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Dynamic Networks that Drive the 
Process of Irreversible Step-Growth 
Polymerization
Verena Schamboeck   , Piet D. Iedema & Ivan Kryven   

Many research fields, reaching from social networks and epidemiology to biology and physics, have 
experienced great advance from recent developments in random graphs and network theory. In this 
paper we propose a generic model of step-growth polymerisation as a promising application of the 
percolation on a directed random graph. This polymerisation process is used to manufacture a broad 
range of polymeric materials, including: polyesters, polyurethanes, polyamides, and many others. We 
link features of step-growth polymerisation to the properties of the directed configuration model. In 
this way, we obtain new analytical expressions describing the polymeric microstructure and compare 
them to data from experiments and computer simulations. The molecular weight distribution is related 
to the sizes of connected components, gelation to the emergence of the giant component, and the 
molecular gyration radii to the Wiener index of these components. A model on this level of generality 
is instrumental in accelerating the design of new materials and optimizing their properties, as well as it 
provides a vital link between network science and experimentally observable physics of polymers.

Within recent years, network theory became an indispensable tool in a broad range of applied sciences ranging 
from social psychology and epidemiology to transport engineering, biology and physics1,2. It allows us to study 
the spreading of rumours and ideas3,4, but also the spreading of diseases within populations5 and cascades of 
failures in the electricity grid6. These and alike works established the universal language of network science that 
is valid across disciplines: it is conceivable that a study on the neural network of the human brain may teach us to 
better optimise transportation networks in growing cities7. The beginnings of network science, by which we refer 
to a combination of graph and probability theories, are commonly linked with works of S. Milgram and P. Erdős, 
see for example ref.8. Nonetheless, not of least importance for the foundation of the field played works of Flory 
who proposed to use random graph-like structures to study hyperbranched and cross-linked polymers9. In fact, 
Flory might have been the first to show interest in the percolation phenomenon even before Erdős introduced 
his famous random graph concept10. Furthermore, the same scientists who applied percolation to polymerisation 
developed the percolation theory of networks by working extensively on the network and polymer sides of the 
problem11–20. Although network science developed as a separate vibrant discipline of its own ever since, current 
theories of hyperbranched polymers are largely based on the early developments of network science, and the 
modern viewpoint of complex networks is only starting to diffuse back into polymer chemistry where this theory 
has arguably originated21–27.

Conventional polymer networks are formed by a process called polymerization, during which small molecules 
bind together by means of covalent bonds and form large molecular structures. The functionality of these mol-
ecules is typically limited by the underlying chemistry and the bonds appear symmetric or asymmetric depend-
ing on the nature of functional groups that the reactants of the binding reaction bear28. It is mainly due to the 
variations of their topologies that polymeric materials feature such a broad range of physical properties. One of 
the most common polymerisation processes is the step-growth polymerisation of multifunctional monomers. 
This process leads to hyperbranched polymers of disperse sizes and irregular topologies that undergo a phase 
transition in their connectivity structure during the course of the polymerisation28. This transition is closely 
related to the percolation on networks3–6. The phase transition is marked by emergence of the gel, that is the giant 
molecule that spans the whole volume1,29. Flory provided simple analytical expressions for the average molecular 
size in these systems and was first to explain the onset of gelation, but limited himself to monomers of prescribed 
type An or An + B2

9. Later, Stockmayer presented a formal expression for the whole distribution of molecular 
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sizes30, however the practical use of this expression is limited due to combinatorial complexity of computations. 
Durand and Claude derived a more general analytical expression for averages of the molecular size distribution31. 
Considerable progress has been made for the case of multifunctional monomers of type An, which feature sym-
metric bonds22,32,33, whereas among asymmetric multifunctional monomers only monomers of the type AB2 have 
a known analytical expression for the molecular size distribution as was demonstrated by Ziff11. For these reasons, 
the search continued resulting in a wave of fast approximate methods: as in works of Kryven et al.34,35, Wulkow  
et al.36, Tobita37, Hillegers and Slot38. Although these methods are computationally fast, the approximate methods 
are hard to adapt to new polymerisation schemes, and especially the schemes requiring description with multi-
dimensional distributions. In the same time, multidimensional distributions naturally arise in master equations 
describing monomers with multiple functional groups.

Yet another approach that has been applied to polymer networks only recently, the Molecular Dynamics 
(MD) simulation, is especially attractive as it produces very detailed information on the structure of polymer 
networks39,40. Molecular dynamics simulations are notorious for being computationally expensive, and therefore, 
limited to small samples and short time scales. In our previous work39 we have demonstrated on the case of an 
acrylate polymer featuring predominantly symmetric covalent bonds, that many of the MD-generated network 
properties can be also reproduced by the configuration model for undirected random networks41,42. Furthermore, 
the recent developments in directed configuration models29,43 present an opportunity to develop a generic polym-
erisation framework that will cover asymmetrical bonds as well. The latter, despite posing a more complex math-
ematical problem, are also more ubiquitous in polymerisation chemistry, and especially in that of hyperbranched 
and super-molecular polymers44–46.

The current paper presents a new look on exactly solvable expressions for hyperbranched polymers by utilis-
ing latest developments of random graph models1,41,47. Being inspired by the kinetic theory of Krapivsky, Redner, 
and Ben-Naim17,48,49, we employ a two-stage approach: we first devise a kinetic model for the transformations the 
monomer units undergo in time, and then we construct a configuration random graph, which deduces the global 
properties of the network from the two-variate degree distribution that is obtained on the first stage. Analytical 
expressions are obtained for various distributional properties of the polymer resulting from step-growth polym-
erisation of random combination of arbitrary functional monomers. The advantages of the proposed random 
graph model are grounded in the generic applicability and analytical expressions that are also fast to compute.

Results
A polymer is a large molecule that consists of many repeat units, the monomers, and is formed as a result of 
chemical reactions that lead to covalent bonding between the monomers. Step-growth polymerization does not 
require an initiator and occurs between monomers that carry reactive functional groups. Many polymers with 
real world applications are formed as a result of step-growth polymerisation. Figure 1 features a few important 
examples related to polyesters, polyamides, and polyurethanes. The maximum number of chemical bonds that a 
single monomer bears is limited by the number and type of functional groups that are present in this monomer. 
If a system consists of solely two-functional monomers, only linear polymers are formed in the course of the 
step-growth polymerisation. However, if some (or all) monomers have more than two functional groups, it is 
possible to form hyperbranched polymers and networks.

