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Exploratory search is an information seeking task in which users
are not familiar with the specification of their information need
and how to answer it and the system helps them in this regard. In
this thesis, we study how metadata and structure associated with
textual documents can be helpful in supporting exploratory
search tasks. We first study how metadata and structure can be
exploited to manage documents and support access to semi-
structured documents more effectively. We define semi-
structured documents as documents that beside a textual
content, contain tags and other markers that separate documents
into different parts such as title, body, metadata, etc. Then we
study, in two case studies, how metadata and structure can help
to support exploratory search tasks.
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1
Introduction

Digital documents on the Web are a heterogeneous mixture of text, metadata and
structure [108, 113]. The structure and metadata associated with documents can be
helpful in many tasks including search and managing documents [44, 100, 173, 208].
For example, tags associated with documents can be used to organize documents and
support faceted and exploratory search over them [173]. If the metadata associated with
documents comes from a thesaurus, we can automatically organize documents into a
hierarchical structure [71]. Temporal metadata such as creation date can be used to
organize documents from a different angle and help users to track topics over time [33].

In this thesis, we study how metadata and structure associated with textual doc-
uments can be helpful in supporting exploratory search tasks. We first study how
metadata and structure can be exploited to manage documents and support access to
semi-structured documents more effectively. We define semi-structured documents as
documents that beside a textual content, contain tags and other markers that separate
documents into different parts such as title, body, metadata, etc. Then we study, in
two case studies, how metadata and structure can improve exploratory search tasks.
Exploratory search is a very broad concept and a system should have several features to
support exploratory search activities [132, 205, 206]. White and Roth [205] character-
ize different aspects of exploratory search systems. We restrict our attention to some
specific aspect of exploratory search including “offering facets and metadata-based
result filtering” as we use metadata features during the two case studies and “support-
ing querying and rapid query refinement” as the task in the case studies support this
functionality.

To support exploratory search, we first focus on document management tools that
can make access to the data easier. In this thesis, document management is defined
as the task of grouping similar documents together and classifying them. We define
similarity between documents from different angles. The first angle is topical similarity
in which our goal is to use content, metadata, and structure in a unified way to classify
documents based on how similar their topics are. We consider a scenario in which there
is a hierarchical thesaurus with a high number of entries and the challenge is to correctly
assign documents to possibly multiple entries in the thesaurus. Next, we take a different
angle and measure topical diversity of documents and use it for managing documents.
We are interested in topical diversity as it has been shown that topical diversity is an
important characteristic of interesting documents [15, 61]. We determine the main

1



1. Introduction

drawbacks with existing models for measuring diversity and propose an approach
that addresses them. As the third angle, we move to the domain of managing emails
and focus on how we can help users manage their tasks created via email efficiently.
Nowadays, email is used as a tool to create and manage tasks [20, 43, 145, 189]. When
the number of ongoing tasks created via email increases, people can struggle to manage
their tasks and monitor their progress [17, 207]. We focus on commitments made
by people via email as one type of task and study how we can build an automatic
commitment detection method.

We then consider two different exploratory search tasks and study how metadata
and structure can be helpful in these tasks. The first task is measuring semantic shifts in
the meaning of words. We propose an approach for detecting semantic shifts between
different viewpoints—broadly defined as a set of texts that share a specific metadata
feature, which can be a time-period, but also a social entity such as a political party. We
study how detected shifts can be helpful in various tasks including monitoring changes
in meanings, summarizing diverging viewpoints, and ideology detection in a political
setting. The second case study lies in the domain of community question answering
as it happens in fora such as Stack Exchange.1 We study the task of finding existing
questions (often with an answer already) that are similar to a given question.

1.1 Research Outline and Questions

This thesis contains two research themes: using content, structure, and metadata (1) to
support access to semi-structured documents (Chapters 2, 3 and 4) and (2) exploratory
search over semi-structured documents (Chapters 5 and 6). Below, we list the main
research question of every chapter.

1.1.1 Managing semi-structured documents

For our first research theme, we study how structure and metadata can be used for
classifying documents based on their topics (Chapter 2) and how interesting they are
(Chapter 3). We then focus on the email management domain and study how we can
help users manage their emails (Chapter 4).

We first study how we can exploit structure and metadata to classify documents
topically. Multi-Label Text Classification (MLTC) is a supervised machine learning task
in which the goal is to learn a classifier that assigns multiple labels to text documents
[79]. Efficiently exploiting all sources of information associated with semi-structured
documents such as labels, their structure, the representation of the labels and relations
between them has a high impact on the performance of MLTC systems. Most of
the current approaches to MLTC only use labeled documents as the primary source
of information for MLTC. We investigate the effectiveness of different sources of
information such as the labeled training data, textual labels of classes, and taxonomy
relations of classes for MLTC. In doing this, we answer the following research question:

RQ1 How helpful is integrating a variety of sources of information extracted from

1https://stackexchange.com
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content, structure, and metadata as features to improve the performance of MLTC
systems?

To answer this research question, first, for each document-class pair, different
features are extracted using different sources of information. The features reflect
the similarity of classes and documents. Then, MLTC is considered to be a ranking
problem and learning to rank (LTR) is used to rank class-labels given a document. To
further improve performance, we apply score propagation on top of LTR based on the
co-occurrence patterns of classes in labeled documents.

Next, we focus on the task of managing documents based on their topical diversity.
A high degree of topical diversity has been considered to be an important characteristic
of interesting text documents [15, 61]. A recent proposal for measuring topical diversity
identifies three distributions for assessing the diversity of documents: distributions of
words within documents, words within topics, and topics within documents [15]. Topic
models play a central role in this approach and, hence, their quality is crucial to the
efficacy of measuring topical diversity. The quality of topic models is affected by two
dimensions: generality and impurity of topics. General topics only include common
information of a background corpus and are assigned to most of the documents, and so
overestimate their diversity. Impure topics contain words that are not related to the topic.
Impurity lowers the interpretability of topic models and impure topics are likely to get
assigned to documents erroneously. We propose a hierarchical re-estimation process
aimed at removing generality and impurity, and at answering the following research
question:

RQ2 How effective is our hierarchical re-estimation approach in measuring topical
diversity of documents? Are the topic models that have been improved in this
way also successfully applicable for other tasks such as documents clustering and
classification?

To answer this research question, we focus on different components of topic models
and re-estimate them at three different levels: (1) document re-estimation, which
removes general words from the documents; (2) topic re-estimation, which re-estimates
the distribution over words of each topic; and (3) topic assignment re-estimation, which
re-estimates for each document its distributions over topics. We show that for measuring
topical diversity of text documents, our re-estimation approach improves over the
state-of-the-art.

In the last chapter of this part, we study how we can help users manage their emails
more effectively. People use email not only as a communication tool, but also as a
means to create and manage tasks [20, 43, 145, 189]. When the number of ongoing
tasks created via email increases, people can struggle to manage their tasks and monitor
their progress [17, 207]. People often make commitments to perform future actions.
Detecting commitments made in email (e.g., “I will send the draft of my thesis by
end of this week.”) enables digital assistants to help their users recall promises they
have made and made to them. Despite the potential benefits of automatic commitment
detection, work in this important area has been limited to only a handful of studies
[41, 50, 115, 116, 128]. We focus on this task and answer the following research
question:
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RQ3 Can commitments be reliably detected in emails? And how does the performance
of commitment models change when they are tested on a different domain than
they are trained on?

To answer RQ3, we build the first large-enough dataset for the task of commitment
detection. Using this dataset, we show that commitments can be reliably extracted from
emails when models are trained and evaluated on the same domain (corpus). However,
their performance degrades when the evaluation domain differs. This illustrates the
domain bias associated with email datasets and a need for more robust and generalizable
models for commitment detection. We characterize the differences between domains
(email corpora) and use this characterization to transfer knowledge between them and
create reliable domain-independent commitment models. Our findings illustrate that
domain differences can have a significant negative impact on the quality of commitment
detection models and that transfer learning has potential to address this issue.

1.1.2 Using structure and metadata for exploratory search
We study how structure and metadata are helpful in supporting exploratory search tasks
such as tracking semantic shifts (Chapter 5) and finding similar questions (Chapter 6).

We first focus on the use of metadata features to detect shifts in the meaning of
words and track them. Detecting and characterizing such shifts can be helpful for search
and exploration of historical collections. Due to its importance, recently, researchers
started to pay attention to the detection of temporal shifts in the meaning of words
[75, 90, 104, 110]. Most (if not all) of these approaches are restricted to changes over
time. We focus on detecting semantic shifts between different viewpoints–broadly
defined as a set of texts that share a specific metadata feature, which can be a time-
period, but also a social entity such as a political party. We answer the following
research question:

RQ4 How can we use metadata information to measure semantic shifts? How effective
are the proposed approaches in quantifying the changes in word meaning over
various dimensions such as time and political context?

To answer this research question, for each viewpoint, we learn a semantic space
in which each word is represented as a low dimensional neural embedded vector. The
challenge is to compare the meaning of a word in one space to its meaning in another
space and measure the size of the semantic shifts. We compare the effectiveness of
a measure based on optimal transformations between the two spaces with a measure
based on the similarity of the neighbors of the word in the respective spaces. We find
that semantic shifts not only occur over time, but also along different viewpoints in a
short period of time. Moreover, we show that the information about semantic shifts
contributes to other tasks such as summarization and classification.

In the last chapter, we move to the task of question retrieval in Community Question
Answering (cQA) forums. cQA forums are widely used sources of knowledge [46, 142,
225, 231]. Similar question retrieval is an important task in cQA that can help address
issues such as question starvation and duplicate question detection [46, 142, 152].
Two challenges with question retrieval in cQA are (1) the vocabulary gap, which is
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the phenomenon that users express the same question with different words, and (2)
expressive inefficiency, which is the phenomenon that users do not explain their question
with enough details. It has been shown that semantic matching of questions can address
the vocabulary gap to some extent, however, there are not many effective methods
to address both challenges [46, 152, 225, 231]. We propose a method that not only
estimates semantic similarity of questions but also exploits the structure and different
fields of questions to further bridge the vocabulary gap and address the expressive
inefficiency problem. We answer the following research question:

RQ5 Does using the rich data and structure available on question answering forums
lead to a better score than the state of the art on the task of question retrieval?

We propose a multi-context neural attention mechanism to weight different sources
of information associated with questions to determine semantic similarity. We show that
the attention mechanism is a powerful means to exploit different sources of information
for the question retrieval task. Our findings indicate that for semantic matching of
questions it is important to efficiently exploit all sources of information and augment
semantic matching models with the rich content and structure associated with questions
on typical cQA platforms.

1.2 Main Contributions

In this section, we list theoretical, algorithmic and empirical contribution of the thesis.
For each contribution, we list the chapter from which it originates.

1.2.1 Theoretical contributions

1. Introducing the concept of word stability and a general framework for computing
semantic shifts by using word embeddings trained on corpora that (are presumed
to) represent specific viewpoints. (Chapter 5)

1.2.2 Algorithmic contributions

2. An LTR and score propagation approach for classifying documents for the MLTC
task. (Chapter 2)

3. A hierarchical model for removing generality and impurity from topic models
and measuring topical diversity. (Chapter 3)

4. A neural model for characterizing domain bias in email datasets and removing it
from commitment models. (Chapter 4)

5. Several methods to measure the amount of change in the meaning of words over
various dimensions such as time and social groups. (Chapter 5)

6. A recurrent neural attentive model for estimating similarity of questions using
multiple fields in cQA forums. (Chapter 6)
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1.2.3 Empirical contributions
7. (a) Analysis of the effectiveness of different sources of information for MLTC and

advice on how to create a lean-and-mean effective and efficient classifier. (b) An
empirical comparison of classification and ranking-based approaches for MLTC.
(c) An empirical comparison of static and dynamic approaches for selecting the
number of classes for documents. (Chapter 2)

8. (a) Evaluation of different topic models on different tasks including topical
diversity, document clustering, and document classification. (b) Analysis on the
effect of impurity and generality on the quality of topic models. (Chapter 3)

9. (a) A dataset for detecting commitments and evaluating the performance of
different commitment models on it. (b) A study on the impact of domain transfer
on commitment detection and showing that the quality of commitment detection
degrades significantly as we apply commitment detection models across domains.
(c) A characterization of differences between email corpora and showing that
domain adaptation (specifically, transfer learning) can remove domain-specific
bias from commitment detection models. (Chapter 4)

10. (a) An analysis to show that semantic shifts not only occur over time, but also
across different viewpoints in a short period of time. (b) An evaluation dataset
for detecting semantic shifts and contrastive viewpoint summarization. (c) An
extensive analysis of word stability measure in different tasks including detecting
shifts, summarization, and classification. (Chapter 5)

11. (a) A comparison of the performance of different question retrieval methods and
their effectiveness in addressing the issues associated with this task. (b) Extensive
analyses to assess the importance of different fields of questions for learning
representations of questions. (c) Analysis of the effectiveness of a multi-context
attention mechanism for exploiting multiple fields associated with questions.
(Chapter 6)

1.3 Thesis Overview

This thesis is organized in two parts: managing semi-structured documents and using
structure and metadata for exploratory search.

The first part consists of three chapters. In Chapter 2 we study how metadata and
structure can be used to automatically assign labels from a thesaurus to documents using
supervised learning; in Chapter 3 we apply unsupervised learning to assign topics to
documents; and in Chapter 4 we move to the email management domain and study how
we can help users by identifying commitments in emails.

In the second part, we study how metadata and structure of documents can be used
beside their content to support two different exploratory search tasks. In Chapter 5, we
use metadata such as time stamps and social groups tags associated with documents
to measure and track semantic shifts. Chapter 6 is centered around the task of ques-
tion retrieval in cQA forums and how metadata and structure can address challenges
associated with this task.
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Finally, in Chapter 7, we conclude the thesis and discuss limitations and future
directions.

There is no particular dependence between the chapters of the thesis and they can
be read independently.

1.4 Origins

In this section, we list the publications each chapter is based on and explain the role of
each author.

• Chapter 2 is based on the following papers:

– H. Azarbonyad, M. Dehghani, M. Marx, and J. Kamps. Learning to rank for
multi label text classification: Combining different sources of information.
Journal of Natural Language Engineering, under review, 2018 [12]

– M. Dehghani, H. Azarbonyad, M. Marx, and J. Kamps. Sources of evi-
dence for automatic indexing of political texts. In Proceedings of the 37th
European Conference on IR Research, ECIR ’15, pages 568–573, 2015 [51]

HA designed the algorithm, ran the experiments, and did most of the writing;
MD helped with the algorithm design and running the experiments; MM, and JK
contributed to the writing.

• Chapter 3 is based on the following paper:

– H. Azarbonyad, M. Dehghani, T. Kenter, M. Marx, J. Kamps, and M. de Rijke.
HiTR: Hierarchical topic model re-estimation for measuring topical diver-
sity of documents. IEEE Transactions on Knowledge and Data Engineering,
to appear, 2018 [10]

– H. Azarbonyad, M. Dehghani, T. Kenter, M. Marx, J. Kamps, and M. de Rijke.
Hierarchical re-estimation of topic models for measuring topical diversity.
In Proceedings of the 39th European Conference on IR Research, ECIR ’17,
pages 68–81, 2017 [9]

– H. Azarbonyad, F. Saan, M. Dehghani, M. Marx, and J. Kamps. Are topi-
cally diverse documents also interesting? In Proceedings of the 6th Interna-
tional Conference on Experimental IR Meets Multilinguality, Multimodality,
and Interaction, CLEF ’15, pages 215–221, 2015 [7]

HA designed the algorithm, ran the experiments, and did most of the writing; MD
helped with the algorithm design; TK, MM, JK, MdR contributed to the writing.

• Chapter 4 is based on the following paper:

– H. Azarbonyad, R. Sim, and R. W.White. Domain adaptation for commit-
ment detection in email. In Proceedings of the Twelfth ACM International
Conference on Web Search and Data Mining, WSDM ’19, 2018 [13]
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This work was done during an internship in Microsoft Cortana Research in
2018. The task was proposed by RS and RW; HA designed the algorithms,
ran experiments, and did most of the writing; RS further helped with running
experiments. RS and RW contributed to the writing.

• Chapter 5 is based on the following paper:

– H. Azarbonyad, M. Dehghani, K. Beelen, A. Arkut, M. Marx, and J. Kamps.
Words are malleable: Computing semantic shifts in political and media
discourse. In Proceedings of the ACM on Conference on Information and
Knowledge Management, CIKM ’17, pages 1509–1518, 2017 [8]

HA designed the algorithm, ran the experiments, and did most of the writing; AA
and KB helped with building datasets; AA further helped with algorithm design;
MD, MM, JK contributed to the writing.

• Chapter 6 is based on the following paper:

– H. Azarbonyad, M. Dehghani, M. Marx, and M. de Rijke. Learning question
representations for question retrieval using content, structure and attention.
In Proceedings of the Twelfth ACM International Conference on Web Search
and Data Mining, WSDM ’19, under review, 2018 [11]

HA designed the algorithm, ran the experiments, and did most of the writing; MD
helped with the algorithm design; MM, MD, MdR contributed to the writing.

The thesis also indirectly builds on the following papers (listed in reverse chrono-
logical order):

• M. Dehghani, H. Azarbonyad, J. Kamps, and M. de Rijke. Learning to transform,
combine, and reason in open-domain question answering. In Proceedings of the
Twelfth ACM International Conference on Web Search and Data Mining, WSDM
’19, 2018 [60]

• M. Dehghani, G. Jagfeld, H. Azarbonyad, A. Olieman, J. Kamps, and M. Marx.
On search powered navigation. In Proceedings of the 2017 ACM International
Conference on the Theory of Information Retrieval, ICTIR ’17, pages 317–320,
2017 [58]

• M. Dehghani, H. Azarbonyad, J. Kamps, and M. de Rijke. Share your model
instead of your data: Privacy preserving mimic learning for ranking. In SIGIR
wokshop on Neural Information Retrieval, 2017 [57]

• M. Dehghani, G. Jagfeld, H. Azarbonyad, A. Olieman, J. Kamps, and M. Marx.
Telling how to narrow it down: Browsing path recommendation for exploratory
search. In Proceedings of the ACM SIGIR Conference on Human Information
Interaction and Retrieval, CHIIR ’17, pages 369–372, 2017 [59]
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• M. Dehghani, H. Azarbonyad, J. Kamps, D. Hiemstra, and M. Marx. Luhn
revisited: Significant words language models. In Proceedings of the ACM on
Conference on Information and Knowledge Management, CIKM ’16, pages 1301–
1310, 2016 [52]

• H. Azarbonyad and E. Kanoulas. Power analysis for interleaving experiments
by means of offline evaluation. In Proceedings of the 2017 ACM International
Conference on the Theory of Information Retrieval, ICTIR ’17, pages 87–90,
2016 [5]

• M. Dehghani, H. Azarbonyad, J. Kamps, and M. Marx. On horizontal and vertical
separation in hierarchical text classification. In Proceedings of the 2016 ACM
International Conference on the Theory of Information Retrieval, ICTIR ’16,
pages 185–194, 2016 [55]

• M. Dehghani, H. Azarbonyad, J. Kamps, and M. Marx. Two-way parsimonious
classification models for evolving hierarchies. In Proceedings of the 7th Interna-
tional Conference on Experimental IR Meets Multilinguality, Multimodality, and
Interaction, CLEF ’16, pages 69–82, 2016 [53]

• H. Azarbonyad. Measuring interestingness of political documents. In Proceedings
of the 39th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’16, pages 1175–1175, 2016 [4]

• M. Dehghani, H. Azarbonyad, J. Kamps, and M. Marx. Generalized group
profiling for content customization. In Proceedings of the ACM SIGIR Conference
on Human Information Interaction and Retrieval, CHIIR ’16, pages 245–248,
2016 [54]

• M. Dehghani, H. Azarbonyad, J. Kamps, and M. Marx. Significant words lan-
guage models for contextual suggestion. In Proceedings National Institute for
Standards and Technology, 2016 [56]

• H. Azarbonyad, M. Dehghani, M. Marx, and J. Kamps. Time-aware authorship
attribution for short text streams. In Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR
’15, pages 727–730, 2015 [6]

• A. Olieman, H. Azarbonyad, M. Dehghani, J. Kamps, and M. Marx. Entity
linking by focusing dbpedia candidate entities. In SIGIR workshop on Entity
Recognition and Disambiguation, pages 13–24, 2014 [148]
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2
Learning to Rank for Multi Label Text

Classification: Combining Different
Sources of Information

In this chapter, we address RQ1 and focus on using content, structure, and metadata for
classifying documents in the Multi-Label Text Classification (MLTC) task.

2.1 Introduction

MLTC is a supervised machine learning task in which the goal is to learn a classifier
that assigns multiple labels to text documents [79]. MLTC has many applications
in the real world, e.g., when a text document is about both politics and economics
and we want to label it. Simple classification approaches become computationally
expensive when the number of classes is high as for each class a different classifier
should be trained [22]. To achieve a good performance in MLTC, instead of optimizing
a model for each class separately, the model should be optimized with respect to a
global optimum considering all classes. Learning to rank (LTR) has been shown to be
an effective approach for MLTC [219]. In this approach, a model is trained to rank
classes regarding the documents and select the top k classes as labels of documents.
Rather than creating and optimizing a separate model for each class and predicting the
probability of assigning each class to the given document, the learning objective of the
LTR approach for MLTC is to create a global ranking model that ranks all classes for a
given document.

