2k + 1 with one of its rapidities set to

3



Introduction

zero, relates to the ground state of size 2k through an arc insertion map. They had
the insight that the recursion can be formulated using crossings. In this thesis we
establish the full braid recursion relations for the ground states. This is an important
step in obtaining the braid recursion relations for the observables.

Understanding and proving the braid recursion for the ground state of the inho-
mogeneous dense O(1) loop model and the generalisation to dense O(τ) loop models
constitutes the bulk of this PhD thesis. This requires different areas of mathematics.
We make use of skein theory and representation theory of affine Hecke algebras to
construct towers of affine Hecke algebra representations and associated solutions of
qKZ equations. These allow us to make connections between the state spaces of the
model of different system sizes. The braid recursion is defined on the level of qKZ
equations. This introduced the novel idea of a qKZ tower giving us a general frame-
work for the recursion. Lastly, proving the existence of the recursion for the dense
O(τ) loop model involves Cherednik-Macdonald Theory [10, 57].

This thesis touches on three areas of mathematical physics; skein theory, quantum
Knizhnik-Zamolodchikov (qKZ) equations and loop models. If this is a play of three
acts, then the main character is the extended affine Temperley-Lieb algebra. In act
one it appears as the endomorphisms of the skein category of the annulus. Then in act
two we see it as a quotient of the extended affine Hecke algebra that is used to define
the qKZ equations and construct their solutions. Lastly, in act three, it describes the
symmetries of the Dense O(1) loop model on the infinite cylinder.

In the remainder of the introduction we discuss each of these acts individually. We
highlight their connections to each other as well as other fields of mathematics and
physics. Furthermore, we point out where our results fit in the respective fields. The
introduction concludes with a summary of the main results.

Chapters 2 - 5 are structured as follows. In Chapter 2 we discuss the first act:
skein theory. Specifically, we discuss the skein category of the annulus. Chapter 3
deals with act two, the qKZ equations and the braid recursion. It relies on structures
we establish in Chapter 2. We introduce the notion of a qKZ tower and prove the
existence of a qKZ tower on link-patterns. Moreover, it proves the braid recursion
for the ground state of O(1) dense loop model, and its generalisation to qKZ tower of
solutions related to the O(τ) model. In Chapter 4 we use the braid recursion to prove
the current and nesting number of the dense loop model on the infinite cylinder. We
conclude the thesis in Chapter 5 with closing remarks.

1.2 Skein Theory

As the name implies, knot theory is an area of topology that studies knots. Although
historically it dealt with physical knots that we see in daily life, such as tying shoelaces
or when sailing, a knot in topology has a more precise definition. A mathematical
knot is a smooth embedding of a circle in Euclidean 3-space (R3). The embedding of
multiple circles in R3 is called a link and a further generalisation is a tangle, which is

4



1.2. Skein Theory

the embedding of circles and line segments with fixed positions of the endpoints.

To study knots, links and tangles we use 2-dimensional diagrams. These are
obtained by projecting the knot onto the plane (x, y, 0) ⊂ R3 while keeping the
information about the crossings of the “strings”. We call them knot-, link- and tangle
diagrams, and examples can be seen in Figure 1.1.

Figure 1.1: From left to right: A knot-, link- and tangle-diagram.

The diagrams are meant to represent the 3-dimensional objects. Any physical knot
(like tied shoelaces) can be distorted into another without cutting the knot by push-
ing and pulling on it to move the strings. The mathematical term for this distortion
is ambient isotopy, which can be understood as an orientation-preserving homeomor-
phism of R

3 that maps a knot onto another. Given two knots that are equivalent
through ambient isotopy, their respective knot diagrams may not be ambient isotopic
in two dimensions. It was Reidemeister [75] who showed how ambient isotopy mani-
fests in diagrams. Specifically, he showed that two knots (or links) in R3 are ambient
isotopic if and only if the diagrams of one link can be transformed to the diagram of
the second by ambient isotopies in R2 and a sequence of moves given in Figure 1.2.
These moves are known as the Reidemeister moves.

The original goal in knot theory is to be able to distinguish and classify knots.
One approach is to find knot invariants, which are “quantities” that are the same for
equivalent knots. In 1984 Vaughan Jones [45] discovered his knot (and link) invariant,
the now called Jones polynomial, and it led to an increase in activity in the field and
discovery of other knot polynomials.

In [50, 51] Kauffman constructed knot invariants based on elementary combina-
torial rules on knot diagrams in which crossings are replaced by their two possible

5



Introduction

R1 ≈ ≈

R2 ≈

R3 ≈

≈

Figure 1.2: The Reidemeister moves.

smoothings. The rules are often depicted as

= A +B (1.2.1)

= d , (1.2.2)

where the disc shows the local neighbourhood where the diagrams differ. He also
introduced the bracket polynomial 〈K〉 of a knot diagram K. It is obtained by recur-
sively applying the relations (1.2.1) and (1.2.2) to the knot diagram and is invariant
under Reidemeister moves R2 and R3 if B = A−1 and d = −A2 − A−2. Under this
specialisation the relations are called skein relations. Moreover, the bracket satisfies
R1 up to a scalar. It turns out that multiplying the bracket polynomial by an appro-
priate factor involving the writhe of oriented knot diagrams one obtains an oriented
knot invariant, which is the famous Jones polynomial [45].

Knot theory has many connections to physics and other fields of science [52]. One
connection to physics is that the partition function of the q state Potts model can
be transformed into a generalised bracket polynomial on a knot. This is done by
transforming the lattice L of the Potts model into a knot K by associating an edge of
the lattice with a crossing in a particular way. Then the partition function of the Potts
model ZL is equal to qN/2〈K〉 with A = 1, B = q−1/2(e1/kT − 1) and d = q1/2, where
k is Boltzmann’s constant, T is the Temperature and N is the number of vertices on

6



1.2. Skein Theory

the lattice. At the critical temperature the partition sum of the Potts model on a
given planar lattice is a sum of knot invariants over all possible tangles obtained by
turning a vertex in the lattice into an under- or over crossing.

Another connection we give is more recent (and definitely sounds more lucrative!).
It is the application of knot theory to quantum money, which is a cryptographic
protocol. The idea is that there is a mint that produces quantum states (seen as
money) that no one can copy and anyone can verify it came from the mint. In [28]
the quantum money is generated from superpositions of oriented links and each “bill”
has a serial number that is the Alexander polynomial, a link invariant. The security of
the protocol lies on the following perceived computational difficulty. Given a link L1

we can easily transform it into another equivalent link L2 by a series of Reidemeister
moves. However, given the two links L1, L2 it is not so easy to determine the required
moves to get from one to the other.

We make use of skein theory [79, 69, 60, 6], which originates from knot theory. It
is the study of knots and links in 3-manifolds modulo the Kauffman skein relation and
the loop removal relation. We deal with the 3-manifold A× [0, 1], with A the annulus
in the complex plane; the resulting geometry is a thickened cylinder. Furthermore,
we consider the relative version which includes tangles.

Specifically, in Chapter 2 we introduce and study the skein category S of the
annulus A. In this setting tangle diagrams are drawn on A where the end points of
the line segments (arcs) lie on the inner and outer boundary of A. The following are
some examples of the tangle diagrams.

1

2

3

4

5

1
2

3
b 1

2

3

1 1

2

3

4

b

By definition, within S we mod out skein relations, so any contractible loops and
crossings can be replaced by their respective multiplicative factor and smoothings.
This leads to linear combinations of tangle diagrams modulo the skein relations. We
refer to the diagrams as (m,n)-tangle diagrams if they have m and n points on the
inner- and outer boundary, respectively.

We can define two binary operators on (linear combinations of) tangle diagrams in
S. The first is composition of tangle diagrams. Let L and L′ be tangle diagrams. The
composition L ◦L′ is obtained by inserting L′ into L. The following is an illustrative
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example.

12 12 ◦ 12 1
2

3
4

= 12 1
2

3
4

(1.2.3)

Note that this can only be defined if the inner boundary points of L match the outer
boundary points of L′.

The second operator is the skein product, which amounts to stacking the diagrams
in a specific way. That is, the product L ∗ L′ is obtained by shifting the boundary
points of L and L′ in a clockwise and counter-clockwise direction, respectively, then
placing L on top of L′. The following is an example. We use a different colour for the
(2,2)-tangle diagram to assist comprehension.

12 12 ∗ 1

2

3

1 = 1

2

3

4

5

1
2

3

b

The category structure of S is given by taking the objects to be non-negative
integers and the morphisms HomS(m,n) as linear combinations of ambient isotopy
equivalence classes of (m,n)-tangle diagrams modulo the skein relations. Then the
composition of morphisms is given by the composition of tangle diagrams ‘◦’, while
the skein algebra multiplication ∗ makes S a monoidal category.

Our first result is showing the endomorphisms EndS(n) := HomS(n, n) is isomor-
phic to the extended affine Temperley-Lieb algebra T Ln. The algebra depends on a
parameter t1/2 ∈ C

∗ which is related to A in the skein relations. We prove the isomor-
phism (Theorem 2.3.4) by showing that S is equivalent to the affine Temperley-Lieb
category defined by Graham and Lehrer [38]. This result gives us three descriptions
of T Ln: our skein theoretic version, the original combinatorial/diagrammatic version
and an algebraic version in terms of generators and relations by Green [38, 40]. The
skein theoretic description of T Ln allows us to study skein theoretic representations
of the algebra, which ultimately relate to the dense loop model.

We introduce in Section 2.5 an endofunctor I : HomS(m,n) → HomS(m+1, n+1)

called the arc insertion functor. It is defined as I(L) := L∗Id1 where L ∈ HomS(m,n)
and Id1 is the identity (with respect to composition) in HomS(1, 1). It amounts
to inserting (in a particular way) an extra arc in the tangle diagram that passes
underneath any other paths it may cross.

The arc insertion functor plays a vital role in the PhD thesis. It is an inconspic-
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1.3. Quantum Knizhnik-Zamolodchikov Equations

uous ingredient in constructing the necessary tools to prove closed form expressions
for observables of the dense O(1) loop model. Restricted to the endomorphisms,
EndS(n) ≃ T Ln it gives us a tower of algebras,

T L0
I0−→ T L1

I1−→ T L2
I2−→ · · ·

with connecting maps In which are the algebra maps I|EndS(n) : EndS(n) → EndS(n+

1). The functor also allows us to build towers of T Ln-modules and we introduce a
special one called the link-pattern tower,

V0
φ0−→ V1

φ1−→ V2
φ2−→ V3

φ3−→ · · ·

The modules Vn play an important role in the description of the inhomogeneous
dense loop model on the semi-infinite cylinder [48, 23]. They are the quantum state
space of the model, and the T Ln-action is the quantum symmetry of the dense loop
model. Essentially, V2k and V2k+1 (with k ∈ Z≥0) are the linear spaces HomS(0, 2k)
and HomS(1, 2k+ 1), respectively, with the additional property that loops encircling
the hole of the annulus can be removed and full windings (Dehn twists) to the inner
boundary can be unwound.

The embeddings φn intertwines the natural T Ln action with the T Ln action on
Vn+1. The definition for φ2k is intuitive. It is the arc insertion functor so it is simply
the insertion of an arc. On the other hand φ2k+1 is more subtle. It is this map that
eluded Di Francesco et al. [23]. Generally, φ2k+1 inserts an arc resulting in a diagram
with two inner boundary points which are then connected together in a special way.

There is an explicit connection between Chapter 2 to the work by Roger and Yang
[76] who consider skein modules with poles. The direct sum of the representation
spaces of the link-pattern tower is a graded algebra, and as such may be viewed as a
relative version of Roger’s and Yang’s skein algebra of arcs and links on the punctured
disc. The details are discussed in Remark 2.7.11.

The link-pattern tower is essential to proving the braid recursion of ground state
of the model. This is then subsequently essential in proving braid recursions of ob-
servables. The link-pattern tower provides the representation theoretic setup of the
recursion. By associating the qKZ equations to the link-pattern tower we derive a
tower of solutions that satisfy the braid recursion. The braid recursion arises in the
dense loop model since the ground state is a special solution to the qKZ equations.
These are our main applications of the link-pattern tower and are discussed in the
next section.

1.3 Quantum Knizhnik-Zamolodchikov Equations

The quantum Knizhnik-Zamolodchikov (qKZ) equations are a holonomic system of
q-difference equations and are a quantum analogue of the classical KZ equations [53].

9
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One returns to the KZ equations by setting q → 1. The qKZ equations appear in the
study of quantum affine algebras where Frenkel and Reshetikhin [33] derived them
as equations for matrix elements of products of vertex operators. The equations also
have a connection to solvable lattice models [44] . They can be derived as equations
for traces of products of vertex operators and then their specialisations are equations
for correlation functions. One of the earliest appearances of the qKZ equations was
a special case and it related to quantum field theory. It was when Smirnov [77]
presented them as equations for form factors in two-dimensional integrable models.

Solutions to the equations are vector-valued functions and usually meromorphic
or Laurent polynomial solutions are considered.

Cherednik [8] generalised the qKZ equations to any affine root system and asso-
ciated them to representations of affine Hecke algebras. The original equations were
associated with the affine root system of type A. When associated with a different
type of affine root system such as B, C or D we get the boundary qKZ equations.
These relate to integrable systems with reflecting boundaries and have been used to
study lattice models with boundary conditions as well [18, 20, 68, 81, 84]. We will
stick with the affine root system of type A.

We follow Cherednik’s definition of the qKZ equations and associate it with a rep-
resentation of the extended affine Hecke algebra Hn(t

1/2) of rank n ∈ Z≥0. Hn(t
1/2)

is generated by Ti (i ∈ Z/nZ) and ρ, ρ−1, with its defining relations given in Definition
3.2.1. We define the following R operator,

R̃i(x) :=
xT−1

i − Ti

t
1
2 − t−

1
2 x
,

which we view as a rational Hn(t
1
2 )-valued function in x.

We will restrict to symmetric solutions in which case the equations take on a sim-
pler form. Specifically, fix an Hn(t

1
2 )-module with representation map σ : Hn(t

1
2 ) →

End(V ). Then for a polynomial V -valued function f(z) we define the qKZ equations
to be

σ(R̃i(zi+1/zi))f(. . . , zi+1, zi, . . . ) = f(z) (1 ≤ i < n),

σ(ρ)f(z2, . . . , zn, q
−1z1) = cf(z),

(1.3.1)

and f(z) is said to be a (twisted) symmetric solution if it satisfies the equations
(1.3.1).

In Chapter 3 we introduce towers of symmetric solutions to the qKZ equa-
tions. That is, we consider the qKZ equations associated to the link-pattern tower
{(Vn, φn)}n∈Z≥0

. This induces a natural notion of a tower to the solutions of the qKZ

equations. Specifically, it is a set of solutions (f (n))n≥0 that satisfy equations of the
form

f (n+1)(z1, . . . , zn, 0) = h(n)(z1, . . . , zn)φn(f
(n)(z1, . . . , zn))

10
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with h(n) an elementary pre-factor, see Definition 3.2.9 for details. On the left hand
side of the equation the variable zn+1 is set to 0 to match the number of variables,
while on the right hand side φn is used to lift the representation into Vn+1 to match
the representations. The factor h(n) is a symmetric quasi-constant function. We call
such a set of solutions a qKZ tower (of solutions). The interest in towers is that it
gives a connection between solutions of different rank.

Our application of qKZ towers is to solvable lattice models. The qKZ equations
have been a great help in studying integrable lattice models. By introducing rapidities
(spectral parameters) and moving to an inhomogeneous version of a model, one can
exploit the power of the qKZ equations. One example is when studying the ground
state of an inhomogeneous stochastic integrable model. The ground state of the
model is an eigenvector of the transfer operator and instead of determining it as an
eigenvector one can use the qKZ equations. In other words, the ground state is a
specialised solution to the qKZ equations. We will show in this thesis that the ground
states form a qKZ tower.

Our specific application is to the dense O(1) loop model [23, 48, 58]. The un-
derlying algebra of the model is the extended affine Temperley-Lieb algebra, which
is a quotient of the extended affine Heck algebra. Furthermore, the quantum state
space of the model is given by the T Ln-modules Vn mentioned in the previous sec-
tion. Thus, we construct a qKZ tower using the link-patter tower that is discussed in
Chapter 2. We prove the existence of two qKZ towers, which are the ground states
of the dense O(1) loop model and a qKZ tower on link-patterns related to the O(τ)
dense loop model.

The main result (Theorem 3.4.7) of Chapter 3 is proving the existence of the qKZ
tower on link-patterns and the qKZ tower of the ground state of the dense O(1) loop
model on the semi-infinite cylinder, as well as their explicit braid recursions. The braid
recursion for the ground state was first noted in [23]. However, the authors lacked
the braid recursion down from even (2k) to odd rank (2k − 1) and their argument
was incomplete. By our skein theoretic description of the link-pattern tower we are
able to describe the missing connection. Thus we complete the braid recursion and
provide a rigorous proof by showing that the ground states indeed form a qKZ tower.

Proving the existence of an appropriate polynomial solution to the qKZ equations
is a major step in proving the braid recursion. We prove the existence differently for
generic t

1
4 and t

1
4 = exp(πi/3). In section 3.5 we prove the existence of the solution

when t
1
4 = exp(πi/3) by showing the ground state of the dense O(1) loop model exists

and satisfies the qKZ equations. This argument only holds when t
1
4 = exp(πi/3). In

section 3.6 we prove the existence of the solution for generic t
1
4 by constructing it

from Macdonald polynomials. This uses the Cherednik-Matsuo correspondence as
described by Stokman [78]. The correspondence is a bijection between symmetric
solutions of qKZ equations with values in a principal series module and certain class
of common eigenfunctions for Cherednik’s commuting difference-reflection operators.
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1.4 Loop Models

Loop models have emerged out of the study of phase transitions and critical phenom-
ena in statistical mechanics [4, 24, 62]. They are a class of two-dimensional models
defined on a lattice. The states of the models consist of continuous paths in space
(on the lattice) which do not end, except possibly on the boundary. Paths may or
may not intersect and may or may not overlap. The loops have a weight, τ and the
Boltzmann weights of the states depend on it.

Different types of lattices can be considered [62, 63] but we only concern ourselves
with the square lattice. Furthermore, we consider loops that do not intersect and
do not overlap. Configurations of the lattice are built up from the following local
configurations (or a subset there of).

where we view them as tiles placed on the faces of the lattice. If the weights of all
the tiles are nonzero we call it the dilute loop model. If only the last two tiles have
nonzero weight then the model is called the dense loop model and is also known as
the completely packed loop model or Temperly-Lieb model.

One of the first appearances of loop models was in [4] where the authors re-
derive an equivalence between the Q-states Potts model and an ice-type model. Their
equivalence is graphical and uses a loop model with loop weight τ =

√
Q as an

intermediate step. Loop models can be mapped to a large variety of strictly local
models [64, 65, 83, 82]. Examples are ADE models. percolation, uniform spanning
trees and the Coulomb gas.

Loop models also have application to τ -vector models, also known as O(τ) models.
These are models where spins are unit vectors with τ components. The name O(τ)
refers to the fact that the spins have the symmetry of the orthogonal group. The loop
configurations appear as diagrams in the high temperature expansion of the models.
Furthermore, when the loop weight equals 0 then both the dense and dilute model
gives the partition sums of closed self avoiding walks [26, 25, 12, 17] , which in turn
can be used to describe linear polymers in a solution or a melt.

Both the dense and dilute models have universal critical behaviour when the loop
weight is −2 ≤ τ ≤ 2 . The research presented in this thesis deals with the dense
O(τ) loop model and we will specifically consider the model with loop weight 1.

The dense O(1) loop model [5] saw increased interest due to the (now proven)
Razumov-Stroganov (RS) conjecture [73]. The conjecture was originally a connection
between the ground state of the antiferromagnetic XXZ quantum spin chain on an
odd number of sites and alternating sign matrices (ASM) [72]. The latter are matrices
whose entries are either 0,1 or -1 such that the nonzero entries alternate in sign and
each row and column add up to 1. The connection was that the normalised entries of
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(a) FPL (b) Link-pattern

Figure 1.3: Two FPL of size 3 and their respective link-pattern connectivity.

the XXZ ground state counted the number of ASMs. By mapping the XXZ spin chain
to the dense O(1) loop model [59] the connection to ASMs was made more general.

Fully packed loop configurations (FPL) are in bijection with alternating sign ma-
trices. An FPL of size n is a square lattice with n2 vertices, such that each vertex
is connected to exactly two edges. Furthermore, we fix the boundary conditions such
that the external edges alternate between being occupied or not. Figure 1.3a gives
an example of two FPL configurations of size 3. The connectivity of the external
edges can be encoded as a link-pattern. Figure 1.3b shows the respective link-pattern
encoding the connectivity of the two FPL configurations.

The ground state of the dense O(1) loop model with periodic boundaries has com-
ponents indexed by link-patterns. In its newest form the RS conjecture states that the
the ground state component with link-pattern L counts the number of FPL with con-
nectivity L. Cantini and Sportiello [7] proved the RS conjecture. The RS conjecture
gave rise to numerous new conjectures (some proven) which relate to counting of ASM
or FPL configurations on a finite grid, or the probability of certain operators in the
dense O(1) loop model on the cylinder or half cylinder [67, 59, 74, 21, 22, 31, 14, 86].
It is in this light that we attempt to find exact expressions for the expectation values
of observables.

In Chapter 4 we consider the inhomogeneous dense O(1) loop model on a n ×∞
square lattice with periodic boundaries. Geometrically, the lattice lies on the surface
of an infinite cylinder with a circumference n. Our main results are exact expressions
for two observables.

The first observable we compute (Theorem 4.4.6) is the current through a par-
ticular edge, in the condition that each non-contractible path (around or along the
cylinder) carries one unit of current in a globally prescribed direction. In [15] an exact
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expression was given for the boundary-to-boundary current for the model on a strip
of finite width.

The second observable is the expectation of having a number of loops surrounding
a particular site on the lattice. We call it the nesting number (Theorem 4.5.4).
This was considered by Mitra and Nienhuis for the homogenous model where they
conjectured an exact expression [58]. Our result generalises the expression to the
inhomogeneous model, and proves it. Moreover, the nesting number is expressible in
the magnetisation of the integrable spin-one XXZ model, with an anti-diagonal twist
[41].

The inhomogeneous dense O(1) loop model was considered on the half-infinite
cylinder in [23] and [48]. In the latter, Pasquier and Kasatani show that the ground
state exhibits a recursion in system size. This recursion connects ground states of size
n to n+ 2 and we call it the fusion recursion.

We prove the expressions for the observables using polynomial interpolation. The
fusion- and braid recursion (described in Chapter 3) determine some of the required
interpolation nodes. This method has been used to compute partition sums and
currents for the dense and dilute O(1) loop models [36, 43, 19, 15, 29].

We wish to point out that we have conducted research on the dilute O(1) loop
model as well. However, it is not included in this thesis as technical details still have
to be resolved. The setting is analogous to that of the dense loop model. We are
considering the dilute loop model on the square lattice on the surface of an infinite
cylinder.

We aim to prove closed form expressions for the current and nesting number for
the dilute model. A conjectured expression has been found for the current but not
the nesting number. Recursion relations have also been identified and they are the
analogous version of the fusion and braid recursion. There are significant difference
between the recursions of the dilute and dense model and these are the technicalities
that need to be resolved.

1.5 Summary of main results

Some of the main results of this PhD thesis are the following:

• A developed understanding of the skein category of the annulus and the link-
pattern tower (Chapter 1);

• The braid recursion of qKZ towers and the existence of qKZ towers for link-
pattern models associated to O(τ)-model (Theorem 3.4.7);

• An exact expression for the current and nesting number of the dense O(1) loop
model on the infinite cylinder (Theorems 4.4.6 and 4.5.4);
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1.6 List of publications

The content of Chapters 2-4 is based on the following papers (in progress).

• Chapter 2 : K. Al Qasimi, J. Stokman, The skein category of the annulus.
Submitted to J. Knot Theory Ramifications. Available at arXiv:1710.04058.

• Chapter 3 : K. Al Qasimi, J. Stokman, B. Nienhuis, Towers of solutions to
qKZ equations and applications to loop models. In preparation.

• Chapter 4 : K. Al Qasimi, J. L. Jacobsen, B. Nienhuis, Observables of the
TL O(1) model on the infinite cylinder: Current and Nesting Number. In
preparation.

The authors contributions to the obtained results in the first two papers (Chapters
2 and 3) were equivalent. For Chapter 4 the problem was conceived by Jacobsen and
Nienhuis leading to conjectures by Nienhuis. The conjectures were proven by Al
Qasimi.
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2
The Skein Category of the Annulus

“It’s the best. Mathematics on coffee is so much better.” W.B.
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The Skein Category of the Annulus

In this chapter we introduce and study the skein category S of the annulus A. It is
the linear category with objects the non-negative integers and morphisms HomS(m,n)

the linear skein of the annulus with m marked points on the inner boundary and
n marked points on the outer boundary. In other words, HomS(m,n) consists of
the ambient isotopy classes of (m,n)-tangle diagrams on the annulus modulo the
equivalence relation generated by the Kauffman skein relation and the loop removal
relation. The skein category S is in fact a strict monoidal category with the tensor
product obtained from the relative Kauffman bracket skein product introduced in
Przytycki and Sikora [71].

Following closely to Przytycki [70, §3], we construct a relative version of the Kauff-
man bracket to prove that the skein category S is equivalent to Graham and Lehrer’s
[38] affine Temperley-Lieb category. As a consequence it follows that the endomor-
phism algebra EndS(n) := HomS(n, n) is isomorphic to Green’s [40] n-affine diagram
algebra, also known as the (extended) affine Temperley-Lieb algebra.

We will define an endofunctor I of S called the arc-insertion functor, which on the
level of morphisms inserts a new arc connecting the inner and outer boundary of the
annulus in a particular way while under-crossing all arcs it meets along the way. On
the level of endomorphisms it provides a tower of algebras

EndS(0)
I0−→ EndS(1)

I1−→ EndS(2)
I2−→ · · ·

with connecting maps In which are the algebra maps I|EndS(n) : EndS(n) → EndS(n+
1). This tower was considered before in the context of knot theory [1] and in the
context of fusion of extended affine Temperley-Lieb algebra modules [35] respectively.
It differs from the arc-tower from e.g. [35, 11], which is defined with respect to
the two-step algebra embedding EndS(n) → EndS(n + 2) that corresponds to the
identification of an idempotent subalgebra of EndS(n+ 2) with EndS(n).

We introduce and study towers

V0
φ0−→ V1

φ1−→ V2
φ2−→ V3

φ3−→ · · ·

of extended affine Temperley-Lieb algebra modules. These are chains of left EndS(n)-
modules Vn (n ∈ Z≥0) connected by morphisms φn : Vn → ResIn(Vn+1) of EndS(n)-
modules, where ResIn(Vn+1) is the EndS(n + 1)-module Vn+1 viewed as EndS(n)-
module via the algebra map In : EndS(n) → EndS(n+ 1).

We also introduce a special tower of extended affine Temperley-Lieb algebra mod-
ules, which we will call the link-pattern tower. It depends on a free parameter v,
called the twist weight of the tower. For even n the representation space is spanned
by ambient isotopy classes of (0, n)-tangle diagrams in A without crossings and with-
out loops, connecting n marked points on the outer boundary of A. For odd n the
tangle diagrams include a defect line connecting the outer boundary to the inner
boundary, and we add the rule that Dehn twists of the defect line may be removed
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by v (see (2.7.3)). The EndS(n)-action is described as follows. The skein class of an
(n, n)-tangle diagram on the annulus acts on a diagram D ∈ Vn by placing D inside
the (n, n)-tangle diagram, removing crossings and contractible loops by the skein re-
lations, and removing non-contractible loops by a particular weight factor depending
on v (see (2.7.2)).

For even n the connecting maps φn : Vn → Vn+1 of the link-pattern tower corre-
spond, from the skein theoretic perspective, to the insertion of a defect line, under-
crossing all arcs it meets along the way. These maps were considered before in [23] in
the study of the inhomogeneous dense loop model on the half-infinite cylinder. The
connecting maps φn : Vn → Vn+1 for odd n are more subtle. From a skein theoretic
perspective they can be described as follows. The connecting map φn acts on a di-
agram by detaching the defect line from the inner boundary and reconnecting it to
the outer boundary in two different ways, either encircling the hole of the annulus
before reattaching it to the outer boundary, or not. These two contributions are given
explicit weights depending on the twist weight v and on the Temperley-Lieb algebra
parameter, see Theorem 2.7.3.

We show that the link-pattern tower is non-degenerate for generic parameter val-
ues, in the sense that the induced morphisms φ̂n : IndIn(Vn) → Vn+1 of EndS(n+1)-
modules are surjective, where IndIn(Vn) is the EndS(n+1)-module obtained by induc-
ing Vn along the algebra map In : EndS(n) → EndS(n+1). We relate the link-pattern
tower to the recently introduced fusion [35] of extended affine Temperley-Lieb algebra
modules. We construct for each n ∈ Z≥0 a fused EndS(n + 1)-module Wn+1 and a

morphism ψn :Wn+1 → Vn+1 of EndS(n+1)-modules such that φ̂n factorizes through
ψn. The EndS(n + 1)-module Wn+1 is obtained by fusing the EndS(n)-module Vn
with an one-dimensional EndS(1)-module.

For twist weight v = 1 the representation spaces of the link-pattern tower may be
naturally identified with spaces of link-patterns on the punctured disc D

∗ = D \ {0}
by shrinking the hole of the annulus to a point. The resulting modules play an
important role in the description of the inhomogeneous dense loop models on the
half-infinite cylinder (see, e.g., [48, 23]). We show that in this case the direct sum
of the representation spaces of the link-pattern tower is a graded algebra, and as
such may be viewed as a relative version of Roger’s and Yang’s [76, Def. 2.3] skein
algebra of arcs and links on the punctured disc D∗. In this skein algebra perspective
multiple endpoints of arcs in D∗ × [0, 1] may connect to the pole {0}× [0, 1] but each
line segment {ξ} × [0, 1] above the marked points ξ on the outer boundary of D∗ is
met by only one endpoint. The number of endpoints on ∂D × [0, 1] is the grading
of the associated element in the algebra. In this identification our connecting maps
φn for n odd relate to the puncture-skein relation in [76], which is the skein theoretic
reduction rule when multiple arcs connect to the centre pole {0} × [0, 1]. In fact, the
connecting map φn, for each n ∈ Z≥0, just becomes right multiplication by the class
of the identity of EndS(1) on the nth graded piece of the algebra.

In Chapter 3 we use the link-pattern tower to construct a tower of solutions to
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quantum Knizhnik-Zamolodchikov (qKZ) equations. The tower consists of Vn-valued
solutions of qKZ equations (n ∈ Z≥0) which are compatible with respect to the
connecting maps φn. At the stochastic/combinatorial value of the extended affine
Temperley-Lieb parameter, the Vn-valued solution in the tower reduces to the ground
state of the dense loop model on the half-infinite cylinder with perimeter n. In that
case the tower structure gives explicit recursion relations of the ground states with
respect to the system size, leading to a refinement of the results in [23].

The structure of this chapter is as follows. In Sections 2.1 and 2.2 we define the
category of tangle diagrams, T , and the skein category of the annulus, S, respectively.
We explain in Section 2.2 that S is a monoidal category, with the tensor product
obtained from the relative Kauffman bracket skein product from [71]. In Section
2.3 we introduce Graham’s and Lehrer’s [38] affine Temperley-Lieb category T L,
whose morphisms are defined in terms of affine diagrams, and we show that the affine
Temperley-Lieb category is equivalent to S. In Section 2.4 we define the extended
affine Temperley-Lieb algebra, TLn, algebraically and we recall Green’s [40] result that
TLn is equivalent to the endomorphism algebra EndT L(n) of T L. Combined with the
result from Section 2.3 it leads to three different realisations of the extended affine
Temperley-Lieb algebra (skein theoretic, combinatorial and algebraic). In Section
2.5 we define the arc insertion functor I : S → S. In Section 2.6 we introduce the
notion of towers of extended affine Temperley-Lieb algebra modules. In Section 2.7
we construct the link-pattern tower and we explain how it gives rise to a relative
version of the Roger-Yang [76] skein algebra on the punctured disc. We show in
Section 2.8 how the link-pattern tower is related to fusion. Finally in the last section
we discuss how the resulting tower of extended affine Temperley-Lieb algebras lifts
to extended affine braid groups and extended affine Hecke algebras, and we discuss a
B-type presentation of the extended affine Temperley-Lieb algebra.

This chapter is based on the preprint [2].

2.1 The category of tangle diagrams

Consider the three-manifold Σ := A× [0, 1] with A the annulus

A := {z ∈ C | 1 ≤ |z| ≤ 2}
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in the complex plane. We think of Σ as a thickened cylinder in R3,

Σ =

Write ∂A = Ci ∪ Co for the boundary of A with Ci := S1 = {z ∈ C | |z| = 1}
and Co = {z ∈ C | |z| = 2} (the indices “i" and “o" stand for inner and outer,
respectively). Give A the counterclockwise orientation.

Set ζn := exp(2πi/n) for n ∈ Z>0. Let m,n ∈ Z≥0 with m+ n even. A (framed)
(m,n)-tangle T in Σ is a disjoint union of smooth framed loops and 1

2 (m+n) framed
arcs in Σ satisfying:

a. The loops are in the interior of Σ.

b. The m + n marked points (2ξj−1
m , 1) (1 ≤ j ≤ m) and (2ξi−1

n , 0) (1 ≤ i ≤ n),
framed along ∂A× {1} and ∂A× {0} with the orientation induced from A, are
the endpoints of the framed arcs.

Let proj : Σ → A be the map obtained by projecting radially on the outer wall
Co × [0, 1] of Σ and identifying Co × [0, 1] ≃ A by collapsing the wall Co × [0, 1]

inwards onto the floor A×{0} of Σ. The projection D := proj(T ) of an (m,n)-tangle
T in general position with respect to proj, together with the crossing data at the
crossing points in the diagram, is called an (m,n)-tangle diagram in A.

If we draw a picture of an (m,n)-tangle diagram then we label the inner points
ξi−1
m on the diagram by i (i = 1, . . . ,m) and the outer points 2ξj−1

n by j (j = 1, . . . , n).
An example of a tangle diagram is given in Figure 2.1.

We say that two (m,n)-tangle diagrams D and D′ in A are equivalent if we can
transform D to D′ by a planar isotopy of the annulus that fixes the boundary. That
is, there exists a smooth ambient isotopy h : A × [0, 1] → A fixing ∂A pointwise,
satisfying h(D, 1) = D′ and respecting the crossing data. If D is an (m,n)-tangle
diagram we write D ∈ HomT (m,n) for its equivalence class.

Definition 2.1.1. The category T of tangle diagrams in A is the category with objects
Z≥0 and morphisms HomT (m,n) the equivalence classes of (m,n)-tangle diagrams in
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1

2

3

4

5

1
2

3

b

Figure 2.1: An example of a (3,5)-tangle diagram in A.

A if m+ n is even, and the empty set if m+ n is odd. The composition map

HomT (k,m)× HomT (m,n) → HomT (k, n), (D,D′) 7→ D′ ◦D

is defined as follows: D′ ◦D := D′ ◦D with D′ ◦D the (k, n)-tangle diagram obtained
by rescaling D to {z ∈ C | 1 ≤ |z| ≤ 3

2}, rescaling D′ to {z ∈ C | 3
2 ≤ |z| ≤ 2} and

placing D inside D′. The identity morphism Idn ∈ EndT (n) is the equivalence class
of the tangle diagram with straight line arcs from ξj−1

n to 2ξj−1
n for j = 1, . . . , n and

no loops (it is the empty diagram for n = 0).

An example of the composition of two tangle diagrams is given in (2.1.1).

12 12 ◦ 12 1
2

3
4

= 12 1
2

3
4

(2.1.1)

2.2 The skein category of the annulus

It is well known that skein modules on the strip R × [0, 1] form the morphisms of a
strict monoidal, linear category called the skein category, see, e.g., [80, Chpt. XII].
In this section we extend this result to skein modules on the annulus.

Write C[HomT (m,n)] for the complex vector space with linear basis the equiva-
lence classes of (m,n)-tangle diagrams in A. We take it to be {0} if m + n is odd.
Extend the category T of tangle diagrams in A to a linear category Lin(T ) with ob-
jects Z≥0, morphisms HomLin(T )(m,n) := C[HomT (m,n)], and composition map the
complex bilinear extension of the composition map of T . The skein category on the
annulus is now defined as the quotient category obtained from Lin(T ) by modding
out the Kauffman skein relations [50, 51]:
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2.2. The skein category of the annulus

Definition 2.2.1. Let t
1
4 be a nonzero complex number. The skein category S =

S(t 1
4 ) of the annulus A is the quotient of Lin(T ) by the equivalence relation obtained

by taking the linear and transitive closure of the following local relations on tangle
diagrams:

a. The Kauffman skein relation D ∼ t
1
4D′ + t−

1
4D′′ with D,D′, D′′ three tangle

diagrams that are identical except in a small open disc in A where they are as
shown

D

,

D′

,

D′′

;

b. The loop removal relation D ∼ −(t
1
2 + t−

1
2 )D′ with D,D′ two tangle diagrams

that are identical except in a small open disc in A where they are as shown

D

,

D′

.

Note that if m + n is odd then HomS(m,n) = {0}. If D is a tangle diagram in
A then we will write [D] for the corresponding element in HomS(m,n). We write
1n = [Idn] ∈ EndS(n) for the identity morphism (n ∈ Z≥0).

As is customary in skein theory, we write the Kauffman skein relation in
HomS(m,n) as

= t
1
4 + t−

1
4 (2.2.1)

and the loop removal relation in the skein module HomS(m,n) as

= −(t
1
2 + t−

1
2 ) , (2.2.2)

with the disc showing the local neighbourhood in A where the tangle diagrams differ.
We will also write down identities in skein modules by depicting both sides of the
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The Skein Category of the Annulus

equation as linear combinations of the tangle diagrams D representing [D].

Remark 2.2.2. The important observation, due to Kauffman [50, 51], is that [D] ∈
HomS(m,n) is invariant under the Reidemeister moves R1’, R2 and R3 (see Figure
2.2) and their mirror versions, applied to the (m,n)-tangle diagram D in A. Hence
[D] represents the ambient isotopy class of the associated framed (m,n)-tangle in Σ.

=

b

b

R1’

=
b

b

R2

b
b

b
= b

b

b

R3

Figure 2.2: Reidemeister moves.

Note that the Reidemeister move R1 is only satisfied up to a scalar multiple,

b = −t 3
4 b = −t− 3

4

Remark 2.2.3. The morphism space HomS(m,n) can be identified with a relative
Kauffman bracket skein module on the thickened cylinder Σ with (framed) marked
points (2ξi−1

m , 1) (1 ≤ i ≤ m) and (2ξj−1
n , 0) (1 ≤ j ≤ n), cf. [70]. The identifica-

tion goes through the projection map proj. In this 3-dimensional description of the
hom-spaces the composition rule turns into the vertically stacking of the thickened
cylinders.

We now show that the skein category S is a strict monoidal, linear category. The
tensor functor ×S : S × S → S on objects m,n ∈ Z≥0 is given by m ×S n :=
m+n. On morphisms the tensor product is defined through Przytycki’s and Sikora’s
[71, §3] relative version of the skein algebra multiplication on the associated relative
Kauffman bracket skein modules from Remark 2.2.3. On the level of tangles T, T ′

on the thickened cylinder Σ, the Kauffman bracket skein product T · T ′ amounts to
placing T ′ inside the solid cylindrical hole of the thickened cylinder of T and moving
the endpoints of the arcs to the marked points on Co ×{1} and Co ×{0} in a specific
way. The exact rule regarding the repositioning of the endpoints is determined as
follows.
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2.2. The skein category of the annulus

Before putting T ′ inside T , fix the parameterisations γℓ(s) := (2 exp(2πis), ℓ)
(s ∈ [0, 1]) of Co × {ℓ} ⊂ A × {ℓ} (ℓ = 0, 1). Place the endpoints of the two tangles
T and T ′ on the line segments (1, 2]× {ℓ} ⊂ A× {ℓ} (ℓ = 0, 1) using an isotopy of Σ
which, for ℓ ∈ {0, 1}, stabilises A×{ℓ}, fixes the endpoint (2, ℓ) ∈ ∂Σ and pushes, for
ǫ > 0 sufficiently small, the boundary arc γℓ([0, 1−ǫ]) into the line segment (1, 2]×{ℓ}.
The skein algebra multiplication rule then produces a new tangle with endpoints on
the two line segments (1, 2]× {ℓ} (ℓ = 0, 1), which is converted back to a tangle with
endpoints on the marked points on Co × {ℓ} (ℓ = 0, 1) by applying a reverse isotopy
of the type as described above (see [71, §3] for further details).