In many chemical systems, two monomers bind through an asymmetric reaction that occurs between func-
tional groups of different kinds. When two functional groups of different kinds are reacting, for example, as in the 
reaction between an acid and an alcohol leading to an ester, we refer to one group as the A-group, and the other – 
as the B-group. This asymmetric reaction is at the main focus of the current paper. Symmetric reactions occurring 
between two groups of the same kind, e.g. two alcohols reacting to form an ether, have been covered elsewhere22. 
Figure 1 exemplifies this notation on a few cases of polymers that feature linear and branched topologies. For each 
case, we indicate the structural formulas of the relevant monomers, highlight the functional groups, and give the 
corresponding AB notation. In Figure 2 the asymmetric reaction between A and B groups is illustrated on the 
example of an A2 monomer (a monomer with two A-groups) reacting with an AB2 monomer (a monomer with 
one A-group and two B-groups).

Before introducing the random graph model, we briefly summarise the terminology commonly used in graph 
theory. A directed graph consists of nodes and directed edges connecting them. A subgraph of a graph, in which 
any two nodes are connected by an undirected path is called a weakly connected component. In this work, we 
drop the prefix weakly, and refer to these components as connected components. When representing a polymer 
system as a graph, the monomers are identified with nodes, the chemical bonds with edges and thus a poly-
mer molecule with a whole connected component. As the two sides of a chemical bond in the AB-reaction are 
not identical, we represent this asymmetry with directed edges. Without loss of generality, the directionality 
is defined as pointing from the B-group towards the A-group. The graph representation and the mapping of a 
reacted A-/B-group to an in-/out-edge is depicted in Figure 2.

The number of bonds that a monomer is bearing equals to the degree of the corresponding node. Generally 
speaking, monomers with distinct numbers of bonds may have different concentrations. To capture these differ-
ences, we refer to the node degree distribution, u(i, j), which defines the probability of a randomly chosen node to 
have i adjacent in-edges, and j adjacent out-edges, and therefore, u(i, j) is proportional to the concentration mon-
omers with i and j reacted A- and B-groups. Figure 3b, demonstrates that the directed degree distribution u(i, j) 
and the projected undirected degree distribution = ∑ + =u k u i j( ) ( , )i j k  that ignores the direction of the edges may 
lead to different sizes for connected components. In this extreme example, the directed degree distribution only 
allows connected components of size s = 3, whereas the undirected degree distribution does not limit these sizes 
at all. It turns out that much of the global information about the polymer system can be deduced from the degree 
distribution.

https://doi.org/10.1038/s41598-018-37942-4
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Hyperbranched molecules appear in a broad range of topologies that result from various chains of reactions, 
which occur between selected functional groups. One important feature here is the asymmetry of such reac-
tions: they often occur between functional groups of complementary types (as opposed to symmetric reactions 
occurring between groups of identical types). To capture this variability we employ the configuration model that 
is defined by a directed degree distribution. The degree distribution reflects the state of the polymer system as 
driven by the chemical kinetics, and therefore, this distribution is time-dependent. The configuration model max-
imises entropy of all possible configurations that satisfy a given degree distribution at a time point of interest. This 

Figure 1.  Examples of linear and branched polymers. The structural formulas of the monomers together with 
their AB representations that define the underlaying network topology are displayed. The list of polymers 
include: polyester59, branched polyurethane60, polyurea61 and polyamide62.
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means that the model is egalitarian with respect to functional groups: every pair of complementary functional 
groups has equal probability to establish a bond. This principle is illustrated in Figure 3a.

The output of the configuration model is then processed to obtain various global properties of the polymer 
network, as for instance, the molecular weight distribution (probability that a randomly chosen node belongs to 
a weakly connected component of size s), the gel fraction (probability that a randomly chosen node belongs to 
the giant component), the mean-square gyration radii (related to the Wiener index of connected components), 
and the length of the average shortest path. The mathematical derivations of these results are presented in the 
Methods.

Reaction kinetics and degree distribution.  The evolution of the degree distribution is governed by the 
reaction kinetics of the step-growth polymerization. This process converts an arbitrary pair of A- and B-groups 
into a bond, which is represented as an edge between nodes in the model. Since a monomer may carry multiple 
A- and B-groups, probability that a pair of monomers react is dependent on the number of unreacted functional 
groups they carry. The formal mechanism for the reaction between two monomers is given by:

+ ′ ′ ′ ′  →  + + ′ ′ + ′ ′
− ′− ′

i j I J i j I J i j I J i j I J( , , , ) ( , , , ) ( 1, , , ) ( , 1, , ), (1)
k I i J j( )( )AB

where vector (i, j, I, J) denotes the state of a monomer: I, J ≥ 0 are the numbers of respectively A- and B-groups on 
this monomer; i = 0, 1, …, I and j = 0, 1, … J denote the number of groups of respectively type A or B that have 
already been converted into bonds by the reaction. For each monomer, the indices (I, J) are defined a priori, 
whereas (i, j) change over time. The reaction rate is given by the product of the rate constant kAB, the number of 
unreacted A-groups on the first monomer (I − i), and the number of unreacted B-groups on the second monomer 
(J′ − j′). The following assumptions are made: (1) the reactivity for any pair of A- and B-groups is equal; (2) the 
reactivity does not change throughout the process. Let Mi,j,I,J(t) be the probability that a randomly chosen mono-
mer has configuration (i, j, I, J) at time t. This probability is proportional to the concentration of the monomers. 

Figure 2.  Illustration of an AB-reaction binding one A-group of an A2 and one B-group of an AB2 monomer. 
In (a) the colour of the bond indicates which monomer provided the A- and the B-group. In (b), the graph 
representation, the type of the functional group is stored in the directionality of the edge. An in-edge 
corresponds to a reacted A-group, an out-edge to a reacted B-group.

Figure 3.  The concept of the directed configuration model. (a) (left:) Nodes are signed “half-edges” according 
to the bivariate degree distribution that provides an input for the model; (right:) these nodes are connected 
randomly so that the degree distribution is strictly satisfied. (b) An example of a simple degree distribution and 
the corresponding ensemble of connected components for the case of undirected and directed graphs. Note that 
in this example there is a qualitative difference between the structure of undirected and directed chains.
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The time variation ∂
∂

M t

t

( )i j I J, , ,  as governed by the process eq. (1) is described by the corresponding master equation, 
see Methods. In the general case of more than two distinct functional groups (e.g. A-, B-, C-, D-groups) and sev-
eral reaction mechanisms (e.g. AB-, CD- reaction), the master equation becomes more complex due to a combi-
natorial number of monomer species of defined type and state. In that case, automated reaction networks can be 
applied to algorithmically construct the corresponding master equation23.

The temporal degree distribution u(i, j, t) is directly deduced from Mi,j,I,J(t) by summating over all monomer 
types I, J. As discussed in Methods, the step-growth process eq. (1) leads to the following degree distribution u(i, j, t):

∑= −






 − .