In this chapter, we integrate a variety of sources of available information for MLTC
using an LTR approach. There are different sources of information for the selection
of appropriate classes for documents in the MLTC task, such as several document and
class representations. The main aim of our approach is to effectively combine these
sources of information in a supervised process. For example, classes can be expanded
by their textual labels, which is useful for calculating the similarity of a class with
the content of documents [171]. Moreover, the relations between classes (structure
of thesauri), if existing, could be another useful source for finding semantic relations

This chapter was published as [12].
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between classes and taking these relations into account [166, 171]. One of the main
sources of information is a set of annotated documents with the labels assigned. These
documents are used by supervised approaches as training data to create a classification
model [143, 155]. In this study, we utilize various information sources for finding
similarities of documents and classes and rank classes based on these similarity scores.
Using each source of information, we define different features, each reflecting the
similarity of documents and classes in a different way. We use an LTR approach
for combining different sources of information. Similar to [219], we consider each
document to be annotated as a query, and use all information associated with a class
as a document. We choose LTR as the combination method since it is an effective
approach for combining different types of signals. Moreover, it gives us the ability to
analyze the contribution of different sources of information in the classification task.
The proposed approach can be applied on any document collection that contains the
mentioned sources of information.

In MLTC, there are implicit and explicit relations between classes that can be useful
for classifying documents more accurately. We model the implicit relations between
classes based on their co-occurrence patterns in the labeled documents and study how
these patterns can help classify the documents more accurately. To do this, we propose
a score propagation approach that re-estimates the similarity of classes and documents
based on co-occurrence patterns of classes. For a class c, its similarity to a document d
is smoothed (by linear interpolation) with another score that is based on the probability
of c co-occurring with other classes c1 and the similarity of c1 to d.
In this chapter, we focus on addressing RQ1:

How helpful is integrating a variety of sources of information extracted from
content, structure, and metadata as features to improve the performance of
MLTC systems?

We break down this research question to two research questions:
RQ1.1: How effective is a LTR approach integrating a variety of sources of information
as features for MLTC?

To answer this research question, we evaluate the performance of the proposed LTR
approach on the English version of JRC-Acquis [179] and compare our results with JEX
[180], which is one of the state of the art systems developed for classifying JRC-Acquis
documents. The results show that the LTR approach improves JEX by 20% in terms of
Precision@5.
RQ1.2: Is it worthwhile to use the co-occurrence patterns of classes for MLTC?

To answer our second research question, we analyze the effect of score propagation
on the performance of different approaches for MLTC and compare the results achieved
by the propagated and the non-propagated versions of each method. The results indicate
that propagated versions of all methods outperform their non-propagated counterparts.

Our main contributions are the following:

• We propose a framework for exploiting multiple sources of information including
labeled documents, taxonomy relations of classes, and textual labels of classes
for MLTC. We define different features using these sources of information and
instead of training a classifier per class, create a ranking model that can rank
classes based on their similarities to documents.
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• We propose a score propagation approach to consider the co-occurrence patterns
of classes in the labeled documents. The proposed approach can be applied on
top of any classifier.

• We make the designed tool publicly available.1 It automatically pre-processes
textual data, constructs different representations for documents and classes, and
computes different similarity metrics for documents and classes. These similarity
metrics are used to build feature vectors for document-class pairs. The feature
vectors extracted using JRC-aquis dataset and Eurovoc concepts are in the LTR
format that can be directly used by LTR algorithms to train ranking models.

2.2 Related Work

Our method for multi-label text classification touches on research in multiple areas.
We review work in three directions: multi-label text classification, learning to rank for
multi-label text classification, and automatic indexing of political documents.

2.2.1 Multi-label text classification

Multi-Label Text Classification (MLTC) is the task of classifying text documents to
multiple classes [188]. A well-known approach for MLTC is training a different
classifier for each class and ranking and selecting the classes with regards to the
probability of documents belonging to them [227]. Using this approach, Qiu et al. [158]
exploit the well-known SVM classifier for training a binary classification model for
each category. Then, they use these models to determine the classes that a document
belongs to. Moreover, they use the hierarchical structure of classes and try to maximize
the margin between leafs of the hierarchy. Qin and Wang [156] study the effectiveness
of MLTC based on SVM classifiers. In other studies, SVM classifiers are combined
with other classifiers to improve their performance [221]. Instead of SVM, Nam et al.
[143] and Jiang et al. [95] employ a neural network based model to determine the labels
of documents. Vilar et al. [194] use a similar approach and estimate the multinomial
distribution of documents across the classes. Tree-based classifiers are also adapted and
used for MLTC [84]. Huang et al. [86] study the effectiveness of learning class-specific
features for MLTC.

Simple classification approaches become computationally expensive and infeasible
when the number of classes is high [22]. Babbar and Schölkopf [14] propose a scalable
approach for multi-label classification by training one-versus-rest classifiers. Although
their proposed approach is computationally efficient, the trained model is large. We
consider MLTC a ranking problem and instead of using classification methods we use
an LTR approach to rank classes given a document. We create only one small model
which can be used to assign classes to documents.

The main characteristic of MLTC discriminating it from single-label text classi-
fication is that documents can have more than one label. Therefore, capturing the
dependencies between classes and incorporating them in the classification process could

1The source code is available here: https://github.com/HoseinAzarbonyad/MLC
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be useful to improve the accuracy of classifiers [21, 72, 77, 143, 163]. Ghamrawi and
McCallum [72] capture these dependencies using Conditional Random Fields (CRF),
obtaining better classification scores. Read et al. [163] chain the classifiers to use the
dependency information of classes in the labeling process. Nam et al. [143] try to
capture these dependencies using neural networks specialized for document classifica-
tion. In this study, we use the implicit dependencies of classes in a score propagation
framework. Unlike previous work, our approach for incorporating class dependencies is
independent of the underlying method and can be applied on top of any classification
method. It is noteworthy that a similar label propagation has been used for single-label
text classification when the size of training set is small [170, 197].

To classify documents in MLTC, there is a need to first determine the number of
classes to be assigned to documents. In the single-label classification task, only one
class is assigned to each document. This is usually done by setting a threshold on the
scores estimated for the documents and assigning documents with a higher score than
the threshold to the positive and rest of the documents to the negative class [219]. This
strategy does not work for MLTC, especially in the case of a ranking-based MLTC task,
as in this task we have a ranked list of classes and a document can have more than one
class. A common approach for choosing the number of classes in MLTC is calibrating
the scores generated for each class, setting a threshold on the scores, and assigning
classes with a higher score than the threshold to documents [89, 227]. A static approach
(fixing a threshold and using it for all documents) or dynamic approach (learning from
training samples and having different threshold values for different documents) can be
used for setting the threshold. Some popular choices for fixed thresholds are zero, e.g.,
for SVM-like classifiers, and 0.5 for probabilistic classifiers such as logistic regression
[29, 39, 163]. Another common static approach is setting a threshold on the number of
classes directly instead of setting the threshold on the scores [180]. This is an effective
approach when the variance of the number of classes for documents is low. The dynamic
threshold is set using a training set in which samples are a set of pairs of ranked lists
with scores and, for each ranked list, an optimal threshold that minimizes a classification
loss such as false positives or false negatives given the ranked list [62, 159, 219, 226].
For samples in the training set, the optimal threshold can be determined, however, for
test samples the threshold should be estimated. This is done by learning a mapping
function based on training samples that takes a ranked list and maps it to a threshold.
This strategy has been shown to be very effective for MLTC [62, 219]. Similarly,
instead of learning a mapping from ranked lists of document to a threshold, the mapping
can be learned to map ranked lists to the number of classes directly [185]. Besides
these generic approaches, some ad-hoc thresholding strategies are also used in previous
studies. These strategies are specific to the learning algorithms [66, 203] and cannot be
applied on top of other methods.

2.2.2 Learning to rank for multi-label classification

LTR was proposed in the context of ad-hoc information retrieval in which the goal
is to create a ranking model that ranks documents with respect to queries. The LTR
approach have been used for constructing a ranking model to rank classes with respect
to a given document and select the most probable classes for the document as its labels
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[65, 99, 219]. Yang and Gopal [219] map MLTC to the ad-hoc retrieval problem and
use LTR for learning a ranking model. When we view MLTC as a problem of ranking
class labels given a document, we can use LTR to estimate a classifier: we simply rank
all classes given a document and assign the top k classes (k to be determined by another
classifier) as labels to the input document. We now briefly describe LTR in terms of
our classification task. We assume that we can compute several features which indicate,
given a document d and a class c, how much discriminatory information the feature
provides to determine if c is a label of d or not. In LTR these measures are called
features. The goal is to find an optimal linear combination of these features. Formally,
given n features fi, we are searching for weights w1, . . . , wn such that the function
fpc, dq defined in (2.1) optimally scores and ranks classes with regards to documents
on some test set.

fpc, dq “ w1 ¨ f1pc, dq ` . . .` wn ¨ fnpc, dq. (2.1)

Similar to [219], we use LTR for MLTC. Using LTR for MLTC has many advantages
compared to using traditional approaches for MLTC such as SVM’s. Yang and Gopal
[219] show that LTR outperforms classification-based approaches for MLTC by a large
margin on a wide variety of datasets with different types of samples, e.g audio, image,
and text. They used meta-level features for building an LTR model. The meta-level
features are defined based on the distance between classes and documents. Fauzan and
Khodra [65] use the same framework for classifying documents, however, they focus
on text classification and instead of using meta-level features, used typical features such
as TF-IDF weights of words for learning a LTR model. Their method also outperforms
traditional classification-based approaches. Ju et al. [99] try to extend this idea by
modeling the hierarchical structure of labels in the LTR framework. They use LTR as a
re-ranker to re-rank the rankings created by a classifier by incorporating the structure
of the categories. They achieve similar results to [219] confirming the effectiveness of
LTR for modeling the hierarchical structure of labels for MLTC.

LTR can learn a global ranking function with respect to all classes, while classification-
based approaches try to optimize a classifier locally for each class. In this sense, LTR
can also take the relations between classes into account to some extent, which is a core
problem in MLTC [219]. From an efficiency point of view, the constructed model of
LTR is much smaller than the models constructed by traditional classifiers. Moreover,
when using LTR, during inference only one model is used to score instances. Traditional
classifiers build a model for each class and use all of them during inference which is
less efficient compared to the LTR approach.

2.2.3 Automatic classification of political documents
Supervised classification of political text including parliamentary proceedings, leg-
islative text, and news articles is an active research area [9, 53, 55, 179, 193]. While
standard classification approaches such as SVM-based models are used for classification
of news articles and parliamentary proceedings, specialized classification tools are
developed for classifying legislative texts such as JRC-Acquis documents. Different
approaches have been proposed for automatically assigning labels to JRC-Acquis docu-
ments [49, 135]. In most of these studies well-known classifiers have been combined
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with NLP techniques, such as part of speech tagging [141] and segmentation [47], to
achieve a higher performance on JRC-Acquis dataset. Steinberger et al. [180] propose
a framework called JEX for labeling documents with EuroVoc concepts. They first
construct a profile for each EuroVoc concept and use the method proposed in [155] for
learning a classifier.

2.3 Learning to Rank for Multi Label Text Classifica-
tion

In this work, we use AdaRank [216] to learn the weights of the features. AdaRank
learns fpc, dq, introduced in Section 2.2.2, from a collection of training examples. In
our case, these are documents with their set of assigned labels. AdaRank optimizes the
function fpc, dq on the evaluation measure of Normalized Discounted Cumulative Gain
(NDCG) over the complete ranked list.

Note that in this setup we are not only learning a model that ranks all classes given
a document, but a function that scores classes given a document. In Section 2.4 we will
re-estimate this scoring function based on co-occurrence patterns of the classes. Next,
we describe the features used to construct fpc, dq.

2.3.1 Features for MLTC

We use different sources of information for extracting the features. The sources used
for MLTC are: (1) labeled documents, (2) textual labels of classes, and (3) the relations
between classes (thesaurus structure). We create different representations for documents
and classes, and use them to extract features.

Representations of documents are based on both title and body text of documents.
The first representation (title representation) is based on the titles of documents. We
first remove stopwords from the titles and stem them. Then, we represent the titles as
bags of stemmed unigrams. The second representation (text representation) is the bag
of stemmed unigrams without stopwords based on all text of the document (including
the title).

Similarly, we create four representations for each class c. The first two represen-
tations (title and text representations) are the union of the title representation and text
representation of all documents labeled by c, respectively. The third representation
(label representation) is the bag of stemmed unigrams (without stopwords) of the label
c. In our dataset the mean and median number of tokens in the label representation
of the classes are 2.12 and 2, respectively. The fourth representation (ancestors label
representation) is the union of the label representations of all ancestors of the class c in
the thesaurus hierarchy.

We now use the constructed representations and define different features. These
representations lead to 8 possible combinations of a document and class representations
(2 times 4). Moreover, for estimating the similarity of each combination, we employ
three IR measures: (a) language modeling similarity based on KL-divergence using
Dirichlet smoothing, (b) the same as (a) but using Jelinek-Mercer smoothing, and (c)
Okapi-BM25. This leads to 24 features that are based on the textual similarity of
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documents and classes.
In addition to the features reflecting the textual similarity of documents and classes,

we define a number of features reflecting the characteristics of classes independent of
documents. First, the statistics of the classes in the training data is considered the prior
knowledge for determining the likelihood of selecting a class as a label for documents.
We define the number of times a class has been selected for annotating documents in
the training data as its popularity. Second, the degree of ambiguity of a class implicitly
affects its chance for being assigned to documents. We have used the relations between
classes in the thesaurus hierarchy and modeled ambiguity with two different features:
the number of parents of a class and the number of its children in the thesaurus graph.
Another factor for determining the chance of a class of being selected as an annotation
of a given document is its generality. We quantify the generality of a class as its depth
in the thesaurus hierarchy (i.e., the length of its shortest path to the root).

Finally, for each document-class pair d and c, we construct a feature vector of size
28 (24 features based on the similarity of d and c, and 4 features based on the statistics of
c). The value of each feature is normalized using Min-Max normalization and re-scaled
to the [0, 1] interval.

2.4 Propagation Framework

In this section, we describe the score propagation framework for re-estimating the
similarities of documents and classes based on the implicit relations between classes.
This implicit information is the co-occurrence of classes in the labeled documents.
Given a set of documents D and a set of classes C, let a similarity function fpc, dq
as in Section 2.2.2 be defined. We can represent this function as a |C| ˆ |D| matrix
S. We first normalize S by dividing each column Sd by the sum of its values, so that
all columns add up to 1. Then, we will step-by-step re-estimate S by incorporating
co-occurrence patterns of classes. For that, we create a conditional probability matrix P
of size |C| ˆ |C|. For each class c, the row Pc, is defined as follows: for each class c1

Pcpc
1q “

#

P pc1|cq, if there is a document labeled by both c and c1 and c ‰ c1

0, otherwise,

where

P pc1|cq “
|Dc1 XDc|

|Dc|
, (2.2)

and Dc is the set of documents labeled with class c.
Now let S0 “ S. We re-estimate the scores using P as follows, where t indicates

the iteration:
St “ αSt´1 ` p1´ αqPSt´1. (2.3)

Here, α is the neighborhood contribution parameter controlling how much we smooth
S with the co-occurrence matrix. After each iteration we normalize the values again by
dividing each column by its sum.

This score propagation framework has two hyperparameters: α and the number of
iterations t. In Section 2.6 we discuss their influence and determine their optimal values.

19



2. Learning to Rank for MLTC: Combining Different Sources of Information

Figure 2.1: The graph of classes for matrix P introduced in Example 1.

Example 2.1: We give an example to illustrate how score propagation works. For
simplicity, we assume that we want to re-estimate scores for only one document d.
Assume that we have five classes (c1, c2, ..., c5) and the following P and S matrices:

P “

»

—

—

—

—

–

0 0.2 0 0 0
0.4 0 0.3 0.2 0
0 0.3 0 0 0
0 0.2 0 0 0.4
0 0 0 0.3 0

fi

ffi

ffi

ffi

ffi

fl

, S “

»

—

—

—

—

–

0.2
0.3
0.2
0.2
0.2

fi

ffi

ffi

ffi

ffi

fl

We can represent the matrix P as the directed graph shown in Figure 2.1, where
nodes are classes and edges are weighted based on P . A conditional probability
P pc1|cq “ w is represented as an edge from c to c1 with weight w. In the first iteration
of the algorithm, the score of c2 will be re-estimated based on its own score and the
scores of c1, c3, and c4 as they are direct neighbors of c2 (Sr2s “ αSr2s ` p1 ´
αqp0.2Sr1s ` 0.3Sr3s ` 0.2Sr4sq). The score of c4 will be re-estimated based on its
own score and the scores of c2 and c5. In the second iteration, the score of c2, again
will be affected by the re-estimated scores of its direct neighbors. Since the score of
c4 is already affected by the score of c5, in the second iteration the score of c2 will be
affected by the score of c5 as well. Therefore, in iteration t, the indirect neighbors that
are reachable by t edges are used for re-estimating scores.

2.5 Experimental Setup

In this section, we describe our research questions, the data, the experiments, and the
baselines with which we compare our proposed methods. We recall the two main
research questions we want to address in this chapter.

RQ2.1 How effective is a LTR approach integrating a variety of sources of information
as features for MLTC?

RQ2.2 Is it worthwhile to use the co-occurrence patterns of classes for MLTC?

We also perform a feature analysis. We first measure the relative importance of each
feature and then see if we can create an almost optimal performing system using only

20



2.5. Experimental Setup

a small set of features. We perform several analyses to understand how the score
propagation works and what kind of documents benefit the most from it. Additionally,
we examine the effectiveness of a dynamic thresholding method for selecting the
number of classes for documents. Moreover, we study the effect of dataset size on the
performance of different methods.

2.5.1 Dataset, pre-processing, and parameters

We use the English version of the JRC-Acquis dataset which contains documents
of the European Union which are mostly on legal and political topics [179]. This
dataset contains about 25,000 documents that have been manually labeled with EuroVoc
concepts [63]. EuroVoc contains 6,796 hierarchically structured concepts, used to
annotate political documents and news within the EU and in national governments.
Since the structure of documents has changed over the years, we only use the documents
of the last five years: from 2002 to 2006. We use the English version of JRC-Acquis,
which contains 16,824 documents, each labeled with 5.4 concepts on average. The
median and standard deviation of the number of labels per document are 5 and 1.83,
respectively. Each document has a title, body text, and EuroVoc labels assigned to it.
The mean and median length of titles of the documents are 19 and 18 words, respectively.
The mean and median length of the texts are 2015 and 665 words, respectively.

To evaluate the proposed classification methods, we order the collection chrono-
logically and train on the old documents and test on the newest documents. From
an application perspective this is the most natural setup. The 70% oldest documents
are used to construct the representations of classes (as documents in LTR) and the co-
occurrence matrix of classes. The remaining 30% of the collection is used for training
and testing. Naturally, the vocabulary and the set of classes used as labels differ in these
two parts. To have a fair measure, we have removed the classes from the documents
that do not occur in the first part. This leads to 1,639 different classes in our dataset.
We do 5-fold cross validation on the newest part. To have a comparable evaluation, for
5-fold cross validation on our baselines, we add the first 70% part of the collection to
the training data used in each fold and train their model. We have trained the ranking
model using different LTR algorithms. Among them, AdaRank [216] has a slightly
better performance and we report the results of this method.

We use a cut-off point of 5 and report Precision@5 as the main measure to evaluate
different methods, since the median number of classes per document in our dataset is
5. Therefore, Precision@5 approximately could be considered as R-Precision as well.
Moreover, we compute Recall@5, micro-averaged F-measure, and Mean Averaged
Precision (MAP). In Section 2.6.3, we use an approach for dynamically selecting the
number of classes for documents (instead of using a fixed cut-off point) and study its
effect on the performance of different classifiers.

We compare our approach to two baselines: JEX and SVM. JEX is one of the state
of the art systems developed for classifying JRC-Acquis documents [180]. Similar to
feature selection approaches for text classification [165], this method first represents
each class as a bag of keywords. The keywords are extracted using TF-IDF statistics.
Similarly, documents are also represented as bags of keywords. Then, the similarity
(cosine and BM25) of document and class representations are used to rank the classes
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with respect to the documents. For SVM, each document is represented by a feature
vector using TF-IDF values. Each element of this vector corresponds to a word and its
value is the TF-IDF weight of the word in the document normalized by the length of the
document. Then, we train an SVM model to estimate the similarity of documents and
classes and use these similarity scores to rank the classes with regard to the documents.
In constructing the training set for SVM, we assume that a document belongs to all
classes it is labeled with and add the document to the training material of those classes.
The pre-processing done in this study is the same as in JEX: we employ the Porter
stemmer and consider the 100 top frequent words in the collection as stopwords, which
are removed.