Through the projection map proj the relative skein algebra multiplication rule as
described in the previous paragraph gives bilinear operations

HomS(k, ℓ)× HomS(m,n)
×S−→ HomS(k +m, ℓ+ n), ([D], [D′]) 7→ [D]×S [D′]

for k, ℓ,m, n ∈ Z≥0. They are explicitly described as follows. Let D be a (k, ℓ)-tangle
diagram on A and D′ an (m,n)-tangle diagram on A. Then [D] ×S [D′] = [D ∗D′]
with D ∗D′ the following (k +m, ℓ+ n)-tangle diagram.

Let Dy be a diagram on A obtained from D by applying a planar isotopy of A
which

1. rotates the endpoints ξi−1
k ∈ Ci clockwise to ξi−1

k+m (1 ≤ i ≤ k),

2. rotates the endpoints 2ξi−1
ℓ ∈ Co clockwise to ξi−1

ℓ+n (1 ≤ i ≤ ℓ),

3. fixes some straight line segment between the inner and outer boundary of A.

Similarly, let D′
x be the diagram on A obtained from D′ by applying a planar isotopy

of A which

1. rotates the endpoints ξi−1
m ∈ Ci counterclockwise to ξk+i−1

k+m (1 ≤ i ≤ m),

2. rotates the endpoints 2ξi−1
n ∈ Co counterclockwise to 2ξn+i−1

ℓ+n (1 ≤ i ≤ n),

3. fixes some straight line segment between the inner and outer boundary of A.

Then D ∗D′ is the (k +m, ℓ+ n)-tangle diagram obtained by placing Dy on top of
D′

x.
In the following picture we give an example of the ∗-product of two tangle diagrams

on A. We use a different colour for the (2,2)-tangle diagram to assist comprehension.

12 12 ∗ 1

2

3

1 = 1

2

3

4

5

1
2

3

b
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The Skein Category of the Annulus

Example 2.2.4. When taking the tensor product with EndS(0), the following tensor
product maps EndS(0)×HomS(m,n) → HomS(m,n) and HomS(m,n)×EndS(0) →
HomS(m,n) correspond to placing knot diagrams on top or below tangle diagrams
within HomS(m,n). The resulting EndS(0)-bimodule structure on HomS(m,n) has
been described and studied in the more general context of relative Kauffman skein
modules over surfaces, see, e.g., [70, 69]. See also [54, §4.1] for a discussion of
HomS(0, 2) as EndS(0)-bimodule.

Proposition 2.2.5. The skein category S of the annulus is a strict monoidal linear
category with tensor functor ×S : S × S → S as defined above, and unit object 0.

Proof. By the remarks preceding the proposition, the only non-trivial check is the
compatibility of ×S with composition of morphisms. For the first tensor component
this follows from the fact that all the endpoints of D in D ∗D′ are rotated clockwise,
while over-rotation by angles ≥ 2π cannot occur due to the third property of the
planar isotopy transforming D into Dy. A similar remark applies for the second
tensor component.

We write ⊗ for the usual tensor product of complex vector spaces.

Corollary 2.2.6. For m,n ∈ Z≥0 we have algebra morphisms

ǫm,n : EndS(m)⊗ EndS(n) → EndS(m+ n)

defined by ǫm,n

(
[D]⊗ [D′]

)
:= [D]×S [D′] = [D ∗D′].

As we shall see in Remark 2.4.4, the algebra EndS(m) is isomorphic to the mth
extended affine Temperley-Lieb algebra. Under this identification, the algebra maps
ǫm,n were considered before in [35, §3.3].

2.3 Equivalence with the affine Temperley-Lieb cat-

egory

The affine Temperley-Lieb category was introduced by Graham and Lehrer [38]. In
this category the morphisms are affine diagrams, which are defined as follows.

Definition 2.3.1. Let m,n ∈ Z≥0. An affine (m,n)-diagram is an (m,n)-tangle
diagram in A with no crossings and without contractible loops in A. We write Dm,n

for the subclass of HomT (m,n) consisting of equivalence classes D of affine (m,n)-
diagrams D.

Remark 2.3.2. An affine diagram on the annulus can be viewed as a periodic diagram
on the infinite horizontal strip by cutting the annulus open along a line segment
connecting the inner and outer boundary of A and extending the resulting diagram
periodically. This is how affine diagrams were originally considered in [38, 40].
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2.3. Equivalence with the affine Temperley-Lieb category

Let Linc(T ) be the quotient of the linear category Lin(T ) by the loop removal rela-
tion (2.2.2) (compare with Definition 2.2.1). The sublabel “c" stands for contractible,
signifying that in Linc(T ) contractible loops in tangle diagrams may be removed by
the multiplicative factor −(t

1
2 + t−

1
2 ). If D is an (m,n)-tangle diagram then we write

〈D〉 for its equivalence class in HomLinc(T )(m,n).
Note that the skein category S is the quotient of Linc(T ) by the Kauffman skein

relation (2.2.1). Graham’s and Lehrer’s [38] affine Temperley-Lieb category, which
is closely related to Jones’ [46] annular Temperley-Lieb category, is the following
subcategory of Linc(T ).

Definition 2.3.3 ([38]). The affine Temperley-Lieb category T L = T L(t 1
2 ) is the

linear subcategory of Linc(T ) with objects Z≥0 and morphisms HomT L(m,n) the sub-
space of HomLinc(T )(m,n) spanned by the equivalence classes 〈D〉 of affine (m,n)-
diagrams D.

If D is an affine (m,n)-diagram and D′ is an affine (k,m)-diagram then

〈D〉 ◦ 〈D′〉 =
(
−t 1

2 − t−
1
2

)l(D′′)〈D′′
c 〉

in HomT L(k, n), with D′′ the (k, n)-tangle diagram in A obtained by inserting D′

inside D (in the same way as in Definition 2.1.1), with l(D′′) the number of loops in
D′′ contractible in A, and with D′′

c ∈ Dk,n the affine (k, n)-diagram obtained from
D′′ by removing the contractible loops.

Note that HomT L(m,n) = {0} if m+ n is odd, and

{〈D〉 | D affine (m,n)-diagram}

is a linear basis of HomT L(m,n).
Next we show that the linear categories S and T L are equivalent. The subtle point

is to show that the obvious linear functor from T L to S is faithful. The proof uses
a relative version of the Kauffman bracket for (m,n)-tangle diagrams in A, compare
with the proof of [70, Thm. 3.1].

Theorem 2.3.4. The linear categories S and T L are equivalent.

Proof. Consider the essentially surjective linear functor F : T L → S which is the
identity on objects and maps 〈D〉 to [D] for an affine (m,n)-diagram D. It is clearly
well defined since the loop removal relation holds in S as well as in T L.

Let D be an (m,n)-tangle diagram in A. The Kauffman skein relation and the
loop removal relation allow us to write [D] as a linear combination of classes [D′] ∈
HomS(m,n) with the D′’s being affine (m,n)-diagrams. It follows that the functor
F is full. It remains to show that F is faithful.

Suppose that m + n is even and let D be an (m,n)-tangle diagram in A with
k crossing points. Let SD be the set of cardinality 2k containing the (m,n)-tangle
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The Skein Category of the Annulus

diagrams S without crossings that are obtained from D by removing each crossing

in D by either or . For S ∈ SD let hD(S) (respectively vD(S)) be the

number of crossing points at which is replaced by (respectively ). Let

cD(S) be the number of loops in S that are contractible in A, and write S̃ for the
affine (m,n)-diagram obtained from S by removing these contractible loops.

It is easy to see that there exists a well defined linear map

ψ̂ : C[HomT (m,n)] → HomT L(m,n)

satisfying

ψ̂(D) :=
∑

S∈SD

(
−t 1

2 − t−
1
2

)cD(S)
t(hD(S)−vD(S))/4〈S̃〉 (2.3.1)

for all (m,n)-tangle diagrams D in A. Direct computations show that the map ψ̂

respects the Kauffman skein relation (2.2.1) and the loop removal relation (2.2.2), so
it gives rise to a linear map

ψ : HomS(m,n) → HomT L(m,n)

satisfying ψ([D]) = ψ̂(D) for (m,n)-tangle diagrams D in A.
By the Kaufmann skein relation (2.2.1) and the loop removal relation (2.2.2), the

linear map ψ is the inverse of the linear map F : HomT L(m,n) → HomS(m,n). This
shows that F is faithful.

Remark 2.3.5. The special case EndS(0) ≃ EndT L(0) was established for general
surfaces in [70, Lem. 3.3].

Definition 2.3.6. We call ψ([D]) = ψ̂(D) ∈ HomT L(m,n) (see (2.3.1)) the relative
Kauffman bracket of the (m,n)-tangle diagram D in A.

Remark 2.3.7. Note that for (m,n) = (0, 0), the relative Kauffman bracket ψ([D])
of a link diagram D in A lands in the algebra EndT L(0), which is isomorphic to the
algebra of polynomials in one variable (the variable corresponds to the equivalence
class of a non-contractible loop in A). Evaluating the resulting polynomial at −t 1

2 −
t−

1
2 can be thought of as closing the hole of the annulus and viewing the link diagram

as an element in the skein module of the disc (or equivalently, of the plane). As a
result one obtains the usual Kauffman [50] bracket of D, viewed as a link diagram in
the plane (see [55] and [60, §1.7]).

2.4 The extended affine Temperley-Lieb algebra

Write TL0 := C[X ] for the algebra of complex polynomials in one variable X and
TL1 := C[ρ, ρ−1] for the algebra of complex Laurent polynomials in the variable ρ.
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2.4. The extended affine Temperley-Lieb algebra

Let TL2 be the complex associative unital algebra with generators e1, e2, ρ, ρ−1 and
defining relations

e2i =
(
−t 1

2 − t−
1
2

)
ei,

ρei = ei+1ρ,

ρρ−1 = 1 = ρ−1ρ,

ρ2e1 = e1,

where the indices are taken modulo two. Finally, for n ≥ 3 let TLn be the complex
associative unital algebra with generators e1, e2, . . . , en, ρ, ρ−1 and defining relations

e2i =
(
−t 1

2 − t−
1
2

)
ei,

eiej = ejei if i− j 6= ±1,

eiei±1ei = ei,

ρei = ei+1ρ,

ρρ−1 = 1 = ρ−1ρ,
(
ρe1
)n−1

= ρn(ρe1),

(2.4.1)

where the indices are taken modulo n. Observe that the last defining relation
(ρe1)

n−1 = ρn(ρen) in (2.4.1) can be replaced by

ρ2en−1 = e1e2 · · · en−1.

Note that TLn = TLn(t
1
2 ) for n ≥ 2 depends on the nonzero complex parameter t

1
2 ,

which we omit from the notations if no confusion can arise.

Remark 2.4.1. The definition for n = 2 and n ≥ 3 can be placed at the same foot-
ing by describing TLn in terms of the smaller set e1, e2, . . . , en−1, ρ, ρ

−1 of algebraic
generators. The defining relations then are

e2i =
(
−t 1

2 − t−
1
2

)
ei, , 1 ≤ i < n,

eiej = ejei 1 ≤ i, j < n and i− j 6= ±1,

eiei±1ei = ei, 1 ≤ i, i± 1 < n,

ρei = ei+1ρ, 1 ≤ i < n− 1,

ρ2en−1 = e1ρ
2,

ρρ−1 = 1 = ρ−1ρ,

ρ2en−1 = e1e2 · · · en−1.

(2.4.2)

Definition 2.4.2 ([40]). TLn is called the (nth) extended affine Temperley-Lieb al-
gebra.
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The Skein Category of the Annulus

Denote T Ln := EndT L(n) for the algebra of endomorphisms of n in the affine
Temperley-Lieb category T L. The following result is essentially due to Green [40].

Theorem 2.4.3. a. TL0 ≃ T L0 with the algebra isomorphism TL0 → T L0 defined
by

X 7→

b. TL1 ≃ T L1 with the algebra isomorphism TL1 → T L1 defined by

ρ 7→ 1 (2.4.3)

c. TL2 ≃ T L2 with the algebra isomorphism TL2 → T L2 defined by

ρ 7→ 12 , e1 7→ 12 , e2 7→ 12

(2.4.4)
d. If n ≥ 3 then TLn ≃ T Ln with the algebra isomorphism TLn → T Ln defined by

ρ 7→ 1

2

1
n

, ei 7→ 1

i−1

i
i+1 i+2

1
i

(2.4.5)

for i = 1, . . . , n (with the indices and the labels of the marked points taken modulo n).

Proof. a and b are well known (see, for instance, [60, §1.7] and [61, §4]), while d is
due to Green [40, Prop. 2.3.7].
Proof of c: A direct check shows that there exists a unique unital algebra homomor-
phism φ : TL2 → T L2 satisfying (2.4.4).

Recall that the set D2 of affine (2, 2)-diagrams form a linear basis of T L2. The
affine (2, 2)-diagrams can be described explicitly as follows.

The affine (2, 2)-diagram φ(ρm) for m ∈ Z is obtained from the identity element of
T L2 by winding the outer boundary counterclockwise by an angle of mπ. It follows
that the pairwise distinct affine (2, 2)-diagrams φ(ρm) (m ∈ Z) form the subset of D2

consisting of affine (2, 2)-diagrams whose arcs all connect the inner boundary with the
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2.5. The arc insertion functor

outer boundary. The remaining affine (2, 2)-diagrams are the diagrams of the form

12 12 12 12

in which r non-intersecting, non-contractible loops are inserted for some r ∈ Z≥0. For
r = 2k the resulting four types of affine (2, 2)-diagrams are

φ(e2(e1e2)
k), φ(e1(e2e1)

k), φ(ρe1(e2e1)
k), φ(ρe2(e1e2)

k).

For r = 2k + 1 they are

φ(ρ(e1e2)
k), φ(ρ(e2e1)

k), φ((e2e1)
k), φ((e1e2)

k).

Hence φ maps the subset

{ρm}m∈Z ∪ {(e2e1)k, ρ(e2e1)k, e1(e2e1)k, ρe1(e2e1)k}k∈Z≥0

∪ {(e1e2)k, ρ(e1e2)k, e2(e1e2)k, ρe2(e1e2)k}k∈Z≥0

(2.4.6)

of TL2 bijectively onto the linear basis D2 of T L2. By the defining relations in TL2

we see that (2.4.6) spans TL2. We conclude that φ is an isomorphism of algebras.

Remark 2.4.4. By Theorem 2.3.4 we now also have a skein-theoretic description
EndS(n) of the nth extended affine Temperley-Lieb algebra,

TLn ≃ T Ln ≃ EndS(n). (2.4.7)

The skein-theoretic description of the finite Temperley-Lieb algebra is described in
[50, 51, 55, 60].

2.5 The arc insertion functor

Definition 2.5.1. The arc insertion functor I : S → S is the endofunctor I :=

−×S 1, defined concretely by

I(m) := m×S 1 = m+ 1,

I
(
[D]
)
:= [D]×S 11 = [D ∗ Id1]

for m ∈ Z≥0 and for tangle diagrams D.

Let D be an (m,n)-tangle diagram and write Dins = D ∗ Id1, so that I([D]) =
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The Skein Category of the Annulus

[Dins]. The (m+1, n+1)-tangle diagramDins is obtained fromD by inserting an arc in
D connecting the inner boundary of A with its outer boundary and going underneath
all arcs it meets. See Section 2.2 for the specific requirements on the location of the
endpoints and on the winding of the inserted arc. We give two examples.

Example 2.5.2. For the (0, 2)-tangle diagram D1 and the (1, 3)-tangle diagram D2

given by

D1 := 12 D2 := 1

2

3

we get

Dins
1 = 1

2

3

b
Dins

2 = 1

2

3

4

b

For n ∈ Z≥0 consider the unit preserving algebra map

In := I|Sn : EndS(n) → EndS(n+ 1).

In terms of the algebra maps ǫm,n (see Corollary 2.2.6) we have In([D]) = ǫn,1([D]⊗
11). The map In can be interpreted as an algebra map In : TLn → TLn+1 since
TLn ≃ EndS(n) (see Theorem 2.4.3 and Remark 2.4.4). In the following proposition
we explicitly compute In on the algebraic generators of TLn.

Proposition 2.5.3. a. I0(X) = t
1
4 ρ+ t−

1
4 ρ−1.

b. I1(ρ) = ρ(t−
1
4 e1 + t

1
4 ) and I1(ρ−1) = (t

1
4 e1 + t−

1
4 )ρ−1.

c. For n ≥ 2 we have

In(ei) = ei, i = 1, . . . , n− 1,

In(en) = (t
1
4 en + t−

1
4 )en+1(t

− 1
4 en + t

1
4 ),

In(ρ) = ρ(t−
1
4 en + t

1
4 ),

In(ρ−1) = (t
1
4 en + t−

1
4 )ρ−1.

Proof. These are direct computations in the skein module.
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2.5. The arc insertion functor

Proof of a: We have X = so

I0(X) = 1 = t
1
4 1 + t−

1
4 1 = t

1
4 ρ+ t−

1
4 ρ−1

by the Kauffman skein relation (2.2.1).

Proof of b: We have ρ = 1 so

I1(ρ) = 2 1 = ρ(t−
1
4 e1 + t

1
4 )

by applying the Kauffman skein relation (2.2.1) to the crossing and rewriting the
resulting expressions in terms of the generators of TL2 (compare with the proof of
Theorem 2.4.3c). In a similar way one proves the explicit formula for I1(ρ−1) ∈ TL2.
Proof of c: The formulas for In(ρ±1) ∈ TLn+1 are obtained by a similar computation
as in b.

For 1 ≤ i < n, applying the arc insertion functor to ei ∈ TLn does not introduce
crossings. The resulting (n + 1, n + 1)-affine diagram represents the generator ei in
TLn+1, so In(ei) = ei.

Note that applying the arc insertion functor to en ∈ TLn introduces two crossings.
Resolving both crossings with the Kauffman skein relation (2.2.1) and expressing the
resulting linear combination of four (n + 1, n + 1)-affine diagrams in terms of the
generators of TLn+1 yield the formula

In(en) = t
1
2 enen+1 + t−

1
2 en+1en + en+1 + en = (t

1
4 en + t−

1
4 )en+1(t

− 1
4 en + t

1
4 ).

Remark 2.5.4. The calculation for part a in the proposition above has also been
done in [54, Prop. 2.2] where a similar skein algebra on the annulus is used to prove
centrality of certain skeins.
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2.6 Towers of extended affine Temperley-Lieb alge-

bra modules

In [1] the sequence {In}n∈Z≥0
of algebra maps In : TLn → TLn+1 was used to study

affine Markov traces. In [35] it was used to study fusion of affine Temperley-Lieb
modules. In the next two sections we use the sequence {In}n∈Z≥0

of algebra maps
to introduce the notion of towers of extended affine Temperley-Lieb modules. We
construct examples that are relevant for understanding the dependence of dense loop
models and Heisenberg XXZ spin- 12 chains on their system size (cf. [48, 23]).

We first introduce some notations. Let A be a C-algebra. Write CA for the cat-
egory of left A-modules. Write HomA(M,N) for the space of morphisms M → N

in CA, which we will call intertwiners. Suppose that η : A → B is a (unit preserv-
ing) morphism of C-algebras. Write Indη : CA → CB and Resη : CB → CA for the
corresponding induction and restriction functor. Concretely, if M is a left A-module
then

Indη(M) := B ⊗A M

with B viewed as right A-module by b · a := bη(a) for b ∈ B and a ∈ A. If N is a
left B-module then Resη(N) is the complex vector space N viewed as A-module by
a · n := η(a)n for a ∈ A and n ∈ N . The restriction functor Resη is right adjoint to
Indη. If M is a left A-module and N a left B-module, then the corresponding linear
isomorphism

HomA

(
M,Resη(N)

) ∼−→ HomB

(
Indη(M), N

)

is φ 7→ φ̂ with φ̂ ∈ HomB

(
Indη(M), N

)
defined by

φ̂
(
Z ⊗A m

)
:= Zφ(m)

for Z ∈ B and m ∈M .

For a left TLn+1-module Vn+1 we use the shorthand notation V I
n+1 for the left

TLn-module ResIn(Vn+1).

Definition 2.6.1. We call

V0
φ0−→ V1

φ1−→ V2
φ2−→ V3

φ3−→ · · ·

with Vn a left TLn-module and φn ∈ HomTLn

(
Vn, V

I
n+1

)
a tower of extended

affine Temperley-Lieb algebra modules. We will sometimes denote the tower by
{(Vn, φn)}n∈Z≥0

.

Example 2.6.2. The interpretation of the extended affine Temperley-Lieb algebras
as the endomorphism spaces of the skein category S immediately produces examples of
towers of extended affine Temperley-Lieb algebra modules. For example, for m ∈ Z≥0
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2.7. The link-pattern tower

we have the tower {(V (m)
n , φ

(m)
n )}n∈Z≥0

with

V (m)
n := HomS(m+ n, n)

viewed as a left module over TLn ≃ EndS(n) with representation map

π(m)
n (Y )Z := Y ◦ Z

for Y ∈ EndS(n) and Z ∈ V
(m)
n = HomS(m+ n, n), and with intertwiners

φ(m)
n := I|HomS(m+n,n) : V

(m)
n → V

(m)
n+1 .

There are other intertwiners V (m)
n → V

(m)
n+1 one can take here; for instance, Z 7→

I(Z) ◦ R for some R ∈ EndS(m+ n+ 1). A refinement of this example will play an
important role in the construction of the link-pattern tower in the next section.

In the definition of towers {(Vn, φn)}n∈Z≥0
of extended affine Temperley-Lieb alge-

bra modules we do not require conditions on the intertwiners φn, in particular allowing
trivial intertwiners. The interesting towers are the non-degenerate ones, which are
defined as follows.

Definition 2.6.3. We say that the tower {(Vn, φn)}n∈Z≥0
of extended affine

Temperley-Lieb algebra modules is non-degenerate if φ̂n : IndIn(Vn) → Vn+1 is sur-
jective for all n ∈ Z≥0.

In particular, for a non-degenerate tower {(Vn, φn)}n∈Z≥0
of extended affine

Temperley-Lieb algebra modules, the module Vn+1 is a quotient of IndIn(Vn),

Vn+1 ≃ coim
(
φ̂n
)
.

We give an important example of a non-degenerate tower of extended affine
Temperley-Lieb algebra modules in the next section.

2.7 The link-pattern tower

Motivated by applications to integrable models in statistical physics [48, 23], in par-
ticular to the dense loop model and the Heisenberg XXZ spin− 1

2 chain, we construct
in this section a family of towers of extended affine Temperley-Lieb algebra modules
acting on spaces of link-patterns on the punctured disc. We use the skein categorical
context to build the tower.

The composition in the skein category S turns the hom-space HomS(m,n) into a
EndS(n)-EndS(m)-bimodule. We regard this as a TLn-TLm-bimodule structure on
HomS(m,n) using the isomorphism EndS(n) ≃ TLn from Remark 2.4.4. Note that

35



The Skein Category of the Annulus

for a left TLm-module Wm,

HomS(m,n)⊗TLm Wm

is naturally a left TLn-module.

For n = 2k with k ∈ Z≥0 and u ∈ C we define the left TL2k-module V2k(u) by

V2k(u) := HomS(0, 2k)⊗TL0
C

(u)
0 ,

with C
(u)
0 the one-dimensional module over TL0 = C[X ] satisfying X 7→ u. For

Y ∈ HomS(0, 2k) we write Yu for the element Y ⊗TL0 1 in V2k(u).

For n = 2k + 1 with k ∈ Z≥0 and v ∈ C∗ we define the left TL2k+1-module
V2k+1(v) by

V2k+1(v) := HomS(1, 2k + 1)⊗TL1
C

(v)
1 ,

with C
(v)
1 the one-dimensional module over TL1 = C[ρ±1] satisfying ρ 7→ v. For

Z ∈ HomS(1, 2k + 1) we write Zv for the element Z ⊗TL1
1 in V2k+1(v).

Remark 2.7.1. The left TL2k+1-module V2k+1(v) and the left TL2k-module V2k(u)
are examples of the so-called standard TLN -modules Wj,z[N ] from [35, §4.2] (the
extended affine Temperley-Lieb algebra TLN is denoted by TLa

N in [35]). Concretely,
writing u = x+ x−1 with x ∈ C∗, we have

V2k(u) = W0,x[2k], V2k+1(v) = W 1
2 ,v

[2k + 1].

Next we study towers having the modules V2k(u) and V2k+1(v) as building blocks.
For this we need special elements in the skein modules EndS(0), EndS(1) and
HomS(0, 2). Let ∅ ∈ EndS(0) be the skein class of the empty tangle diagram in
A and write 1 := 11 for the identity morphism in EndS(1). Then V0(u) = C∅u
and V1(v) = C1v. For V2(u), note that the skein module HomS(0, 2) is a free right
TL0 = C[X ]-module with TL0-basis {[c+], [c−]}, where

c+ = 12 , c− = 12 .

In particular, V2(u) is two-dimensional with linear basis {(c+)u, (c−)u}. Write U :=
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2.7. The link-pattern tower

t
1
4 [c+] + v[c−] ∈ HomS(0, 2). In pictures,

U = t
1
4 12 + v 12 .

Lemma 2.7.2. Let u ∈ C and v ∈ C∗.

(i) Define the linear map φ0 : V0(u) → V1(v) by φ0(∅u) := 1v. Then

HomTL0

(
V0(u), V1(v)

I
)
=

{
Cφ0 if u = t

1
4 v + t−

1
4 v−1,

{0} otherwise.

(ii) Let u = t
1
4 v + t−

1
4 v−1. Define the linear map φ1 : V1(v) → V2(u) by φ1(1v) :=

Uu. Then
HomTL1

(
V1(v), V2(u)

I
)
= Cφ1.

Proof. (i) Note that φ0 ∈ HomTL0

(
V0(u), V1(v)

I
)

if and only if I0(X)1v = u1v.

Proposition 2.5.3(a) gives I0(X)1v = (t
1
4 v + t−

1
4 v−1)1v, hence the result.

(ii) Take an arbitrary element Zu ∈ V2(u) with Z ∈ HomS(0, 2). The linear map
χ : V1(v) → V2(u) defined by χ(1v) = Zv is in HomTL1

(
V1(v), V2(u)

I
)

if and only if

I1(ρ)Zu = vZu

in V2(u). By Proposition 2.5.3(b) we have I1(ρ) = ρ(t−
1
4 e1 + t

1
4 ). A direct computa-

tion in HomS(0, 2) shows that

ρ(t−
1
4 e1 + t

1
4 ) ◦ [c+] = −t− 3

4 [c−],

ρ(t−
1
4 e1 + t

1
4 ) ◦ [c−] = t

1
4 [c+] + t−

1
4 ([c−] ◦X),

(2.7.1)

where we have used the loop removal relation (2.2.2) in the derivation of the first
identity. Writing mα,β := α(c+)u + β(c−)u ∈ V2(u) with α, β ∈ C we obtain from
(2.7.1),

I1(ρ)mα,β = ρ(t−
1
4 e1 + t

1
4 )mα,β = vmα′,β′

with

(α′

β′

)
=M

(α
β

)
, M :=

(
0 t

1
4 v−1

−t− 3
4 v−1 1 + t−

1
2 v−2

)
.

Since m
t
1
4 ,v

= Uu it remains to show that M has eigenvalue 1 with corresponding
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eigenspace C

(
t
1
4

v

)
. Clearly

(
t
1
4

v

)
is an eigenvector of M with eigenvalue 1. The

characteristic polynomial of M is

pM (λ) = (λ − 1)(λ− t−
1
2 v−2),

hence the result follows for t−
1
2 v−2 6= 1. If t−

1
2 v−2 = 1 then a direct check shows that

the geometric multiplication of the eigenvalue 1 of M is still one.

Note that the intertwiners φ0 and φ1 can alternatively be characterised by the
formulas

φ0(Yu) =
(
I(Y )

)
v
, Y ∈ EndS(0),

φ1(Zv) =
(
I(Z) ◦ U

)
u
, Z ∈ EndS(1)

since I(∅)v = 1v and (I(1) ◦ U)u = Uu.

The following theorem shows that φ0 and φ1 can be extended to a non-degenerate
tower

V0(u)
φ0−→ V1(v)

φ1−→ V2(u)
φ2−→ · · ·

of extended affine Temperley-Lieb modules when u = t
1
4 v + t−

1
4 v−1.

Theorem 2.7.3. Let v ∈ C∗. Set u := t
1
4 v + t−

1
4 v−1 and let k ∈ Z≥0.

(i) There exist unique intertwiners φ2k ∈ HomTL2k

(
V2k(u), V2k+1(v)

I
)

and
φ2k+1 ∈ HomTL2k+1

(
V2k+1(v), V2k+2(u)

I
)

satisfying

φ2k(Yu) :=
(
I(Y )

)
v
, Y ∈ HomS(0, 2k),

φ2k+1(Zv) :=
(
I(Z) ◦ U

)
u
, Z ∈ HomS(1, 2k + 1).

(ii) The tower

V0(u)
φ0−→ V1(v)

φ1−→ V2(u)
φ2−→ V3(v)

φ3−→ · · ·
of extended affine Temperley-Lieb algebra modules is non-degenerate if v2 6= t

1
2 .

Proof. (i) If the maps φ2k and φ2k+1 are well-defined, then they are obviously in-
tertwiners. To prove that φ2k and φ2k+1 are well-defined we have to show that(
I(Y )◦I(X)

)
v
= uI(Y )v in V2k+1(v) for Y ∈ HomS(0, 2k) and

(
I(Z)◦(I(ρ)◦U)

)
u
=

v
(
I(Z) ◦U

)
u

in V2k+2(u) for Z ∈ HomS(1, 2k+ 1). This is analogous to the proof of
Lemma 2.7.2.
(ii) Consider the tangle diagrams
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C(2k) := 1

2k

k

k+1 C(2k+1) := 1

2k+1

k

k+1

2k

respectively. We claim that V2k(u) = TL2k · [C(2k)]u and V2k+1(v) = TL2k+1 ·
[C(2k+1)]v.

To prove this we use the matchmaker representation of the finite Temperley-Lieb
algebra TLfin

2k (see, e.g., [13, §2.1]). The finite Temperley-Lieb algebra TLfin
2k is the

subalgebra of TL2k generated by e1, . . . , e2k−1. The representation space M2k of
the matchmaker representation is the vector space with linear basis the non-crossing
perfect matchings of {1, . . . , 2k}. Such non-crossing perfect matchings are viewed as
non-intersecting arcs in a strip with the ordered endpoints 1, . . . , 2k positioned on
the bottom line of the strip. We will call such non-crossing perfect matchings link-
patterns. The ej acts on link-patterns as the matchmaker of j and j+1 (see [13, (1)]),
with the convention that if j and j+1 in the link-pattern were already matched, then
ej acts by multiplication by the scalar factor −(t

1
2 + t−

1
2 ).

Let L(2k) ∈M2k be the link-pattern connecting j to 2k+1−j for j = 1, . . . , 2k. By
wrapping the link-pattern on the annulus in such a way that {1, . . . , 2k} correspond to
the marked points 2ξj−1

2k (j = 1, . . . , 2k), we get an injective TLfin
2k -module morphism

M2k →֒ V2k(u) mapping L(2k) to [C(2k)]u. If we in addition insert an arc via − ∗ Id1

before projecting onto the skein, we get an injective TLfin
2k -module morphism M2k →֒

V2k+1(v) mapping L(2k) to [C(2k) ∗ Id1]v = [C(2k+1)]v.

With these observations and the fact that ρ ∈ TLn can be used to turn diagrams
in A counterclockwise by an angle of 2π/n, the claim is a consequence of M2k =
TLfin

2k · L(2k). This in turn is easy to establish using the alternative description of
link-patterns in terms of Dyck paths (see Chapter 3 or [16, §2.4]).

Now note that

φ̂2k
(
12k+1 ⊗TL2k

[C(2k)]u
)
=
(
I
(
[C(2k)]

))
v
= [C(2k+1)]v

hence φ̂2k ∈ HomTL2k+1

(
IndI2k

(
V2k(u)

)
, V2k+1(v)

)
is surjective. By a direct compu-

tation we have

φ̂2k+1

(
ek+1 · · ·e2ke2k+1 ⊗TL2k+1

[C(2k+1)]v
)
=

=
(
ek+1 · · · e2ke2k+1I

(
[C(2k+1)]

)
U
)
u

=
(
t
1
4 v2 − t

3
4

)
[C(2k+2)]u,

hence φ̂2k+1 ∈ HomTL2k+2

(
IndI2k+1

(
V2k+1(v)

)
, V2k+2(u)

)
is surjective if v2 6= t

1
2 .
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Remark 2.7.4. The two skein classes [C(2k)] and [C(2k+1)] play an important role
in determining the normalisation of the ground state of the dense loop model (see
Chapter 4 or [23, 48]).

Fix v ∈ C∗ and set u = t
1
4 v+ t−

1
4 v−1 for the remainder of this section. Note that

for n = 2k the representation space V2k(u) consists of the equivalence classes of the
skein module HomS(0, 2k) with respect to the equivalence relation obtained as the
linear and transitive closure of the non-contractible loop removal relation

= (t
1
4 v + t−

1
4 v−1) (2.7.2)

For n = 2k + 1 odd, the representation space V2k+1(v) consists of the equivalence
classes of the skein module HomS(1, 2k + 1) with respect to the equivalence relation
obtained as the linear and transitive closure of the following Dehn twist removal
relation

1 = v 1 (2.7.3)

Let C̃2k be a set of representatives of the planar isotopy classes of affine (0, 2k)-
diagrams without non-contractible loops. Let C̃2k+1 be a set of representatives of the
planar isotopy classes of the affine (1, 2k + 1)-diagrams that are planar isotopic to
D ∗ Id1 for some affine (0, 2k)-diagram D. We will call the inserted arc connecting
the inner boundary of A with the outer boundary of A the defect line of the affine
(1, 2k + 1)-diagram. Observe that B̃2k := {[D]u | D ∈ C̃2k} is a linear basis of V2k(u)
and B̃2k+1 := {[D]v | D ∈ C̃2k+1} is a linear basis of V2k+1(v).

Definition 2.7.5. Let u = t
1
4 v + t−

1
4 v−1. We call the tower

V0(u)
φ0−→ V1(v)

φ1−→ V2(u)
φ2−→ V3(v)

φ3−→ · · ·

of extended affine Temperley-Lieb algebra modules the link-pattern tower. We call
v ∈ C∗ the twist weight and t

1
4 v + t−

1
4 v−1 the non-contractible loop weight of the

link-pattern tower.

Note that the intertwiners φ2k of the link-pattern tower are simply given by the
insertion of an arc in the underlying (0, 2k)-tangle diagrams connecting the outer
boundary with the inner boundary. This newly inserted arc is the defect line. The
intertwiners φ2k+1 in the link-pattern tower are more subtle. The intertwiner φ2k+1

acts on the representative of a (1, 2k+1)-tangle diagram by detaching the defect line
from the inner boundary and reattaching it to the outer boundary in two different
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ways, corresponding to the two obvious ways that it can pass the hole of the annu-
lus. The two contributions get different weights t

1
4 and v, respectively. In Theorem

2.7.3 we have described the operation φ2k+1 as the composition of arc insertion and
composing with the linear combination U ∈ HomS(0, 2) of the two basic (0, 2)-tangle
diagrams c+ and c−.

Example 2.7.6.

1

2

3

4

φ47−→ 1

2

3

4

5

b
b

1

2

3

φ37−→ 1

2

3

4

Ub = t
1
4 1

2

3

4

b
+ v 1

2

3

4

b

Let D := {z ∈ C | |z| ≤ 2} be the unit disc of radius two and D
∗ := D \ {0}. Let

L2k be the set of link-patterns in D∗ connecting the 2k marked points {2ξi−1
2k }2ki=1,

i.e., it is the set of perfect non-crossing matchings within D∗ of the marked points
{2ξi−1

2k }2ki=1. For n = 2k+1 odd, let L2k+1 be the set of link-patterns in D connecting
the 2k+2 marked points {0}∪{2ξi−1

2k+1}2k+1
i=1 . In this context we call the line connecting

to 0 the defect line. Since the defect line is now connected to 0 instead of the hole of
the annulus we are losing the information about the winding of the defect line. This
allows us to realise the link-pattern tower for twist weight v = 1 on the vector spaces
C[Ln] with linear basis Ln as follows.

Consider the map A → D := {z ∈ C | |z| ≤ 2} given by reiθ 7→ 2e
2−r
r−1 eiθ for

r ∈ (1, 2] and mapping Ci onto 0. Note that the map fixes the outer boundary Co

pointwise. In this way the set C̃n of affine diagrams in A labelling a basis of the
nth representation space in the link-pattern tower is identified with Ln for n ∈ Z≥0.
This gives a vector space identification of Ln with C[Ln]. We now transport the
TL2k-module structure on V2k(u) and the TL2k+1-module structure on V2k+1(v) to
C[L2k] and C[L2k+1] respectively through these linear isomorphisms. It leads to an
explicit realization of the link-pattern tower with twist weight v = 1 as a tower
{(φn,C[Ln])}n∈Z≥0

of extended affine Temperley-Lieb algebra modules.
Note that the descriptions of the intertwiners φ2k and φ2k+1 in terms of link-

patterns are as before: φ2k is the insertion of a defect line, and φ2k+1 is detaching
the defect line from the puncture 0 and reattaching it to the outer boundary in two
different ways. Note though that the crucial second description of φ2k+1, in which
a second defect line is added first and then the two defect lines are detached from
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the puncture 0 and connected to each other in two different ways, requires that one
works on the annulus A instead of on the punctured disc D∗. However, there is an
analogue to this on the punctured disc using so-called puncture-skein relations [76],
see Remark 2.7.11 for further details.

Example 2.7.7. Let v = 1.

1. Example of the action of e2 ∈ TL3 on C[L3]:

1

2

3

◦ 1

2

3

* = 1

2

3

*

2. Example of the action of e2 ∈ TL4 on C[L4]:

1

2

3

4

◦ 1

2

3

4

* = (t
1
4 + t−

1
4 ) 1

2

3

4

*

3. Example of the intertwiner φ2 acting on C[L2]:

12
*

φ27−→ t
1
4 1

2

3

* + t−
1
4 1

2

3

*

4. Example of the intertwiner φ3 acting on C[L3] (it corresponds to the second
example from Example 3.3.2 with v = 1):

1

2

3

*

φ37−→ t
1
2 1

2

3

4

*
+ 1

2

3

4

*
+ t

1
4 1

2

3

4

*
+ t−

1
4 1

2

3

4

*

Remark 2.7.8. The link-pattern tower {(C[Ln], φn)}n∈Z≥0
with twist weight v = 1

plays an important role in the study of the dense loop model on the semi-infinite
cylinder [48, 23]. The representation space C[Ln] is the state space of the model of
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system size n. In [23] the dense loop model of system size 2k+1 is related to the dense
loop model of system size 2k through the map φ2k. The results in this paper allows
one to also relate the dense loop model of system size 2k+2 to the dense loop model
of system size 2k + 1 through the (non-trivial) intertwiner φ2k+1. We will return to
this in Chapter 3, in which we also derive recursion relations for associated ground
states and for associated solutions of quantum Knizhnik-Zamolodchikov equations.

We end the section by relating the link-pattern tower and the connecting maps to
a relative version of Roger’s and Yang’s [76, Def. 2.3] skein algebra on the punctured
disc D∗. For n ∈ Z≥0 write n ∈ {0, 1} for the residue of n modulo two and set

s0 := t
1
4 + t−

1
4 , s1 := 1,

which are the non-contractible loop weight and the twist weight of the link-pattern
tower for v = 1. Set

A :=
⊕

n∈Z≥0

Vn(sn) (2.7.4)

for the direct sum of the representation spaces of the link-pattern tower. To sim-
plify notations we write Y n for the element Ysn ∈ Vn(sn) = HomS(n, n) ⊗TLn Csn

associated to Y ∈ HomS(n, n).

Proposition 2.7.9. A is a graded associative complex algebra with multiplication
defined by

Y m · Zn :=

{
(Y ×S Z)m+n, if (m,n) 6= (1, 1),

((Y ×S Z) ◦ U)m+n, if (m,n) = (1, 1)

for Y ∈ HomS(m,m) and Z ∈ HomS(n, n). The unit element is ∅0 ∈ V0(s0).

