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1.1  Microbiology: single cells, the basic units of life  

The basic unit of life is the (single) cell, be it of prokaryotic or eukaryotic nature, although 

meaningful higher forms of organization, up to level of Gaia, can be defined. All basic 

attributes of life, i.e. growth, reproduction, adaptation to changes in the environment, and 

evolution, are observable – and can be engineered – already at this basic level. [1] Such 

engineering is key in a society that aims at supporting a growing world population in a 

sustainable way, to allow exploitation of the exquisite specificity and efficiency of 

biocatalysis in so-called cell-factories. [2, 3] 

The majority of this engineering is aimed at inventing and selecting new-, and optimizing 

existing, metabolic pathways. [4, 5] Nevertheless, ultimately, such metabolic engineering 

will have to be complemented with adjustment of the signal-transduction network 

(components) of the engineered cell (factory). To be able to do this rationally, a thorough 

understanding of the signal transduction processes is required. This study was initiated to 

contribute to this latter aspect. 

 

1.2  Signal transduction systems, and networks, in pro- and eukaryotic organisms 

Fluctuating and/or oscillating environmental conditions (i.e. physical parameters and 

concentrations of key molecules) make it necessary for cells to adjust; mostly through 

adjustment of the level of gene expression, and occasionally via the adjustment of enzyme 

activity. From this it follows that information about these changing conditions has to be 

transferred across the cell envelope, and in eukaryotic cells, often across an organelle 

membrane barrier. To facilitate this signal transfer, both prokaryotic and eukaryotic cells are 

equipped with a plethora of dedicated signal transduction systems. In prokaryotes the most 

abundant systems are: the one- and two-component systems, the cyclic-di-GMP responsive 

systems, quorum sensing systems (responding e.g. to homo-serine lactones or short peptides) 

and various types of (protein) kinases (for reviews see [6, 7]). Eukaryotic cells make use of 

the same basic types of signal transduction system see e.g. [8, 9], be it often with less 

redundancy), but have expanded their repertoire considerably. In lower eukaryotes, like 

Saccharomyces cerevisiae, these are first of all the RAS/cAMP pathways and the MAP 

kinase pathways. In higher eukaryotes one finds an even more expanded repertoire, with e.g. 

tyrosine kinases, Toll-like receptors, steroid receptors, proteins of the apoptotic Bcl2/Bax 

family, p53, and transcriptional activators of the NFκB, Fos, and Myc families.[10] 
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In prokaryotes many signal transduction components function in rather linear-, and 

isolated, signal transduction pathways that relate a single signal straightforwardly to a 

particular response. It seems that the most typical signal transduction system in these 

organisms, the so-called two-component systems (for more detail on these systems, see 

paragraph 1.4 below), have explicitly evolved, and been wired, to display particularly this 

very aspect. [11] With an explicitly high redundancy, however, of signal transfer systems of 

one particular kind (like two-component systems, homo-serine-lactone based quorum 

sensing systems and cyclic-di-GMP based systems), these linear pathways may start to 

laterally interact, to form a signal transduction network. Network properties are identifiable 

particularly in the MAP kinase pathways in lower eukaryotes in yeast and e.g. in the 

photosensory receptor networks in algae and plants. These network properties form a 

formidable challenge for (i) detailed understanding of these networks, even with the help of 

advanced forms of mathematical/computational analyses, and (ii) their heteterologous and/or 

orthogonal expression. Interestingly, such networks may bestow neural-like characteristics 

on their owners. [7]  

 

1.3 How spatial heterogeneity and cytoplasmic diffusion may influence the regulatory 

function of signal transduction networks 

The inside of the every cell is now generally considered as a crowded environment. [12] 

Here, the term ‘crowded’ is used in the meaning to describe the fact that not only the 

concentration of single compound could be high, but that there are many additional molecules 

that jointly occupy a significant fraction of the total volume of the cells (up to about 20-30 

%). Crowding has an effect on the rates of biochemical reactions and the positioning of their 

thermodynamic equilibrium. The effect on the reaction rates can be two-fold: First of all, 

crowding reduces the molecular diffusion rates; the more, the bigger the molecules are. 

Hence bimolecular reaction rates will slow down. Nevertheless, the crowding increases 

thermodynamic activity, which tends to increase reaction rates. The net effect of these two 

opposing trends will depend on the nature and specifics of each reaction. The equilibrium of 

a reaction is affected by favouring macromolecular association. [13] Initially the concept of 

crowding was received with considerable scepticism in the biochemical community. 

Meanwhile, however, a lot has changed. Newly developed methods gave more insight into 

the crowded intracellular milieu, but quantitatively the molecular crowding still stays poorly 

understood. A simple way to characterize the degree of molecular crowding is to analyse the 
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viscosity of a solution, which may be estimated from the diffusion coefficient of a simple 

probe such as a nanoparticle, organic dye or fluorescent protein. [14–16] Studies in model 

systems for macromolecular diffusion in the intracellular environment, have revealed that 

protein diffusion deviates from simple diffusion in dilute systems. Artificial systems that 

mimic the crowded environment of a cell e.g. are concentrated solutions of globular proteins 

or random-coil structured polymers. For example, the diffusion of a protein in dextran 

solution can be described as ‘subdiffiusive’, where the diffusive exponent α is smaller than 

1. The magnitude of this anomalous exponent decreases continuously with increasing 

concentrations and molecular weight of the ‘obstacles’ (i.e. the dextran). [17] Besides 

mathematical prediction of crowding and of the diffusion constant of molecules in a crowded 

environment, it is also possible to measure how crowded it is in a specific cell. Liu et. al. 

have reported on a probe that allows sensing of the macromolecular crowding. They designed 

this probe based on the mCitrine (yellow fluorescent protein, YFP) and the mCeurelean3 

(cyan fluorescent protein, CFP). The two fluorescent proteins are connected via a flexible 

linker and form a FRET (Forster Resonance Energy Transfer) pair. Crowding induces the 

compression of the two fluorescent proteins, which then can be quantified by measuring their 

FRET efficiency.[18, 19] Another tool to quantitatively analyze the effect of macromolecular 

crowding was introduced by Gnutt et al. They synthesized a synthetic probe, based on 

polyethylene glycol (PEG), a highly soluble, inert, and biocompatible random-coil polymer. 

The PEG was functionalized by adding the end-groups Atto488 and Atto565, to allow 

measurement of the mean end-to-end distance of the functionalized PEG by FRET [20], and 

from that the degree of crowding can be calculated.  

As alluded to above, the interior of living cells is now generally considered to be a highly 

crowded environment, and scientists are actively investigating the effect of this crowding on 

the functioning of the cellular machinery. Accordingly, it was shown that the crowded 

intracellular milieu causes ‘anomalous diffusion’ of proteins, [21] which affects the 

functioning of biochemical networks. Diffusion of transcription factors can e.g. increase the 

noise in gene expression. [21] Its effect, via its effect on diffusion, can also be noticed in the 

characteristics of protein-protein interactions, in which restricted diffusion of proteins can 

reduce concentration fluctuations.[21–23]  

Crowding and diffusion will also have an effect on cellular signalling, particular in those 

aspects where protein/protein interactions are crucial. An example of this are the 

phosphorylation-based signal transduction pathways, also referred to as two component 
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signal transduction pathways, which are commonly utilized by both pro- and eukaryotic 

micro-organisms. The core of the two component signal transduction pathway is the directed 

phosphoryl-transfer from a histidine kinase to the cognate response regulator. These systems 

are described in detail further below. [24] To prevent (unwanted) cross-talk between separate 

phosphoryl-transfer pathways, a few potential strategies can be foreseen. Taking as an 

example the MAP kinase signalling pathways, which are evolutionary conserved signalling 

modules common in many intracellular signalling pathways in eukaryotic organisms, 

including fungi and yeast. [25] Potential strategies to prevent cross talk in the crowded 

environment of a yeast cell are: (i) direct interactions between two components in the 

pathway [26] and (ii) binding components from a single pathway together thorough a scaffold 

protein. [27] (iii) And also cross-pathway inhibition is possible; this takes place when activity 

of one pathway is inhibited by output from another pathway. These three mechanisms are 

very often complemented by ‘kinetic isolation’, which takes place when one pathway is 

activated by pulsed input, while another pathway is activated by a slowly, but steadily 

increasing input signal. [28, 29] These mechanisms ensure that only the relevant response is 

induced by a very specific power spectrum of stimuli. 

 

1.4 Optogenetics: Triggering signal transduction processes/networks with 

light/photons 

Because of the complex nature of cellular signal transduction networks, and the so far 

unresolved role of (anomalous) diffusion therein, it is crucial to have the ability to locally 

and dynamically activate such a network, and analyse the effects of this type of activation in 

comparison with global activation of the same network. Such local activation can be achieved 

with microfluidics, [30, 31], especially in the time domain, but with much more precision 

and variation with light. With lasers, LEDs, light guides and lenses, light can be delivered to 

live cells with utmost precision with respect to wavelength and intensity, and its temporal- 

and spatial dimension. With respect to the latter aspect even the diffraction limit can be 

broken by making use of multiple excitations and/or multi-photon effects (compare e.g. 

STORM microscopy). [32] These possibilities of control, together with developments in 

genomics and molecular genetics, have led to the emergence of a new field of research in the  

life sciences: Optogenetics, an approach in which light is used to control a biological process 

in a live organism, via an orthogonal, genetically encoded, light-switchable protein. [33] 

Hence, optogenetics increases the range and degree of control of biological processes, 
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relative to chemical approaches. [34] Moreover, inexpensive microcontrollers and light 

emitting diodes (LEDs) are sufficient to create quantitatively precise and dynamically 

reproducible optical input signals, in ensembles of cells cultured in batch, as well as in single 

cells. [35] 

Over the past decade, light-switchable proteins from phototrophic- and chemotrophic 

bacteria, eukaryotic micro-organisms and plants, have been engineered for synthetic control 

of processes in many organisms. These proteins can be switched from their (equilibrium) 

dark state to a metastable light state by a specific illumination regime with light ranging from 

the ultraviolet to the near-infrared, dependent on the specific photoactive protein selected 

(see figure 2). Subsequently, they revert spontaneously back to the ground state thermally in 

the dark [36], with a rate characteristic for each specific protein. In table 1 we present a few 

of the examples of the use of light-switchable proteins in E. coli, cyanobacteria, yeast, 

mammalian cells, and brain and liver of mice.  

The first use of a broad beam of blue light to evoke action potentials in Aplysia ganglion 

cells was reported by Fork in 1971. [37] But in this study the biological target of the blue 

photons was unknown. Since that time many groups have tried to optimize illumination-

based methods to control neural activity, with the aim to develop a method that is minimally 

invasive and temporarily precise. [38, 39] Genetically encoded optical control of neuronal 

activity was finally achieved in 2005 by Boyden et all [40], via selective expression of 

channelrodopsin 2 in selected parts of the brain and using light to induce and control the 

generated ion fluxes and action potentials in the mouse brain. So far, a subclass of the 

rhodopsins, i.e. the channelrhodopsins, that function as photoactivated ion channels in green 

algae like Chlamydomonas, have most widely been used to regulate neuronal activity in 

different animal model systems. The toolkit of optogenetics, however, is rapidly expanding: 

By now, also other (bacterial) rhodopsins and photoreceptors from the LOV- and BLUF 

families have proven to be versatile opotgenetic tools. The advantages of members of the 

latter two families are that their members are quite small (i.e. about 10 to 14 kDa), and utilize 

a flavin, which is endogenously synthesized, as their chromophore (which spontaneously 

incorporates itself into the apoprotein).  

Another approach of using light sensitive proteins as an optogenetic tool is to use 

engineered fusion proteins, like the light activated PA-Rac [41] protein or the light modulated 

DNA binding protein, LovTAP. [42] Fusion of Rac1 with a LOV2 domain from Avena sativa 

results in a photoactivatable Rac1 fusion protein. Rac1 is a key GTPase, regulating actin 
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cytoskeleton dynamics in metazoan cells. The LOV domain sterically blocks interactions of 

Rac1 with its effector (the PAK protein), until irradiation unwinds the helix linking LOV 

with Rac1, and allows the Rac1 to interact with the PAK. [41]  

A light modulated DNA binding optogenetic device can also be obtained by fusing a LOV 

domain to the Trp repressor from E. coli, i.e. a LovTAP construct. Illumination of this fusion 

protein with blue light causes selective binding to the Trp operator in selected DNA 

sequences, and protects those sequences from nuclease digestion. [42] For details and more 

examples of engineered light dependent fusion proteins: see table 1.  

1.5 How to link input- and output domains in signal transduction proteins 

Designing engineered photoreceptors, by fusion of a light-sensing domain to an output 

domain, while being derived from non-cognate proteins, is a recently developed tool in the 

optogenetics field. Before the final product, in the form of a light dependent signal 

transduction protein, will be available, however, e.g. for application in cell biology or 

neurobiology, the design principles and strategies for this coupling need to be understood. 

The design process can be divided into several steps: The first choice is about the 

photochemical requirements of the photosensor domain. This includes the spectral region to 

be used for photoreceptor activation (figure 1), reversibility of the photocycle, rate of the 

reversion to the ground state, and its photostability during continued illumination. Besides 

that, the requirements for the genetic encoding need to be fulfilled. This includes the 

optimization of the encoding DNA sequence, through optimization of codon usage, and use 

of promoters of different strength and with expression specific for a selected cell type, as 

well as correct subcellular location, which often can be ensured through translation signals. 

[43, 44] 
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Table 1. Some examples of optogenetic application of light-switchable proteins.  

  

Organism of 
origin 

Light-
switchable 

protein 
domain 

Effector 
domain 

Organism/tiss
ue in which it 
is functional 

Function of the light-
switchable fusion 

protein 

Ref. 

Chlamydo-

monas 

reinhardtii 

ChR2 – 
channel-

rhodopsin 2 

Expression of 
the opsin in 
brain cells 

Mammalian 
brain 

Can be used to evoke 
single spikes or 
defined trains of 

action potentials over 
a range of frequencies 

[45] 

Avena sativa LOV2 
(phototropin 

1) 

Rac1 Metazoan 
cells 

GTPase regulating 
actin cytoskeletal 

dynamics, polarized 
cell movement PA-

Rac1 

[41] 

Avena sativa LOV2 E. coli Trp 
repressor 

In vitro study Light activated DNA 
binding, LovTAP 

[42] 

Cyanobacteri
a 
 

Synechocystis 
phytochrome 

Cph1 

Intracellular 
histidine 
kinase 

domain of 
EnvZ 

E. coli Control of gene 
expression 

[46] 

Beggiatoa sp. BLUF Adenylate 
cyclase 

E. coli, 

Xenopus 
oocytes, rat 
hippocampal 
pyramidal 
cells 
Drosophila 
CNS 

Control of the cAMP 
concentration in cells 

[47, 
48] 

Bacillus 

subtilis 

YtvA LOV 
domain 

FixL 
histidine 
kinase 

domain of B. 

japonicum 

E. coli Light-dependent gene 
expression 

[33] 

Synechocystis 
sp. PCC6803 

Green-light 
sensing 
histidine 

kinase CcaS 

The promotor 
of cpcG2,  

Cyanobacteria Green-light-regulated 
gene expression 

system 

[49] 

Arabidopsis 

thaliana 

 FKF1 GIGANTEA 
(G1) 

Mammalian 
cells 

Light-activated 
dimerization 

[50] 

Arabidopsis 

thaliana 

phyA and 
phyB 

PIF3 Yeast cells Light-switchable gene 
promoter system 

[51] 

Arabidopsis 

thaliana 
cryptochrome 

2 
Helix-loop-
helix protein 
Arabidopsis 

CIB1 

Mammalian 
cells 

Protein dimerization [52] 

Arabidopsis 

thaliana, 
GIGANTEA 
and the LOV 

domain of 
FKF1 

Programmabl
e zinc finger 
transcription 

factors 

Human cells Control synthetic zinc 
finger transcription 

factor activity 

[53] 
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In the covalent linkage of a sensor domain and effector domain, the sensor domain is 

usually N-terminal to the effector domain. It has long been known that the linkers between 

domains play an important role [54, 55] in signal transduction. [33, 43] The design of light 

dependent signal transduction pathways, with a LOV domain as the light sensing domain, 

has been described already in several publications. [56, 57] One of the pioneering works in 

this direction was the design of a LovTAP fusion protein. Photoactivation of the LOV2 

domain from Avena sativa induces the unfolding of its C-terminal Jα helix. This was utilized 

in the design of a light-controllable DNA binding protein, in the form of a fusion protein 

composed of an N-terminal LOV domain with the Trp repressor from E. coli. Illumination 

with the blue light triggers its selective binding to the Trp operator (in its genome) and 

protects it from nuclease digestion. [42]  

Another approach was taken in the design of the PA-Rac1 fusion, mentioned above. The 

strategy used for this protein was to restrict access to the active site of the effector domain 

by the dark state of the light-sensitive domain. Illumination then causes unfolding of the Jα 

helix of the LOV domain and makes the active site of the Rac1 domain accessible. [41] In 

the design and characterization of the set of YF(n) fusion proteins, Möglich et. al. showed 

that the length and the heptad periodicity of the Jα helix is crucial for proper propagation of 

the signal from the light sensing domain (here the LOV domain of YtvA from Bacillus 

subtilis) to the histidine kinase domain of FixL from Bradyhrizobium jabonicum. [33, 58] 

The authors suggest that light absorption in the LOV domain leads to a rotation within the 

coiled coil structure of the linker domain, which causes the necessary conformational changes 

within the kinase domain. This coiled coil structure would be formed by parallel dimerization 

of the – covalently linked - signalling helices. The authors identify a highly conserved DIT 

motif in the LOV domain, just upstream of the Jα helix, important for this rotary movement. 

It is important to not disturb the hydrophobic/hydrophilic pattern in the linker between the 

LOV domain and the kinase domain with changes in the length of the linker, except for 

multiples of the 7 amino acids repeat sequence, except for single amino acid insertion or 

deletion. [33]  

  

1.6 Sensory photoreceptors: classes, photochemistry and function 

Photoreceptors are widely spread through all Kingdoms of Life. These are proteins that have 

the ability to sense light (i.e. photons) and send the information of the presence of these 

stimuli into a diverse range of effectors. [59, 60] Typically, photoreceptor proteins bind a 
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small molecule, called chromophore, which is able to change its conformation after light 

absorption. Effectors, either intrinsic or extrinsic to the photoreceptor protein itself, regulate 

a plethora of output functions, including the physiological effects that underlie circadian 

rhythms, altered (mostly increased) gene expression (e.g. of virulence factors, light-

harvesting antenna proteins and even photoreceptor proteins), and phototropism and 

protective stress responses. Based on the chemical nature of the chromophore involved, 

different classes of photoreceptors are distinguished. The most important families are the 

rhodopsins, the phytochromes, the xanthopsins, the cryptochromes, the phototropins, and the 

BLUF proteins. In the phytochromes, the xanthopsins and the rhodopsins the photochemical 

transformation of the respective chromophore (i.e. a linear tetrapyrrole, p-coumaric acid and 

retinal, respectively) is trans/cis (or: E/Z) isomerization. Cryptochromes, phototropins (or: 

LOV domains) and BLUF domains/proteins utilise a flavin as their chromophore, i.e. FMN 

in LOV domains and FAD in cryptochromes and BLUF domains. For cryptochromes and 

BLUF proteins, light-induced electron transfer initiates signalling, while the photochemistry 

of the LOV domains is based on cysteinyl adduct formation between the C4 from the 

aromatic ring of the flavin and a nearby, fully conserved, cysteine. [61] The chemical 

structure of each chromophore – in interaction with its protein environment – dictates the 

colours of light that it can absorb. Figure 1 shows the spectral sensitivity of the above 

mentioned photoreceptor families. 

 

 

Figure 1. Spectral sensitivity of photoreceptors. The spectral sensitivity of sensory photoreceptors 
ranges from the UV to the near-infrared region of the electromagnetic spectrum.[62]  
 

 

 



Design and construction of a photoactivatable, diffusive protein network in baker’s yeast 

  17 

Light-oxygen-voltage (LOV) domains/proteins are part of the phototropin family. 

Phototropins are the most common in plants, where they can initiate photomorphogenesis, 

including leaf orientation, stomatal opening and chloroplast relocation. Genes that encode a 

LOV domain were also identified in fungi, algae and bacteria. The LOV domain has the 

classical PER–ARNT–SIM (PAS) fold, consisting of a five-stranded antiparallel β-sheet (Aβ, 

Bβ, Gβ, Hβ and Iβ) and helical connector elements (Cα, Dα, Eα and Fα). LOV domains 

regulate a large and diverse number of processes, in most cases initiated by the initial 

photochemistry of cysteinyl adduct formation. [63] Significantly, a recent study has shown 

that signal transduction in a LOV domain is also possible even when it lacks the conserved 

cysteine residue.[64] The direct effect of cysteinyl adduct formation is protonation of the N5 

atom in the flavin ring. This in turn promotes flip of the nearby glutamine residue, which 

then results in changes in the hydrogen bonding network surrounding the Flavin chromphore. 