Hyperparameter settings We use default parameter settings for JEX. These are
optimal for the JRC-Acquis dataset. We use different parameters for the similarity
functions used as features in LTR. Based on pilot experiments, when using titles of
documents for calculating the similarities, we use these parameters: µ “ 1, 000 for
LM-Dirichlet, λ “ 0.2 for LM-JM, and b “ 0.65 and k1 “ 1.2 for Okapi BM25. When
we use the text of documents for calculating the similarities we use these parameters:
µ “ 2, 000 for LM-Dirichlet, λ “ 0.6 for LM-JM, and b “ 0.75 and k1 “ 1.2 for
Okapi BM25.

2.6 Experimental Results

In this section, we first answer our two research questions described in Section 2.5.
Then, we study the impact of a dynamic thresholding method for selecting the number
of classes for documents on the performance of different classifiers. Afterwards, we
analyze the effect of training set size on the performance of the classifiers. Finally, we
focus more on the score propagation method and study its impact on different types of
documents.

2.6.1 Effectiveness of LTR

In this section, we evaluate how effective LTR is at integrating a variety of sources of
information for MLTC and look at the importance of the different features. Table 2.1
shows the results of the LTR method compared to the baseline system and JEX in terms
of Precision and Recall. BM25-TITLES ranks the classes based on the similarities
of their title representation with the title representations of documents. This is the
best performing single feature and is significantly better than JEX. Two observations
can be made from Table 2.1. First, the LTR method significantly outperforms SVM,
BM25-TITLES, and JEX, demonstrating that the additional sources of information
employed in LTR are effective for the MLTC task. Second, the performance of SVM is
the worst among all methods. This result shows that a standard classification approach
is not effective for MLTC when there are very many classes. We do an additional
experiment in which we use the scores estimated by JEX as an additional feature in the
LTR approach. The performance of this approach is 0.5431 in terms of Precision and
0.5608 in terms of Recall. Adding JEX to the LTR approach improves the Precision
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Table 2.1: Performance of SVM, JEX, best single feature, and LTR methods for MLTC. We
report incremental improvement and significance over JEX(Ĳ indicates t-test, one-tailed, p-value
ă 0.05)

Method Precision (%Diff.) Recall (%Diff.) F1 (%Diff.) MAP (%Diff.)

SVM 0.4146 0.4612 0.4366 0.4831
JEX 0.4353 0.4863 0.4505 0.5102
BM25-TITLES 0.4798 (10%)Ĳ 0.5064 (4%)Ĳ 0.4927 (9%)Ĳ 0.5516 (8%)Ĳ

LTR 0.5206 (20%)Ĳ 0.5467 (12%)Ĳ 0.5362 (19%)Ĳ 0.6104 (20%)Ĳ

of LTR by 4%. This result shows that JEX is also providing an additional informative
feature.

We now look at the individual features used in the LTR model.

Importance of Different Information Sources for MLTC. We use the trained model
of SVM-Rank [98] as well as the Precision of employing each individual feature for
feature analysis. We assume the weight of each feature is a reflection of its importance.
We use SVM-Rank for feature analysis because the weights it gives to the features are
more smoothed. The performance of SVM-Rank is almost the same as the performance
of AdaRank. Its performance in terms of Precision is 0.5013. AdaRank assigns very
high weights to a few features and zero weights to the others. Here, we only want to
analyze the importance of features and AdaRank’s model does not reflect it very well.

Figure 2.2 illustrates the importance of a selected set of exploited features. We pick
only one of the similarity methods (BM25) from each feature type since the other two
get very similar scores.

Similarity of title representations of documents and classes is the best performing
feature. The performance of this feature is significantly better than the performance of
the feature defined using text representations of both classes and documents. Similarity
of text representation of the given document and title representation of the classes
is also an effective feature. Therefore, title representations can be considered as a
succinct predictor of classes. JRC-Aquis is a set of political documents. Titles of
political documents tend to be directly descriptive of the content, making the title the
most informative part of the document. In addition to this, human annotators will pay
considerable attention to the titles. Recall that the titles in this dataset are relatively long
(the median is 18 words).

All query-independent features by themselves have very low Precision. Used
together with the other features, generality and ambiguity get a very low weight in
contrast to popularity. Investigating the hierarchy graph of the concepts, we see that
there is little variation in generality: the average number of levels in the hierarchy
is 3.85 and its standard deviation is 1.29. There is a considerable difference in the
ambiguity: the average number of children is 4.94 (standard deviation is 4.96) and the
average number of parents is 1.08 (standard deviation is 0.25). Ambiguity may have
low importance because it is not discriminative on this data. The popularity feature is
weighted high because of the skewness of the assigned class labels in JRC-Acquis [63].

The analysis both confirms the intuitions (e.g., the importance of labeled examples)
but also highlights features of the document genre (e.g., the importance of titles), and
human annotating behavior (e.g., the importance of popularity).
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Figure 2.2: Feature importance: (1) Precision@5 of individual features, (2) weights in SVM-Rank
model. title D and text D are title and text representations of document, respectively. title C,
text C, label C, and anc label C are title, text, label, and ancestors’ label representations of
classes, respectively.

Lean and Mean Approach. The LTR approach uses a rather large set of features.
Can we do almost as well with a small subset of the features?

We use our feature analysis to design a small system which uses a diverse com-
bination of sources of information and employs the most efficient features from each
source. Our lean-and-mean system is an LTR system trained on four selected features:
the BM25 similarities of text representation of documents with text representation, title
representation, and label representation of classes, and popularity of classes. Table 2.2
indicates the performance of this LTR-TTGP approach using only four features. The
LTR-TTGP approach is significantly better than JEX and BM25-TITLES. Although
the performance of LTR is significantly better than the LTR-TTGP method, the perfor-
mance of LTR-TTGP is 96% of the large LTR system. Moreover, based on our analysis,
the computation time of the selected features is less than 50% of the time needed for
computing whole features. This makes the selective LTR approach a computationally
attractive alternative to the full LTR approach.

2.6.2 Effectiveness of score propagation

In this section, we evaluate the use of co-occurrence patterns of classes in our classifiers.
We will see that this method is indeed effective, although the gain diminishes for better
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Table 2.2: Performance of LTR on all feature compared to four selected features (LTR-TTGP)

Method Precision Recall F1 MAP

LTR 0.5206 0.5467 0.5362 0.6104
LTR-TTGP 0.5058 0.5301 0.5176 0.5947

Table 2.3: Performance of the score propagation approach. We report incremental improvement
and significance of each score propagation approach over its non-propagated version (Ĳ indicates
t-test, one-tailed, p-value ă 0.05)

Method Precision (%Diff.) Recall (%Diff.) F1 MAP

Propagated SVM 0.4758 (15%)Ĳ 0.5023 (9%)Ĳ 0.4880 (12%)Ĳ 0.5356 (11%)Ĳ

Propagated JEX 0.4912 (13%)Ĳ 0.5246 (8%)Ĳ 0.5073 (13%)Ĳ 0.5483 (7%)Ĳ

Propagated BM25-TITLES 0.5263 (10%)Ĳ 0.5489 (8%)Ĳ 0.5373 (9%)Ĳ 0.5911 (7%)Ĳ

Propagated LTR-TTGP 0.5334 (5%) 0.5593 (6%) 0.5460 (5%) 0.6203 (4%)
Propagated LTR 0.5470 ( 6%)Ĳ 0.5719 (5%)Ĳ 0.5591 (4%)Ĳ 0.6320 (4%)Ĳ

classifiers. Table 2.3 shows the results of propagating scores for the previously used
approaches. In all cases we use the same hyperparameter setting: the neighborhood
contribution parameter α is equal to 0.7 and the number of iterations of the propagation
approach is 2. Re-estimating the scores using classes’ co-occurrence patterns improves
performance for all classifiers. Moreover, the results show that the propagation has the
highest positive impact on SVM scores. SVM (without propagation) has the lowest
performance among all methods. This indicates that when the classifier has a low
quality, re-estimating the scores by propagation is more useful.

To gain additional insights into the score propagation approach, we analyze the
effect of the parameters on the performance: α and the number of iterations. Figure 2.3
shows the Precision of different approaches for different values of α. The value of α has
a great impact on the performance of all systems. The best performance is achieved for
0.7 ď α ď 0.8 which indicates that although the co-occurrence information is useful
for annotating documents more accurately, the similarity of classes and documents is
still much more important.

Figure 2.4 shows the Precision of different classifiers in different iterations of score
propagation. All methods achieve their best performance with a few iterations. With
only one iteration, the score of a class c is affected by the scores of its direct neighbors
(a class c1 is a neighbor of c if there is a document labeled by both c and c1). Therefore,
a low number of iterations corresponds to using only the scores of co-occurring classes
to re-estimate the score of c. With a high number of iterations, the score of c is affected
by the scores of the classes that are indirect neighbors of c and might not be related
to c. Therefore, the results are better with a few iterations where only close neighbors
contribute to the score of a class and documents.
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Figure 2.3: The effect of α parameter on Precision achieved by propagating the scores of different
text classification approaches. The number of iterations is set to 2.
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Figure 2.4: Precision achieved in different iterations of score propagation method for different
text classification approaches. The value of α is set to 0.7.

2.6.3 The impact of using a dynamic threshold for choosing the
number of classes

All the results reported so far are achieved by ranking classes for documents and
choosing the top 5 classes as labels of documents. In other words, we use the median
number of classes in the training set (which is 5) as the number of classes for every
document. In this section, we relax this assumption and use a dynamic threshold for
choosing the number of classes and study its impact of the performance in MLTC.

To choose the number of classes for documents, we use the approach proposed
in [62, 219]. This method tries to learn a mapping from a ranked list of classes to its
optimal number of classes using a training set. The training data for this approach is a set
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of ranked lists of classes (sorted by their scores regarding a document) and an optimal
threshold for each ranked list which is achieved by minimizing a classification loss.
Given this training set, the thresholding method tries to find a mapping from the space
of ranked lists to the space of thresholds. After selecting a threshold for a document,
classes with a score higher than the threshold are assigned to the document. As in
[219], the classification loss is defined as the sum of false negatives and false positives.
Therefore, the training set for learning the mapping is automatically constructed by
using a ranker to rank classes regarding the documents and assigning a threshold to
the ranked list that minimizes the classification loss. After creating this set, an optimal
mapping is learned based on a linear-least-square-fit solution [219] using the following
equation:

min
w˚,b˚

m
ÿ

i“1

ppw˚rpdiq ` b
˚q ´ spdiqq

2, (2.4)

where m is the number of documents in the training set, rpdiq is a list of scores
corresponding to the ranked list of classes with regards to a document di and spdiq is the
optimal threshold for rpdiq determined by minimizing the classification loss. The goal
of the linear-least-square-fit is to determine the parameters of the linear mapping (w˚

and b˚) and use them to determine the thresholds for new instances. We use the same
set of documents used for creating the classifier for learning the thresholding method.
After having obtained the learned thresholding model, we use it to select the number of
classes for documents in test set.

Table 2.4 shows the results of this experiment using different classifiers (note that
we do not report MAP for this experiment as it is the same as the ones reported in Table
2.1). Dynamic thresholding improves performance on both Recall and Precision for
all classifiers. The improvements are significant for Recall but not for Precision (see
Table 2.4). Figure 2.5 shows the distribution of number of classes for documents in
the dataset. The distribution is almost normal with a mean of 5. This explains why a
static threshold of 5 has a reasonable performance. Based on the results, on the best
performing method (Propagated LTR), for 89% of documents with more than 5 classes,
the dynamic thresholding picks a number higher than 5. For documents with less than
5 classes, only in 69% of times a number less than 5 is picked. This gives us more
insights on why Recall is improved more than Precision, as the dynamic thresholding in
general tends to work better for documents with more classes.

Table 2.5 shows the root mean squared error (RMSE) and the mean absolute error
(MAE) between the true number of classes and the estimated number of classes for
different methods. Moreover, in this table, the accuracy of dynamic thresholding in
choosing the correct number of classes for documents is also shown. The results indicate
that in general dynamic thresholding performs better in terms of all metrics when the
underlying classifier has a good performance. The main reason for this is that when
the underlying classifier has a poor performance, the optimal threshold for the ranked
list which is obtained by minimizing the classification loss is not reliable. The optimal
performance for the thresholding method will be achieved with a perfect classifier which
ranks all true classes on top of the ranked list, as in this case the optimal threshold
will correspond to the actual number of classes. However, as the performance of the
classifier degrades, the ranked lists used for creating the training set for thresholding get
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Figure 2.5: The distribution of number of classes in documents. X-axis corresponds to the number
of classes assigned to documents in the ground-truth and Y-axis corresponds to the number of
documents in log-scale.

Table 2.4: Performance of SVM, JEX, BM25-TITLES, and LTR, and Propagated LTR methods
for MLTC using a dynamic threshold for selecting the number of classes. The significance tests
are done on the improvements of each method using a dynamic threshold over its corresponding
method which uses a static threshold, e.g., setting number of classes to 5.

Method Precision (%Diff.) Recall (%Diff.) F1 (%Diff.)

SVM 0.4201 (1%) 0.4816 (4%)Ĳ 0.4487 (3%)Ĳ

JEX 0.4424 (2%) 0.5012 (3%)Ĳ 0.4699 (4%)Ĳ

BM25-TITLES 0.4874 (2%) 0.5194 (3%)Ĳ 0.5028 (3%)Ĳ

LTR 0.5248 (1%) 0.5687 (4%)Ĳ 0.5459 (2%)Ĳ

Propagated LTR 0.5510 (1%) 0.5952 (4%)Ĳ 0.5722 (2%)Ĳ

more unreliable.
Overall, based on the results in this section, we conclude that dynamic thresholding

is an effective approach for selecting the number of classes and it can have a big impact
of the performance of the classifier in MLTC task.

2.6.4 The impact of dataset size on the performance of different
classifiers

In this section, we study the impact of size of training samples per class on the per-
formance of different classifiers. To do this, we select the classes that have at least
20 training samples. Afterwards, we balance the dataset by taking an equal number
of instances per class. Then, we vary the number of samples per class and report the
performance of using different number of instances per class. Figure 2.6 shows the
results of this experiment. This subset of the dataset contains 4381 classes. Again,
we use the 70% oldest documents for creating the representation of classes and the
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Table 2.5: The root mean squared error (RMSE) and mean absolute error (MAE) between the
assigned number of classes and the actual number of classes for documents and the accuracy of
the thresholding method in choosing the correct number of classes for documents for SVM, JEX,
BM25-TITLES, and LTR, and Propagated LTR methods for MLTC. The accuracy is calculated
by dividing the number of documents for which the thresholding method picks a correct number
of classes by total number of documents. We also report RMSE, MAE, and accuracy for the fixed
threshold method (choosing top 5 classes)

Method RMSE MAE Accuracy

Fixed threshold 1.87 1.39 0.23
SVM 1.62 1.21 0.26
JEX 1.51 1.07 0.28
BM25-TITLES 1.47 0.99 0.30
LTR 1.33 0.83 0.34
Propagated LTR 1.26 0.75 0.36

remaining 30% for training and testing the models.
The performance of the LTR method is better than the performance of other classi-

fiers for different number of samples per class. This result, again, indicates that the LTR
method is the most effective method for MLTC. As the results show, the performance of
all methods is improved by increasing the number of samples per class. However, the
rate of the improvement is different for different models. The rate is quite high for SVM
and this method can benefit more from more samples. This is expected as adding more
samples helps SVM learn a better decision boundary for classes and generalize better.
This effect is similar for JEX and this method also benefits a lot from more samples.
The LTR method achieves a good performance with 100 examples per class and the
performance does not change much by increasing the number of instances. The impact
of increasing the number of samples on the performance of BM25-TITLES is similar
to this effect on LTR. Both LTR and BM25-TITLES are ranking-based classifiers.
This results indicate that, first, ranking-based methods are more stable with regard to
the number of samples than classification approaches. These models create a profile
for each class and even with a few samples the created profiles are good enough for
computing the similarity of classes and documents. Second, LTR that tries to combine
different sources of information is the most stable method. This shows the impact of
using all available information on the performance in MLTC. An intelligent combination
model can achieve a reasonable performance even when there are only a few samples
per class.

2.6.5 What kind of documents benefit the most from score prop-
agation?

In this section, we analyze the effect of score propagation on the performance achieved
for different types of documents. To do this, we first bin the documents based on
the number of classes assigned to them in the ground-truth data. Then, we use the
LTR method to assign classes to the documents and measure the Precision for each
bin. Our running hypothesis is that the score propagation method should have a better
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Figure 2.6: Precision achieved using different sample sizes for classes. X-axis corresponds to the
number of samples used per class for training the classifiers.

performance on documents with more classes, as in this case, there is more information
from neighboring classes available for assigning classes.

Figure 2.7 shows the results of this experiment. The results show that with a small
number of iterations, the performance for documents with a small number of classes is
higher. For example, for documents with only three or four classes, the best performance
is achieved when we do not use the score propagation method at all (Iteration=0). In
this case, increasing the propagation effect (number of iterations) results in a lower
Precision. On the other hand, for documents with a high number of classes (documents
with more than six classes), by increasing the number of iterations, the Precision keeps
getting improved.

These results indicate that when there is more information provided by neighboring
classes, the score propagation method can exploit it to refine the assignment of classes
to the documents more accurately. Our score propagation method has an exploratory
behavior. With a small number of iterations the exploration effect is low. However, when
we increase the number of iterations it tries to explore more and use the information
provided by indirect neighbors. The results presented in this section indicate that this
exploration has a positive impact on more ambiguous documents (documents with a
high number of classes) and getting more information from even indirect neighbors
can help disambiguate these kind of documents. For less ambiguous documents, the
score propagation method is not helpful indicating that there is no need for exploration
for these kind of documents. Therefore, we conclude that it is best to use the score
propagation method when there is a need for exploration and documents have a high
number of classes.

2.7 Conclusion

Simple classification approaches (such as binary classification methods) for Multi-Label
Text Classification (MLTC) fail when there is a large number of classes. In this chapter,
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Figure 2.7: Precision achieved for different bins of documents based on their actual number of
classes in the ground-truth data. X-axis corresponds to the number of classes per document.

we considered MLTC as a ranking problem and proposed Learning to Rank (LTR) as
a solution. Our approach is based on combining different sources of information for
MLTC. We found that LTR can effectively exploit several sources of evidence, leading
to significant improvements over the state of the art. The LTR approach is rather brute
force, but is able to infer many complexities of human class assignment based on the
observed data. It can also be viewed as a (soft) upperbound on performance, also taking
into account the inter-indexer agreement, e.g., [88]. Our findings mostly confirmed the
intuitions with the labeled examples as the key source of evidence. The title evidence
was remarkably important, due to its descriptive nature and high precision. Interestingly,
popularity is a feature without any power in isolation, but very effective in combination
in order to capture important aspects of human labeling behavior.

We proposed to use the co-occurrence patterns of classes in the labeled documents
to improve the accuracy of the MLTC classifier. This is more effective when the
underlying classifier has a low accuracy, indicating that co-occurrence patterns of
classes are important signals for classifying documents in the MLTC task.

The findings of this research have several theoretical implications. First, the fact
that the ranking based MLTC classifiers perform better than traditional classification
approaches implies that more effective MLTC systems can be designed by defining and
optimizing for a ranking loss rather than a classification loss. Second, rather than just
using a set of training samples, utilizing various sources of information leads to better
performances in MLTC. LTR is an effective approach for unifying and utilizing different
information sources for MLTC. An interesting future research direction can be designing
MLTC systems using various sources of information and by adapting a ranking loss into
the MLTC framework. The findings of this research also have practical implications
on designing MLTC systems. The identification of a subset of effective features from
all sources of information opens up the possibility to design efficient MLTC systems.
Also, our analysis on the importance of different features can help human annotators
to concentrate their focus on the important parts of documents while assigning labels
to them. Moreover, our findings imply that it is important to use other sources of
information such as co-occurrence patterns of classes for hard classification problems.
The designed classifier can be adapted in various applications such as exploratory
search, automatic indexing of textual documents, text summarization, and mapping text
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collection to ontologies.

In this chapter, we studied how metadata and structure can be helpful in classifying
topically similar documents together. In the next chapter, we take a different angle for
classifying documents and study how we can measure topical diversity of documents
and use it for classifying them.
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3
Hierarchical Topic Model Re-estimation

for Measuring Topical Diversity

In this chapter, we propose a method for measuring topical diversity of documents and
use it to classify documents. We analyze different aspects of the proposed diversity
measure and answer RQ2.

3.1 Introduction

Quantitative notions of measuring topical diversity of text documents are useful in
a number of applications, such as assessing the interdisciplinariness of a research
proposal [15] and helping to determine the interestingness of a document [7, 61].