Proof. We first show that the product is well-defined. If (m,n) = (0, 0) then clearly

(Y ◦X)m · Zn = (t
1
4 + t−

1
4 )Y m · Zn = Y m · (Z ◦X)n

since in both the left and right hand side of the equation, the inserted loop around
the hole can be removed by the scalar factor t

1
4 + t−

1
4 using the non-contractible loop

removal relation. If (m,n) = (0, 1) then

(Y ◦X)m · Zn = (t
1
4 + t−

1
4 )Y m · Zn

from (the proof of) Proposition 2.5.3(a), while Y m · (Z ◦ ρ)n = Y m · Zn is a direct
consequence of the Dehn twist removal relation since v = 1. The case (m,n) = (0, 1)

43



The Skein Category of the Annulus

is checked similarly. For (m,n) = (1, 1) we have

(Y ◦ ρ)m · Zn = ((Y ◦ ρ)×S Z) ◦ Um+n

= (Y ×S Z) ◦ (ρ×S 11) ◦ Um+n

= (Y ×S Z) ◦ I1(ρ) ◦ Um+n

= (Y ×S Z) ◦ Um+n = Y m · Zn,

where we used (the proof of) Lemma 2.7.2(ii) for the fourth equality. In fact, the
non-trivial equality we are using here is

2 U 1 = 2 U 1 (2.7.5)

viewed as an identity in V2(t
1
4 + t−

1
4 ). In a similar manner, one shows that Y m ·

Z ◦ ρn = Y m · Zn if (m,n) = (1, 1).
Now it remains to show that the product is associative,

(T k · Y m) · Zn = T k · (Y m · Zn)

for T ∈ HomS(k, k), Y ∈ HomS(m,m) and Z ∈ HomS(n, n). The only non-trivial
case is (k,m, n) = (1, 1, 1). Then we have

(T k · Y m) · Zn = ((T ×S Y ) ◦ U)×S Zk+m+n

= ((T ×S Y )×S Z) ◦ (U ×S 11)k+m+n

= (T ×S (Y ×S Z)) ◦ (11 ×S U)k+m+n

= T k · (Y m · Zn),

where we used in the third equality that U ×S 11 = 11 ×S U in V3(1). This follows
from a direct calculation in the skein, showing that both sides of the equation are
equal to

t
1
4 1

2

3

+ t
1
4 1

2

3

+ t−
1
4 1

2

3

when viewed as identity in V3(1) .

Corollary 2.7.10. Let v = 1. The connecting map φn : Vn(sn) → Vn+1(sn+1) of the
link-pattern tower is given by

φn(Y n) = Y n · 11
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for Y n ∈ Vn(sn).

Remark 2.7.11. We wish to point out the connection between Proposition 2.7.9 and
the work of Roger and Yang [76]. We view the representation space Vn(sn) of the link-
pattern tower with v = 1 as the following relative version of Roger’s and Yang’s [76,
Def. 2.3] skein algebra of arcs and links on Σ = D∗ with puncture V := {0}. In the
relative version we consider, besides the puncture, also the set {2ξj−1

n | 1 ≤ j ≤ n} of
n marked points on the outer boundary of D∗. The associated relative skein module
Mn is a quotient of the vector space generated by the isotopy classes of framed arcs
and links in D∗ × [0, 1] such that each pole {2ξj−1

n } × [0, 1] is met by exactly one
endpoint (1 ≤ j ≤ n), and multiple endpoints may connect to the internal pole
{0} × [0, 1] at different heights. The quotient is the linear and transitive closure of
the Kauffman skein relation (2.2.1), the nullhomotopic loop removal relation (2.2.2),
the non-contractible loop removal relation (2.7.2) for v = 1 with the hole shrunk
to the puncture (it is called the puncture-framing relation in [76]), and finally the
Roger-Yang puncture-skein relation

* = t
1
8


t

1
8

* + t−
1
8

*


 (2.7.6)

where at the left, the right curve lies above the left when meeting at the internal pole
{0}× [0, 1] (the parameters v, q

1
2 in [76] is set to the specific values t−

1
8 , t−

1
8 to match

up with our conventions). Then we have a natural linear isomorphism Vn(sn) ≃ Mn

such that

U

in V2k(s2k) corresponds to the left hand side of (2.7.6) in M2k. With this identification
our graded algebra structure on

A =
∞⊕

n=0

Vn(sn) ≃
∞⊕

n=0

Mn

is the natural relative version of the skein algebra multiplication (cf. the definition of
the tensor functor ×S from Section 2.2). Note that under this identification (2.7.5)
is one of the Reidemeister II’ relations from [76], and the proof of Proposition 2.7.9
is a direct generalisation of the proof of [76, Thm. 2.4]. In fact, M0 ≃ C is the
Roger-Yang skein algebra of arcs and links on D∗ with puncture V = {0}.

By Corollary 2.7.10, we can describe φn on Mn as inserting an arc connecting the
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punctured cylinder to the pole {0} × [0, 1] that passes underneath all other arcs and
links and then modding out by the Kauffman skein, loop removal and non-contractible
loop removal relations, as well as the puncture-skein relation.

2.8 The link-pattern tower and fusion

The algebra maps ǫn,m (see Corollary 2.2.6) are used in [35] to define the following
fusion product of extended affine Temperley-Lieb modules.

Definition 2.8.1 ([35]). The fusion product of a left TLn-module M1 and a left
TLm-module M2 is the left TLn+m-module

M1×̂fM2 := Indǫn,m
(
M1 ⊗M2).

We will show that the consecutive constituents V2k(u) and V2k+1(v) (respectively
V2k+1(v) and V2k+2(u)) in the link-pattern tower are naturally related by fusion
with TL1-modules. An important role in the analysis is played by the element
dn ∈ EndS(n) (n ≥ 1), defined by

dn := ǫn−1,1(1n−1 ⊗ ρ) = 1n−1 ×S ρ

with ρ ∈ EndS(1) given by (2.4.3). Note that dn is the skein class of the (n, n)-tangle
diagram

b
b

b

1

2

n−1

n

1

Furthermore, dn ∈ TLn is invertible and

dj+1 ◦ I(Z) = Z ×S ρ = I(Z) ◦ di+1 ∀Z ∈ HomS(i, j). (2.8.1)

In particular, dn lies in the centralizer of In−1(TLn−1) in TLn. In terms of the
algebraic generators of TLn ≃ EndS(n), the element dn can be expressed as

dn = (t
1
4 en−1 + t−

1
4 ) · · · (t 1

4 e1 + t−
1
4 )ρ.

Consider now the link-pattern tower

V0(u)
φ0−→ V1(v)

φ1−→ V2(u)
φ2−→ V3(v)

φ3−→ · · ·
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where u = t
1
4 v + t−

1
4 v−1. Consider the surjective intertwiners

π2k : IndI2k
(
V2k(u)

)
։ V2k(u)×̂fV1(v),

π2k+1 : IndI2k+1(V2k+1(v)) ։ V2k+1(v)×̂fV1(v
−1),

of TL2k+1-modules and TL2k+2-modules respectively, defined by

π2k
(
Y ⊗TL2k

w2k) := Y ⊗TL2k⊗TL1 (w2k ⊗ 1v),

π2k+1

(
Z ⊗TL2k+1

w2k+1) := Z ⊗TL2k+1⊗TL1 (w2k+1 ⊗ 1v−1)

for Y ∈ TL2k+1, w2k ∈ V2k(u) and Z ∈ TL2k+2, w2k+1 ∈ V2k+1(v).

Proposition 2.8.2. Let u = t
1
4 v + t−

1
4 v−1. Let

V0(u)
φ0−→ V1(v)

φ1−→ V2(u)
φ2−→ V3(v)

φ3−→ · · ·

be the link-pattern tower. Then the intertwiner φ̂n factors through πn. In other words,
there exist unique intertwiners

ψ2k :V2k(u)×̂fV1(v) −→ V2k+1(v),

ψ2k+1 :V2k+1(v)×̂fV1(v
−1) −→ V2k+2(u)

of TL2k+1-modules and TL2k+2-modules respectively, such that ψn ◦ πn = φ̂n for all
n ∈ Z≥0.

Proof. We need to show that

ψ2k

(
Y ⊗TL2k⊗TL1 (w2k ⊗ 1v)

)
:= Y φ2k(w2k),

ψ2k+1

(
Z ⊗TL2k+1⊗TL1 (w2k+1 ⊗ 1v−1)

)
:= Zφ2k+1(w2k+1)

for Y ∈ TL2k+1, w2k ∈ V2k(u) and Z ∈ TL2k+2, w2k+1 ∈ V2k+1(v) are well-defined
linear maps. The balancing condition of the tensor product for the first tensor com-
ponent of the algebra TLn ⊗ TL1 is respected because of the intertwining properties
of φ2k and φ2k+1. For instance, for X ∈ TL2k,

Y ǫ2k,1(X ⊗ 1)φ2k(w2k) = Y I2k(X)φ2k(w2k) = Y φ2k(Xw2k).

For the balancing condition of the tensor product for the second tensor component of
TLn ⊗ TL1 we need to show that

d2k+1φ2k(w2k) = v φ2k(w2k),

d2k+2φ2k+1(w2k+1) = v−1φ2k+1(w2k+1)
(2.8.2)

for all w2k ∈ V2k(u) and w2k+1 ∈ V2k+1(v). We write w2k = Yu with Y ∈ HomS(0, 2k)
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and w2k+1 = Zv with Z ∈ HomS(1, 2k + 1). Then

d2k+1φ2k(Yu) =
(
d2k+1I(Y )

)
v
=
(
I(Y )ρ

)
v
= v φ2k(Yu),

where we used (2.8.1) and the fact that d1 = ρ ∈ TL1 for the second equality. To
prove the second equality of (2.8.2), first note that

d2k+2φ2k+1(Zv) =
(
d2k+2I(Z)U

)
u
=
(
I(Z)d2U

)
u

by (2.8.1). Now d2 = (t
1
4 e1 + t−

1
4 )ρ = I1(ρ−1)ρ2 in TL2 by Proposition 2.5.3(b).

Futhermore we have ρ2U = U in HomS(0, 2), so we conclude that

d2k+2φ2k+1(Zv) =
(
I(Z)I1(ρ−1)U

)
u
= v−1

(
I(Z)U

)
u
= v−1φ2k+1(Zv),

where the second step follows from the proof of Lemma 2.7.2.

Corollary 2.8.3. Let u = t
1
4 v + t−

1
4 v−1 with v2 6= t

1
2 . Let

V0(u)
φ0−→ V1(v)

φ1−→ V2(u)
φ2−→ V3(v)

φ3−→ · · ·

be the link-pattern tower. The left TL2k+1-module V2k+1(v) is a quotient of
V2k(u)×̂fV1(v) and the left TL2k+2-module V2k+2(u) is a quotient of the fusion prod-
uct V2k+1(v)×̂fV1(v

−1) for all k ≥ 0.

Proof. By Theorem 2.7.3(ii) the link-pattern tower is non-degenerate, i.e. the φ̂n
are surjective for all n ∈ Z≥0. By the previous proposition we conclude that the
intertwiners ψn are surjective for all n ∈ Z≥0.

Example 2.8.4. Let u = t
1
4 v + t−

1
4 v−1 with v2 6= t

1
2 . Recall the identification of

V2k(u) = W
0,t

1
4 v
[2k], V2k+1(v) = W 1

2 ,v
[2k + 1]

with the standard modules from [35] (see Remark 2.7.1). Then [35, (4.26)] shows that

V1(v)×̂fV1(v
−1) ≃ V2(u).

2.9 Relation to affine Hecke algebras and affine braid

groups and type B presentations

We first show how the algebra maps In can be lifted to extended affine Hecke algebras
and to the group algebras of extended affine braid groups. We give the constructions
below for n ≥ 3. The adjustments needed for n = 1, 2 are left to the reader as long
as they are obvious.
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The affine Temperley-Lieb algebra TLn of type Ân−1 is the subalgebra of TLn

generated by e1, e2, . . . , en, see [27]. The defining relations of TLn are given by the
first three lines in (2.4.1). Note that Z acts on TLn by algebra automorphisms with
m ∈ Z acting by ei 7→ ei+m (with the indices modulo n). Let TLe

n be the correspond-
ing crossed product algebra Z ⋉ TLn. Note that TLe

n is isomorphic to the algebra
generated by e1, . . . , en, ρ±1 with defining relations all but the last relation in (2.4.1).
It follows that

TLn ≃ TLe
n/〈ρ2en−1 − e1e2 · · · en−1〉

with 〈ρ2en−1 − e1e2 · · · en−1〉 denoting the two-sided ideal generated by ρ2en−1 −
e1e2 · · · en−1.

In [27] the affine Temperley-Lieb algebra TLn is realised as a quotient of the affine
Hecke algebra of type Ân−1. We recall this here, and give the extension to TLe

n.

Definition 2.9.1. The extended affine Hecke algebra Hn of type Ân−1 is the unital
complex associative algebra with generators T1, T2, . . . , Tn, ρ, ρ−1 and defining rela-
tions

(Ti − t−
1
2 )(Ti + t

1
2 ) = 0,

TiTj = TjTi if i− j 6= ±1,

TiTi+1Ti = Ti+1TiTi+1,

ρTi = Ti+1ρ,

ρρ−1 = 1 = ρ−1ρ,

(2.9.1)

where the indices are taken modulo n.

Note that Ti ∈ Hn is invertible with inverse T−1
i = Ti− t− 1

2 + t
1
2 . The affine Hecke

algebra of type Ân−1 is the subalgebra Hn of Hn generated by T1, T2, . . . , Tn. The
defining relations of Hn are given by the first three lines in (2.9.1). The extended
affine Hecke algebra Hn is isomorphic to the crossed product algebra Z⋉Hn, where
m ∈ Z acts on Hn by the algebra automorphism Ti 7→ Ti+m (with the indices modulo
n).

Proposition 2.9.2. There exists a unique surjective algebra map ψn : Hn → TLe
n

satisfying ρ 7→ ρ and Ti 7→ ei + t−
1
2 . The kernel of ψn is the two-sided ideal in Hn

generated by the elements

TiTi+1Ti − t−
1
2 TiTi+1 − t−

1
2 Ti+1Ti + t−1Ti + t−1Ti+1 − t−

3
2 , i ∈ Z/nZ. (2.9.2)

Proof. Fan and Green [27] showed that the kernel of the unique surjective algebra
map ψn : Hn → TLn satisfying Ti 7→ ei + t−

1
2 is generated by the elements (2.9.2)

(see also [39]). The proposition now follows since the Z-actions on Hn and TLn are
intertwined by ψn.
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The extended affine braid group Bn is the group generated by σ1, σ2, . . . , σn, ρ̃
with defining relations

σiσj = σjσi if i− j 6= ±1,

σiσi+1σi = σi+1σiσi+1,

ρ̃σi = σi+1ρ̃,

(2.9.3)

where the indices are taken modulo n, see e.g. [39]. Recall that Bn can be realised
topologically in terms of n strands in C∗ × [0, 1] starting at {(2ξj−1

n , 0)}nj=1 and
ending at {(2ξj−1

n , 1)}nj=1,

σi =

b

b b

b

b

i−1

i−1

i

i

i+1

i+1

i+2

i+2

ρ̃ =

b

b b

b

i−1

i

i

i+1

i+1

i+2

Given a braid in Bn, project it onto the cylinder Co × [0, 1] and map Co × [0, 1]
homeomorphically onto A by collapsing the wall of the cylinder inwards onto A×{0}.
This results in an (n, n)-tangle diagram in A, which we subsequently interpret as
an element in the linear skein EndS(n). This defines a surjective algebra map µn :
C[Bn] → EndS(n) satisfying

µn(σi) = 11

i
i+1

i

b
µn(ρ̃) = 1

2

1
n

Note that µn(ρ̃) = ρ and µn(σi) = t
1
4 ei + t−

1
4 , where the last equality follows from

the Kauffman skein relation (2.2.1). Note also that µn(σ
−1
i ) = t−

1
4 ei + t

1
4 .

Remark 2.9.3. Let νn : C[Bn] → Hn be the surjective algebra map satisfying νn(ρ̃) =
ρ and νn(σi) = t

1
4Ti, then we have ψn ◦ νn = µn.

Let Ibr
n : Bn → Bn+1 be the group homomorphism that topologically is described

by sticking in an additional strand between the nth and the first strand, with the new

50



2.9. Relation to affine Hecke algebras and affine braid groups and type B
presentations

strand running “behind" all other strands (but not wrapping around the pole). For
example,

b

12

12

Ibr
27−→

b

bb

b
b

1

2

1

2

3

3

It is the unique group homomorphism satisfying

Ibr
n (σi) = σi, i = 1, . . . , n− 1,

Ibr
n (σn) = σnσn+1σ

−1
n ,

Ibr
n (ρ̃) = ρ̃σ−1

n .

Extending Ibr
n linearly to an algebra map Ibr

n : C[Bn] → C[Bn+1], we have

µn+1 ◦ Ibr
n = I|Sn ◦ µn

with µn : C[Bn] → Sn the algebra map as defined in the previous section.
In addition, it is easy to show that there exists a unique unit preserving algebra

map Iha
n : Hn → Hn+1 satisfying

Iha
n (Ti) = Ti, i = 1, . . . , n− 1,

Iha
n (Tn) = TnTn+1T

−1
n ,

Iha
n (ρ) = t−

1
4 ρT−1

n ,

and
νn+1 ◦ Ibr

n = Iha
n ◦ νn

with νn : C[Bn] → Hn as defined in the previous section.

Remark 2.9.4. The maps Ibr
n and In were constructed before in [1, 35].

We end the section by discussing the relation to the braid group and the affine
Temperley-Lieb algebra of type B. Let BB

n be the braid group of type Bn, i.e. the
group with generators σB

0 , . . . , σ
B
n−1 and defining relations the braid relations associ-

ated to the type B Coxeter diagram
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b b b b
σB
0 σB

1 σB
2 σB

n−1

It is known that BB
n is isomorphic to the extended affine braid group Bn, with the

isomorphism given by

σB
0 7→ ρσ−1

n−1 · · ·σ−1
1

σB
i 7→ σi (1 ≤ i < n),

(2.9.4)

see [34, Rem. 1.1] and references therein. We discuss now a similar B-type presenta-
tion of the extended affine Temperley-Lieb algebra TLn.

The B-type affine Temperley-Lieb algebra TLB
n is defined as follows (see [70, Thm.

3.13]). For n ≥ 2, TLB
n is the unital complex associative algebra with generators

α, τ, e1, · · · , en−1 and defining relations

e2i =
(
−t 1

2 − t−
1
2

)
ei,

eiej = ejei if |j − i| ≥ 2,

eiei±1ei = ei,

τei = eiτ if i > 1,

e1τe1 = αe1 = e1α,

τ2 = −t 1
2ατ − t.

For n = 0 and n = 1 we set TLB
0 := C[α] and TLB

1 := C[τ, τ−1].

Note that τ is invertible with inverse τ−1 = −t−1τ − t−
1
2α. Hence α = −t− 1

2 τ −
t
1
2 τ−1, and α is central. For n = 1 we define α by this formula.

Note that the assignments

σB
0 7→ −t− 3

4 τ

σB
i 7→ t

1
4 ei + t−

1
4 (1 ≤ i < n)

define a surjective algebra map µB
n : C[BB

n ] → TLB
n . In particular, TLB

n is isomorphic
to a quotient of the group algebra C[BB

n ].

Recall the algebra map µn : C[Bn] → TLn from Section 2.6. The following result
is an algebraic reformulation of [70, Thm. 3.13(a)], see also Remark 2.9.6.

Proposition 2.9.5. There exists a unique isomorphism TLB
n

∼−→ TLn of algebras
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such that the diagram

C[BB
n ] C[Bn]

TLB
n TLn

∼

∼
µB
n

µn

of algebra maps is commutative, with the isomorphism C[BB
n ]

∼−→ C[Bn] given by
(2.9.4).

Proof. We have to show that there exists a well defined algebra map fn : TLB
n → TLn

satisfying fn(ei) = ei (1 ≤ i < n) and

fn(τ) = −t 3
4 ρµn(σ

−1
n−1) · · ·µn(σ

−1
1 ),

and that there exists a well defined algebra map gn : TLn → TLB
n satisfying gn(ei) =

ei (1 ≤ i < n) and

gn(ρ) = −t− 3
4 τµB

n (σ
B
1 ) · · ·µB

n (σ
B
n−1).

We omit the proof as it is a straightforward check that all the algebra relations are
respected by fn and gn. For these checks it is convenient to use the presentation of
TLn in terms of the generators ρ±1, e1, . . . , en−1 as given in Remark 2.4.1.

Remark 2.9.6. Combining Proposition 2.9.5 with Theorem 2.4.3 and Remark 2.4.4
yields an isomorphism TLB

n
∼−→ EndS(n) given by

τ 7−→ −t 3
4

bb

b
1

2

3

n

1 , ei 7−→ 1

i−1

i

i+1 i+2

1
i
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for 1 ≤ i < n. Note that under this isomorphism,

α 7−→ b
b

b

b
1

2

n

1

This is the algebra isomorphism TLB
n

∼−→ EndS(n) from [70, Thm. 3.13(a)].

Using the B type presentation of TLn the algebra maps In : TLn → TLn+1 takes
on a simple form.

Corollary 2.9.7. The algebra maps In : TLn → TLn+1, viewed as algebra maps
TLB

n → TLB
n+1 via the identification TLB

n
∼= TLn, satisfies τ 7→ τ and ei 7→ ei for

1 ≤ i < n.

Using Corollary 2.9.7 in combination with [70, Thm. 3.13(b)] it follows that the
algebra maps In : TLn → TLn+1 are injective.
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3
Towers of qKZ Solutions

“When things go wrong, that’s when you should get excited. It means there is
research to be done.” J.S.
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3.1 Introduction

The quantum Knizhnik-Zamolodchikov (qKZ) equations are a holonomic system of
q-difference equations and are a quantum analogue of the classical KZ equations [53].
They appear in the study of form factors of integrable models, correlation functions of
solvable lattice models and in the representations theory of quantum affine algebras
and affine Hecke algebras [77, 33, 44, 8]. Solutions to the equations are vector-valued
functions and usually meromorphic or Laurent polynomials are considered. We follow
Cherednik’s definition of the qKZ equations and associate it with a representation Vn
of the extended affine Hecke algebra of type Ân−1. We consider solutions that are
polynomial in the variables z1, . . . , zn.

In this chapter we introduce towers of symmetric solutions to the qKZ equa-
tions. That is, we consider a tower of extended affine Hecke algebra modules
{(Vn, µn)}n∈Z≥0

, which is a set of modules with linear maps, µn, that map Vn into
Vn+1. The maps µn respect the action of the extended affine Hecke algebra in an
appropriate way, see Definition 3.2.6. This induces a natural notion of a tower of
solutions of the qKZ equations. Specifically, a tower of solutions (fn)n consists of
solutions fn(z) = fn(z1, . . . , zn) of the qKZ equations with values in Vn(n ≥ 0) that
are related by equations of the form

f (n+1)(z1, . . . , zn, 0) = h(n)(z1, . . . , zn)µn(f
(n)(z1, . . . , zn)). (3.1.1)

We call equation (3.1.1) the braid recursion relations. On the left hand side of the
equation the variable zn+1 is set to 0 to match the number of variables, while on
the right hand side µn is used to lift the representation into Vn+1 to match the
representations. The factor h(n) is a symmetric quasi-constant function. We call such
a set of solutions a qKZ tower (of solutions) relative to the tower {(Vn, µn)}n≥0.

Our interest in qKZ towers is that ground states of inhomogeneous O(1) dense
loop models form such a tower. The resulting recursions of the grounds states in the
system size n play an important role in deriving explicit expressions for observables
of the integrable model, see Chapter 4. The specific model that motivated us is
the inhomogeneous dense O(τ) loop model [23, 48, 58]. The two relevant examples of
qKZ towers given in this chapter are the the ground state of the inhomogeneous dense
O(1) loop model and the qKZ tower on link-patterns constructed using specialised
non-symmetric Macdonald polynomials. The underlying algebra of the loop model is
the extended affine Temperley-Lieb algebra, which is a quotient of the extended affine
Heck algebra.

The main results of this chapter is Theorem 3.4.7, which is the braid recursion of
the ground state of the O(1) model and the braid recursion relations for the polynomial
solutions of qKZ equations related to the dense O(τ) loop model. The braid recursion
for the ground state of the O(1) model was previously discussed in [23]. However,
the authors were only obtained the braid recursion for n = 2k even. We provide a
non-trivial recursion for n = 2k + 1 odd and give the complete braid recursion. Our
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3.2. Towers of qKZ equations

proof makes use of the qKZ equations and shows that the ground states indeed form
a qKZ tower.

The format for the remainder of the chapter is as follows. In section 3.2 we
recall the definitions of the extended affine Heck algebra and qKZ equations, and
introduce the definition of a qKZ tower. We follow this by discussing the extended
affine Temperley-Lieb algebra and the link-pattern tower in section 3.3. Most of the
theory in this section is from Chapter 2. In section 3.4 we analyse the qKZ tower of
solutions associated to the link-pattern tower and formulate the main theorem. The
existence of the solutions is a significant matter requiring its own sections. In section
3.5 we prove the qKZ tower exists for t

1
4 = exp(πi/3) by constructing the constituents

of the tower from the ground states of the inhomogeneous O(1) dense loop model. On
the other hand in section 3.6 we prove the solutions exist for generic t

1
4 by construction

the constituents of the tower from specialised non-symmetric Macdonald polynomials.
A dual version of the braid recursion is given section 3.7.

Lastly, in section 3.8 we provide a proof that the solution to the qKZ equations is
unique. This proof is done for three particular representations, link-patterns, punc-
tured link-patterns and the lifted representation on punctured link-patterns. We
point out that the proofs for the link-patterns and punctured versions are alluded to
in the literature. However, we have not found a complete proof, so we provide the
full details.

3.2 Towers of qKZ equations

In this section we begin by recalling the extended affine Hecke algebra, the qKZ
equations and introduce what we call a qKZ tower of solutions. The extended affine
Hecke algebra can be defined using two different presentations. We make use of both
presentations as one is more convenient for defining qKZ equations, while the other is
more suitable for relating the algebra to the extended affine Temperley-Lieb algebra.

3.2.1 Extended Affine Hecke Algebras

Let t
1
4 ∈ C

∗.

Definition 3.2.1. Let n ≥ 3. The extended affine Hecke algebra Hn = Hn(t
1
2 ) of

type Ân−1 is the complex associative algebra with generators Ti (i ∈ Z/nZ) and ρ, ρ−1

and defining relations

(Ti − t−
1
2 )(Ti + t

1
2 ) = 0,

TiTj = TjTi (i − j 6≡ ±1),

TiTi+1Ti = Ti+1TiTi+1,

ρTi = Ti+1ρ,

ρρ−1 = 1 = ρ−1ρ,

(3.2.1)
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Towers of qKZ Solutions

where the indices are taken modulo n. For n = 2 the extended affine Hecke algebra
H2 = H2(t

1
2 ) is the algebra generated by T0, T1, ρ±1 with defining relations (3.2.1) but

with the third relation omitted. For n = 1 we set H1 := C[ρ, ρ−1] to be the algebra
of Laurent polynomials in one variable ρ, and for n = 0 we set H0 := C[X ], the
polynomial algebra in one variable X.

Note that Ti is invertible with inverse T−1
i = Ti− t− 1

2 + t
1
2 . For n ≥ 1 the element

ρn ∈ Hn is central.

For n ≥ 2 the affine Hecke algebra Ha
n = Ha

n(t
1
2 ) of type Ân−1 is the subalgebra

of Hn generated by Ti (i ∈ Z/nZ). For n ≥ 3 the first three relations of (3.2.1)
are the defining relations of Ha

n in terms of these generators (for n = 2 the first two
relations are the defining relations). Furthermore, Hn is isomorphic to the crossed
product algebra Z ⋉ Ha

n, where m ∈ Z acts on Ha
n by the algebra automorphism

Ti 7→ Ti+m (with the indices modulo n). Equivalently, m ∈ Z acts by restricting the
inner automorphism h 7→ ρmhρ−m of Hn to Ha

n. For n ≥ 2 the (finite) Hecke algebra
of type An−1 is the subalgebra H0

n of Ha
n generated by T1, . . . , Tn−1. The defining

relations of H0
n in terms of the generators T1, . . . , Tn−1 are given again by the first

three relations of (3.2.1), restricted to those indices that they make sense.

Bernstein and Zelevinsky [56] obtained the following alternative presentation of
the extended affine Hecke algebra (see also [42] for a detailed discussion).

Theorem 3.2.2. Let n ≥ 2 and define Yj ∈ Hn for j = 1, . . . , n by

Yj := T−1
j−1T

−1
j−2 · · ·T−1

1 ρTn−1 · · ·Tj+1Tj .

Then Hn is generated by T1, . . . , Tn−1, Y
±1
1 , . . . , Y ±1

n . The defining relations of Hn

in terms of these generators are given by

(Ti − t−
1
2 )(Ti + t

1
2 ) = 0 (1 ≤ i < n),

TiTi+1Ti = Ti+1TiTi+1 (1 ≤ i < n− 1),

TiTj = TjTi (1 ≤ i, j < n : |i− j| > 1),

TiYi+1Ti = Yi (1 ≤ i < n), (3.2.2)

TiYj = YjTi (1 ≤ i < n, 1 ≤ j ≤ n : j 6= i, i+ 1),

YiYj = YjYi (1 ≤ i, j ≤ n),

YiY
−1
i = 1 = Y −1

i Yi (1 ≤ i ≤ n).

Note that ρ ∈ Hn can be expressed as

ρ = T1T2 · · ·Tn−1Yn

with respect to the Bernstein-Zelevinsky presentation of Hn. Let An be the commu-
tative subalgebra of Hn generated by Y ±1

1 , . . . , Y ±1
n .
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3.2. Towers of qKZ equations

More can be said about the structure of Hn in terms of the Bernstein-Zelevinsky
presentation (see [56] and [42]). Let f ∈ C[z±1] := C[z±1

1 , . . . , z±1
n ] be a Laurent

polynomial in n variables z1, . . . , zn. Let f =
∑

α∈Zn cαz
α (cα ∈ C) be its expansion

in monomials z
α := zα1

1 · · · zαn
n . Then we write f(Y ) :=

∑
α∈Zn cαY

α ∈ An, where

Y α := Y α1
1 · · ·Y αn

n . The map f 7→ f(Y ) defines an isomorphism C[z±1]
∼−→ An of

commutative algebras. In addition, the multiplication map

H0
n ⊗An → Hn, h⊗ f(Y ) 7→ hf(Y ),

is a linear isomorphism.
In [2, §8] it was shown that there exists a unique unit preserving algebra map

νn : Hn → Hn+1 satisfying for n ≥ 2,

νn(Ti) = Ti, i = 1, . . . , n− 1,

νn(Tn) = TnT0T
−1
n ,

νn(ρ) = t−
1
4 ρT−1

n ,

(3.2.3)

satisfying ν1(ρ) = t−
1
4 ρT−1

1 for n = 1, and satisfying ν0(X) = t
1
4 ρ + t−

1
4 ρ−1 for

n = 0. The νn was obtained in [2, §8] as the Hecke algebra descend of an algebra
homomorphism C[Bn] → C[Bn+1], with Bn the extended affine braid group on n
strands, defined topologically by inserting an extra braid going underneath all the
other braids it meets. At the end of this section we require νn in constructing towers
of Hn modules and qKZ towers of solutions.

3.2.2 qKZ equations

We consider Cherednik’s [8, 9] qKZ equations of type A. We will follow closely [78],
and we will restrict attention to symmetric solutions of qKZ equations. The notations
(m, k, ξ) in [78, §4.3] correspond to our (n,−t 1

2 , ρ). The qKZ equations depend on
an additional parameter q, which we for the moment take to be an arbitrary nonzero
complex number.

Recall that for n ≥ 1 and t
1
2 = 1, the extended affine Hecke algebra Hn(1) is

isomorphic to the group algebra C[Wn] of the the extended affine symmetric group
Wn ≃ Sn⋉Zn. Writing si (i ∈ Z/nZ) and ρ for the (Coxeter type) generators of Wn,
acting on C[z±1] and C(z) := C(z1, . . . , zn) by

(sif)(z) := f(. . . , zi+1, zi, . . .) (1 ≤ i < n),

(s0f)(z) := f(qzn, z2, . . . , zn−1, q
−1z1),

(ρf)(z) := f(z2, . . . , zn, q
−1z1),

(3.2.4)

cf. Definition 3.2.1. Note that the Wn-action on C[z±1] is by graded algebra auto-
morphisms, with the grading defined by the total degree. In addition, Wn preserves
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Towers of qKZ Solutions

the polynomial algebra C[z] := C[z1, . . . , zn].
Define for n ≥ 1 and i ∈ Z/nZ,

R̃i(x) :=
xT−1

i − Ti

t
1
2 − t−

1
2 x
,

which we view as rational Hn(t
1
2 )-valued function in x. The key point in the construc-

tion of qKZ equations is the fact that for any Hn(t
1
2 )-module Vn with representation

map σn : Hn(t
1
2 ) → End(Vn) and q ∈ C∗, the formulas

(
∇(si)f

)
(z) := σn(R̃i(zi+1/zi))(sif)(z) 1 ≤ i < n,

(
∇(s0)f

)
(z) := σ(R̃0(z1/qzn))(s0f)(z),(

∇(ρ)f
)
(z) := σ(ρ)(ρf)(z),

(3.2.5)

define a left Wn-action on the space Vn(z) := C(z)⊗Vn of Vn-valued rational functions
in z1, . . . , zn, where the Wn-action in the right hand side is the action on the variables
as given by (3.2.4). For n = 0, we simply take ∇ = σ0 acting on V0. The fact that
(3.2.5) defines a Wn-action is a consequence of the following identities for the R-
operators R̃i(x),

R̃i(x)R̃i+1(xy)R̃i(y) = R̃i+1(y)R̃i(xy)R̃i+1(x),

R̃i(x)R̃j(y) = R̃j(y)R̃i(x) i− j 6≡ ±1,

R̃i(x)R̃i(x
−1) = 1,

ρR̃i(x) = R̃i+1(x)ρ

(3.2.6)

with the indices taken modulo n. The first equation is the Yang-Baxter equation [32,
Vol. 5] in braid form.

Note that in (3.2.4) and (3.2.5) the action of s0 is determined by the action of si
(1 ≤ i < n) and of ρ, and hence does not have to be specified. We will often omit
the explicit formula for the action of s0 in the remainder of the chapter. Following
[78] we call the subspace Vn(z)∇(Wn) of ∇(Wn)-invariant elements in Vn(z) the space
of symmetric solutions of the qKZ equations on Vn. We need a more refined class of
qKZ solutions, defined as follows.

Definition 3.2.3. Let q ∈ C∗ and c ∈ C. Fix a Hn(t
1
2 )-module Vn with representation

map σn : Hn(t
1
2 ) → End(Vn). For n ≥ 2 write Soln(Vn; q, c) ⊆ Vn[z] for the Vn-valued

polynomials f ∈ Vn[z] in the variables z1, . . . , zn satisfying

σn(R̃i(zi+1/zi))f(. . . , zi+1, zi, . . . ) = f(z) (1 ≤ i < n),

σn(ρ)f(z2, . . . , zn, q
−1z1) = cf(z).

(3.2.7)

For n = 1 we write Sol1(V1; q, c) for the V1-valued polynomials f ∈ V1[z] in the single
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3.2. Towers of qKZ equations

variable z satisfying the q-difference equation σ1(ρ)f(q
−1z) = c f(z). Finally, for

n = 0 write Sol0(V0; q, c) ⊆ V0 for the eigenspace of σ0(X) ∈ End(V0) with eigenvalue
c.

If n ≥ 1 and Soln(Vn; q, c) 6= {0}, then necessarily c ∈ C∗. In this case

Soln(Vn; q, c) =
(
V (c)
n (z)

)∇(Wn) ∩ V (c)
n [z],

with V
(c)
n denoting the vector space Vn endowed with the twisted action σc

n : Hn →
End(Vn) defined by σc

n(Ti) := σn(Ti) for i ∈ Z/nZ and σc
n(ρ) := c−1σn(ρ). We call c

a twist parameter.

For n ≥ 2 let πt
1
2 ,q

n : Hn(t
1
2 ) → End(C[z±1]) be Cherednik’s [10] basic representa-

tion, defined by

πt
1
2 ,q

n (Ti) := −t 1
2 +

(
t
1
2 zi − t−

1
2 zi+1

zi+1 − zi

)
(si − 1) (1 ≤ i < n),

πt
1
2 ,q

n (Tn) := −t 1
2 +

(
t
1
2 qzn − t−

1
2 z1

z1 − qzn

)
(sn − 1).

πt
1
2 ,q

n (ρ) := ρ

(see [78, Thm. 3.1] with (m, ki, ξ) replaced by (n,−t 1
2 , ρ) and specializing to type

A as in [78, §4.3]). For n = 1 we define the basic representation πt
1
2 ,q

1 : H1(t
1
2 ) →

End
(
C[z±1]

)
by πt

1
2 ,q

1 (ρ) := ρ.
The basic representation preserves C[z]. By [78, Prop. 3.10] (see also [66, §4.1]

and [49]) we have for n ≥ 1 and c ∈ C∗ the following alternative description of
Soln(Vn; q, c),

Soln(Vn; q, c) = {f ∈ Vn[z] | πt−
1
2 ,q

n (h)f = σc
n(J(h))f for all h ∈ Hn(t

− 1
2 )},

where J : Hn(t
− 1

2 ) → Hn(t
1
2 ) is the unique anti-algebra isomorphism satisfying

J(Ti) := T−1
i (i ∈ Z/nZ) and J(ρ) := ρ−1. Here the basic representation πt−

1
2 ,q

n

acts on the first tensor component of Vn[z] = C[z]⊗ Vn. More concretely,

Soln(Vn; q, c) =

{
f ∈ Vn[z]

∣∣∣∣∣
πt−

1
2 ,q

n (Ti)f = σn(T
−1
i )f (1 ≤ i < n)

πt−
1
2 ,q

n (ρ)f = cσn(ρ
−1)f

}
(3.2.8)

where one needs to be well aware that the action on the variables through the basic
representation is with respect to the extended affine Hecke algebra Hn(t

− 1
2 ) and the

action on Vn through σn is with respect to the extended affine Hecke algebra Hn(t
1
2 ).

Before we can conclude this section with the introduction of the notion of a qKZ
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tower of solutions we need to establish some notation. Let A be a complex associative
algebra and write CA for the category of left A-modules. Write HomA(M,N) for the
space of morphisms M → N in CA, which we will call intertwiners. Suppose that
η : A→ B is a (unit preserving) morphism of C-algebras, then we write Indη : CA →
CB and Resη : CB → CA for the corresponding induction and restriction functor.
Concretely, if M is a left A-module then

Indη(M) := B ⊗A M

with B viewed as a right A-module by b · a := bη(a) for b ∈ B and a ∈ A. If N is a
left B-module then Resη(N) is the complex vector space N , viewed as an A-module
by a · n := η(a)n for a ∈ A and n ∈ N .

For a left Hn+1-module Vn+1 we use the shorthand notation V νn
n+1 for the left Hn-

module Resνn(Vn+1). Having established these notations the next lemma introduces
the concept of the module lift of a qKZ solution.

Lemma 3.2.4. Let n ≥ 0. Let Vn be a left Hn(t
1
2 )-module and Vn+1 a left

Hn+1(t
1
2 )-module, with representation maps σn and σn+1 respectively. Let µn ∈

HomHn(Vn, V
νn
n+1) be an intertwiner. Extend µn to a C[z]-linear map Vn[z] → V νn

n+1[z],
which we still denote by µn. Then its restriction to Soln(Vn; q, cn) is a linear map

µn : Soln(Vn; q, cn) → Soln(V
νn
n+1; q, cn).

Proof. This is immediate from the intertwining property

µn ◦ σn(h) = (σn+1νn)(h) ◦ µn for all h ∈ Hn. (3.2.9)

Indeed, if f ∈ Soln(V ; q, cn) then it follows for n ≥ 1 from (3.2.9) that

(σn+1νn)(R̃i(zi+1/zi))µn(f(. . . , zi+1,zi, . . . ))

= µn

(
σn(R̃i(zi+1/zi))f(. . . , zi+1, zi, . . . )

)

= µn(f(z))

for 1 ≤ i < n and

(σn+1νn)(ρ)f(z2, . . . , zn, q
−1z1) = µn

(
σn(ρ)f(z2, . . . , zn, q

−1z1)
)

= cnµn(f(z)),

hence µn(f) ∈ Soln(V
νn
n+1; q, cn). For n = 0 and f ∈ Sol0(V0; q, c0), i.e. f ∈ V0

satisfying σ0(X)f = c0f , we have

(σ1ν0)(X)µ0(f) = µ0(σ0(X)f) = c0µ0(f),

hence µ0(f) ∈ Sol0(V
ν0
1 ; q, c0).
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3.2. Towers of qKZ equations

By the intertwiner µn a qKZ solution f (n)(z) ∈ Soln(Vn; q, cn) gets lifted to a
solution in Soln(V

νn
n+1; q, cn) taking values in the Hn+1-module Vn+1. Along with this

upward module lift there is also a downward descent of a solution, which reduces the
number of variables. It is defined as follows.

Recall the algebra map νn : Hn → Hn+1 defined by (3.2.3).

Lemma 3.2.5. Let n ≥ 0 and let Vn+1 be a left Hn+1(t
1
2 )-module with associated

representation map σn+1. Then for n ≥ 1 and f ∈ Soln+1(Vn+1; q, cn+1),

f(z1, . . . , zn, 0) ∈ Soln(V
νn
n+1; q,−t−

3
4 cn+1),

and for n = 0 and f ∈ Sol1(V1; q, c1),

f(0) ∈ Sol0(V
ν0
1 ; q, t

1
4 c1 + t−

1
4 c−1

1 ).