In the LOV domains that lack the conserved cysteinyl residue photoactivation leads to 

formation of the FMN neutral semiquinone, which also then leads to protonation of the N5 

atom within the flavin ring and the subsequent glutamine-flip. [64, 65] These results imply 

that cysteine-deletion mutants of LOV domains cannot be taken as ‘dark controls’ in studies 

of their functional activity in vivo. 

The bacterial LOV domains are mostly coupled with a histidine kinase domain; their 

second most common function is regulation of the synthesis and hydrolysis of cyclic di-GMP. 

Other LOV-domain containing signalling proteins include LOV-STAS proteins (sulphate 

transporter anti-σ antagonist), LOV-HTH (helix-turn-helix) proteins, that function as 

transcription factors, and the LOV-SpoIIE proteins (sporulation stage II protein E). [63]  

In this study, two light-sensitive protein domains were used for the construction of an 

orthogonal optogenetic system in the cytoplasm of the yeast Saccharomyces cerevisiae, i.e. 

the LOV domains of the LovK protein from Caulobacter crescentus and the LOV domain of 

the YtvA protein from Bacillus subtilis. The general characteristics of these two domains will 

be discussed in the next two sections below. 

 

 LovK: domain organization, signal transduction. 

LovK is a light sensitive histidine kinase involved in the general stress response of 

Caulobacter crescentus. [66] It consists of two domains: an N-terminal LOV domain that 

shows the classical characteristics of the LOV domains of the phototropin family and a C-

terminal histidine kinase domain. Light, through LovK, modulates C. crescentus holdfast 
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production and attachment to abiotic surfaces. [67] The dark-state of LovK shows the typical 

flavin absorption maximum at 447 nm. Activation with blue light triggers formation of the 

adduct between Cys70 and the C4(a) atom of FMN, which then activates phosphorylation of 

the C-terminal domain histidine kinase domain. The life time of recovery of the activated 

state, i.e. the conversion of the adduct state back to the dark state, is about 120 min. [68]  

 

  YtvA: domain organization, and mechanism of signal transduction in the stress 

response of B. subtilis 

YtvA is a photoreceptor involved in the general stress response, based on stressosome 

activation, in the abundant soil bacterium Bacillus subtilis. With this response B. subtilis is 

able to respond to a wide range of moderate stresses in an integrated way. [69] YtvA was 

identified as the first prokaryotic protein containing a LOV domain. [70] The LOV domain 

in YtvA is located at the N-terminus of the protein. Its C-terminal part is composed of a STAS 

(sulphate transporter anti-σ antagonist) domain. The LOV domain binds FMN as its 

chromophore. Blue light absorption causes formation of an adduct between Cys62 and the 

C4(a) atom of the FMN ring system. This reaction can be followed spectroscopically, by the 

disappearance of the dark-state absorption peak at 488 nm, and appearance of a new peak 

with a maximum at 390 nm. The recovery life time of the LOV domain of YtvA is about 43 

min at 25°C. [71]  

Although Bacillus subtilis is not a phototropic bacterium, evidence has been provided 

that visible (i.e. blue) light can activate YtvA and through that the general stress response of 

this organism in wild type cells. [72, 73] Under physiological conditions light enhances the 

response to salt stress. Furthermore, increased expression of YtvA sensitises B. subtilis to 

blue light in the activation of the general stress response. [73] 

 

1.7 Two component signal transduction pathways: constituent components and in 

vivo functioning 

Two component signal transduction systems play a crucial role in the processing of 

information about the extracellular environment (and intracellular events), particularly in the 

cells of prokaryotes and lower eukaryotes. This includes processing of information transfer 

across the cell envelope as well as further processing of information in the cytoplasm and 

cytoplasmic organelles (particularly the nucleus). [74, 75] The total number of these signal 
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transducing proteins encoded in a particular genome tends to increase with genome size. [75] 

It was shown that about one third of the histidine kinases encoded in the genome of bacteria 

do not contain a transmembrane domain. This suggests that a minor part of the histidine 

kinases serve as intracellular sensors. Based on this classification two types of bacteria were 

introduced. The extrovert, which are very much oriented towards sensing of the outer 

environment and the introvert, which are more focused on maintaining their intracellular 

homeostasis. [74]  

The abundance of two component signal transduction pathways differs between 

prokaryotic and eukaryotic (micro)organisms. Among the prokaryotic genomes there is a 

wide variety of two component systems, varying from zero for Mycoplasma genitalium up 

to several dozen in some soil bacteria and cyanobacteria. [76] In contrast, in eukaryotic 

genomes way less two component systems were identified. For example the genome of S. 

cerevisae encodes only a single system, which is of the phospho-relay type (SLN1-YPD1-

SSK1, SKN7; see further below). [77] This system plays a role in osmoregulation. The 

pathogenic fungus Candida albicans has at least two histidine kinases, involved in 

osmoregulation (CASLN1) and hyphal development (COS1/CANIK1), respectively. [78, 79]  

The classical sequence of events in a two component signal transduction pathway is the 

phosphorylation of a conserved histidine within the histidine kinase (HK) domain and 

transfer of this phosphoryl group to the conserved aspartate within the cognate response 

regulator (RR) which is the effector protein, i.e. this phosphorylation leads to structural 

change in a second domain of the protein that alters interaction with its target protein or target 

DNA sequence. This type of signal transduction system is particularly abundant in bacteria. 

The two phosphorylated amino acids, particularly the phospho-histidine, but also the 

phospho-apartate has a high free energy of hydrolysis, making them excellent candidates for 

driving a flux of phosphoryl groups from ATP, via the phosphorylated histidine to the 

aspartate side chain. [80] 

Surprisingly, it is also possible to transfer the phosphate group from the phosphorylated 

aspartate to a second histidine. [81] This happens in so-called ‘phospho-relay systems’, 

which comprise almost 25 % of all two-component signal transduction pathways and are 

particularly abundant in cells of lower eukaryotes. The domain arrangement of these systems 

is very diverse: They function on the basis of the involvement of four rather than two protein 

domains. All four domains can be contained in one single protein, but examples also are 

known in which each domain is expressed as a separate protein. These phospho-relay systems 
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thus make use of a phophoryl-transfer (Hpt) domain, plus an extra receiver domain. Often, 

the specificity for their cognate partners of these Hpt domains is rather low, which then allows 

for the branching of signal transfer and cross-talk between adjacent phospho-transfer 

pathways. [76]  

The architecture of the histidine kinase proteins shows significant conservation in the 

catalytic core domain, which is often located at the C-terminus of the protein. The N-terminal 

domain usually is the signal input domain and shows a high (sequence/structure) variety 

within the two component systems. Within the catalytic core of the kinase domain, which is 

located in the cytoplasm, several conserved motifs can be distinguished. C-terminally are the 

ATP binding and the catalytic domain (CA) that are well conserved within the HK family. 

At the N-terminal side of the domain is the phosphorylation- and dimerization domain (DHp). 

The DHp domain contains the conserved histidine, whereas the CA domain carries the 

catalytic activity that is required to transfer the phosphoryl group from the ATP to conserved 

histidine. The N-terminal sensing domain is often located at the extracellular side of the 

cytoplasmic membrane, and is responsible for sensing one or more of a wide variety of 

stimuli, including small molecules, light, turgor pressure, cell envelope stress, redox 

potential, and electrochemical gradients. [24, 80] These sensing domains are usually linked 

to the kinase domains via long (transmembrane) α-helices, that are often organized in the 

form of a coiled-coil structure. [76] Dimers of these membrane-embedded sensory kinases 

are then thought to relay signals into the cells via mutual rotation of the sensory domains 

upon binding of a signalling molecule or activation by a photon. [82–85] 

 

 Osmotic stress response in baker yeast 

The osmo-sensing system in the budding yeast Saccharomyces cerevisiae involves multiple 

sensors. By consequence, the information regarding (the absence of) osmostress initially is 

transmitted through parallel pathways; eventually it reaches the MAP-kinase-kinase-kinase 

(MAPKKK) Pbs2 that phosphorylates the Hog1 protein. One of these sensors is the 

transmembrane histidine kinase Sln1, which is part of a phospho-relay type two component 

signal transduction system. [86, 87] Another sensor is Sho1, that transmits a signal via the 

integral membrane protein Opy2 to Cdc42 and Ste20, to then activate the MAPKKK Ste11, 

with the assistance of Ste50. Ste11 phosphorylates Pbs2, that in turn phosphorylates Hog1. 

[88, 89] Phosphorylated Hog1 translocates to the nucleus. There, it can phosphorylate at least 

three transcription factors (i.e. Sko1, Hot1, and Smp1), and in this way osmotic stress 
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modulates the transcription of hundreds of genes. [88–90] Figure 2 shows an overview of the 

MAP kinase network in budding yeast. [91] 

 

 

 
Figure 2. The S. cerevisiae Hog1, Mpk1/Slt2 and Smk1 MAP kinase pathways. In red components 
of the Sln1 pathway are indicated. Adapted from [91].  

 

 

The Sln1 histidine protein kinase consists of an N-terminal domain associated with the 

plasma membrane, followed by two typical domains of a two-component system: the 

histidine kinase domain (HK) with the conserved histidine H576, and the response regulator 

domain (R1) with the conserved aspartate D1144. Both residues are transiently 

phosphorylated during osmo-signalling, initiated by phosphoryl transfer from ATP. In the 

steady state of physiological conditions, the conserved H576 residue is moderately 

phosphorylated. An increase in this level of phosphorylation occurs after application of a 

stress that causes weakening of the cell wall. In contrast, conditions that cause a reduction of 

the cell turgor lead to accumulation of the Sln1 in its non-phosphorylated form (presumably 

through activation of intrinsic phosphatase activity).  

The wall stress leads to phosphorylation of the Ssk1 and Skn7 response regulators via 

transfer of the phosphoryl group through the Ypd1 phosphoryl-transfer protein. 

Phosphorylation of Ssk1 renders it inactive in its role in the Hog1 pathway. Phosphorylation 

of Skn7 leads to activation of Skn7-dependent genes, such as the mannosyl-transferase, 

OCH1. Osmotic stress leads to lowering of the kinase activity of Sln1 therefore accumulation  
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of the kinase domain of Sln1 in the dephosphorylated form. This causes de-

phosphorylation of the Ssk1 response regulator, which can interact with and activate Ssk2 

and the Ssk22 kinases of the Hog1 pathway. Phosphorylation of Hog1 leads to its 

translocation into nucleus and activation of the genes responsible for osmotic-stress 

regulation. Sln1 is in the cytoplasm membrane. [86, 87, 92] Figure 3 shows the schematic 

flow of the phosphoryl groups in Sln1 pathway.  

The Sln1 system of S. cerevisiae seems well-fitted as a target for an optogenetic approach, 

i.e. the introduction of an engineered histidine kinase of which the activity can be modulated 

with light. If such a system can be constructed, it may prove useful in subsequent studies on 

the consequences of local activation of signal transduction networks in the eukaryotic 

cytoplasm.  

 

 

 
Figure 3. Schematic drawing of the flow of phosphoryl groups through the Sln1 pathway of 
Saccharomyces cerevisiae. Sln1 branch of the HOG pathway. [92] 

 

 

1.8 Scope and outline of this thesis 

The primary goal of the work presented in this thesis was to provide a unique tool that may 

prove useful in increasing our understanding of the mechanism of cytoplasmic diffusion in 

signal transduction in eukaryotic cells, in the form of a chimeric, light-addressable, 

cytoplasmic signal transduction device in the yeast Saccharomyces cerevisiae. Such a device 
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can be composed of a photo-sensory receptor domain translationally fused to a signal-

dependent kinase domain. Such a device may prove to be useful for localized excitation of a 

cytoplasmic signal transduction network in the cytoplasm of a eukaryotic cell. In chapter 2 

we further characterize the in vivo redox transitions of a flavin-containing photo-sensory 

receptor domain for such a chimeric device. Chapter 3 describes designing and functional 

characterization of the intended chimera: a light-sensitive histidine protein kinase, derived 

from the Sln1 kinase of S. cerevisiae, translationally fused in a coiled-coil motif with the 

LOV domain of the stressosome component YtvA from Bacillus subtilis. In chapter 4 we 

describe tests that show the in vivo functionality of this light-sensitive histidine protein 

kinase. This orthogonal photo-transduction system can be used to either activate or repress 

gene expression in S. cerevisiae, depending on the specific promotor targeted. Furthermore, 

it can be used to initiate nuclear accumulation of a selected signal transduction protein. In 

chapter 5 we go into detail on one of the methods for functional testing of these histidine 

protein kinases: the Phos-tag method for the detection of the phosphorylated form of a 

response regulator. In chapter 6, in a general discussion, the results of this study are placed 

in the context of recent developments in the field.  
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2  On the in vivo redox state of flavin-containing photosensory receptor proteins. 

Bury AE, Hellingwerf KJ 

 
Abstract:  
Measured values of the redox midpoint potential of flavin-containing photoreceptor proteins 
range from physiologically very negative values, i.e., < -300 mV (compared to the calomel 
electrode) for some LOV domains, to slightly positive values for some cryptochromes. The 
actual intracellular redox potential of several key physiological electron-transfer 
intermediates, like the nicotinamide dinucleotides, particularly in chemoheterotrophic 
bacteria, may be varying beyond these two values, and are subject to physiological- and 
environmental regulation. The photochemical activity of photoreceptor proteins containing 
their flavin chromophore in the reduced, and in the fully oxidized form, is very different. We 
therefore have addressed the question whether or not the functioning of these flavin-
containing photosensory receptors in vivo is subject to redox regulation. Here we provide 
further evidence for the overlap of the ranges of the redox midpoint potential of the flavin in 
a specific photoreceptor protein and the redox potential of key intracellular redox-active 
metabolites, and demonstrate that the redox state and photochemical activity of LOV 
domains can be recorded in vivo in Escherichia coli. Significantly, so far in vivo reduction of 
LOV domains under physiological conditions could not be detected. The implications of 
these observations are discussed. 
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2.1 Introduction 

Three families of photosensory receptor proteins exist that contain a flavin derivative (i.e. 

FMN or FAD) as their light-sensitive chromophore: The LOV- and BLUF-domain-

containing proteins and the Cryptochromes (see refs [1, 2] for a review). Of these, the family 

of the LOV domains is the most widely distributed, to the extent that several subclasses are 

identifiable. [3] The family of the Cryptochromes is difficult to delimit because it is difficult 

to separate members from a family of nucleic acid repair proteins, the photolyases. [4] In a 

previous publication we have addressed the issue of the electrochemical midpoint potential 

(i.e. the Em’) of the flavin chromophore in representatives of these three families of 

photosensory receptors [5] and found that this Em’ value increases from LOV domains, via 

BLUF domains to Cryptochromes, in the range from < -300 to close to zero, [6] relative to 

the calomel electrode. 

More recently, Crosson and co-workers [7] reported on the midpoint potential of the LOV 

domain of LovK, a photosensory protein histidine kinase from Caulobacter crescentus which 

has been implicated in the regulation of cellular adhesion, and several of its truncated 

derivatives. Crucial in their observations was that the measured midpoint potentials range 

from -258 for the full-length protein, to -303 mV for one of the truncated fragments (i.e. the 

fragment that contains the 138 N-terminal amino acids of the protein, which includes the 

entire LOV domain, but not its associated linker to the kinase domain [7]). These results 

imply that one would expect that the LOV domain of full-length LovK sensory kinase is 

subjected to physiological redox regulation by redox-active compounds from the cytoplasmic 

environment in which it is located. This is because the redox potential of the most dominant 

cytoplasmic redox-mediating couple, NADH/NAD+, in a typical chemoheterotrophic 

eubacterium like Escherichia coli, varies from ~ -320 mV under strict anaerobic conditions, 

to values close to -200 mV when these cells encounter fully aerobic conditions. [8, 9] For 

other organisms this range may be slightly (i.e. because of the range of cellular compartments 

that are present), but not very, different because of the physiological role that the 

NAD+/NADH couple has in compartments and cells of different origin. Other redox couples 

in the cell may be at dis-equilibrium (i.e. more negative) with the NAD+/NADH couple, like 

the NADP+/NADPH couple, because of the presence of an energy linked transhydrogenase, 

[10] but such complications will not be further discussed. If a LOV domain with a potential 

in the range of that of LovK (i.e. LOV domain with a relatively high midpoint potential; see 

above) is present in a cell in which the redox potential of the NAD+/NADH couple varies 
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significantly through transitions in the physiological- or metabolic state of the cell, one may 

then expect that the redox state of its flavin moiety will change accordingly. We have 

therefore further characterized the redox midpoint potential of the LOV domain of LovK, 

and investigated whether reducing conditions in the cytoplasm of Escherichia coli, achieved 

by incubating cells under stringently anaerobic conditions, would lead to conversion of the 

flavin of LovK into its reduced state, thereby taking the LOV domain of YtvA from B. subtilis 

as a reference. [11] Surprisingly, we have not been able to find evidence of such a physiology-

driven flavin reduction of these LOV domains.  

 

2.2 Materials and methods 

 Materials 

Xanthine oxidase (from bovine milk), methylviologen, phenosafranin, safranin O, flavin 

mononucleotide, buffers and general chemicals were bought from Sigma–Aldrich Co, St. 

Louis, MO, USA. Glucose oxidase (lyophilized) was supplied by Roche Products Ltd. 

(Hertfordshire, UK), and Argon gas (Argon 5.0 Instrument; >99.99% pure) was provided by 

Praxair (Vlaardingen, The Netherlands). 

 

 Bacterial strains and construction of plasmids 

The bacterial strains, plasmids, and primers that were used in this investigation have been 

listed in Table 1. Escherichia coli Xll-blue was used as the intermediate cloning host for 

plasmids prior to transformation of E. coli M15. Transformants were selected on LB agar 

plates, containing 100 µg/mL ampicillin or 100 µg/mL ampicillin plus 25 µg/mL kanamycin, 

after their overnight incubation at 37°C. The lovK gene was amplified by using chromosomal 

DNA from Caulobacter crescentus FC19 as the template and part of the primers shown in 

Table 1. Truncated derivatives of this gene (i.e. 1 – 138 and 1 – 156; numbers refer to amino 

acids of the full length LovK sequence) were amplified with the PCR technique, digested 

with BamHI and HindIII, and ligated into the pQE30 vector. A gene encoding the STAS 

domain of YtvA from Bacillus subtilis was amplified by using chromosomal DNA from B. 

subtilis PB2 and the primers shown in Table 1. Gene splicing by the overlap extension 

procedure was used to construct LovK-STAS fusion proteins. [12] The resulting PCR 

products were cloned into the pQE30 vector and transformed into E. coli M15, in order to 

obtain overexpression strains.  
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Table 1. Strains, plasmids, and primers used in this investigation 

Strain, plasmid or primer  Relevant genotype, characterization, or primer sequences Ref, source, 
or construction 

Strains: 

E. coli M15 
E. coli Xl1-blue 

Plasmids:   
pQE30   
Primers:   
LovK_R_A 5’ GCTTGGT CACGTCCACCTGCGAGC 3’ This study 
LovK_R_B 5’ GTTGAAAGCTGCTGCAGACCGTCGC 3’ This study 
YtvA_F_A 5’GGACGTGACCAAGCAAAAAGAATATGAAAAGCT

TCTCG3’  
This study 

YtvA_F_B 5’ GCAGCAGCTTTCAACTCCTATTGTCCCG3’  This study 
pQE30LovKbaHFW 5’ CCCGGATCCATGGAAGACTATTCGGATCGC 3’ This study 
pQE30YtvARV 5’GGGGTCGACTTACATAATCGGAAGCACTTTAAC

G 3’  
[13] 

pQE30LovKRV 5’ CCCAAGCTTCTATTGCGTCCCATTGATGGGCA 3’ This study 
pQE30LovK138RV 5’CCCAAGCTTGTCGGTCACGTCCACCT 3’ This study 
pQE30LovK156RV 5’ CCCAAGCTTCATCTGCTGCAGACCGT 3’ This study 
pQE30YtvAFW 5’CCCGGATCCATGGCTTTTCAATCATTTGGG 3’ [13] 

 

 

 Overexpression and purification of the flavoproteins 

Flavoproteins, and various domain combinations thereof, were overexpressed in E. Coli 

growing in Production Broth medium [Tryptone (20 g/L; Becto and Dickson Company), 

Yeast Extract (10 g/L; Scharlab S.L.), Glucose (5 g/L; Dextro energy GmbH Co. KG), NaCl 

(5 g/L; Sigma-Aldrich), and K2HPO4 (8.7 g/L; Merck)], supplemented with 100 µg/ml 

ampicillin and 25 µg/ml kanamycin. Overnight grown pre-cultures, inoculated with a single 

colony from a fresh plate of the same medium, were diluted into fresh medium at 37 °C and 

were allowed to grow for an additional 1.5 to 2 h with vigorous shaking. When OD600 of 

these cultures reached 0.6, overexpression of the heterologous product was induced by sterile 

addition of isopropyl β-D-thiogalactopyranoside (IPTG) to a final concentration of 0.1 mM. 