≥

− −( )u i j t I
i

p t p t J
j p t p t P I J( , , ) ( ) (1 ( )) ( ) (1 ( )) ( , )

(2)I J

i I i j J j

, 0
A A B B

This expression is given by the product of binomial distributions for the in- and out-edges, with pA(t) and pB(t) 
being the probability that a random A-/B-group is reacted (also referred to as A-/B-conversion), see eqs (12) and 
(13). The probability distribution P(I, J) defines the initial concentration of monomer types and is referred to as 
the monomer functionality distribution. Probabilities P(I, J) provide the sole input to the model.

In some cases, the degree distribution u(i, j, t) can be measured directly by nuclear magnetic resonance 
(NMR). Due to the chemical shift in the NMR spectrum, every monomer state has its own distinct frequency. 
However, the bigger the monomer is and the more functional groups it has, the harder it is to identify the states. 
In Figure 4 we compare the degree distributions predicted by eq. (2) with the experimental NMR data from ref.50, 
and also, for a different polymerisation system, against MD simulation data from ref.40.

Gelation point and gel fraction.  The gelation point marks the transition of the system from a liquid-like to 
a solid-like state during the polymerization process. After this transition, an increasing positive fraction of mono-
mers becomes part of the single gel molecule. The transition is typically observed by measuring the fraction of the 
insoluble part of the polymer, or performing rheological experiments. From the network theory perspective, this 
is a well-known phenomenon as the gel transition point corresponds to the emergence of the giant component in 
the network topology. The size of the giant component is of the order of the whole system size, and we therefore 
quantify the gel size gf as the probability that a randomly chosen monomer belongs to the giant component. The 
Methods section explains how gf can be calculated if the degree distribution is known.

The above described process of polymerisation is closely related to percolation on networks. The phenomenon 
of percolation is always studied on a specific networks, e.g square lattice, Bethe lattice, or any arbitrary network. 
In polymer chemistry, it is mostly introduced as a process of randomly adding bonds to an empty template of the 
network51. This process is precisely reverse to the process of removing bonds from the same full network. Let p be 
the probability that a randomly selected edge is not removed.

Under this notation, percolation can be thought of as a temporal process that starts at p = 0 and ends at p = 1. 
Moreover, this process is known to feature a phase transition at critical probability pcritical, the point at which the 
giant component appears. When there are equal amounts of A and B functional groups, this process is precisely 
reverse to the step-growth polymerisation where the edges are being added to a network randomly, and pcritical 
coincides with the gel-point conversion of functional groups. If there are more B-groups than A-groups present 
in the system initially, the A-groups are limiting the reaction and we conventionally refer to the conversion of A 
groups as the conversion: p = pA. Without loss of generality it may be assumed that the number of A-groups is less 
or equal to the number of B-groups. The moment in time when gelation occurs is completely defined by the pro-
portion of monomers of different functionalities that are present initially in the system. Generally speaking, the 
higher the functionality, the earlier gelation occurs in time and/or conversion, and a precise quantitative estimate 

Figure 4.  Comparison of the theory to data from experiments and computer simulations. (a) Experimental 
degree distribution as extracted form the 13C NMR spectrum of hyperbranched polyester (HPE) in 
dimethylformamide (DMF)50 compared to theoretical degree distribution in the A2:B3 = 1:1 system at pA = 0.93. 
(b) Phenolic unit degree distribution (only out-edges) in a phenol-methylene system predicted by MD 
simulation (doted lines)40 compared to the theory (solid lines). The gel point is predicted at pA = 0.58 by the MD 
simulation, the theory predicts it at pA = 0.5.
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of the gelation conversion is discussed in Methods. It turns out that one can connect the critical conversion 
directly to the functionality distribution P(I, J):

=
ν

ν + ν − ν ν − ν
.p

( )( ) (3)
critical

01

11 02 01 20 10

where ν = ∑ ≥ I J P I J( , )mn I J
m n

, 0 . It is important to note that in the case of a symmetric functionality distribution 
P(I, J) = P(J, I) (see also Methods), eq. (3) gives the same result as its counterpart for an AA-system (undirected 
system22) with = ∑ = +P K P I J( ) ( , )K I J . In the case of P(K) being distinct from zero for only one K-functional 
species, eq. (3) simplifies to the Flory-Stockmayer equation for gelation =

−
p

zcritical
1

1
, with z = I + J the number 

of first neighbours. See Table 1 for illustration.
Equation (3) allows one to screen a vast number of systems and determine their gel-point conversions if such 

occur. We also can deduce from the theory discussed in Methods that some systems will never form gel. Here 
again, one can identify whether a system of given monomer functionalities gelates by studying P(I, J). Namely, a 
monomer system forms gel if the following inequality is satisfied:

ν − ν ν − ν − ν − ν > .( )( ) ( ) 0 (4)02 01 20 10 11 01
2

For the physical properties of the final material, both factors play a definitive role: when does gelation start 
and how does the gel fraction evolve in the course of the polymerisation? The growth rate of the gel fraction, gf, 
is determined by the functionalities of the initial monomers and their concentration distribution. In Figure 5, a 
few examples illustrate different types of behaviour of the gel buildup. In these examples, we optimise the initial 
functionalities and concentrations of monomers to reach two final target properties: (1) a fixed gel point conver-
sion of either pA,critical = 0.5, as depicted by the solid lines, or pA,critical = 0.33, as indicated by the dashed lines; (2) 
we distinguish three different types of growth behaviour: (a) a steep growth with most monomers being incorpo-
rated into the gel rapidly after gel point, (b) a slow growth with the gel reaching full size only at full conversion, 
(c) a slow growth with the gel never reaching the system size. Behaviour (a) is observed for systems with purely 
high-functional monomers, (b) for systems with few high-functional monomers and many 2-functional mono-
mers, and (c) for few high-functional monomers and many 1-functional monomers that act as terminal units. The 
reason for the gel in (c) never reaching the full system size is the formation of small connected components that 
stop growing because of having all functional groups being capped with one-functional terminal units. For exam-
ple, when a component is composed of one 6-functional monomer connected to six 1-functional monomers. The 
Methods section gives the general equations for the gel-point conversion and gel fractions.