Proof. Let n ≥ 1 and f ∈ Soln+1(Vn+1; q, cn+1). Set g(z1, . . . , zn) := f(z1, . . . , zn, 0).
For 1 ≤ i < n we have

(σn+1νn)(R̃i(zi+1/zi))g(. . . , zi+1,zi, . . . )

= σn+1(R̃i(zi+1/zi))f(z1, . . . , zi+1, zi, . . . , zn, 0)

= f(z1, . . . , zn, 0) = g(z1, . . . , zn).

Hence to prove that g ∈ Soln(V
νn
n+1; q,−t−

3
4 cn+1) it remains to show that

(σn+1νn)(ρ)g(z2, . . . , zn, q
−1z1) = −t− 3

4 cn+1g(z). (3.2.10)

To prove (3.2.10), first note that

σn+1(ρR̃n(z1/qzn+1))f(z2, . . . , zn, q
−1z1, zn+1) = σn+1(ρ)f(z2, . . . , zn+1, q

−1z1)

= cn+1f(z1, . . . , zn+1).

Setting zn+1 = 0 and using that R̃n(∞) := limx→∞ R̃n(x) = −t 1
2T−1

n , we get

−t 1
2σn+1(ρT

−1
n )g(z2, . . . , zn, q

−1z1) = cn+1g(z1, . . . , zn).

Then (3.2.10) follows from the fact that νn(ρ) = t−
1
4 ρT−1

n .
For n = 0 and f ∈ Sol1(V1; q, c1) we have

(σ1ν0)(X)f(0) = σ1(t
1
4 ρ+ t−

1
4 ρ−1)f(0) = (t

1
4 c1 + t−

1
4 c−1

1 )f(0),

hence f(0) ∈ Sol0(V
ν0
1 ; q, t

1
4 c1 + t−

1
4 c−1

1 ).

By lifting solutions of qKZ equations by intertwiners µn and descending solutions
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of qKZ equations by setting variables equal to zero we can connect qKZ solutions
of different rank. This leads to the the definition of a qKZ tower of solutions. The
starting point is the following definition of a tower of extended affine Hecke alge-
bra modules (compare with [2], where this notion was introduced for modules over
extended affine Temperley-Lieb algebras, see also Section 3.3).

Definition 3.2.6. A tower

V0
µ0−→ V1

µ1−→ V2
µ2−→ V3

µ3−→ · · ·

of extended affine Hecke algebra modules consists of a sequence {(Vn, µn)}n∈Z≥0
with

Vn a left Hn-module and µn ∈ HomHn

(
Vn, V

νn
n+1

)
.

To lift this notion of a tower to solutions of qKZ equations it is convenient to
disregard quasi-periodic (with respect to the action of ρ) symmetric normalization
factors h, i.e. polynomials h ∈ C[z]Sn satisfying ρh = λh for some λ ∈ C∗. We call
such h a λ-recursion factor, and λ the scale parameter. We write Tn,λ ⊂ C[z] for the
space of λ-recursion factors. Note that hf ∈ Soln(Vn; q, λcn) if f ∈ Soln(Vn; q, cn)
and h ∈ Tn,λ. By convention we define the space T0,λ of λ-recursion factors for n = 0

to be C if λ = 1 and {0} otherwise.
If q is a root of unity, then we write e ∈ Z>0 for the smallest natural number such

that qe = 1. We take e = ∞ if q is not a root of unity.

Lemma 3.2.7. Let n ≥ 1. Then Tn,λ = {0} unless λ = q−m for some 0 ≤ m < e. If
0 ≤ m < e then

Tn,q−m = C[ze1, . . . , z
e
n]

Sn(z1 · · · zn)m.
The latter formula should be read as Tn,q−m = spanC{(z1 · · · zn)m} if e = ∞.

Proof. Let α ∈ Zn
≥0. It suffices to show that

∑
β∈Snα

z
β ∈ C[z]Sn is a λ-recursion

factor if and only if there exists a 0 ≤ m < e such that λ = q−m and αi ≡ m mod e

for all i (where the latter condition for e = ∞ is read as αi = m for all i).
Note that

ρ
( ∑

β∈Snα

zβ
)
=

∑

β∈Snα

q−βnzβn

1 zβ1

2 · · · zβn−1
n =

∑

β∈Snα

q−β1zβ,

hence
∑

β∈Snα
zβ ∈ Tn,λ if and only if λ = q−αi for all i = 1, . . . , n. This is equivalent

to λ = q−m and αi ≡ m mod e for some 0 ≤ m < e.

The following lemma shows that by rescaling a nonzero symmetric polynomial so-
lution of the qKZ equations by an appropriate recursion factor, it will remain nonzero
if one of its variables is set to zero.

Lemma 3.2.8. Let n ≥ 1 and let Vn be a left Hn-module with representation
map σn. If 0 6= f ∈ Soln(Vn; q, cn) then there exists a unique m ∈ Z≥0 and
g ∈ Soln(Vn; q, qmcn) such that f(z) = (z1 · · · zn)mg(z) and g(z1, . . . , zn−1, 0) 6≡ 0.
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3.3. Extended affine Temperley-Lieb algebra

Proof. Recall that the existence of a nonzero f ∈ Soln(Vn; q, cn) guarantees that cn 6=
0. Suppose that f(z1, . . . , zn−1, 0) ≡ 0. Using σn(ρ)f(z2, . . . , zn, q

−1z1) = cnf(z)

repeatedly we conclude that f(. . . , zi−1, 0, zi+1, . . . ) ≡ 0. Hence f(z) is divisible
by the q−1-recursion factor z1 . . . zn in Vn[z]. Now divide this factor out and apply
induction to the total degree of f .

Definition 3.2.9 (qKZ tower). Let {(Vn, µn)}n∈Z≥0
be a tower of extended affine

Hecke algebra modules. We call (f (n))n≥0 an associated qKZ tower of solutions with
twisting parameters cn ∈ C∗ (n ≥ 1) if there exist recursion factors h(n) ∈ Tn,λn

(n ≥ 0) such that

a) 0 6= f (n) ∈ Soln(Vn; q, cn) for n ≥ 0, with c0 := t
1
4 c1 + t−

1
4 c−1

1 .

b) f (n+1)(z1, . . . , zn, 0) 6≡ 0 for all n ≥ 0.

c) For all n ≥ 0 we have

f (n+1)(z1, . . . , zn, 0) = h(n)(z1, . . . , zn)µn(f
(n)(z1, . . . , zn)). (3.2.11)

We call (3.2.11) the braid recursion relations for the qKZ tower (f (n))n≥0 of
solutions.

Note that by Lemma 3.2.4 and Lemma 3.2.5, we necessarily must have the com-
patibility condition

−t− 3
4 cn+1 = λncn n ≥ 1 (3.2.12)

between the twist and scale parameters in a qKZ tower of solutions (note that for
n = 0 we have t

1
4 c1 + t−

1
4 c−1

1 = c0 by definition).

3.3 Extended affine Temperley-Lieb algebra

The qKZ towers we construct are built using modules of the extended affine
Temperley-Lieb algebra, which is a quotient of Hn. In this section we recall the def-
inition of the extended affine Temperley-Lieb algebra and discuss the relevant tower
of extended affine Temperley-Lieb algebra modules, following [2].

The extended affine Temperley-Lieb algebras arise as the endomorphism algebras
of the skein category of the annulus. We first give the definition of the extended
affine Temperley-Lieb algebra in terms of generators and relations, and then discuss
its relation to Hn and the qKZ equations. For more details on the theory discussed
in this section see Chapter 2.

Definition 3.3.1. Let n ≥ 3. The extended affine Temperley-Lieb algebra T Ln =

T Ln(t
1
2 ) is the complex associative algebra with generators ei (i ∈ Z/nZ) and ρ, ρ−1,
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Towers of qKZ Solutions

and defining relations

e2i =
(
−t 1

2 − t−
1
2

)
ei,

eiej = ejei if i− j 6≡ ±1,

eiei±1ei = ei,

ρei = ei+1ρ,

ρρ−1 = 1 = ρ−1ρ,
(
ρe1
)n−1

= ρn(ρe1),

(3.3.1)

where the indices are taken modulo n. For n = 2 the extended affine Temperley-
Lieb algebra T L2 = T L2(t

1
2 ) is the algebra generated by e0, e1, ρ±1 with the defining

relations (3.3.1) but with the third relation omitted. For n = 1 we set T L1 = H1 =

C[ρ, ρ−1], and for n = 0 we set T L0 = H0 = C[X ].

The affine Temperley-Lieb algebra is the subalgebra T La
n of T Ln generated by ei

(i ∈ Z/nZ). The first three relations in (3.3.1) are the defining relations in terms of
these generators (the first relation is the defining relation when n = 2). The (finite)
Temperley-Lieb algebra is the subalgebra T L0

n of T La
n generated by e1, . . . , en−1. The

first three relations in (3.3.1) for the relevant indices are then the defining relations.
Note that the dependence on the parameter t

1
2 of T Ln is actually a dependence on

t
1
2 + t−

1
2 .

It is well known that for n ≥ 2 the assignments

Ti 7→ ei + t−
1
2 , ρ 7→ ρ

for i ∈ Z/nZ extend to a surjective algebra homomorphism ψn : Hn(t
1
2 ) ։ T Ln(t

1
2 )

see, e.g., Proposition 2.9.2 and reference in Chapter 2. For n = 1 and n = 0 we take
ψn : Hn → T Ln to be the identity map.

Via the map ψn the R-operators Ri(x) := ψn(R̃i(x)) (i ∈ Z/nZ) on the extended
affine Temperley-Lieb level are

Ri(x) = a(x)ei + b(x) (3.3.2)

as rational T Ln-valued function in x, with rational functions a(x) = a(x; t
1
2 ) and

b(x) = b(x; t
1
2 ) given by

a(x) :=
x− 1

t
1
2 − t−

1
2x
, b(x) :=

xt
1
2 − t−

1
2

t
1
2 − t−

1
2 x

(3.3.3)

as T Ln-valued rational function in x. Note that the Ri(x) (i ∈ Z/nZ) satisfy the
Yang-Baxter type equations (3.2.6) in T Ln. The weights a(x) and b(x) will play an
important role in the next section, where they appear as the Boltzmann weights of
the dense loop model.
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3.3. Extended affine Temperley-Lieb algebra

We can now define the following analog of the qKZ solution space Soln(Vn; q, c)
(Definition 3.2.3) for left T Ln-modules Vn. For n ≥ 2 it is the space of Vn-valued
polynomials f ∈ Vn[z] in the variables z1, . . . , zn satisfying

σn(Ri(zi+1/zi))f(. . . , zi+1, zi, . . . ) = f(z) (1 ≤ i < n),

σn(ρ)f(z2, . . . , zn, q
−1z1) = cf(z),

(3.3.4)

where σn is the representation map of the T Ln-module Vn. For n = 1 it is the space of
V1-valued polynomials f in the single variable z satisfying σ1(ρ)f(q−1z) = cf(z). For
n = 0 it is the eigenspace of σ0(X) with eigenvalue c. By a slight abuse of notation
we will denote this space of solutions again by Soln(Vn; q, c). No confusion can arise,
since Soln(Vn; q, c) for the left T Ln-module Vn coincides with Soln(Ṽn; q, c), where Ṽn
is the Hn-module obtained by endowing Vn with the lifted Hn-module structure with
representation map σn ◦ ψn.

From Proposition 2.5.3 we have an algebra homomorphism In : T Ln(t
1
2 ) →

T Ln+1(t
1
2 ) for n ≥ 0 defined by I0(X) = t

1
4 ρ+ t−

1
4 ρ−1 and

In(ei) = ei, 1 ≤ i < n,

In(ρ) = ρ(t−
1
4 en + t

1
4 )

for n ≥ 1. In particular, In(ρ−1) = (t
1
4 en + t−

1
4 )ρ−1. Note that we have a commuta-

tive diagram

Hn Hn+1

T Ln T Ln+1

νn

ψn ψn+1

In
(3.3.5)

Following Definition 2.6.1, we say that {(Vn, µn)}n∈Z≥0
is a tower of extended affine

Temperley-Lieb modules if Vn is a left T Ln-module and µn ∈ HomT Ln

(
Vn, V

In
n+1

)
for

all n ≥ 0. We sometimes write the tower as

V0
µ0−→ V1

µ1−→ V2
µ2−→ V3

µ3−→ · · ·

Note that (3.3.5) implies that an intertwiner µn ∈ HomT Ln
(Vn, V

In
n+1) is also an in-

tertwiner Ṽn → Ṽ νn
n+1 of the associated Hn-modules. Hence the tower {(Vn, µn)}n≥0 of

extended affine Temperley-Lieb algebra modules gives rise to the tower {(Ṽn, µn)}n≥0

of extend affine Hecke algebra modules. Conversely, if {(Ṽn, µn)}n≥0 is a tower of ex-
tended affine Hecke algebra modules and the representation maps σ̃n : Hn → End(Vn)
factorize through ψn, then the tower descends to a tower of extended affine Temperley-
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Towers of qKZ Solutions

Lieb algebra modules. We will freely use these lifts and descents of towers in the sequel
of the chapter.

The tower of extended affine Temperley-Lieb modules relevant for the dense loop
model is constructed from the skein category S = S(t 1

4 ) of the annulus, defined in
Chapter 2. We shortly recall here the basic features of the category S. For further
details, see Chapter 2.

The category S is the complex linear category with objects Z≥0 and with the space
of morphisms HomS(m,n) being the linear span of planar isotopy classes of (m,n)-
tangle diagrams on the annulus A := {z ∈ C | 1 ≤ |z| ≤ 2}, with m and n marked
ordered points on the inner and outer boundary respectively, modulo the Kauffman
skein relation

= t
1
4 + t−

1
4 ; (3.3.6)

and the (null-homotopic) loop removal relation

= −(t
1
2 + t−

1
2 ) . (3.3.7)

We consider here planar isotopies that fix the boundary of A pointwise. The ordered
marked points on the boundary are ξi−1

m (1 ≤ i ≤ m) and ξj−1
n (1 ≤ j ≤ n) with

ξℓ := e2πi/ℓ. In these equations the disc shows the local neighbourhood in the annulus
where the diagrams differ. Let L be an (l,m)-tangle diagram and L′ an (m,n)-tangle
diagram. The composition [L′] ◦ [L] of the corresponding equivalence classes in S is
[L′ ◦ L], with L′ ◦ L the (l, n)-tangle diagram obtained by placing L inside L′ such
that the outer boundary points of L match with the inner boundary points of L′. For
example,

12 12 ◦ 12 1
2

3
4

= 12 1
2

3
4

By [40, Prop. 2.3.7] and Theorem 2.3.4 we have an isomorphism

θn : T Ln(t
1
2 )

∼−→ End
S(t

1
4 )
(n)
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3.3. Extended affine Temperley-Lieb algebra

of algebras for n ≥ 0, with the algebra isomorphism θn for n ≥ 1 determined by

ρ 7→ 1

2

1
n , ei 7→ 1

i−1

i
i+1 i+2

1
i

and for n = 0 by

X 7→ .

Moreover, in Chapter 2 an arc insertion functor I : S → S is defined using a natural
monoidal structure on S, see Definition 2.5.1. It maps n to n+1 and, on morphisms, it
inserts on the level of link diagrams a new arc connecting the inner and outer boundary
while going underneath all arcs it meets (the particular winding of the new arc is
subtle). The resulting algebra homomorphisms I|EndS(n) : EndS(n) → EndS(n + 1)

coincides with the algebra homomorphism In by the identification of EndS(n) with
T Ln(t

1
2 ) through the isomorphism θn.

Let v ∈ C∗ and set u := t
1
4 v + t−

1
4 v−1. The one-parameter family of link-pattern

towers
V0(u)

φ0−→ V1(v)
φ1−→ V2(u)

φ2−→ V3(v)
φ3−→ · · ·

of extended affine Temperley-Lieb algebra modules is now defined as follows (see
section 2.7). For n = 2k the T L2k-module V2k(u) is defined as

V2k(u) := HomS(0, 2k)⊗T L0 C
(u)
0 ,

where HomS(0, 2k) is endowed with its canonical (T L2k, T L0)-bimodule structure and

C
(u)
0 denotes the one-dimensional representation of T L0 = C[X ] defined by X 7→ u.

For n = 2k − 1 the T L2k−1-module V2k−1(v) is defined as

V2k−1(v) := HomS(1, 2k − 1)⊗T L1
C

(v)
1

with C
(v)
1 denoting the one-dimensional representations of T L1 = C[ρ±1] defined

by ρ 7→ v. For Y ∈ HomS(0, 2k) we write Yu := Y ⊗T L0
1 for the corresponding

element in V2k(u). Similarly, for Z ∈ HomS(1, 2k − 1) we write Zv := Z ⊗T L1
1 for

the corresponding element in V2k−1(v). We sometimes omit the dependence of the
representations V2k(u) and V2k−1(v) on u = t

1
4 v + t−

1
4 v−1 and v, if it is clear from

context.
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Towers of qKZ Solutions

The intertwiners φn (n ≥ 0) are defined as follows. Consider the skein element

U := t
1
4 12 + v 12 ∈ HomS(0, 2).

Then

φ2k([L]u) := I([L])v,
φ2k−1([L

′]v) := (I([L′]) ◦ U)u,

for a (0, 2k)-link diagram L and a (1, 2k − 1)-link diagram L′.

Example 3.3.2.

1

2

3

4

φ47−→ 1

2

3

4

5

b
b

1

2

3

φ37−→ t
1
4 1

2

3

4

b
+ v 1

2

3

4

b

The rather peculiar form of the intertwiners φ2k−1 can be explained in terms of
a Roger-Yang [76] type graded algebra structure on the total space V0(u) ⊕ V1(v) ⊕
V2(u)⊕ · · · of the link-pattern tower, see Remark 2.7.11.

Let D = {z ∈ C | |z| ≤ 2} and D∗ := D \ {0}. A punctured link-pattern of size
2k is a perfect matching of the 2k equally spaced marked points 2ξi−1

2k (1 ≤ i ≤ 2k)
on the boundary of D∗ by k non-intersecting arcs lying within D∗. A punctured
link-pattern of size 2k − 1 is a perfect matching of the 2k marked points 2ξj−1

2k−1

(1 ≤ j < 2k) and 0 by k non-intersecting arcs lying within D. Only the endpoints
of the arcs are allowed to lie on {0} ∪ ∂D. Two link-patterns are regarded the same
if they are planar isotopic by a planar isotopy fixing 0 and the boundary ∂D of D

pointwise. The arc connecting 0 to the outer boundary of D is called the defect line.
An arc that connects two points on the boundary are sometimes referred to as an
arch and an arch that connects two consecutive points that does not contain the
puncture is called a little arch. We denote the set of punctured link-patterns of size
n by Ln. As an example, the following punctured link-patterns
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3.4. qKZ equations on the space of link-patterns

1

2

3

*
1

2

3

*
1

2

3

*

constitute L3.

For twist parameter v = 1 we can naturally identify the nth representation space
Vn in the link-pattern tower with C[Ln] as a vector space by shrinking the hole
{z ∈ C | |z| ≤ 1} of the annulus to 0. The resulting action of T Ln on C[Ln] can be
explicitly described skein theoretically, see Chapter 2.

3.4 qKZ equations on the space of link-patterns

For this entire section we fix v = 1. In this section we discuss the qKZ equations
associated to the T Ln-modules Vn ≃ C[Ln] (n ≥ 0) from the link-pattern tower.
We derive for the link-pattern tower necessary conditions for the existence of qKZ
towers of solutions. The existence of qKZ towers of solutions will be the subject of
subsequent sections.

The following lemma is well known, see [19, 23, 48].

Lemma 3.4.1. Let n ≥ 1, q, c ∈ C
∗ and let

g(n)(z) =
∑

L∈Ln

g
(n)
L (z)L ∈ V (c)

n (z)∇(Wn)

be a symmetric solution of the qKZ equation with coefficients g(n)L (z) ∈ C(z) (L ∈ Ln).
Then for all L ∈ Ln and 1 ≤ i < n,

g
(n)
L (z) = b(zi+1/zi)g

(n)
L (siz) +

∑

L′∈Ln: eiL′∼L

γ
(i)
L′,La(zi+1/zi)g

(n)
L′ (siz),

g
(n)
L (z) = c−1g

(n)
ρ−1L(z2, . . . , zn, q

−1z1),

(3.4.1)

where eiL
′ ∼ L means that L is obtained from eiL

′ by removing the loops in eiL
′

(there is in fact at most one loop). The coefficient γ(i)L′,L is defined by

γ
(i)
L′,L =





−(t
1
2 + t

1
2 ) if eiL′ has a null-homotopic loop,

t
1
4 + t

1
4 if eiL′ has a non null-homotopic loop,

1 otherwise.
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Proof. This follows directly by rewriting the qKZ equations

g(n)(z) = Ri(zi+1/zi)g
(n)(· · · , zi+1, zi, . . .), 1 ≤ i < n,

g(n)(z) = c−1ρg(n)(z2, . . . , zn, q
−1z1)

component-wise.

Let L∩ = L
(n)
∩ ∈ Ln denote the link-patterns

*
1

2k

k

k+1 and 1

2k−1

k−1

k

k+1
*

for n = 2k and 2k − 1, respectively. We call L∩ ∈ Ln the fully nested diagram.
For g(n)(z) =

∑
L∈Ln

g
(n)
L (z)L ∈ Vn(z) we call g(n)L∩

(z) the fully nested component of

g(n)(z).

Lemma 3.4.2. Let n ≥ 1, q, c ∈ C∗ and t2 6= 1. Let

g(n)(z) =
∑

L∈Ln

g
(n)
L (z)L ∈ V (c)

n (z)∇(Wn).

(a) If g(n)L∩
(z) = 0 then g(n)(z) = 0.

(b) If g(n)L∩
(z) ∈ C[z] is a homogeneous polynomial of total degree m, then so is g(n)L (z)

for all L ∈ Ln.

Proof. In section 3.8 we show by induction that, given gL∩
(z), the recursion relations

(3.4.1) determine the other coefficients g(n)L (z) (L ∈ Ln) uniquely. For this the first
equation in (3.4.1) is always used in the following way: for appropriate L′ ∈ Ln and
1 ≤ i < n such that L′ does not have a little arch between i and i + 1, denote by
L ∈ Ln the link pattern such that eiL′ ∼ L, then g(n)L′ (z) is expressed as

γ
(i)
L′,La(zi+1/zi)g

(n)
L′ (siz) = gL(z) − b(zi+1/zi)gL(siz)

−
∑

L′′∈Ln\{L′}: eiL′′∼L

γ
(i)
L′′,La(zi+1/zi)g

(n)
L′′ (siz).

By substituting the explicit expressions of the weights a(x) and b(x), this can be
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3.4. qKZ equations on the space of link-patterns

rewritten as

γ
(i)
L′,L(zi+1 − zi)g

(n)
L′ (siz) = (1− si)

(
(t

1
2 zi − t−

1
2 zi+1)gL(z)

)

− (zi+1 − zi)
∑

L′′∈Ln\{L′}: eiL′′∼L

γ
(i)
L′′,Lg

(n)
L′′ (siz),

from which it is clear that g(n)L′ (z) will be a homogeneous polynomial of total degree

m if g(n)L (z) and g
(n)
L′′ (z) are homogeneous polynomials of total degree m. Hence (a)

and (b) follow immediately from section 3.8.

A similar result holds true for the restricted modules V In
n+1:

Lemma 3.4.3. Let n ≥ 1, q, c ∈ C∗ and t
1
4 ∈ C∗ such that t2 6= 1. Let

g(n)(z) =
∑

L∈Ln+1

g
(n)
L (z)L ∈ V

In,(c)
n+1 (z)∇(Wn).

(a) If g(n)L∩
(z) = 0 with L∩ = L

(n+1)
∩ ∈ Ln+1 the fully nested diagram, then g(n)(z) = 0.

(b) If g(n)L∩
(z) ∈ C[z] is a homogeneous polynomial of total degree m, then so is g(n)L (z)

for all L ∈ Ln+1.

Proof. The proof is similar to the proof of the previous lemma, but the check that
the recursion relations coming from the qKZ equations for the representation V In,(c)

n+1

determine all components in terms of the fully nested component g(n)
L

(n+1)
∩

(z) is more

subtle. The details are given in section 3.8.

Corollary 3.4.4. Let n ≥ 1 and

g(n)(z) =
∑

L∈Ln

g
(n)
L (z)L ∈ V (c)

n (z)∇(Wn).

Then
g
(n)
L∩

(z) = Cn(z)
∏

1≤i<j≤n

(
t
1
2 zj − t−

1
2 zi
)

with Cn(z) ∈ C(z)Sn . If in addition g
(n)
L∩

(z) is a homogeneous polynomial of total
degree m and t2 6= 1, then m ≥ 1

2n(n−1) and Cn(z) ∈ C[z]Sn is homogeneous of total
degree m− 1

2n(n− 1).

Proof. Note that L∩ does not have a little arch connecting i and i+ 1 for 1 ≤ i < n.
By the recursion relation (3.4.1) it follows that

g
(n)
L∩

(siz)(t
1
2 zi+1 − t−

1
2 zi) = g

(n)
L∩

(z)(t
1
2 zi − t−

1
2 zi+1) (3.4.2)

for 1 ≤ i < n. The first result now follows immediately.
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For the second statement, suppose that g(n)L∩
(z) is a homogeneous polynomial of

total degree m. Then (3.4.2) and t2 6= 1 imply that g(n)L∩
(z) is divisible by t

1
2 z2−t− 1

2 z1
in C[z] and the resulting quotient is invariant under interchanging z1 and z2. One

now proves by induction on r that g
(n)
L∩

(z) is divisible by
∏

1≤i<j≤r(t
1
2 zj − t−

1
2 zi)

in C[z] and the resulting quotient is symmetric in z1, . . . , zr. The second statement
then follows by taking r = n. An alternative argument can be made using the qKZ
equations cf. [19].

It follows from the previous result that if there exists a nonzero g(n) ∈
Soln(Vn; q, cn) with coefficients being homogeneous of total degree 1

2n(n− 1), then it
is unique up to a nonzero scalar multiple and

g
(n)
L∩

(z) = κ
∏

1≤i<j≤n

(
t
1
2 zj − t−

1
2 zi
)

for some κ ∈ C∗.

The following lemma is important in the analysis of qKZ towers of solutions for
the link-pattern tower {(Vn, φn)}n≥0.

Lemma 3.4.5. For L ∈ Ln and consider the expansion

φn(L) =
∑

L′∈Ln+1

cL,L′L′ (cL,L′ ∈ C)

of φn(L) in terms of the linear basis Ln of Vn. Then c
L,L

(n+1)
∩

= t−
1
4 ⌊n/2⌋δ

L,L
(n)
∩

.

Proof. For n = 2k, consider a link-pattern L ∈ L2k that has a little arch connecting
i, i + 1 for any 1 ≤ i < 2k. All the link-patterns in the image φ2k(L) also contain
the same little arch since the inserted defect line does not cross the little arch. (If it
does, then it crosses the little arch twice and can be separated by the Reidemeister
moves.) The only link-pattern that does not contain a little arch connecting i, i + 1
for any 1 ≤ i < 2k is L∩. By the mapping φ2k we have

*
1

2k

k

k+1

φ2k7−→ 1

2k+1

2k

k

k+1

bb b*

and note that the image has k under-crossings. Evaluating all the crossings gives a
linear combination of link-patterns. The link-pattern L∩ ∈ L2k+1 comes from taking

the contribution for each crossing . Each of these contributions gives a factor

t−
1
4 , hence the result for n even.
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3.4. qKZ equations on the space of link-patterns

For the case n = 2k − 1 the first step of the argument is similar. The only link-
pattern that does not contain a little arch connecting i, i+ 1 for any 1 ≤ i < 2k − 1

is L∩. By the mapping φ2k−1 we have

1

2k−1

k − 1

k

k+1 *

φ2k−17−→ 1

2k−1

k − 1

k

k+1

2k

bb*
+ t

1
4

1

2k−1

k − 1

k

k+1

2k

bb*

and note that each term in the image has k − 1 under-crossings. Evaluating all the
crossings gives a linear combination of link-patterns. The link-pattern L∩ ∈ L2k

comes from taking the the contribution for each crossing in the first term.

Each of these contributions gives a factor t−
1
4 hence the result.

The previous lemma describes the connection between L∩ ∈ Ln and L∩ ∈ Ln+1

via the map φn. The next lemma make use of the this connection and highlights
the necessary and sufficient conditions on the parameters q, cn for a qKZ tower on
link-patterns.

Lemma 3.4.6. Let v = 1 and q, cn, t
1
4 ∈ C

∗ (n ≥ 1) with t2 6= 1. Suppose that for
each n ≥ 1 there exists a g(n) ∈ Soln(Vn; q, cn) with

g
(n)
L∩

(z) =
∏

1≤i<j≤n

(
t
1
2 zj − t−

1
2 zi
)
.

Write g(0) := 1 ∈ V0.
Then the following two statements are equivalent:

(a)
(
g(n)

)
n≥0

is a qKZ tower of solutions for the link-pattern tower {(Vn, φn)}n≥0.

(b) q = t
3
2 , cn =

(
−t− 3

4

)n−1
(n ≥ 1) and c0 = t

1
4 + t−

1
4 .

If these equivalent conditions are satisfied then λn := q−1 (n ≥ 1), λ0 = 1,

h(n)(z) = t
1
4 (⌊n/2⌋−2n)z1z2 · · · zn (n ≥ 1)

and h(0) = 1. In other words, the corresponding braid recursion relations are then
given by

g(n+1)(z1, . . . , zn, 0) = t
1
4 (⌊n/2⌋−2n)z1z2 · · · znφn

(
g(n)(z1, . . . , zn)

)
, n ≥ 0.

(3.4.3)

Proof. Note that for n ≥ 1,

(cn)
ng(n)(z) = ρng(n)(q−1z1, . . . , q

−1zn) = q−
1
2n(n−1)g(n)(z) (3.4.4)
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since ρn acts as the identity on Vn and g(n) is homogeneous of total degree 1
2n(n− 1).

Hence (cn)
n = q−

1
2n(n−1) (n ≥ 1). Furthermore, c1 = 1 since g(1) is constant.

By the rank descent lemma we have

g(n+1)(z1, . . . , zn, 0) ∈ Soln
(
V In

n+1; q,−t−
3
4 cn+1),

while the representation lift lemma gives φn(g(n)(z1, . . . , zn)) ∈ Soln
(
V In
n+1; q, cn). The

fully nested component of g(n+1)(z1, . . . , zn, 0) is

g
(n+1)

L
(n+1)
∩

(z1, . . . , zn, 0) =
(
−t− 1

2

)n
z1z2 · · · zn

∏

1≤i<j≤n

(
t
1
2 zj − t−

1
2 zi
)
.

Using Lemma 3.4.5, the fully nested component of φn(g(n)(z1, . . . , zn)) is

t−
1
4 ⌊n/2⌋

∏

1≤i<j≤n

(
t
1
2 zj − t−

1
2 zi
)
.

(a)⇒(b): assume that (g(n))n≥0 is a qKZ tower of solutions. Then the above analysis
of the fully nested components implies that λn = q−1 and

h(n)(z) = t
1
4 (⌊n/2⌋−2n)z1z2 · · · zn

for n ≥ 1, while λ0 = 1, h(0) = 1 for n = 0. In other words, the corresponding
braid recursion takes on the explicit form (3.4.3). Note that c0 = t

1
4 + t−

1
4 since

g(0) = 1. For n ≥ 1 the left hand side of (3.4.3) lies in Soln(V
In
n+1; q,−t−

3
4 cn+1) while

the right hand side lies in Soln(V
In
n+1; q, q

−1cn), hence the twist parameters cn must

satisfy cn+1 = −q−1t
3
4 cn (n ≥ 1). Since c1 = 1 we conclude that

cn =
(
−q−1t

3
4

)n−1
, n ≥ 1.

Combined with (3.4.4) we obtain for n ≥ 1,

(
q−2t

3
2

) 1
2n(n−1)

= q−
1
2n(n−1),

which is satisfied if and only if q = t
3
2 . It follows that cn = (−t− 3

4 )n−1 for n ≥ 1, as
desired.
(b)⇒(a): in view of Lemma 3.4.2 and Lemma 3.4.3 we only have to show that under
the parameter conditions as stated in (b), the fully nested components of the left
and right hand side of (3.4.3) match. This is immediate from the first half of the
proof.

We can now state the main theorem of this chapter. We say that a statement is
true for generic t

1
4 ∈ C∗ if it holds true for values t

1
4 in a non-empty Zariski open
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subset of C.

Theorem 3.4.7. Let v = 1 and q = t
3
2 .

(a) Let t
1
4 = exp(πi/3). For n ≥ 1 there exists a unique g(n)(z) ∈ Soln(Vn; 1, 1),

homogeneous of total degree 1
2n(n− 1), such that

g
(n)
L∩

(z) =
∏

1≤i<j≤n

(
t
1
2 zj − t−

1
2 zi
)
.

Together with g(0) := 1 ∈ Sol0(V0; 1, 1), we obtain a qKZ tower (g(n))n≥0 of
solutions with the braid recursion relations given by

g(2k)(z1, . . . , z2k−1, 0) = (−1)kt−
1
2 z1 · · · z2k−1φ2k−1(g

(2k−1)(z1, . . . , z2k−1)),

g(2k+1)(z1, . . . , z2k, 0) = (−1)kz1 · · · z2kφ2k
(
g2k)(z1, . . . , z2k)).

(b) For generic t
1
4 ∈ C∗ there exists, for all n ≥ 1, a unique g(n)(z) ∈

Soln
(
Vn; t

3
2 , (−t− 3

4 )n−1
)
, homogeneous of total degree 1

2n(n− 1), such that

g
(n)
L∩

(z) =
∏

1≤i<j≤n

(
t
1
2 zj − t−

1
2 zi
)
.

Together with g(0) := 1 ∈ Sol0(V0; t
3
2 , t

1
4 + t−

1
4 ) we thus obtain a qKZ tower of

solutions (g(n))n≥0 with the braid recursion relations given by (3.4.3).

Note that for t
1
4 = exp(πi/3) (which is a primitive sixth root of unity), we have

t
3
2 = 1 and −t 1

2 − t−
1
2 = 1 = t

1
4 + t−

1
4 , so the parameters in (a) match up with

the parameters in part (b). The proof of the theorem is delicate. For part (a)

we prove the existence of g(n) by constructing g(n) from the ground state of the
inhomogeneous O(1) dense loop model [23, 48]. An essential ingredient in its proof is
the fact that the O(1) dense loop model is governed by a stochastic transfer operator.
See Section 3.5. For part (b) we use the Cherednik-Matsuo correspondence [78] to
construct g(n)(z) from specialised non-symmetric dual Macdonald polynomials, using
the delicate results of Kasatani [47]. See Section 3.6.

3.5 Existence of Solution for t
1
4 = exp(πi/3)

In this section we prove the existence of the solutions g(n)(z) ∈ Soln(Vn(1); 1, 1) for
v = 1 and t

1
4 = exp(πi/3) (see Theorem 3.4.7(a)).

This is done by taking for g(n)(z) a suitably renormalized version of the ground
state of the dense O(1) loop model and then showing it satisfies the qKZ equations.
The section begins with discussing the transfer operator and then follows with the
O(1) loop model.

In this section we take v = 1.
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3.5.1 Transfer operator

The transfer operator T̂ (n) := T̂ (x; z1, . . . , zn) : C[Ln] → C[Ln] can be defined as
follows [19, 23]. For n > 0 consider the two following tiles

which we denote by τnw and τne, respectively, where ‘nw’ and ‘ne’ indicates that the
north edge of the tile is connected to the west or east edge by an arc. Then the action
of T̂ (n)(x; z) = T̂ (n)(x; z1, . . . , zn) is given by

T̂ (n)(x; z) :=
∑

τ1,...,τn

(
n∏

i=1

Pτi(x/zi)

)

τ
1
τ2

τi

were τi ∈ {τnw, τne},

Pτnw(x/zi) = a(x/zi) =
x− zi

t
1
2 zi − t−

1
2x
,

Pτne(x/zi) = b(x/zi) =
t
1
2x− t−

1
2 zi

t
1
2 zi − t−

1
2x
.

Note that the inner boundary of the annulus is always taken as the north edge of the
tile. Moreover, for the case n = 1 tiling the annulus is done by stretching the tile so
that the east and west edges are identified. The string of tiles forming an annulus
can immediately be interpreted as an element in Sn(t

1
4 ). Hence, by the algebra

isomorphism θn : T Ln(t
1
2 )

∼−→ End
S(t

1
4 )
(n) we have T̂ (n)(x; z) ∈ C(x, z) ⊗ T Ln(t

1
2 ).

The case n = 0 is special. We define T̂ (0) := θ0(X) and remind the reader that
T L0 = C[X ]. We also point out that since T L1 = C[ρ, ρ−1] we have

T̂ (1)(x; z1) =
x− z1

t
1
2 z1 − t−

1
2x
θ1(ρ

−1) +
t
1
2x− t−

1
2 z1

t
1
2 z1 − t−

1
2 x
θ1(ρ).

The transfer operator can also be defined in terms of the R-operators θn(Ri(x))

for i ∈ Z/nZ. We will drop the isomorphism θn when it is clear from context. Using
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diagrams we write the R-operator as

Ri(zi+1/zi) =
zi+1 − zi

t
1
2 zi − t−

1
2 zi+1

z1

zi−1
zi

zi+1zi+2

1
i

+
t
1
2 zi+1 − t−

1
2 zi

t
1
2 zi − t−

1
2 zi+1

z1

zi−1
zi

zi+1zi+2

1
i

,

(3.5.1)
and also as

Ri(zi+1/zi) =: z1

zi−1

zi
zi+1 zi+2

1
i

where we view the crossing in the annulus as a weighted sum of the two diagrams
given in (3.5.1). Using the diagram description of the R-operator the Yang-Baxter
equations and inversion relation (lines 1 and 3 of (3.2.6)) can be depicted as

x
y

z

z
y

x

=

z
y

x

x
y

z

and

x

x

y

y

=

y

y

x

x

(3.5.2)
respectively. The area within the dotted lines is a local neighbourhood in the annulus.

Algebraically, T̂ (n) (for n ≥ 1) is constructed from the R-operator as follows. Let

M
(n)
0 (x; z) := ρRn−1(x/zn)Rn−2(x/zn−1) · · ·R0(x/z1) ∈ T Ln+1

be the monodromy operator where we number the auxiliary point n+1 in the diagrams
as 0. Then,

T̂ (n)(x; z) := cl0(M
(n)
0 (x; z))

where cl0 corresponds to the tangle closure [37] of the auxiliary point 0. In this specific
case cl0 amounts to disconnecting the two arcs from the inner- and outer boundary
points labeled ‘0’ and connecting them in EndS(n) by an arc that undercrosses all
arcs one meets.
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The transfer operators with different values of x commute in T Ln,

[T̂n(x; z), T̂n(x
′, z)] = 0.

This can be shown by interlacing two T operators with R-operators. In the literature
it is usually shown diagrammatically using the inversion relation and Yang-Baxter
equation (3.5.2) of the R-operators. For an example of this technique we refer the
reader to [19] for dense loop models and [3] in general. Using the Yang-Baxter equation
and the relations of ρ (see (3.3.1) ) we can show,

Ri(zi+1/zi)T̂
(n)(x; . . . , zi+1, zi, . . . ) = T̂ (n)(x; z)Ri(zi+1/zi),

ρT̂ (n)(x; z2, . . . , zn, z1) = T̂ (n)(x; z)ρ.
(3.5.3)

In [23] the authors made the crucial observation that the R-operators
Ri(0), Ri(∞) ∈ T Ln can be interpreted as a crossing in the skein description of
the element,

Ri(0) = −t− 3
4 11

i
i + 1

i

b

, Ri(∞) = −t 3
4 11

i
i + 1

i

b

.

Consequently,

T̂ (n)(x; z1, . . . , zn−1, 0) = −t 3
4

∑

τ1,...,τn−1

(
n−1∏

i=1

Pτi(x/zi)

)

b

τ1

τn−1

.

Noting this over crossing and recalling the algebra map In−1 : T Ln−1 → T Ln arising
from the arc insertion functor we obtain the following braid recursion relation for the
transfer operator, which is due to [23, §2.4]:

Proposition 3.5.1. For n ≥ 1,

T̂ (n)(x; z1, . . . , zn−1, 0) = −t 3
4 In−1(T̂

(n−1)(x; z1, . . . , zn−1)).

3.5.2 The O(1) loop model

The transfer operator T̂ (n)(x; z) ∈ T Ln acting on the link-pattern tower representa-
tion Vn in the special case v = 1 is by definition the transfer operator T (n)(x; z) ∈
End(Vn) of the inhomogeneous dense O(−t 1

2 − t− 1
2 ) loop model on the punctured disc
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[23, 48]. We specialise in this section further to the case t
1
4 = exp(πi/3), in which

case
−t 1

2 − t−
1
2 = 1 = t

1
4 + t−

1
4 .

This means that all loops can be removed by a factor 1. As we shall discuss in a
moment, the resulting O(1)-model is not only Bethe integrable but also stochastic.
We identfy Vn with C[Ln] as vector spaces (see the end of Section 3.3).