Well over three decades ago, an influential formalization of diversity was introduced
in biology [162]. It decomposes diversity in terms of three central concepts: elements
that belong to categories within a population [177]. Given a set T of categories that
partitions a population d, the diversity of d is then defined as

divpdq “
ÿ

iPT

ÿ

jPT

pdi p
d
j δpi, jq, (3.1)

where pdi denotes the proportion of category i in d and δpi, jq is the distance between
categories i and j, which can be calculated in a chosen manner. This notion of population
diversity can be interpreted as the expected distance between two randomly selected
(with replacement) elements of the population.

Bache et al. [15] have adapted the biological notion of population diversity to
quantify the topical diversity of a text document. For measuring the topical diversity of
a text document, words are considered elements, topics are categories, and a document
is a population. When using topic modeling for measuring topical diversity of a text
document d, Bache et al. [15] estimate elements based on the probability of a word
given the document (P pw |dq), categories based on the probability of a word given a
topic (P pw | tq), and populations based on the probability of a topic given the document
(P pt |dq).

This chapter was published as [10].
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In probabilistic topic modeling, at estimation time, these distributions are usually
assumed to be sparse. First, the main content of documents is assumed to be generated
by a small subset of words from the vocabulary (i.e., P pw |dq is sparse). Second,
each topic is assumed to contain only some topic-specific related words (i.e., P pw | tq
is sparse). Finally, each document is assumed to deal with a few topics only (i.e.,
pP pt |dq is sparse). When approximated using currently available methods, however,
P pw | tq and P pt |dq often turn out to be dense rather than sparse [129, 176, 195]. Dense
distributions cause two important problems for the quality of topic models: generality
and impurity. General topics mostly contain general words. They are typically assigned
to most of the documents in a corpus. In other words, the P pt |dq distributions are
not document-specific. Impure topics contain words that are not related to the topic.
These impure words are mostly general words. Generality and impurity of topics are
problematic when estimating topical diversity of text documents since they both result
in low quality P pt |dq distributions. Recall that these are core to the topical diversity
score based on the biological notion of diversity (Equation 3.1).

To improve the measurement of topical diversity of text documents we propose a
hierarchical way of making the three distributions P pw |dq, P pw | tq and P pt |dq more
sparse. To this end we re-estimate the parameters of these distributions so that general,
collection-wide items are removed and only salient items are kept. For the re-estimation,
we use the concept of parsimony [80] to extract only essential parameters of each
distribution.

We evaluate the performance of the proposed hierarchical re-estimation method for
measuring topical diversity of text documents and compare our approach against the
state-of-the-art [176]. In doing this, we answer RQ2:

How effective is our hierarchical re-estimation approach in measuring topical
diversity of documents? Are the topic models that have been improved in this
way also successfully applicable for other tasks such as documents clustering
and classification?

Our main contributions are: (1) We propose a hierarchical re-estimation process for
topic models to address the two main problems in estimating the topical diversity of
text documents, using a biologically inspired definition of diversity. (2) We study each
level of re-estimation individually in terms of efficacy in solving the general topics
problem, the impure topics problem, and improving the accuracy of estimating the
topical diversity of documents. (3) We study the impact of re-estimation parameters on
the statistics of documents and its relation to the quality of trained topic models and
recommend effective settings of these parameters.

As an additional contribution, we also make the source code of our topic model
re-estimation method available to the research community to further advance research
in this area.1

1The source codes are available here: https://github.com/HoseinAzarbonyad/HiTR
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3.2 Related Work

Our hierarchical topic model re-estimation touches on research in multiple areas. We
review work in four directions: improving the quality of topic models, measuring text
diversity, evaluating topic models, and parsimonization.

3.2.1 Improving the quality of topic models

Topic models are effective for modeling text documents and expressing the contents
of text documents in a low-dimensional space [24]. Although topic models like Latent
Dirichlet Allocation (LDA) are powerful tools for modeling data in an unsupervised
fashion, they suffer from different issues, especially when dealing with noisy data
[30]. As mentioned already, the two most important issues with topic models are the
generality problem and the impurity problem [30, 129, 176, 195]. These problems with
topic models have a negative influence on the performance of tasks in which topic
models are applied besides document diversity, namely document clustering, document
classification, document summarization, information retrieval, sentiment analysis (see
[30] for an overview).

Wallach et al. [195] propose asymmetric Dirichlet priors to construct a general topic
and assign general terms to this general topic in the learning process. Similar ideas to
improve the quality of topic models have been employed by others [199, 209]. Similar
to [195, 199, 209], one of our goals is to address the generality problem. The main
difference, however, is that they do not aim to address the two issues mentioned with
topic models directly and the topic representations and topic word distributions that
they arrive at are neither parsimonious nor sparse. That is, in their approach, each topic
could still have a non-zero assignment probability to each document. We hypothesize
that parsimony is essential in topic modeling, since it is expected that each document
only focuses on a few topics [176] and in contrast to the work cited above our goal is to
achieve this parsimony.

Soleimani and Miller [176] propose parsimonious topic models (PTM) to address
the generality and impurity problems. A shared topic is created and general words are
assigned to this topic. PTM achieves state-of-the-art results compared to existing topic
models. We also address the generality and impurity problems with topic models. The
background language model in our model and the shared topic in PTM have similar
functionalities. They are both used to handle and remove generality from topic-word
distributions. However, in PTM, the shared topic is more complicated as for each word
there are a few more parameters to be estimated: (1) whether a word is topic-specific
for each topic and (2) probability of being topic-specific under each topic for each word.
In our approach, we model all this using a background language model with far fewer
parameters. Moreover, we model and remove the generality in at three different levels:
document-word distribution, topic-word distribution, and document-topic distribution.
PTM handles the generality in topic-word and document-topic distributions and does
not handle the generality in document-word distributions explicitly.
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3.2.2 Evaluating topic models
Topic models are usually evaluated either intrinsically, for example, in terms of their
generalization capabilities, or extrinsically in terms of their contribution to external
tasks [196]. We focus on extrinsic evaluations of the effectiveness of our re-estimation
approach. Our main evaluation concerns its effectiveness in measuring the topical
diversity of text documents. In addition, in Section 3.7, we analyze the effectiveness of
our re-estimation approach in removing impurity from documents in terms of purity in
document clustering and document classification tasks.

Specifically, in the document classification task, topics are used as features of
documents with values P pt |dq. These features are used for training a classifier [112,
146, 176]. In the document clustering task, each topic is considered a cluster and each
document is assigned to its most probable topic [146, 213, 218]. For the analyses in
Section 3.7, following common practice (e.g., [119, 133, 146]), we use Purity and
Normalized Mutual Information in the clustering task, and Accuracy as our prime
evaluation metric in the classification task. Furthermore, the quality of topic models
can be measured by the quality of the term distributions per topic, in terms of topic
coherence [119, 146], and by having their interpretability judged by humans [35, 144].

3.2.3 Text diversity and interestingness
Prior to Bache et al. [15], measuring topical diversity of documents had not been studied
comprehensively from a text mining perspective. Bache et al. [15] use Rao’s diversity
score (Equation 3.1) [162] to quantify diversity of text documents by means of LDA
topic models [24]. In their framework, the diversity of a document is proportional to
the number of dissimilar topics it covers. Similar to [15], Derzinski and Rohanimanesh
[61] define the diversity of documents by means of topic models, but instead of Rao’s
measure they use an information theoretic diversity measure based on the Kullback
Leibler divergence. Azarbonyad et al. [7] also use Rao’s diversity measure to quantify
the diversity of political documents and analyze the correlation of topical diversity
and interestingness over political documents. Their main finding, however, is different
from Derzinski and Rohanimanesh [61]’s conclusion, as they conclude that although
in general topical diversity and interestingness of political documents are somehow
correlated, a text’s topical diversity does not necessarily reflect its interestingness.

3.2.4 Model parsimonization
Parsimonization refers to the process of extracting essential elements of a distribution
and removing superfluous, general information. Parsimonization can be considered
an unsupervised feature selection approach. The idea is to extract features containing
information about samples and remove features that are not informative for explain-
ing the samples [42, 120]. Because our hierarchical re-estimation process builds on
parsimonious language models (PLMs) [80], we briefly review them.

PLMs were introduced in an information retrieval setting, in which language models
are used to model documents as distributions over words. The goal of parsimonization
in this context is to extract words that reflect the content of documents and remove
collection-specific general words. To extract salient document-specific words for each
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document, some studies define a layered language model of documents where the
language model of a document is composed of a general background model and a
document-specific language model [223, 228]. The Expectation-Maximization (EM)
algorithm is employed to estimate the parameters of such models. Using this idea,
Hiemstra et al. [80] propose a method for parsimonizing document language models
with the aim of removing general words by pushing the probabilities of the words that
are well explained by the background model toward zero. We employ this approach for
re-estimating and refining topic models.

Here we briefly recall the formal principles underlying PLMs. The main assumption
is that the language model of a document is a mixture of its own specific language
model and the language model of the collection:

P pw |dq “ λP pw | θ̃dq ` p1´ λqP pw |θCq, (3.2)

where w is a term, d a document, θ̃d the document specific language model of d, θC
the language model of the collection C, and λ is a mixing parameter (0 ď λ ď 1). The
main goal is to estimate P pw | θ̃dq for each document. Language model parsimonization
is an iterative EM algorithm in which the initial parameters of the language model are
the parameters of the standard language model, estimated using maximum likelihood:

Initialization:

P pw | θ̃dq “
tfw,d

ř

w1Pd tfw1,d
,

where tfw,d is the frequency of w in d. The following steps are done in each iteration of
the algorithm:

E-step:

ew “ tfw,d ¨
λP pw | θ̃dq

λP pw | θ̃dq ` p1´ λqP pw |θCqq
, (3.3)

M-step:
P pw | θ̃dq “

ew
ř

w1Pd ew1
, (3.4)

where θ̃d is the parsimonized language model of document d, which is initialized
by the language model of d, C is the background collection, P pw |θCq is estimated
using maximum likelihood estimation, and λ is a parameter that controls the level of
parsimonization. A low value of λ will result in a more parsimonized model while λ “ 1
yields a model without any parsimonization. The E-step gives high probability values
to terms that occur relatively more frequently in the document than in the background
collection, while terms that occur relatively more frequently in the background collection
get low probability values. In the M-step the parameters are normalized to form a
probability distribution again. After this step, terms that receive a probability lower than
a predefined threshold are removed from the model. The EM process will stop after a
fixed number of iterations or when the models θ̃d do not change significantly anymore.

PLM is a two-topic mixture model (the graphical model is shown in Figure 3.1, as
can be seen θC is considered as an external observation and the goal is to estimate θ̃d
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Figure 3.1: Plate diagram of PLM. X corresponds to ew in Equation 3.3.

given θC and λ). In that sense, PLM is similar to an LDA model with two kinds of
topics (general and specific topics). However, its mechanism is different than LDA.
In LDA, all topics are shared among documents and only the proportions of topics
(document-topic distributions) are different for different documents. In PLM, there is a
general topic which is shared among all documents, but there is a specific topic for each
document which is not shared with other documents. Moreover, in PLM, the λ controls
the proportion of general and specific topics in documents and it is fixed.

3.3 Hierarchical Topic Model Re-estimation

In this section, we describe HiTR (hierarchical topic model re-estimation). HiTR can be
applied on top of any topic modeling approach that has two main components, P pw | tq
and P pt |dq distributions.

3.3.1 Overview

The input of HiTR is a corpus of text documents. The output is a probability distribution
over topics for each document in the corpus.

As explained in Section 3.1, the quality of topic models such as LDA is highly
dependent on the quality of the P pw |dq, P pw | tq, and P pt |dq distributions. However,
generality and impurity of these distributions cause the poor quality of topic models. To
solve these issues, we propose to apply re-estimation at three levels:
document re-estimation (DR) re-estimates the language model per documentP pw |dq,
topic re-estimation (TR) re-estimates the language model per topic P pw | tq, and
topic assignment re-estimation (TAR) re-estimates the distribution over topics per

document P pt |dq.
Based on applying or not applying re-estimation at different levels, there are 8 possible
re-estimation approaches. Figure 3.2 gives a graphical overview of the different levels
of re-estimation and how they are combined. HiTR refers to the model that uses all three
re-estimation techniques, i.e., DR+TR+TAR that can be applied to any topic model TM.

To summarize, HiTR works as follows: we first do the DR step, then train a topic
model (TM step) on top of the re-estimated documents. Afterwards, we apply the TR
step on the trained topic model and use the re-estimated topic model (the topic model
achieved after the TR step) to assign topics to documents. Finally, we apply the TAR
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Figure 3.2: Different topic re-estimation approaches. TM is a topic modeling approach like, e.g.,
LDA. DR is document re-estimation, TR is topic re-estimation, and TAR is topic assignment
re-estimation.

step to topics assigned to the documents using the re-estimated topic model. We follow
this order of re-estimation for two reasons: first, for the topical diversity task we only
use the document-topic distributions. And second, this order provides the maximum
amount of re-estimation in the final document-topic distribution because at each step of
re-estimation impurity and generality is removed from document-word and topic-word
distributions and finally the remaining impurity and generality is removed using TAR.
Next, we describe each of the re-estimation steps in more detail.

3.3.2 Document re-estimation
The first level of re-estimation is document re-estimation (DR), which re-estimates
P pw |dq. The main intuition behind this level of re-estimation is to remove unnecessary
information from documents before training topic models. This is comparable to pre-
processing steps such as removing stopwords and high and low frequency words, that
are typically carried out prior to applying topic models [23, 24, 119, 133, 146]. Proper
pre-processing of documents, however, takes lots of effort and involves tuning several
parameters, such as the number of high-frequent words to remove, if stopwords should
be removed or not, whether rare words should be removed or not, whether IDF values
should be considered in removing general/rare words. When dealing with a large
document collection, finding optimum values for all of these parameters is non-trivial,
while blindly removing words from documents without considering the distribution
of them over documents could lead to missing important words and losing important
information.

To solve this issue and pre-process documents automatically, we propose document
re-estimation. After document re-estimation, we can train any standard topic model on
the re-estimated documents. If general words are absent from (re-estimated) documents,
we expect that the trained topic models will not contain general topics. Moreover,
document re-estimation removes impure elements (general words) from documents,
which will lead to more pure topics. Hence, document re-estimation is expected to
address both the general topic and the impure topic problem.
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Document re-estimation uses the parsimonization method described in Section 3.2.4.
The parsimonized model P pw | θ̃dq in Equation 3.4 is used as the language model of
document d, and after removing unnecessary words from d, the frequencies of the
remaining words (words with P pw | θ̃dq ą 0) are re-calculated for d using the following
equation:

tfw,d “
Y

P pw | θ̃dq ¨ |d|
]

,

where |d| is the document length in words. Topic modeling is then applied on the
recalculated document-word frequency matrix.

3.3.3 Topic re-estimation
The second level of re-estimation is topic re-estimation (TR), which re-estimatesP pw | tq
by removing general words from it. The re-estimated distributions from this step are
used to assign topics to documents.

The goal of this step is to increase the purity of topics by removing general words
that have not yet been removed by document re-estimation. It is known from the
literature [30, 129, 176, 195] that some topics extracted by means of topic models are
impure and contain general words.

The two main advantages of applying TR are that (1) it results in more pure topics
which are more interpretable by human, and (2) after getting pure, topics are less likely
to be assigned to documents erroneously.

A topic is modeled as a distribution over words, which is itself a language model.
Our main assumption is that each topic’s language model is a mixture of its topic-
specific language model and the language model of the background collection. The goal
of TR is to extract a topic-specific language model for each topic and remove the part
which can be explained by the background model. Given a set of topics T , background
language model θT , and for each t P T , a topic-specific language model θ̃t, we initialize
P pw | θ̃tq and P pw |θT q as follows:

P pw | θ̃tq “ P pw |θT M
t q

P pw |θT q “

ř

tPT P pw |θ
T M
t q

ř

w1PVT

ř

t1PT P pw
1 |θT M

t1 q
,

where P pw |θT M
t q is the probability of w belonging to topic t estimated by a topic

model T M, and VT is the set of all words occurring in all topics. Having these
estimations, the steps of TR are similar to the steps of PLM, except that in the E-step
we estimate tfw,t (the frequency of w in t) using P pw |θT M

t q.

3.3.4 Topic assignment re-estimation
The third and final level of re-estimation is topic assignment re-estimation (TAR) which
re-estimates P pt |dq.

In topic modeling, most topics are usually assigned with a non-zero probability to
most of documents. When documents are typically focused on just a few topics, this is
an incorrect assignment, as topics should only be assigned to documents that deal with
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them. General topics assigned to a majority of documents are uninformative. The goal
of TAR is to address the general topics problem and achieve more document specific
topic assignments.

To re-estimate topic assignments, a topic model is first trained on the document
collection. This model is used to assign topics to documents based on the proportion
of words in common between them. We then model the distribution over topics per
document as a mixture of its document-specific topic distribution and the topic distribu-
tion of the entire collection. The goal of TAR is to extract the document-specific topic
distribution for each document and remove general collection-wide topics from them.

We initialize the document-specific topic distribution P pt | θ̃dq and the distribution
of topics in the entire collection C, P pt |θCq as follows:

P pt | θ̃dq “ P pt |θT M
d q

P pt |θCq “

ř

dPC P pt |θ
T M
d q

ř

t1PT

ř

d1PC P pt
1 |θT M

d1 q
.

Here P pt |θT M
d q is the probability of assigning topic t to document d estimated by

the topic model T M. The remaining steps of TAR follow the ones of PLM. The only
difference is that in the E-step, we estimate tft,d using P pt |θT M

d q.

3.4 Evaluating HiTR

To evaluate the performance of our approach to topical diversification, we follow the
evaluation setup introduced in [15]. Our aim is to answer our second research question:

RQ2 How effective is our hierarchical re-estimation approach in measuring topical
diversity of documents? Are the topic models that have been improved in this
way also successfully applicable for other tasks such as documents clustering and
classification?

To address RQ2 we run our models on a binary classification task. We generate a
synthetic dataset of documents with high and low topical diversity (the process is
detailed in Section 3.5.2), and the task for every model is to predict whether a document
belongs to the high or low diversity class. We employ HiTR to re-estimate topic models
and use the re-estimated models for measuring topical diversity of documents. We
compare our method to LDA (as also used in [15] for the same purpose) and to the
state-of-the-art parsimonious topic models PTM [176]. The results of our experiments
regarding RQ2 are discussed in Section 3.6.1. Moreover, we evaluate the performance
of HiTR in document clustering and classification tasks and analyze its effectiveness in
these tasks. The results of these experiments are described in Section 3.7.

Additionally, to gain deeper insights into how HiTR performs, we conduct a separate
analysis of each level of re-estimation, DR, TR and TAR and answer the following
research questions:

RQ2.1 What is the effect of DR on the quality of topic models? Can DR replace
manual pre-processing?
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RQ2.2 Does TR increase the purity of topics? And if so, how does using the more pure
topics influence the performance in topical diversity task?

RQ2.3 How does TAR affect the sparsity of document-topic assignments? And what
is the effect of the achieved parsimonized document-topic assignments on the
topical diversity task?

RQ2.1 concerns the effectivenes of DR in removing general words from documents
and its effect on the quality of topic models. To answer RQ2.1, we train LDA models
with and without manual pre-processing and with and without DR. We compare the
quality of models achieved using different combinations. This will show how effective
DR is in pre-processing documents automatically. Moreover, we measure corpus
statistics such as vocabulary size, average type-token ratio, average document length
after running DR with different parameters. We train LDA models on the corpora
achieved with different parameters and measure the quality of trained models. Then, we
analyze the correlation of corpus statistics achieved from DR with different parameters
and the quality of models trained on them. In Section 3.6.2, the results regarding RQ2.1
are described.

To answer RQ2.2, we first evaluate the performance of TR on the topical diversity
task and compare its performance to DR and TAR. We focus on its effectiveness in
removing impure words from topics and perform a qualitative analysis on topic models
before and after running TR. The results of experiments regarding RQ2.2 are discussed
in Section 3.6.2.

To answer RQ2.3, we first evaluate TAR together with LDA in a topical diversity
task and analyze its effect on the performance of LDA to study how successful TAR is in
removing general topics from documents. The results of this experiment are presented
in Section 3.6.2.

3.5 Topical Diversity with HiTR

In this section, we discuss the experimental setup for the topical diversity test.

3.5.1 Topical Diversity Measure
After re-estimating word distributions in documents, topics, and document-topic dis-
tributions using HiTR, we use the final distributions over topics per document for
measuring topical diversity. Diversity of texts is computed using Rao’s coefficient
(Equation 3.1). For each topic x, observed in corpus C, we construct a vector Vx
of length |C| (the number of documents in the corpus). Each entry of this vector
corresponds to a document dy and its value is assigned as: Vxrys “ pyx. We use the
normalized angular distance for measuring the distance between topics, since it is a
proper distance function [7]:

δpi, jq “
ArcCospCosineSimpVi, Vjqq

π
,

where CosineSimp¨, ¨q is the cosine similarity between two vectors, and ArcCosp¨q is
the arc cosine. We use the distributions over topics per document for calculating the
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distance between topics. There are two possible approaches for measuring the topic
distance: based on document-topic distributions or topic-word distributions. From a
diversity perspective, document-topic distributions are more suitable for this task. For
example, consider two topics that co-occur frequently in documents but have different
topic-word distributions. In principle, if a document contains these topics, it should not
be diverse, but since the topic-word similarity of these two topics is low the document
will have a high diversity.