Directed Undirected Flory-Stockmayer

A2B2 =pcritical
1
3

A4 =pcritical
1
3

A4 =pcritical
1
3

A3:B3 = 1:1 =pcritical
1
2

A3 =pcritical
1
2

A3 =pcritical
1
2

AB2:A2B = 1:1 =pcritical
1
2

A3 =pcritical
1
2

A3 =pcritical
1
2

A2B2:AB = 1:1 =pcritical
3
7

A4:A2 = 1:1 =pcritical
3
7

— —

AB2 =p 1A,critical
— — — —

A2:B3 = 1:3 no gelation* — — — —

A2:B3:B1 = 10:1:8 no gelation** — — — —

Table 1.  Examples of mappings between symmetric AB-systems and AA-systems and the corresponding 
critical conversion pcritical. The critical conversions in the first column are calculated by eq. (3), of the second by 
eq. (43)22 and the third column by the Flory-Stockmayer criterium 

−z
1

1
. *Due to the depletion of A-groups. 

**Due to the significant concentration of terminal units B1.

Figure 5.  Illustration of three types of gel growth behaviour: (a) steep growth, (b) slow growth, (c) gel does not 
reach full system size. The different types of behaviour are cased by the composition of monomers. Two groups are 
depicted: (1) solid lines, gel point at pA,critical = 0.5, (a) A3:B3 = 1:1, (b) A6:B6:A2:B2 = 1:1:9:9, (c) A6:B6:A1:B1 = 1:1:9:9; 
(2) dashed lines, gel point at pA,critical = 0.33, (a) A4:B4 = 1:1, (b) A8:B8:A2:B2 = 1:1:8:8, (c) A8:B8:A1:B1 = 1:1:11:11.
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These results are also interesting when studying polymer ageing and degradation. Consider a degradation pro-
cess under which every chemical bond dissociates independently with equal probability. This process is reverse to 
the introduced polymerization process, and the gel fraction is a measure of how strongly the system is intercon-
nected. Clearly, the systems of type (a) will show a different behaviour during degradation than systems of type 
(b). For (a), the system will stay connected for a long time, but will eventually collapse into many small pieces 
quite abruptly. Type (b) systems will show a more continuous, and therefore more predictable, degradation behav-
iour, which might be more desirable from application point of view.

Molecular size distribution, averages and asymptotes.  From a network theory perspective, a sepa-
rate polymer molecule is a connected component. The sizes of the latter are typically characterised by a size dis-
tribution. There are two common ways that such distributions can be defined. The molecular weight distribution 
w(s) corresponds to the probability that a randomly chosen monomer belongs to a connected component of size 
s, whereas the molecular size distribution n(s) is the probability that a randomly chosen component has size s. One 
can be converted into the other by an appropriate weighting and normalisation: n(s) = Cs−1w(s). In Methods we 
present an exact equation that connects the degree distribution with the molecular weight distribution w(s). As a 
general rule, the exact values of w(s) can be computed spending  s s( log )2  multiplicative operations, and in a 
special case of only one initial monomer type, the analytic expression for the molecular weight distribution is 
given in Methods.

The global behaviour that is observed in all polymerising systems can be summarised as follows: Initially, all 
monomers are unconnected, thus only molecules of size s = 1 are present. With increasing conversion pA, larger 
molecules emerge. The size distribution features the exponential decrease at the tail, and becomes broader with 
progressing conversion until the gel point pA,critical is reached. Only at this single point the size distribution 
becomes scale-free. Figure 6a demonstrates this behaviour on an example. After the gel transition point, the size 
distribution describes only the soluble part of the system, so that the size of the gel is given by the gel fraction 

= − ∑ =
∞g w s1 ( )f s 1 . Furthermore, the size distribution returns to its exponential behaviour and becomes nar-

rower with increasing conversion.
Surprisingly, there are two distinct types of polymerisation systems featuring different types of asymptotic 

behaviour. Most of polymer systems feature a size distribution with asymptote

∝ .− −n s e s( ) (5)C s 5/21

Figure 6.  (a) Molecular size distributions of the system A2:B3 = 3:2 at different conversions as indicated by the 
colour scheme. At pA,critical = 0.707 the distribution is scale-free, ∝ −n s s( ) 5/2. (b) Molecular size distributions 
n(s) and their critical asymptotes as obtained for two systems: (1) A2:B3 = 3:2 and (2) AB2. (c) Weight-average 
molecular weight for the system A2:B3 = 3:2 features singularity at pcritical = 0.7. (d) Oscillating size distributions 
of the system AB2:A1:B1 = 1:2:1 at different conversions as indicated by the colour scheme. Examples of 
terminated (black colour) and living (grey colour) polymer topologies are indicated for reference.
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This, for instance, includes the A2:B3 = 3:2 system as illustrated in Figure 6a. However, some polymers may also 
feature a different asymptotic mode, namely

∝ .− ′ −n s e s( ) (6)C s 3/21

This asymptote arises in all systems of type ABn, for n > 1. These two distinct types of asymptotic behaviours can 
also be attributed to the different types of kernel functions (additive versus product kernel) in the underlying 
aggregation equation11,12. In Figure 6b, this peculiar case of asymptotic behaviour is illustrated by comparing two 
very similar polymer systems AB2 and A2 + B3 that yet feature different asymptotic modes.

The gel transition is also noticeable in the evolution of weight average molecular weight Mw, which features a 
singularity at the critical point. The evolution of Mw as predicted by the theory is compared against stochastic sim-
ulations in Figure 6c. The figure shows good agreement between the theory and the numerical simulation except 
for critical conversion. At this point, the stochastic simulations (scatter plot) suffer form the small-system-size 
effect. The Methods section gives analytical equations for the weight average molecular weight in the pre-gel and 
gel regimes.

Interestingly, in some cases molecular size distributions feature oscillations. One such example is given in 
Figure 6d, depicting the system AB2:A1:B1 = 1:2:1. At full conversion pA = 1 (dark red line) only molecules of 
specific favoured sizes are present. At lower conversions, also other sizes occur that exhibit strongly reduced prob-
ability as compared to the favoured sizes. In this example the concentration of odd-size component is favoured, 
however, depending on the distribution of functionalities such oscillations may occur with arbitrary large “peri-
ods”. It turns out, that the monomers of functionality one play an important role in these oscillations, as they 
terminate the growth of polymer molecules and thus fix sizes of these molecules at a constant value.

Gyration radius.  Consider a branched polymer molecule that is composed of s monomers. The actual vol-
ume this molecule spans is related to how’branched’ this molecule is. In systems that contain no gel, or are below 
the gel transition, it is conventional to characterise this volume by the a quantity called gyration radius Rg(s), 
which can also be estimated by light scattering experiments in a polymer solution52.

Linear chains feature =R s b( ) s
g,lin 6

, where b is the Kuhn length. In Methods, we derive the analytical equa-
tion that links the degree distribution and the mean square gyration radius for s 1. Figure 7a shows how one 
can influence Rg(s) by tuning the set of initial monomers. This figure also compares the theoretical gyration radii 
against gyration radii obtained form stochastically generated networks. An alternative way of looking at the gyra-
tion radius is the contraction factor53, which is defined by =g s R s R s( ) ( )/ ( )g

2
g,lin
2 . The contraction factor tells us 

how much more compact the actual molecule is in comparison to the linear one having the same number of 
monomers. Figure 7b compares the theoretical predictions of this quantity versus simulations.