The arguments that follow prove the existence and uniqueness of the ground state
of the O(1)-model. This is due to the irreducibility and stochastic property of the
transfer operator T̂ (n)(x; z) for a particular parameter regime. We then show it holds
true for all parameter values. In [23] the authors considered T̂ (n)(1; z) and followed
the same arguments for the existence and uniqueness of the ground state. However,
they omit an argument to generalise it to all parameter values and assume uniqueness
holds.

Consider the matrix A(n)(x; z) := (ALL′(x; z))L,L′∈Ln of T (n)(x; z) with respect
to the link-pattern basis,

T (n)(x; z)L′ =
∑

L∈Ln

ALL′(x; z)L.

The coefficients ALL′(x; z) depend rationally on x, z1, . . . , zn. For the specialised value
t
1
4 = exp(πi/3) the Boltzmann weights a(x) and b(x) (see (3.3.3)) satisfy

a(x) + b(x) = 1,

hence
∑

L∈Ln
ALL′(x; z) = 1 for all L′ ∈ Ln. Furthermore, 0 < a(x) < 1 if x = eiθ

with 0 < θ < 2π/3, hence A(n)(x; z) is left stochastic if x/zj = eiθj with 0 < θj < 2π/3
for j = 1, . . . , n. In this situation, A(n)(x; z) is irreducible; this follows from the fact
that each L ∈ Ln is a cyclic vector for the T Ln-module Vn, which can be easily proven
using an inductive argument.

For n = 2k even, let Lln ∈ L2k be the least-nested link-pattern, which is the link-
pattern that has little-arches connecting boundary points (2i − 1, 2i) for 1 ≤ i ≤ k
such that the little-arches do not contain the puncture. All L ∈ Ln can be mapped to
Lln by acting with e1e3 · · · e2k−1. In turn Lln can be mapped to the fully nested link-
pattern L∩ by the action of ρk

∏k
i=2 eiei+2 · · · e2k−i Lastly, by the inductive argument

in section 3.8, L∩ can be mapped to any L ∈ Ln. The case for n odd is analogous.

Lemma 3.5.2. Let v = 1, q = 1 and t
1
4 = exp(πi/3). There exists a unique ĝ(n)(z) =∑

L∈Ln
ĝ
(n)
L (z)L with ĝ(n)L (z) ∈ C(z) such that

T (n)(x; z)ĝ(n)(z) = ĝ(n)(z)
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for all x ∈ C and such that
∑

L∈Ln
ĝ
(n)
L (z) = 1. Furthermore,

ĝ(n)(z) ∈
(
C(z)⊗ Vn

)∇(Wn)
.

Proof. Consider A(n)(z) := A(n)(1; z). Since the matrix coefficients ALL′(z) :=

ALL′(1; z) satisfy
∑

L∈Ln
ALL′(z) = 1, we have det

(
A(n)(z) − 1

)
= 0 and hence

there exists a nonzero vector κ(z) =
(
κL(z)

)
L∈Ln

with κL(z) ∈ C(z) such that

A(n)(z)κ(z) = κ(z). Consider

N(z) :=
∑

L∈Ln

κL(z).

Note that A(n)(z) is irreducible left-stochastic if zj = e−iθj with 0 < θj < 2π/3, hence
for generic specialised values of the rapidities in this stochastic parameter regime,
A(n)(z) has a one-dimensional eigenspace with eigenvalue 1, spanned by the Frobenius-
Perron eigenvector vFP (z), and the Frobenius-Perron eigenvector vFP (z) (normalized
such that the sum of the coefficients is one), has the property that all its coefficients
are > 0. Hence for generic values of the rapidities in the stochastic parameter regime,
N(z) 6= 0. In particular,N(z) ∈ C(z)\{0}, and we may set ĝ(n)(z) :=

∑
L∈Ln

g
(n)
L (z)L

with ĝ
(n)
L (z) := κL(z)/N(z) ∈ C(z). Then

T (1)(1; z)ĝ(n)(z) = ĝ(n)(z)

and
∑

L∈Ln
ĝ
(n)
L (z) = 1. It follows from restricting to the stochastic parameter regime

again that these two properties determine ĝ(n)(z) uniquely.

Let x ∈ C and set
ĝ(n)(x; z) := T (n)(x; z)ĝ(n)(z).

Write
ĝ(n)(x; z) =

∑

L∈Ln

ĝ
(n)
L (x; z)L

with ĝ
(n)
L (x; z) ∈ C(z). Since [T (n)(1; z), T (n)(x; z)] = 0 we have

T (n)(1; z)ĝ(n)(x; z) = ĝ(n)(x; z).

Since
∑

L∈Ln
ALL′(x; z) = 1 for all L′ ∈ Ln we furthermore have

∑
L∈Ln

ĝ
(n)
L (x; z) =

1. Hence ĝ(n)(x; z) = ĝ(n)(z), i.e.

T (n)(x; z)ĝ(n)(z) = ĝ(n)(z).

This completes the proof of the uniqueness and existence of ĝn(z).

For the second statement, let 1 ≤ i < n and set hi(z) := Ri(zi+1/zi)ĝ
(n)(siz).
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Then by the first formula of (3.5.3),

T̂ (n)(x; z)hi(z) = hi(z),

and the sum of the coefficients of hi(z) is one since a(x) + b(x) = 1. Hence hi(z) =
ĝ(n)(z), i.e.,

Ri(zi+1/zi)ĝ
(n)(siz) = ĝ(n)(z).

In the same way one shows that ρĝ(n)(z2, . . . , zn, z1) = ĝ(n)(z), now using the second
equality of (3.5.3). This completes the proof of the second statement.

Now we are ready to prove Theorem 3.4.7(a). Let v = 1, q = 1 and t
1
4 = exp(πi/3).

By Corollary 3.4.4, the fully nested component is of the form

ĝ
(n)
L∩

(z) = Cn(z)
∏

1≤i<j≤n

(
t
1
2 zj − t−

1
2 zi
)

with 0 6= Cn(z) ∈ C(z)Sn . Since in the current situation q = 1 and Cn(z) is symmetric,
we have that the renormalized function

g(n)(z) := Cn(z)
−1ĝ(n)(z) ∈

(
C(z) ⊗ Vn

)∇(Wn)

is also a symmetric solution of the qKZ equations. It now has fully nested component

g
(n)
L∩

(z) =
∏

1≤i<j≤n

(
t
1
2 zj − t−

1
2 zi
)
. (3.5.4)

By Lemma 3.4.2 we conclude that g(n)(z) ∈ Soln(Vn; 1, 1) is a homogeneous poly-
nomial solution of total degree 1

2n(n − 1). This completes the proof of Theorem
3.4.7(a).

Remark 3.5.3. From Proposition 3.5.1 it follows immediately that

In(T̂ (n)(x; z1, . . . , zn))g
(n+1)(z, 0) = g(n+1)(z, 0).

when t
1
4 = exp(πi/3). In [23] the authors use this equation to prove the braid recursion

relation for v = 1, 1 = q t
1
4 = exp(πi/3) and n even (see Theorem 3.4.7(a)). However,

they implicitly assume that g(n+1)(z, 0) is uniquely characterized as ground state of
T̂ (n+1)(x; z, 0), which is though not clear since we are outside the stochastic parameter
regime when one of the rapidities is set equal to zero. We have circumvented this
problem here by using the characterization of g(n)(z) as a symmetric solution of qKZ
equations.

Remark 3.5.4. Let v = 1, q = 1 and t
1
4 = exp(πi/3). In [23] the authors define

g(n)(z) as the ground state of the transfer operator T (n)(1; z), normalized such that
its coefficients are polynomials with their greatest common divisor being one. The
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authors remark that its fully nested component is (3.5.4) up to a multiplicative scalar.
We have given here a simple proof using qKZ equations, which works particularly well
in the current punctured context since L∩ then does not have little arches between
i, i + 1 for all i = 1, . . . , n − 1. In the unpunctured case the analysis is much more
involved, see [19].

3.6 Existence of solutions for generic t
1
4

In this section we prove the existence of solutions to the qKZ equations on link-pattern
representations for generic t

1
4 (Theorem 3.4.7(b)). A major difference between this

case and when t
1
4 = exp(πi/3) is that we do not have the argument of a stochastic

matrix to construct g(n) using the Perron-Frobenius theorem. We instead use the
Cherednik-Matsuo (CM) correspondence [78]. This is different from the approach in
[48].

In order to be able to apply the Cherednik-Matsuo correspondence, we first need
to identify the link-pattern representations Vn with principal series representations.
This is done in the first subsection, for general twist parameter v. In the subsequent
subsection we recall the Cherednik-Matsuo correspondence and rephrase it in terms of
dual Y -operators. In the last subsection we prove Theorem 3.4.7(b) by constructing
the polynomial solution of the qKZ equation from dual non-symmetric Macdonald
polynomials with specialised parameters.

For any v ∈ C∗ the link-patterns Ln form a (non-canonical) basis of Vn. We can
naturally identify Vn with C[Ln] as a vector space by shrinking the hole {z ∈ C | |z| ≤
1} of the annulus to 0. A choice needs to be made for the winding of the defect line.

3.6.1 V
n

as a principal series module

In this section n ≥ 2, and we fix v ∈ C∗. We recall first the definition of the principal
series representation M I(γ) of the affine Hecke algebra Hn = Hn(t

1
2 ).

Let ǫi (1 ≤ i ≤ n) denote the standard basis of Rn and R0 := {ǫi − ǫj |1 ≤ i 6=
j ≤ n} the root system of type An−1. We take R+

0 := {ǫi − ǫj |1 ≤ i < j ≤ n} the
set of positive roots. The corresponding simple roots are αi := ǫi − ǫi+1 (1 ≤ i < n).
We write sα (α ∈ R0) for the reflection in α. Then the simple reflections si := sαi

(1 ≤ i < n) correspond to the simple neighboring transpositions i ↔ i + 1. For
α = ǫi − ǫj ∈ R0 we write z

α = zi/zj and Y α = Yi/Yj in C[z±1] and Hn respectively.
For I ⊆ {1, . . . , n− 1} we write

T I = T I,t := {γ ∈ (C∗)n | γi/γi+1 = t−1 ∀ i ∈ I}.

For γ ∈ T I let χI
γ := HI(t

1
2 ) → C be the one-dimensional representation of the

parabolic subalgebra HI = HI(t
1
2 ) := C〈Y ±1

j , Ti|i ∈ I, j = 1 . . . , n〉 of Hn(t
1
2 ) satisfy-

ing χI
γ(Yj) = γj (1 ≤ j ≤ n) and χI

γ(Ti) = t−
1
2 (i ∈ I). It is well defined since γ ∈ T I .
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The corresponding principal series module M I(γ) with central character γ is

M I(γ) := Hn ⊗HI CχI
γ
.

To match this with the conventions from [78, §4.3]: the notations (k,m, ζ,H(k))
correspond to our (−t 1

2 , n, ρ,Hn(t
1
2 )). The principal series module M I(γ) then cor-

responds to M−t
1
2 ,−,I(γ) from [78, Lem. 2.5].

Let Sn,I = 〈si | i ∈ I〉 ⊆ Sn be the standard parabolic subgroup generated by the
simple neighboring transpositions si (i ∈ I), and SI

n the minimal coset representatives
of Sn/Sn,I . For w ∈ Sn, let Tw ∈ H0

n be the element Tw = Ti1Ti2 · · ·Tir if w =
si1si2 · · · sir is a reduced expression. This is well defined since the Ti’s satisfy the
braid relations. A linear basis of M I(γ) is then given by {vw := Tw ⊗HI 1χI

γ
}w∈SI

n
.

For a finite dimensional left Hn-module V and ξ ∈ (C∗)n we write

Vξ := {v ∈ V | Yjv = ξjv (1 ≤ j ≤ n)}.

We call v ∈ Vξ of weight ξ. The module V is called calibrated if V =
⊕

ξ Vξ. An

important tool in the analysis of weight vectors in Vn and M I(γ) is intertwiners. We
follow the notational conventions from [78, Thrm. 2.8, Cor. 2.9].

Theorem 3.6.1. For 1 ≤ i < n set

Ii := Ti(1− Y αi) + (t−
1
2 − t

1
2 )Y αi ∈ Hn.

For w ∈ Sn and w = si1si2 · · · sir a reduced expression,

Iw := Ij1Ij2 · · · Ijr ∈ Hn

is well defined (independent of the choice of reduced expression). Furthermore, for all
f(z) ∈ C[z±1] and w ∈ Sn we have

Iwf(Y ) = (wf)(Y )Iw ,

Iw−1Iw = ew(Y )

in Hn, with

ew(z) :=
∏

α∈R+
0 ∩w−1R−

0

(t
1
2 − t−

1
2 z

α)(t
1
2 − t−

1
2 z

−α) ∈ C[z±1].

If V is a left Hn-module, then the previous theorem implies that Iw(Vξ) ⊆ Vwξ for
w ∈ Sn and ξ ∈ (C∗)n.

It is known that M I(γ) is callibrated for generic γ ∈ T I with corresponding weight
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b

b
b b
b b

1

2

2j1−12j1

2j2−1

2j2

2j
r
−
1

2jr

(a) D2k
J ∈ V2k

b
b

b b

b

b
b
bb 1

2

2j1−12j1

2j2−1

2j2

2j
r
−
1

2jr

2k + 1

(b) D2k+1

J
∈ V2k+1

Figure 3.1: The element Dn
J ∈ Vn

decomposition

M I(γ) =
⊕

w∈SI
n

M I(γ)wγ , M I(γ)wγ = CbIw(γ)

and bIw(γ) := Iw ⊗HI 1χI
γ

(see, e.g., [78, Prop. 2.12], for the specific additional
conditions on γ).

We now view the T Ln-module Vn from the link-pattern tower as an Hn-module
through the surjective algebra map ψn : Hn ։ T Ln satisfying ψn(Ti) = ei + t−

1
2

(1 ≤ i < n) and ψn(ρ) = ρ. The aim is to show that Vn is isomorphic to M I(γ) for
an appropriate subset I ⊆ {1, . . . , n − 1} and γ ∈ T I for generic t

1
4 . As a first step

we create explicit weight vectors in Vn.

Write k = ⌊n
2 ⌋ and let J ⊆ {1, . . . , k}, say J = {j1, . . . , jr}, 1 ≤ j1 < · · · < jr ≤ k.

Then let Dn
J denote the element in Vn shown in Figure 3.1. Note that in the definition

of Dn
J , the arches (2m − 1, 2m) include the hole of the annulus if m ∈ J where

(2js+1 − 1, 2js+1) is positioned over (2js − 1, 2js). Furthermore, D2k+1
J is obtained

from D2k
J by inserting the defect line at 2k + 1 to the hole positioned over all other

paths.

We require the skein theoretic description of ψn(Yj) ∈ T Ln. From the expression
Yj = T−1

j−1 · · ·T−1
1 ρTn−1 · · ·Tj we obtain

ψn(Yj) = t
2j−n−1

4 Ŷj

86



3.6. Existence of solutions for generic t
1
4

with Ŷj ∈ T Ln ≃ EndS(n) the skein class of

b
bb

b

b b
b

1

2

j

j + 1

n

Set ǫn := (−1)n.

Lemma 3.6.2. Write η = (η1, . . . , η⌊n/2⌋) with ηj ∈ {vǫn , t− 1
2 v−ǫn}. Let ξ̂(η) ∈ (C∗)n

be given by

ξ̂(η) := (η−1
1 , η1, η

−1
2 , η2, . . . , η

−1
⌊n/2⌋, η⌊n/2⌋) if n even,

ξ̂(η) := (η−1
1 , η1, η

−1
2 , η2, . . . , η

−1
⌊n/2⌋, η⌊n/2⌋, v) if n odd

and write for J ⊆ {1, . . . , ⌊n/2⌋},

cJ(η) := t
#J
4

∏

j∈J

η−1
j .

Then ŶjQn(η) = ξ̂j(η)Qn(η) in Vn for i = 1, . . . , n, where

Qn(η) :=
∑

J⊆{1,...,⌊n/2⌋}

cJ(η)D
n
J ∈ Vn.

In particular we have Qn(η) ∈ Vn,ξ(η) with weight

ξ(η) = (t
1−n
4 η−1

1 , t
3−n
4 η1, t

5−n
4 η−1

2 , . . . , t
n−3
4 η−1

⌊n/2⌋, t
n−1
4 η⌊n/2⌋) if n even,

ξ(η) = (t
1−n
4 η−1

1 , t
3−n
4 η1, t

5−n
4 η−1

2 , . . . , t
n−5
4 η−1

⌊n/2⌋, t
n−3
4 η⌊n/2⌋, t

n−1
4 v) if n odd.

Proof. It suffices to show that ŶjQn(η) = ξ̂j(η)Qn(η). Write k := ⌊n/2⌋. There are
three cases to consider, j = 2i, 2i− 1 (for 1 ≤ i ≤ k) and, if n is odd, j = n = 2k+ 1.
For j = 2i note that by the definition of Dn

J each subsequent arch is placed on top

of the previous arch if they cross. Similarly for Ŷ2i, the path connected to 2i that is
wound around the diagram passes over all paths connected to l < 2i and under all
paths connected to l > 2i. Due to these properties the action of Ŷ2i will only affect
the arch (2i− 1, 2i) and leave the others unchanged.

We consider Ŷ2iQn(η) and combine the terms J and J ∪ {i} for subsets J not
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containing i,

Ŷ2iQn(η) =
∑

J⊆{1,...,k}

cJ(η)Ŷ2iD
n
J

=
∑

J⊆{1,...,k}\{i}

cJ(η)Ŷ2i

(
Dn

J + t
1
4 η−1

i Dn
J∪{i}

)
.

Focusing on the action of Ŷ2i on the terms in the bracket we claim that

Ŷ2i

(
Dn

J + t
1
4 η−1

i Dn
J∪{i}

)
= (vǫn + t−

1
2 v−ǫn − t−

1
2 η−1

i )Dn
J + t

1
4Dn

J∪{i}

for all J ⊆ {1, . . . , k}\{i}. Since ηi satisfies

ηi = vǫn + t−
1
2 v−ǫn − t−

1
2 η−1

i

it then follows that Ŷ2iQn(η) = ηiQn(η). To prove the claim we show

Ŷ2iD
n
J = (vǫn + t−

1
2 v−ǫn)Dn

J + t
1
4Dn

J∪{i},

Ŷ2iD
n
J∪{i} = −t− 3

4Dn
J

for J ⊆ {1, . . . , ⌊n/2⌋} \ {i}. These equalities follow from the following diagrammatic
calculations where we omit all paths that are not involved in the computation.

The first diagrammatic computation is for Ŷ2iD2k
J in V2k, the second for Ŷ2iD

2k+1
J

in V2k+1 in case n is odd (the defect line creates a subtle difference) and the third for
Ŷ2iD

n
J∪{i} in Vn (the defect line in case n is odd does not affect the calculation):

Ŷ2i

2i−1

2i

=
b

2i−1

2i

= t
1
4

2i−1

2i

+ (v + t−
1
2 v−1)

2i−1

2i

;
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1
4

Ŷ2i

2i−1

2i

2k+1

=
b b

2i−1

2i

2k+1

= t
1
4

b
2i−1

2i

2k+1

+ t−
1
4

b
2i−1

2i

2k+1

= t
1
4

b
2i−1

2i

2k+1

+
b

2i−1

2i

2k+1

+ t−
1
2

2i−1

2i

2k+1

= t
1
4

b
2i−1

2i

2k+1

+ (v−1 + t−
1
2 v)

2i−1

2i

2k+1

;

Ŷ2i

2i−1

2i

=
b

2i−1

2i

= −t− 3
4

2i−1

2i

.

The check that Ŷ2i−1Qn(η) = η−1
i Qn(η) is analogous.

The check that Ŷ2k+1Q2k+1(η) = vQ2k+1(η) with n = 2k + 1 odd is simpler. All

that the operator Ŷ2k+1 does is wind the defect line a full turn around the hole of the
annulus. The operator keeps the defect line above all other curves. This full turn in
V2k+1 can then be removed by the multiplicative factor v.

From now on we choose
η = (vǫn , . . . , vǫn)

and we write Qn, ξ and ξ̂ for the corresponding Qn(η), ξ(η) and ξ̂(η). Concretely,

Qn =
∑

J⊆{1,...,⌊n/2⌋}

t
#J
4 v−ǫn#JDn

J ∈ Vn,ξ,

ξ = (t
1−n
4 v−1, t

3−n
4 v, t

5−n
4 v−1, . . . , t

n−3
4 v−1, t

n−1
4 v) if n even,

ξ = (t
1−n
4 v, t

3−n
4 v−1, t

5−n
4 v, . . . , t

n−5
4 v, t

n−3
4 v−1, t

n−1
4 v) if n odd.

(3.6.1)

Lemma 3.6.3. Qn 6= 0 for generic t
1
4 .
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Proof. Consider first n = 2k even. Let Z2k ∈ HomS(2k, 0) be the skein class of
the (2k, 0)-link diagram with little arches connecting 2i − 1 and 2i for 1 ≤ i ≤ k.
Composing on the left with Z2k defines a linear map HomS(0, 2k) → EndS(0) that
descends to a well-defined linear map Z2k : V2k → V0 ≃ C. Then

Z2k(Q2k) =
∑

J⊆{1,...,k}

t#J/4v−#J
(
vt

1
4 + v−1t−

1
4

)#J(−t 1
2 − t−

1
2

)k−#J
,

which is a nonzero Laurent polynomial in t
1
4 (look at its highest order term).

For n = 2k + 1 odd we apply a similar argument, now using the element Z2k+1 ∈
HomS(2k + 1, 1) which is the skein class of the (2k + 1, 1)-link diagram with little
arches connecting the inner boundary points 2i − 1 and 2i (1 ≤ i ≤ k) and with a
defect line connecting the inner boundary point at 2k+1 to the outer boundary point
at 1. Then, the resulting linear map Z2k+1 : V2k+1 → V1 ≃ C maps Q2k+1 to

vκ
∑

J⊆{1,...,k}

t#J/4v#J
(
v−1t

1
4 + vt−

1
4

)#J(−t 1
2 − t−

1
2

)k−#J

for some κ ∈ Z, which again is a nonzero Laurent polynomial in t
1
4 (the factor for

the removal of a closed loop around the hole with a defect line running over it is
(v−1t

1
4 + vt−

1
4 ), as shown in the proof of the previous lemma).

To establish an identification Vn ≃M I(γ) as Hn-modules, we will use Qn to con-
struct the corresponding cyclic vector in Vn using intertwiners. But first we determine
what the subset I ⊆ {1, . . . , n− 1} should be.

Set
I(n) := {1, . . . , ⌈n/2⌉ − 1, ⌈n/2⌉+ 1, . . . , n− 1}.

The associated parabolic subgroup Sn,I(n) of Sn is isomorphic to Sk × Sk if n = 2k

even, and Sk × Sk−1 if n = 2k − 1 is odd.

Lemma 3.6.4. Dim(Vn) = #(Sn/Sn,I(n)) = #SI(n)

n .

Proof. For n = 2k even, L2k is in bijective correspondence with the set of binary words
of length 2k with letters α, β of length 2k such that k letters are α. The bijection
is as follows. Orient the outer boundary of the punctured disc anticlockwise. Given
L ∈ L2k, orient the arcs in L in such a way that the closed oriented loop obtained by
adding a piece of the oriented outer boundary of the punctured disc, is enclosing the
puncture. Then the word of length 2k in the letters {α, β} is obtained by putting α
if the orientation of the arc at the endpoint i is away from i, and β if it is towards i.

In the odd case n = 2k− 1 we create a bijective correspondence of L2k−1 with the
set of binary words of length 2k − 1 with letters α, β such that k letters are α by a
similar procedure, with the only addition that α is assigned to the outer boundary
point that is connected to the puncture.
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1
4

Clearly the cardinality of the set of binary words of the form as described above,
is equal to #(Sn/Sn,I(n)).

Remark 3.6.5. The minimal coset representatives SI(n)

n are described as the set of
permutations σ ∈ Sn such that ℓ(σsi) = ℓ(σ)+ 1 for all i ∈ I(n), where ℓ is the length

function of Sn. It follows that SI(n)

n is the set of permutations σ ∈ Sn such that

σ(1) < σ(2) < · · · < σ(⌈n/2⌉), σ(⌈n/2⌉+ 1) < σ(⌈n/2⌉+ 2) < · · · < σ(n).

We define wn ∈ Sn as follows,

w2k =

(
1 2 3 4 · · · 2k − 1 2k

1 k + 1 2 k + 2 · · · k 2k

)
,

w2k−1 =

(
1 2 3 4 · · · 2k − 2 2k − 1
1 k + 1 2 k + 2 · · · 2k − 1 k

) (3.6.2)

Note that w2k = ι2k−1(w2k−1) with ιn : Sn−1 →֒ Sn the natural group embedding
extending σ ∈ Sn−1 to a permutation of {1, . . . , n} by σ(n) = n. Note that

w−1
2k−1 =

(
1 2 3 · · · k k + 1 k + 2 · · · 2k − 1

1 3 5 · · · 2k − 1 2 4 · · · 2k − 2

)
.

It follows that w−1
n ∈ SI(n)

n for odd and even n, cf. Remark 3.6.5. We now define
γ = γ(n) ∈ (C∗)n by

γ := wnξ ∈ (C∗)n

with ξ the weight of Vn as given by (3.6.1). Concretely we have

γ = (t
1−n
4 v−1, t

5−n
4 v−1, . . . , t

n−3
4 v−1, t

3−n
4 v, t

7−n
4 v, . . . , t

n−1
4 v) if n even,

γ = (t
1−n
4 v, t

5−n
4 v, . . . , t

n−1
4 v, t

3−n
4 v−1, t

7−n
4 v−1, . . . , t

n−3
4 v−1) if n odd.

(3.6.3)

Note that γ ∈ T I(n)

, hence we have the associated principal series module M I(n)

(γ).

Theorem 3.6.6. For generic t
1
4 we have Vn ≃M I(n)

(γ) as left Hn-modules with the
isomorphism M I(n)

(γ)
∼−→ Vn mapping vI

(n)

e (γ) ∈M I(n)

(γ)γ to IwnQn ∈ Vn,γ .

Proof. We have IwnQn ∈ Vn,γ by Lemma 3.6.2 and Theorem 3.6.1. Furthermore, by
Theorem 3.6.1 again,

Iw−1
n
IwnQn = ewn(ξ)Qn

and
ewn(ξ) =

∏

α∈R+
0 ∩w−1

n R−
0

(t
1
2 − t−

1
2 ξα)(t

1
2 − t−

1
2 ξ−α) 6= 0
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for generic t
1
4 since R+

0 ∩ w−1
n R−

0 consists of the roots ǫ2l − ǫ2m−1 (l < m). Hence
IwnQn 6= 0 for generic t

1
4 . Consider now the vectors

uw := IwIwnQn ∈ Vn,wγ , w ∈ SI(n)

n .

Then for w ∈ SI(n)

n we have

Iw−1uw = ew(γ)IwnQn

by Theorem 3.6.1, and ew(γ) 6= 0 for generic t
1
4 since for w ∈ SI(n)

n we have

R+
0 ∩ w−1R−

0 ⊆ {ǫl − ǫm | 1 ≤ l ≤ ⌈n/2⌉ & ⌈n/2⌉+ 1 ≤ m < n}

for w ∈ SI(n)

n in view of Remark 3.6.5. It follows that 0 6= uw ∈ Vn,wγ for all w ∈ SI(n)

n .
Hence by Lemma 3.6.4, for generic t

1
4 ,

Vn =
⊕

w∈SI(n)
n

Vn,wγ

and Vn,wγ = Cuw for all w ∈ SI(n)

n , since the wγ’s (w ∈ SI(n)

n ) are pairwise different
for generic t

1
4 . It remains to show that Tiue = t−

1
2 ue for i ∈ I(n) and generic t

1
4 . Fix

i ∈ I(n). Then Iiue ∈ Vn,siγ = {0} for generic t
1
4 since

siγ 6∈ {wγ | w ∈ SI(n)

n }

for generic t
1
4 . By the explicit expression of Ii (see Theorem 3.6.1), we then obtain

0 = Iiue = (1− γαi)Tiue + (t−
1
2 − t

1
2 )γαiue

= (1− t−1)Tiue + (t−
1
2 − t

1
2 )t−1ue

= (1− t−1)(Ti − t−
1
2 )ue.

Hence Tiue = t−
1
2ue, as desired.

3.6.2 The Cherednik-Matsuo correspondence

Now that we have identified the representations Vn in the link-pattern tower with
principal series representations, we can apply the Cherednik-Matsuo correspondence
to analyse the existence of polynomial solutions of the associated qKZ equations.

The Cherednik-Matsuo (CM) correspondence is a bijective correspondence be-
tween meromorphic symmetric solution to qKZ equations associated to a principal
series module and suitable classes of meromorphic common eigenfunctions for the
action of the Y -operators under the basic representation [78, 49].
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1
4

The version of the CM-correspondence we need is as follows. If I ⊆ {1, . . . , n− 1}
and w ∈ Sn, then we write w ∈ Sn,I and w ∈ SI

n for the unique elements such that
w = ww. Let w0 ∈ Sn be the longest Weyl group element, mapping j to n+1− j for
j = 1, . . . , n. Let I∗ := {i∗ | i ∈ I} with i∗ ∈ {1, . . . , n− 1} such that w0(αi) = αi∗ .

Theorem 3.6.7. Fix c ∈ C∗, I ⊆ {1, . . . , n− 1} and ζ ∈ T I . Then we have a linear
isomorphism

{
f(z) ∈ C[z]

∣∣∣∣∣
πt−

1
2 ,q

n (Yj)f = c(w0ζ
−1)jf for all 1 ≤ j ≤ n

πt−
1
2 ,q

n (Ti)f = t
1
2 f for all i ∈ I∗

}
∼−→

CMI,ζ

Soln(M
I(ζ), q, c)

(3.6.4)

with CMI,ζ given by

CMI,ζ(f) :=
∑

w∈SI
n

πt−1/2,q
n (Tww−1

0
)f ⊗ vIw(ζ).

Proof. For c = 1 this is an easy consequence of [78, Cor. 4.4 & Thm. 4.14]. For general
c it then follows using the fact that M I(c−1ζ) ≃M I(ζ)(c

−1) with isomorphism given
by vw(c−1ζ) 7→ vw(γ) for w ∈ SI

n, and

Soln(M
I(ζ)(c

−1); q, 1) = Soln(M
I(ζ); q, c).

We want to re-express the common eigenspace for πt−
1
2 ,q(Yj)-operators in the left

hand side of (3.6.4) in terms of the dual Cherednik operators, in order to apply the
results of [47] in the next subsection. The dual Y -operators are defined by

Y j := Tj · · ·Tn−1ρ
−1T−1

1 · · ·T−1
j−1 ∈ Hn (1 ≤ j ≤ n),

cf. [47, §2.2]. The relation to our commuting Y -operators

Yj = T−1
j−1T

−1
j−2 · · ·T−1

1 ρTn−1 · · ·Tj+1Tj

is as follows.

Lemma 3.6.8. We have in Hn,

Tw0Ti = Tn−iTw0 , 1 ≤ i < n,

Tw0Yj = Y
−1

n+1−jTw0 , 1 ≤ j ≤ n.

Proof. The first identity is well known. For the second identity it suffices to show
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that
Tw0ρT

−1
w0

= Tn−1 · · ·T1ρT−1
n−1 · · ·T−1

1 .

This follows using ρTi = Ti+1ρ and the fact that

w0 = (sn−1 · · · s1)(sn−1 · · · s2) · · · (sn−1sn−2)sn−1,

= (s1 · · · sn−1)(sn−2 · · · s1) · · · (sn−2sn−3)sn−2

are two reduced expressions for w0 ∈ Sn.

Returning to the Cherednik-Matsuo correspondence (see Theorem 3.6.7), we can
reformulate it as follows.

Corollary 3.6.9. Fix c ∈ C∗, I ⊆ {1, . . . , n− 1} and ζ ∈ T I . Then we have a linear
isomorphism

{
f(z) ∈ C[z]

∣∣∣∣∣
πt−

1
2 ,q

n (Y j)f = c−1(w0ζ)jf for all 1 ≤ j ≤ n

πt−
1
2 ,q

n (Tn−i)f = t
1
2 f for all i ∈ I∗

}
∼−→

CMI,ζ

Soln(M
I(ζ), q, c)

(3.6.5)

with CMI,ζ given by

CMI,ζ(f) :=
∑

w∈SI
n

πt−1/2,q
n (T−1

w−1T
−1
w0

)f ⊗ vIw(ζ).

Proof. By the previous lemma, πt−
1
2 ,q(T−1

w0
) restricts to a linear isomorphism from

the space defined by the left hand side of (3.6.5) onto the space defined by the left
hand side of (3.6.4). Hence it suffices to note that

CMI,ζ = CMI,ζ ◦ πt−
1
2 ,q(T−1

w0
),

which follows from the fact that for all w ∈ SI
n,

Tww−1
0
T−1
w0

= T−1
w−1Tw−1

0
T−1

w−1
0

T−1

w−1
0

= T−1
w−1T

−1
w0
.

3.6.3 Dual non-symmetric Macdonald polynomials

In this subsection we take n ≥ 2. The next step will be to introduce the polynomial

eigenfunctions of the dual Cherednik operators πt−
1
2 ,q(Y j) (1 ≤ j ≤ n), called the
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1
4

dual non-symmetric Macdonald polynomials. We follow Kasatani [47]: the (t
1
2 , ω, Yj)

in [47] corresponds to our (−t− 1
2 , ρ−1, Y j).

For λ ∈ Zn let

ρ(λ) :=
1

2

∑

1≤i<j≤n

χ(λi − λj)(ǫi − ǫj),

χ(a) :=

{
1 if a ≥ 0,

−1 if a < 0.

Then, 2ρ(λ) =
∑n

i=1 di(λ)ǫi with

di(λ) = 2#{j > i|λj = λi}+ 2#{j|λi > λj}+ 1− n. (3.6.6)

Write
sλ :=

(
−t− 1

2

)2ρ(λ)
qλ ∈ (C∗)n, λ ∈ Z

n,

i.e. sλ = (sλ,1, . . . , sλ,n) with sλ,i =
(
−t− 1

2

)di(λ)
qλi .

For generic q and t
1
4 (or better, indeterminates), the monic dual non-symmetric

Macdonald polynomial
Eλ = Eλ(z;−t−

1
2 , q) ∈ C[z±1]

of degree λ ∈ Zn is the unique Laurent polynomial satisfying the eigenvalue equations

πt−
1
2 ,q

n (f(Y ))Eλ = f(sλ)Eλ for all f ∈ C[z±1]

such that the coefficient of zλ in the expansion of Eλ in monomials {zν}ν∈Zn is one.
It is well known that Eλ is homogeneous of total degree |λ| := λ1 + · · · + λn. In
addition, Eλ ∈ C[z] if and only if λ ∈ Zn

≥0. The intertwiners with respect to the dual
Y -operators are defined by

Bi := Ti(Y i+1Y
−1

i − 1) + t
1
2 − t−

1
2 , 1 ≤ i < n,

cf. [47, Lemma 2.6]. Then for 1 ≤ i < n,

πt−
1
2 ,q(Bi)Eλ = −t 1

2

(
(tsλ,i+1s

−1
λ,i − 1)(t−1sλ,i+1s

−1
λ,i − 1)

(sλ,i+1/sλ,i − 1)

)
Esiλ (3.6.7)

if λ ∈ Zn with λi > λi+1.

Kasatani [47] analyzed the dual non-symmetric Macdonald polynomials Eλ with
parameters specialised to t−k−1qr−1 = 1 with 1 ≤ k ≤ n − 1 and r ≥ 2. In our
application we are going to need the special case that k = 2 and r = 3, i.e., when
t−3q2 = 1 (cf. Theorem 3.4.7(b)). In fact, for our purposes it suffices to take q = t

3
2 .

We recall some key results from [47] in this special case.
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Towers of qKZ Solutions

Definition 3.6.10. We say λ ∈ Zn has a neighbourhood of type (3,2) if it has a pair
of indices (i, j) such that condition 1 and 2 hold:

1. ρ(λ)i − ρ(λ)j = 2.

2. (a) λi − λj ≤ 1,
or

(b) λi − λj = 2 and j < i.

Write

S(2,3) : = {λ ∈ Z
n | λ has a neighbourhood of type (3, 2)}

B(2,3) : = Z
n\S(2,3).

By [47, Thm. 3.11] the dual non-symmetric Macdonald polynomial Eλ can be spe-
cialised at q = t

3
2 if λ ∈ B(2,3). For q = t

3
2 write

Z(2,3) := {z ∈ C
n | There exist distinct i1, i2, i3 ∈ {1, . . . , n}

and positive integers r1, r2 ∈ Z≥0

such that zia+1 = ziatq
ra for a = 1, 2,

r1 + r2 ≤ 1, and ia < ia+1 if ra = 0}.

and define the ideal I(2,3) ⊆ C[z] by

I(2,3) := {f ∈ C[z±1] | f(z) = 0 for all z ∈ Z(2,3)}.

Then for q = t
3
2 and generic t

1
4 , the ideal I(2,3) is a πt−

1
2 ,t

3
2

n (Hn(t
− 1

2 ))-module of
C[z±1] and

I(2,3) =
⊕

µ∈B(2,3)

CEµ(z;−t−
1
2 ; t

3
2 )

by [47, Thm. 3.11].

Remark 3.6.11. The conditions f(z) = 0 for z ∈ Z(2,3) are known as wheel condi-
tions. It originally appeared in [30] (see also [48]).

We recall now the notion of a ((2, 3)-)wheel in λ ∈ Zn, following [47, Def. 3.5].

Definition 3.6.12. Let q = t
3
2 and fix λ ∈ Zn. A three-tuple (i1, i2, i3) with distinct

i1, i2, i3 ∈ {1, . . . , n} is called a ((2, 3)-)wheel in λ if there exists r1, r2 ∈ Z≥0 such
that

s−1
λ,i2

= s−1
λ,i1

t−1qr1 , s−1
λ,i3

= s−1
λ,i2

t−1qr2

with r1 + r2 ≤ 1 and ia < ia+1 if ra = 0 (a = 1, 2).
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3.6. Existence of solutions for generic t
1
4

Two wheels (i1, i2, i3) and (j1, j2, j3) in λ are said to be equivalent if there exists
a σ ∈ S3 such that ia = jσ−1(a) for a = 1, 2, 3. We write #(2,3)(λ) for the number of
equivalence classes of (2, 3)-wheels in λ. Note that (still under the assumption that
q = t

3
2 ) we have #(2,3)(λ) = 0 if and only if s−1

λ ∈ Z(2,3). Furthermore, from [47, §3]
(below Definition 3.7) we have

{µ ∈ Z
n | #(2,3)(µ) = 0} ⊆ B(2,3).

3.6.4 Proof of Theorem 3.4.7(b)

Now all preparations have been done to give the proof of Theorem 3.4.7. Let n ≥ 2

and specialise throughout this subsection v = 1 and q = t
3
2 . Furthermore, we set

cn :=
(
−t− 3

4

)n−1
,

cf. Theorem 3.4.7(b). Recall the notation I(n) = {1, . . . , ⌈n/2⌉−1, ⌈n/2⌉+1, . . . , n−
1} and the central character γ = γ(n) ∈ T I(n)

with v = 1 (see (3.6.3)), so

γ = (t
1−n
4 , t

5−n
4 , . . . , t

n−3
4 , t

3−n
4 , t

7−n
4 , . . . , t

n−1
4 ) if n even,

γ = (t
1−n
4 , t

5−n
4 , . . . , t

n−1
4 , t

3−n
4 , t

7−n
4 , . . . , t

n−3
4 ) if n odd.

(3.6.8)

In the even n = 2k case, the decomposition w0 = w0w0 of the longest element

w0 ∈ S2k as a product of w0 ∈ SI(2k)

2k and w0 ∈ S2k,I(2k) gives the expressions

w0 =

(
1 2 · · · k k + 1 k + 2 · · · 2k

k + 1 k + 2 · · · 2k 1 2 · · · k

)
,

w0 =

(
1 2 · · · k k + 1 k + 2 · · · 2k

k k − 1 · · · 1 2k 2k − 1 · · · k + 1

)
.

Hence for n = 2k even, we have I(2k),∗ = I(2k) and

{2k − i | i ∈ I(2k),∗} = I(2k).

In the odd n = 2k − 1 case, the decomposition w0 = w0w0 of the longest element

w0 ∈ S2k−1 as a product of w0 ∈ SI(2k−1)

2k−1 and w0 ∈ S2k−1,I(2k−1) gives the expressions

w0 =

(
1 2 · · · k k + 1 k + 2 · · · 2k − 1

k k + 1 · · · 2k − 1 1 2 · · · k − 1

)
,

w0 =

(
1 2 · · · k k + 1 k + 2 · · · 2k − 1
k k − 1 · · · 1 2k − 1 2k − 2 · · · k + 1

)
.
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Towers of qKZ Solutions

Therefore, I(2k−1),∗ = {1, . . . , k − 2, k, k + 1, . . . , 2k − 2} and

{2k − 1− i | i ∈ I(2k−1),∗} = I(2k−1).