3.5.2 Dataset

We use the PubMed abstracts dataset [1] in our experiments. This dataset contains
articles published in bio-medical journals. We use the articles published between 2012
to 2015 for training topic models. This subset contains about 300,000 documents.
Following [15], we generate 500 documents with a high value of diversity and 500
documents with a low value of diversity. We create high diversity documents as follows:
we first randomly select 10 pairs of journals. Each pair contains two journals that are
relatively unrelated to each other (we select 20 journals in total). For each pair of
journals A and B, we select 50 articles to create 50 new probability distributions over
topics as follows: we randomly select one article from A and one article from B and
generate a document by averaging the selected articles’ bag of topic counts. In this
way, for each pair of journals we generate 50 documents with a high diversity value.
We create low diversity documents as follows: for each of the chosen 20 journals, we
perform a similar procedure but instead of choosing articles from two different journals,
we select them from the same journal and generate 25 non-diverse documents. In the
final set we have 500 diverse and 500 non-diverse documents.

3.5.3 Baselines

Our baseline for the topical diversity task is the method proposed in [15], which uses
LDA for measuring topical diversity of documents. As an additional baseline, we use
PTM [176] instead of LDA for measuring topical diversity. PTM is the state-of-the-art
in topic modeling approaches, and based on our results PTM is more effective than the
method proposed in [15]. Thus, PTM is our main baseline in this task.

3.5.4 Metrics

To measure the performance of topic models in the topical diversity task, we follow
[15] and report ROC curves and AUC values. As another evaluation measure, we report
the sparsity of topic models: the average number of topics assigned to the documents of
a corpus [176]. This measure reflects the ability of topic models to achieving sparse
P pt |dq distributions. We also measure the coherence of the extracted topics. This
measure indicates the purity of P pw | tq distributions and a high value of coherence
implies high purity within topics. For estimating the coherence of a topic model we use a
reference corpus. As our reference corpus, we use a version of English Wikipedia.2 We

2We use a dump of June 2, 2015, containing 15.6 million articles.
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estimate the coherence of a topic model using normalized pointwise mutual information
between the top N words within a topic using the following equation [119, 146]:

NPMI pT q “
ÿ

tPT

ÿ

wi,wjPtopNptq^iăj

log
P pwi,wjq

P pwiqP pwjq

´ logpP pwi, wjqq
, (3.5)

where T is the set of extracted topics; topNptq is the top N most probable words within
topic t; wi is a word; P pwi, wjq is estimated based on the number of documents in
which wi and wj co-occur divided by the number of documents in the reference corpus;
and P pwiq is estimated similarly, using maximum likelihood estimation.

3.5.5 Preprocessing

We first lowercase all the text in the corpus. Then, we remove the stopwords included
in the standard stop word list from Python’s NLTK package. In addition, we remove the
100 most frequent words in the collection and words with fewer than five occurrences.

3.5.6 Model parameters

As noted above, the topic modeling approach used in our experiments with HiTR
is LDA. Following [15, 169, 176] we set the number of topics to 100. We set the
two hyperparameters to α “ 1{T and β “ 0.01, where T is the number of topics,
following [146]. In the re-estimation process, at each step of the EM algorithm, we
set the threshold for removing unnecessary components from the model to 0.01 and
remove terms with an estimated probability less than this threshold from the language
models, as in [80].

We perform 10-fold cross validation, using 8 folds as training data, 1 fold as
development set to tune the parameters, and 1 fold for testing.

3.5.7 Statistical significance

For statistical significance testing, we compare our methods to PTM using paired
two-tailed t-tests with Bonferroni correction. To account for multiple testing, we
consider an improvement significant if: p ď α{m, where m is the number of conducted
comparisons and α is the desired significance. We set α “ 0.05. In Section 3.6, N and
İ indicate that the corresponding method performs significantly better and worse than
PTM, respectively.

3.6 Results

In this section, we first present the results of HiTR in the topical diversity task. Then,
we analyze each individual level of re-estimation.
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3.6.1 Topical diversity results

Figure 3.3 plots the performance of our topic models across different levels of re-
estimation, and the models we compare to, on the PubMed dataset. We plot ROC
curves and compute AUC values. To plot the ROC curves we use the diversity scores
calculated for the generated pseudo-documents with diversity labels. HiTR improves
the performance of LDA by 17% and PTM by 5% in terms of AUC. From Figure 3.3
two observations can be made.
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Figure 3.3: Performance of topic models in topical diversity task on the PubMed dataset. The
improvement of HiTR over PTM is statistically significant (p-valueă0.05) in terms of AUC.

First, HiTR benefits from the three re-estimation approaches it encapsulates by
successfully improving the quality of estimated diversity scores. Second, the perfor-
mance of LDA+TAR, which tries to address the generality problem, is higher than the
performance of LDA+TR, which addresses impurity. General topics have a stronger
negative effect on measuring topical diversity than impure topics. Also, LDA+DR
outperforms LDA+TR. So, removing impurity from P pt |dq distributions is the most
effective approach in the topical diversity task, and removing impurity from P pw |dq
distributions is more effective than removing impurity from P pw | tq distributions. Table
3.1 illustrates the difference between LDA and HiTR with the topics assigned by the
two methods for a non-diverse document that is combined from two documents from
the same journal, entitled “Molecular Neuroscience: Challenges Ahead” and “Reward
Networks in the Brain as Captured by Connectivity Measures,” using the procedure
described in Section 3.5.2. As only a very basic stopword list was applied, words like
also and one still appear. We expect to have a low diversity value for the combined
document. However, using Rao’s diversity measure, the topical diversity of this doc-
ument based on the LDA topics is 0.97. This is due to the fact that there are three
document-specific topics—topics 1, 2 and 4—and four general topics. Topics 1 and 2
are very similar and the δ between them is 0.13. The δ between, the other, more general
topics is high; the average δ value between pairs of topics is as high as 0.38. For the
same document, HiTR only assigns three document-specific topics and they are more
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Table 3.1: Topic assignments for a non-diverse document using LDA and HiTR. Only topics
with P pt |dq ą 0.05 are shown.

LDA

Topic P pt |dq Top 5 words

1 0.21 brain, anterior, neurons, cortex, neuronal
2 0.14 channel, neuron, membrane, receptor, current
3 0.10 use, information, also, new, one
4 0.08 network, nodes, cluster, functional, node
5 0.08 using, method, used, image, algorithm
6 0.08 time, study, days, period, baseline
7 0.07 data, values, number, average, used

HiTR

Topic P pt |dq Top 5 words

1 0.68 brain, neuronal, neurons, neurological, nerve
2 0.23 channel, synaptic, neuron, receptor, membrane
3 0.09 network, nodes, cluster, community, interaction

pure and coherent. The average δ value between pairs of topics assigned by HiTR is
0.19. The diversity value of this document using HiTR is 0.16, which indicates that this
document is non-diverse.

Next, Table 3.2 shows the sparsity of P pt |dq using different topic models. All topic
models that have TAR level of re-estimation achieve very sparse topic models. Thus,
TAR contributes more to the sparsity achieved by HiTR. TAR increases the sparsity of
LDA by more than 80%. This sparsity leads to improvements over the performance of
LDA on the topical diversity task, which indicates that TAR is able to remove general
topics from documents. Topic models achieved by PTM are slightly more sparse than
those achieved by HiTR. However, the difference is not statistically significant. The fact
that HiTR outperforms PTM indicates that PTM extremely parsimonizes documents
and throws away essential information from documents while HiTR removes mostly
non-essential information from documents.

3.6.2 HiTR results
In this section, we analyze different levels of re-estimation to get insights on how
different levels on re-estimation work individually and how much they are successful in
removing non-necessary information from documents, topics, and topic-assignments.

Document re-estimation results

In this section, we focus on answering RQ2.1 What is the effect of DR on the quality of
topic models? Can DR replace manual pre-processings?

DR outperforms LDA by 7% in measuring documents’ topical diversity in terms of
AUC. It also outperforms TR in this task but the difference is not significant. In fact,
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Table 3.2: Sparsity of topic models trained on PubMed for the topical diversity task. For
significance tests we consider p-value ă 0.05/7.

Method Sparsity

LDA 13.77
PTM 1.78

LDA+DR 13.17İ

LDA+TR 12.35İ

LDA+TAR 2.12
LDA+DR+TR 11.46İ

LDA+DR+TAR 2.01
LDA+TR+TAR 1.92

HiTR 1.80

Table 3.3: The effect of document pre-processing on the quality of topic models measured in
terms of coherence and AUC achieved in the topical diversity task.

Method Coherence AUC
LDA (without pre-processing) 6.23 0.54
LDA+pre-processing 8.45 0.73
LDA+DR 8.95 0.75
LDA+DR+TR 10.29 0.79

DR and TR are addressing the same problem with topic models. Both are successful in
addressing impure topics. However they are not successful in addressing the general
topics problem, since they have a high value of sparsity.

To analyze the effectiveness of DR in re-estimating documents and addressing
the problems with topic models, we design an experiment in which no manual pre-
processing is done and topic models are trained on these not-pre-processed documents.
Our expectation is that even without doing any pre-processing a method that addresses
the generality problems with topic models should still be able to achieve a good per-
formance and do the pre-processing implicitly and automatically. Since DR tries to
pre-process documents automatically, it should achieve a high quality topic model on
these datasets. Table 3.3 shows the performance of LDA, DR, and LDA+DR+TR in
terms of their coherence. As expected, the coherence of LDA decreases by more than
23% when no pre-processing is done on documents. More interestingly, adding DR
scores better, both in terms of coherence and AUC, than manual pre-processing.

Next, we analyze the effect of the amount of document re-estimation on the quality of
topic models. We control the amount of re-estimation by the values of the parameters of
DR: λ and threshold. Figure 3.4 shows the effect of different values of the parameters
on documents and its impact on the quality of trained topic models. Two conclusions can
be drawn. First, λ does not have a great impact on the documents’ statistics as even with
very different values of λ documents have similar statistics. The threshold has a bigger
impact on the documents. Second, although the statistics of documents are similar for
different values of λ, the thresholds for which the best coherence is achieved for them,
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Figure 3.4: The effect of different values of the parameters of DR on the documents in terms of
their probability mass moved, type-token ratio, and vocabulary size and its effect on the quality
of trained topic models in terms of their coherence.

are very different. For λ “ 0.5 the best coherence is achieved for threshold “ 0.01,
while for λ “ 0.8 the best coherence is achieved for threshold “ 0.05. This indicates
that there is a correlation between these parameters. As expected, when λ is high, which
corresponds to less re-estimation, the threshold should be high to remove unnecessary
words from documents.

Topic re-estimation results

To answer RQ2.2, we now focus on the TR level of HiTR. Since TR tries to remove
the impurity from topics, we expect TR to increase the coherence of the topics by
removing unnecessary words from topics. Table 3.4 shows the top five words for some
example topics calculated from the PubMed dataset, before and after applying TR.
These examples indicate that TR can successfully remove general words from topics.

We measure the purity of topics based on the coherence of words within P pw | tq
distributions. Table 3.5 shows the coherence of topics according to different topic
modeling approaches, in terms of average mutual information. More coherent topics
are beneficial, because they are an indicator of more pure topics, which are essential to
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Table 3.4: Examples of topics before and after applying topic re-estimation on the PubMed
dataset.

Before TR After TR

Topic t w ppw | tq w ppw | tq

1

women 0.07 women 0.06
men 0.02 men 0.05
costs 0.02 health 0.05
per 0.02 costs 0.03
total 0.02 economic 0.02

2

using 0.01 algorithm 0.04
method 0.01 method 0.03
used 0.01 data 0.03
algorithm 0.01 performance 0.02
data 0.01 system 0.01

3

sequences 0.02 genome 0.05
genome 0.02 sequences 0.04
genes 0.02 genes 0.03
using 0.01 genomic 0.03
two 0.01 gene 0.02

Table 3.5: The coherence of different topic models in terms of average mutual information
between top 10 words in the topics calculated using Equation 3.5 on the PubMed dataset.

Method Coherence

LDA 8.17
PTM 9.89
LDA+TR 9.46
LDA+DR+TR 10.29N

achieving a good performance in topical diversity task. TR increases the coherence of
topics by removing the impure parts from topics. The coherence of PTM is higher than
the coherence of TR. However, when we first apply DR, train LDA, and finally apply
TR, the coherence of the extracted topics is significantly higher than the coherence
of topics extracted by PTM. From these findings we conclude that TR is effective in
removing impurity from topics. Moreover, DR also contributes in making topics more
pure.

To see how much impurity is being removed from topics by using TR, we investigate
the effect of TR on the distribution of words within topics and we measure the number of
words and the re-allocated probability mass within topics before and after TR. Figure 3.5
shows the probability mass of the words left after TP is applied to the topics of the
original LDA model. The average number of words within extracted topics from the
PubMed dataset is about 337 without TR, and about 181 after performing TR. On
average, the words that are not removed by TR take 41% of the probability mass in the
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LDA topic models (the dotted red line in Figure 3.5). In the re-estimated topic model,
they occupy the full 100% of the probability mass. Thus, after applying TR, the topic
models become more sparse, and the remaining topic-specific words receive higher
probabilities. As shown in the figure, over all topics, after applying TR, the probability
mass is re-allocated and some words are removed.
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Figure 3.5: Probability mass of the words left after TR in the topics of the original LDA model.
The y-axis shows

ř

tw|PLDA`TRpw |tqą0u PLDApw | tq for a topic t.

Topic assignment re-estimation results

To answer RQ2.3, we now turn to the TAR level of HiTR. We are interested in seeing
how HiTR deals with the issue of general topics. General topics are topics that, for
many documents, have a high probability of being assigned. To gain insight in how
LDA and HiTR perform in this respect, we sum the probability of assigning a topic to a
document, over all documents: for each topic t, we calculate

ř

dPC P pt |dq, where C is
the collection of all documents. Figure 3.6 shows the distribution of probability mass
before and after applying TAR. General topics naturally have high values as they are
assigned to most of the documents with high probability. In Figure 3.6 the topics are
sorted based on the topic assignment probability of LDA. As we can see from Figure 3.6,
LDA assigns a vast portion of the probability mass to a relatively small number of topics.
These topics are mostly general topics that are assigned to most of documents. We
expect, however, that many topics are represented in some documents, while relatively
few topics will be relevant to all documents. When TAR is applied, the distribution is
less skewed and the probability mass is more evenly distributed.
There are some topics that have a high

ř

d P pt |dq value in LDA’s topic assignments and
a high

ř

d P pt |dq value after applying TAR as well (they are marked as “non-general
topics” in Figure 3.6). Table 3.6 shows the top five words for these topics. Although
these topics contain some general words such as “used,” they are not general topics.
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Non-general	topics	

LDA+TAR	
LDA	

Figure 3.6: The total probability of assigning topics to the documents in the PubMed dataset
estimated using LDA and LDA+TAR. (The two areas are both equal to the number of documents
(N « 300K)).

TAR is able to find these three non-general topics and their assignment probabilities
to documents in the P pt |dq distributions is not changed as much as the actual general
topics.

Table 3.6: Top five words for the topics marked as “non-general topics” in Figure 3.6.

Topic Top 5 words
1 health, services, public, countries, data
2 surgery, surgical, postoperative, patient, performed
3 cells, cell, treatment, experiments, used

To further investigate whether TAR really removes general topics, in Table 3.7 we
show the top five words for the first 10 topics in Figure 3.6, excluding the topics marked
as “non-general topics” in the figure. These seven topics have the highest decrease
in

ř

d P pt |dq values when we apply TAR. As can be seen from Table 3.7, the topics
contain general words and are not informative. In the figure, we can see that after
applying TAR, the

ř

d P pt |dq values are decreased dramatically for these topics and
that the mass is re-distributed across other topics, without creating new general topics
that apply to nearly all documents. We can conclude that TAR can correctly distinguish
general from specific topics and re-assign probability mass accordingly.

51



3. Hierarchical Topic Model Re-estimation for Measuring Topical Diversity

Table 3.7: Top five words for the topics detected by TAR as general topics.

Topic Top 5 words
1 use, information, also, new, one
2 ci, study, analysis, data, variables
3 time, study, days, period, baseline
4 group, control, significantly, compared, groups
5 study, group, subject, groups, significant
6 may, also, effects, however, would
7 data, values, number, average, used

3.6.3 Parameter analysis

In this section, we analyze the effect of the λ parameter on the performance of DR,
TR, and TAR in the topical diversity task. Figure 3.7 displays the performance at
different levels of re-estimation based on a range of values for λ. Recall that with λ “ 1,
no re-estimation takes place, and all methods equal LDA. The following interesting
observations can be made from this figure.
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Figure 3.7: The effect of the λ parameter on the performance of topics models in topical diversity
task on PubMed dataset.

First, DR reaches its best performance with moderate values of λ (0.4 ď λ ď 0.45).
This reflects the fact that documents contain a moderate amount of general information
and that DR is able to successfully deal with it. For λ ě 0.8 the performance of DR and
LDA is the same and for these values of λ DR does not increase the quality of LDA.

Second, the best performance of TR is achieved with high values of λ (0.65 ď λ ď
0.75). This indicates that topics usually only need a small amount of re-estimation.
With this slight re-estimation, TR is able to improve the quality of LDA. However, for
the values of λ ě 0.75 the accuracy of TR degrades.

Third, TAR achieves its best performance with very low values of λ (0.02 ď λ ď
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0.05). These low values of λ correspond to more re-estimation. From this result, we
conclude that most of the noise is in the P pt |dq distributions, and that aggressive re-
estimation allows TAR to remove most of this noise. The best values of λ optimized for
HiTR using the development set are close to the best values of λ according to Figure 3.7.

3.6.4 Impact of underlying topic model on the performance of
HiTR

In this section, we analyze the effect of using PTM as the underlying topic model for
HiTR on the performance of HiTR. We apply HiTR on top of PTM and compare the
results with the results of applying HiTR on top of LDA. Table 3.8 shows the results
of this experiment. The results show that: (1) Applying HiTR on top of PTM does not
improve PTM’s performance significantly. We believe, the reason is that PTM already
removes a lot of general information from topics/documents, but in some cases it also
removes non-general information. LDA is in the other side of the spectrum, it keeps
all information (general and non-general), and HiTR removes general information and
keeps only the non-general information which leads to a higher performance. (2) PTM
benefits the most from the DR step. It shows that PTM is already effective in removing
generality/impurity from topic-word and document-topic distributions, however it does
not have a mechanism to remove generality/impurity from document-word distributions.
(3) The performance of HiTR with LDA is significantly better than the performance of
PTM and PTM with HiTR. As we mentioned, this shows that HiTR is more effective
when the underlying topic model contains all information (general and non-general)
and it can remove the non-general part. (4) In terms of sparsity, HiTR makes PTM more
sparse, however the difference is not significant. Thus, applying HiTR on an already
sparse topic model does not have a big influence on its sparsity.

Table 3.8: The performance and sparsity of HiTR using PTM as the underlying topic model in
the topical diversity task.

Method AUC Sparsity

PTM 0.78 1.78
PTM+DR 0.79 1.73
PTM+TR 0.77 1.71
PTM+TAR 0.78 1.65
PTM+HiTR 0.79 1.63

3.7 Analysis

In this section, we want to gain additional insights into HiTR and its effects on topic
estimation. Purity of topic assignments to documents based on P pt |dq distributions has
the highest effect on the quality of estimated diversity scores for documents. Therefore, it
is important to measure how pure the estimated topic assignments are using HiTR. In this
section, we measure how much impurity is removed by HiTR from topic distributions.
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Then, we analyze the efficiency of HiTR.
Based on the topics assigned by HiTR, LDA and PTM, we perform document clus-

tering and document classification. For clustering, following [146], we consider each
topic as a cluster. Each document d is assigned to the topic that has the highest probabil-
ity value in P pt |dq. For classification, we use all topics assigned to the document and
consider them as features for a supervised classification algorithm. As the classification
algorithm we use SVM. High accuracy achieved in document classification is then an
indicator of high purity of topic distributions.

We note that our focus in this section is not on achieving a top performance in
document clustering and classification tasks: we only consider these tasks as a means to
assess the purity of topic distributions using different topic models.

3.7.1 Datasets

We use three datasets: 20-NewsGroups,3 Reuters [124] and Ohsumed.4 The Reuters
dataset contains 806,791 documents with category labels for 126 categories. For
clustering and classification of documents, we use the 55 categories in the second level
of the category hierarchy. 20-NewsGroups contains 20 categories and around 1,000
documents in each category, so in total there are about 20,000 documents. The Ohsumed
dataset contains 50,216 documents grouped into 23 categories.

3.7.2 Purity metrics
For measuring the purity of clusters, two standard evaluation metrics are used: purity
and normalized mutual information (NMI) [131].