At this point the temperature was lowered to 30 °C and growth was allowed to continue with 

vigorous shaking for approximately 16 hours in darkness. Then cells were harvested by 

centrifugation and were lysed by sonication in 50 mM Tris-HCl buffer pH = 8, plus 10 mM 

NaCl, and an EDTA-free protease inhibitor cocktail (complete, EDTA-free, provided by 

Roche). The recombinant proteins were purified from the resulting cell-free extracts in a 

twostep procedure: Affinity chromatography on a HisTrap FF column (GE Healthcare, 5 mL 
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column) and anion exchange chromatography on a ResQ column (GE Healthcare, 6 ml 

column volume).  

 

 Measurement of redox midpoint potentials 

Redox midpoint potentials were determined with the procedure based on the use of 

xanthine/xanthine oxidase as the electron donor developed by Massey, [14] as described in 

Arents et al. [5] The midpoint potential of all proteins included in this study was measured 

with both safranin O and with phenosafranin as the indication dye. Complete reduction of a 

protein sample typically took between two and three hours. 

 

 Spectroscopy 

UV/visible spectra were recorded using an HP8453 UV/visible diode array 

spectrophotometer (Hewlett-Packard Nederland BV, Amstelveen, NL) for purified protein 

(domains), or a SPECORD 210PLUS double beam UV/visible spectrometer (Analytik Jena, 

Jena, Germany), equipped with a 1 cm quartz cuvette, for analyses in intact cells (i.e. in vivo). 

To monitor the kinetics of thermal recovery of the ground state of the photoreceptor proteins, 

spectra were recorded at 60 s intervals. For in vivo measurements, cells were precultured 

overnight in PB medium, with the appropriate antibiotics, at 37 °C, with vigorous shaking. 

Pre-cultures were diluted 100 times in the same medium, and grown until their OD600 

reached a value of ~ 0.6. At this point IPTG was added to a final concentration of 0.1 mM, 

and the temperature was lowered to 30 °C. Cultures were then incubated under these 

conditions for another 16 hours. After harvesting the cells (through centrifugation), cell 

pellets were re-suspended in 20 mM Tris-HCl buffer pH = 8 (in a volume equivalent to three 

times the wet weight of the pellet). For in vivo measurements of the redox transition of a 

LOV domain, cell-samples were diluted 4 times in 20 mM Tris-HCl buffer pH = 8, and 

flushed with argon in a screw-cap cuvette wrapped with aluminium foil. Then argon-flushed 

solutions of glucose and glucose oxidase were added. Next, a reducing agent was added and 

the measurements with the SPECORD 210PLUS were initiated.  
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2.3 Results 

 Choice of protein domains and design of fusion proteins 

Because Crosson and colleagues reported quite some variation in the redox midpoint 

potential between full-length LovK and several truncated LOV-domain fragments, [7] we 

decided to first look into the effect of variation of the linker to the LOV domain on the flavin 

midpoint potential. For this we purified (via heterologous overexpression in Escherichia coli; 

see Materials and Methods) full-length LovK, as well as its truncated derivatives LovK1-138 

and LovK1-156. In addition, we generated two fusion proteins, LovK-STAS A and LovK-

STAS B. The STAS domain (for: sulfate transport anti-sigma factor antagonist) is the C-

terminal effector domain of YtvA, a photo-sensory stress protein from Bacillus subtilis, 

which contains an N-terminal LOV domain that mediates light perception. [11, 13, 15] 

Significantly, in both YtvA and in LovK, the N-terminal LOV domain is linked to the 

respective effector domain through a helical linker structure (often referred to as Jα helix 

[16]) that presumably forms a coiled/coil structure in the functionally active dimers of both 

proteins. [13, 17] These fusion proteins were designed via sequence alignment of the two 

full-length proteins in the linker region (figure 1A). In LovK-STAS A the LOV domain from 

LovK1-138 is connected to the STAS domain (128-256) from YtvA, such that the Jα linker 

from YtvA is retained. LovKSTAS B comprises 156 residues from LovK which are 

connected to the 146th residue of YtvA, i.e. the N-terminus of its STAS domain. LovK-STAS 

B therefore contains the linker region of LovK (i.e. a covalent peptide linkage of residue 127 

of YtvA to 139 of LovK). In the selection of the fusion sites care was taken not to disturb the 

hepta-helical pattern that is typical for coiled/coil structures (compare ref [18]). The two 

fusion proteins were overexpressed in, and purified from, the heterologous overexpression 

host Escherichia coli M15. Recording of their light/dark difference spectra in vitro showed 

the expected features (figure 1B) and recovery rates (data not shown). As the expression 

levels achieved under these conditions are relatively high (in the order of 0.3 to 0.8 mg protein 

per g dry weight of cells), we tried to analyze their UV/visible spectra also in vivo. For this 

we made use of the SPECORD 210PLUS, a spectrophotometer in which the sample cell is 

placed very close to the light detector, so that artefacts by light scattering are minimized. 

Spectra recorded accordingly (figure. 1C) clearly revealed the heterologously expressed LOV 

domains. Furthermore, their observed peak-height, corrected for light scattering, is consistent 

with the yield of purified protein obtained. Illumination of these E. coli cells with 450 nm 

light from a blue LED for several minutes led to complete bleaching of the (oxidized) flavin 
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features from these spectra. This is confirmed by the shape of the difference spectra, taken 

of cells prior to, and after illumination (figure 1D). This shows that both fusion proteins are 

fully functional with respect to photosensory activity also in vivo, be it that LovK-STAS B 

appears to be slightly sensitive to intracellular proteolysis. Analysis of recovery rates in vivo 

is complicated by simultaneous settling of the cells during the measurement. These aspects 

will therefore be addressed elsewhere. Both fusion proteins were also expressed in B. subtilis. 

No functional activity, however, could be detected in the general stress response of this 

organism that could be ascribed to these chimeras, in contrast to a fusion protein composed 

of the LOV domain of YtvA and the STAS domain of RsbRA. [19] Generally, expression 

levels of the LOV-domain containing proteins that we have studied, are lower in the Gram-

positive organism than in E. coli; for this reason we have limited our in vivo characterization 

to E. coli. 

 

 

 

Figure 1. Characterization of LOV/STAS fusion proteins. A. Schematic drawing of the LOVK-
STAS A/B domains used in this study; B. In vitro difference spectra of LovK-STAS A and LovK-
STAS B; C. Absolute spectra of the  LovK-STAS A and LovK-STAS B proteins in vivo; D. Dark-
minus-light absorption difference spectra of the LovK-STAS A and LovK STAS B proteins in vivo. 
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 Redox midpoint potential measurements 

All redox midpoint potential measurements were carried out under exactly the same 

conditions as described in Arents et al. [5] Full UV/visible absorption spectra of the visible 

color changes in the reaction mixture during the reducing titration were recorded. For all 

measurements just two indicator dyes, safranin and phenosafranin were used (figure 2A-D). 

The midpoint potentials of these dyes are -252 mV and -289 mV, respectively. Figures 2E 

and 2F show plots of the ratio of the oxidized/reduced form of the flavin and the indicator 

dye used in the reaction. Based on such plots it is possible to calculate the redox midpoint 

potential of the flavoproteins, based on the known redox midpoint potential of the respective 

dye. During the reductive titrations with purified proteins no formation of the semiquinone 

intermediate was observed.  

Surprisingly, close inspection of the midpoint potential values obtained showed small, 

but significant, differences in the values of the midpoint potentials measured with the two 

indicator dyes for all constructs (see Table 2). Nearly all actual values for the midpoint 

potential of the series of LOV domains, derived from measurements with phenosafranin as 

the indicator dye, are higher than values calculated with safranin as the indicator dye (up to 

48 mV, but notice that there is significant spread in these values). On average, values 

determined with phenosafranin are 18 mV more positive than those determined with safranin, 

which is measurably higher than the standard error of the mean of the measurement of the 

individual domains, 7 or 8 mV for safranin and phenosafranin respectively (Table 2). 

Nevertheless, based on these separate values we could calculate average values for the 

midpoint potential of every investigated construct. The average midpoint potentials for 

LovKSTAS A and LovK-STAS B are -274 mV and -287 mV, respectively. For the truncated 

LovK constructs the midpoint potential gradually increases from -287 mV for full-length 

LovK, via -284 mV for LovK1-156 to -272 mV for LovK1-138. The midpoint potential 

determined for YtvA in this investigation (-305 mV) is not significantly different from the 

value reported earlier (-307 mV; ref [5]). 
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Figure 2. Spectral recording and data evaluation of the color changes in the reaction mixture 
during the reducing titration with xanthine/xanthine oxidase. Spectra were taken at 60 s intervals, 
but only every 20th spectrum is shown. A. Full-length LovK titrated with phenosafranin; B. 
LovK-STAS A with phenosafranin, C. Full-length LovK with safranin, D. LovK-STAS A with 
safranin. E, F. Plot of the redox potential of the LovK-STAS A (solid line) and full-length LovK 
(dashed line) versus: E. safranin and: F. phenosafranin. Such plots allow a straightforward 
calculation of the respective midpoint potentials.  
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Table 2. Overview of the redox midpoint potentials of the LOV domains studied in this 
investigation. Values are given in mV relative to the calomel electrode. 

Flavoprotein Em in pH 8 
with safranin 
(S) 

Em in pH 8 with 
phenosafranin 
(PS) 

∆Em Em(PS) 
– Em(S) 

Standard deviation: 
safranin pheno-

safranin 
LovK-STAS A 
Av: -274 

-295 -272 23 7 6 
-283 -268 15 
-284 -261 23 

LovK-STAS B 
Av: -287 

-305 -257 48 8 6 
-295 -266 29 
-311     

LovK (1-368) 
Av: -287 

-291 -285 6 9 11 
-304 -270 34 

LovK (1-156) 
Av: -284 

-293 -276 17 2 7 
-295 -276 19 
-292 -276 16 
-297 -263 34 

LovK (1-138) 
Av: -272 

-270 -272 -2 7 11 
-285 -248 37 
-285 -268 17 
-283 -263 20 

FMN -209 -213 -4     
YtvA 
Av: -305 

-313 -296 17     

Average     18 7 8 
 

 

 On the redox state of LovK in vivo 

(a) Specificity of the in vitro Reduction of the LOV Domain of LovK.   

To better understand the factors that determine the in vivo redox state of the LOV domain(s) 

we first studied the specificity of their reduction in vitro. To this end, LOV-domain 

containing protein solutions were incubated with sodium dithionite, NADH or 

methylviologen. All solutions were flushed with argon before mixing. Of these three 

compounds only sodium dithionite (Em’ = -660 mV) did reduce the LOV domain of LovK 

under anaerobic conditions (figure 3). Glucose and glucose oxidase were added to the 

reaction mixtures to remove remaining traces of oxygen. It is clear from these data (i.e. the 

broad peak in the range between 550 and 700 nm) that dithionite in this case does give rise 

to very pronounced flavosemiquinone formation. Addition of equimolar amounts of NADH 

did not reduce this LOV domain, as was also observed by Crosson and co-workers. [7] A 25-
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fold increase of the NADH concentration in the reaction mixture did not lead to reduction of 

the LOV domain either. Also, addition of 10 µM methyl viologen (Em’ = -449 mV) did not 

reduce the LOV domain in vitro, despite the reduction seen in vivo (see further below). When 

all these different reductants, including the (pheno)safranin dyes, are combined, this – as 

expected – does lead to the observation that the LOV domain is reduced first, followed by 

the NAD+.  

 

 

 

 
Figure 3. Reduction of the LovK-LOV domain with 10 µM sodium dithionite in vitro under 
anaerobic conditions in the presence of glucose and glucose oxidase. The arrows indicate 
increasing time and increasing degree of reduction.  
 

 

 

(b) In vivo Reduction of the LOV domain of LovK. 

As the LovK1-138 construct has the highest midpoint potential of the ones we have studied 

in this investigation (Table 2), this latter construct was the prime target for further in vivo 

studies. We first tested the effect of addition of a range of reducing agents to cells that 

overexpress this LOV domain: methyl viologen, benzyl viologen, sodium dithionite, sodium 

borohydride and riboflavin. Of these compounds, methyl viologen, sodium dithionite and 

sodium borohydride (for the examples of methyl viologen and sodium dithionite: see figure 

4) can chemically reduce the LOV domain of LovK, as can clearly be seen in difference 

spectra of cells before and after addition of these reductants, in spite of the noise particularly 

at the high-energy shoulder of the flavin difference spectrum. Addition of benzyl viologen as 

the reductant to intact cells of E. coli led to only a transient reduction of the LOV domain, 
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whereas with riboflavin an appreciable amount of flavin semiquinone was formed (data not 

shown). In contrast, chemical reduction of the LOV domain from YtvA was not possible with 

any of these latter reducing agents. Shifting growing E. coli cells from aerobic- to anaerobic 

conditions will lower the midpoint potential of the cytoplasm considerably, by lowering of 

the redox potential of the NADH /NAD+ couple. [8, 9] We therefore tried to record spectra 

of strictly anaerobically grown LovK-producing E. coli cells. For this cells were cultivated 

in 250 ml bottles filled to the top with medium. Bottles were incubated at 37 °C, with slow 

stirring, for approximately 20 hours. After that cells were transferred anaerobically to a 

cuvette and spectra were recorded after flushing with argon for half an hour. These 

conditions, however, did not lead to sufficient level of LOV-domain overexpression to allow 

identification of the absorbance band of the LOV domain in the UV/visible spectra. 

Therefore, E. coli M15/pQE30(LovK1-138) was grown aerobically, to achieve maximal 

overexpression levels of LovK1-138, and after concentrating the cells through centrifugation, 

UV/visible spectra were recorded (figure 5). Next, cells were kept under anaerobic conditions 

by flushing the suspension with argon for 5 h in the presence of glucose. We could not detect 

any change in the spectra of the cells after this incubation under anaerobic conditions, neither 

with the LOV domain from LovK nor with the one from YtvA (figure 5); in contrast a 

reduction was achieved when in addition dithionite plus methylviologen (data not shown).  

 

 

 

Figure 4. Difference spectra of the chemical reduction of the LOV domain of LovK in vivo with: 
A. 10 µM methyl viologen, B. 10 µM sodium dithionite.  
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Figure 5. Comparison of in vivo LovK1-138 spectra between aerobic and anaerobic conditions.  
 

 

2.4 Discussion 

The data reported here for the redox midpoint potential of LovK, and some of its truncated 

fragments, differs slightly from the values reported by Crosson and co-workers. [7] The most 

notable are the differences for the midpoint potential of the full-length LovK protein and 

LovK1-138, i.e. -287 and -272 mV, as reported here, and -258 and -303 mV as reported in 

the study of Purcell et al. [7] However, as the latter study does not indicate which specific 

indicator dye was used for which protein, nor what the typical standard deviation was in their 

assays, it is difficult to pinpoint the reason(s) for these differences. Although not observed in 

our previous study, [5] here we did observe a slight but significant difference in the apparent 

redox midpoint potential of the set of analyzed proteins, as a function of the specific indicator 

dye that was used. We attribute this to a difference in reactivity of the two indicator dyes with 

the respective proteins, rather than to a kinetic disequilibrium caused by too high rates of 

electron input via the xanthine/xanthine oxidase system. [5] Because of the relatively small 

differences in the values reported by the two indicator dyes used here, we nevertheless think 

that it is relevant to calculate the averaged midpoint potential for the various 

proteins/domains (see Table 2). The observed range of absorption maxima of the purified 

proteins (447 to 449 nm; data not shown) is too small to allow a conclusion to be drawn as 

to whether or not the correlation between wavelength of maximal absorbance and redox 

midpoint potential, that we reported in our previous study, [5] is also visible in the data of 

the series of protein domains studied here. Overall, the LOV domain of the LovK derivatives 
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tends to have a higher midpoint potential than the LOV domain of YtvA derivatives (Table 

2). This is not paralleled by generally higher values for the photocycle recovery rate of the 

LOV domain of LovK [3, 7, 13] as might have been expected on the basis of a better flavin 

accessibility from the aqueous phase. [20] Another trend that can be extracted from the 

average values of the midpoint potential of the proteins analyzed in Table 2 is the increase 

one observes in the midpoint potential when the authentic linker helix of the LOV domain of 

LovK is replaced by a heterologous one, or when the linker region is truncated. The 

conversion of a LOV domain in vivo from its oxidized to the chemically reduced state is 

readily observed upon the addition of a strong, non-physiological, electron donor like 

dithionite (figure 4). But it is important to note that the use of a UV/visible spectrometer with 

the photo-detection cells positioned as close as possible to the measurement cuvette is crucial 

in order to be able to make such observations. All attempts, however, to show a similar 

oxidized-to-reduced transition under physiological conditions so far failed. We therefore 

think that, if physiologically relevant, redox regulation of light-sensing LOV domains will 

only occur under very extreme conditions. A major contributing factor in this probably is the 

absence of suitable physiological redox mediators that can equilibrate the redox state of the 

flavin in the LOV domain with the ambient redox potential (of NAD+/NADH) in the 

cytoplasm. Yet other flavin-containing blue light photoreceptor proteins exist, like 

cryptochromes and photolyases, that have a significantly more positive midpoint potential 

than the LOV domains ([21, 22]; in particular the cryptochromes). Intracellular reduction of 

photolyases is readily observed. [23] It therefore remains an interesting challenge to resolve 

whether or not for the crypotochromes one is able to observe an integration of redox- and 

light-signalling in a single signalling receptor protein. 
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3  Design and functional characterization of the hybrid light dependent yeast 

histidine kinase, Light-Oxygen-Voltage (LOV)-Sln1. 

Bury AE, Hellingwerf KJ 

 

 

Abstract: 
Phosphorylation plays a critical role in facilitating signal transduction in prokaryotic and low 
eukaryotic organisms. Here we describe the light regulated histidine kinases. These were 
designed by the helical alignment of the α-helical linker of the LOV (light-oxygen-voltage) 
domain of YtvA from Bacillus subtilis with the α-helical linker of the histidine-protein kinase 
domain of the Sln1 kinase of the phospho-relay system for osmoregulation of Saccharomyces 

cerevisiae. In vitro, illumination with blue light inhibits/stimulate the ATP-dependent 
phosphorylation of these hybrid kinases. 
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3.1 Introduction 

In this chapter the design and functional in vitro characterization of light-dependent histidine 

kinase fusion proteins is described. This can be achieved e.g. by fusion of the LOV domain 

from e.g. YtvA from Bacillus subtilis with the histidine kinase domain of the Sln1 histidine 

kinase from Saccharomyces cerevisiae. The choice of these two domains is dictated by (i) 

the research history with YtvA within the Molecular Microbial Physiology Group, which 

amongst others has shown that this particular LOV domain will be relatively insensitive to 

alterations in the redox potential in its surroundings (for further detail: see Chapter 2) and (ii) 

the application we have in mind for future studies with this fusion protein (i.e. light activation 

of a signal-transduction responses in the eukaryotic (yeast) cytoplasm; the Sln1 protein is 

responsible for the osmotic stress response in yeast cells). Sln1 histidine kinase consists of a 

plasma membrane-associated domain, followed by two separate domains: the histidine kinase 

domain (HK) with the conserved histidine H576, and the response regulator domain (R1) 

with the conserved aspartate D1144, which both are phosphorylated during the phosphoryl 

transfer reaction (for details see figure 1A). Under physiological conditions the conserved 

H576 residue is moderately phosphorylated. Hyper-phosphorylation occurs, however, after 

a stress that causes weakening of the cell wall. In contrast, conditions causing a reduction of 

the cell turgor lead to accumulation of the Sln1 kinase in non-phosphorylated form 

(presumably through activation of intrinsic phosphatase activity). Phosphoryl groups from 

the conserved histidine are transferred to the conserved aspartate (D1144) within the R1 

domain. In the next step the phosphoryl group is transferred to the conserved histidine (H64) 

in Ypd1, the phosphoryl-transfer domain of this phospho-relay system, and finally to D554 

and D427 in the receiver domains of the Ssk1 and Skn7 response regulators, respectively. [1, 

2] Here we demonstrate the functionality of a fusion proteins composed of the LOV domain 

of YtvA and the histidine kinase domain of Sln1 in light-sensitivity of the phosphoryl flux 

through the Sln1 kinase. By properly engineering the point of fusion between the two 

domains, as well as of the linker domain, fusion proteins can be obtained in which 

illumination with blue light either increases or decreases the level of activation of the 'fusion 

kinase'. For the composition of the domains see figure 1.   
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Figure 1. Panel A: Components of the Sln1 histidine kinase from S. cerevisiae. Panel B: 
Components of the YtvA protein from B. subtilis. Panel C. Overall design of the LOV-Sln1 fusion 
protein.   
 