Hence it follows from Theorem 3.6.6 and Corollary 3.6.9 that for generic t
1
4 , we have

{
f(z) ∈ C[z]

∣∣∣∣∣
πt−

1
2 ,t

3
2

n (Y j)f = c−1
n (w0γ)jf for all 1 ≤ j ≤ n

πt−
1
2 ,t

3
2

n (Ti)f = t
1
2 f for all i ∈ I(n)

}
∼−→̃

CMn

Soln(Vn, q, cn)

(3.6.9)

with C̃Mn given by

C̃Mn(f) :=
∑

w∈SI(n)
n

πt−
1
2 ,t

3
2

n (T−1
w−1T

−1
w0

)f ⊗ IwIwnQn.

The next lemma gives the explicit λ ∈ Zn needed for our CM correspondence.

Lemma 3.6.13. For q = t
3
2 ,

c−1
n w0γ

(n) = sλ(n)

with λ(n) ∈ Zn given by

λ(2k) = (2k − 2, 2k − 4, . . . , 0, 2k − 1.2k − 3, . . . , 1),

λ(2k−1) = (2k − 2, 2k − 4, . . . , 0, 2k − 3, 2k − 5, . . . , 1).

Proof. By a direct computation, for q = t
3
2 ,

c−1
2k w0γ

(2k) =
(
−t2k− 3

2 ,−t2k− 5
2 , . . . ,−tk− 1

2 ,−t2k−1,−t2k−2, . . . ,−tk
)
= sλ(2k) ,

c−1
2k−1w0γ

(2k−1) =
(
t2k−2, t2k−3, . . . , tk−1, t2k−

5
2 , t2k−

7
2 , . . . , tk−

1
2

)
= sλ(2k−1) .

Hence, we have for generic t
1
4 ,

{
f(z) ∈ C[z]

∣∣∣∣∣
πt−

1
2 ,t

3
2

n (p(Y ))f = p(sλ(n))f for all p(z) ∈ C[z±1]

πt−
1
2 ,t

3
2

n (Ti)f = t
1
2 f for all i ∈ I(n)

}
∼−→̃

CMn

Soln(Vn, q, cn).

(3.6.10)

Next we need to verify that for λ(n) the dual non-symmetric Macdonald polynomials
are nonzero under the specialisation q = t

3
2 . This is treated in the following lemma.
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3.6. Existence of solutions for generic t
1
4

Lemma 3.6.14. Snλ
(n) ∩ B(2,3) = {σλ(n) | σ ∈ SI(n)

n }. In particular λ(n) ∈ B(2,3),
hence for generic t

1
4 ,

0 6= Eλ(n)(z;−t− 1
2 , t

3
2 ) ∈ C[z]

is well defined, homogeneous of total degree 1
2n(n− 1), and satisfying

πt−
1
2 ,t

3
2

n (p(Y ))Eλ(n)(·; t− 1
2 , t

3
2 ) = p(sλ(n))Eλ(n)(·;−t− 1

2 , t
3
2 ) for all p(z) ∈ C[z±1].

Proof. Note that by Remark 3.6.5 and the definition of λ(n),

{σλ(n) | σ ∈ SI(n)

n } = {µ ∈ Snλ
(n) | µi − µj = 2 ⇒ i < j}. (3.6.11)

Now suppose that µ ∈ Snλ
(n) ∩B(2,3) and µi − µj = 2. By (3.6.6),

ρ(µ)i − ρ(µ)j = #{r | µr < µi} −#{r | µr < µj}
= #{r | µj ≤ µr ≤ µj + 1} = 2.

Since µ ∈ B(2,3) this implies that i < j. By (3.6.11) we conclude that µ ∈ {σλ(n) | σ ∈
SI(n)

n }.
Conversely, suppose that µ ∈ {σλ(n) | σ ∈ SI(n)

n }. Suppose that ρ(µ)i−ρ(µ)j = 2.
By (3.6.6) this implies that

#{r | µr < µi} −#{r | µr < µj} = 2.

It follows that µi > µj , hence

#{r | µj ≤ µr < µi} = 2,

forcing µi−µj = 2. By (3.6.11) this implies that i < j, hence µ ∈ Snλ
(n)∩B(2,3).

Proposition 3.6.15. For generic t
1
4 , we have

πt−
1
2 ,t

3
2 (Ti)Eλ(n)(·;−t− 1

2 , t
3
2 ) = t

1
2Eλ(n)(·;−t− 1

2 , t
3
2 ) for all i ∈ I(n).

In particular, there exists a unique κn ∈ C∗ such that

g(n) := κnC̃Mn

(
Eλ(n)(·;−t− 1

2 , t
3
2 )
)
∈ Soln

(
Vn; t

3
2 , (−t− 3

4 )n−1
)

has fully nested component

g
(n)
L∩

(z) =
∏

1≤i<j≤n

(
t
1
2 zj − t−

1
2 zi
)
. (3.6.12)

Proof. For the first statement, fix i ∈ I(n). By a direct computation we have
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Towers of qKZ Solutions

#(2,3)(siλ
(n)) = 1. In fact, for n = 2k even the (2, 3)-wheels in siλ

(2k) are
(i, i+1, k+ i+1) and (k+ i+1, i, i+1) if 1 ≤ i < k and (i, i+1, i−k), (i−k, i, i+1)

if k + 1 ≤ i < 2k. For n = 2k − 1 the (2, 3)-wheels in siλ
(2k−1) are (i, i + 1, k + i),

(k+i, i, i+1) if 1 ≤ i < k and (i, i+1, i−k+1), (i−k+1, i, i+1) if k+1 ≤ i < 2k−1.

By [47, Lemma 4.13], it follows from #(2,3)(siλ
(n)) = 1 that Esiλ(n)(z;−t− 1

2 , q)

can be specialised to q = t
3
2 for generic t

1
4 . By (3.6.7) we then obtain

πt−
1
2 ,t

3
2 (Bi)Eλ(n)(·;−t− 1

2 , t
3
2 ) = 0

since sλ(n),i+1/sλ(n),i = t−1 and λ
(n)
i > λ

(n)
i+1. Substituting the explicit expression of

Bi then gives

0 = πt−
1
2 ,t

3
2 (Bi)Eλ(n)(·;−t− 1

2 , t
3
2 )

=
(
(sλ(n),i+1s

−1
λ(n),i

− 1)πt−
1
2 ,t

3
2

n (Ti) + (t
1
2 − t−

1
2 )
)
Eλ(n)(·;−t− 1

2 , t
3
2 )

= (t−1 − 1)
(
πt−

1
2 ,t

3
2 (Ti)− t

1
2

)
Eλ(n)(·;−t− 1

2 , t
3
2 ),

hence πt−
1
2 ,t

3
2

n (Ti)Eλ(n)(·;−t− 1
2 , t

3
2 ) = t

1
2Eλ(n)(·;−t− 1

2 , t
3
2 ) for i ∈ I(n).

It follows that

0 6= g̃(n) := C̃Mn

(
Eλ(n)(·;−t− 1

2 , t
3
2 )
)
∈ Soln(Vn; t

3
2 , (−t− 3

4 )n−1)

is homogeneous of total degree 1
2n(n− 1). By Corollary 3.4.4,

g̃
(n)
L∩

(z) = κn
∏

1≤i<j≤n

(
t
1
2 zj − t−

1
2 zi
)

for some κn ∈ C∗, hence the result.

With the last proposition we have completed the proof of Theorem 3.4.7(a) (note
that uniqueness follows from Lemma 3.4.2, and that for n = 1 the desired unique
solution g(1) is simply given by the constant function g(1) ≡ 1).

Remark 3.6.16. In [48] the authors analyse polynomials that vanish under the wheel
condition which can be associated to link-patterns. They construct a solution to the
qKZ equations by generating a polynomial representation dual to the link-pattern
representation. The basis of the polynomial representation is generated from the
fully nested component. However, this construction is cumbersome as a “trial” basis
is first generated which then needs to be rectified. Moreover, they state the fully
nested component is (3.6.12) assuming minimal degree of the solution.
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3.7 The Dual Braid Recursion

The extended affine Temperley-Lieb algebra T Ln(t
1
2 ) is invariant under the inversion

t
1
4 → t−

1
4 . In this last section of the chapter we discuss how this symmetry results in

a dual braid recursion for the qKZ towers of solutions (g(n))n≥0 from Theorem 3.4.7.
We set v = 1 in this section.

First we discuss the inversion on the Kauffman skein relation (3.3.6). If we invert
t
1
4 and then rotate the diagrams by ninety degrees we have

= t
1
4 + t−

1
4 .

Comparing this to the original equation we see that all the over crossings swap to
under crossings and vice versa. Hence, in the identification of T Ln(t

1
2 ) with EndS(n),

the inversion t
1
4 → t−

1
4 amounts to replacing undercrossings by overcrossing and vice

versa.

Let Iι
n : T Ln → T Ln+1 be the algebra map In with the role of t

1
4 replaced

by t−
1
4 . Hence, in the skein theoretic description, the arc insertion is now done by

over-crossing all arcs its meets, instead of under-crossing. Similarly, we write

φιn ∈ HomT Ln
(Vn, V

Iι
n

n+1)

for the intertwiner obtained from replacing in the construction of φn ∈
HomT Ln

(
Vn, V

In
n+1

)
the parameter t

1
4 by t−

1
4 and the role of In by Iι

n.

Theorem 3.7.1. Under the parameter conditions as in Theorem 3.4.7 (both in case
(a) and (b)), let g(n) ∈ Soln(Vn, t

3
2 , (−t− 3

4 )n−1) for n ≥ 1 be the homogeneous poly-
nomial solution qKZ of degree 1

2n(n− 1) with fully nested component

g
(n)
L∩

(z) =
∏

1≤i<j≤n

(
t
1
2 zj − t−

1
2 zi
)

and set g(0) := 1 ∈ Sol0(V0, t
3
2 , t

1
4 + t−

1
4 ). Write

g̃(n)(z) := (z1z2 · · · zn)n−1g(n)(z−1
1 , z−1

2 , . . . , z−1
n ).

Then g̃(n)(z) ∈ Vn[z] is a Vn-valued homogeneous polynomial of total degree 1
2n(n−1)

and

g̃(n+1)(z1, . . . , zn, 0) = t
1
4 (2n−⌊n/2⌋)z1 · · · znφιn

(
g̃(n)(z1, . . . , zn)

)
, n ≥ 0.
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Towers of qKZ Solutions

Proof. Let Rι
i(x) ∈ T Ln be the R- operator Ri(x) with t

1
4 replaced by t−

1
4 ,

Rι
i(x) =

(
x− 1

t−
1
2 − t

1
2x

)
ei +

(
xt−

1
2 − t

1
2

t−
1
2 − t

1
2 x

)
.

Note that Rι
i(x) = Ri(x

−1). It follows that

Rι
i(zi+1/zi)g̃

(n)(. . . , zi+1, zi, . . .) = g̃(n)(z)

for 1 ≤ i < n. Furthermore, with q = t
3
2 ,

ρg̃(n)(z2, . . . , zn, qz1) = qn−1(z1 · · · zn)n−1ρg(n)(z−1
2 , . . . , z−1

n , q−1z−1
1 )

= qn−1(−t− 3
4 )n−1(z1 · · · zn)n−1g(n)(z−1

1 , . . . , z−1
n )

= (−t 3
4 )n−1g̃(n)(z).

Hence g̃(n)(z) is a symmetric solution of the qKZ equation with respect to the action
∇ι of Wn obtained from ∇ by inverting t

1
4 and setting q = t

3
2 . Furthermore, the fully

nested component of g̃(n)(z) is

g̃
(n)
L∩

(z) =
∏

1≤i<j≤n

(t
1
2 zi − t−

1
2 zj).

As in Lemma 3.4.2 it follows that g̃(n)(z), as symmetric solution of these qKZ equa-

tions, is determined by the fully nested component and that all coefficients g̃(n)L (z)

are homogeneous polynomials in z1, . . . , zn of total degree 1
2n(n− 1). In particular,

g̃(n)(z) ∈ Solιn
(
Vn; t

3
2 , (−t 3

4 )n−1
)

with Solιn
(
Vn; q, dn) being the polynomial Vn-valued functions f(z) ∈ Vn[z] satisfying

Rι
i(zi+1/zi)f(. . . , zi+1, zi, . . .) = f(z), 1 ≤ i < n,

ρf(z2, . . . , zn, qz1) = dnf(z).

Using slightly modified versions of Lemma 3.2.4 and Lemma 3.2.5 one now shows that

(z1 · · · zn)φιn
(
g̃(n)(z1, . . . , zn)

)
∈ Solιn

(
V

Iι
n

n+1; t
3
2 , (−t 3

4 )n+1
)
,

g̃(n+1)(z1, . . . , zn, 0) ∈ Solιn
(
V

Iι
n

n+1; t
3
2 , (−t 3

4 )n+1
)
.

Furthermore, a modified version of Lemma 3.4.5 yields

φιn(L) =
∑

L′∈Ln+1

dL′,LL
′
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3.8. Proof of a unique solution to qKZ equations

with d
L,L

(n+1)
∩

= δ
L,L

(n)
∩
t
1
4 ⌊n/2⌋. Hence g̃(n+1)(z1, . . . , zn, 0) and

t
1
4 (2n−⌊n/2⌋)z1 · · · znφιn

(
g̃(n)(z)

)
have the same fully nested component. The

properly modified version of Lemma 3.4.3 then shows that they are equal.

Note that in the limit x → ∞, the R-operator can be interpreted as an under
crossing,

lim
x→∞

Ri(x) = t−
1
4

i i+1

+ t
1
4

i i+1

=
i i+1

.

This observation, along with interpreting the R-operator as an over crossing when
zn = 0, was noted in [23].

3.8 Proof of a unique solution to qKZ equations

In this section we give the proof that the solution to the qKZ equations is unique. This
is done by showing that the solution is determined by the fully nested component.
This proof is done for three different representations of Hn; link-patterns C[LP2k]

(when n = 2k), punctured link-patterns C[Ln] ≃ Vn (Lemma 3.4.2) and the restricted
modules V νn

n+1 (Lemma 3.4.3).

A link-pattern of size 2k is a diagram with 2k equally spaced points on the bound-
ary of a disk that are connected by k non-intersecting curves lying within the disk. To
establish convention the points are numbered 1 to 2k going counter-clockwise around
the disk. We denote the set of link-patterns of size 2k by LP2k. As an example LP6

consists of the following link-patterns:

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

Link-patterns can also be drawn by placing the endpoints on a horizontal line such
that the k non-intersecting curves lie above it. To establish convention the points are
numbered in increasing order from left to right. As an example the link-patterns of
LP6 can be drawn as,

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

respectively. Due to this form the curves are sometime referred to as arches and a
little arch is one that connects two consecutive points.
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Towers of qKZ Solutions

A Dyck path of length 2k is a lattice path from (0, 0) to (2k, 0) with steps (1, 1)
called a rise and (1,−1) called a fall, which never falls below the x-axis. We denote
the set of Dyck paths of length 2k by DP2k. As an example DP6 consists of the
following Dyck paths:

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

A Dyck path can also be encoded by a string of 2k numbers (a1, . . . , a2k) where aj
for 1 ≤ j ≤ 2k is the height of the path after step j. Furthermore, for a Dyck path
L we define |L| to be the number of boxes within the grey triangle that lie above the
path. For example, if L ∈ DP6 denotes the last Dyck path in the example above then
|L| = 3.

There exists a bijection between LP2k andDP2k. To go from link-patterns to Dyck
paths, consider the link-pattern drawn on a horizontal line and traverse along the line
from left to right. Each point i that is the beginning/end of an arch corresponds
to a rise/fall at step i in the Dyck path. To go from Dyck paths to link-patterns,
for each rise draw the start of an arch and for each fall an end, then complete the
diagram by connecting a start with an end such that the arches do not intersect. As
an example, consider the two sets LP6 and DP6 given above where the order of the
diagrams respects the bijection.

The bijection allows us to establish a containment ordering on link-patterns. For
two link-patterns L,L′ ∈ LP2k, we say that L contains L′ if the entire corresponding
Dyck path of L′ can be drawn along or below the Dyck path of L. More formally,
let L and L′ correspond to the Dyck paths (a1, . . . a2k) and (b1, . . . b2k), respectively.
Then L contains L′ if aj ≥ bj for all 1 ≤ j ≤ 2k. As an example, in the list of Dyck
paths in DP6 the first path contains all other paths. Furthermore, note that if L
contains L′ then |L| ≤ |L′|.

Using the disk diagrams one can see that the action of T L2k on C[LP2k] is similar
to that on C[L2k], one just ignores the puncture so we do not have the loop removal
rule for non-contractible loops. Using the horizontal line diagrams is more suitable
when discussing the action of T Lf

2k. There is an equivalent action of T Lf
2k on C[DP2k]

which we explain.

We discuss the T Lf
2k action on C[DP2k] through the linear identification C[L2k] ≃

C[DP2k]. At step i for 1 ≤ i ≤ 2k − 1 a Dyck path can have one of three different
local situations;

1. Steps i, i+ 1 form a local maximum, i.e. a rise followed by a fall;

2. Steps i, i+ 1 form a local minimum, i.e. a fall followed by a rise;

3. Steps i, i+ 1 form a slope, i.e. two consecutive rises or falls.
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3.8. Proof of a unique solution to qKZ equations

i i+1

ei7−→ −(t
1
2 + t−

1
2 ) i i+1

i i+1

ei7−→ i i+1

i i+1 j

ei7−→ i i+1 j

Figure 3.2: The action of ei on Dyck paths

If steps i, i + 1 form a local maximum then the action of ei acts as a scalar, leaving
the path unchanged and multiplying by a factor −(t

1
2 + t−

1
2 ) (line 1, Figure 3.2). If

steps i, i+ 1 form a local minimum, then ei changes it into a local maximum (line 2,
Figure 3.2). For a slope, if it is two consecutive rises, say with heights ai = m and
ai+1 = m+1, then let j > i+1 be the first step that is a fall with aj = m. The action
of ei then changes step i + 1 into fall and j into a rise, creating a local maximum at
i, i + 1 and decreasing the height of the path between i and j by two (line 3, Figure
3.2). This decrease in height shifts the internal path down and we refer to it as a
collapse. If the slope is downwards with height ai = m, ai+1 = m − 1, let j < i be
the last rise with aj = m + 1. Then the action of ei changes step i and j to a rise
and fall, respectively. This creates a local maximum at i, i+ 1 and causes a collapse
decreasing al by two for j ≤ l < i. Note that a collapse leads to a smaller Dyck path
in the inclusion order.

Figure 3.2 gives a diagrammatic definition of the action on Dyck paths. The dotted
frame indicate the section of the paths where they differ and the dotted line in the
third mapping represents a Dyck path of length j−i−2. The case for two consecutive
falls is the same as the third line but with the diagrams reflected across a vertical line
in the middle of the diagrams.

Remark 3.8.1. The description of the action of T Lf
2k on C[DP2k] is explained in

[20], however in their description there is some ambiguity on how ei acts on a slope.
It is not clear that the step j + 1 in line 3 of Figure 3.2 can be either a rise or a fall
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3.8.1 Link-patterns

To prove the solution to qKZ equations on link-patterns is determined by its base
component we use Dyck paths. Let L0 ∈ DP2k denote the Dyck path with k rises
followed by k falls i.e. (1, 2, . . . , k, k− 1, . . . , 0). Note that L0 contains all Dyck paths
in DP2k.

The solution g(2k)(z) ∈ Sol2k(C[LP2k]; q, c2k) is determined by its base component

g
(2k)
L0

(z). We prove this by showing that if g(2k)L0
(z) ≡ 0, then we have g(2k)L (z) ≡ 0

for all L ∈ DP2k. This is done with the first qKZ equation written component-wise
(3.4.1) for 1 ≤ j < 2k , which is

g
(n)
L (z)− b(zj+1/zj)g

(n)
L (sjz) =

∑

L′∈LP2k: ejL′∼L

γ
(j)
L′,La(zj+1/zj)g

(n)
L′ (sjz), (3.8.1)

where ejL′ ∼ L means that L is obtained from ejL
′ by removing the loops in ejL

′

(there is in fact at most one loop). The coefficient γ(j)L′,L is defined by

γ
(j)
L′,L =

{
−(t

1
2 + t

1
2 ) if ejL′ has a null-homotopic loop,

1 otherwise.

We begin with the inductive hypothesis,

g
(2k)
L (z) ≡ 0 if |L| ≤ m,

where m ∈ Z≥0. Now consider a Dyck path L such that |L| = m with a local
maximum at, say, step i with ai > 1. We use equation (3.8.1) for j = i and examine
the pre-images L′ in the sum on the right hand side. We find that other than L itself
there is only one pre-image that is contained by L. This is the pre-image that has
a local minimum turned into a local maximum by the action of ei. Let us denote
this particular Dyck path by N . Switching a local minimum to a local maximum
is equivalent to removing a box, so we have |N | = m + 1. Furthermore, all other

pre-images L′ 6= N contain L so |L′| ≤ m and g
(2k)
L′ (z) ≡ 0. Thus, g(2k)N (z) ≡ 0 with

|N | = m+1. Since |L0| = 0 it provides the base case of the induction and determines
all other components.

Remark 3.8.2. The algorithm of this proof can be viewed as collapsing the local
maximums till we end up at the last component, which has k local maximums with
height 1. Since a Dyck path cannot fall below the x-axis we cannot collapse a local
maximum with a height 1. Thus, the algorithm never uses the qKZ equation at i if
the height ai = 1. This is an important remark for the proofs that follow.

Remark 3.8.3. The Dyck path L0 corresponds to the link-pattern that connects
point i with 2k − i + 1. The same arguments used in this proof can be found in [20]
where they prove the unique solution for the model with reflecting boundaries.
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3.8. Proof of a unique solution to qKZ equations

3.8.2 Punctured link-patterns

Here we present the proof to Lemma 3.4.2. let L∩, denote the link-pattern

*
1

2k

k

k+1 and 1

2k+1

k

k+1

k+2
*

in L2k and L2k+1, respectively. A little arch in a punctured link-patterns is an arch
connecting points j, j + 1 that does not contain the puncture. For example L∩ only
has one little arch, it connects points 2k + 1 to 1.

The solution g(n)(z) ∈ Soln(C[Ln]; q, cn) is determined by its base component

g
(n)
L∩

(z). The qKZ equations written component-wise (3.4.1) are

g
(n)
L (z)− b(zi+1/zi)g

(n)
L (siz) =

∑

L′∈Ln: eiL′∼L

γ
(i)
L′,La(zi+1/zi)g

(n)
L′ (siz), (3.8.2)

g
(n)
L (z) = c−1g

(n)
ρ−1L(z2, . . . , zn, q

−1z1), (3.8.3)

where eiL′ ∼ L means that L is obtained from eiL
′ by removing the loops in eiL

′

(there is in fact at most one loop). The coefficient γ
(i)
L′,L is defined by

γ
(i)
L′,L =





−(t
1
2 + t

1
2 ) if eiL′ has a null-homotopic loop,

t
1
4 + t

1
4 if eiL′ has a non null-homotopic loop,

1 otherwise.

We treat the even and odd case individually.

Case n = 2k

Let LP (∗,j)
2k denote the set of punctured link-patterns in L2k such that the puncture

could be connected to a point on the boundary between points j and j + 1 (modulo

2k) without crossing a line. Then L2k =
⋃2k

j=1 LP
(∗,j)
2k (not necessarily disjoint) and

ρ : LP
(∗,j)
2k → LP

(∗,j+1)
2k . Note that L∩ is in LP

(∗,k)
2k and if we define L2k := ρk · L∩

then L2k ∈ LP
(∗,2k)
2k . Define a bijection from LP

(∗,2k)
2k to LP2k by simply removing

the puncture. This mapping preserves the action of T Lf
2k. Furthermore, it maps

L2k ∈ LP
(∗,2k)
2k to L0 ∈ LP2k.

To prove that g(2k)L∩
(z) determines the solution we have the following steps. First,

if g(2k)L∩
(z) ≡ 0 then by using equation (3.8.3) k times we have g(2k)L2k

(z) ≡ 0. Second,
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by the mapping from LP
(∗,2k)
2k to LP2k and the proof on LP2k we have g(2k)L (z) ≡ 0

for all L ∈ LP
(∗,2k)
2k . Last, we use equation (3.8.3) to show that if g

(2k)
L (z) ≡ 0 for all

L ∈ LP
(∗,i)
2k then g

(2k)
L′ (z) ≡ 0 for all L′ ∈ LP

(∗,i+1)
2k .

There is one key subtlety that we have ignored, which we point out and address.
There is a difference between equations (3.8.1) and (3.8.2); in the latter equation the
pre-images are in L2k and not just LP2k. So when determining all the components
for L ∈ LP

(∗,2k)
2k we must check that all the pre-images L′ are also in LP (∗,2k)

2k . Recall
remark 3.8.2; Each step of the algorithm is on a local maximum, which corresponds
to a little arch in a link-pattern. For the equation ei · L′ = L, the only case where
we have L′ 6∈ LP

(∗,2k)
2k is if the little arch in L is on the boundary of the domain that

contains the puncture. Such a little arch corresponds to a local maximum of height 1.
Recalling again remark 3.8.2, we do not collapse such local maximums, therefore we
do not have this case and can conclude all pre-images are in LP (∗,2k)

2k . If L ∈ LP
(∗,2k)
2k

has a little arch (i, i + 1) on the boundary of the domain containing the puncture,

then L′ 6∈ LP
(∗,2k)
2k is the link-pattern identical to L but with the puncture inside the

little arch.

Case n = 2k + 1

Let LP (∗,j)
2k+1 denote the set of punctured link-patterns in L2k+1 such that the defect

line connects the puncture to point j on the boundary. Then we have L2k+1 =⊔2k+1
j=1 LP

(∗,j)
2k+1 and ρ : LP

(∗,j)
2k+1 → LP

(∗,j+1)
2k+1 . Note that L∩ is in LP

(∗,k+1)
2k and if we

define L2k+1 := ρk · L∩ then L2k+1 ∈ LP
(∗,2k+1)
2k+1 . Define a bijection from LP

(∗,2k+1)
2k+1

to LP2k by simply removing the defect line, puncture and boundary point 2k+1. This
mapping preserves the action of T Lf

2k. Furthermore, it maps L2k+1 ∈ LP
(∗,2k+1)
2k+1 to

L0 ∈ LP2k.

Now to prove that g(2k+1)
L∩

(z) determines the solution we have the following steps.

First, if g(2k+1)
L∩

(z) ≡ 0 then by using equation (3.8.3) k times we have g(2k+1)
L2k+1

(z) ≡ 0.

Second, by the mapping from LP
(∗,2k+1)
2k+1 to LP2k and the proof on LP2k we have

g
(2k)
L (z) ≡ 0 for all L ∈ LP

(∗,2k+1)
2k+1 . Last, by equation (3.8.3), if g(2k+1)

L (z) ≡ 0 for all

L ∈ LP
(∗,i)
2k+1 then g(2k+1)

L′ (z) ≡ 0 for all L′ ∈ LP
(∗,i+1)
2k+1 .

The same subtle issue occurs in this case and the argument is identical. The only
case a pre-image L′ is not in LP (∗,2k+1)

2k+1 is when the little arch in L is on the boundary
of the domain that contains the puncture. Such a little arch corresponds to a local
maximum of height 1. Again, recalling remark 3.8.2, we do not collapse such local
maximums, therefore we do not have this case and can conclude all pre-images are
in LP

(∗,2k+1)
2k+1 . If L ∈ LP

(∗,2k+1)
2k+1 has a little arch (i, i + 1) on the boundary of the

domain containing the puncture, then L′ 6∈ LP
(∗,2k+1)
2k+1 is the link-pattern with either

point i or i+ 1 connected to the puncture and the other to the point 2k + 1.
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3.8.3 The restricted module V νn

n+1

Here we present the proof to Lemma 3.4.3. Let g(n)(z) ∈ Soln(V
νn
n+1; q, cn). The qKZ

equations associated to the representation V νn
n+1 written component-wise are,

g
(n)
L (z)− b(zj+1/zj)g

(n)
L (sjz) =

∑

L′∈Ln+1: ejL′∼L

γ
(j)
L′,La(zj+1/zj)g

(n)
L′ (sjz), (3.8.4)

t−
1
4

∑

L′∈Ln+1: enL′∼L

γ
(n)
L′,Lg

(n)
L′ (z2, . . . , zn, q

−1z1) + t
1
4 g

(n)
L (z2, . . . , zn, q

−1z1) = c−1
n g

(n)
ρ·L(z).

(3.8.5)

It is important to note that the link-patterns are in Ln+1 but the first equation is
only for 1 ≤ j < n; there is one equation less than the previous cases. The proof for
the even and odd case are treated individually.

The case n = 2k

Note that for the case n = 2k the link-patterns are in L2k+1. Recall from subsection

3.8.2 the definitions for L∩, L2k+1 ∈ L2k+1 and LP
(∗,j)
2k+1. We show the solution g(2k)(z)

is determined by its base component g
(2k)
L∩

(z) in three steps.
First, consider equation (3.8.5) for L = L∩. Since L∩ does not have a little arch

connecting (2k, 2k + 1) there is no pre-image L′ such that e2k · L′ ∼ L∩. Therefore,
there are no terms in the sum (over L′) on the left hand side of the equation, and if

g
(2k)
L∩

(z) ≡ 0 then g(2k)ρ·L∩
(z) ≡ 0. Now examining ρ · L∩ we find it also does not have a

little arch (2k, 2k + 1). This is true for ρi · L∩ for 1 ≤ i ≤ 2k − 1, so we can repeat

the argument to show that g(2k)ρiL∩
(z) ≡ 0 for i ∈ Z. Notably, we have g

L
(2k)
2k+1

(z) ≡ 0.

The second step is identical to subsection 3.8.2. By the mapping from LP
(∗,2k+1)
2k+1

to LP2k and the proof on LP2k we have g(2k)L (z) ≡ 0 for all L ∈ LP
(∗,2k+1)
2k+1 . The fact

that we have 1 equation less does not play a role here as the mapping from LP
(∗,2k+1)
2k+1

to LP2k decreases the size of the link-patterns by 1. The same subtle issue about the
set of pre-images is present and the argument is exactly the same.

The last step is to use equation (3.8.5). However, this is not as simple as subsection
3.8.2 because equation (3.8.5) has an extra term on the left hand side. It is a sum over
pre-images and we will refer to it as the pre-image-sum. Consider equation (3.8.5)

for L ∈ LP
(∗,2k)
2k+1 . Since L has the defect line connected to point 2k there are no

pre-images L′ such that e2k ·L′ ∼ L. Therefore the pre-image-sum of (3.8.5) does not

give a contribution and g(2k)L (z) ≡ 0 because g(2k)ρ·L (z) ≡ 0 as ρ · L ∈ LP
(∗,2k+1)
2k+1 . Now

consider (3.8.5) for L ∈ LP
(∗,2k+1)
2k+1 . By the same argument the pre-image-sum gives

no contribution and g(2k)ρ·L (z) ≡ 0. Since each L′ ∈ LP
(∗,1)
2k+1 is of the form ρ ·L for some
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L ∈ LP
(∗,2k+1)
2k+1 we have g(2k)L (z) ≡ 0 for all L ∈ LP

(∗,1)
2k+1.

Having shown that g(2k)L (z) ≡ 0 for L ∈ LP
(∗,1)
2k+1 ⊔ LP

(∗,2k)
2k+1 ⊔ LP (∗,2k+1)

2k+1 we now
use an inductive argument to complete the proof. The induction hypothesis is

g
(2k)
L (z) ≡ 0 if L ∈ LP

(∗,2k)
2k+1 ⊔ LP (∗,2k+1)

2k+1

⊔

1≤j≤i

LP
(∗,j)
2k+1 1 ≤ i < 2k.

Consider equation (3.8.5) for L ∈ LP
(∗,i)
2k+1. If L does not have a little arch connecting

(2k, 2k+1) then we have the same argument used before: there are no pre-images and

the pre-image-sum does not give a contribution, hence g(2k)L (z) ≡ 0 for L ∈ LP
(∗,i+1)
2k+1 .

If L does have a little arch connecting (2k, 2k+1) then the pre-image L′ must have the

defect line connected to points i, 2k or 2k + 1. The case that L′ ∈ LP
(∗,i)
2k+1 is obvious

for the other two the cases the pre-images are given in Figure 3.3. Therefore, the pre-
image L′ is in LP (∗,2k)

2k+1 ⊔ LP (∗,2k+1)
2k+1 ⊔ LP (∗,i)

2k+1 and the pre-image-sum is equivalently

zero. Hence, in both cases g(2k)ρ·L (z) ≡ 0 and since ρ : LP
(∗,i)
2k+1 → LP

(∗,i+1)
2k+1 we have

g
(2k)
L (z) ≡ 0 for all L ∈ LP

(∗,i+1)
2k+1 . This completes the induction and the base case is

i = 1 which was discussed in the previous paragraph.

*

2k+1

2k

i

∈ LP
(∗,2k+1)
2k+1 ,

*

2k+1

2k

i

∈ LP
(∗,2k)
2k+1

Figure 3.3: Pre-images of L ∈ LP
(∗,i)
2k+1 for the action of e2k.

The case n = 2k − 1

Note that for the case n = 2k− 1 the link-patterns are in L2k Recall from subsection
3.8.2 the definitions for L∩, L2k ∈ L2k and LP (∗,j)

2k . We show the solution g(2k−1)(z)

is determined by its base component g(2k−1)
L∩

(z) in three steps.
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The first step is identical to the case n = 2k. The link-pattern L∩ does not have a
little arch connecting (2k−1, 2k) and neither do the link-patterns ρj ·L∩ for 1 ≤ j ≤ k.

So if g(2k−1)
L∩

(z) ≡ 0 then g(2k−1)
L2k

(z) ≡ 0.
The second step is similar to subsection 3.8.2, however there is a new subtle issue

to note; we have one equation less. By the mapping from LP
(∗,2k)
2k to LP2k and the

proof on LP2k we have g(2k−1)
L (z) ≡ 0 for all L ∈ LP

(∗,2k)
2k . The same subtle issue

regarding the pre-images is present and the argument is exactly the same. To address
the missing equation note that we are missing the equation for j = 2k− 1. But recall
remark 3.8.2 and note that a local maximum at step 2k − 1 must have a height of 1
since it is the last step. Therefore, the argument does not require the equation for
j = 2k − 1.

For the last step, consider equation (3.8.5) for L ∈ LP
(∗,2k−1)
2k . Since L does not

have a little arch connecting points (2k − 1, 2k) there is no pre-image L′ and pre-

image-sum does not give a contribution. Therefore, we have g(2k−1)
L (z) ≡ 0 for all

L ∈ LP
(∗,2k−1)
2k since ρ ·L ∈ LP

(∗,2k)
2k . Next consider the equation for L ∈ LP

(∗,2k−2)
2k .

If L has a little arch connecting points (2k − 1, 2k) then L is also in LP
(∗,2k)
2k so

g
(2k−1)
L ≡ 0. If L does not have a little arch connecting points (2k − 1, 2k) then

there are no pre-images L′ and the pre-image-sum does not give a contribution, so
g
(2k−2)
L (z) ≡ 0 because ρ · L ∈ LP

(∗,2k−1)
2k .

Now consider equation (3.8.5) for L ∈ LP
(∗,2k)
2k . All the possible pre-images of L

with respect to the action of e2k−1 are in LP (∗,j)
2k for j = 2k−2, 2k−1, 2k. Therefore,

the pre-image-sum gives no contribution and g(2k−1)
L (z) ≡ 0 for L ∈ LP

(∗,1)
2k . We now

use an induction argument. The hypothesis is

g
(2k−1)
L (z) ≡ 0 if L ∈ LP

(∗,j)
2k for j = 2k − 2, 2k − 1, 2k, 1, . . . , i (1 ≤ i < 2k − 2).

Consider equation (3.8.5) for L ∈ LP
(∗,i)
2k . If L does not have a little arch connecting

points (2k − 1, 2k) then we have the same argument as before: there are no pre-

images and the pre-image-sum gives no contribution, hence g(2k−1)
ρL ≡ 0 . If L does

have a little arch connecting points (2k − 1, 2k) then we examine the pre-images of

L with respect to action of e2k−1. We find that if L ∈ LP
(∗,i)
2k (1 ≤ i < 2k − 1) then

{L′ ∈ Ln|e2k−1L
′ ∼ L} ⊆ LP

(∗,2k−2)
2k ∪ LP

(∗,2k−1)
2k ∪ LP

(∗,2k)
2k ∪ LP

(∗,i)
2k (see Figure

3.4.) Therefore, the pre-image-sum is equivalently zero and since g(2k−1)
L (z) ≡ 0 and

ρ · L ∈ LP
(∗,i+1)
2k we have g(2k−1)

L (z) ≡ 0 for L ∈ LP
(∗,i+1)
2k . This completes the

inductive step and the base case is i = 1 which was discussed in the beginning of this
paragraph.
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*
2k

2k−1

j

i
i+1

p

l

m

or
*

2k

2k−1

j

i
i+1

m

∈ LP
(∗,2k−2)
2k ,

*
2k

2k−1

j

i
i+1

p

∈ LP
(∗,2k−1)
2k ,

*
2k

2k−1

j

i
i+1

p

l

m

or
*

2k

2k−1

j

i
i+1

m

∈ LP
(∗,2k)
2k .

Figure 3.4: Pre-images of L ∈ LP
(∗,i)
2k for the action of e2k−2.

112



4
The Dense Loop model on the Infinite Cylinder

“What do you mean it might not exist?” G.H-AQ.
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The Dense Loop model on the Infinite Cylinder

From this point onwards in the thesis the subject matter lies more within physics.
Therefore, there is a shift in language, writing style and notation. Furthermore, we
use ω := t

1
2 to reduce the frequency of fractional powers.

4.1 Introduction

In this Chapter we consider the inhomogeneous dense O(1) loop model on a n ×∞
square lattice with periodic boundaries. Geometrically, the lattice lies on the surface
of an infinite cylinder with a circumference n. Our main results are exact expressions
for two observables of the model and our proofs rely on the braid and fusion recursions.
This method has been used to compute partition sums and currents for the dense and
dilute O(1) loop models [36, 43, 19, 15, 29].

The first observable we compute is the current. For this observable, we let each
non-contractible path carry one unit of current. For cylinders with even n the non-
contractible paths winds the cylinder and the current goes anti-clockwise around
the cylinder. On cylinders with odd n the one non-contractible path, goes along
the cylinder, and the current runs upward. The expression depends on whether the
particular edge is horizontal or vertical. Thus, there are two expressions for the
current. In [15] an exact expression was given for the boundary-to-boundary current
for the model on a strip of finite width.

The second observable is the nesting number. It is the expectation of having a
number of loops surrounding a particular site on the lattice. This was considered
by Mitra and Nienhuis for the homogenous model where they conjectured an exact
expression [58]. Our result proves their expression.

The structure of this Chapter is as follows. In section 2 we define the model,
the extended affine Temperley-Lieb algebra and briefly discuss the usual players; the
transfer operator, R-operator and ground state. We view the infinite cylinder as two
semi-infinite cylinders glued together vertically. In section 3 we recall the braid and
fusion recursion on the ground state of the top semi-infinite cylinder and extended it
to the bottom half (called the dual). The current is discussed in section 4 and the
nesting number follows in section 5.

4.2 The dense O(1) loop model

The dense O(1) loop model is a 2-dimensional lattice model. In this chapter we
consider the model on a square lattice of dimension n × ∞ where n ∈ Z>0 is the
width. The lattice is periodic in the finite direction. Thus, the lattice sits on the
surface of a cylinder of infinite height as shown in Figure 4.1.

We first discuss the homogeneous model. A configuration of the model is obtained
by assigning to each face of the lattice one of the two tiles and with
probabilities p and 1 − p, respectively. A configuration results in non-intersecting
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4.2. The dense O(1) loop model

Figure 4.1: A square lattice on the surface of an infinite cylinder.

paths on the surface of the cylinder. There are three types of paths: loops on the
surface of the cylinder which can be contracted to a point, loops that wrap around the
cylinder that cannot be contracted to a point and lines that run along the length of the
cylinder that can wind around the cylinder any number of times in either direction.
We refer to these three types of paths as contractible loops, non-contractible loops and
defect lines.

To study the model we split the infinite cylinder into two semi-infinite halves as
shown in Figure 4.2. The model has been studied on the semi-infinite cylinder [23, 48].
Our convention is to consider the model on the top half and we refer to the model
on the bottom half as the dual. We now recall some facts about the dense O(1) loop
model on the semi-infinite cylinder.

Since the (top half) semi-infinite cylinder has a boundary on the bottom the model
now has n boundary points. Therefore, defect lines start at the boundary and run
up the cylinder. Furthermore, in addition to contractible and non-contractible loops
a configuration can have arches, which connect two boundary points.