3.7.3 Settings
We evaluate document clustering and classification using 10-fold cross validation and
perform the same document pre-processing as described in Section 3.5.5.

3.7.4 Purity results
Table 3.9 shows the purity of HiTR in the document clustering task. For all 3 datasets,
on both measures, the purity of topics created by HiTR is significantly higher than with
PTM. As expected, TAR is mostly responsible for the purity of P pt |dq: all runs which
include TAR either improve or do not differ significantly from PTM. The different
combinations show that also DR and TR yield additional purity, indicating that each of
the three address different issues and contribute in a different way.

Table 3.10 shows the performance of different topic models on the document
classification task. Again HiTR significantly outperforms PTM on all three datasets.
We see the same trend as with clustering, but amplified: here all runs without TAR
perform significantly worse than PTM. Note that on the smallest dataset, LDA and PTM
performs already well, and so are harder to improve. Where in document clustering

3Available at http://www.ai.mit.edu/people/˜jrennie/20Newsgroups/
4Available at http://disi.unitn.it/moschitti/corpora.htm
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Table 3.9: Purity of topic models estimated in terms of purity achieved in document clustering.
For significance tests, we consider p-value ă 0.05/7.

Reuters (N=806,791, C=55) 20-Newsgroups (18,846, C=20) Ohsumed (N=50,216, C=23)

Method Purity NMI Purity NMI Purity NMI

LDA 0.55 0.40 0.52 0.36 0.50 0.30
PTM 0.61 0.43 0.57 0.38 0.55 0.33

LDA+DR 0.57İ 0.41İ 0.56 0.39 0.53İ 0.32İ

LDA+TR 0.57İ 0.42İ 0.56 0.38 0.53İ 0.31İ

LDA+TAR 0.60 0.43 0.57 0.39 0.54 0.33
LDA+DR+TR 0.58 0.42İ 0.57 0.38 0.54 0.32
LDA+DR+TAR 0.60 0.43 0.58 0.40 0.55 0.35N

LDA+TR+TAR 0.61 0.43 0.58 0.40N 0.56N 0.34N

HiTR 0.64N 0.45N 0.60N 0.42N 0.57N 0.35

Table 3.10: Purity of topic models estimated in terms of accuracy achieved in document
classification. For significance tests, we consider p-value ă 0.05/7.

Reuters (N=806,791, C=55) 20-Newsgroups (N=18,846, C=20) Ohsumed (N=50,216, C=23)

Method Accuracy Imp. over LDA Accuracy Imp. over LDA Accuracy Imp. over LDA

LDA 0.76 – 0.81 – 0.50 –
PTM 0.82 8% 0.87 7% 0.56 12%

LDA+DR 0.79İ 4% 0.83İ 2% 0.52İ 4%
LDA+TR 0.78İ 3% 0.83İ 2% 0.53İ 1%
LDA+TAR 0.82 8% 0.85İ 5% 0.54 8%
LDA+DR+TR 0.80İ 5% 0.84İ 4% 0.53İ 6%
LDA+DR+TAR 0.83 9% 0.86 6% 0.56 12%
LDA+TR+TAR 0.82N 8% 0.87 7% 0.58N 16%

HiTR 0.85N 12% 0.89N 10% 0.60N 20%

only the topics with the highest probability are considered, in document classification
the classifiers use the entire P pt |dq distributions to classify documents. Performance
of all methods in document classification is closer to the perfect classifier than their
performance in document clustering, as the maximum value of both accuracy and
purity is 1. This indicates that the most probable topic does not necessarily contain all
information about the content of a document. In the cases that a document is about
more than one topic, the classifier utilizes all P pt |dq information and performs better.
Therefore, the higher accuracy of HiTR in this task is an indicator of its ability to
assigning document-specific topics to documents.

3.7.5 HiTR’s efficiency

Table 3.11 shows the execution times of HiTR, LDA, and PTM. The reported execution
time for HiTR is the time it took to run HiTR once, given the corpus as input and topic
assignments to documents as output. All models were run on machines with 6-core 3.0
GHz processors. The results show that, even on large datasets, HiTR does not add much
complexity to LDA and the difference between the execution times of LDA and HiTR
are reasonable. The execution times of PTM grow much faster than those of LDA and
HiTR when the number of documents increase.
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Table 3.11: The execution time of HiTR, LDA, and PTM in hours. N and #w are the number of
documents and tokens in the corpus, respectively.

Dataset Method Hours

Reuters LDA 6.18
N “ 807K PTM 26.00
#w “ 1, 5M HiTR 9.17

20-NewsGroups LDA 1.13
N “ 19K PTM 0.93
#w “ 5, 2M HiTR 1.45

Ohsumed LDA 1.42
N “ 50K PTM 3.88
#w “ 10M HiTR 2.45

3.8 Conclusion

We have proposed Hierarchical Topic model Re-estimation (HiTR), an approach for re-
estimating topic models and applied them to measure topical diversity of text documents.

We have shown by experimental means that our approaches are able to remove
general topics from topic models and increase the purity of topics. The results show that
the estimated diversity scores for documents using HiTR are more accurate than those
extracted using topic models created by LDA and PTM. Our three main findings are as
follows. First, general topics have the largest negative impact on the quality of topic
models when they are used for measuring topical diversity. This indicates that purity of
topic assignments is more important than purity of the distribution of words in topics and
the distribution of words in documents in topical diversity task. The topic assignment
re-estimation (TAR) that is designed to address this problem successfully detects general
topics and removes them from documents. Second, re-estimation at each level helps to
improve the quality of estimated diversity scores. We have shown that these “cleaned
document topic models” yield better results when applied to measure topical diversity
of documents. However, to achieve a highly accurate diversity scores, re-estimation
at all three levels is needed to improve on the state-of-the-art PTM approach. Third,
we analyzed the effectiveness of HiTR in two other tasks: document clustering and
document classification. We found that HiTR can achieve higher performances in these
tasks compared to LDA and PTM. This finding suggest that although HiTR is originally
designed for better estimation of topical diversity, it can be applied in a wider variety of
tasks.

Our proposed approach has some limitations. First, HiTR is most effective at remov-
ing general information from the three probability distributions mentioned. However, to
train a more accurate topic model which has a good performance on the topical diversity
task it is also important to remove very specific words from documents. Current ap-
proaches, including HiTR, are not able to address this problem adequately. Second, the
experiments on the topical diversity task are conducted in an artificially created dataset.
More robust datasets are needed for evaluating HiTR in this task.
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3.8. Conclusion

There are several future directions. In principle, HiTR is a re-estimation method that
can be applied to any topic model to enhance its quality. In this study, we have applied
HiTR to LDA and PTM. In our future work, we plan to examine the effect of HiTR on
a wide range of topic models besides LDA and PTM such as PLSA. In this research, we
adapted and used Rao’s diversity measure for estimating diversity of documents. There
are several other diversity measures proposed in biology such as Functional Divergence
and Functional Attribute Diversity.

In this chapter, we studied how we can measure the topical diversity of documents
and use this measurement for managing documents. Next, in Chapter 4, we turn our
attention towards the email domain and study how we can help users manage their
emails more efficiently.
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4
Domain Adaptation for Commitment

Detection in Email

In this chapter, we focus on automatic task management systems and study how we
can detect commitments made in email to help users manage their ongoing tasks more
efficiently. Our aim is to answer RQ3.

4.1 Introduction

Email is an important communication medium for individuals and organizations. People
use email not only as a communication tool, but also as a means to create and manage
tasks [20, 43, 145, 189]. When the number of ongoing tasks created via emails increases,
people can struggle to manage their tasks and monitor their progress [17, 207]. Auto-
matic task management systems can overcome this problem and help people manage
their tasks more efficiently [17, 74]. Commitments such as “I’ll send the report by the
end of day” are one type of task that involve promises made between individuals to com-
plete future actions [41]. Figure 4.1 shows an example commitment in an email. Such
tasks are often hidden in emails, and users can struggle to recall and complete them in a
timely manner. Detecting commitments automatically enables task management tools
and digital assistants to generate reminders and notifications to help users meet their
obligations. Despite the potential benefits of automatic commitment detection, work in
this important area has been limited to only a handful of studies [41, 50, 115, 116, 128].

Commitment detection is challenging for at least two reasons. First, the commitment
detection task itself is inherently difficult, even for humans [115], and particularly
difficult when the text is short, with limited context. Second, email models are trained
and shipped to users based on potentially biased datasets. For both privacy and practical
reasons, email-based models are often trained on public datasets, which are skewed in a
variety of ways. For example, Enron [107] and Avocado [147], two commonly-used
email datasets for learning email models, belong to two organizations with different
focus areas and from different time periods. Terminology, including named entities
and technical jargon, can vary greatly across domains and over time. As such, models
learned on one dataset may be biased and might not perform well on a different target

This chapter was published as [13].
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From: sender
To: recipient
Subject: Opportunity for Enron

Chad, thank you for your email. I
will forward on to Dan Reck who is
responsible for our new Enron Freight
Markets business. I am sure you will
be hearing from him.

Thanks,
m

Figure 4.1: A sample email from the Enron email corpus with a commitment sentence highlighted.
The commitment detection task is to automatically detect such sentences in email.

dataset. Biases will affect all models trained on email corpora. Transfer learning [150]
is a domain adaptation method that enables transferring knowledge learned in one
domain (source domain) to another domain (target domain). It has been shown that this
approach is successful for addressing domain differences in many tasks including text
and image classification [161, 212], sentiment analysis [26], and collaborative filtering
[125]. Using this approach for transferring knowledge learned from one email collection
to another may help achieve more robust and generalizable models for commitment
detection.

In this study, we evaluate the efficacy of transfer learning for commitment detection.
To learn commitment detection models, we first create two datasets with commitments
occurring in emails sourced from the Enron and Avocado collections. To do this, we
extract sentences from emails and ask trained annotators to assign binary commitment
labels to the sentences. We argue that commitment vocabulary is mostly domain
independent and that a transfer learning approach can help remove domain-specific
information from commitment models and capture the core language of commitments.

To learn a domain-independent commitment model, we first try to characterize
the differences between domains (email corpora) and then use this characterization to
transfer knowledge between them. We investigate the performance of domain adaptation
methods working at different granularities: feature-level adaptation and sample-level
adaptation. For feature level adaptation, we first learn a mapping between features
(n-grams) of source and target domains and use the mapping to transfer the features
of the source domain to the target domain and learn the classifier using the transferred
data. For sample-level adaptation, we use importance sampling (IS) [172] to weight
training samples in the source domain based on their similarity to the samples of the
target domain. We use the weighted samples in the source domain to learn the classifier
and apply it to the samples in the target domain. We further combine sample-level and
feature-level domain adaptation using a neural autoencoder [19]. The autoencoder is
trained to maximize the commitment classification accuracy while minimizing the recon-
struction loss. Moreover, to remove domain specific information from representations
of samples, a domain classifier is added to the autoencoder. Given a training sample
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from the source/target domain, the domain classifier attempts to predict the domain
to which the sample belongs. During training the accuracy of the domain classifier is
minimized. By minimizing domain classifier accuracy, domain-specific information is
removed from the samples.
In this chapter we address our third research questions, RQ3:

Can commitments be reliably detected in emails? And how does the perfor-
mance of commitment models change when they are tested on a different domain
than they are trained on?

Our main research contributions are as follows:

• Analysis of the impact of domain transfer on commitment detection. We show
that the quality of commitment detection degrades significantly as we apply
commitment detection models across domains.

• Proposing different approaches for characterizing differences between email
corpora and show that domain adaptation (specifically, transfer learning) can
remove domain-specific bias from commitment detection models.

• Demonstrating through extensive analysis that domain adaptation methods lead
to significant gains in the precision and recall of commitment detection models.

4.2 Related Work

Prior research in a number of areas applies to the study presented in this chapter. This
includes work on automatic email management [17, 20, 41, 128, 207] and task progress
monitoring [17, 43, 74]. Prior research on commitment detection and domain adaptation
is particularly relevant, and we describe it in detail in this section.

4.2.1 Commitment detection
The detection of commitments in email has been the subject of several prior studies.
Lampert et al. [114, 115] show that the annotation of commitments and requests in email
is challenging, even for humans. They devise guidelines for collecting judgments and
building datasets for commitment/request classification. The most interesting insight
is that when statements are given in context (full email) the annotation task is easier
and more accurate. Although the findings of these studies can help design commitment
detectors, no automatic commitment classifiers are trained in these studies. De Felice
[50] proposes a fine-grained classification of commitments in emails. She further studies
which phrases are associated with commitments. As with [114, 115], no automatic
commitment detector is created. Automatic commitment classifiers have been developed
in prior work. Cohen et al. [41] train classifiers to classify sentences in email into one
of the following speech acts: deliver, commit, request, amend, propose, meeting. They
represent sentences by TF-IDF weighted vectors over word n-grams. Kalia et al. [102]
use more sophisticated features for detecting commitments in email such as named
entities, part-of-speech (POS) tags, dependencies, and co-reference resolution. They
consider both requests and commitments as commitments. They run experiments on
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Enron and an instant messaging dataset (Hewlett-Packard’s IT incident management
chat logs). Corston-Oliver et al. [43] use different kinds of features for detecting tasks
in email. They consider commitments as one of the tasks they try to extract from email.
Lampert et al. [116] also consider both requests and commitments. They use a set of
features such as message length, the presence of modal verbs, and question words, and
train an classifier on a set of manually-labeled emails. Their main conclusion is that
only some regions of emails are relevant to commitment detection, and other regions
often introduce noise.

All these studies use a single dataset for training models and performing analysis.
The datasets used in these studies are also small. The studies do not consider the
important challenge of domain bias or domain adaptation. Although Cohen et al. [41]
performed a limited analysis on the transferability of commitment models, they used
datasets from the same domain.

4.2.2 Domain adaptation

Domain adaptation is the ability to learn a model from data in a source domain and adapt
it to have a good performance on a different target domain [18]. Domain adaptation
methods can be grouped into two categories: sample-level adaptation and feature-
level adaptation methods [150, 234]. Sample level adaptation methods attempt to
remove domain bias by weighting the samples in a way that the difference between
the distribution of the weighted samples in the source domain and the distribution of
samples in target domain is reduced. The most common sample weighting approach is
importance sampling, in which source samples are re-weighted based on their similarity
to samples in the target side [172]. TrAdaBoost [45] exploits a similar idea, but the re-
weighting is performed iteratively in a boosting fashion. However, unlike the importance
sampling method, TrAdaBoost needs labeled samples in the target domain. Similar
ideas have been used in other studies for sample-level domain adaptation [94, 233].

Feature-level adaptation techniques try to remove the domain bias from features by
removing domain specific features or transforming them from source to target domain
[109, 150, 234]. Learning a mapping between features of different domains have
been studied in machine translation [117, 137]. Here the domains are two different
languages. With the success of deep autoencoders for learning unsupervised feature
representations, these models have been used for domain adaptation [36, 73, 234]. The
main intuition behind these methods is using a set of combined samples from source and
target domains to learn a representation that is domain independent. After creating the
representation, a classifier can be trained on the de-biased representations. Zhuang et al.
[234] integrate the representation learning step of the autoencoders with the classifier
learning step. They use an autoencoder that tries to learn a representation that is both
domain independent and leads to a good performance in classification of samples in
the target domain. In this study, we apply a similar idea, however, we try to further
remove the domain bias by introducing a domain classifier. Moreover, Zhuang et al.
[234] adapts the model for image classification and it is not straightforward to use this
model for detecting commitments.

Recently, adversarial training has been applied to domain adaptation [28, 37, 69, 70,
130]. The main intuition behind these methods is adding a domain classification loss to
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the task’s loss and trying to maximize the domain loss. Maximizing the domain loss
ensures that the learned representations do not contain any domain information. We
also use a similar approach to adversarial training [70] for learning representations of
sentences. We further extend this work by using a sequence-to-sequence autoencoder
[182] to the model for learning representations. The main reason for having a sequence
to sequence autoencoder is that this model is a powerful means for encoding text.
Having this autoencoder in the pipeline means that we can learn accurate sentence
representations that capture the information present in word sequences.

4.3 Task and Data

In this section, we introduce the commitment detection task and the dataset we collected
for training commitment models.

4.3.1 Detecting commitments in email
As in [43], we define a commitment as any sentence in an email where the sender is
promising to do an action which can potentially be added to his/her TODO list (e.g.,
sending a document) or be worthy of a reminder (e.g., meeting a colleague). We model
commitment detection as a binary classification task.

More precisely, the input in the commitment detection task is a sentence in an
email and the output is a binary label indicating whether that sentence constitutes a
commitment between the sender and the recipient of the email. We assume that there
is a set of sentence-judgement pairs X “ tpxi, yiqu

N
i“1, where xi is the sentence and

yi is the binary commitment label for xi assigned by annotators. We use X to train a
model and then use it to predict commitment labels for new sentences. We use three
different representations to represent sentences in X: (1) bag of word n-grams: for
feature based models (such as logistic regression (LR)) we extract word n-grams (we
set n “ 3) and represent the sentences by the frequency of word n-grams in them.
(2) bag of part-of-speech (POS) n-grams: similar to the previous representation but with
bag of POS-tagged word n-grams (we set n “ 3) in sentences instead of bag of word
n-grams. We use SPLAT [160] for extracting POS tags. (3) sequence of words: for
sequence-based models (such as autoencoders), we represent sentences as sequences of
words.

4.3.2 Collected dataset
We use the Enron [107] and the Avocado [147] datasets to construct commitment
datasets. In this section, we briefly describe these datasets, the crowd-sourcing task
where third-party annotators labeled sentences for whether they constituted commit-
ments, and the collected commitment datasets.

Crowd-sourcing

The Enron dataset contains emails from 158 users who were mostly senior management
of Enron, a natural gas transmission corporation. There are about 200K emails in this
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dataset. The Avocado dataset contains about 940K emails from employees of a defunct
information technology company.

To construct crowd-sourcing tasks, we first extract sentences from emails. From
the Enron dataset, we randomly select 61,398 sentences and ask annotators to assign
commitment labels to them. A random sample of sentences does not contain a high
number of positive samples. Therefore, to collect more positive samples, we train
an LR classifier on the collected dataset and use it to extract sentences that are more
likely positive. We use bag of word n-grams representations to train the LR model. We
first use the trained classifier to assign to each sentence the probability of belonging
to the positive class. Then, we perform a weighted random sampling based on these
probabilities and select an additional 4,000 sentences to annotate. For extracting
sentences from Avocado dataset we use the trained LR model to weight sentences and
then we select 13,021 sentences for annotation.

After extracting sentences from Enron and Avocado datasets, we ask crowd-workers
to assign commitment labels to the sentences. Each annotation task contains a sentence
highlighted in an email and the following question: “Does the highlighted sentence
contain a specific action that the sender must complete or is obliged to do? (The action
must be on the sender and must not already be complete).” If the answer for this question
is yes, we consider it a commitment. Each sentence is labeled by two annotators. If
there is a disagreement between two annotators, then the sentence is annotated by a
third annotator. A sentence is considered positive if at least two annotators annotate it as
positive. The inter-annotator agreement between the annotators based on Krippendorff’s
α is 0.73, indicating a substantial agreement between annotators [3].

Commitment datasets

Table 4.1 shows the statistics of the created datasets. We only use the annotated
sentences as samples and ignore the rest of the email. Enron is a much larger dataset
than Avocado. Since most of the samples are picked randomly from the dataset, it
contains many more negative samples than positive ones. Conversely, since Avocado
samples are picked based on the outputs of a machine-learned classifier, it contains
more positive samples. Therefore, this dataset is biased toward the classifier and the
distribution of positive and negative samples in this dataset does not reflect the true base
rate.

Table 4.1: The statistics of the commitment datasets.

Enron Avocado
# samples 65,398 13,021
# positive samples 3,337 4,484
avg. sentence length 12.1 14.5
median sentence length 10 13

Table 4.2 shows top 10 most informative Enron n-grams for the positive class
extracted based on pointwise mutual information. The Jaccard similarity of this set with
the top 10 positive class Avocado features is 43%. (Due to licensing restrictions, the
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Avocado features may not be published.)

Table 4.2: The most informative Enron features associated with the positive class.

“i will”, “i”, “will”, “i’ll”, “let you know”, “let you”,
“call you”, “i shall”, “we will”, “will call”

4.4 Transfer Learning for Detecting Commitments

In this section, we describe the approaches used in this study for transferring knowledge
between email datasets for the task of commitment detection. Given a set of labeled
samples in the source domain S, our goal is to create a model that has a high commitment
detection accuracy when it is applied in the target domain T . We use three different
approaches for transferring classification knowledge between email domains: feature-
level adaptation, sample-level adaptation, and an autoencoder that attempts to leverage
both feature- and sample-level adaptation.

4.4.1 Feature-level adaptation

In this section, we introduce our approaches for adapting feature-level domain infor-
mation. We use two feature-level adaptation techniques: feature selection and feature
mapping.