 Designing of the light stimulated histidine kinase 

To generate the LOV-domain/histidine-kinase domain fusion protein, the plasma membrane 

associated domain of the Sln1 kinase was replaced with the LOV domain of YtvA. It was 

shown by others that N-terminal of the conserved histidine H576 a sequence-identifiable 

coiled-coil secondary structure is present in the Sln1 protein (see figure 1A). [3] Following 

the idea’s developed in Möglich et al. [4] we aligned the coiled-coil structures of the Jα helix 

of the LOV domain and the coiled-coil structure of the Sln1 kinase and we designed a number 

of fusion proteins (referred to as C#) that would be expected to show light-activation and/or 

de-activation of kinase activity (see table 2). [5] Aligning the two proteins/domains was 

straightforward because the hepta-helical (see figure 2) sequence feature was 

straightforwardly identifiable in both proteins. 
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Of the newly designed fusion proteins C1 consists of the LOV domain plus the Jα helix 

from YtvA, and the HK- and R1 domains of Sln1, starting from the 567th amino acid of the 

Sln1 part (for further detail see figure 1B and 2A). C2 consists of the LOV domain from 

YtvA and the HK-R1 part, starting from the 538th amino acid of Sln1 which means that the 

coiled coil linker structure is fully derived from Sln1. C5 consists of 127 amino acids of the 

LOV domain from YtvA, which means that there is a switch-over between the two proteins 

just after the DIT motif [6, 7] in the Jα region of the LOV domain of YtvA. The C6 construct, 

just as C5, consists of 127 amino acids from the LOV domain, but however, with an important 

difference in the coiled-coil structure compared to the C5 construct: After 13 amino acids 

into the coiled-coil structure one extra amino acid was added. This position was selected 

based on an alignment of the coiled-coil structures of the two proteins. This insertion of a 

single amino acid is expected to allow a change in the light/dark activity ratio of this 

construct. Another construct, called C8, consists of 132 amino acids of the LOV domain from 

YtvA, connected to the coiled-coil structure of the Sln1 histidine kinase. Details about the 

construction of the C1 to C11 fusion proteins are summarized in table 2. 

 

 

Figure 2. Panel A: Alignment of the coiled coil structures from Sln1 and YtvA. The point of 
switching from the Jα to Sln1 in the C1 construct is indicated by the arrow. Panel B: Schematic, 
helical, diagram of a coiled coil structure. [3]  
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As in the C1 construct light-inhibition of kinase activity was observed, we also tried to 

generate constructs with light-stimulated kinase activity. Such light-stimulated kinase 

activity was e.g. reported for the YF constructs described in Mӧglich et al. [7] Their YF1 

construct is composed of the LOV domain from YtvA (#1 to 127) fused to the kinase domain 

of FixL (# 258 to 505), i.e. it derives its helical linker from FixL. We therefore first composed 

the triple-fusion protein C9, consisting of the LOV domain of YtvA (# 1 to 127), the linker 

helix of FixL (# 259 to 281) and the histidine kinase- plus response regulator domain from 

Sln1 (# 567 to 1221). Phosphorylation assays, however, showed that this construct did not 

display any measurable kinase activity (see table 2). The C10 and C11 constructs were then 

designed, to conserve the sequence around the DIT motif of YtvA, and to expand it to the 

DITKQ motif. Accordingly, C10 was designed, and also C11, with the deletion of one amino 

acid downstream of the DITKQ motif (figure 2A). The TKQ motif was identified in the Sln1 

histidine kinase too and therefore the YtvA sequence was linked to the kinase domain with 

optimal conservation of the coiled/coil structure.  

 

 Activity tests for protein kinases 

Protein phosphorylation events are catalysed by protein kinases that transfer the γ-

phosphoryl group from a nucleoside triphosphate, usually ATP, to the side chain of an 

amino acid residue in a substrate protein. [8] Protein histidine phosphorylation was 

discovered to occur in protein extracts from [32P]Pi-labelled bovine mitochondria by Boyer 

et al. in 1962. [9] After that the corresponding protein kinases were discovered (for a review 

see [10]). Histidine (protein) kinases are the most common in bacteria, fungi and plants [8], 

while in higher eukaryotes mainly serine/threonine and tyrosine kinases play a crucial role 

in many biological processes. [8, 11, 12]  

Detection of kinase activity maybe be achieved in several different ways (see figure 3). 

Radiometric assays are among the earliest used for detection of kinase activity, and generally, 

these methods also offer detection with the highest level of sensitivity. These assays utilize 

ATP, radiolabeled on the γ-phosphate group (generally with 32P or 33P). In a kinase reaction, 

the radioisotope is transferred from ATP to the acceptor molecule, and the rate of product 

formation can be quantified by measuring the extent of isotope incorporation in the product 

molecules. [13, 14] 

Based on the (non-radioactive) ATP depletion the kinase activity can be measured by 

quantifying the remaining amount of unreacted ATP, using luminescent detection coupled to 
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a luciferase assay. The luminescence signal is proportional to the amount of ATP present and 

is inversely correlated with kinase activity. As the kinase reaction proceeds, less and less 

ATP will be available for coupling to the luciferase assay, so the overall readout is a 

decreasing signal. [15, 16] 

 

 

Figure 3. Overview of some methods for detection of (protein) kinase activity. Based on a kinase-
catalyzed reaction, enzyme activity can be detected by either measuring ATP consumption, ADP 
formation or phospho-product formation. [14, 15] 

 

 

ADP accumulation can be detected – after quenching of the phosphorylation reaction - 

by a coupled enzyme reaction involving pyruvate kinase, pyruvate oxidase, horseradish 

peroxidase, and a fluorogenic substrate. [17] Pyruvate kinase catalyzes – with high affinity - 

the transfer of the phosphate group from phosphoenolpyruvate to ADP, resulting in the 

formation of ATP and pyruvate. Pyruvate is then oxidized by pyruvate oxidase to form 

hydrogen peroxide, which is in turn utilized in the oxidation peroxidase to generate resorufin. 

The concentration of resorufin is determined by measuring fluorescence emission at 590 nm 

after excitation at 530 nm, with increasing signal corresponding to increasing ADP 

concentrations. [15, 17] 

A more recently developed method is based on the shift in electrophoretic mobility that 

is caused by phosphorylation of the target protein during electrophoresis in poly-acrylamide 

gels that contain a dinuclear Mn2+ complex covalently linked to the poly-acrylamide, loosely 

referred to as a 'Pos-tag'. [18]The principle behind this method is that phosphorylated proteins 

move slower in SDS-PAGE than do the corresponding non-phosphorylated molecules, 

because the phosphoryl group interacts with the Mn2+ Phos-tag ligand in the gel. [19]  
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Fluorescence and luminescence methods for detecting kinase activity can be based on 

binding of a phosphorylated peptide substrate by an antibody that specifically recognizes the 

phosphorylated form of the target protein. However, this method requires a high chemical 

stability of the phosphorylated protein/peptide. So far, no antibodies are available that 

recognize proteins phosphorylated on an aspartate side chain. For convenient detection 

fluorescence energy transfer can be achieved by bringing in close proximity the peptide 

substrate labeled with e.g. a FRET acceptor molecule and phospho-specific antibody labeled 

with a fluorescence donor molecule. Phosphorylation allows for bringing the donor and 

acceptor molecules close enough together to generate the FRET signal. [15, 20, 21] Many 

commercially available kinase assays are based on this principle (for details see [14, 15]). 

Because of the high instability of the phosphorylated histidine and previous experience of the 

other group working on the Sln1 pathway phosphorylation (A.West, private conversation, 

data not published) the method of choice is the radioactive labeling of the phosphoprotein 

with 32P, which seems to be the most robust and sensitive among the others. 

 

3.2 Materials and methods  

 Expression and purification of the proteins 

All proteins were overexpressed in E. coli growing in Production Broth medium [Tryptone 

(20 g/L; Becto and Dickson Company), Yeast Extract (10 g/L; Scharlab S.L.), Glucose (5 

g/L; Dextro energy GmbH Co. KG), NaCl (5 g/L; Sigma-Aldrich), and K2HPO4 (8.7 g/L; 

Merck)], supplemented with 100 µg/ml ampicillin and 25 µg/ml kanamycin. Overnight 

grown pre-cultures, inoculated with a single colony from a fresh agar plate made of the same 

medium, were diluted into fresh medium at 37°C and were allowed to grow for an additional 

1.5 to 2 h with vigorous shaking. When OD600 of these cultures reached 0.6, overexpression 

of the heterologous protein product was induced by sterile addition of isopropyl β-D-

thiogalactopyranoside (IPTG) to a final concentration of 0.1 mM. At this point the 

temperature was lowered to 25°C and growth was allowed to continue with vigorous shaking 

for approximately 16 hours in darkness. Then cells were harvested by centrifugation and 

subsequently lysed by sonication in 50 mM Tris-HCl buffer pH = 8, plus 10 mM NaCl, and 

an EDTA-free protease inhibitor cocktail (complete, EDTA-free, provided by Roche), 10% 

(v/v) glycerol, lysozyme, DNase, and RNase, were added. The recombinant proteins were 

purified from the resulting cell-free extracts in a two-step procedure: Affinity 
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chromatography on a HisTrap FF column (GE Healthcare, 5 mL column) followed by anion 

exchange chromatography on a ResQ column (GE Healthcare, 6 ml column volume). Table 

1 shows the list of the overexpression vectors used in this study.  

 

 

Table 1. Plasmids used in this study  

Strain or plasmid Characteristics 
Source or 
reference 

pAB009 pQE30 overexpression vector for the C1 protein This study 

pAB010 pQE30 overexpression vector for the C2 protein This study 

pAB025 pQE30 overexpression vector for the C5protein This study 

pAB026 pQE30 overexpression vector for the C6 protein This study 

pAB014 pQE30 overexpression vector for the C8 protein This study 

pAB022 pQE30 overexpression vector for the C9 protein This study 

pAB023 pQE30 overexpression vector for the C10 protein This study 

pAB024 pQE30 overexpression vector for the C11 protein This study 

pAB011 pQE30 overexpression vector for the Ypd1 protein This study 

 

 

 In vitro assay of the extent and rate of phosphorylation of the hybrid histidine 

protein kinases and of phosphoryl transfer from Sln1 kinase- to the Ypd1 

phosphoryl transfer domain 

Kinase activity assays were carried out after slight modification of established procedures 

[1]: 30 µM of the specific histidine protein kinase was incubated with 1 to 5 mM cold ATP, 

after mixing of the latter with 3300 Ci/mmol of [γ-32P]-ATP. All reactions were carried out 

in a buffer containing 50 mM Tris.HCl pH = 8, 100 mM KCl, 15 mM MgCl2, 2 mM DTT 

and 20 % (v/v) glycerol in a total volume of 0.1 to 1 ml in Eppendorf tubes. Time-series 

samples were taken between 0 and 120 minutes. Samples were immediately mixed with 4x 

concentrated stop buffer. This concentrated stop buffer contains 0.25 M Tris.HCl pH = 8.8 

% (w/v) SDS, 40 % (v/v) glycerol, 40 mM EDTA, 0.008 % (w/v) bromophenol blue and 4 

mM β-mercapto-ethanol. For the phosphoryl transfer experiments histidine kinases were first 

autophosphorylated for one hour in the dark, after which Ypd1 was added to the sample in a 

molar ratio of 1:2. Time-series samples were taken between 1 and 120 minutes. Samples were 

immediately mixed with the stop buffer, just as described above. The same volume of the 
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samples (15 µl) were analyzed on 10 % (w/v) SDS PAGE gels, which were then exposed to 

a GE healthcare screen. Screens were scanned with a Typhoon Fla 7000 system and the 

resulting data files were saved as .tiff files. Image Quant software was used for the 

quantification of the intensity of the different bands. The standard curve equation was 

calculated based on the standards spotted on the paper and their decay in time. Based on the 

standard curve equation, kinase concentration and time of the reaction the intensity of the 

bands was converted to nmoles P/nmole kinase/h.Kinase phosphorylation experiments and 

phosphoryl transfer experiments were conducted in the dark, with minimal red background 

light [22], or under constant illumination from blue Light Emitting Diodes (LEDs with ʎmax 

= 464 nm) with an incident light intensity of 200 µEinstein·m2·s-1.  

 

3.3 Results 

 Photochemistry of the LOV-Sln1 fusion protein 

The absorption spectrum of a typical LOV domain in the near-UV/visible range shows 

two major bands with maxima around 370 and 450 nm. To check for unimpaired 

photochemistry of the LOV domain in one of the LOV-Sln1 fusion proteins, the latter was 

assayed by measuring light-induced absorbance changes indicative of adduct formation. 

Figure 3A shows the steady state dark- and light-induced spectrum of the LOV-Sln1 C1 

construct. Loss of absorption in the 450 nm band with some increase in the UV region are 

characteristic of formation of the flavin–cysteinyl adduct. The time course of the spontaneous 

dark recovery, to the ground state, after interruption of the blue-light excitation of the C1 

fusion histidine kinase, is presented in the figure 3B. A mono-exponential fit of these data 

leads to the conclusion that the half-time of the recovery of the ground state of the LOV 

domain in this fusion protein is 144 min., which is comparable to the rate of recovery of the 

LOV domain in YtvA. [23]  

All designed LOV-Sln1 constructs showed photochemistry similar to that presented for the 

C1 construct.  

 

 



Chapter 3 

 56

 
 

Figure 3. Photochemistry and dynamics of the thermal decay of the LOV-Sln1 C1 fusion histidine 
kinase. A. UV–vis absorbance spectra of the C1 fusion histidine kinase. B. Spontaneous dark 
recovery to the ground state after blue-light excitation of the C1 fusion histidine kinase. 

 

 

 Light influence on the kinase activity 

The helical linker regions of YtvA and Sln1 were aligned according to the identifiable hepta-

helical pattern of the coiled-coil structure that presumably is present in both of them, and 

joined in several different ways (table 2 and figure 2A), i.e. with preservation of the Jα- helix 

from either protein completely, or partially conserved; with or without insertion of extra 

amino acids to translationally shift the hepta-helical pattern, and with or without conservation 

of the position of the crucial DIT motif of the LOV domain of YtvA and of the 

phosphorylatable histidine of the Sln1 kinase domain.  

The resulting hybrid kinases, with the truncated Sln1 kinase domain as a reference, were 

assayed for kinase activity in the dark with the classical kinase assay based on the use of 
32P[ATP]. Other assays, e.g. based on inorganic phosphate release, were tested too, but turned 

out to be less suited. Of all the kinase domains tested, only the truncated reference domain 

and the C1 and C6 fusion proteins showed considerable auto-phosphorylation activity, in the 

order of 0.38 and 0.24 nmolP/g protein/minute for the latter two, respectively, at saturating 

concentrations of the nucleotide substrate (i.e. 5 mM; see [1]) and 30 µM of the specific 

histidine protein kinase (domain). Next, we tested a possible difference between this activity, 

and the corresponding activity in saturating amounts of blue light (for further experimental 

detail: see Materials and Methods). These assays revealed that significant differences in 

activity, when assayed in light and dark, were only observed for the fusion protein C1 (while 

a very small difference was observed for C6, see table 2). Figure 4A shows differences in the 
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phosphorylation level of the phosphorylated LOV-Sln1. The former, i.e. C1, in spite of its 

slightly lower maximal activity than C10, was therefore selected for further experiments. 

Significantly, for both hybrid kinases it turned out that illumination lowered their activity. In 

subsequently designed fusion proteins (e.g. C11) it turned out to be possible also to observe 

significant light-stimulation of kinase activity (see table 2 and figure 7). However, as for our 

subsequent in vivo experiments (see chapter 4) the light-inhibition of kinase activity was most 

valuable, these latter constructs have not been further characterized. 

 

 

Table 2. Details of the design and in vitro activity of a series of LOV::Sln1 histidine kinase 

fusion proteins. 

Construct 
name 

Numbers of amino 
acid from YtvA 

Numbers of amino acid 
from Sln1 

Initial rate 
of 

phosphory
lation in 
the dark 

Initial rate 
of 

phosphory
lation in 
the light 

Ratio 

C1 YtvA (1-146) Sln1HKR1 (567-1221) 0.18 0.08 2.25 

C2 YtvA (1-127) Sln1HKR1 (538-1221) 0.08 0.08 1 

C5 YtvA (1-127) Sln1HKR1 (536-1221) 0.03 0.03 1 

C6 YtvA (1-127) 
Sln1HKR1 (536-1221) 

↓549H 
0.08 0.09 0.9 

C8 YtvA (1-132) Sln1HKR1 (540-1221) 0.01 0.01 1 

C9 YtvA (1-127) 
FixL (259-281)* 

Sln1HKR1 (567-1221) n.d n.d n.d 

C10 YtvA (1-129) Sln1HKR1 (553-1221) 0.20 0.16 1.3 

C11 YtvA (1-129) Sln1HKR1 (554-1221) 0.11 0.21 0.5 
*: this sequence from the hepta-helical signature domain of the coiled-coil structure of FixL was 

inserted in-between the sequences of LOV-domain of YtvA and the kinase domain of Sln1p. n.d.: not 
determined; n.a.: not available. 

 

 

Besides their autophosphorylation activity, several of the hybrid kinases were also tested 

for activity in an assay that measures phosphoryl transfer from the kinase/response-regulator 

domain of Sln1 to the phosphoryl-transfer domain of the Sln1 phosphorelay system, i.e. Ypd1 

(see figure 4B). All constructs except C9 were active in this assay; however, because we did 

not have a rapid-quench system available we could not time-resolve this process, and 
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therefore not meaningfully differentiate between the different hybrid kinases with respect to 

this activity 

 

 

 

Figure 4. Autoradiographs of the in vitro autophosphorylation of the C1 in the dark and light 
conditions (panel A) and in vitro phosphoryl transfer from C5 to Ypd1in the dark and light 
conditions (panel B) in the dark and in the light.  

 

 

For the C1 light-modulatable histidine protein kinase we then characterized the kinetic 

basis of its light sensitivity. Time-course phosphorylation experiments in a time window of 

120 minutes, with a wide range of nucleotide concentrations, revealed that in most 

experiments the increase in the degree of phosphorylation of the kinase was approximately 

proportional with time during the first 30 minutes (figure 5).  
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Figure 5. A. Kinetics of the incorporation [32Pi] into the C1 histidine kinase protein. [γ-32P]-
ATP was used as the phosphoryl group donor. Reaction mixtures were incubated either in the 
presence of light (open symbols, dashed lines) or in the dark (filled symbols, full lines). Analysis 
of the amount of phosphorylated protein was carried out as described in Materials and Methods. B. 
The ATP-concentration dependence of the rate of incorporation of [32Pi] into the C1 histidine 
kinase fusion protein. Values calculated based on the slope of the corresponding kinetics 
curves (see panel A). C. Auto-phosphorylation of the C1 LOVSln1HKR1 fusion proteins in the 

presence of 1mM of ATP. Error bars indicate standard deviations calculated from three 
independent biological experiments. If the error bar is not visible it means it is smaller than 
the corresponding symbol. 

 

 

 

From these data, the dependency of the rate of autophosphorylation of the C1 kinase on 

the concentration of ATP was then plotted against the nucleotide concentration from 0 to 2 

mM (figure 5B). This analysis revealed that under both assay conditions (i.e. in the light and 

in the dark) the half-maximal rate of phosphorylation is observed at about 0.5 mM ATP, 

while the maximal rate of phosphorylation (Vmax) is lowered with more than 50 % in the 

presence of saturating amounts of blue light (figure 5C). We do not refer to Km values here 

because under both conditions the rate of phosphorylation appears to be dependent on the 

nucleotide concentration in a slightly sigmoidal way, which may well be due to allosteric 

regulation of the kinase activity. This latter point, however, was not further investigated 
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because of the relatively large error in the measurements of the rate of phosphorylation. In 

contrast to previously presented results in the case of the C11 construct it was possible to 

observe significant light-stimulation of kinase activity (see table 2 and figure 6). 

 

Figure 6. Effect of illumination on the auto-phosphorylation of the C11 LOVSln1HKR1 fusion 
protein in the presence of 1mM of ATP. Error bars indicate standard deviations calculated 
from two independent biological experiments. If the error bar is not visible it means it is 
smaller than the corresponding symbol. 

 

 

 

3.4 Discussion 

The fusion proteins described in this study of which the activity can be modulated by blue-

light illumination were designed following work reported by the group of Moffat, Möglich 

and co-workers [4, 7, 24]. Their approach is based on the identification of the boundaries of 

the independently folded domains in signal-transduction proteins like FixL, YtvA, etc., and 

of the helices linking them. These linker helices often form a coiled/coil tertiary structure in 

dimers of the corresponding signal transduction proteins. Coiled/coil structures, besides their 

α-helical nature, display a seven- (hepta-) amino acid repeat structure, with a hydrophobic 

side chain at each 4th- and 7th-position. [25] This repeat structure then provides a rationale 

for domain swapping to make new functionalities via fusion proteins. A light modulatable 

histidine kinase can then be constructed by swapping sequences within these linker domains 

in such a way that the stability of the independently folded domains is not affected by the 

swap. Therefore, the coiled/coil linker helices, identified in YtvA and in Sln1, were aligned 
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on the basis of the hepta-helical repeat motif that is identifiable in both of them (figures 2A, 

B). [3, 7] This alignment shows that the YtvA sequence, (directly) following the conserved 

DIT motif (amino acids #125 to 127, which are key to signal transduction within the YtvA 

protein (for review: see [26]) can be fused with a non-cognate kinase domain. The Sln1 kinase 

domain qualifies for such a swap in the region just upstream the phosphorylatable histidine 

of the kinase (i.e. amino acids # 512 to 540).  