Consider a row of the lattice that is tiled by alternating between the tiles and

on even and odd positions respectively. For a lattice of even width n = 2k, this
row has k “caps”, which is an arch that connects two consecutive points. Note that
this particular row of the lattice would pair up any defect lines, so if this particular
row existed in a configuration there would be no defect lines. Since any row takes this
form with nonzero probability (for 0 < p < 1), it occurs in the semi-infinite cylinder
with probability 1. For the lattice of odd width an analogous argument shows that
each configuration has exactly one defect line.

We consider the states of the model to be given by the connectivity of the boundary
points and we distinguish between points being connected over one side or the other
of the semi-infinite cylinder. Furthermore, we allow the removal of contractible and
non-contractible loops. In general O(τ) loop models, the loops may be removed for a
factor τ , in the models considered here this loop weight τ has a value of 1. Therefore,
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b
b

Figure 4.2: An infinite cylinder split into two semi-infinite halves.

the only paths that remain are the arches connecting the boundary points and the
defect line in odd system sizes. This allows us to encod the states of the model for
system size n by punctured link-patterns Ln.

Recall from Chapter 2 that a punctured link-pattern of size 2k is a punctured
disk with 2k equally spaced points on the boundary of a disk that are connected
by k non-intersecting paths lying within the disk. A punctured link-pattern of size
2k + 1 is a punctured disk with 2k + 1 equally spaced points on the boundary of a
disk that are connected by k non-intersecting paths. The unmatched boundary point
is connected to the puncture by a non-intersecting path (which corresponds to the
defect line). As an example the following punctured link-patterns constitute L3 and
L4.

1

2

3

*
1

2

3

*
1

2

3

*

1

2

3

4

*
1

2

3

4

*
1

2

3

4

*
1

2

3

4

*
1

2

3

4

*
1

2

3

4

*
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4.2. The dense O(1) loop model

The dense O(1) loop model on the cylinder is governed by the extended affine
Temperley-Lieb algebra T Ln(ω) with ω equal to a third root of unity. This was
discussed in Chapter 3 and we recall the definition of the algebra. It is a complex
unital associative algebra generated by ρ, ρ−1 and ei for i ∈ Z/nZ with the following
relations:

e2i = −(ω + ω−1)ei,

eiej = ejei if i− j 6= ±1,

eiei±1ei = ei,

ρei = ei+1ρ,

ρρ−1 = 1 = ρ−1ρ,
(
ρe1
)n−1

= ρn(ρe1).

(4.2.1)

It can also be defined diagrammatically by identifying

ρ = 1

2

1
n , ei = 1

i−1

i
i+1 i+2

1
i

,

where the multiplication a · b of two diagrams a, b ∈ T Ln is given by placing b inside
a and resizing the resulting diagram. Note that closed loops can be removed, since ω
is a third root of unity, and that the diagrams are considered up to ambient isotopy
fixing the boundary, meaning all paths can be bent, stretched and shrunk, provided
no crossings are introduced and end points remain fixed.

We now move to the inhomogeneous version of the model. The model is made
inhomogeneous by associating rapidities (spectral parameters) zi ∈ C∗ to column i

for i = 1, . . . , n and a rapidity x to each row of the lattice. In this regime tiles

and are assigned to the faces of the lattice with weights

ωzi − ω−1x

ωx− ω−1zi
and

zi − x

ωx− ω−1zi
,

respectively, where x is the horizontal rapidity associated to a row of the lattice.
These weights are probabilities when zi = xe−iθi for 0 < θi < 2π/3.

We introduce the R-operator which can act on the state space as

Ri(zi+1/zi) =
zi+1 − zi

ωzi − ω−1zi+1
+
ωzi+1 − ω−1zi
ωzi − ω−1zi+1

=:

zi zi+1

,
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where the diagrams act on columns i, i + 1 of the lattice as indicated and trivially
everywhere else. The diagram on the right is a short hand notation for the R-operator.
The arrows indicate the direction of the rapidities, and changing them affects the value
of R.

Using the link-pattern representation the R-operator would be written as

Ri(zi+1/zi) =
zi+1 − zi

ωzi − ω−1zi+1
11

i
i + 1

i
+
ωzi+1 − ω−1zi
ωzi − ω−1zi+1

11

i
i + 1

i
,

or equivalently

Ri(zi+1/zi) = 11

i
i + 1

i
,

where the diagram with the crossing is defined as the linear combination of diagrams
in the previous line.

The R-operator satisfies the following equations,

Ri(x)Ri+1(xy)Ri(y) = Ri+1(y)Ri(xy)Ri+1(x),

Ri(x)Rj(y) = Rj(y)Ri(x), (for i 6= j ± 1)

Ri(x)Ri(x
−1) = 1,

ρRi(x) = Ri+1(x)ρ,

(4.2.2)

where the first equation is the Yang-Baxter equation [32, Vol. 5] in braid form and
the third equation is commonly called the inversion relation.

Adding an extra row of tiles to the bottom of the semi-infinite cylinder corresponds
to the action of the transfer operator T̂ (x; z1, . . . , zn) ∈ T Ln, which transfers the
model from one state to another with particular probabilities. As an operator on
link-patterns it is drawn as,

T̂ (x; z1, . . . , zn) := z1

z2

zn−1

zn

where x ∈ C is the rapidity associated to the circle in the annulus. The direction of
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4.2. The dense O(1) loop model

the rapidity x is counter clockwise. Note that a crossing of two lines is taken as a
linear combination of two diagrams as defined in the R-operator. T̂ (x; z1, . . . , zn) can
be defined more formally as in section 3.5.2.

Recall that the state space C[Ln] is the vector space spanned by punctured link-
patterns (see Chapter 3). The ground state

g(n)(z) :=
∑

L∈Ln

g
(n)
L (z)L ∈ C[Ln]

is an eigenvector of T̂ (x; z1, . . . , zn) with the highest eigenvalue. We assume
T̂ (x; z1, . . . , zn) is suitably normalised so that g(n)(z) has eigenvalue 1.

Let L∩ denote the fully nested link-patterns

*
1

2k

k

k+1 and 1

2k+1

k

k+1

k+2
*

in L2k and L2k+1, respectively. In Chapter 3 we show that the ground state g(n)(z)
is a solution to the qKZ equations,

Ri(zi+1/zi)g
(n)(. . . , zi+1, zi, . . . ) = g(n)(z) (1 ≤ i < n),

ρg(n)(z2, . . . , zn, z1) = g(n)(z).
(4.2.3)

By application of the qKZ equations g(n)(z) can be completely derived from the

fully-nested component g(n)L∩
(z). The proof for the existence of g(n)(z) relies on the

Perron-Frobenius theorem.

Turning the semi-infinite model around by π radians so that it becomes the bottom
half we obtain the dual model with the rapidities zi (1 ≤ i ≤ n) in the reverse order.
Moreover, a link-pattern L will be mapped to a link-pattern, L̂, in the dual model.
The dual link-pattern L̂ is the link-pattern L with the the labelling order of the
boundary points reversed (from n to 1 counter-clockwise). We denote the ground
state of the dual model by ĝ(n)(z) and we have

ĝ
(n)

L̂
(z) = g

(n)
L (zn, . . . , z1).

Since the the model on the infinite cylinder is viewed as connecting two semi-
infinite cylinders, we will compute the probabilities on the infinite cylinder using
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g(n)(z) and ĝ(n)(z). Specifically we have the scalar product

ĝ(n)(z) ◦ g(n)(z) =
∑

L,N

ĝ
(n)

N̂
(z)g

(n)
L (z).

We use the notation ‘◦’ (from the skein category in Chapter 2) because we can expand

the scalar product as
∑

L,N ĝ
(n)

N̂
(z)g

(n)
L (z)(N̂ ◦L) where N̂ ◦L is treated as gluing the

two link-patterns. Since all loops can be removed for a factor of 1, we have N̂ ◦ L
equal to an empty diagram for any two link-patterns L,N ∈ L2k. Similarly in the
odd case for any two L,N ∈ L2k+1 we have N̂ ◦ L equal to a diagram with just a
defect line.

Note that since ĝ(n)(z) is on the dual model it is a right T Ln-module. Using † to
denote the hermitian conjugate we have

(eig
(n)(z))† = (g(n)(z))†e†i = ĝ(n)(zn . . . , z1)en−i,

(ρg(n)(z))† = (g(n)(z))†ρ† = ĝ(n)(zn . . . , z1)ρ.

4.3 System Size Recursions

The ground state g(n)(z) is known to satisfy recursion relations in system size. Specifi-
cally, it satisfies the braid recrusion (Thoeorem 3.4.7) which connects the ground state
g(n)(z) with g(n+1)(z). It also satisfies the recursion given in [23] and [48], which we
call the fusion recursion. This connects g(n)(z) with g(n+2)(z). In the following
subsections we recall these two recursions and extend them to ĝ(n)(z).

4.3.1 Braid recursion

To discuss the braid recursion we allow for crossings in our diagrams. Technically, this
is done by viewing the model in the skein category of the annulus as done in Chapter
2. Instead of recalling all the detail we base the discussion entirely on link-patterns.

We introduce crossings into link-patterns by the following equation

= ω
1
2 + ω− 1

2 , (4.3.1)

which is well known in knot theory as the Kauffman skein relation. In this equation
the disc shows the local neighbourhood where the link-patterns differ. Thus, we
interpret a diagram with crossings as a linear combinations of link-patterns without
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crossings. For example,

1

2

3

b*
= ω

1
2 1

2

3

*
+ ω− 1

2 1

2

3

*
.

A consequence of (4.3.1) is that the Reidemeister moves shown in Figure 4.3 (along
with their mirror versions) hold in the diagrams.

b = −ω3/2

(a) R1

=

b

b

(b) R1’

=
b

b

(c) R2

b
b

b
= b

b

b

(d) R3

Figure 4.3: Reidemeister moves.

With crossings allowed we can define the following map. Let φn : C[Ln] → C[Ln+1]

be the linear map defined as follows:

1. Insert a new point n+ 1 on the boundary of the disk;

2. For φ2k insert an arc connecting the new point 2k + 1 to the puncture, passing
underneath any arcs it may cross; for φ2k+1 detach the defect line and reconnect
it to the new point 2k+2 in two different ways, either by enclosing the puncture
or not. These two contributions get different weights ω

1
2 and 1, respectively.

Example 4.3.1.

1. Example of φ2 acting on C[L2]:

12
*

φ27−→ 1

2

3

b*
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2. Example of φ3 acting on C[L3]:

1

2

3

*

φ37−→ ω
1
2 1

2

3

4

b*
+ 1

2

3

4

b*

We also require the analogous map to φn on the dual link-patterns. Let φ†n :
C[L̂n] → C[L̂n+1] be the linear map defined as follows:

1. Insert a new point n+ 1 on the boundary of the disk;

2. For φ†2k insert an arc connecting the new point 2k + 1 to the puncture, passing

underneath any arcs it may cross; for φ†2k+1 detach the defect line and reconnect
it to the new point 2k+2 in two different ways, either by enclosing the puncture
or not. These two contributions get different weights 1 and ω

1
2 , respectively.

Note that the enclosing of the puncture is a subtle point since in this case the
boundary points are labeled in reverse order.

Example 4.3.2.

1. Example of φ†2 acting on C[L̂2]:

21
*

φ†
27−→ 3

2

1

b
*

2. Example of φ†3 acting on C[L̂3]:

3

2

1

*

φ†
37−→ ω

1
2 4

3

2

1

b
*

+ 4

3

2

1

b
*

The two maps φn and φ†n satisfy

φ†n(L̂) = (ρφn(L))
†

for all L ∈ Ln where L† := L̂ ∈ L̂n. In Chapter 3 we show g(n)(z) satisfies the braid
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recursion,

g(2k+1)(z1, . . . , z2k, 0)

z1 · · · z2k
= (−1)kφ2k(g

(2k)(z1, . . . , z2k)),

g(2k)(z1, . . . , z2k−1, 0)

z1 · · · z2k−1
= (−1)k−1ω

1
2φ2k−1(g

(2k−1)(z1, . . . , z2k−1)).

(4.3.2)

The following lemma extends this result to the dual ground state.

Lemma 4.3.3. ĝ(n)(z) satisfies the braid recursion,

ĝ(2k+1)(z1, . . . , z2k, 0)

z1 · · · z2k
= (−1)kφ†2k(ĝ

(2k)(z1, . . . , z2k)),

ĝ(2k)(z1, . . . , z2k−1, 0)

z1 · · · z2k−1
= (−1)k−1ω

1
2φ†2k−1(ĝ

(2k−1)(z1, . . . , z2k−1)).

(4.3.3)

Proof. g(n)(z) satisfies the qKZ equations (4.2.3). Particularly, it satisfies the second
equation ρ g(n)(z) = g(n)(zn, z1, . . . , zn−1). So for the braid recursion on ĝ(2k+1)(z)
we have

ĝ(2k+1)(z1, . . . , z2k, 0) = g(2k+1)(0, z2k, . . . , z1)
†

= (ρ g(2k)(z2k, . . . , z1, 0))
†

= z1 · · · z2k(−1)k
(
ρ φ2k

(
g(2k)(z2k, . . . , z1)

))†

= z1 · · · z2k(−1)kφ†2k
(
ĝ(2k)(z)

)
.

The proof for the second equation is similar.

Taking the limit zn → ∞ for the R-operator we find

lim
zn→∞

R(zn/zn−1) = ω− 1
2 ei + ω

1
2 ,

which is the skein relation (4.3.1) with the diagrams turned by 90 degrees. So in
the limit zn → ∞ the R-operator is interpreted as an over crossing similar to setting
zn = 0 resulting in an under crossing. Moreover, g(n)(z) satisfies another braid
recursion when we take the limit zn → ∞ (see section 3.7). It is similar to the braid
recursion but with over- and under crossings interchanged.

We require the linear map φ̂n : C[Ln] → C[Ln] that is defined similarly to φn
but with the defect line passing over all paths it must cross and ω−1/2 instead of
ω1/2 for the contribution weight. Furthermore, let f (n)(z) :=

∏n
i=1 z

1−n
i g(n)(z) the

renormalised ground state and note that it is a polynomial in z−1
1 , . . . , z−1

n .

Lemma 4.3.4. Let f (n)(z1, . . . , zn−1,∞) denote limzn→∞ f (n)(z). The (normalised)

123



The Dense Loop model on the Infinite Cylinder

ground state f (n)(z) satisfies the recursion

f (2k+1)(z1, . . . , z2k,∞)

z−1
1 · · · z−1

2k

= (−1)kφ̂2k(f
(2k)(z1, . . . , z2k))

f (2k)(z1, . . . , z2k−1,∞)

z−1
1 · · · z−1

2k−1

= (−1)k−1ω− 1
2 φ̂2k−1(f

(2k−1)(z1, . . . , z2k−1))

(4.3.4)

and the (normalised) dual ground state f̂ (n)(z) satisfies the recursion,

f̂ (2k+1)(z1, . . . , z2k,∞)

z−1
1 · · · z−1

2k

= (−1)kφ̂2k(f̂
(2k)(z1, . . . , z2k))ρ

f̂ (2k)(z1, . . . , z2k−1,∞)

z−1
1 · · · z−1

2k−1

= (−1)k−1ω− 1
2 φ̂2k−1(f̂

(2k−1)(z1, . . . , z2k−1))ρ

Proof. Rather than reproduce all the arguments from Chapter 3 we use a shorter
argument that makes use of the braid recursion.

Since the normalisation factor
∏n

i=1 z
1−n
i is symmetric in the variables zi, it follows

that f (n)(z) satisfies the qKZ equations (4.2.3). Therefore, it is determined by its

component f (n)
L∩

(z).
Let ι : C[Ln] → C[Ln] be the anti-linear involution mapping L→ L for all L ∈ Ln

. Note that on (linear combinations of) link-patterns ι turns over crossings to under

crossings and vice versa. A simple calculation on the component f
(n)
L∩

(z) shows

f (n)(z) = (−1)n(n−1)/2ι(g(n)(z−1
1 , . . . , z−1

n )).

So to show the first equation of (4.3.4) we calculate

f (2k+1)(z1, . . . , z2k,∞) = (−1)kι(g(2k+1)(z−1
1 , . . . , z−1

2k , 0))

= z−1
1 · · · z−1

2k ι(φ2k(g
(2k)(z−1

1 , . . . , z−1
2k ))

= (−1)kz−1
1 · · · z−1

2k φ̂2k(f
(2k)(z1, . . . , z2k)).

The other equations including the ones for the dual ground state follow similar argu-
ments.

4.3.2 Fusion recursion

To discuss the fusion recursion we first introduce two operators that act on link-
patterns. Let E(n)

i denote the operator that maps link-patterns in C[Ln] to C[Ln+2]

by embedding a little arch between the points i−1 and i. Let C
(n)
i denote the operator

that maps link-patterns in C[Ln+2] to C[Ln] by connecting the two points i− 1 and i
and removing loops that may occur. Formally the operators are in the skein category
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1

i−1

i

i+1

i+2

n+2

1

i
i+1

n

1
i−1

i

i
+

1

i
+

2

n

1

i

i+1

n − 2

Figure 4.4: The operators E(n)
i and C(n)

i .

S (see Chapter 2) with E
(n)
i ∈ HomS(n, n+ 2) and C(n)

i ∈ HomS(n+ 2, n); they are
given in Figure 4.4. Note that these operators satisfy

E
(n−2)
i C

(n)
i = ei ∈ T Ln,

C
(n+2)
i E

(n)
i = Id ∈ T Ln,

(E
(n)
i L)† = L†C

(n+2)
n−i .

It is shown in [48] that if zi = ω−1zi+1, then

g(n)(. . . , ω−1zi+1, zi+1, . . . ) = zi+1(ω − ω−1)

n∏

j=1
j 6=i−1,i

(zj − ωzi+1)
2

×E(n−2)
i g(n−2)(. . . , ẑi, ẑi+1, . . . ),

(4.3.5)

where ẑi means the variable zi is omitted. We call equation (4.3.5) the fusion recursion
and extend it to ĝ(n)(z) in the next proposition.

Proposition 4.3.5. The dual ground state satisfies

ĝ(n)(. . . , ω−1zi+1, zi+1, . . . )E
(n−2)
i = zi+1(ω − ω−1)

n∏

j=1
j 6=i,i+1

(zj − ωzi+1)
2

×ĝ(n−2)(. . . , ẑi, ẑi+1, . . . ).

(4.3.6)

Proof. Consider the qKZ equation on the dual ground state.

ĝ(n)(z1, . . . , zi, zi+1, . . . zn)Ri(zi+1/zi) = ĝ(n)(z1, . . . , zi+1, zi, . . . zn)

= g(n)(zn, . . . , zi, zi+1, . . . z1)
†.
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Note that Ri(ω) = ei = E
(n−2)
i C

(n)
i . So if we specialise zi = ω−1zi+1 we have,

ĝ(n)(z1, . . . , ω
−1zi+1, zi+1, . . . zn)E

(n−2)
i C

(n)
i = ĝ(n)(z1, . . . , zi+1, ω

−1zi+1, . . . zn)

= g(n)(zn, . . . , ω
−1zi+1, zi+1, . . . z1)

†

= zi+1(ω − ω−1)

n∏

j=1
j 6=i,i+1

(zj − ωzi+1)
2
(
E

(n−2)
n−i g(n−2)(zn, . . . , ẑi+1, ẑi, . . . z1)

)†

= zi+1(ω − ω−1)

n∏

j=1
j 6=i,i+1

(zj − ωzi+1)
2ĝ(n−2)(z1, . . . , ẑi, ẑi+1, . . . zn)C

(n)
i ,

The last step is to act on the right by E
(n−2)
i and since it is a right inverse of C

(n)
i

we get our result.

4.4 The Current

In this section we determine the mean value of the current crossing a particular edge
on the lattice. For even system sizes current runs along non-contractible loops to the
right (and then to the left as it runs behind the cylinder) and for odd system sizes
the current runs up the defect line. We will find that the mean value of the current
differs if it crosses a horizontal or vertical edge, so we say horizontal current to mean
a current crossing a horizontal edge and similarly vertical current for when it crosses
a vertical edge.

For the horizontal current, we call the current positive/negative if it crosses the
measured edge in an upward/downward direction and zero if it does not cross the
edge. For the vertical current, we call the current positive/negative if it crosses the
edge from left-to-right/right-to-left and zero if it does not cross the edge.

We denote the current operator on the lattice by two dots marking the ends of
the edge where the current is measured. For the horizontal current the operator can
be placed on an edge between the top and bottom semi-infinite cylinder and when
measured at edge i we denote the resulting diagram on link-patterns by N̂ ◦ Xi ◦ L .
The horizontal current crossing site i for system size n is defined as X(n)

i (z)/Z(n)(z)

with,

X
(n)
i (z) := ĝ(n)(z) ◦ Xi ◦ g(n)(z) =

∑

L,N

ĝ
(n)

N̂
(z)g

(n)
L (z)〈N̂ ◦ Xi ◦ L〉

Z(n)(z) := ĝ(n)(z) ◦ g(n)(z) =
∑

L,N

ĝ
(n)

N̂
(z)g

(n)
L (z)
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where it depends on the rapidities z1, . . . , zn of the model and

〈N̂ ◦ Xi ◦ L〉 =





1 if N̂ ◦ Xi ◦ L has a positive current,

−1 if N̂ ◦ Xi ◦ L has a negative current,

0 if N̂ ◦ Xi ◦ L has a zero current.

For the vertical current we need to place the operator within a transfer operator
that is acting between two ground states. We denote this special transfer operator as
Y(x; z). The vertical current is then defined as Y (n)(x; z)/Z(n)(z) with

Y (n)(x; z) := ĝ(n)(z) ◦ Y(x; z) ◦ g(n)(z).

Note that Y (n)(x; z) does not depend on i compared to the horizontal current. This
is because, as we will soon see, it is symmetric in all its variables zi (1 ≤ i ≤ n) .

In [23, 48] the authors show
∑

L g
(n)
L (z) is equal to a product of Schur functions

(up to a normalisation factor). Specifically, it is equal to Sλn(z)Sµn(z), where the
partitions are defined as

λn :=

(⌊n
2

⌋
,

⌊
n− 1

2

⌋
, . . . , 2, 2, 1, 1, 0

)
,

µn :=

(⌊
n− 1

2

⌋
,

⌊
n− 2

2

⌋
, . . . , 2, 2, 1, 1, 0, 0

)
.

Furthermore, Z(n)(z) = (−3)⌊
n
2 ⌋S2

λn
(z)S2

µn
(z). This follows from the expression of

the partition sum on the semi-infinite cylinder [23].

4.4.1 Symmetries

Proposition 4.4.1. The current satisfies,

X
(n)
i (. . . , zj , . . . , zk, . . . ) = X

(n)
i (. . . , zk, . . . , zj, . . . )

for 1 ≤ j, k ≤ n with j, k 6= i, and

Y (n)(x; . . . , zj , . . . , zk, . . . ) = Y (n)(x; . . . , zk, . . . , zj , . . . )

for 1 ≤ j, k ≤ n.

Proof. We consider the equation for the horizontal current. This is shown by using
the inversion relation (4.2.2) of the R-operator to create two R-operators acting at
site j 6= i, i + 1 between the ground state and Xi. Since j 6= i, i + 1 the operator Xi

and Rj commute. Lastly, use the qKZ equations to permute the variables zj , zj+1 in
the ground state and the dual. This can be done for any j 6= i, i + 1 and since the
model is periodic this leads to symmetry in all the rapidities except for zi. For the
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vertical current the argument is similar but since the argument also holds for j = i
we can swap all the rapidities.

In the following subsections we discuss the fusion and braid recursion on the cur-
rent. This is followed by proving an exact expression for the current.

4.4.2 Fusion Recursion

Let ~z := (z1, . . . , zn−2) and [ω] := ω − ω−1. Furthermore, since X(n)
i (z) = X

(n)
j (z′)

for a suitable z
′ we fix the horizontal current to be at site 1 without loss of generality.

Proposition 4.4.2. The current satisfies the fusion recursion:

X
(n)
1 (~z, zn−1, ω

±1zn−1) = [ω]2z2n−1

(
n−2∏

i=1

(zi − ω∓1zn−1)
4

)
X

(n−2)
1 (~z),

Y (n)(~z, ω±1zn−1) = [ω]2z2n−1

(
n−2∏

i=1

(zi − ω∓1zn−1)
4

)
Y (n−2)(~z).

Proof. We give the proof for the horizontal current with the specialisation zn =
ω−1zn−1; The case zn = ωzn−1 and the proof for the vertical current is similar.

By using the fusion recursion (4.3.5) and (4.3.6) on the ground states and noting

that the arch embedding morphism E
(n−2)
n−2 commutes with X1 we calculate

X
(n)
1 (~z, zn−1, ω

−1zn−1) = ĝ(n)(~z, zn−1, ω
−1zn−1) ◦ X1 ◦ g(n)(~z, ω−1zn−1)

= [ω]zn−1

(
n−2∏

i=1

(zi − ωzn−1)
2

)

× ĝ(n)(~z, zn−1, ω
−1zn−1) ◦ X1 ◦ E(n−2)

n−2 ◦ g(n−2)(~z)

= [ω]zn−1

(
n−2∏

i=1

(zi − ωzn−1)
2

)

× ĝ(n)(z1, . . . , ω
−1zn−1) ◦ E(n−2)

n−2 ◦ X1 ◦ g(n−2)(~z)

= [ω]2z2n−1

(
n−2∏

i=1

(zi − ωzn−1)
4

)
ĝ(n−2)(~z) ◦ X1 ◦ g(n−2)(~z)

= [ω]2z2n−1

(
n−2∏

i=1

(zi − ωzn−1)
4

)
X

(n−2)
1 (~z).

Since X
(n)
1 is symmetric in the variables zi for 1 < i ≤ n it follows that the

recursion is true for specialising zi = ω±1zj, for 1 ≤ i, j ≤ n such that i, j 6= 1.
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4.4. The Current

Similarly since Y (n) is symmetric in all the variables it follows that the recursion
holds for specialising zi = ω±1zj for 1 ≤ i, j ≤ n.

4.4.3 Relating horizontal and vertical current

We have shown that the fusion recursion on X
(n)
i results in X

(n−2)
i . This is only

when the specialisation of the parameters does not involve zi. When we specialise the
parameter zi in the fusion recursion we still get a recursion in system size. However,
it results in the vertical current.

Proposition 4.4.3. The current satisfies,

X
(n)
i (. . . , zi = x, zi+1 = ω−1x, . . . )

= [ω]2x2




n∏

j=1
j 6=i,i+1

(zj − ωx)4


Y (n−2)(x; . . . ẑi, ẑi+1, . . . ).

(4.4.1)

Proof. We show this by examining the horizontal current acting on the top of a trans-
fer operator. The recursion of the top ground state results in a little arch acting on
the top of the transfer operator (Line 1 in Figure 4.5). We can move the measure-
ment of the current from the horizontal edge to a vertical edge because the specialised
parameters fix the tile on the transfer operator (Line 2 in Figure 4.5). Lastly, the
little arch commutes through resulting in a smaller transfer operators measuring the
vertical edge (Line 3 in Figure 4.5). The little arch now acts on the dual ground state
giving us the fusion recursion.

The calculation relating horizontal to vertical current can also done in [15] where
they calculate the boundary-to-boundary current of the dense loop model on a lattice
strip.

4.4.4 Braid recursion

We fix the horizontal current to be at site 1, without loss of generality. Let ~z :=

(z1, . . . , zn−1) and note ¯[ω] = −[ω].
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t

z1 z2

zi = t zi+1 = ω−1t

zn

b b

= t

z1 z2

zi = t zi+1 = ω−1t

zn

b

b

= t

z1 z2

zi = t zi+1 = ω−1t

zn

b

b

Figure 4.5: The horizontal to vertical recursion of the current.

Proposition 4.4.4. The current satisfies the braid recursions:

X
(n)
1 (~z, 0) = ¯[ω]

(
n−1∏

i=1

z2i

)
X

(n−1)
1 (~z),

Y (n)(~z, 0) = ¯[ω]

(
n−1∏

i=1

z2i

)
Y (n−1)(~z),

lim
zn→∞

Y (n)(~z, zn)

Z(n)(~z, zn)
= [ω](−1)(n−1) Y (n−1)(~z)

Z(n−1)(~z)
.

Proof. We prove the first equation; the proof for the vertical current follows identical
arguments. For the braid recursion for zn → ∞, rewrite the current in terms of the
normalised ground state, then the argument is similar to the other cases zn = 0. We
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4.4. The Current

write

X
(n)
1 (~z, zn) =

∑

L,L′∈Ln

〈L̂′ ◦ X (n)
1 ◦ L〉g(n)L (~z, zn)g

(n)
L′ (zn, ~z)

where ~z denotes (zn−1, . . . , z1). Next, we need to prove the even (n = 2k) and odd
(n = 2k + 1) cases separately and proceed with the former.

Assume that for N,N ′ ∈ L2k−1 the following equality holds:

ω−1 ¯[ω]〈N̂ ′ ◦ X (2k−1)
1 ◦N〉

=
∑

L,L′∈L2k

〈L̂′ ◦ X (2k)
1 ◦ L〉(φ2k−1(N)|L)(φ2k−1(N

′)|ρ−1L′). (4.4.2)

Then we have

X
(2k)
1 (~z, 0) =

∑

L,L′∈L2k

〈L̂′ ◦ X (2k)
1 ◦ L〉g(2k)L (~z, 0)g

(2k)
L′ (0, ~z)

= ω

(
2k−1∏

i=1

z2i

) ∑

L,L′∈L2k

(
〈L̂′ ◦ X (2k)

1 ◦ L〉

×
∑

N,N ′∈L2k−1

(φ2k−1(N)|L)g(2k−1)
N (~z)(φ2k−1(N

′)|ρ−1L′)g
(2k−1)
N ′ ( ~z)

)

= ω

(
2k−1∏

i=1

z2i

) ∑

N,N ′∈L2k−1

(
g
(2k−1)
N (~z)g

(2k−1)
N ′ ( ~z)

×
∑

L,L′∈L2k

〈L̂′ ◦ X (2k)
1 ◦ L〉(φ2k−1(N)|L)(φ2k−1(N

′)|ρ−1L′)

)

= ω

(
2k−1∏

i=1

z2i

) ∑

N,N ′∈L2k−1

g
(2k−1)
N (~z)g

(2k−1)
N ′ ( ~z)

(
ω−1 ¯[ω]〈N̂ ′ ◦ X (2k−1)

1 ◦N〉
)

= ¯[ω]

(
2k−1∏

i=1

z2i

) ∑

N,N ′∈L2k−1

〈N̂ ′ ◦ X (2k−1)
1 ◦N〉g(2k−1)

N (~z)g
(2k−1)
N ′ ( ~z)

= ¯[ω]

(
2k−1∏

i=1

z2i

)
X

(2k−1)
1 (~z)

where we have written the values ĝ(2k)
L̂′

(z) as g(2k)L′ (zn, . . . , z1) then used the braid

recursion (4.3.2) on the ground states to go from line 1 to 2 and the assumption
(4.4.2) to go from line 3 to 4.

Before proving the assumption (4.4.2) we make the same argument with the odd
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case. Assume that for N,N ′ ∈ L2k the following equality holds:

¯[ω]〈N̂ ′ ◦ X (2k)
1 ◦N〉 =

∑

L,L′∈L2k+1

〈L̂′ ◦ X (2k+1)
1 ◦ L〉(φ2k(N)|L)(φ2k(N ′)|ρ−1L′)

(4.4.3)

Then we have

X
(2k+1)
1 (~z, 0) =

∑

L,L′∈L2k+1

〈L̂′ ◦ X (2k+1)
1 ◦ L〉g(2k+1)

L (~z, 0)g
(2k+1)
L′ (0, ~z)

=

(
2k∏

i=1

z2i

) ∑

L,L′∈L2k+1

(
〈L̂′ ◦ X (2k+1)

1 ◦ L〉

×
∑

N,N ′∈L2k

(φ2k(N)|L)g(2k)N (~z)(φ2k(N
′)|ρ−1L′)g

(2k)
N ′ ( ~z)

)

=

(
2k∏

i=1

z2i

) ∑

N,N ′∈L2k

(
g
(2k)
N (~z)g

(2k)
N ′ ( ~z)

×
∑

L,L′∈L2k+1

〈L̂′ ◦ X (2k+1)
1 ◦ L〉(φ2k(N)|L)(φ2k(N ′)|ρ−1L′)

)

=

(
2k∏

i=1

z2i

) ∑

N,N ′∈L2k

(
¯[ω]〈N̂ ′ ◦ X (2k)

1 ◦N〉
)
g
(2k)
N (~z)g

(2k)
N ′ ( ~z)

= ¯[ω]

(
2k∏

i=1

z2i

) ∑

N,N ′∈L2k

〈N̂ ′ ◦ X (2k)
1 ◦N〉g(2k)N (~z)g

(2k)
N ′ ( ~z)

= ¯[ω]

(
2k∏

i=1

z2i

)
X

(2k)
1 (~z)

where we have used the braid recursions (4.3.2) and (4.3.3) to go from line 1 to 2 and
assumption (4.4.3) to go from line 3 to 4.

All that remains is to prove the assumptions (4.4.2) and (4.4.3). We write φn(L̂ ◦
L′) := φ†n(L̂) ◦ φn(L′) for L,L′ ∈ Ln. We begin with the even case. We prove (4.4.2)

by studying the current operator acting on φ2k−1(N) and φ†2k−1(N̂
′) and show that

〈φ†2k−1(N̂
′) ◦ X (2k)

1 ◦ φ2k−1(N)〉 is equal to both sides of the equation.
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Consider the map φ2k−1 acting on a configuration N̂ ′ ◦ X (2k−1)
1 ◦N ;

φ2k−1(N̂
′ ◦ X (2k−1)

1 ◦N) = φ†2k−1(N̂
′) ◦ X (2k)

1 ◦ φ2k−1(N)

=
∑

L,L′∈L2k

(φ2k−1(N)|L)(φ2k−1(N
′)|ρ−1L′)L̂′ ◦ X (2k)

1 ◦ L.

Therefore, 〈φ†2k−1(N̂)◦X (2k)
1 ◦φ2k−1(N

′)〉 is equal to the right hand side of assumption
(4.4.2).

To show it is equal to the left hand side consider a configuration N̂ ′ ◦X (2k−1)
1 ◦N ,

and focus on the defect line, which may or may not pass through 1. We can consider
the defect line to be in the following general positions:

1 i 2n−1 1 2n−1 1 2n−1

In the first diagram the defect line does not pass through 1, so there is zero current.
In the second and third diagrams the defect line does pass through 1, so current is
positive and negative, respectively.

Next we act by φ2k−1 but do not use any skein relations. Since the defect line is now
a closed loop that passes under all lines it crosses, we can separate it from the other
loops (by use of the Reidemeister moves). We find that we get four contributions.
Figure 4.6 depicts these contributions for a zero current. Using A,B,C,D to denote
the respective contributions in the figure we have,

N̂ ′ ◦ X (2k−1)
1 ◦N φ2k−17−→ ω

1
2A+ ωB + C + ω

1
2D

The map φ2k−1 does not change the position where the defect line originally crosses

the dashed horizontal line. So if there is a zero current in N̂ ′ ◦ X (2k−1)
1 ◦N then the

image also has zero current. On the other hand, if the current on N̂ ′ ◦ X (2k−1)
1 ◦N is
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1 i 2n

(a)

1 2n

(b)

1 2n

(c)

1 2n

(d)

Figure 4.6: The contributions from φ†2k−1(N̂
′) ◦ φ2k−1(N).

nonzero, then contributions A and D have zero current while B has the same current
type and C is of opposite direction. Therefore,

〈φ†2k−1(N̂
′) ◦ X (2k)

1 ◦ φ2k−1(N)〉 = ω〈N̂ ◦ X (2k−1)
1 ◦N〉 − 〈N̂ ◦ X (2k−1)

1 ◦N〉
= ω−1 ¯[ω]〈N̂ ◦ X (2k−1)

1 ◦N〉,

which gives us the equality for the left hand side.

Similarly for the odd case, consider the map φ2k acting on N̂ ′ ◦ X (2k)
1 ◦ N . We

have,

〈φ2k(N̂
′ ◦ X (2k)

1 ◦N)〉 = 〈φ†2k(N̂ ′) ◦ X (2k+1)
1 ◦ φ2k(N)〉

=
∑

L,L′∈L2k+1

(φ2k(N)|L)(φ2k(N ′)|ρ−1L′〈L̂′ ◦ X (2k+1)
1 ◦ L〉,

giving the equality to the right hand side of assumption (4.4.3).
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Next, consider a configuration N̂ ′◦X (2k)
1 ◦N , and let us focus on a non-contractible

loop, which may or may not cross 1. We can consider the loop to be in three general
positions,

1 2n 1 2n 1 2n

In the first diagram the loop does not pass through 1, so there is zero current. In the
second and third diagrams the loop does pass through 1, so the current is positive
and negative, respectively.

Consider the diagram with zero current (Figure 4.7a). Acting by φ2k gives the
configuration shown in Figure 4.7b. If we use the Kauffman skein relation only once
on the crossing between the non-contractible loop and defect line we get two pos-
sible contributions shown in Figures 4.7c and 4.7d. Using A,B,C,D to denote the
respective diagrams in Figure 4.7 we have,

A
φ2k7−→ B = ω− 1

2C + ω
1
2D.

Repeating this with the other diagrams we find the following. If A has zero current
then both C and D also have zero current. On the other hand, if A has nonzero
current, then C has the same current type while D is the opposite sign. Therefore,

〈φ†2k(N̂ ′) ◦ X (2k+1)
1 ◦ φ2k(N)〉 = ¯[ω]〈N̂ ′ ◦ X (2k)

1 ◦N〉.

Lemma 4.4.5. X
(n)
1 (z) is a homogeneous polynomial of total degree n(n− 1) with a

degree 2n− 2 for each zi (1 ≤ i ≤ n). Y (n)(x; z) is of the form

Ỹ (n)(x; z)∏n
j=1(zj − ωx)

where Ỹ (n)(x; z) is a homogeneous polynomial with degree 2n− 1 for each zi (1 ≤ i ≤
n).
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1 2n

(a)

b

b

1 2n+1

(b)

b

1 2n+1

(c)

b

1 2n+1

(d)

Figure 4.7: A configuration N̂ ′ ◦N and its image under φ2k.

Proof. Z(n)(z) has total degree n(n−1) [23, 48]. It is a sum over link-pattern weights
gN̂ (z)gL(z) which have total degree n(n− 1) and degree 2n− 2 in the variables. The

only difference between Z(n)(z) and X
(n)
1 (z) are the additional factors 0 and −1 in

the sum.

We know Y (n)(x; z) has a polynomial numerator and polynomial denominator of
degree 2n− 1 and 1, respectively, in the variables zi (1 ≤ i ≤ n). This is due to the
transfer operator Y(x; z) in the definition. Proposition 4.4.3 states that

∏n
j=1(zj −

ωx)4Y (n)(x; z) must be a polynomial, so the denominator must divide the product.
The degree of the denominator fixes it to be

∏n
j=1(zj − ωx).

4.4.5 An exact Expression for the Current

Above we have shown that the current exhibits a number of recursion relations, which
are collected in Table 4.1. In this section we give the exact expression for the current
and show that it satisfies the same recursions. By the degree of the current we have
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Horizontal current
Specialisation Recursion Number of Recursions

zn = ω±1zi (1 < i ≤ n−1) X
(n)
1 7→ X

(n−2)
1 2n− 4

zn = ω±1z1 X
(n)
1 7→ Y

(n−2)
1 2

zn = 0 X
(n)
1 7→ X

(n−1)
1 1

Vertical current
Specialisation Recursion Number of Recursions
zn = ω±1zi (1 ≤ i ≤ n−1) Y (n) 7→ Y (n−2) 2n− 2
zn = 0 Y (n) 7→ Y (n−1) 1

zn → ∞ Y (n)

Z(n) 7→ Y (n−1)

Z(n−1) 1

Table 4.1: List of recursions for the current.

a sufficient number of recursions to prove the expression.

To continue we need to introduce some notation. Let λn := {. . . , 2, 2, 1, 1, 0} and
µn := {. . . , 2, 2, 1, 1, 0, 0} be partitions of length n. Then we denote by Sλ(z1, . . . , zn)
the Schur polynomial with partition λn. Furthermore, we use the shorthand notation
S̃λ(~z) := z1

d
dz1
Sλ(~z). Now we can state the main result.

Theorem 4.4.6.

X
(n)
1 (z) = [ω]n−1

(
S2
λ(z)S

2
µ(z)− 2S̃λ(z)Sλ(z)S

2
µ(z) + 2S̃µ(z)Sµ(z)S

2
λ(z)

)

Y (n−2)(x; z3, . . . , zn) =
(−1)n−1[ω]n−3

x2
∏n

i=3(zi − ωx)4

×
(
S2
λ(z)S

2
µ(z)− 2S̃λ(z)Sλ(z)S

2
µ(z) + 2S̃µ(z)Sµ(z)S

2
λ(z)

) ∣∣∣∣ z1=x
z2=ω−1x

Proof. The Schur functions satisfy the following recursions.