Another unexpected result that is revealed by directed random graph theory, is that during the progress of 
step-growth polymerisation, for all molecules of size s the mean gyration radius is constant in time. Since the 
size distribution does change in time, this time-independency is lost if one calculates an average of this quantity 
over different molecular sizes. It is likely that other than step-growth polymerisation processes do not feature 
time-invariant gyration radii.

The gyration radius is also directly proportional to the Wiener index54, which is another topological index to 
characterise branched molecules. The Wiener index s( )  is defined as the sum of the lengths of the shortest paths 
between all pairs of the monomer units in the molecule. The relation between the mean square gyration radius 
and the Wiener index is given by  =s( )

R s

s

( )g
2

2 .

Figure 7.  Comparison of the theory (solid lines) to simulation data (scattered data). The simulation data is 
the average over 100 generated networks that consist of N = 10000 nodes. (a) Gyration radius, three different 
systems are investigated: (1) linear AB, (2) sparsely branched A2B2:AB = 1:49, (3) hyperbranched A2B2.  
(b) Contraction factor of branched components, two systems are considered: (1) sparsely branched 
A2B2:AB = 1:49, (2) hyperbranched A2B2.
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Scaling of the node neighbourhood size and criticism of well-mixing assumption.  Since the 
radius of gyration characterises only finite-sized molecules rather than the gel, which is virtually infinite in size, 
we are in need of devising an additional measure for the degree of connectedness of the gel. With this aim, we 
investigate the number of nodes at distance l from a randomly selected one, which we shortly refer to as l. Here, 
we utilise the topological notion of distance: nodes i and j are at distance l if the shortest undirected path connect-
ing these nodes has length l. Since the giant component is infinite in size, the larger the distance l the more nodes 
are incorporated in the volume of a sphere. In fact, we are mainly interested in the way this quantity asymptoti-
cally depends on l 1. Newman derived an expression for a similar quantity for directed paths41, whereas in the 
polymer context we are interested in the weak sense of connectivity. This means that we consider the shortest 
paths that does not respect the directionality of the bonds.

An analytical expression for this behaviour is derived in Methods. We observe that the average path length in 
the gel exponentially depends on l:

 = Ce l, 1, (7)l
l l/ 0

where C and l0 are constants. Note that structures that reside in three-dimensional Euclidean space must feature 
a different scaling law:

 = CN , (8)l
df

where 1 ≤ df ≤ 3 is the cluster growth dimension. The estimate given in eq. (7) is quite a discouraging result, as 
a network that features an exponential scaling cannot be physically embedded in the Euclidean space under the 
condition that the nodes are uniformly distributed with constant density. This unphysical exponential growth of 
a node neighbourhood is caused by one of the fundamental assumptions made in the random graph model, and 
many other popular models that do not explicitly track the spatial configuration of the network also suffer from 
the same criticism. In fact, we refer here to one of the most commonly used assumptions of a well-mixed system: 
any two functional groups react with an equal probability irrespectively of their location in the topology. In real 
systems, however, monomers interact with the rest of the network that may locally hinder them to react. That said, 
it is important to note, that the scaling given by eq. (7) does not hold before, and precisely at, the gel transition, 
and the well-mixed system assumption may remain a good approximation in these regimes.

Discussion
This paper employs recent developments in network science to formalise the step-growth polymerisation process 
as a problem fully described by network generation. In order to do so, we proposed to view the polymer architec-
ture as a directed network that is described by a dynamic degree distribution. Although the physical connection 
between monomers by means of covalent bonding is completely symmetrical, the directionality of the edges keeps 
record of the asymmetry of the chemical reaction that created the corresponding covalent bond. This approach 
allows a classification and a general treatment of a vast range of real-world polymerisation problems and can be 
used for optimisation and design of new materials. As a general rule, the parameters of step-growth polymerising 
systems comprise a high-dimensional parameter space that dictates the reaction kinetics, network structures, and 
physical properties of the final material. Therefore, it is important to have a fast way to map the polymerisation 
parameters to the final topological properties of the polymer network.

We have matched various idioms present in polymer chemistry to corresponding graph-theoretical analogues 
and indicated how these can be predicted knowing the input parameters of the system by means of analytical 
expressions. For instance, we gave analytical quantifications of the gelation time, the topological phase transition 
and the associated to it molecular weight singularity, the molecular size distribution and its asymptotes, the gyra-
tion radii of polymers, and the scaling of the monomer neighbourhood size. Some of these findings also provide 
an unexpected qualitative insight on chemistry of polymerisation. For instance, we have revealed the existence of 
two asymptotical modes that appear in the molecular size distribution, the fact that these size distributions might 
feature a peculiar oscillating behaviour and that the gyration radii in step-growth polymerised molecules are not 
dependent on time but only on the sizes of these molecules.

On a broader scope, this work paves the way to viewing polymer networks, as well as other types of network 
formations in condensed matter, as being complex networks in which the topology and additional layers of infor-
mation (multiplexity) all contribute to the formation and function of the macroscopic material. The theoretical 
framework that addresses multiplexity is a topic of current network science, and one of the goals of the authors is 
to advance the understanding of multiplex networks in condensed matter in their future works.

Although they were produced to aid polymer chemistry in the first place, these findings are also relevant to a 
broader network science community as one can view polymerisation as a process that is related to percolation. 
In this way, the paper amounts to understanding percolation in directed networks, which turn out to feature a 
richer behaviour then in undirected networks. Moreover, maintaining the link to polymers and polymerisation 
allows one to validate complex network theories with physics. Newly developed theories of such kind have been 
predominantly compared to experimental data derived from single point observations, which are hard to repro-
duce. For example, we cannot grow the Internet from scratch again. Yet, the degree distribution may be measured 
by NMR and more experimental techniques that will extract network properties from matter are on their way.

We finalise the paper with a note of caution that is addressed to the whole modelling community of polymer net-
works. The network analysis of the node-neighbourhood scaling in the configuration model points out the existence 
of unphysical features that appear after the gel transition. Importantly, the unphysical scaling is not an artefact of 
our approach but rather an implication of the commonly trusted assumption of chemical systems being well-mixed. 
This assumption is standard for many modelling methods that do not account for spacial embedding of the chemical 
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species in the three-dimensional space, as for instance is the case for the rate equations, Flory-Stockmayer theory, 
population balance equations, kinetic Monte Carlo, and other methods. We therefore would like to encourage the 
search of new network models that bring together mutual interaction of the topology and space.