Based on the above considerations we designed the C1 construct, in which the upstream 

sequences, including the linker helix of Sln1, are replaced by the LOV domain plus Jα helix 

from YtvA. Constructs C2, C5 and C6 instead have the LOV domain fused to the Sln1 kinase 

domain directly after the conserved DIT motive. They differ among each other in the length 

of the helical linker of the Sln1 domain (see table 2), which will have an influence on the 

total length of the coiled/coil structure. In the C8 construct the part contributed by YtvA has 

been extended with 6 amino acids, as an attempt to enhance the difference in kinase activity 

between light and dark, following Mӧglich’s design of the YF2 construct. [7]  

As in the C1 construct light-inhibition of kinase activity was observed, we then also tried 

to design constructs with light-stimulated kinase activity. Such light-stimulated kinase 

activity was e.g. reported for the YF constructs described in Mӧglich et al. [7] Their YF1 

construct is composed of the LOV domain from YtvA (#1 to 127) fused to the kinase domain 

of FixL (# 258 to 505), i.e. it derives its helical linker from FixL. We therefore first composed 

the triple-fusion protein C9, consisting of the LOV domain of YtvA (# 1 to 127), the linker 

helix of FixL (# 259 to 281) and the histidine kinase- plus response regulator domain from 

Sln1 (# 567 to 1221). Phosphorylation assays, however, showed that this construct did not 

display any measurable kinase activity (table 2). Two constructs were then designed, to 

conserve the sequence around the DIT motif of YtvA, and to expand it to the DITKQ motif. 

Accordingly, C10 was designed, and also C11, with the deletion of one amino acid 

downstream of the DITKQ motif (figure 2A). The TKQ motif was identified in the Sln1 

histidine kinase too and therefore the YtvA sequence was linked to the kinase domain with 

optimal conservation of this domain and the coiled/coil structure. Of these two constructs, 

indeed C11 shows considerable light-activation of kinase activity in the auto-phosphorylation 

assay (table 2).  

The results of tests of the in vivo activity if the C1 fusion kinase will be presented in Chapter 

4.  
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4 In vivo functioning of the hybrid light dependent yeast histidine protein kinase, 

Light-Oxygen-Voltage – (LOV)-Sln1, in Saccharomyces cerevisiae. 

 Bury AE, Hellingwerf KJ 

 

 

Abstract 
Helical alignment of the α-helical linker of the LOV (light-oxygen-voltage) domain of YtvA 
from Bacillus subtilis with the α-helical linker of the histidine-protein kinase domain of the 
Sln1 kinase of the phospho-relay system for osmoregulation of Saccharomyces cerevisiae 
has been used to construct a light-modulatable histidine protein kinase. The helical alignment 
was carried out with conservation of the complete Jα helix of YtvA, as well as of the 
phosphorylatable histidine residue of the Sln1 kinase, with conservation of the hepta-helical 
motive of coiled-coil structures, recognizable in the helices of the two separate, constituent, 
proteins. Introduction of the gene encoding this hybrid histidine protein kinase into cells of 
S. cerevisiae in which the endogenous Sln1 kinase had been deleted, allowed us to modulate 
gene expression in the yeast cells with (blue) light. This was first demonstrated via the light-
induced alteration of the expression level of the mannosyl-transferase Och1, via a 
translational-fusion approach. As expected, illumination decreased the expression level of 
Och1; the steady state decrease in saturating levels of blue light was about 40 %. To visualize 
the in vivo functionality of this light-dependent regulation system, we fused the green 
fluorescent protein (GFP) to another regulatory protein, Hog1, which is also responsive to 
the Sln1 kinase. Hog1 is phosphorylated by the MAP-kinase-kinase Pbs2, which in turn is 
under control of the Sln1 kinase, via the phosphoryl transfer domain Ypd1. Fluorescence 
microscopy was used to show that illumination of cells that contained the combination of the 
hybrid kinase and the Hog1::GFP fusion protein, led to a persistent increase in the level of 
nuclear accumulation of Hog1, in contrast to salt stress, which – as expected – showed the 
well-characterized transient response. The system described in this study will be valuable in 
future studies on the role of cytoplasmic diffusion in signal transduction in eukaryotic cells.  
 

 

 

 

 

A condensed version of this chapter has been published as: 
Bury A, Hellingwerf KJ. 2018 Design, characterization and in vivo functioning of a light-
dependent histidine protein kinase in the yeast Saccharomyces cerevisiae. AMB Express. 
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4.1 Introduction 

During the last decade of the previous century, progress in the dynamic resolution of protein 

structure, in the availability of genomic DNA sequence information, and in the synthetic 

biology of the heterologous production of complex holo-proteins, has brought our 

understanding of the molecular basis of cellular signal transduction networks down to the 

atomic level (see e.g. [1] ). This development was aided by the modular nature of many signal 

transduction proteins, which is particularly notable in the dominant type of prokaryotic signal 

transduction network, the ‘two-component regulatory system’, including its more complex 

variant, the ‘phosphorelay system’. [2, 3] In this development photosensory receptor proteins 

did play an important role because of the ease and accuracy with which these proteins can be 

(de)activated (for review see e.g. [4, 5]). Understanding the atomic basis of the structural and 

dynamic aspects of the transitions between the receptor- and the signaling state of signal 

transduction proteins then led to the development of rational and intuitive guidelines to 

combine functional (input/output) domains of signal transduction proteins into new 

functional chimera’s, as could be concluded from analyses of their performance both in vitro 

and in vivo. [6–8]  

These technical developments, and the derived improved insight, have led to the emergence 

of the interdisciplinary research field of ‘optogenetics’. [9–11] This field meanwhile has 

made radically new and very important contributions to the disciplines of both cell biology 

[12] and neurobiology. [13] Gradually, these developments now also start to impregnate the 

field of biotechnology, including the area of sustainability applications of ‘direct conversion’ 

[14] with cyanobacteria. [15, 16]  

Complete understanding of cellular signal transduction networks, however, not only 

requires understanding of the dynamics of the structural transitions within the protein 

components involved, but - particularly for those operating in the larger, i.e. mostly 

eukaryotic, cells – also resolution of the spatial dimension of such processes. This latter 

aspect is not only dictated by association/dissociation kinetics of the underlying 

physicochemical signals (e.g. an electric field or osmotic pressure), signaling molecules and 

signal-transmission- and output proteins, but also by the processes of classical- and/or 

anomalous diffusion of all these components, either in the cytoplasm or in the cytoplasmic 

membrane, with possibly additional effects of molecular crowding.  

To resolve (part of) these latter aspects, it would be of great value to have a signal-

transduction system available that can be triggered with (a flash of) visible light, and that 
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initiates relocation of a specific component of that signal transduction network in the cell, 

like e.g. between subcellular compartments. Here we report the in vivo testing of such a 

system. Our approach is based on the construction of a chimeric histidine protein kinase, 

composed of the light-oxygen-voltage, LOV, domain of the stressosome protein YtvA from 

Bacillus subtilis [17] as the signal input domain and the histidine-protein kinase domain of 

the Sln1 kinase [18] of a two-component regulatory system of the yeast Saccharomyces 

cerevisiae as the output domain, for relay of the (light) signal to the downstream components. 

The Sln1 kinase of S. cerevisiae is part of the osmostress signal transduction network of 

this yeast (for a brief overview: see figure 3, Introduction Chapter) and has the typical 

structure of a phospho-relay system. [19, 20] Its input kinase is located in the cytoplasmic 

membrane of yeast cells and able to convert signals derived from damage of components of 

their cell wall and of (a) signal(s) derived from osmotic stress, into changes in the level of 

phosphorylation of the cytoplasmic phosphoryl transfer domain, Ypd1. [21] The level of 

phosphorylation of Ypd1 modulates nuclear gene expression directly (e.g. of Skn7), and also 

indirectly - via the MAP kinase pathway of the Ssk system - through the shuttling of the 

transcriptional regulator Hog1 between the cytoplasmic and nuclear compartment. [22] Via 

analysis of the spatial distribution of fluorescent reporters in fixed Saccharomyces cells, 

sampled after triggering of either the natural- or an engineered LOV::Sln1-containing signal 

transduction network, we have been able to show the functionality of the designed chimeric 

light-dependent histidine protein kinase. 

 

4.2 Materials and methods 

4.2.1 Yeast strains, plasmids and cell growth.  

The starting strain ∆YLR113W was cultivated on YPD (1% yeast extract, 2% peptone, 2% 

dextrose) rich medium agar plates, followed by growth in YPD liquid medium, prior to the 

next steps: knock out of the SLN1 gene and transformation with selected plasmids. All yeast 

strains used in this study are a derivative of the BY4741 series, see Table 1. All cloning was 

carried out following the standard protocols. [23] Knock out strains were made by making 

use of homologous recombination. Primers with 50 bp homologous overlap where used to 

amplify the knock out cassette with a specific antibiotic resistance gene. Amplified constructs 

where transformed [24] into selected strains. For selection of the SLN1 knockout strain the 

minimal complete medium, SCM (2% dextrose, 2g of the specific dropout mix, and yeast 

nitrogen base with ammonium sulphate) with added nourseothricin sulphate (clonNAT) to a 
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final concentration 100 µg/ml was used. To select for the continued presence of the plasmids 

carrying the required customized version of the genes, minimal drop out media were used. 

All cells were incubated for growth at 30 °C.  

 Strains and plasmids 

Table 1: Strains and plasmids used in this investigation 

Strain or plasmid Characteristics Source or reference 
Saccharomyces cerevisiae  
BY4741 MATa his3∆1 leu2∆0 met15∆0 ura3∆0 EUROSCARF 
hog1∆  BY4741 ylr113w::kanMX4 EUROSCARF 

AB004  BY4741 yil147c::clonNAT, ylr113w::kanMX4, 
pRS325ActC1LEU, pRS416-HOG1::GFP 

This study 

AB005  BY4741 ylr113w::kanMX4, pRS416-HOG1::GFP This study 
AB006 BY4741 yil147c::clonNAT, pRS325ActC1LEU, 

pRS314-OCH1(-336 to =26)-lacZ 
This study 

AB007 BY4741 pRS314-OCH1(-336 to =26)-lacZ This study 
Plasmids 
pRS325ActC1LEU pRS325II derivate, ACT1 promoter, CYC1 

terminator 
This study 

pRS416-HOG1::GFP URA3 P. Silver [21] 
pJL1416 pRS314-OCH1(-336 to +26)-lacZ, URA3 J.S. Fassler [22] 

 

 Microscopy 

Log-phase cultures of the yeast AB005 and AB004 strains, expressing a Hog1::GFP and C1 

fusion protein, see table 1 [21], were fixed with 0.37% (v/v) p-formaldehyde for 1 hour, 

washed, re-suspended in phosphate-buffered saline (PBS) pH = 7, and stained with 0.5 µg 

4’,6’-diamidino-phenylindole (DAPI) per ml culture to visualize the nuclei of the cells. The 

yeast cells were observed using a Nikon Eclipse Ti inverted microscope (Shinagawa, Tokyo, 

Japan), equipped with a 100x objective. Fluorescence emission signals of GFP and DAPI 

were generated using a Lumencor (Beaverton, United States) fluorescent light source and 

detected at 470 nm and 395 nm, respectively. Images were captured using a Hamamatsu 

digital camera C11440 (Hamamatsu City, Japan) driven by the Nikon elements AR 4.50.001 

software (Shinagawa, Tokyo, Japan). All pictures of cells with a specific fluorophore were 

acquired using the same exposure time: 100 ms for DAPI and 400 ms for GFP. The pictures 

were then analyzed using ImageJ software [25] without further manipulation. For analysis, 

images were exported as .tiff files for import into ImageJ software. For quantitative analysis 

of the microscopy data, pictures of cells with DAPI-stained nuclei, and with Hog1::GFP 

expression, were overlapped. Cells with nuclear- and cytoplasmic localization (only cells 

with > 1.5-fold nuclear accumulation were counted as positive; by definition the others as 
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cells with cytoplasmic localization) of the Hog1::GFP reporter protein were counted and the 

percentage of cells with nuclear localization was calculated and plotted. 

 

 Activation of the Sln1 kinase domain in vivo with (stress) signals 

For the application of the standardized osmotic stress signal, 0.4 M NaCl (final concentration) 

was added to 2 ml cell suspension, growing exponentially in minimal selection medium, at 

30 °C, on a rotary shaker in 12 ml glass tubes. [20] Light activation of the hybrid LOV-kinase 

protein was achieved with blue Light Emitting Diodes (LEDs) with ʎmax = 464 nm, with an 

incident light intensity of 200 µEinstein·m2·s-1. Cells were fixed with 0.37% (v/v) p-

formaldehyde and rapidly frozen for further analysis. [20] 

 

 Measurement of the level of expression of reporter enzyme via β-Galactosidase 

activity 

Overnight cultures of recombinant strains of Saccharomyces cerevisiae were grown in YPD 

medium in the dark, starting from a single colony from a plate of the minimal selection 

medium. The overnight cultures were diluted to OD600 = 0.05 on a Biochrom WPA Lightwave 

II spectrophotometer and allowed to grow in the dark or in the light for 6 hours. Dark were 

wrapped tightly in tinfoil. Dark samples were taken with minimal red background light 

intensity ([26]; see above). Samples from illuminated cultures were taken under constant 

illumination with blue Light Emitting Diodes (LEDs; ʎmax = 464 nm) with an incident 

intensity of 200 µEinstein·m2·s-1. Samples were immediately transferred to an ice/water 

mixture and immediately flash frozen with liquid nitrogen for subsequent storage at -80 °C. 

β-Galactosidase activity was measured in the cells from all samples and expressed in Miller 

units, based on the average value of at least 8 independently isolated transformants according 

to reference [27].l 

 

4.3 Results 

 In vivo functionality of the hybrid kinase in the Skn7 signal transduction 

pathway 

As outlined in the Introduction, the Sln1 phospho-relay system has two output pathways, that 

target the Hog1 and the Skn7 nuclear transcriptional regulator, respectively. The Skn7 

pathway is the most direct one of these two because Ypd1 directly phosphorylates Skn7. [22] 
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We therefore first tested whether or not illumination, via the hybrid kinase C1, could elicit 

changes in the activity of Skn7. A suitable read-out of the latter is the level of expression of 

the mannosyl-transferase Och1, via the reporter enzyme β-galactosidase, fused to the former. 

[18, 22] The results summarized in figure 1 clearly show that this is indeed the case: 

Switching on saturating intensities of blue light decreases this expression level about two-

fold and a decrease is indeed expected as illumination decreases the rate of phosphorylation 

of the C1 kinase. It is of note that the replacement of the native Sln1 kinase by C1 does give 

rise to a doubling of the level of Och1 expression, but this is presumably due to the de-

regulated expression and/or activity of the truncated kinase domain. The additional control 

experiment of illuminating wild type cells, clearly shows that without the introduction of the 

fused LOV domain-containing protein in this assay S. cerevisiae does not respond to light 

(figure 1). 

 

 

 

 

Figure 1. Effect of illumination on the Skn7-dependent expression of the Och1-lacZ transcriptional 
fusion (i.e. the mannosyl-transferase gene fused with the reading frame encoding β-galactosidase) 
in a Saccharomyces cerevisiae strain with the wild-type SLN1 gene – the AB007 strain, and in a 
strain with SLN1 replaced by the gene encoding the C1-histidine kinase fusion protein – the AB006 
strain. Cells were incubated either in the presence of light (white bars) or in the dark (grey bars). 
The level of expression of the Och1-lacZ fusion is deduced from the specific β-galactosidase 
activity, expressed in Miller units. Error bars indicate standard deviations calculated from three 
independent biological experiments. 
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 In vivo functionality of the hybrid C1 kinase in the HOG1 pathway: Observation 

of light-induced nuclear shuttling 

For this test we used two S. cerevisiae strains in which the endogenous Sln1 kinase and the 

Hog1 regulator protein had been genetically deleted and were replaced by the C1 hybrid 

kinase and a translational Hog1::GFP fusion protein, (strain AB005 and AB004 table 1),  

respectively. The first one of these two strains had only the Hog1 gene replaced, and the 

second strain, both genes. With the resulting two strains stimulus/response experiments were 

carried out: With the AB005 strain by eliciting an osmostress response, and in the AB004 

strain, which now is insensitive to osmostress, the occurrence of a light-response was tested 

(figures 2 and 3). Through fluorescence microscopy of glutaraldehyde-fixed cells at emission 

and excitation wavelengths suitable for the analysis of their GFP- and DAPI content, 

respectively, we then analyzed the subcellular distribution of these two fluorophores, in 

which of course DAPI reveals the presence of the nuclear compartment, while GFP can be 

present in both the nucleus and the cytosol. Figure 2 then shows the well-known response of 

the Hog1 protein in S. cerevisiae upon osmostress. [28] An almost equal distribution of the 

Hog1::GFP fusion protein over the two compartments prior to the stress, followed by a rapid 

(i.e. within a few minutes) and significant accumulation in the nucleus after this stress. Panel 

II of figure 2 shows that the same response, i.e. Hog1 accumulation in the nucleus, can be 

elicited by exposing the yeast cells to saturating intensities of blue light of the yeast strain in 

which next to Hog1, also the Sln1 kinase has been eliminated and replaced by the C1 hybrid 

kinase. 
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Figure 2. Representative picture of the subcellular localization of the Hog1::GFP fusion protein in 
response to changes in osmotic pressure (panel I) and after illumination (panel II) of the cells with 
blue light. Activation of Sln1 signalling was initiated with: (a) a change in osmotic pressure (panel 
I), elicited by addition of 0.4 M NaCl (final concentration) to the cell suspension, and (b) 
illumination (panel II) by exposure of the cells to blue light (200 µE incident intensity, 450 nm 
LED light). The strain used for panel I was AB005 and for panel II AB004, for details see table1.  

 

 

In figure 3 a quantitative analysis of the dynamics of these two responses (i.e. to 

osmostress and to illumination) is presented. The osmostress response shows the typical 

transient response with maximally almost two-fold accumulation of the Hog1::GFP fusion 

protein in the nucleus after around 5 minutes, and a full relaxation of this concentration 

gradient at long timescales (e.g. 30 minutes; compare ref [28]).  
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Figure 3. Nucleo-cytoplasmic redistribution of the Hog1::GFP fusion protein after a salt stress 
(panel A) and after illumination of the cells (panel B). The salt stress (panel A) was applied by 
addition of 0.4 M NaCl (final concentration) to the cell suspension. In panel B the results are shown 
of exposure of the cell suspension to blue light (200 µE incident intensity, 450 nm LED light). 
Samples were taken 0, 2, 5, 10, 20, 30 and 60 minutes after initiation of the experiment. White bars 
represent the yeast strain with the C1 histidine kinase fusion protein (AB004), and grey bars 
represent the yeast strain with the native Sln1 histidine kinase (AB005). Error bars represent the 
standard deviation calculated from three independent experiments, 150 cells were counted for each 
time point.  

 

 

The light-induced response in the strain carrying the hybrid C1 kinase (AB004), in 

contrast, shows the expected persistent response of a light-activatable system in continuous 

light, but appears to take more time to develop. More detailed analysis, at the level of the 

individual cells (figure 4) shows that the nuclear accumulation of the fluorescent reporter (i.e. 

Hog1) in selected cells can increase up to 4-fold (with salt stress) and slightly less (i.e. up to 

three-fold) with illumination. Consistent with the results displayed in figure 2, also in figure 

3 we see the same slower kinetics with light activation. An additionally significant effect 

visible from this figure is the fact that the functionality of both signal transduction systems 

depends on the level of expression of the fluorescently labelled Hog1 protein: If the 

expression level of this protein is increased more than five-fold over minimum expression 

levels, neither the light- nor and stress-induced nuclear accumulation are detectable anymore. 
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Figure 4. Image analysis of individual S. cerevisiae cells exposed to signal transfer that induces 
nuclear shuttling of a Hog1::GFP fusion protein. Representation of the distribution in the cells of 
the Hog1::GFP protein against the intensity of the Hog1::GFP fluorescence in the yeast cells before 
(T0) and at two time points after salt stress with 0.4 M NaCl (final concentration), panel A, and 
before and after exposure of the cells to blue light (200 µEinstein·m2·s-1 intensity, 450 nm LED 
light), panel B, after 2 and 5 minutes. In – fluorescence intensity in the nucleus, Ic – fluorescence 
intensity in the cytoplasm. 