Feature selection

The main intuition of feature selection approach for domain adaptation is detecting
domain specific features in source and target domains and removing them from the
train and test samples. We assume that we have a set of unlabeled samples, DS ,
in the source domain and a set of unlabeled samples, DT , in the target domain(s).
To remove domain specific features from S, we first train a domain classifier using
samples in DS as positives and samples in DT as negatives. The classifier is trained to
discriminate samples of DS from samples of DT . Therefore, the most discriminative
(informative) features of the classifier are considered domain-specific features. We
use logistic regression (LR) for training the classifier and select top K features from
the classification model (we set K “ 1000) and finally replace the selected features
with a unique symbol (‘DOMAINWORD’) in training samples from the source domain.
We follow a similar procedure to remove domain-specific words from samples of the
target domain. After removing domain specific information from the source and target
domain samples, we train a commitment classifier on samples from the source domain
and directly use that to predict the commitment labels in the target domain. A sample
of features that are strongly associated with the Enron domain (the most informative
features regarding the Enron corpus) are shown in Table 4.5. As can be seen, these
features are very specific to the Enron domain.
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Feature mapping

The feature mapping approach attempts to find similar features in source and target
domains and transform the features from the source domain to their similar feature in
the target domain before training the commitment classifier. Features are considered to
be word n-grams ( 1 ď n ď 3). The main assumption of the feature mapping method is
that for each feature in the source domain, there is a feature with a similar meaning in
the target domain. Therefore, for each domain specific feature in S, there is a domain
specific similar feature in T and our goal is to find these features with similar meanings.
For example, the similar feature of Enron in the Enron corpus would be Avocado in the
Avocado corpus, as these two features are the names of companies these corpora belong
to.

We assume that we have a set of emails in each domain. We extract sentences
from the emails and, for each domain, we learn a semantic space in which each feature
is represented as a low dimensional neural embedded vector. We use Word2Vec (the
Skipgram architecture) [138] to generate the embeddings of features. Finally, we learn
a linear transformation between the embedding spaces of source and target domains and
use it for transforming features between domains.

Linear mapping-based transformations of embeddings between spaces were previ-
ously used for translation [137] and detecting semantic shifts [8]. In this approach, we
first pick a set of words as anchors between domains as training samples for learning the
mapping. We use a set STOP of stopwords occurring in both source and target domains
as anchors because they should have the same meaning in both domains and they can
serve as fixed points around which features with varying meanings (usages) are located.
We use a standard stopword list with a few additional words added (very frequent words
in the corpus). Using the training samples, the goal is to learn a transformation matrix
WST from domain S to domain T that minimizes the distance between the words and
their mapped vectors.

The objective function to minimize is:

argmin
WST

ÿ

wPSTOP

∥∥∥∥WSTV Sw ´ V
T
w

∥∥∥∥2. (4.1)

V Sw and V Tw are the embeddings of w in the embedding spaces created for source and
target domains, respectively. We use the gradient descent algorithm [168] to optimize
the objective function. Using the learned transformation, the mapping of a feature wS
from source domain in target domain is determined as follows:

Mpwq “ argmax
wT PFT

cospWSTV Sw , V
T
wT
q,

where cos is the cosine similarity and FT is the set of all features (n-grams) in domain
T .

4.4.2 Sample-level adaptation
As a sample-level adaptation method, we use the importance sampling approach. Im-
portance sampling is a technique in statistics to estimate the parameters of a distribution
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(target distribution) given samples generated from a different distribution (source distri-
bution) [172]. This technique has been applied to domain adaptation for classification
[150]. Assume there are two distributions: PSpx, yq from which samples in the source
domain are generated, and PT px, yq from which samples in the target domain are gen-
erated. In our setting for the commitment detection task, x is a sentence and y is its
corresponding commitment label. The goal is to create a model using labeled samples
from S while optimizing the objective (e.g., the classifier loss) for samples in T . The
importance sampling approach for classification works as follows. As mentioned, given
a set of samples X and their corresponding labels Y , the goal is to find parameters of
the classifier that minimize the loss for the samples in T :

θ˚ “ argmin
θ

EPT
lpX,Y, θq,

where θ is parameters of the classifier and lpX,Y, θq is the loss of the classification. We
can rewrite the above equation as follows:

θ˚ « argmin
θ

N
ÿ

i“1

PT pxi, yiqlpxi, yi, θq

“ argmin
θ

N
ÿ

i“1

PT pxi, yiq

PSpxi, yiq
PSpxi, yiqlpxi, yi, θq

“ argmin
θ

N
ÿ

i“1

PT pxiqPT pyi|xiq

PSpxiqPSpyi|xiq
PSpxi, yiqlpxi, yi, θq

« argmin
θ

N
ÿ

i“1

PT pxiq

PSpxiq
PSpxi, yiqlpxi, yi, θq

Note that the assumption in the derivation from the third to the last step is that
PSpyi|xiq “ PT pyi|xiq, which implies that the conditional probability of classes given
the samples is independent of the domain. PT pxiq

PSpxiq
is often referred to as the importance

weight. Given the above derivation, we can still train a classifier using the samples from
the source domain, however we need to weight the loss on samples by their importance
weight. PSpxiq and PT pxiq are the marginal distributions of samples in the source and
target domains respectively. To find θ˚, we need samples in the source side and also an
estimation of PSpxiq and PT pxiq.

To estimate PSpxiq and PT pxiq, we use sets of samples from the source and target
domains. We consider the target side as positive class and source side as negative class.
Then, we train a domain classifier to predict for each sample how likely it is to be
generated from target domain. We use a simple LR model to train the classifier. For
each sample xi, PT pxiq “ p and PSpxiq “ 1´ p, where p is the probability that xi is
generated from T assigned by the trained domain classifier to xi.
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4.4.3 Deep autoencoder
Deep autoencoders have been successful in unsupervised feature extraction and repre-
sentation learning [19]. Since these models are unsupervised, they attempt to model the
underlying distribution from which the data is generated. In a transfer learning setting,
autoencoders are used to learn a representation for a combined set of samples from
source and target domains, thereby aiming to simultaneously represent samples from
both domains, and yielding a model that should be domain independent [36]. After
learning the representations model, encodings of samples in the source domain, with
their labels, are used for training a classifier.

We first formulate the problem and then describe our proposed model by introducing
its general architecture. We then explain the details of various parts of the architecture
including input module, sample representation, output module, and loss functions.

The setting is as follows. We are given a set of commitment sentences from the
source domain XS “ tpxSi , y

S
i qu

N
i“1 and a set of commitment sentences from the

target domain XT “ tpxTi , y
T
i qu

M
i“1. We train the autoencoder embeddings using

unlabeled examples from the source and target domain, and subsequently we apply a
set of labeled target examples in addition to the source examples for training the sample
representations and output module. Our goal is to use both XS and XT to create a
domain independent classifier that has good performance in both domains. Our proposed
model takes a candidate sentence from an email and predicts how likely that sentence
constitutes a commitment between the email sender and the recipient. To do this, we
introduce three different loss functions: reconstruction loss LR, commitment loss LC ,
and domain loss LD. The reconstruction loss corresponds to how well the learned
representations represent the samples. The commitment loss is the main objective which
is included to minimize the errors of the commitment classifier. Finally, the domain
loss is included to remove the domain bias from samples. In the training process our
goal is to maximize the loss of the domain classifier, to avoid capturing domain-specific
information during learning the sentence representation. Given the described loss
functions, the final objective function of the proposed model is as follows:

L “ αLR ` βLC ´ γLD, (4.2)

where α, β,and γ control the effect of each loss function on the final loss and they are
set based on some preliminary experiments explained in Section 4.6.4. The details of
each loss function are explained in this section.

The overall structure of the proposed model is shown in Figure 4.2. The model
contains three primary components:

Input module that provides a set of functions for encoding each input sentence xi
to a sequence of dense vectors tzji u

n
j“1 where zji P Rd corresponds to embedding of the

j-th word in the sentence and n is the number of words in the sentence; for simplicity,
we assume that d is the dimension of the representation vector of words.

Sample representation that given the outputs of the input module (the sequence
of embeddings of words), and learns a representation for the input sentence. The
output of this module is a vector: s P Rd1 , which can be considered as the aggregated
representation of the input sentence. d1 is the dimension of the representation vector
for samples. We will describe the details of this module in this section.
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Figure 4.2: General schema of the proposed neural autoencoder model used for commitment
detection.

Output module that captures how likely the input sentence constitutes a commit-
ment based on the representation of the sentence that is provided by the previous module.
The details of this unit are explained in this section.

In the following, we explain the input representation, output modules, and loss
functions and how these modules are connected.

Input module

Input module projects an input sentence to a sequence of dense vectors with dimension
d using a trainable embedding layer. Each vector in this sequence corresponds to a word
in the sentence.
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Figure 4.3: Architecture of the sequence to sequence encoder function in the input representation
module.

Sample representation

To represent samples, we use a sequence to sequence recurrent neural network (RNN)
as the encoder in our model. The RNN reads the input sequence Zi “ rz1i , z

2
i , . . . , z

n
i s

in the left-to-right direction in the forward pass. It creates a sequence of hidden
states, rÝÑh

1

i ,
ÝÑ
h

2

i , . . . ,
ÝÑ
h
n

i s, where ÝÑh
j

i “ RNNpzji ,
ÝÑ
h
j´1

i q is a dynamic function for
which we can use, for example, an LSTM [83] or a GRU [38]. In this study, we use
an LSTM for learning the representation. The RNN backward pass reads Zi in the
reverse direction, i.e.,ÐÝh

j

i “ RNNpzji ,
ÐÝ
h
j`1

i q, resulting in a sequence of hidden states

r
ÐÝ
h
n

i ,
ÐÝ
h
k´1

i , . . . ,
ÐÝ
h

1

i s. We take the concatenation of the last hidden state of the forward

pass and the first hidden state of the backward pass of the RNN, i.e., ϕpxiq “ r
ÝÑ
h
k

i ;
ÐÝ
h

1

i s,
as the final representation for the given data field (see Figure 4.3).

Output module

The proposed architecture has three output modules: decoder output, commitment label,
and domain label. In this section, we describe each output module.

Decoder output and reconstruction loss. The decoder is an RNN which, given
the learned representation for the input sequence (output of the encoder), attempts to
generate the input sequence. The goal of the decoder is to estimate the probability
P poi|xiq “ P po1i , ..., o

n1

i |x
1
i , ..., x

n
i q, where oti is the output of the decoder at time

step t. The decoding starts by reading a special symbol (‘GO’) at the first time step.
Decoding stops by reading another special symbol (‘EOS’) at the end of each input
sentence. Given the outputs at each time step we can determine the decoder’s output
as follows: P poi|xiq “

śn1

t“1 P po
t
i|ϕpxiq, o

1
i , ..., o

t´1
i q. We train the decoder, in an

end-to-end training process in which, given mini-batches of samples B “ xxi, yi, diy,
where yi and di are commitment label and domain label of a sample xi, we maximize
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the conditional log-likelihood of a correct output oi given the input sequence xi:

LRpxiq “ ´

|B|
ÿ

i“1

logpoi|xiq (4.3)

Commitment label and classification loss. The commitment classifier is a feed-
forward layer with tanh non-linearity, followed by a sigmoid. It receives the learned
representation for the input sentence and predicts the probability of it constituting a
commitment:

OC “ tanhpWWW pCqϕpxiq ` bbb
pCqq P RdC

ŷi “ sigmoidpwwwTOCq P R,

where WWW pCq P RdCˆd1 and bbbpCq P RdC are a trainable projection matrix and bias
respectively, and dC is the size of projection, and www P RdC is a trainable vector. The
commitment classifier is trained in an end-to-end training process. Given mini-batches
of data xxi, yi, diy, we first predict ŷ and calculate the loss using the cross-entropy loss:

LC “ ´yi log ŷi ´ p1´ yiq logp1´ ŷiq (4.4)

Domain label and domain classification loss. As with the commitment classifier,
we use a feed-forward layer with tanh non-linearity, followed by a sigmoid, as the
output of the domain classifier. The domain classifier predicts the probability of the
sentence being generated from the target domain:

OD “ tanhpWWW pDqϕpxiq ` bbb
pDqq P RdD

ŷi “ sigmoidpwwwTODq P R,

whereWWW pDq P RdDˆd1 and bbbpDq P RdD are a trainable projection matrix and bias, and
dD is the size of projection, andwww P RdD is a trainable vector. The domain classifier is
also trained in an end-to-end training process. We again first predict d̂ and calculate the
loss using the cross-entropy loss:

LD “ ´di log d̂i ´ p1´ diq logp1´ d̂iq. (4.5)

4.5 Experimental Setup

We aim to understand how domain differences can affect the performance of email
commitment detection models and how we can use a transfer learning approach to
overcome any performance degradation due to these differences. Our goal is to answer
RQ3. To this end, we break down RQ3 to four research questions:

RQ3.1 Can commitments be reliably detected in emails?

RQ3.2 How does the performance of commitment models change when they are tested
on a different domain than they are trained on? Can we reliably train a model on
one domain and use it to detect commitments on a different domain?
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RQ3.3 How can we characterize differences between domains and use this characteri-
zation for transferring knowledge between domains?

RQ3.4 Does the proposed autoencoder help to detect commitments more accurately?

RQ3.1 is concerned with the quality of automatic commitment detection models.
To answer this research question, we use the collected datasets and train and test
commitment detection models on the same domain and analyze their performance.

RQ3.2 is concerned with the effect of domain difference on the performance of
commitment detection models. To answer RQ3.2, we train and test commitment models
across domains and analyze their performance.

To answer RQ3.3, we try to characterize differences between domains and use this
characterization to remove domain-specific bias from commitment models. We evaluate
how successful these approaches are in characterizing the differences.

RQ3.4 is concerned with the performance of the proposed autoencoder model in
commitment detection and its ability to learn domain independent representations for
samples. We report the results of the autoencoder model and compare them to the
results of the feature-level and sample-level adaptation approaches.

4.5.1 Evaluation metrics
We use standard evaluation metrics for classification such as the area under the receiver
operator characteristic curve (AUC), precision, recall, and F1 measure.

4.5.2 General setting and hyperparameters
We set the number of hidden layers of the LSTM (forward and backward) model, d, d1,
dC , and dD to 128. We set the initial learning rate to 10´3. The batch size is set to 128.
Training consists of 250K steps. Dropout of the LSTM model is set to 0.2. In training
all commitment models, we perform five-fold cross validation and report the average of
performance on five folds as the performance of the models.

4.5.3 Baselines
Since commitment detection is a relatively under-studied task, there are not many
baselines to compare our proposed approaches to. Previous work in this area [41, 50,
102, 114, 115] either did not propose a model to automatically detect commitments or
used very simple word/POS n-grams based features to train a model. We also use word
and POS n-grams to create LR models for this task. In that sense, the LR model is
our main baseline. However, our main goal is to show that the domain difference can
be very problematic in creating commitment models and previously proposed n-gram
based approaches fail to remove domain bias.

4.5.4 Statistical significance
For statistical significance testing, we compare our methods to baselines using paired
two-tailed t-tests. We set α (the desired significance level) to 0.05. In Section 4.6, N and
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İ indicate that the corresponding method performs significantly better or worse than the
corresponding baseline, respectively.

4.6 Results

Following the four research questions described in Section 4.5, we report the results of
our proposed commitment detection methods.

4.6.1 Commitment detection results
To answer RQ3.1, we use the datasets described in Section 4.3.2 and train and evaluate
commitment classifiers using LR. In this set of experiments, we only focus on the
performance of the models trained and tested on the same domain. Our goal is to
evaluate whether or not commitments can be detected automatically in emails, and
whether the LR model can capture the commitment language in emails. Table 4.3 shows
the performance of LR models trained for detecting commitments in Avocado and
Enron datasets using word n-gram and POS n-gram representations. The commitment
models achieve a reasonable performance. This result indicates that commitments
can be reliably detected in emails. There was no significant difference between the
performance of models trained on word n-gram and models trained on POS n-grams,
and in the remainder of this chapter we only report the results based on the word n-gram
representation as this representation is more efficient and has lower dimensionality.

Table 4.3: Results of LR method for detecting commitments trained and tested on the same
domain.

Dataset Precision Recall F1 AUC
Avocado (word n-grams) 0.82 0.81 0.81 0.86
Avocado (POS n-grams) 0.82 0.84 0.82 0.86
Enron (word n-grams) 0.80 0.77 0.78 0.88
Enron (POS n-grams) 0.79 0.78 0.78 0.87

4.6.2 Cross-domain results
To answer RQ3.2, we evaluate the performance of commitment models on a different
domain than they are trained on. Again, we use LR for training commitment models.
Table 4.4 shows the performance of trained models across domains. The results show
that the performance of commitment models degrades when moving across domains in
terms of almost all used evaluation measures, and we cannot reliably train a commitment
model on one domain and use it to detect commitments on a different domain. For the
AvocadoÑEnron case the precision drops more than recall (precision drops from 0.82
to 0.74 and recall drops from 0.81 to 0.78). For EnronÑAvocado case, the opposite is
true. The primary reason for higher drops in precision in the AvocadoÑEnron case is
that the Avocado dataset contains more positive samples, so the trained model is more
inclined towards assigning positive labels to the samples. However, the Enron dataset
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contains more negative samples. So, for the AvocadoÑEnron case, the false positive
rate is high, which leads to lower precision. For EnronÑAvocado the false negative
rate is high (as the Enron dataset has more negative samples and the trained classifier
is more inclined towards assigning negative labels to samples), which leads to lower
recall.

Table 4.4: Performance of LR method across domains.

Train Test Precision Recall F1 AUC

Avocado Avocado 0.82 0.81 0.81 0.86
Enron 0.77İ 0.69İ 0.73İ 0.67İ

Enron Enron 0.80 0.77 0.78 0.88
Avocado 0.74İ 0.78 0.76İ 0.58İ

4.6.3 Characterizing inter-domain differences

Next, we answer RQ3.3 by training models that can detect and characterize the dif-
ferences between email domains and use this characterization for removing domain
bias from commitment models before training them. We first design a binary classifier
which attempts to identify the source domains for samples. The input of the classifier is
a sentence and the output is the domain label for the sentence. We take 5,000 samples
from each of Avocado and Enron datasets and represent them using a bag-of-words
n-gram representation. Then, we train an LR model to predict domain labels for sam-
ples. Figure 4.4 shows the precision-recall curve of the domain classifier. The classifier
achieves an F1 score of 0.85. Table 4.5 illustrates a sample of features that are strongly
associated with the Enron domain. This result indicates that there is a domain bias in the
samples and even a simple LR classifier can characterize differences between domains.

Table 4.5: The most informative unigram features indicating the Enron domain.

“enron”, “gas”, “ena”, “houston”, “ferc”,
“eol”, “energy”, “ees”, “counterparty”

We use this characterization to remove domain bias from source and target datasets
before training commitment models. Table 4.6 shows the performance of models
that use the characterization of the difference between domains for training domain-
independent models. Three observations can be made from the results. First, all transfer
learning models improve the performance of the baseline LR model, indicating that we
can remove the domain bias using the transfer learning approach. The improvements
of all methods are statistically significant over the LR method for AvocadoÑEnron.
However, on EnronÑAvocado only the importance sampling method achieves signifi-
cant improvements over the LR method in terms of all metrics. This result indicates
that the transfer learning approach is more successful in removing the domain bias
from the Avocado dataset. Second, the linear mapping approach has a slightly better
performance than the importance sampling method for AvocadoÑEnron. Based on our
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Figure 4.4: The precision-recall curve of the domain classifier (predicting source domain of the
samples) (F1 score = 0.85).

analysis the quality of the mapping created from Avocado to Enron is higher than the
quality of the created mapping from Enron to Avocado. The average cosine similarity
of the mapped embedding of words from Avocado embedding (to Enron embedding) to
their embedding in Enron space is 0.78. This value for EnronÑAvocado mapping is
0.69. The better quality of the mapping leads to better transformation from Avocado to
Enron and better performance for AvocadoÑEnron. When mapping from Avocado to
Enron, the words project to a more meaningful place in the Enron embedding space.
Third, the importance sampling method achieves significant improvements for both
AvocadoÑEnron and EnronÑAvocado cases. This indicates that adaptation at the
sample level is more effective for the commitment detection task. We use importance
sampling as a baseline in Section 4.6.4 and compare its performance to the performance
of the proposed deep autoencoder.

4.6.4 Transfer learning results

To answer RQ3.4, we evaluate the performance of the proposed autoencoder model
in the commitment detection task and compare its performance to that of the impor-
tance sampling method. As an additional baseline, we use an LR model trained on a
combination of samples in both the Avocado and Enron datasets. Table 4.7 shows the
performance of the autoencoder model with different loss functions. The training of the
autoencoder that uses all loss functions is done on the combination of both Avocado
and Enron samples with their labels. We again perform five-fold cross validation on
the test set. At each step, we use four folds in target side in addition to all samples on
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Table 4.6: Performance of different domain adaptation methods for detecting commitments. IS:
Importance Sampling, LM: Linear Mapping, FS: Feature Selection.