Methods
Master equation of the degree distribution.  In this subsection we briefly summarise the theory from 
ref.29 that allows us to recover the time evolution of the bivariate degree distribution by constructing an analyti-
cally solvable master equation. We distinguish monomer species by counting the numbers of functional groups 
of both types I, J and the numbers of in- and out-edges i, j. During the progress of polymerisation the functional 
groups are converted into chemical bonds between the monomers, and the concentration profiles Mi,j,I,J(t) obey 
the following master equation:

μ

μ

μ μ

∂
∂

= − + ν −

+ − + ν −

− − ν − + − ν − .

−

−

t
M t I i t M t

J j t M t
I i t J j t M t

( ) ( 1)( ( )) ( )

( 1)( ( )) ( )
( ( )( ( )) ( )( ( )) ) ( ) (9)

i j I J i j I J

i j I J

i j I J

, , , 01 1, , ,

10 , 1, ,

01 10 , , ,

Since initially, at t = 0, there are no bonds, the system is completely described by the distribution of functional 
groups: Mi,j,I,J(0) = P(I, J), i, j = 0 and Mi,j,I,J = 0 for i > 0 or j > 0. This linear master equation describes the evolu-
tion of monomer species Mi,j,I,J(t) in time. Such a description is different from the commonly used aggregation 
equation, which is a non-linear master equation that describes the evolution of the polymer species of different 
size. The most important information we like to extract from this master equation is the time dependant degree 
distribution u(i, j, t). The latter is readily obtained by lumping together all monomer species having the same 
numbers of in- and out-edges:

∑= .
≥

u i j t M t( , , ) ( )
(10)I J

i j I J
, 0

, , ,

The master eq. (10) is a linear differential-difference equation that can be transformed to an analytically solvable 
system of partial differential equations by applying the generating function (GF) transform. We thus directly 
proceed by writing the expression for the degree distribution:

∑= −





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 − .
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where
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=

ν
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denote the fractions of converted in- and out-edges and
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is the expected in/out degree. Here, νmn and μmn(t) refer to the mixed moments of respectively P(I, J) and u(i, j, t):
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Note, that since the expected in- and out-degrees coincide, we have μ(t) = μ10(t) = μ01(t). Mixed moments of the 
degree distribution μmn(t) can be obtained in the form of analytical expressions by performing the appropriate 
summations of eq. (11). For instance, the list of mixed moments up to order n + m = 2 is as follows:
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Below we make use of the expressions for μi,j(t) to determine the gelation conversion, whereas u(i, j, t) is linked 
to the distribution of molecular weights, to the average molecular weight, and to the typical shortest path length.
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Generating functions of the degree and excess degree distributions.  In this section, we omit the 
time dependance in the degree distribution (11), and demonstrate how one can study directed networks defined 
by the bivariate degree distribution as combinatorial species55,56. The GF of a bivariate distribution is formally 
given by57:

∑=
≥

U x y u i j x y( , ) ( , ) ,
(16)i j

i j

, 0

with |x|, |y| ≤ 1, ∈x y,  and | ==U x y( , ) 1x y, 1 . The excess distributions uin(i, j) and uout(i, j), are defined as the 
degree distributions of nodes that are reached by randomly choosing an in- or out-edge:
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The GFs of the latter distributions are given by:
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and satisfy | ==U x y( , ) 1x yin , 1  and | ==U x y( , ) 1x yout , 1 . Plugging the degree distributions (11) into eqs (16–18) 
gives:
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Having these expressions in hand allows us to link the moments of the degree distribution u(i, j, t) as defined by 
eq. (14) to the partial derivatives of the GFs by writing:
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These relations are used below to derive analytical expressions for various global features of the polymer network.

Molecular weight distribution.  From chemical point of view any cluster of monomers that are connected 
together by means of covalent bonds is considered to be a molecule. In our directed network a molecule is there-
fore represented by a connected component, whereas the molecular weight is simply the size of this component. 
The distribution of molecular weights is a popular descriptor of polymer materials. In fact, there are two ways to 
define such distribution: the probability w(s) that a randomly chosen monomer belongs to a component of size s 
is called the molecular weight distribution. Alternatively, by applying the weight 

s
1  we obtain the molecular size 

distribution,

=n s C
s

w s( ) ( ),

that is the probability that a randomly chosen molecule has size s. In the latter equation C provides the appropriate 
normalisation of probability.

Here we link the molecular weight distribution w(s) to the size distribution of connected components in the 
directed configuration model as derived in ref.43, and briefly discuss the insights that this interpretation brings to 
understanding the step-growth polymerisation polymerisation process. The first values of w(s) can be found by 
following simple considerations. For instance w(1) is the probability to choose an isolated node with no neigh-
bours, and therefore:

= .w u(1) (0, 0)

Furthermore, w(2) is the probability that a randomly chosen node has one edge and its only neighbour has no 
edges except the one that connects it with the first node:
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μ
= .w u u(2) 2 (1, 0) (0, 1)

Continuing this list would lead to a combinatorial explosion of possibilities. A much faster alternative is to employ 
the GFs. The GF for w(s) is formally defined as:

∑= | | ≤ ∈W x w s x x x( ) ( ) , 1, ,
(21)s

s

and is obtained from the following system of functional equations:
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where the GFs U(x, y), Uin(x, y) and Uout(x, y) are defined by eqs (16) and (18). The functions = ∑ >W x w s x( ) ( )s
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s
out 0 out  denote the GFs of the excess component size distributions win(s) and wout(s).

The formal solution to eq. (22) is given by the following relation43:
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Here, f(i, j)*n denotes the convolution power = ∗ =−⁎ ⁎ ⁎f i j f i j f i j f i j( , ) ( , ) ( , ), ( , ) : 1n n 1 0 , and the bivariate con-
volution is defined as
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In practice, numerical values of the convolution can be conveniently obtained by Fast Fourier Transform FFT. The 
asymptotical analysis of w(s) yields two distinct asymptotes:
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1

and
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1

The exact expression for the coefficients C1 and C1′ are given in ref.43 and νnm are as defined in eq. (14).