 

 

 

4.4 Discussion 

Beyond the difference in light sensitivity – the main purpose of the experiment – of the two 

strains reported on in figure 1, it is clear that the strain with the truncated Sln1 fusion protein 

shows considerably higher activity in the dark than the unperturbed wild type system. Two 

possible underlying differences can explain this latter aspect: (i) a higher intrinsic kinase 

activity of the LOV::Sln1 fusion construct than the authentic Sln1 kinase and (ii) a higher 

expression level of the fusion kinase. As the kinase is not expressed from its natural promoter, 

but from the ACT1 promoter, a rather strong, mostly constitutive (but glucose repressible) 

promoter [29, 30] we think that the fusion kinase may be present at higher concentration than 

Sln1. Nevertheless, a higher intrinsic activity may also play a role as a similar activation has 

also been observed in some bacterial two-component kinases. [31, 32] 

Absolute numbers, and by inference concentrations, of the molecular components of a 

signal transduction chain are important, particularly in the two-component systems, e.g. 

because most kinases in the absence of their cognate signal, display considerable phosphatase 

activity. The approximately 10 to 100-fold molar excess of response regulator over kinase in 

most bacterial two-component systems testifies to this (e.g. [33, 34]). The results presented 

in figure 2 show that both in the natural response system to osmotic stress and in the light 
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response, mediated by the hybrid kinase, the Hog1/kinase molar ratio is of crucial importance 

too. If the concentration of the Hog1::GFP reporter protein is increased from its basal level 

(in cells that presumably contain only a single copy of the expression plasmid) to more than 

4 to 5-fold higher, the signal transduction system seems oversaturated with Hog1, and a 

response to both stimuli is no longer visible. The unperturbed Sln1 signal transduction system 

functions with 656 and 6780 molecules per cell of Sln1 kinase and the Hog1 transducer, 

respectively. [35] This corresponds to ~25 nM and 0.5 µM, respectively in non-stimulated 

cells. Analysis of the average cellular concentration of the Hog1::GFP fusion protein with 

fluorescence-correlation microscopy (M. Hink et al., unpublished observation; for 

methodology see [36]) suggests that its abundance – at the basal, pre-stimulus, level – is 0.15 

(+/- 0.06; n = 41) µM, i.e. slightly lower but still comparable to that of the Hog1 protein in 

the wild type, in spite of the differences in promoters used. These results suggest that the 

concentration of the Hog1 protein in the Sln1 signal transduction pathway is such that 

overexpression of Hog1 above physiological levels will make the Sln1 signal transduction 

pathway non-functional. 

The results shown in figure 3 and figure 4 suggest that the on-dynamics of the light 

response is slower than that of the osmostress response. If so, this may have several causes, 

like a lower degree of kinase modulation by light, or a suboptimal expression ratio of the 

proteins composing the light-responsive signal transduction pathway. Furthermore, the open 

bars in figure 3, panel A, do seem to show a very slight remaining stimulation of Hog1 

accumulation in the nucleus upon stressing the strain that expresses the light-sensitive, 

truncated variant of Sln1. This can be explained by weak spill-over of signals from the 

osmostress-responsive Sho1 system of S. cerevisiae into the Sln1 system at the level of the 

Ssk1 MAP kinase pathway. [37] 

The hybrid kinase described in this study is an excellent candidate for future studies on 

quantitation of the consequences of e.g. localized kinase activation in the cytoplasm, for the 

dynamics and amplitude of the overall cellular response. This will allow further fine-tuning, 

e.g. with respect to the role of (anomalous) cytoplasmic diffusion, of systems biology models 

developed to describe the osmostress response in S. cerevisiae. [38, 39] Various super-

resolution microscopy techniques are available to facilitate such experiments (e.g. [40, 41]). 

Also the use of specific subcellular localization tags and/or interaction domains can be 

exploited for this. [41] 
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5  Analysis of response regulator phosphorylation with 'Phos-tag' SDS-PAGE. 

Bury AE, Arents J, Hellingwerf KJ 

 

 

Abstract: 
Because of the inherent instability of the phospho-di-ester bond between a phosphoryl group 
and the side chain of aspartic acid, it has been very difficult to monitor the degree of 
phosphorylation of response regulators of two-component systems, particularly in the in vivo 
environment. In 2006 Kinoshita et al. introduced a new method, the so-called ‘Phos-tag’ 
method, to monitor phosphorylation of proteins, which later turned out also to be suited to 
report the level of phosphorylation of both histidine kinases and response regulators of two-
component systems. In this chapter it is described that, despite many attempts, we have not 
been able to use this method for analysis of the level of phosphorylation of the two response 
regulators of the Sln1 system, presumably because of a lack of separation of their 
phosphorylated- and non-phosphorylated form and/or the very unstable nature of the 
phosphorylated form of these response regulators. During the past few years, a large number 
of papers has reported on the use of this Phos-tag method for monitoring the level of 
phosphorylation of an ever-increasing number of response regulators (and also for resolving 
the pathway of phosphoryl flux through the cognate two-component system). Significantly, 
however, the latter systems do not include any example of a response regulator derived from 
a eukaryotic organism. In the discussion paragraph we try to rationalize these observations. 
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5.1 Introduction 

Protein phosphorylation is utilized by all living organisms, to control one or more of a wide 

range of cellular activities that include signal transduction, apoptosis, gene expression, cell 

cycle progression, cytoskeletal regulation and energy metabolism. [1–3] Protein 

phosphorylation is known to occur on the side chain of nine different amino acids (i.e.: Ser, 

Thr, Tyr, His, Lys, Arg, Asp, Glu and Cys). [4] Of these, phosphoserine, phosphothreonine, 

and phosphotyrosine are well-known for their involvement in signal transduction in higher 

eukaryotes by protein kinases. De-regulation of these kinases has been linked to many 

diseases, including cancer. [4, 5] 

Here we focus on the phosphorylation of the histidine- and particularly the aspartate side 

chain, i.e. the phosphorylation sites relevant for two component systems, including the 

multicomponent phosphorelay signaling pathways, that are common in bacteria, fungi, and 

plants. [3, 6] Monitoring the level of phosphorylation of the subsequent protein components 

in the various two component signal transduction pathways, is crucial for a basic 

understanding of signal transduction in prokaryotic, as well as in eukaryotic cells. Histidine 

protein kinases autophosphorylate their conserved histidine in response to a specific stimulus 

(e.g. binding of an organic acid, absorption of a photon, etc. [3, 7] This event is followed by 

the intra- or intermolecular transfer of the phosphoryl group [7] to the conserved aspartate of 

the cognate response regulator (RR) protein or receiver domain (for convenience here we 

ignore ‘cross-talk’). [3, 8, 9] The stability of phosphohistidines and phosphoaspartates, 

however, relative to other phosphorylated amino acids, is very low. [10] This makes it 

difficult to quantitatively assay the amount of these compounds present, let alone to record 

the flow of phosphoryl groups through a two component signal transduction pathway. [5, 11, 

12] Phosphohistidines are particularly labile under acidic conditions, in contrast to the 

phospho-hydroxy amino acids, phosphoserine and phosphothreonine, which are stable even 

in a strongly acidic environment. In the presence of 1 M HCl at 100 oC the half-live of 

phosphoserine and phosphothreonine is ~18 h, while that of phosphotyrosine is about 5 h. 

[13] The phosphohistidines 1-phosphohistidine and 3-phosphohistidine have half-lives of 18 

and 25 s, respectively, in 1 M HCl at 49 oC. [14] Phosphoaspartates are even less stable than 

the phosphohistidines under acidic conditions. At neutral conditions, i.e. in the pH range from 

4 to 10 and at 30 oC, the half-time of phosphoaspartate hydrolysis is about 40 min. Lowering 

the temperature to 15 ᵒC increases this half-time to a few hours. [15] 
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 Detection of the level of phosphorylation of response regulators (RR~P levels) 

Currently available methods for the detection of the level of phosphorylation of response 

regulators include both direct methods, based on the use of radiolabelled phosphate, as well 

as indirect methods, like those in which the difference in migration caused by 

phosphorylation is analysed with chromatography and/or electrophoresis. [16, 17] In contrast 

to the substrates/products of the eukaryotic Ser/Thr/Tyr kinases, so far for phospho-aspartate 

no specific antibodies are available, presumably due to the absence of suitable analogues that 

can be used as a hapten/antigen. The phosphor-aspartate bond also does not survive in the 

gas phase of a mass spectrometer. [12] The indirect methods referred to above include 

methods ranging from the detection of phosphorylation via induction of changes in the 

intrinsic fluorescence of a target protein, to measurements of the swimming speed of E. coli. 

[18, 19] The direct method with radiolabelled phosphate most often uses the enzymatic 

reaction of the cognate histidine kinase to transfer radiolabelled phosphoryl groups from [γ-

32P]-ATP, via its conserved histidine side chain, to the aspartate of the response regulators. 

[20] However, also direct labelling with radiolabelled acetyl-phosphate and/or phosphor-

amidate can be used for phosphorylation of the response regulators. [18] 

 

 Problems in assaying RR~P levels 

The role of phosphoaspartate in a two component signal transduction pathway is to relay the 

input signal, via a phosphorylated histidine (that acts as the phosphoryl donor), to an output 

domain/protein, like a transcription factor, to initiate transcription of the appropriate gene(s). 

[7, 20] The response regulators are phosphorylated at aspartate side chains (but note that 

additional post-translational modifications also occur [22]). The acyl-phosphate bond in 

phosphoaspartates rapidly hydrolyses spontaneously, under both acidic and alkaline 

conditions, with a maximal half-live of about 6 h under neutral conditions (see also above).  

In the first few years after discovery of the two component systems, only indirect methods 

were used - based mostly on the detection of the rate of hydrolysis of the phosphoryl donor - 

to proof that the prototype response regulator, CheY, is phosphorylated at a key aspartate side 

chain. [6] The aspartate-phosphorylated form of a response regulator often modulates (i.e. 

effects positively or negatively) transcription [21] and this output response can be ended by 

auto phosphatase activity of the cognate histidine kinase and/or the response regulator 

protein, or by an additional (cognate) phosphatase enzyme in the system. [15, 23, 24] Beyond 

this, the high rate of non-enzymatic hydrolysis of the phosphorylated aspartate allows for 
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rapid switching off of the output of a signalling pathway, depending on the needs of the cell. 

[11, 21] 

 The “Phos-tag” method 

In 2006, Prof. Koike's group (Hiroshima University) reported that a specific di-nuclear metal 

complex (i.e., the 1,3-bis[bis(pyridin-2-ylmethyl) amino]propan-2-olato di-zinc(II) complex) 

can act, in aqueous solutions and at neutral pH, as a selective phosphate-binding molecule. 

Hence this complex is also referred to as Phos-tag™. Significantly, Phos-tag™ also has 

significant affinity for phosphate ions that carry large ligands. [25, 26] Based on this 

characteristic, a method was developed to detect and quantitate the amount of phosphorylated 

proteins via the phosphorylation-triggered shift in their electrophoretic mobility during 

electrophoresis in poly-acrylamide gels that contain the dinuclear Mn2+/Zn2+ complex, 

covalently linked to the poly-acrylamide. [25] This method is loosely referred to as the 'Phos-

tag' gel/method. The principle behind this method is thus that phosphorylated proteins move 

slower in Phos-tag SDS-PAGE than do the corresponding non-phosphorylated molecules, 

because the phosphoryl group interacts with the Mn2+(Zn2+) Phos-tag ligand in the gel. [27] 

Triggered by this exciting finding, a large range of subsequent studies have applied the 

Phos-tag method for the detection of the level of phosphorylation of the stably 

phosphorylated components of eukaryotic signal transduction proteins, often even with the 

resolution of multiple phosphorylation sites (see e.g. [28, 29]). This method was subsequently 

also applied in the analysis of the level of phosphorylation of the components of bacterial 

two component systems, [24] be it that this latter approach, however, particularly for the 

response regulators, was not always successful (see e.g. [30]).  

In this study, the light-modulated phosphoryl flow through a designed, chimaeric 

histidine protein kinase is directed towards the response regulators Ssk1 and Skn7 from S. 

cerevisiae. It would be of interest, therefore, to monitor the level of phosphorylation of these 

response regulators both in vitro and in vivo. However, it is relevant to note that so far, the 

Phos-tag method has not been reported to be successfully applied in the analysis of the level 

of phosphorylation of eukaryotic response regulators (yet). Here we present our attempts 

towards this and discuss possible reasons why this approach so far has failed to provide 

positive results. 
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5.2 Materials and methods.  

 Preparation of the recombinant proteins 

To construct plasmids for overexpression of the required proteins, the corresponding DNA 

fragments were prepared by PCR, using genomic DNA of S. cerevisae. An ArcA 

overexpression vector (pETArcA_1) was a gift from Dr. JWA van Beilen [31]. UhpA and 

Rcp1 overexpression vectors were obtained from the plasmid collection of the Molecular 

Microbial Physiology Group (University of Amsterdam). Sequences of primers used in this 

study are listed in table 1. After digestion with the proper restriction enzyme(s) (indicated in 

italics, see table 1), DNA fragments were ligated into either the pET21 or pQE30 

overexpression vector. Each constructed plasmid was transferred into E. coli Bl21(DE3) and 

E. coli M15(pREP4), respectively. The host cells were cultivated in the Luria-Bertani 

medium at 37 ᵒC, when OD600 of the culture reached 0.6, and the target protein 

overexpression was induced with IPTG. At this point the temperature was lowered to room 

temperature and growth was allowed to continue with vigorous shaking for approximately 

16 hours in darkness. Then cells were harvested by centrifugation and were lysed by 

sonication in 50 mM Tris-HCl buffer pH = 8, plus 10 mM NaCl, and an EDTA-free protease 

inhibitor cocktail (complete, EDTA-free, provided by Roche). The C-terminally tagged 

proteins were purified using nickel affinity chromatography on a HisTrap FF column (GE 

Healthcare, 5 mL column) (Qiagen, Germany). The list of proteins used in this study is 

presented in table 2. 
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Table 1. Sequences of primers used in this study. 

Primer name Primer sequence 

pQE30Ypd1FW 5’cccggatccatggctagttttcaatcatttgggata 3’ 

pQE30Ypd1RV 5’ggggtcgacttataggtttgtgttgtaata 3’ 

pQE30skn7FW 5’ cccggatccatgagcttttccaccat 3’ 

pQE30skn7RV 5’gggaagcttttatgatagctggttttcttg 3 

pQE30ssk1FW 5’cccgcatgcatgctcaattctgcgtta 3’ 

pQE30ssk1RV 5’gggaagcttttacaattctatttgagtggg 3’ 

pET28sln1pHKRV 5’gggctcgagcgatgcttttagcaacactaaacttga 3’ 

pET28Sln1pRecFW 5’ccccatatgaatgaaacaagtgtcaaaattttggttg3’ 

pET28sskn7FW 5’ccccatatgagcttttccaccataaatagcaacg3’ 

pET28sskn7RecFW 5’ccccatatgagcctaacaccaaatgctcaaaataacac3’ 

pET28sskn7RV 5’ gggctcgagctgatagctggttttcttgaagtgtag 3’ 

pET28ssk1FW 5’ccccatatgctcaattctgcgttactgtgg3’ 

pET28sskRecFW 5’ ccccatatggattttcgaaataaaccagtggcc3’ 

pET28ssk1RV 5’ gggctcgagccaattctatttgagtgggcgag 3’ 

pET28sln1pHKFW 5’ccccatatgcaacattatgctcttctagaagaaagag3’ 

Note: primers sequences in italics represent a specific cleavage sites for a restriction enzyme.  

 

 

 

 

Table 2. List of proteins used in the detection of their phosphorylation level, upon in vitro 
phosphorylation, with the Phos-tag electrophoresis method. 

Construct Protein size kDa Ref 
Sln1pHKRec 65 This study 
Sln1pHK 43 This study 
Sln1pRec 14 This study 
C1 80 This study 
C2 81 This study 
Skn7 62 This study 
Skn7Rec 26 This study 
Ssk1 71 This study 
Ssk1Rec 32 This study 
Ypd1 17 This study 

ArcA 21 [31] 
UhpA 27 [12] 
Rcp1 17 W. Laan, unpublished 
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 Preparation of the phosphorylated form of the proteins 

For all proteins, the reaction mixture used for phosphorylation was composed of 30 mM 

HEPES buffer pH 7.5, 10 mM MgCl2, 25 mM acetyl phosphate and 10% (v/v) glycerol. 

Proteins (0.2 mg/ml) were incubated in 50 µL of a phosphorylation reaction mix at 37 ᵒC. 

[32] Reactions were stopped at the indicated times by the addition of 12.5 µl of 4-fold 

concentrated protein loading buffer (0.25 M Tris.HCl, pH = 8.8 % (w/v) SDS, 40 % (v/v) 

glycerol, 40 mM EDTA, 0.008 % (w/v) bromophenol blue and 4 mM β-mercapto-ethanol.). 

The samples were placed on ice, without prior boiling, until separation by SDS-

polyacrylamide gel electrophoresis. [33–35] The phosphorylation level of the proteins used 

in this experiment was checked with [γ-32P]-ATP (data not shown). 

 

 Phos-tag SDS PAGE 

Electrophoresis was performed in 0.75 mm thick 10% (w/v) acrylamide separating gels, in 

combination with 5% stacking gels. Phos-tag acrylamide, at a concentration of 25 or 50 µM, 

and the two equivalents of Mn or Zn ions, were added to the separating gel prior to 

polymerization. [25] Electrophoresis was routinely carried out at the room temperature. In 

selected experiments the electrophoresis tank was placed in ice to prevent heating of the 

electrophoresis buffer and gels. Standard electrophoresis was carried out at 40 V for 15 

minutes, followed by 140 V for 50 minutes. Modified procedures with lower voltage (80 – 

100 V), to minimize heat generation during electrophoresis and to obtain better separation of 

the proteins, were also tested. Following electrophoresis, the gels were stained overnight with 

the blue stain solution from Fermentas at 4 ᵒC and de-stained with Millipore water at room 

temperature. 

 

5.3 Results 

 Sln1 pathway components used for the in vitro phosphorylation 

All the components of the Sln1 pathway were cloned and overexpressed in functional form, 

based on published procedures [34] and are listed in the table 2. Sln1 overexpression vectors 

were prepared in 3 forms: (i) the full length protein, (ii) the truncated protein consisting of 

histidine kinase- and response regulator domain and (iii) only the response regulator domain. 

Similarly, the two response regulators from Sln1 two component signal transduction pathway 

(i.e. Ssk1P and Skn7P) were overexpressed both as a full length-, and as a receiver-domain 
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truncated protein. [34]  

 

 Results of the phosphorylation reaction 

Phosphorylation reactions were carried out under standard conditions [34, 35] (i.e. with 32P 

detection), and their results were checked with Phos-tag SDS PAGE. Simultaneously ArcA, 

which is the response regulator from the ArcBA pathway for detection of “electron-acceptor 

availability” from Escherichia coli (see e.g. [31]), was used as the control for a 

phosphorylated response regulator. Despite many efforts, we have not been able to detect 

protein bands on the Phos-tag gels that could have represented the phosphorylated form of 

any of these proteins, except for the control protein ArcA~P. For the latter protein, after 

electrophoresis on Phos-tag SDS PAGE, two bands were clearly separated: one 

corresponding to the phosphorylated- and one to the non-phosphorylated form of ArcA (see 

figure 1, lane 15). Phos-tag- and regular SDS-PAGE gels with lanes separately containing all 

the components of the Sln1 pathway, as well as ArcA, are presented in this figure 1. 

 

 

Figure 1. Results of the phosphorylation reaction of the components of the Sln1 pathway, as tested 

with the Phos-tag method. Acetyl phosphate (AcP) and ATP were used as phosphoryl donors. ArcA 

was used as the control response regulator. Panel 1 shows an SDS gel without the Phos-tag compound 

added, panel 2 shows an SDS gel with the added Phos-tag compound. 
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The initial event in Sln1 signaling is signal-triggered autophosphorylation of its kinase 

domain. It can therefore not be excluded that the Sln1HK- and Sln1Rec domain, as well as 

other components of the Sln1 pathway might be overexpressed (even in E. coli) already in 

their phosphorylated form. That then might explain the difficulties in finding both forms of 

these proteins (i.e. the phosphorylated- and the non-phosphorylated form) in the Phos-tag 

gels. To investigate this possibility, we incubated samples, containing an appropriate protein, 

with alkaline phosphatase. The dephosphorylation buffer that we used contained: 0.1 M Tris 

HCl pH 8.0, 0.05 M MgCl2, 1 M KCl, and 1 U alkaline phosphatase. Samples were incubated 

for 1 hour at 37°C, and the phosphatase reaction was stopped by mixing a sample with the 

protein loading buffer for gel electrophoresis. As a control reaction, ArcA was first 

phosphorylated, after which phosphorylated ArcA was dephosphorylated with alkaline 

phosphatase. This control confirmed that alkaline phosphatase fully dephosphorylated the 

proteins tested (data not shown). In the lanes with alkaline phosphatase, the specific band 

representing a protein with a size of around 45 kDa, is the alkaline phosphatase. Line 2 

doesn’t contain the alkaline phosphatase and the band corresponding to 45 kDa is a protein 

co-purifying with the SlnHK.  It was not possible, however, to observe any shift in the relative 

mobility (i.e. Rf value) of any of the Sln1 components in the Phos-tag gels in samples with 

and without alkaline phosphatase (figure 2). 