Sλ(z1, . . . , zn−1, 0) =

(
n−1∏

i=1

zi

)
Sµ(z1, . . . , zn−1)

Sµ(z1, . . . , zn−1, 0) = Sλ(z1, . . . , zn−1)

Sλ(z1, . . . , zn−2, zn−1, ωzn−1) = zn−1

(
n−2∏

i=1

(ω2zn−1 − zi)

)
Sλ(z1, . . . , zn−2)

Sµ(z1, . . . , zn−2, zn−1, ωzn−1) =

(
n−2∏

i=1

(ω2zn−1 − zi)

)
Sµ(z1, . . . , zn−2)

137



The Dense Loop model on the Infinite Cylinder

The first two equations can be proven using a combinatorial argument with Young
diagrams. Schur polynomials can be defined as a sum of monomials,

Sλ(z1, z2, . . . , zn) =
∑

T

zT =
∑

T

zt11 · · · ztnn

where T is the set of all semistandard Young tableaux of shape λ and each ti counts
the occurrences of the number i in T . Setting the last variable to zero is equivalent to
removing the last row of the diagram. One then sees that µ becomes λ for the second
statement. For the first statement λ can be split into a column of length n− 1 and µ.

The last two equations were shown in [48, 66]. The argument is as follows. The
Schur functions vanish when three variables are set to the values 1, ω and ω2. This
is evident from the determinant expression of the Schur function as two columns
become linearly dependent. Therefore, if only two variables are specialised then we
get the recursive factor and degree considerations fixes the remainder to be the Schur
function.

With the recursion on the Schur functions we get the following recursions on S̃λ

and S̃µ.

S̃λ(~z, 0) =

(
n−1∏

i=1

zi

)(
Sµ(~z) + S̃µ(~z)

)

S̃µ(~z, 0) = S̃λ(~z)

S̃λ(~z, zn−1, ωzn−1) = zn−1

((
n−2∏

i=1

(ω2zn−1 − zi)

)
S̃λ(~z)

− z1

(
n−2∏

i=2

(ω2zn−1 − zi)

)
Sλ(~z)

)

S̃µ(~z, zn−1, ωzn−1) =

(
n−2∏

i=1

(ω2zn−1 − zi)

)
S̃µ(~z)

− z1

(
n−2∏

i=2

(ω2zn−1 − zi)

)
Sµ(~z).

These are straightforward calculations. One must note that specialising any variable
other than z1 commutes with taking the partial derivative with respect to z1.

Proving the theorem is now a matter of using the recursions above.

Let ~z = (z1, . . . , zn−1).
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X
(n)
1 (~z, 0)

= [ω]n−1

(
S2
λ(~z, 0)S

2
µ(~z, 0)− 2S̃λ(~z, 0)Sλ(~z, 0)S

2
µ(~z, 0)

+ 2S̃µ(~z, 0)Sµ(~z, 0)S
2
λ(~z, 0)

)

= [ω]n−1

(
n−1∏

i=1

z2i

)(
S2
λ(~z)S

2
µ(~z)− 2

(
Sµ(~z) + S̃µ(~z)

)
Sµ(~z)S

2
λ(~z)

+ 2S̃λ(~z)Sλ(~z)S
2
µ(~z)

)

= [ω]n−1
n−1∏

i=1

z2i

(
−S2

λ(~z)S
2
µ(~z)− 2S̃µ(~z)Sµ(~z)S

2
λ(~z) + 2S̃λ(~z)Sλ(~z)S

2
µ(~z)

)

= ¯[ω]
n−1∏

i=1

z2i

(
[ω]n−2

(
S2
λ(~z)S

2
µ(~z) + 2S̃µ(~z)Sµ(~z)S

2
λ(~z)− 2S̃λ(~z)Sλ(~z)S

2
µ(~z)

))

=

(
¯[ω]

n−1∏

i=1

z2i

)
X

(n−1)
1 (~z)

Next, we prove the fusion recursion. Because of the symmetry of the variables
zi for 2 ≤ i ≤ n we just prove the case zn = ω−1zn−1. Let ~z = (z1, . . . , zn−2) and
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Z(~z) := S2
λ(~z)S

2
µ(~z) then we can calculate:

Z(~z, zn−1, ω
−1zn−1)

+ 2S̃λ(~z, zn−1, ω
−1zn−1)Sλ(~z, zn−1, ω

−1zn−1)S
2
µ(~z, zn−1, ω

−1zn−1)

− 2S̃µ(~z, zn−1, ω
−1zn−1)Sµ(~z, zn−1, ω

−1zn−1)S
2
λ(~z, zn−1, ω

−1zn−1)

= z2n−1

n−2∏

i=1

(ωzn−1 − zi)
4Z(~z) + 2z2n−1

n−2∏

i=1

(ωzn−1 − zi)
4S̃λ(~z)Sλ(~z)S

2
µ(~z)

− 2z2n−1z1

n−2∏

i=2

(ω2zn−1 − zi)

n−2∏

i=1

(ωzn−1 − zi)
3S2

λ(~z)S
2
µ(~z)

− 2z2n−1

n−2∏

i=1

(ωzn−1 − zi)
4S̃µ(~z)Sµ(~z)S

2
λ(~z)

+ 2z2n−1z1

n−2∏

i=2

(ω2zn−1 − zi)

n−2∏

i=1

(ωzn−1 − zi)
3S2

µ(~z)S
2
λ(~z)

= z2n−1

n−2∏

i=1

(ωzn−1 − zi)
4
(
Z(~z) + 2S̃λ(~z)Sλ(~z)S

2
µ(~z)− 2S̃µ(~z)Sµ(~z)S

2
λ(~z)

)

Noting this calculation we have

X
(n)
1 (~z, zn−1, ω

−1zn−1)

= [ω]n−1z2n−1

n−2∏

i=1

(ωzn−1 − zi)
4

(
Z(~z) + 2S̃λ(~z)Sλ(~z)S

2
µ(~z)

− 2S̃µ(~z)Sµ(~z)S
2
λ(~z)

)

=

(
[ω]2z2n−1

n−2∏

i=1

(ωzn−1 − zi)
4

)
[ω]n−3

(
Z(~z) + 2S̃λ(~z)Sλ(~z)S

2
µ(~z)

− 2S̃µ(~z)Sµ(~z)S
2
λ(~z)

)

=

(
[ω]2z2n−1

n−2∏

i=1

(ωzn−1 − zi)
4

)
X

(n−2)
1 (~z)

The calculation for the recursion for zn = ωzn−1 is identical. Lastly the final recur-
sion point is zn = ω−1z1 which is easily proven by the expression for the vertical
current, provided it is true. Thus, all that is left is to prove the expression for
Y (n)(x; z1, . . . , zn). We begin with the braid recursion.
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Let ~z = (z1, . . . , zn−1).

Y (n)(x;~z, 0)

=
[ω]n−1

x2
∏n

i=1(zi − ωx)4

(
Z(y1, y2, ~z, zn)

− 2S̃λ(y1, y2, ~z, zn)Sλ(y1, y2, ~z, zn)S
2
µ(y1, y2, ~z, zn)

+ 2S̃µ(y1, y2, ~z, zn)Sµ(y1, y2, ~z, zn)S
2
λ(y1, y2, ~z, zn)

)∣∣∣∣ y1=x
y2=ω−1x

∣∣∣∣
zn=0

=
[ω]n−1

ω4x6
∏n−1

i=1 (zi − ωx)4

(
Z(y1, y2, ~z, 0)

− 2S̃λ(y1, y2, ~z, 0)Sλ(y1, y2, ~z, 0)S
2
µ(y1, y2, ~z, 0)

+ 2S̃µ(y1, y2, ~z, 0)Sµ(y1, y2, ~z, 0)S
2
λ(y1, y2, ~z, 0)

)∣∣∣∣ y1=x

y2=ω−1x

=
[ω]n−1

ω4x6
∏n−1

i=1 (zi − ωx)4
y21y

2
2

n−1∏

i=1

z2i

(
Z(y1, y2, ~z)

− 2
(
Sµ(y1, y2, ~z) + S̃µ(y1, y2, ~z)

)
Sµ(y1, y2, ~z)S

2
λ(y1, y2, ~z)

+ 2S̃λ(y1, y2, ~z)Sλ(y1, y2, ~z)S
2
µ(y1, y2, ~z)

)∣∣∣∣ y1=x

y2=ω−1x

=

(
[ω]

n−1∏

i=1

z2i

)
[ω]n−2

x2
∏n−1

i=1 (zi − ωx)4

(
Z(y1, y2, ~z)

− 2S̃λ(y1, y2, ~z)Sλ(y1, y2, ~z)S
2
µ(y1, y2, ~z)

+ 2S̃µ(y1, y2, ~z)Sµ(y1, y2, ~z)S
2
λ(y1, y2, ~z)

)∣∣∣∣ y1=x
y2=ω−1x

=

(
[ω]

n−1∏

i=1

z2i

)
Y (n−1)(x;~z)

141



The Dense Loop model on the Infinite Cylinder

Moving on to the fusion recursion let ~z = (y1, y2, z1, . . . , zn−2). A similar calcula-
tion to the first step of the fusion recursion for the horizontal current gives

Z(~z, zn−1, ω
−1zn−1)

+ 2S̃λ(~z, zn−1, ω
−1zn−1)Sλ(~z, zn−1, ω

−1zn−1)S
2
µ(~z, zn−1, ω

−1zn−1)

− 2S̃µ(~z, zn−1, ω
−1zn−1)Sµ(~z, zn−1, ω

−1zn−1)S
2
λ(~z, zn−1, ω

−1zn−1)

= z2n−1

2∏

j=1

(ωzn−1 − yj)
4
n−2∏

i=1

(ωzn−1 − zi)
4

(
Z(~z)

+ 2S̃λ(~z)Sλ(~z)S
2
µ(~z)− 2S̃µ(~z)Sµ(~z)S

2
λ(~z)

)
.

Noting this we can then calculate,

Y (n)(x;~z, zn−1, ω
−1zn−1)

=
[ω]n−1

t2
∏n

i=1(zi − ωt)4

(
Z(~z, zn−1, zn)

− 2S̃λ(~z, zn−1, zn)Sλ(~z, zn−1, zn)S
2
µ(~z, zn−1, zn)

+ 2S̃µ(~z, zn−1, zn)Sµ(~z, zn−1, zn)S
2
λ(~z, zn−1, zn)

)∣∣∣∣ y1=x

y2=ω−1x

∣∣∣∣
zn=ω−1zn−1

=

(
[ω]n−1

x2
∏n

i=1(zi − ωx)4
z2n−1

( 2∏

j=1

(ωzn−1 − yj)
4

)

×
n−2∏

i=1

(ωzn−1 − zi)
4

)∣∣∣∣ y1=x

y2=ω−1x

∣∣∣∣
zn=ω−1zn−1

×
(
Z(~z)− 2S̃λ(~z)Sλ(~z)S

2
µ(~z) + 2S̃µ(~z)Sµ(~z)S

2
λ(~z)

)∣∣∣∣ y1=x
y2=ω−1x

=

(
[ω]2

n−2∏

i=1

(ωzn−1 − zi)
4

)(
[ω]n−3

x2
∏n−2

i=1 (zi − ωx)4

)

×
(
Z(~z)− 2S̃λ(~z)Sλ(~z)S

2
µ(~z) + 2S̃µ(~z)Sµ(~z)S

2
λ(~z)

)∣∣∣∣ y1=x

y2=ω−1x

=

(
[ω]2

n−2∏

i=1

(ωzn−1 − zi)
4

)
Y (n−2)(x;~z)

The calculations for the recursion zn = ωzn−1 and zn = ω±1zi, 1 ≤ i < n − 1 are
similar.

For the second braid recursion (taking the limit zn → ∞) we consider the nor-
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malised expression Y (n)(x; z1, . . . , zn)/Z
(n)(z1, . . . , zn) and we pull out the factor∏

z
n(n−1)
i in the numerator and denominator. To do this we make use of the fol-

lowing identities,

2k∏

i=1

z−k
i Sλ(z1, . . . , z2k) = Sλ(z

−1
1 , . . . , z−1

2k ),

2k∏

i=1

z1−k
i Sµ(z1, . . . , z2k) = Sµ(z

−1
1 , . . . , z−1

2k ),

2k+1∏

i=1

z−k
i Sλ(z1, . . . , z2k+1) = Sµ(z

−1
1 , . . . , z−1

2k+1),

2k+1∏

i=1

z−k
i Sµ(z1, . . . , z2k+1) = Sλ(z

−1
1 , . . . , z−1

2k+1),

which are easily verified using the definition with young tableaux. When pulling out
the factor for the derivative term one must note the extra terms from the product
rule which end up cancelling. Then the result follows from a calculation similar to
the braid recursion.

4.5 Nesting Number

In this section we discuss the probability of having a number of contractible loops
around a given point on the cylinder. An expression for the homogeneous case was
conjectured by Mitra and Nienhuis in [58]. Here we prove an exact expression for the
inhomogeneous model. We conclude with the homogeneous limit of the result proving
the conjecture of Mitra and Nienhuis.

We denote by Ω(n)(a) the operator that marks a point between columns n and 1

on a cylinder of size n giving each loop surrounding it a weight of a2+a−2. We depict
the operator as an asterisk on a vertex of the lattice and refer to it as the nesting
point. The nesting number is generated by

Ω(n)(a; z)

Z(n)(z)
:= (a+ a−1)n mod 2 ĝ

(n)(z) ◦ Ω(n)(a) ◦ g(n)(z)
ĝ(n)(z)g(n)(z)

=

∑
L,N ĝ

(n)

N̂
(z)g

(n)
L (z)〈N̂ ◦ Ω(n)(a) ◦ L〉

∑
L,N ĝ

(n)

N̂
(z) ◦ g(n)L (z)

where 〈N̂ ◦ Ω(n)(a) ◦ L〉 = (a2 + a−2)m(N,L) and m(N,L) is the number of loops
encircling the point in N̂ ◦Ω(n)(a) ◦ L. The pre-factor is a chosen normalisation. We
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will write Ω
(2k)
L,N := 〈N̂ ◦ Ω(n)(a) ◦ L〉 to make calculations more presentable.

Ω(n)(a; z1 . . . , zn) is a symmetric homogeneous polynomial of degree 2n− 2 in the
variables zi. To see that it is symmetric requires the inversion relation to create
two R-operators at site i and i + 1. Noting that they commute with the operator
Ω(n)(a) use the action of the R-operators on the ground state and its dual to swap
the two variables of the ground states. These elementary permutations can be done
for 1 ≤ i ≤ n−1, which generate the symmetric group. The degree can be determined
by the expression of the fully nested components g

(n)
L∩

and ĝ
(n)
L∩

.

Proposition 4.5.1. Ω(n)(a; z1, . . . , zn) satisfies the braid recursion:

Ω(n)(a; z1 . . . , zn−1, 0)

Ω(n−1)(a; z1 . . . , zn−1)
= (−1)n−1(a+ a−1)

n∏

i=1

z2i .

Proof. We need to prove the even (n = 2k) and odd (n = 2k + 1) cases individually.
Consider the following conjectures,

∑

L,L′∈L2k

(φ2k−1(N)|L)Ω(2k)
L,L′(φ2k−1(N

′)|ρ−1L′) = ω
1
2 (a+ a−1)2Ω

(2k−1)
N,N ′ (4.5.1)

For all N,N ′ ∈ L2k−1, and

∑

L,L′∈L2k+1

(φ2k(N)|L)Ω(2k+1)
L,L′ (φ2k+1(N

′)|ρ−1L′) = Ω
(2k)
N,N ′

for all N,N ′ ∈ L2k.

Let ~z = (z1, . . . zn−1) and ~z = (zn−1, . . . , z1). If the conjecture above holds then
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for n = 2k we have

Ω(2k)(a;~z, 0) =
∑

L,L′∈L2k

g
(2k)
L (~z, 0)Ω

(2k)
L,L′g

(2k)
L′ (0, ~z)

=
∑

L,L′∈L2k

g
(2k)
L (~z, 0)Ω

(2k)
L,L′g

(2k)
ρ−1L′( ~z, 0)

= ω

[
2k−1∏

i=1

z2i

] ∑

L,L′∈L2k

∑

N,N ′∈L2k−1

(
(φ2k−1(N)|L)g(2k−1)

N (~z)Ω
(2k)
L,L′

× (φ2k−1(N)|ρ−1L′)g
(2k−1)
N ′ ( ~z)

)

= ω

[
2k−1∏

i=1

z2i

] ∑

N,N ′∈L2k−1

(
g
(2k−1)
N (~z)

[ ∑

L,L′∈L2k

(φ2k−1(N)|L)

× Ω
(2k)
L,L′(φ2k−1(N)|ρ−1L′)

]
g
(2k−1)
N ′ ( ~z)

)

= ω

[
2k−1∏

i=1

z2i

] ∑

N,N ′∈L2k−1

g
(2n−1)
N (~z)

[
ω

1
2 (a+ a−1)2Ω

(2k−1)
N,N ′

]
g
(2k−1)
N ′ ( ~z)

= −
[
2k−1∏

i=1

z2i

]
(a+ a−1)2

∑

N,N ′∈L2k−1

g
(2k−1)
N (~z)Ω

(2k−1)
N,N ′ g

(2k−1)
N ′ ( ~z)

= −(a+ a−1)

[
2k−1∏

i=1

z2i

]
Ω(2k−1)(a;~z)

where we used the braid recursion (4.3.2) and (4.3.3) on the ground states to go from
line 2 to 3 and the conjecture (4.5.1) from line 4 to 5.
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Similarly, for n = 2k + 1 we have:

Ω(2k+1)(a;~z, 0) = (a+ a−1)
∑

L,L′∈L2k+1

g
(2k+1)
L (~z, 0)Ω

(2k+1)
L,L′ g

(2k+1)
L′ (0, ~z)

= (a+ a−1)
∑

L,L′∈L2k+1

g
(2k+1)
L (~z, 0)Ω

(2k+1)
L,L′ g

(2k+1)
ρ−1L′ ( ~z, 0)

= (a+ a−1)

[
2k∏

i=1

z2i

] ∑

L,L′∈L2k+1

∑

N,N ′∈L2k

(
(φ2k(N)|L)g(2k)N (~z)

× Ω
(2k+1)
L,L′ (φ2k(N)|ρ−1L′)g

(2k)
N ′ ( ~z)

)

= (a+ a−1)

[
2k∏

i=1

z2i

] ∑

N,N ′∈L2k

(
g
(2k)
N (~z)

[ ∑

L,L′∈L2k+1

(φ2k(N)|L)

× Ω
(2k+1)
L,L′ (φ2k(N)|ρ−1L′)

]
g
(2k)
N ′ ( ~z)

)

= (a+ a−1)

[
2k∏

i=1

z2i

] ∑

N,N ′∈L2k

g
(2k)
N (~z)

[
Ω

(2k)
N,N ′

]
g
(2k)
N ′ ( ~z)

= (a+ a−1)

[
2k∏

i=1

z2i

]
Ω(2k)(a;~z)

where the steps are similar to the even case.

All that remains is to prove the conjectures. We only prove the first conjecture as
it is more complicated and the second conjecture follows the same reasoning.

Consider the configuration on the infinite cylinder made by joining two link-
patterns N,N ′ ∈ L2k−1 as depicted in Figure 4.8. Each link-pattern has a defect
line running to infinity and we assume the defect line of N and N ′ are connected to
points i and j, respectively. Without loss of generality we assume the defect lines
are connected in front of the cylinder. The product of the link-patterns creates a
configuration on the cylinder with a defect line running along the cylinder to the ends
at infinity. We depict the point of the one point function with an asterisk and note
that the defect line does not surround the point. Thus, if we remove the defect line
Ω

(2k−1)
NN ′ is unchanged.

Using the map φ2k−1 on the configurations N̂ ′◦N without using the skein relations
gives four possible configurations which are depicted in Figure 4.9. Ignoring the
depicted loop in these contributions we have the same configuration as removing the
defect line in Figure 4.8 and the number of loops around the point is Ω

(2k−1)
N,N ′ . When

removing the loop we note that three of the contributions (A,B and C) do not have
the loop surrounding the nesting point but the fourth does, so it contributes a factor
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1

2n−1

i

j

2n−1

1

*

Figure 4.8: The configuration N̂ ′ ◦N on a cylinder.

(a2 + a−2). Adding these contributions with their respective coefficients gives us,

(ω
1
2 + 1 + ω + ω

1
2 (a2 + a−2))Ω

(2k−1)
N,N ′ = ω

1
2 (a+ a−1)2Ω

(2k−1)
N,N ′ .

Considering the contributions again with the skein relations results in a sum over
link-patterns in L2k. The link-patterns N and N ′ get mapped to link-patterns L
and L′, respectively, with their appropriate coefficients. Note that the bottom link-
pattern, L′, is shifted as the point labeled 1 in L′ is connected to the point in L

labelled 2k− 1 and not 2k. Due to this the number of loops around the nesting point
is Ω

(2k)
L,ρL′ . Thus, the sum is

∑

L,L′∈L2k

(φ2k−1(N)|L)Ω(2k)
L,ρL′(φ2k−1(N

′)|L′)

=
∑

L,L′∈L2k

(φ2k−1(N)|L)Ω(2k)
L,L′(φ2k−1(N

′)|ρ−1L′).

Proposition 4.5.2. Ω(n)(a; z1 . . . , zn) satisfies the fusion recursion:

Ω(n)(a; z1 . . . , zn−1, ω
±1zn−1)

Ω(n−2)(a; z1 . . . , zn−2)
= [ω]2z2n−1

n−2∏

i=1

(zi − ω∓1zn−1)
4
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Proof. We can write,

Ω(n)(a;~z) = (a+ a−1)n mod 2 ĝ(n)(~z) ◦ Ω(n)(a) ◦ g(n)(~z).

Then with the fusion recursions (4.3.5) and (4.3.6) on the ground states we have,

Ω(n)(a;~z, zn−1, ω
±1zn−1)

= (a+ a−1)n mod 2 ĝ(n)(~z, zn−1, ω
±1zn−1) ◦ Ω(n)(a) ◦ g(n)(~z, zn−1, ω

±1zn−1)

= zn−1[ω]

n−2∏

j=1

(zj − ω∓1zn−1)
2(a+ a−1)n mod 2

× ĝ(n)(~z, zn−1, ω
±1zn−1) ◦ Ω(n)(a) ◦ E(n−2)

n−2 ◦ g(n−2)(~z)

= zn−1[ω]

n−2∏

j=1

(zj − ω∓1zn−1)
2(a+ a−1)n mod 2

× ĝ(n)(~z, zn−1, ω
±1zn−1) ◦ E(n−2)

n−2 ◦ Ω(n−2)(a) ◦ g(n−2)(~z)

= z2n−1[ω]
2
n−2∏

j=1

(zj − ω∓1zn−1)
4(a+ a−1)n mod 2ĝ(n−2)(~z) ◦ Ω(n−2)(a) ◦ g(n−2)(~z)

= z2n−1[ω]
2
n−2∏

j=1

(zj − ω∓1zn−1)
4Ω(n−2)(a;~z)

where ~z = (z1, . . . , zn−2).

4.5.1 An exact expression for the correlation function

We have shown that the nesting number satisfies the braid recursion and fusion re-
cursion. Viewing Ω(n)(a; z) as a polynomial in zn there are 2n − 2 fusion recursion
points due to the symmetry of the variables.

Proposition 4.5.3. Ω(n)(a; z) is a homogeneous polynomial of degree 2n− 2.

Proof. Z(n)(z) has degree 2n − 2 [23, 48]. It is a sum over link-pattern weights
gN̂ (z)gL(z) which have degree 2n − 2. The only difference between Z(n)(z) and
Ω(n)(a; z) is the extra factors which are powers of (a2 + a−2). Therefore, Ω(n)(a; z)
has degree 2n− 2.

The correlation function of system size n viewed as a polynomial in zn has polyno-
mial degree of 2n− 2. Having at least 2n− 1 recursions determines these polynomials
by polynomial interpolation. Above we have shown that the correlation has 2n − 1
recursions: 2n − 2 for the fusion recursion and 1 for the braid recursion. The next
theorem states an exact expression for the correlation function.

148



4.5. Nesting Number

Theorem 4.5.4.

Ω(n)(a;~z) =

( ∏

1≤i<j≤n

(ωzi − ω−1zj)(ωzj − ω−1zi)

)

×
∏n

i,j=1(ωzi − ω−1zj)∏
1≤i<j≤n(zi − zj)(zj − zi)

det(M (n)(a;~z))

where M (n)(a;~z) denotes the n× n matrix with entries

M
(n)
i,j (a;~z) =

a−1

[ωz
1/2
i z

−1/2
j ]

+
a

[ωz
1/2
j z

−1/2
i ]

where [z] = z − z−1.

Proof. From the expression we can see that it is symmetric in the variables zi and
a deeper investigation shows that it is homogeneous with degree 2n − 2. Therefore,
we just need to prove that it satisfies the braid and fusion recursion for the required
points. We begin with the braid recursion. Let ~z = (z1, . . . , zn−1). First we consider
the ratio of the expressions for size n and n+ 1 to cancel out common factors in the
product terms. We have

Ω(n)(a;~z, zn)

Ω(n−1)(a;~z)
= [ω]

( n−1∏

i=1

(ωzi − ω−1zn)
2(ωzn − ω−1zi)

2

(zi − zn)(zn − zi)

)
det
(
M (n)(a;~z, zn)

)

det
(
M (n−1)(a;~z)

) .

Next we observe specialise zn = 0 and observe what happens to the product factor.

Ω(n)(a;~z, 0)

Ω(n−1)(a;~z)
= (−1)n−1[ω]

( n−1∏

i=1

z2i

)
det(M (n)(a;~z, 0))

det
(
M (n−1)(a;~z)

) .

We can see that some of the necessary recursion factors have already appeared. Next,
we focus on the matrix determinants. The entries in the last row and column are of
the following form:

M (n)
n,n(a;~z, zn) =

a−1

[ω]
+

a

[ω]
,

M
(n)
i,n (a;~z, zn) = z

1/2
i z1/2n

(ωzn − ω−1zi)a
−1 + (ωzi − ω−1zn)a

(ωzi − ω−1zn)(ωzn − ω−1zi)
,

M
(n)
n,i (a;~z, zn) = z

1/2
i z1/2n

(ωzi − ω−1zn)a
−1 + (ωzn − ω−1zi)a

(ωzn − ω−1zi)(ωzi − ω−1zn)
.

It is immediate from these expressions that under the specialisation zn = 0 the only
nonzero term in the last column and row is M (n)

n,n. Hence, the matrix has the following
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structure,

M (n)(a;~z, 0) =




0

M (n−1)(a; z1, . . . , zn−1)
...
0

0 · · · 0 a−1

[ω] + a
[ω]



.

Therefore,

det
(
M (n)(a;~z, 0)

)
= [ω]−1(a+ a−1) det(M (n−1)(a; z1, . . . , zn−1)),

and hence we have the recursion

Ω(n)(a;~z, 0)

Ω(n−1)(a;~z)
= (−1)n−1(a+ a−1)

n−1∏

i=1

z2i .

This proves the expression satisfies the braid recursion.

We now show that the expression for Ω(n)(a; z) satisfies the fusion recursion. The
calculation follows a similar approach to the braid recursion. We consider the ratio
Ω(n+1)(a; z)/Ω(n)(a; z) to eliminate common factors. Then we compute the recursion
on the product factor followed by examining the recursion on the matrix determinant.
For the fusion recursion we demonstrate the case zn−1 = ωzn the second case is similar.

First consider the ratio where many terms have cancelled out.

Ω(n)(a; z1, . . . , zn−1, zn)

Ω(n−2)(a; z1, . . . , zn−2)
= [ω]2

(ωzn−1 − ω−1zn)
2(ωzn − ω−1zn−1)

2

(zn−1 − zn)(zn − zn−1)

×
n−2∏

i=1

(ωzi − ω−1zn−1)
2(ωzn−1 − ω−1zi)

2(ωzi − ω−1zn)
2(ωzn − ω−1zi)

2

(zi − zn−1)(zn−1 − zi)(zi − zn)(zn − zi)

× det
(
M (n)(a; z1, . . . , zn)

)

det
(
M (n−2)(a; z1, . . . , zn−2)

)
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Then specialising zn−1 = ωzn we have

Ω(n)(a; z1, . . . , ωzn, zn)

Ω(n−2)(a; z1, . . . , zn−2)
= −[ω]2(ω2 − ω−1)2z2n

×
n−2∏

i=1

(ωzi − zn)
2(ω2zn − ω−1zi)

2(ωzi − ω−1zn)
2(ωzn − ω−1zi)

2

(zi − ωzn)(ωzn − zi)(zi − zn)(zn − zi)

× det
(
M (n)(a; z1, . . . , ωzn, zn)

)

det
(
M (n−2)(a; z1, . . . , zn−2)

)

= −[ω]2(ω2 − ω−1)2z2n

n−2∏

i=1

(zi − ω−1zn)
4 det

(
M (n)(a; z1, . . . , ωzn, zn)

)

det
(
M (n−2)(a; z1, . . . , zn−2)

) .

We find that the required recursion factors have appeared. Moreover, note that
(ω2 − ω−1)2 = 0 since ω = exp(2πi/3). This is not an issue as it will cancel out with
zeros within the matrix determinant.

Now we focus on the matrix determinants. We take the factor (ω2 − ω−1)2 into
the determinant det(M (n)(a; z1, . . . , ωzn, zn)) by multiplying each entry in the last
two rows by (ω2 − ω−1). The matrix entries then become the following,

M
(n)
n−1,n−1(a; z1, . . . , ωzn, zn) = (ω2 − ω−1)

(a+ a−1)

[ω]
,

M (n)
n,n(a; z1, . . . , ωzn, zn) = (ω2 − ω−1)

(a+ a−1)

[ω]
,

M
(n)
n−1,n(a; z1, . . . , ωzn, zn) =

(ω2 − ω−1)a−1

(ω3 − ω−3)
+

(ω2 − ω−1)a

(ω2 − ω−2)
,

M
(n)
n,n−1(a; z1, . . . , ωzn, zn) =

(ω2 − ω−1)a−1

(ω2 − ω−2)
+

(ω2 − ω−1)a

(ω3 − ω−3)
.

Now recall that ω = exp(2πi/3), so we have (ω − ω−2) = (ω3 − ω−3) = 0 and
(ω2 − ω−2) 6= 0. Hence, the matrix M (n)(a; z1, . . . , ωzn, zn) is of the form




...
...

M (n−2)(a; z1, . . . , zn−2)
...

...
...

...
0 · · · 0 0 a−1

0 · · · 0 a 0




where the vertical dots are nonzero entries and the last two rows are all zero except
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for the two entries indicated. Putting this together gives,

Ω(n)(a; z1, . . . , ωzn, zn)

Ω(n−2)(a; z1, . . . , zn−2)

= −[ω]2z2n

( n−2∏

i=1

(zi − ω−1zn)
4

)
(ω − ω−2)2 det

(
M (n)(a; z1, . . . , ωzn, zn)

)

det
(
M (n−2)(a; z1, . . . , zn−2)

)

= −[ω]2z2n

( n−2∏

i=1

(zi − ω−1zn)
4

)
det
(
M (n−2)(a; z1, . . . , zn−2)

)

det
(
M (n−2)(a; z1, . . . , zn−2)

) ×
∣∣∣∣
0 a−1

a 0

∣∣∣∣

= [ω]2z2n

n−2∏

i=1

(zi − ω−1zn)
4

This completes the proof that the expression for Ω(n)(a; z) satisfies the fusion recur-
sion. By the symmetry of the variables we have 2n−2 fusion recursions and including
the braid recursion we have the sufficient number of recursions.

The expression

∏n
i,j=1[ωz

1/2
i z

−1/2
j ]

∏
1≤i<j≤n[z

1/2
i z

−1/2
j ][z

1/2
j z

−1/2
i ]

det(M (n)(a;~z))

was given in [41, Prop. 4.1] for the for the value of 〈ψAD|aM |ψAD〉, where M is
the magnetisation operator and ψAD is the zero-energy state of the integrable spin-
one XXZ model [85] (also known as Zamolodchikov-Fadeev 19-vertex model) with an
anti-diagonal twist. They also determine the expression in the homogeneous limit
[41, Prop. 4.2] giving us the following corollary proving the conjecture by Mitra and
Nienhuis.

Corollary 4.5.5. In the homogeneous limit,

Ω(n)(a; 1, 1, . . . , 1) = 3n(n−1)
n−1

det
i,j=0

(
a−1δi,j + a

(
i+ j

j

))
.
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Figure 4.9: The contributions from φ†2k(N̂
′) ◦ φ2k(N) on a cylinder.
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5
Closing Remarks

“Your concept of reality is too real.” B.N.
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Closing Remarks

In Chapter 2 we studied the skein category of the annulus and constructed the
link-pattern tower. In Chapter 3 we presented the novel concept of a qKZ tower
of solutions and prove the existence of the qKZ tower on link-patterns. Moreover,
this specific qKZ tower gives the explicit braid recursion of the ground state of the
dense O(1) loop model and its generalisation to general T Ln parameter. We make
use of the braid recursions in Chapter 4 where we prove closed form expressions for
observables of the dense O(1) loop model on the infinite cylinder. Specifically, we give
exact expressions for the current and nesting number. We conclude this PhD thesis
by discussing possible avenues for further research.

The most natural course is to generalise the theory of a qKZ tower to other root
systems. The resulting recursions would have applications to integrable models with
boundaries. Another possibility would be to try and find examples of qKZ towers
with representations on the level of the extended affine Hecke algebra. What would be
interesting is whether we would have an intuitive understanding of the representation
tower. Can we always interpret it as an insertion of an arc?

For the dense loop model with boundaries the underlying algebras are the one- and
two boundary Temperley-Lieb algebras. The corresponding representation spaces for
these algebras are spanned by link-patterns with boundaries. We certainly expect the
representation tower to be described by an arc insertion however it is not immediately
obvious what skein theoretic description we can develop for the representation space.
A starting point is to look at the work by Roger and Yang [76] mentioned in Chapter
2. How do we apply their work in order to describe the boundary of the model skein
theoretically?

In studying the dense loop model we have been able to prove the closed form
expressions for the current and nesting number by using the recursion relations. With
these recursions established we could look for other observables that we can prove.
Furthermore, we could ask what are the necessary conditions for a correlation function
to satisfy the braid recursion.

As mentioned in the introduction similar research is being conducted on the dilute
loop model. Naturally, we are trying to reproduce all the arguments presented here
in the context of the dilute loop model and prove the current and nesting number.
The governing algebra of the model is defined diagrammatically and is expected to
be connected to the BMW algebra. What we find interesting is if we can produce an
analogous qKZ tower theory associated to this algebra.
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Summary

Loop models are a class of two-dimensional lattice models in statistical mechanics.
The states of the model consist of continuous paths that do not end except at the
boundary, and closed loops are given a weight. We investigate the dense loop model,
with loop weight equal to 1, on an n × ∞ square lattice with periodic boundaries
so that the lattice lies on the surface of an infinite cylinder with a circumference n.
In particular, we prove closed form expressions for two observables; the current and
nesting number. The current is the mean value that a specific type of path crosses
a particular edge and the nesting number gives the probability that a point on the
lattice is surrounded by a number of loops.

Proving the expressions for the observables amounts to proving recursion relations
that connect the loop model of different sizes. One particular connection is the braid
recursion which connects the model of lattice width n and n+1. The braid recursion is
the main subject of this thesis. One of the joys of conducting research in mathematical
physics is the discovery of new connections between different branches of mathematics
and physics. Studying the braid recursion has lead to a new connection between loop
models, skein theory and quantum Knizhnik-Zamolodchikov (qKZ) equations.

By definition the paths in the configurations of the dense loop model do not
intersect. The first step to understanding the braid recursion is to introduce crossings
into the model. This is done using skein theory and representation theory of the
underlying algebra of the model. The result is the link-pattern tower, which describes
how to connect configurations associated to the model of size n and n+ 1.

The second step is to understand how the ground state of the model satisfies braid
recursion. To do this we use the qKZ equations, which are a system of difference
equations that appear in the study of quantum affine algebras and have a connection to
solvable lattice models. Due to the integrability of the model, the ground state of the
transfer operator is a solution to the qKZ equations. We associate the qKZ equations
to the link-pattern tower. Associating the equations to a tower of representations
is a novel idea. It leads to the notion of a qKZ tower, which are solutions for qKZ
equations at each level of the tower, interrelated by braid recursion. Constructing
qKZ towers is though non-trivial (and existence is not guaranteed).

We prove the ground state of the model forms a qKZ tower and determine the
explicit braid recursion. We also prove the existence of a qKZ tower on link-patterns
which relates to the dense loop model with general loop weight. The proof requires
us to makes use of Cherednik-Macdonald theory in constructing the qKZ tower.

The last step is to use the braid recursion on the ground state to prove the braid
recursions on the observables. We also show the observables satisfy a second recursion
called the fusion recursion. With these recursions we have sufficiently many recursions
to determine the observable. Then we determine a closed form expression for the
observables by showing that the closed form expressions satisfy the same defining set
of recursion relations. The current is expressed in terms of Schur functions and the
nesting number as a determinant of a matrix.
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Samenvatting

Lusmodellen zijn een type twee-dimensionale roostermodellen in statistische me-
chanica. De toestanden van het model bestaan uit continue paden die alleen aan de
rand eindigen, en aan gesloten lussen wordt een gewicht toegekend. Wij onderzoeken
het dichte lusmodel, met lusgewicht gelijk aan 1, op een n×∞ vierkantsrooster met
periodieke randen, zodat het rooster op het oppervlak van een oneindige cilinder met
omtrek n ligt. In het bijzonder bewijzen we gesloten uitdrukkingen voor twee observ-
abelen; de stroom en het nestingsgetal. In elke toestand voeren de paden die rond de
cylinder gaan één eenheid stroom in een vooraf gegeven richting. De stroom wordt
gemiddeld over alle toestanden. Het nestingsgetal is de waarschijnlijkheid dat een
punt op het rooster omringd is door een gegeven aantal lussen.

Het bewijzen van de uitdrukkingen voor de observabelen komt neer op het be-
wijzen van recurrente betrekkingen die lusmodellen van verschillende groottes met
elkaar in verband brengen. Een verband in het bijzonder is de vlechtrecursie, die de
modellen van lengte n en n+1 met elkaar in verbant brengt. De vlechtrecursie is het
hoofdonderwerp van dit proefschrift. Een van de geneugten van onderzoek in de math-
ematische fysica is het vinden van nieuwe verbanden tussen verschillende takken van
wiskunde en natuurkunde. Het bestuderen van de vlechtrecursie heeft geleid tot een
nieuw verband tussen lusmodellen, skein theorie en quantum Knizhnik-Zamolodchikov
(qKZ) vergelijkingen.

Per definitie doorsnijden de paden in de configuraties van het dichte lusmodel
elkaar niet. De eerste stap in het begrijpen van de vlechtrecursie is om doorsnijdin-
gen in het model te introduceren. Dit wordt gedaan middels skein theorie en de
representatietheorie van de onderliggende algebra van het model. Het resultaat is
de verbindingspatroontoren, die beschrijft hoe configuraties horend bij modellen van
grootte n en n+ 1 aan elkaar gerelateerd zijn.

De tweede stap is om te begrijpen hoe de grondtoestand van het model voldoet aan
vlechtrecursies. Om dit te doen gebruiken we de qKZ vergelijkingen. Deze zijn een
systeem van differentievergelijkingen die verschijnen in de theorie van quantum affiene
algebra’s, en zijn gerelateerd aan oplosbare roostermodellen. Vanwege de integreer-
baarheid van het model is de grondtoestand van de transferoperator een oplossing van
de qKZ vergelijkingen. Wij associëren de qKZ vergelijkingen met de verbindingspa-
troontoren. Het associeren van de vergelijkingen met een toren van representaties
is een nieuw idee. Het leidt tot de notie van een qKZ toren, wat oplossingen zijn
van de qKZ vergelijkingen op elk niveau van de toren, onderling verbonden door de
vlechtrecursie. Het construeren van qKZ torens is echter niet triviaal (en existentie is
niet gegarandeerd).

Wij bewijzen dat de grondtoestand van het model een qKZ toren vormt, en bepalen
de expliciete vlechtrecursie. We bewijzen ook het bestaan van een qKZ toren op
schakel-patronen die in verband staat met het dichte lusmodel met algemene lus-
gewicht. Het bewijs vereist het gebruik van Cherednik-Macdonald theorie om de qKZ
toren te construeren.

De laatste stap is het gebruiken van de vlechtrecursie op de grondtoestand om de

168



vlechtrecursies op de observabelen te bewijzen. We tonen ook aan dat de observabelen
voldoen aan een tweede recursie, de zogeheten fusierecursie. Met deze twee recursies
hebben we genoeg recursies om de observabele te bepalen. Vervolgens bepalen we
een gesloten uitdrukking voor de observabelen door aan te tonen dat de gesloten
uitdrukking voldoet aan dezelfde definiërende recurrente betrekkingen. De stroom is
uitgedruikt in termen van Schurfuncties en het nestingsgetal als de determinant van
een matrix.
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