Systems with a single monomer type.  Although the numerical values of eq. (23) are accessible at the 
cost of s s( log )2  operations, explicit analytical relations can be obtained in some special cases. Consider the case 
when there is only one monomer species bearing I groups of type A and J groups of type B, that is the AIBJ mon-
omer. We will now derive an explicit analytical expression for w(s). Note that in this case, the distribution of initial 
functionalities is trivial, P(I, J) = 1, and therefore the expression for the degree distribution given in eq. (11) sim-
plifies to a bivariate binomial distribution:
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The first values of w(s) are readily obtained by writing:
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Since u(i, j) has a binomial form, one can analytically solve the convolution powers appearing in eq. (24) to obtain:
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where factors A, B, and C are defined via the Hypergeometric function:
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As a quick check-up, we consider the AB2-system by setting I = 1, J = 2 and = = ≤ .p p 0 5
p

B2
A . This substitution 

reduces eq. (31) to:
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This result is identical, up to the normalisation factor s, to the size distribution derived in ref.11. Note we normalise 
with s to guarantee that w(s) is a proper probability mass function, that is ∑ =≥ w s( ) 1s 1 .

Weight-average molecular weight.  The weight-average molecular weight is a widely-used quantity in 
polymer chemistry. It is defined by the follwing ratio:
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Note that before the gel point, w(s), win(s) and wout(s) are appropriately normalised,
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By plugging eq. (22) into definition (33) we obtain:

〈 〉 =
′

= ′ = + .
μ μ μ μ

μ μμ μ μ μ μ μ<
− + +

− − + +
s W

W
W(1)

(1)
(1) 1

(34)t t
( 2 )

2 ( )gel

2
11 20 02

11
2

11 02 20 20 02

After gel transition, the latter expression becomes more complex and reads:

= = ⋅ +μ μ

μ μ>
− + +

− − +

′

⟨ ⟩s 1,
(35)t t

W
W U r r

r r U r r r U r r r U r r

U r r U r r U r r U r r
(1)
(1) ( , )

2 ( ( , )) ( , ) ( , )

2 ( , ) ( , ) ( , ) ( , )gel

2

out in

in out 11 out in in
2

02 out in out
2

20 out in
2

11 out in 02 out in 20 out in 11
2

out in

where = ∂
∂

∂
∂( )( )U x y U x y( , ) ( , )lm x

l

y

m
 denote the partial derivatives, and (rin, rout) is the solution of the following 

system of equations:

=
= .

r U r r
r U r r

( , ),
( , ) (36)

in in out in

out out out in

Phase transition and gel fraction.  During the evolution of the network the functional groups are con-
verted into edges and at some critical point the system accumulates so many edges that it percolates. This critical 
moment can be identified by a few alternative methods. For instance, one may study the asymptotical behaviour 
of the size distribution of connected components as given by (27). This asymptote becomes scale-free at the crit-
ical point. The other alternative is to directly detect the percolation phase transition by looking at the degree dis-
tribution itself. In this case, the changes that occur in the degree distribution at the critical point are more subtle, 
yet they can be detected by a specially designed criticality criterion. This criterion was introduced by Molloy and 
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Reed for undirected networks47, and was later generalised to the case of directed networks in ref.29. In this section 
we briefly discuss the implications of the latter theory on our dynamic polymer network.

If the only available information about a system is its degree distribution, we can detect whether the system is 
in the gel regime by the following criterion:

μ μμ μ μ μ μ μ− − + + ≤ .2 ( ) 0 (37)11
2

11 02 20 20 02

The conversion of A-groups at the critical point is given by:

=
ν

ν + ν − ν ν − ν
.p

( )( ) (38)
A,critical

01

11 02 01 20 10

Thus, if pA(t) > pA,critical the system contains gel. Some system, however, never produce gel. This happens because 
the initial configuration of the system does not have a sufficient amount of high functional monomers, or too 
many monomers of functionality one that terminate the growth of the network. In either case this statement can 
be quantified by looking at the moments of the functionality distribution P(I, J): the phase transition occurs in 
finite time if at least one of the following conditions is true:

ν − ν ν − ν − ν − ν > ν ≤ ν .

ν − ν ν − ν − ν − ν > ν ≥ ν

( )( ) ( ) 0, and
or

( )( ) ( ) 0, and , (39)

02 01 20 10 11 10
2

01 10

02 01 20 10 11 01
2

01 10

The gel fraction is defined as the probability that a randomly selected node belongs to the gel molecule. The GF of 
the component size distribution W(x) only describes the components of finite size, and the gel fraction is found 
as the mass deficit that departs from zero at the phase transition. The amount of this ‘lost’ mass, that is the proba-
bility that a randomly chosen monomer belongs to the gel, is given by

= −g r1 , (40)f

where r = W(1). This means that in order to recover gf, one needs to solve the equation for W(x) only at a single 
point x = 1. By substituting x = 1 into (22) one obtains:

=
=
=

r U r r
r U r r

r U r r

( , ),
( , ),
( , ), (41)

out in

in in out in

out out out in

where U(x, y), Uin(x, y) and Uout(x, y) are given by eq. (19).
It is important to note that the directionality of the network, as it is introduced in the present paper, is decisive 

only in the case of an asymmetric degree distribution ≠u i j u j i( , ) ( , ). In case of a symmetric distribution u(i, 
j) = u(j, i), the directed network model will give the same results as the undirected model supplied with degree 
distribution = ∑ = +u k u i j( ) ( , )k i j . This implies that an AB-system (undergoing AB-reactions) with symmetric 
initial input (P(I, J) = P(I, J)) leads to the same network as an AA-system (undergoing AA-reactions) with 

= ∑ = +P K P I J( ) ( , )K I J . For example, the AB-system A3:B3 = 1:1 forms a topologically identical polymer network 
(when disregarding the directionality of the edges) as the AA-system A3. With this in mind, eq. (38) simplifies for 
the case of symmetric functionality distribution P(I, J) = P(I, J) as follows:

	 1.	 Symmetry leading to

=
ν

ν + ν − ν
p ,

(42)critical
10

11 20 10

with ν01 = ν10 and ν02 = ν20.
	 2.	 Mapping the symmetric AB-system to an AA-system (e.g. A3:B3 = 1:1 ≡ A3, A2B:AB2 = 1:1 ≡ A3) simplifies 

to

=
ν

ν − ν
p ,

(43)critical
1

2 1

using ν = ν10
1
2 1 and ν + ν = ν11 20

1
2 2. The deduced equations give the critical conversion in undirected 

networks22.
	 3.	 For systems of one initial monomer type we note ν = ν2 1

2, giving

=
ν −

=
+ −

.p
I J

1
1

1
1 (44)critical

1

This corresponds to the Flory-Stockmayer equation, where z = ν1 is the expected number of first neighbours9.