 

 

Figure 2. Results of the in vitro dephosphorylation of the components of the Sln1 two-component 
transduction pathway. Shown is a picture of the SDS gel with the added Phos-tag compound. 
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 Use of the Phos-tag method for detection of other phosphorylated response 

regulators 

As the general literature meanwhile contained several reports in which it was reported that 

the level of phosphorylation of several components of two component systems can be 

resolved with the Phos-tag approach (see also the Discussion paragraph below) we decided 

to try the Phos-tag method on two additional response regulators available in the Department. 

For this the UhpA and Rcp1 response regulators ([12] and W. Laan, unpublished experiments) 

were overexpressed in E. coli and purified similarly to other proteins examined in this study 

(see Materials and Methods). Phosphorylation of these latter two response regulators, and of 

ArcA that was used again as a control for effective phosphorylation, was performed under 

the standard phosphorylation conditions (see Materials and Methods). Both Zn and Mn ions 

were used, in separate experiments, for the preparation of the Phos-tag gels. Nevertheless, 

there wasn’t any difference observable on Phos tag gels between the samples containing the 

phosphorylated and non-phosphorylated form of UhpA and Rcp1 on either of them, whereas 

for ArcA this was clearly possible. 

 

 

Figure 3. Results of the phosphorylation reaction of the UhpA, Rcp1 and ArcA. Acetyl phosphate was 

used as a phosphate group donor. ArcA was used as a control. Panel 1 shows the SDS gel with Zn 

ions and 50 µM Phos-tag compound added; panel 2 shows the SDS gel with Mn ions and the same 

amount of Phos-tag compound added. 
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5.4 Discussion.  

Since its inception, the Phos-tag method has successfully been used for the separation and/or 

identification of the phosphorylated form of phosphopeptides [36] and phosphoproteins. [27] 

Among the latter were various eukaryotic Ser/Thr/Tyr-kinases and even His-kinases. [23, 24] 

The method has even been applied as an SNP genotyping method. [28] As the decrease of 

the Rf of a phospho-protein in a Phos-tag SDS-PAGE gel increases with the number of 

phosphoryl groups, the method could even be used for the identification of the distinct serine 

phosphorylation states in ovalbumin. [37] 

More recently, literature has provided many examples of the successful application of the 

Phos-tag method to the analysis of the level of phosphorylation of both histidine kinases and 

of response regulators of (prokaryotic) two component systems (for a review see table 4 and 

the references therein). In combination with a specific antibody to the protein(s) to be 

analyzed, this forms a very powerful approach for the functional analyses of two component 

systems in vivo. Strikingly, not a single example of the application of the Phos-tag approach 

for the analysis of phosphorylation of a response regulator derived from a eukaryotic 

organism could be found in the scientific literature, which is consistent with the results 

reported above. In unpublished experiments from the lab of prof. A.H. West, Department of 

Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA, similar 

observations were made with respect to the Sln1 pathway components from S. cerevisiae 

(A.H. West, personal communication). An alignment of response regulators from prokaryotic 

and eukaryotic origin, however, has not revealed clear clues as to the explanation for this 

observation; the observation even may be coincidental. 

Not (even) all attempts to use the Phos-tag approach for prokaryotic response regulators 

were successful, however. Silversmith et al [30] report that their attempts to use of the Phos-

tag technology to detect the phosphorylation of response regulators failed. Likewise, we 

could not detect a change in Rf upon phosphorylation of UhpA and Rcp1. Presumably, the 

widely-shared habit among researchers of not reporting in the scientific literature on 

experiments with a negative outcome, may be a reason why not more examples of such failure 

have been reported. A delicate point in the Phos tag method is the incubation of the target 

protein(s) with SDS, prior to electrophoresis. Because of the instability of the 

phosphoaspartates this cannot be done at the conventional high (i.e. 100 oC) temperature. Use 

of much lower temperatures (i.e. from 0 oC to room temperature; see section 5.1.2 above), 

however, increases the risk that the (phosphorylated) protein is incompletely unfolded, which 
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might hamper separation. Future experiments could be aimed at attempts to compensate for 

this lowered temperature by using higher SDS concentrations in the sample buffer. Major 

hydrolysis of the phosphoryl bond in the response regulators during electrophoresis does not 

appear to be an issue, however, because in all publications the protein under study is always 

present only in two clearly separated fractions (‘bands’); a smear in between these two bands 

would be expected if hydrolysis during gel electrophoresis would be significant. Another 

problem may be the change in Rf elicited by response regulator phosphorylation. This change, 

even for a single phosphorylation event, is quite variable (see e.g. [38] and table 4), and 

therefore may be undetectably small for some proteins. 

Of the examples in which the Phos-tag method was used successfully, Barbieri and Stock 

employed it to characterize the level of phosphorylation of the Escherichia coli response 

regulator PhoB, both in vitro (i.e. by using purified protein), and in vivo, by analyzing lysates 

of cells grown under different conditions of induction of the PhoR/PhoB phosphate 

assimilation pathway. [20] Different conditions were used for the in vitro and in vivo tests. 

Gels were copolymerized with either 75 µM Phos-tag acrylamide and 150 µM MnCl2 for 

analysis of purified proteins or 25 µM Phos-tag acrylamide and 50 µM MnCl2 for analysis 

of PhoB from E. coli cell lysates. In both in vivo and in in vitro studies, detection of the 

phosphorylated and non-phosphorylated from of the PhoB was possible. [20] This goes in 

line with the general recommendation of the Phos-tag provider.[39] Lower concentrations of 

the Phos-tag should be use for the cell lysates (in vivo testing) when higher for purified 

proteins (in vitro testing). See table 3 for more examples of the concentration ranges of the 

Phos-tag component used in other studies for the separation of the phosphorylated response 

regulators.  
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Table 3 Examples of the conditions used for the detection of the phosphorylated form of the 
response regulators by Phos-tag method.  

Protein Phos-tag 
concentration  

Type and conc of 
metal ions 

In vitro or in vivo 
testing 

Ref 

CpxR 125 µM 250 µM MnCl2 In vitro [40] 
EnvZ 75 µM 150 µM MnCl2 In vitro [41] 
EvgA, BarA, ArcB 25 µM 50 µM MnCl2 In vitro [42] 
NtrX 35 µM 150 µM ZnCl2 In vitro [43] 
SypE, SypA 20 µM 40 µM MnCl2 In vitro [44] 
BvgA 75 µM 150 Zn(NO3)2 In vitro/in vivo [45] 
CpxR 35 µM 70 µM MnCl2 In vivo [40] 
PhoB 25 µM 50 µM MnCl2 In vivo [46] 
RsiB1 25 µM 50 µM MnCl2 In vivo [47] 
SypA 25 µM 50 µM MnCl2 In vivo [44] 
WalK/WalR 50 µM 100 µM MnCl2 In vivo [48] 

 

 

Kinoshita and co-workers showed that it is possible to detect the phosphorylated and non-

phosphporylated form of FixJ and its cognitive histidine kinase (FixL), using phos-tag SDS-

PAGE. They also showed that the phosphorylated form of FixJ was much less stable under 

acidic conditions than under neutral and alkaline conditions. [35] FixJ is a two-domain 

response regulator that transduces a signal from the histidine kinase FixL by transferring the 

phosphoryl group to Asp-54 of the N-terminal receiver domain of FixJ. The C-terminal DNA-

binding effector domain of FixJ is then activated, and FixJ increases expression of the target 

genes fixK and nifA. [37, 49]  

In recent years the very high resolving power of the Phos-tag approach has even allowed 

the resolution of the pathway of phosphoryl flux within dimers of phospho-relay type 

histidine kinases. [42, 50] A recent and complicating observation, however, was made on the 

ClpX protein of E. coli: This protein was separated into multiple bands on Phos-tag gels that 

was fully independent on phosphorylation of an amino acid side chain; [51] the mere presence 

of a Glu residue in the N-terminus was sufficient to elicit this phenomenon. This observation 

is another example so often encountered in the molecular sciences (e.g. with measurements 

of the proton motive force) that scientific claims ideally should be substantiated with at least 

two independent techniques. Labeling with γ-[32P]-ATP can be used as such an independent 

probe. 
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Table 4: Overview of reports of successful separation of the phosphorylated and non-
phosphorylated forms of components of two component systems with Phos-tag SDS PAGE 

HK RR Organism ∆Rf Reference 
WalK   Bacillus subtilis small separation [48] 
  WalR Bacillus subtilis   [52] 
  BvgA Bordetella pertussis rather large separation [53] 
  NtrX Brucella abortus very large separation [43] 
  PhyR Brucella abortus   [54] 
  NtrX Caulobacter crescentus  large variation [43] 
  RcsB Dickeya dadantii minimal separation [55] 
  CpxR Dickeya dadantii variable separation [40] 
CroS   Enterococcus faecalis   [56] 
  CroR Enterococcus faecalis   [56] 
 ArcA Escherichia coli  [57] 
  PhoB Escherichia coli   [20, 46, 58] 
  PhoP Escherichia coli small separation [59] 
  EvgA Escherichia coli actual Rf values provided [42, 50] 
EvgS   Escherichia coli   [42, 50] 
BarA   Escherichia coli   [42, 50] 
ArcB   Escherichia coli   [42, 50] 
EnvZ   Escherichia coli   [50] 
  MtrA Mycobacterium tuberculosis   [32] 
  FrzZ Myxococcus xanthus   [60] 
  RprY Porphyromonas gingivalis RR also acetylated [61] 
  OmpR Salmonella enterica small separation [41] 
  CtrA Sinorhizobium meliloti   [62] 
  DivK Sinorhizobium meliloti small relative to DivJ [62] 
DivJ   Sinorhizobium meliloti   [62] 
  RsbiB1 Sinorhizobium meliloti   [47] 
  CovR Streptococcus mutans effect of net charge [63] 
  VicR Streptococcus pneumonia   [52] 
  RpaA Synechococcus elongates  normal separation [64] 
  RpaB Synechococcus elongates  large separation [64] 
  DrrD Thermotoga maritima   [20] 
  RR468 Thermotoga maritima   [41] 
ThkA   Thermotoga maritima   [24] 
  DrrB Thermotoga maritima   [32] 
  DrrD Thermotoga maritima   [32] 
  SypA Vibrio fischeri   [44] 

Legend to Table 4: HK – histidine kinase domain, RR – response regulator domain, ∆Rf – shift in 
the relative mobility during the electrophoresis with the Phos-tag SDS PAGE. 
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As noted above, Asp phosphorylation levels are difficult to quantitate because of 

their high intrinsic instability. Few techniques are therefore suitable for such assays. 

One of them is the measurement of phosphorylation-induced changes in intrinsic 

tryptophan fluorescence. This method can of course be used only for those response 

regulators that contain a tryptophan of which the fluorescence emission is 

significantly perturbed by the phosphorylation event (which is not always observed). 

[10, 20] Yet other techniques allow in some cases detection of the phosphorylation of 

a specific protein: For some, HPLC analysis allows separation of the phosphorylated 

and non-phosphorylated form. But also with this approach not every phosphorylated 

protein can be separated from the non-phosphorylated form. The phosphorylation 

must induce a change in the solvent-accessible surface of the protein, enabling it to 

interact differently with the solid and liquid phase during HPLC chromatography. 

[20, 65] Therefore, it is unlikely that a single separation method will be found that 

will work for all response regulators, because the response regulators form a very 

large and quite heterogeneous family of proteins. Figure 4A shows an alignment of 

several response regulators of which the phosphorylated form was successfully 

detected with the Phos-tag method and a few that in our hands did not allow this 

detection. Based on this alignment we could not identify significant differences in the 

sequence of the listed response regulators of these two classes, that could suggest 

different behavior during the electrophoresis with the Phos-tag component. Also, a 

more extensive comparison of prokaryotic and eukaryotic response regulators (figure 

4B) did not reveal such features in the region surrounding the Asp phosphorylation 

site. The overall sequences from eukaryotic origin, however, may suggest that more 

limited accessibility of the phosphorylated Asp may be a factor that is at the basis of 

the failure to observe retardation of the phosphorylated form of the protein in that 

sub-class of eukaryotic response regulator proteins. 
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The primary goal of the work presented in this thesis was to provide a unique tool that may 

increase our quantitative understanding of the mechanism of cytoplasmic diffusion in signal 

transduction (networks) in eukaryotic cells, in the form of a chimeric, light-dependent, 

cytoplasmic signal transduction device in the yeast Saccharomyces cerevisiae. In chapter 2 

we further characterize the in vivo redox transitions of a flavin-containing photo-sensory 

receptor domain for such a chimeric device. Chapter 3 describes the design and functional 

characterization of the intended chimera: A light-sensitive histidine protein kinase, derived 

from the Sln1 kinase of S. cerevisiae, translationally fused in a coiled-coil motif with the 

LOV domain of the stressosome component YtvA from Bacillus subtilis. In chapter 4 we 

describe tests that show the in vivo functionality of this light-sensitive histidine protein 

kinase. This orthogonal photo-transduction system can be used to either study the activation 

or repression of gene expression in S. cerevisiae, depending on the specific promoter/gene 

combination that is used as a read-out. Furthermore, the device can also be used to initiate 

nuclear accumulation of a selected signal transduction protein with blue incident 

illumination. In chapter 5 we go into detail on one of the methods for functional testing of 

the phosphorylation of the histidine kinases and their cognate response regulator(s), the so-

called Phos-tag method. 

In each of these chapters the results obtained have been discussed in light of available 

information from the literature. Nevertheless, a few more general points were not addressed 

in these chapters and therefore they will be discussed below: 

 

 Robustness of the LOV domain as an advantage for this study  

A key aspect of metabolic processes can be summarized as ‘moving electrons between 

molecules’, with the simultaneous release of free energy. Part of this (free) energy can be 

captured (while some is released as entropy and/or heat), as the transferred electrons move 

from a high-energy to a lower energy state. [1] Many enzymes contain cofactors like 

NAD(P)H, FADH, quinones, heam groups, etc., that can be easily and safely reduced and 

oxidized. Among these, flavins, that play a role as a cofactor in flavoenzymes, support one-

electron and two-electrons transfer processes, involving the N1, C4a and N5 position of their 

isoallaxazine ring.[2] Beyond involvement in metabolic enzymes, in several proteinaceous 

cellular sensing devices, the redox state of a bound flavin is involved in the generation of the 

functional output signal of that particular sensing system. The resting state of the flavin can 

be the oxidized as well as the reduced form (and in rare cases even the flavin semiquinone 
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state), depending on the physiological redox environment in the cell. These flavin-containing 

sensor proteins can be triggered either by redox-active metabolites or by blue light, absorbed 

by the particular resting state of the flavin (for the semiquinone form these quanta even can 

have a wavelength that extends into the green and red part of the spectrum). Flavoproteins 

that act as photosensors are first of all found in the subfamily of LOV domains of the Per-

Arnt-Sim (PAS) domain family. Also the other members of this subfamily are known to 

respond to changes in cellular redox conditions, light exposure or energy. [3, 4] Furthermore, 

two additional types of apo-protein fold have the capacity to bind flavin and capture photons 

for signal transduction, i.e. BLUF domains and cryptochromes. In chapter 2 we showed that 

the most reducing conditions of the cytoplasm of E. coli that we could achieve, did not lead 

to measurable reduction of the LOV domain of LovK in vivo. Recent studies of cryptochrome 

2 (Cry2) from Arabidopsis thaliana revealed that binding of ATP does have an enhancing 

effect on photoreduction of Cry2 in vitro and in vivo. [5] This observation is in line with the 

conclusions drawn in chapter 2, i.e. that the cryptochromes might be more sensitive to the 

redox conditions inside the cells than LovK. This observation may lead in the future to 

combining light- and redox-signaling in a single, cryptochrome dependent pathway.  

In making chimeric light-sensing systems one can discriminate two extreme situations: 

First one would like to have a system in which the light-sensitive domain is sensitive only to 

light signals. Once the functionality of such a system has been proven and characterized in 

vivo, it is of interest to move to the next level of complexity, i.e. to design a chimera that 

responds to multiple signals, like the combination of photons and redox signals. For this it is 

advantageous to have a light-sensing domain with a high redox midpoint potential. In 

principle, Cry and BLUF domains would qualify best for this, but both types have 

disadvantages: (i) for both a less well defined engineering strategy is available to link the 

light-sensitive domain to the output kinase domain; and (ii) representatives of these two 

families presumably have less attractive stability-, solubility- and chromophore-binding 

properties. 

The midpoint potential of the Lov domains of AsLov2 and YtvA is too negative to be 

able to expect in vivo modulation of their redox state (i.e. < -300 mV). Therefore the LOV 

domain of LovK became of interest because of its reported midpoint potential of – 254 mV. 

[6] Although we could not exactly reproduce this value (chapter 2), indeed the midpoint 

potential of this LOV domain is significantly higher than that of the LOV domain of YtvA 

(compare ref [7]). Therefore, it would be of interest to perform additional attempts to observe 
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redox modulation of this particular LovK chimera. As the LovK domain is able to form stable 

fusion proteins with STAS domains (chapter 2) such tests can now also be carried out in 

Bacillus subtilis, in which such redox transitions could be probed directly spectroscopically, 

but also via the read-out of the stressosome response, [8] including the color-dependence of 

this response, particularly in mutants in which YtvA (variants) are incorporated into 

functional stressosomes. The fact that this organism uses menaquinones in its electron 

transfer chain, [9] is an extra incentive for such tests. 

As mentioned before the YtvA is a functional light sensitive part of the stressosome, 

multiprotein complex responsible for the general stress response in the Bacillus subtilis. 

Stressosomes comprise the RsbR and RsbS proteins, that both contain a STAS domain. Stress 

conditions cause phosphorylation of RsbR and RsbS by the kinase RsbT. [10] It was shown 

that the STAS domain of the YtvA includes a conserved motif that can be involved in GTP 

binding. Series of experiments involving the BODIPY-GTP proved the capability of YtvA 

to bind GTP, that can be exchanged for ATP. One could conclude that YtvA could play a 

role in the sensing of the GTP- or ATP level, [11] or recruit the nucleotides for the kinase 

activity of the above-mentioned RsbT. [8] However, the most recent study shows that binding 

of the BODIPY-GTP to YtvA was unspecific. [12, 13] In our lab the NTPase activity of YtvA 

in its full length form, as well as of truncated versions without the STAS domain and the 

linker region, was also tested. These experiments confirmed lack of the NTPase activity of 

YtvA (data not shown).  

 

 Relation between BLUF and LOV domains  

The suitability of LOV domains for integrated sensing of light and redox signals is also 

suggested by the observation that it is possible to change the signaling mechanism from the 

adduct formation, in LOV domains, to electron transfer (as it occurs in BLUF domains), by 

changing the amino acids inside the hydrogen binding pattern in the chromophore binding 

pocket of the respective apo proteins. [14, 15] Yee at al proposed that this might suggest that 

the evolutionary history of these domains is such that the LOV domains were fist sensing the 

redox state of the cells, while adding the Cys into the hydrogen pocket made them less 

sensitive to the redox changes and more sensitive to blue light. [14] This was shown in the 

reverse experiment of Suzuki and coworkers. In their hands the BLUF domain in which 

electron transfer is the basal mechanism of signal propagation, started to operate like a LOV 
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domain by the insertion of a key Cys residue at the position that corresponds to its position 

in the LOV domains. [16] 

 

6.2 Light – a very versatile language for intercellular communication  

Light is crucial for (culturing) many forms of life on earth. Beyond that, light has become an 

essential tool that is used to interrogate and manipulate biological systems. It has proven to 

be an efficient spatiotemporal trigger for many biological processes; moreover, it is cheap 

and highly tunable with respect to intensity, duration, color, and mode of polarization. As it 

was described in the General Introduction chapter, in addition to natural photoactive proteins, 

plenty of chimaeric photosensory devices are available. Here we would like to focus on the 

input, light sensing, domain of such chimaera’s and their suitability for use in the broad field 

of optogenetics. Our studies are focused on the use of LOV domains. In Chapter 2 we 

describe the robustness of the LovK domain from Caulobacter crescentus and in Chapters 3 

and 4 the LOV domain of YtvA from Bacillus subtilis was used to design a light-activatable 

two component signal transduction pathway in the yeast Saccharomyces cerevisiae. 

Nevertheless, there are various other light sensitive domains available that could be used in 

such studies. An example is a BLUF domain, instead of the LOV domain. The absorption 

spectrum of these two domains is approximately the same, because both are based on the 

optical properties of the isoalloxazine ring system the flavins (i.e. from 350 -500 nm). In 

BLUF domains this cofactor presumably will be mostly FAD, [17] in contrast to the FMN 

from LOV domains. Because of the larger size of the BLUF domains, they might not be 

properly folded, nor be stable after overexpression in the form of a chimeric histidine kinase. 

Significant negative features were reported in the use of BLUF domains as heterologously 

expressed light gated adenylate cyclases (i.e. the PACα and PACβ from the unicellular 

flagellate Euglena gracialis): quite low stability of the heterologously expressed proteins, 

significant dark activity and only moderate activation by illumination. [18] Alternative 

possibilities would be to use the light sensing domain of cryptochromes or phytochromes. Of 

these two families the cryptochromes also use the abundant cofactor FAD. These sensors 

therefore absorb a similar range wavelength of the absorbed light as BLUF and LOV 

domains. Disadvantages that were found by others by using Cry domains for light triggering 

of protein interaction was the need to carefully control the expression level of the Cry domain 

and its generally slow off kinetics. [19] If one would want to try to use phytochromes for 
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light activation, the first obstacle will be the necessity of incorporation of the 

phycocyanobilin chromophore which is not found in animal cells (note that for many 

bacteriophytochromes, the abundant biliverdin can be used instead). Secondly, the expression 

level of the Phy domain needs to be carefully controlled. In spite of these complications, 

phytochrome domains have been successfully used for light-gated regulation of diverse 

biological processes, including transcription, [20] splicing [21] and small GTPases in living 

cells [22] and in vitro control of actin assembly. [23]  

The choice of the photosensory domain and the way of connecting it to an output domain 

is also dictated by the function we expect this new fusion protein to play in the cells. It is 

possible to control various events by stimulation of a light sensing fusion protein like for 

example: regulation of protein localization, and alteration of protein-protein interactions that 

might be used for light regulated gene expression. A target protein - fused to a photoreceptor 

domain - can be translocated to the membrane through light-induced interaction between the 

photoreceptor domain and its membrane-tethered binding partner. Light-induced interaction 

between the photoreceptor and its binding partner also allows one to drive the association of 

a DNA-binding domain with an activation domain of a transcription factor. Such an event 

will initiate transcription. Chapter 4 shows the introduction of a light dependent two 

component signal transduction pathway in S. cerevisiae. This was achieved by fusion of the 

light sensing LOV domain with the histidine kinase domain from the Sln1 pathway. Similar 

approaches to make ‘blind’ organisms sensitive to light were presented also in many other 

studies. [6, 24–28] One of the recent examples was presented by Hori and coworkers. Adding 

a photo-responsive ability to the ArcB-ArcA (anoxic redox control) two component signal 

transduction pathway of E. coli by fusion of a cyanobacterial photoreceptor domain from 

CcaS with an E. coli intracellular HK domain of ArcB to construct chimeric HKs. The CcaS 

contains a GAF domain with a conserved Cys that covalently binds phycocyanobilin that 

undergoes the photo-isomerization. Downstream of the GAF domain are two PAS domains, 

with PAC domains in between, followed by HisKA and HitPase domains. ArcB consists of 

the PAS domain, followed by a HisKA domain, a HitPase domain, a RAC domain and an 

HPT domain. A series of fusion proteins were made, out of which the ArcaS9 was the only 

one that shows light sensitivity; actually, it showed dual sensing, for light-color-dependent 

signalling and sensing of aerobic-anaerobic transitions. This construct contains the GAF and 

PAS domain from CcaS and HisKA and HitPase domain from ArcB. The authors show that 

the crucial factor in the design is the length of the linker between the light sensing domain 
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and the histidine kinase domain. Constructs with the same domain arrangement like ArcaS9, 

but with a shorter linker between the CcaS- and ArcB-derived parts, did not show the light 

sensitivity. [29]  

During the past few years also new types of photo-sensing domains have been discovered, 

like UVR8, [30] aureochromes, [31] vitamin B12-containing receptors, [32] RsbP, [33] etc. 

These new domains offer little advantage, however, over those already available, except 

maybe for the extension to the very short wavelengths offered by UVR8. However, for each 

of these domains a productive mode of domain coupling will have to be resolved before they 

can be used for the construction of chimera’s. 

 

6.3 Spatial design of biochemical regulation networks  

Recent developments in the life sciences go into the direction in which many scientific 

disciplines interlace together. Quick progress in understanding of many basic life processes 

by interdisciplinary consortia has been possible in recent years by tight 

interaction/cooperation between quantitative experiments and computational theory. The 

field of the life sciences suffered, however, because not enough knowledge about molecular 

interactions in living organisms was available. Although we are still at the beginning of the 

understanding of all inter-dependency and correlations that are present in and dictate the 

functioning of the living world, the current state of knowledge allows us to draw very detailed 

conclusions about life processes, based on the theoretical and experimental data available in 

the field of the physical systems biology, to the extent that serious attempts are now under 

way to build-up cellular life from its molecular constituents in vitro. [34]  

Mathematical models of biochemical regulation networks generally have to consider both 

(de)binding events and molecular diffusion processes. Initially, mainly classical Brownian 

motion was used to describe the diffusion processes. More recently, also anomalous modes 

of diffusion are taken into account. [35, 36] For recent review see. [37] Current developments 

of the techniques used for the analysis of the (anomalous) diffusion allow modelers to 

formulate more precise descriptions, based on the experimental data. Methods like 

fluorescence recovery after photobleaching (FRAP) [38, 39] and fluorescence correlation 

spectroscopy (FCS) [40, 41], and fluorescence loss in photobleaching (FLIP) [42] play an 

important role in these developments. Implementation of a light-activatable two component 

signal transduction pathway provides another possibility for the study of diffusion of a signal 
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in the crowded cytoplasm of a eukaryotic cell. Spatiotemporally localized activation of these 

components by LED- or laser-light, makes available an even more advanced tool to 

investigate signal diffusion in a biochemical regulation network, mimicking real-life 

processes in (multi)cellular systems with spatial differentiation of cellular function.  

 

6.4 Concluding remarks and future prospects  

Our study introduces another tool for investigation of signal diffusion in a biochemical 

regulation network through the design and characterization of a light stimulated histidine 

kinase that consists of the LOV domain from YtvA from Bacillus subtilis and the histidine 

kinase domain Sln1 from Saccharomysec cerevisiae. We showed that blue light can be used 

as a trigger for modulation of the phosphorylation events in this engineered two component 

signal transduction pathway in a eukaryotic cell. At the same time, we showed the robustness 

of LOV domains and their capability in use for designing of fusion proteins for signal 

transduction that can be triggered with (blue) light. Local, i.e. sub-cellular, activation of such 

designed pathways in S. cerevisiae cells would be a great supplement for more detailed 

experimental tests of computational models for signal transduction in the eukaryotic 

cytoplasm, triggered by local light stimulation. Membrane anchoring may be used in future 

experiments along these lines to reduce the dimensionality of the problem, and to align 

models with the outcome of such experiments. This optogenetic approach, which is an 

extensively growing branch of the life sciences, has the potential to bring the understanding 

of (cellular) life to the next level.  
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Summary 

The primary goal of the work presented in this thesis was to provide a unique tool that may 

increase our understanding of the mechanism of cytoplasmic diffusion in signal transduction 

(networks) in eukaryotic cells, in the form of a chimeric, light-dependent, cytoplasmic signal 

transduction device in the yeast Saccharomyces cerevisiae.  

Chapter 1 gives a general introduction to the optogenetics field, as well an insight into 

the issues connected to signal diffusion in the spatially differentiated eukaryotic cells.  

In chapter 2 we further characterize the in vivo redox transitions of a flavin-containing 

photo-sensory receptor domain for such a chimeric device. We provide further evidence for 

the overlap of the ranges of the redox midpoint potential of the flavin in a specific 

photoreceptor protein and the redox potential of key intracellular redox-active metabolites, 

and demonstrate that the redox state and photochemical activity of LOV domains can be 

recorded in vivo in Escherichia coli. Significantly, so far in vivo reduction of LOV domains 

under physiological conditions was not observed.  

Chapter 3 describes the design and functional characterization of the intended chimera: 

A light-sensitive histidine protein kinase, derived from the Sln1 kinase of S. cerevisiae, 

translationally fused in a coiled-coil motif with the LOV domain of the stressosome 

component YtvA from Bacillus subtilis. In most chimeras exposure to blue light decreased 

the rate of autophosphorylation, but rational engineering also allowed the construction of a 

light-stimulated histidine protein fusion kinase. 

In chapter 4 we describe tests that show the in vivo functionality of one of the light-

sensitive histidine protein kinases, C9, in which exposure to blue light leads to a decrease of 

its autophosphorylation activity. This orthogonal photo-transduction system can be used to 

both activate and repress gene expression in S. cerevisiae, depending on the specific promoter 

that is targeted. Furthermore, the device can also be used to initiate nuclear accumulation of 

a selected signal transduction protein with incident blue light. 

In chapter 5 we go into detail on one of the methods for functional testing of the 

phosphorylation of histidine kinases and their cognate response regulator(s), the so-called 

Phos-tag method. In this chapter it is described that, despite many attempts, we have not been 

able to use this method for analysis of the level of phosphorylation of the two response 

regulators of the Sln1 system, presumably because of a lack of separation of their 

phosphorylated- and non-phosphorylated form and/or the very unstable nature of the 
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phosphorylated form of these response regulators. Screening of the recent literature revealed 

that until now Phos-tag separation of the two forms, i.e. the phosphorylated and non-

phosphorylated form, of a eukaryotic response regulator has not yet been reported. 

Finally, in the chapter 6 we discuss a few more relevant points that were not highlighted 

in the discussions of the earlier chapters, predominantly in the light of recent advances in the 

field of signal diffusion and the design of the light sensing fusion proteins.  
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Samenvatting 

Het belangrijkste doel van het werk dat beschreven is in dit proefschrift is de constructie van 

een uniek moleculair hulpmiddel dat gebruikt kan worden om ons begrip van diffusie van 

eiwitten, en eiwit netwerken, in het cytoplasma van eucaryote cellen, op een hoger plan te 

brengen. Dit hulpmiddel zou moeten bestaan uit een fusie eiwit, opgebouwd uit een 

lichtgevoelig input domein translationeel gefuseerd met een cytoplasmatisch histidine-

specifiek eiwit kinase uit de bakkersgist Saccharomyces cerevisiae. 

Hoofdstuk 1 is een algemene inleiding in de achtergrondkennis die beschikbaar was rond 

dit onderwerp bij de start van het onderzoek. Met name wordt ingegaan op issues die te 

maken hebben met (i) biologische signaaloverdracht, (ii) cytoplasmatische diffusie in 

ruimtelijk gedifferentieerde cellen (eucaryote) cellen en (iii) optogenetika. Dit laatste is een 

recent ontstaan onderzoeksveld waar het ontwerpen en gebruik van fusie eiwitten centraal 

staat, waarin met (zichtbaar) licht de output functie van het eiwit (zoals bijvoorbeeld een 

kinase activiteit) gemoduleerd kan worden.  

In hoofdstuk 2 wordt een karakterisering gepresenteerd van de redox transities van de 

flavine chromofoor van zo’n fusie-eiwit, in dit geval bestaande uit het LOV-domein van 

LovK en STAS-domein van een stressosoom eiwit van B. subtilis. We laten zien dat de redox 

transitie van dit flavine plaatsvindt bij een redox potentiaal die dicht ligt bij de redox 

potentiaal waarbij een aantal belangrijke intracellulaire metabolieten ook zo’n overgang 

vertonen. Bovendien laten we zien dat de redox toestand van de chromofoor van zo’n LOV-

domein ook waargenomen kan worden in vivo, i.e. wanneer het eiwit zich bevindt in het 

cytoplasma van Escherichia coli. Maar onder geen van de geteste condities vond een 

overgang van deze flavine chromofoor naar de (volledig) gereduceerde toestand plaats.  

In hoofdstuk 3 wordt het ontwerpen, de constructie en synthese, en de in vitro 

biochemische karakterisering gepresenteerd van de beoogde functionele fusie eiwitten. Deze 

bestaan uit een N-terminaal LOV-domein (van het stressosoom eiwit YtvA uit Bacillus 

subtilis), translationeel gefuseerd, via een coiled-coil linker structuur, met het Sln1 histidine 

kinase domein van het osmostress respons systeem van S. cerevisie. In de meeste van deze 

fusie eiwitten zorgt blootstelling aan blauw licht voor een verlaging van de histidine kinase 

activiteit. Maar via rationele engineering van de lengte van de coiled-coil linker structuur is 

ook een licht-moduleerbaar kinase verkregen waarin belichting leidt tot een verhoging van 

de kinase activiteit. 
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Hoofdstuk 4 beschrijft in vivo tests van de functionaliteit van één van de geconstrueerde 

kinases beschreven in hoofdstuk 3, C9, het fusie eiwit waarin belichting aanleiding gaf tot de 

sterkste verlaging van de autokinase (i.e. ‘zelf-fosforylering’ m.b.v. ATP) activiteit. Dit 

orthogonale licht-afhankelijke systeem kan in Saccharomyces cerevisiae zowel gebruikt 

worden om genexpressie te stimuleren, alsook om repressie van genexpressie te 

bewerkstelligen, via een specifieke keus van de respectievelijke target promotor. 

Daarenboven kan dit geconstrueerde hybride kinase ook gebruikt worden om de accumulatie 

van signaaltransductie componenten in de kern van de gistcellen met een puls van blauw licht 

te in gang te zetten. 

In hoofdstuk 5 wordt in detail ingegaan op de toepassing van een recent geïntroduceerde 

methode (de ‘Phos-tag’ methode) om te meten in welke mate specifieke eiwitten, zoals de 

kinases en response regulators van twee-componenten systemen, gefosforyleerd zijn (op 

respectievelijk de zijketen van een histidine en een asparaginezuur in de katalytisch centrum 

van deze twee eiwitten). We beschrijven een serie experimenten waaruit we moeten 

concluderen dat, ondanks vele pogingen, het niet gelukt is om met deze techniek de 

fosforyleringsgraad van de beide response regulatoren van het Sln1 systeem van S. cerevisiae 

te bepalen, terwijl dit voor het controle eiwit, ArcA, wel mogelijk was. Mogelijke 

verklaringen hiervoor moeten gezocht worden in problemen om de gefosforyleerde en niet-

gefosforyleerde vorm van deze eiwitten op een SDS-PAA gel van elkaar te scheiden, of in 

de intrinsieke instabiliteit van de fosfo-aspartyl binding. Uit een screening van de recente 

literatuur bleek dat toepassing van deze phos tag methode nog voor geen enkele eucaryote 

response regulator gerapporteerd is. 

Tot slot worden in hoofdstuk 6 een aantal zaken die uit de uitgevoerde experimenten naar 

voren kwamen, en die nog niet in de discussie paragraaf van de afzonderlijke hoofdstukken 

aan de orde gekomen waren, bediscussieerd in het licht van de kennis die hieromtrent 

beschikbaar is in de recente wetenschappelijke literatuur. Dit betreft vooral zaken die te 

maken hebben met de diffusie van signaal moleculen in het cytoplasma van eucaryote cellen 

en het ontwerp van lichtgevoelige fusie-eiwitten waarmee dit proces verder bestudeerd kan 

worden via in ruimte en tijd gelimiteerde belichting. 
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Streszczenie  

Głównym celem tej pracy było stworzenie narzędzia umożliwiającego lepsze zrozumienie 

dyfuzji sygnału w komórkach eukariotycznych. Aby go zrealizować zaprojektowano 

chimeryczne, światłoczułe białko, które jest aktywne w cytoplazmie komórek drożdży 

Saccharomyces cerevisiae.  

 Rozdział 1 zawiera ogólne wprowadzenie do działu optogenetyki oraz detale z zakresu 

dyfuzji sygnału w przestrzennie zróżnicowanych komórkach eukariotycznych.  

 W rozdziale 2 scharakteryzowane zostały przemiany in vivo fotoreceptorów redox 

zawierających flawiny używanych w projektowanych chimerycznych białkach. Następnie 

przedstawione zostały zakresy potencjałów redox białek flawinowych w poszczególnych 

fotoreceptorach oraz potencjały redox głównych redox-aktywnych metabolitów 

komórkowych. Zaprezentowane zostało, iż potencjał redox oraz aktywność fotochemiczna 

domeny LOV mogą być badane in vivo w komórkach Escherichia coli. Jak dotąd redukcja 

domeny LOV in vivo wykonywana w warunkach fizjologicznych nie została 

zaobserwowana.  

 Rozdział 3 opisuje projektowanie i funkcjonalną charakterystykę przedstawionej chimery 

białkowej: światłoczułej kinazy histydynowej pochodzącej z kinazy Sln1 z Sachcaromyces 

cerevisiae, połączonej poprzez motyw alfa helisy z LOV domeną będącą częścią YtvA. Ytva 

wchodzi w skład stresosomu w komórkach Bacillus subtillis. Większość zaprojektowanych 

białkowych chimer, po ekspozycji na niebieskie światło wykazywała redukcję w poziomie 

autofosforylacji. Racjonalne projektowanie połączenia tych dwóch domen, LOV i kinazy 

Sln1, pozwoliło na zaprojektowanie światłoczułej kinazy histydynowej.  

 W rozdziale 4 prezentowane są in vivo testy przedstawiające funkcjonalność jednej ze 

światłoczułych kinaz histydynowych, C9, gdzie ekspozycja na niebieskie światło powoduje 

obniżenie poziomu autofosforylacji. Taki ortogonalny foto-transdukcyjny system może 

zostać wykorzystany zarówno do aktywacji jak i represji transkrypcji genów w S. cerevisiae, 

w zależności od użytego specyficznego promotora. Poza tym urządzenie to może zostać 

użyte do indukcji akumulacji wybranego białka należącego do danej sieci transduckyjnej 

poprzez światło niebieskie.  

 W rozdziale 5 opisana została w szczegółowy sposób jedną z metod stosowanych do 

funkcjonalnego testowania poziomu fosforylacji kinaz histydynowych oraz ich biełek 

regulatorowych, tak zwaną metoda Phos-tag. W tym rozdziale opisane zostało, iż pomimo 
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wielu prób nie byliśmy w stanie użyć tej metody do analizy poziomu fosforylacji dwóch 

białek regulatorowych szlaku Sln1. Z powodu braku separacji ufosforylowanej i nie 

ufosforylowanej formy oraz niestabilność tych regulatorów w ufosforylowanej formie. 

Przegląd aktualnej literatury nie wyłonił przykładów użycia tej metody do separacji 

ufosforylowanej i nie ufosforylowanej formy regulatorów eukariotycznych.  

 Na zakończenie, w rozdziale 6 omówione zostało kilka istotnych zagadnień, które nie 

zostały opisane w poprzednich rozdziałach, głównie z zakresu dyfuzji sygnału oraz 

projektowania światło-zależnych białek fuzyjnych.  
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Abbreviations 

ABBREVIATION EXPLANATION 
AMP adenosine monophosphate 
ARG arginine 
ASP aspartate 
ATP adenosine triphosphate 
BLUF blue-light using FAD 
CA catalitic domain 
CFP cyan fluorescent protein 
CLONNAT neuroserothricine sulphate  
CYS cysteine 
DAPI 4’,6’-diamidino-phenylindole 
DHP dimerization domain 
DNA deoxyribonucleic acid 
EDTA ethylenediaminetetraacetic acid 
EM electrochemical midpoint potential 
FAD flavin adenine dinucleotide (oxidised) 
FADH flavin adenine dinucleotide (reduced) 
FCS fluorescence correlation spectroscopy 
FLIP fluorescence loss in photobleaching 
FMN flavin adenine nucleotide 
FRAP fluorescence recovery after photobleaching 
FRET (forster resonance energy transfer) 
GFP green fluorescent protein 
GLU glutamine 
GMP guanosine monophosphate 

GTP guanosine triphosphate 

HIS histidine 
HK histidine kinase 
HPLC high-performance liquid chromatograph 
HTH helix-turn-helix 
IPTG isopropyl β-d-thiogalactopyranoside 
LED light emitting diodes 
LOV light oxygen voltage 
LYS lysine 
MAPKI mitogen-activated protein kinase 
NAD nicotinamide adenine dinucleotide (oxidised) 
NADH nicotinamide adenine dinucleotide (reduced) 
NADP nicotinamide adenine dinucleotide phosphate (oxidised) 
NADPH nicotinamide adenine dinucleotide phosphate (reduced) 
OCH1 mannosyl-transferase 
OD optical density 
PAS per-arnt-sim 
PB production broth 
PBS phosphate-buffered saline 
PEG polyethylene glycol 
PHOS-TAG 1,3-bis[bis(pyridin-2-ylmethyl) amino] propan-2-olato di-zinc(ii) complex 
R response regulator 
RAC receiver domain 
SDS-PAGE sodium dodecyl sulfate–polyacrylamide gel electrophoresis 
SER serine 
STAS sulphate transporter anti-σ antagonist 
STORM stochastic optical reconstruction microscopy 
THR threonine 
TYR tyrosyne 
UV ultra violet 
YFP yellow fluorescent protein 
YPD yeast extract peptone dextrose medium 
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