Derivation of the gyration radius.  In polymer physics, the radius of gyration is used to describe the 
dimensions of a branched polymer and can be experimentally observed by light scattering experiments. Consider 

https://doi.org/10.1038/s41598-018-37942-4


www.nature.com/scientificreports/

1 5Scientific Reports |          (2019) 9:2276  | https://doi.org/10.1038/s41598-018-37942-4

a branched polymer with s monomers having coordinates ∈ri
3, i = 1, …, s. The radius of gyration R s( )g

2 of this 
topology is conventionally defined as:

∑∑= → − → .
= =

R s
s

r r( ) 1 ( )
(45)k

s

l k

s

k lg
2

2
1

2

This quantity can be estimated using the Kramer’s theorem58 that states:

∑=
=

−R s

b s
s j s j

( ) 1 ( ) ( ),
(46)j

s

L R
g
2

2 2
1

1

where b is the Kuhn’s length, which is related to the size of a monomer unit. This sum runs over all possible cuts of 
the branched structure into two fragments: the left fragment of size sL and the right fragment of size sR. There are 
s − 1 of such partitions. In a statistical ensemble, the size distributions of sL and sR are given by respectively win(s) 
and wout(s), which are defined by their GFs in eq. (22). Hillegers & Sloot38 formulated the ensemble average for  
eq. (46) with respect to win(s) and wout(s):

〈 〉
=

∑

∑

+ =

− + =

R s

b s

s w s s w s

w s w s

( ) 1 ( ) ( )

( ) ( )
,

(47)

s s s A A B B

s s s s A B

g
2

2 2
in out

1
1 in out

A B

A B

which we further process using a discrete Fourier transform |− G k( ) s
1 :




〈 〉
=

− ∗
∗

=
− ′ ′ |

|

−
−

−

R s

b
s

s
sw s sw s

w s w s
s

s
W x W x

W x W x

( ) 1 ( ( )) ( ( ))
( ) ( )

1 ( ( ) ( ))
( ( ) ( ))

,
(48)

k k s

k k s

g
2

2 2
in out

in out
2

1
in out 2

1
in out

with = π− +x ek
2 i k

N 1, k = 0, …, N. Therefore, if Win(x) and Wout(x) are already available from the computation of the 
component size distribution w(s), the ensemble-average radius of gyration is obtained by applying the FFT algo-
rithm at the cost of s s( log )  multiplicative operations. For small s, it is possible to compute the convolution 
directly, whereas eq. (48) is the most advantageous for s 1, where the direct evaluation of the convolution 
becomes unfeasible.

Another related quantity to the gyration radius is the contraction factor g(s), which is given by the ratio 
between the mean square gyration radius for a branched polymer R s( )g

2  and the square gyration radius of a refer-
ence linear polymer with the same length |R s( )g

2
linear:

=
|

g s
R s

R s
( )

( )

( )
,

(49)

g
2

g
2

linear

where |R s( )g
2

linear is typically estimated from the Gaussian coil model:

=
−

.
R s

b
s

s
( ) 1

6 (50)

g
2

2
linear

2

Scaling of the node neighbourhood size.  In this section we apply the Joyal’s theory of combinatorial species 
to investigate the number of nodes that are contained within a given topological distance from a randomly chosen 
node. The expected number of first-degree neighbours is defined as the sum of the neighbours reached by the in-edges 
and the neighbours reached by the out-edges. By using GF this number can be extracted from the degree distribution:

μ=





∂
∂

+
∂
∂






| ==z
x y

U x y( , ) 2 ,
(51)

x y1 , 1

and moreover, the expected number of the mth-degree neighbours is given by a composition of U(x, y) and 
(m − 1)-fold composition of the excess GF:

=





∂
∂

+
∂
∂






| .=z
x y

U x y( , )
(52)

m
m

x y
[ ]

, 1

Here U[m] generates the probability for the number of mth neighbours:

=





=
> .−U

U x y m
U U x y U x y m

:
( , ), for 1,

( ( , ), ( , )), for 1 (53)
m

m
[ ]

[ 1]
out in

Therefore, for the first-degree neighbours we have z1 = 2μ. For second-degree neighbours we have:
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 and =1 (11)T . The expected number of the third-degree neighbours is given by:
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By using induction we arrive at the following expression for the expected number of the mth-degree neighbours 
in terms of the degree distribution moments:

μ= −z 1 A 1, (56)m
T m 1

where

μ μ

μ μ μ
μ μ μ= | =






−
−




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.=U x yA L1 ( , ) 1

(57)
x y, 1

11 02

20 11

Now, the total number of nodes N contained within a topological ball of radius l is given as a sum:

∑ ∑ ∑μ μ= + = + = +

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Using the equation for the sum of the geometric series, ∑ = − −=
+ −A A I A I( )( )m

l m l
0

1 1, with I denoting the 
identity matrix, we obtain:

μ= + − − .−N 1 A I A I 11 ( )( ) (59)T l 1

The latter equality transforms to:

μ
− =

−
+ − .− −N1 A A I 1 1 A I 1( ) 1 ( )

(60)
T l T1 1

We will now perform an asymptotic analysis of the latter equation by assuming that l 1, in which case, the asymp-
totic behaviour of Al is driven by the leading eigenvalue of A. Using the eigendecomposition Al = PDlP−1 gives 

− = + −
μ

− − − −1 PD P A I 1 1 A I 1( ) ( )T l N T1 1 1 1 , and defining aT = 1TP, b = P−1(A − I)−11 and  = − −1 A I 1( )T 1  
leads to


μ

=
−

+
Na D b 1 ,T l

or equivalently,

λ λ
μ

+ =
−

+a b a b N 1 ,
(61)

l l
1 1 1 2 2 2

where the eigenvalues of the matrix A, λ μ μ μ μ μ= ± − −
μ ( )( )( )1,2
1

11 20 02
, are defined by the characteristic 

polynomial:
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μ
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(62)
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Note that the gel criterion given by eq. (37) can also be rewritten as a determinant:

μ

μ μ μ
μ μ μ′ = |


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

−
−






− | ≤ .A Idet 1 0
(63)

11 02

20 11

Thus, at the gel point, the matrix A′ has at least one eigenvalue equal to zero. The relation of the eigenvalues of 
matrix A′, λ′1 and λ′2, to the eigenvalues of A, λ1 and λ2, is as follows: λ λ′ = − 11 1  and λ λ′ = − 12 2 . 
Furthermore, above the gel transition, λ λ′ = ′ ′ <Adet 01 2 . This is the case, only if one eigenvalue, λ′ > 01 , is 
positive and the other one, λ′ < 02 , is negative, and therefore, the eigenvalues of A satisfy λ1 > 1, λ2 < 1 and 
|λ1| > |λ2|. The implications for eq. (61) are as follows: for large l, λ λ

l l
1 2, and consequently, the total number of 

nodes N contained within a topological ball of radius l features the exponential growth after the gel transition:

λ λ∝ = = .−
N e l l, (log ) , 1 (64)l l l

1
/

0 1
10
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