Train Test Method Precision Recall F1 AUC

Avocado Enron

LR 0.77 0.69 0.73 0.67
IS 0.81N 0.75N 0.77N 0.74N

LM 0.83N 0.76N 0.79N 0.75N

FS 0.80N 0.73N 0.76N 0.73N

Enron Avocado

LR 0.74 0.78 0.76 0.58
IS 0.78N 0.85N 0.81N 0.71N

LM 0.75 0.81N 0.77 0.64N

FS 0.74 0.80N 0.76 0.62

source side for training the model and evaluate the trained model on the fifth fold. For
training AER and AER`D we train the models using unlabeled samples in the source
and target sides. Then, we use the trained model to represent labeled samples from the
source side. Finally, we train an LR model using these representations and evaluate its
performance on the target side.

The results show that each introduced loss function contributes to the performance
of the autoencoder, and using all loss functions achieves the best performance. Based
on some preliminary experiments we set α “ 0.1, β “ 0.6, and γ “ 0.1 in Equation
4.2. This indicates that the commitment loss has more effect on the performance of the
model, while other losses have the same contribution. The proposed model outperforms
both IS and the LR model trained on a combination of the samples from source and
target side. This result shows the ability of the proposed autoencoder model to remove
the domain bias from data and achieve a robust model.

To observe the effect of the size of training set on the performance of the proposed
autoencoder model, we design an experiment in which we vary the number of samples
in the target side and measure the performance of the model. Figure 4.5 shows the
results of this experiment. The results show that adding more samples in the target side
boosts the performance of the model on both datasets. With about 50% of the samples,
the model already achieves a good performance. For the Enron case, after having seen
50% of the data, adding more samples does not affect the performance of the model
significantly. However, for Avocado this is not the case. The main reason is that Enron
is a significantly larger dataset and with only 50% of the data the model can already
generalize, while Avocado is smaller and adding more samples helps learn a better
model.

4.7 Discussion and Implications

We have shown that there is a significant degradation in the performance of commitment
detection models across domains (email corpora), that the differences can be accurately
characterized, and that domain adaptation, specifically transfer learning, can help
ameliorate domain biases and yield performance improvements.

We evaluated the performance of the methods on two publicly available email
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Table 4.7: Performance of the proposed autoencoder for domain adaptation for detecting commit-
ments. IS: Importance Sampling, AER: Autoencoder with only reconstruction loss, AER`D:
Autoencoder with reconstruction and domain losses, AEAll: Autoencoder with reconstruction,
domain, and classification losses. The baseline to perform significance tests is IS.

Train Test Method Precision Recall F1 AUC

Avocado Enron

IS 0.81 0.75 0.77 0.74
LR 0.80 0.79 0.79 0.78
AER 0.80 0.78N 0.79 0.76
AER`D 0.81 0.79N 0.80N 0.77N

AEAll 0.82 0.81N 0.81N 0.79N

Enron Avocado

IS 0.78 0.85 0.81 0.71
LR 0.80 0.82 0.81 0.70
AER 0.77 0.82 0.79 0.68
AER`D 0.77 0.84 0.80 0.69
AEAll 0.79N 0.87N 0.83N 0.72

datasets: Avocado and Enron. The use of public data sets improves the replicability of
our study and is sufficient to demonstrate the value of domain adaptation for commitment
detection.

The created commitment dataset based on the Enron collection has far fewer positive
samples. To have more positive samples, we biased the Avocado dataset. Generating
the Avocado dataset in the same way as the Enron dataset would allow us to better
understand the models and their transferability, however, creating such a large dataset is
costly and beyond the scope of this study.

The designed methods differ a lot in their efficiency. The deep autoencoder model
required about 12 hours to train on average and about 50 milliseconds to extract a
representation for a test sample, while on the same machine the importance sampling
methods takes about 4 minutes to train and several microseconds to test on average.
Although in training phase the autoencoder is quite slow, it is more efficient during
testing.

We attempted to explore the effectiveness of models that work in different granu-
larities and can be applied easily to the task. The demonstrated viability of transfer
learning is promising. The effectiveness of other domain adaptation methods such as
[45], and alternatives such as multi-task learning models [130], needs to be explored.
Beyond commitments, the value of transfer learning for other detection tasks in email,
e.g., extracting requests and detecting task completion [68, 102], should be investi-
gated, as should the applicability of these methods to media beyond email (e.g., SMS,
instant messaging, meeting transcripts). In this chapter, we applied our models to
transfer knowledge between two domains. However, the proposed approaches are easily
extensible to consider more than two domains.

The transfer learning methods used in this study (except for importance sampling,
feature selection, and linear mapping), require labeled samples in the target domain
as well as the source domain. In applying these methods, additional data collection
efforts would be required to obtain these additional labels and the cost of that should
be factored into decisions regarding their application. For reference, the autoencoder
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Figure 4.5: The effect of size of training samples in target domain on the performance of the
proposed autoencoder.

model, which uses all loss functions, achieves a good performance with just a few
thousand labeled samples in the target domain.

Future work involves using the domain adaptation methods in practice to train more
domain independent models and deploying them as skills and add-ins inside digital
assistants and task management tools, respectively. Deployment would enable the
computation of online performance measures based on implicit and explicit feedback
from users making the commitments (rather than offline labeling from third-party
judges).

Having presented our approaches to manage documents automatically from different
angles, we now focus on the second part of the thesis and show how metadata and
structure can be helpful in exploratory search.

78



Part II

Using Structure and Metadata
for Exploratory Search
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5
Computing Semantic Shifts in Political

and Media Discourse

In the second part of the thesis, we focus on using structure and metadata in exploratory
search tasks. As the first task, we focus on measuring semantic shifts and study how
metadata can be helpful in measuring semantic shifts in the meaning of words. In this
chapter, our main aim is to answer RQ4.

5.1 Introduction

Words are always ‘under construction,’ their meaning is unstable and malleable [118,
175, 187, 210]. Semantic fluctuations can result from a concept’s ‘essentially contested’
nature. “What does democracy mean?” or “what values are democratic?”. The answer
changes according to the ideological perspective or viewpoint [67] of the person uttering
the term. Equally important is the influence of historic events. The understanding
of ‘terrorism,’ for example, has significantly changed as a result of the 9/11 attacks
[25, 164]. Currently, only a few studies have attempted to compute the ‘malleability
of meaning’ and monitor semantic shifts [75, 90, 104, 110]. Most (if not all) of these
approaches have focused their efforts on uncovering change over time. However, there
are other valuable dimensions that can cause semantic shifts such as social or political
variability.

As an example, Figure 5.1 shows the semantic shifts over two dimensions: time
and political context, i.e., membership of a parliamentary party at the British House of
Commons. The speeches given by the members of each party are used for constructing
their corresponding semantic spaces. This can be extended to social parties or groups of
like-minded people in social forums such as Facebook. The first example in the figure
(the word “moral”) shows that a semantic shift can occur over time and across different
contexts. However, as the second example shows, although the meaning of a word (such
as “democracy”) can stay stable over time, it can still differ between certain groups.
Therefore, social context is another valuable dimension that can explain semantic shifts.
In this study, we explore the semantic stability of words by computing how contextual
factors, such as social background and time, shapes—or, at least reflects—shifts in

This chapter was published as [8].
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meaning.
We first use distributional semantics to generate embedding spaces from categorized

corpora, where a category can be a certain context (such as speeches given by a political
party). In the example given in Figure 5.1, there are two categories: Conservative
and Labour parties. Then, we propose different approaches to compare the vector
representations of words between spaces. In the remainder of this chapter, we define
each of these categories as viewpoints, since they reflect the semantic constellation of
terms from a specific social perspective. In this study, we only consider two viewpoints.
However, our approaches are easily extendable to multiple (i.e., non-binary) viewpoints.
The challenging part of this task, and the main contribution of this study, is to develop
techniques that compare vectors across spaces with different dimensionality structures.
We consider three methods for comparing meaning across vector spaces: (1) Inspired by
[137], we create a linear mapping between two embedding spaces, project words from
one embedding space to the other and measure whether the projected word lands closely
to the word in the other space. (2) Inspired by [104], for each viewpoint, we construct a
graph such that the nodes are words and edges are the similarities between them. Then,
using graph-based similarity measures we compute how similar the neighbors of a word
in two embedding spaces are. And (3) We define a measure that combines these two
measures.

As stated, in this work, our main research problem is to study how semantic shifts
in words are happening not just over time but also across social dimensions, quantify
the size of shifts, and explore applications that can benefit from information about shifts.
We evaluate the proposed approaches in three different tasks: measuring semantic shifts,
document classification, and contrastive viewpoint summarization. Our aim is to answer
RQ4:

How can we use metadata information to measure semantic shifts? How
effective are the proposed approaches in quantifying the changes in word
meaning over various dimensions such as time and political context?

Our main contributions are: (1) We show that semantic shifts not only occur over
time, but also across different viewpoints in a short period of time. (2) We improve
the linear mapping approach [137] for detecting semantic shifts and propose a graph-
based method to measure the size of semantic shifts in the meanings of words. (3) We
employ word stability measures in contrastive viewpoint summarization and document
classification and extensively evaluate our proposed approach to these tasks. (4) Our
analysis shows that the two laws of semantic change proposed in [75] hold for semantic
shifts across viewpoints. Moreover, we introduce a new law of semantic change which
implies that concrete words are less likely to shift meaning while abstract words are
more likely to do so. (5) We make the evaluation dataset for detecting semantic shifts
and contrastive viewpoint summarization publicly available.1

1The datasets are available here: http://dx.doi.org/10.7910/DVN/BJN7ZI.
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5. Computing Semantic Shifts in Political and Media Discourse

5.2 Related Work

In this section, we review related studies from three perspectives: detecting semantic
shifts, methods for detecting ideology and approaches to viewpoint summarization.

5.2.1 Detecting semantic shifts

With the appearance of Word2Vec [136] and GloVe [154], unsupervised methods
have become increasingly popular as tools for generating a vector representation of
words. Notwithstanding the popularity of these vector representations, relatively few
studies have attempted to compare embeddings generated from different corpora. The
approaches closest to our approach are [75, 90]. Jatowt and Duh [90] create time-
stamped word representations per decade, and use these to monitor semantic fluctuations
over more than 400 years. Words are represented as high dimensional vectors in which
the values indicate how often a word co-occurs in the close vicinity of the target
word. Hamilton et al. [75] use orthogonal Procrustes to align embeddings learned for
different time-periods. They show that using a linear transformation is effective to find
semantic shifts over time. Moreover, based on their proposed method for measuring
semantic shifts over time, they propose two laws of semantic change, namely the law of
Conformity and the law of Innovation. Similar to these works, other studies also tried
to capture semantic shifts in the meaning of words over time [76, 82, 104, 110, 220]
and also in the meaning of loanwords [183].

An alternative to our embedding based approach would be to use a direct high-
dimensional representation of the co-occurring terms as in e.g., [90, 123], which retains
the dimensionality structure and allows a direct comparison across vector spaces. How-
ever, given that we want to detect semantic differences, it would be unrealistic to assume
that all the dimensions mean the same in both corpora.

Another relevant line of study is monitoring and tracking events and topics over time
[87, 126, 190]. These approaches are aimed at detecting a set of topics and monitoring
their change over time. Our approach is different from topic tracking methods as
we do not restrict ourself to monitoring a limited set of topics. For evaluating the
proposed approach, similar to previous work in detecting semantic shifts over time
[75, 76, 90, 104, 110], we select a small set of words whose meaning shifted and
evaluate how the proposed approach is successful in detecting them. In some other
studies [16, 191], distributional semantic approaches are combined with structural data
(WordNet and knowledge bases) to track lexical changes.

5.2.2 Ideology and political text classification

Besides monitoring changes in meaning, this study demonstrates how knowledge
about semantic shifts contributes to other tasks such as the classification of political
texts. Kusner et al. [111] applied word embeddings to calculate the distance between
documents and utilized these estimated distances for classifying documents. Their
results show that embedding-based approaches to document classification outperform
others such as LDA and LSI. Similar to previous work, we utilize word vectors for
text classification. Our task differs, however, since we employ multiple embeddings to

84



5.3. Measuring Word Stability

enhance classification performance.
We use political text to evaluate the proposed approaches. Previous approaches to

political text classification [51, 53, 55, 81] are largely limited to word counting—or
other units such as syntactic rules—thereby ignoring the adversarial semantics that
characterizes political discourse. Using word embeddings we attempt to capture this
‘macrocosmos’ of political ideas.

Our approach for document classification is to use word embeddings and expand
documents using extracted associations that are specific for each class. This kind of
document expansion helps in resolving the vocabulary mismatch issue and increasing
the discrimination between different classes. Using word embeddings was shown to be
very effective to boost the performance in document classification [97, 111, 214].

5.2.3 Cross-perspective opinion mining and summarization

Even though opinions can be extracted at the word, sentence, or document level [151],
they are usually represented as topics. Most of the current approaches rely on topic
models and jointly extract topic-opinion pairs from a set of unlabeled documents
[127, 134, 167]. They consider, however, only one point of view about topics. To
extract contrastive opinions about topics, previous research [64, 106, 186] proposed to
jointly extract topics and opinions coming from different viewpoints. Besides extracting
a polarity score of each viewpoint about topics, these approaches also summarize the
opinions about topics. Similarly, we also perform contrastive viewpoint summarization
and for each topic we estimate a score which expresses and summarizes differences
in word meaning. However, instead of opinions, we estimate and summarize the
diverging viewpoints on a concept. Viewpoints are different than opinions as they do
not necessarily carry sentiment information.

5.3 Measuring Word Stability

In this section, we describe our approach for measuring semantic stability of words.

5.3.1 Task overview

We define semantic word stability as the similarity of (a word’s) vector representation
across viewpoints. A viewpoint is defined as a set of texts that share a specific metadata
feature, for example texts generated by a social entity such as a political party. Words
whose meaning is independent of perspective will obtain a high stability score—for
example in a political context we expect conservatives and progressives to disagree
on the concept of ‘democracy’, but not on the semantics of the word ‘lettuce.’ More
formally, our method takes as input a word, and returns a number that expresses its
meaning stability across viewpoints.

To measure the semantic stability of words, we first use distributional semantics to
create a separate embedding space for each viewpoint. Then, using trained embeddings
we map each word to a vector in their respective viewpoint. Finally, we compare the
embeddings of each word in different embedding spaces. Our proposed approaches are
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5. Computing Semantic Shifts in Political and Media Discourse

applicable for words in the intersection of the vocabularies of two embeddings spaces.
In the reminder of this section, we use V 0 and V 1 to represent the created embedding
spaces for two viewpoints. V iw is the vector of word w in embedding space V i.

Because the embedding spaces are different and have different dimensionality struc-
tures, we cannot compare the vectors of a word in two different spaces directly. In this
study, we propose different approaches to address this issue. Below, we describe three
methods for comparing words in different vector spaces: linear mapping, neighbor-
based approach and, lastly a combination of the two.

5.3.2 Linear mapping
The application of linear transformation for translating vectors from one space to another
was first proposed by [75, 137]. In this approach, a set of words with their extracted
vectors in two embedding spaces are used to learn a mapping. Mikolov et al. [137]
start with a set of training words (mainly function words, whose meaning should be
stable irrespective of viewpoint or domain) in two embedding spaces. Using the training
samples, the goal is to learn a transformation matrix W ij from embedding space i to
embedding space j that minimizes the distance between the words and their mapped
versions. The transformation matrix is learned using the gradient descent algorithm.
The objective function is:

argmin
W ij

ÿ

wPX

∥∥∥∥W ijV iw ´ V
j
w

∥∥∥∥2, (5.1)

where X is the set of training words. We denote the transformation matrix from
embedding space V i to embedding space V j by W ij . We use a standard stopword list
with a few additional words added (very frequent words) to learn the transformation
matrix. As the meaning of these words should in theory be similar in both time periods,
they serve as fixed points in the mapping around which the words with varying meaning
are situated. The transformations are learned on a total of 813 words from the stop list.

‘Stability’ measure of a word w, is then expressed by the following measure:

slinpwq “
sim01pwq ` sim10pwq

2
, (5.2)

where sim01 and sim10 are calculated using the following equation:

simijpwq “ cospW jiW ijV iw, V
i
wq, (5.3)

where cos is the cosine similarity. The stability of a word using this measure equals to
the similarity of its vector to its mapped vector after applying the mapping back and
forth.

5.3.3 Neighbor-based approach
The second method for measuring word stability is based on the intuition behind graph-
based node similarity measures. The similarity of two nodes in a graph is determined
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5.3. Measuring Word Stability

Input: V 0: embedding space of viewpoint 0
Input: V 1: embedding space of viewpoint 1
Input: T : the number of iterations
Input: V: the intersection of the vocabularies of V 0 and V 1

Result: sTnei: a vector containing the stability of words
1 for w P V do
2 s0neipwq “ 1
3 end
4 for tÐ 1 to T do
5 for w P V do

6 simt
01pwq “

ř

w1PN1
w
cospV 0

w,V
0
w1
qst´1

nei pw
1
q

|N1
w|

7 simt
10pwq “

ř

w1PN0
w
cospV 1

w,V
1
w1
qst´1

nei pw
1
q

|N0
w|

8 stneipwq “
simt

01pwq`sim
t
10pwq

2
9 Min-Max normalize stnei to fall into [0,1] interval

10 end
11 end
Algorithm 1: The algorithm for computing Neighbor-based stability of words. N0

w is
the set of most similar words to w in embedding space V 0 based on cosine similarity
of words vectors.

by the similarity of their neighbors [91]. We consider each word in an embedding space
as a node and its neighbors are the closest nodes to it, measured by cosine similarity.
However, instead of one graph, we construct two graphs for two embeddings. For each
word, we calculate the similarity of its neighbors in two different graphs and use this
similarity as the stability of the word. This method assumes that words with similar
meaning have similar neighbors. Thus, we can calculate stability by quantifying the
extent to which words in different spaces still share neighbors.

Based on this assumption, we define an iterative method for calculating word
stability. The algorithm is described in Algorithm 1. We first suppose that all words
are stable and initialize s0neipwq “ 1 for all words. Secondly, depending on the depth
parameter t, this method also takes into account the “neighbor’s neighbor” etc. During
the first iteration, only direct neighbors contribute to the stability of words. At iteration
t “ k, the indirect neighbors accessible by k edges in the graph contribute to the
stability of words.

5.3.4 Combination: Co-occurrence of neighbors
and linear mapping

The third, and last, stability-metric combines the neighbor-based approach with linear
mapping. Each of these metrics provides different signals about the stability of a word:
the linear mapping is solely based on the mapped vectors of the word while the neighbor-
based approach is based on the vectors of neighbors and does not take into account the
vector of the word itself. Thus, we combine these metrics to achieve better stability
scores. This stability measure is based on the number of co-occurring neighbors and
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their similarity to the target word. The algorithm is described in Algorithm 2. For
each word w, the weights of its neighbors reflect their place (or index) in a ranked
list comprising the N most similar words to w. We define and combine two different
stability signals: (1) Ctijpwq represents the count of neighbors of word w in embedding
V i based on their index in the ranked list of neighbors of w in embedding V j . Ctijpwq
is defined based on the words that are neighbors of word w in both embedding spaces.
(2) simt

ijpwq is based on similarity of mapped vectors from embedding space V i to
embedding space V j and their vectors in space V j , for the words that are neighbors of
w in embeddings V i but not in embedding V j .

To give an example of how to compute Ctijpwq in Algorithm 2, consider the follow-
ing neighbor list:

N0
w “ rn1, n2, n3, n4, n5s

N1
w “ rn2, n4, n1, n5, n6s

Each neighbor in list N0
w is obtained (if possible) from list N1

w, along with the index.
The final count after the first iteration (C0

01pwq) then becomes: C0
01pwq “ 5 ˚ 4´ p2`

0 ` 1 ` 3q “ 14. Note that this summation contains four terms instead of five, as
neighbor n3 does not occur in list N1

w. Therefore, in order to be able to take neighbor
n3 into account when computing the agreement, the linear mapping is used to map
the vector of n3 to a vector representing it in V 1. Then, the cosine similarity from the
mapped vector to the target word vector is incorporated in calculating the stability value
of w (using sim0

01pwq). λ is defined as follows:

λ “

$

’

&

’

%

1, N0
w “ N1

w

0, Ct01 “ 0 and Ct10 “ 0

0.5, otherwise.
(5.4)

5.4 Experimental Setup

We evaluate the performance of our approach intrinsically by detecting semantic shifts
task (the details of this evaluation method is described in Section 5.4.3 and Section 5.5.1)
and extrinsically in the document classification and viewpoint summarization tasks (the
details of these evaluation methods are described in Section 5.4.4 and Section 5.5.2).
Recall that RQ4 is:

RQ4 How can we use metadata information to measure semantic shifts? How effective
are the proposed approaches in quantifying the changes in word meaning over
various dimensions such as time and political context?

We answer RQ4 by breaking it down into four research questions:

RQ4.1 How effective are the proposed approaches in quantifying changes in word
meaning over various dimensions such as time and political context?

RQ4.2 To what extent can these models improve performance on other tasks, such as
document classification?
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Input: V 0: embedding space of viewpoint 0
Input: V 1: embedding space of viewpoint 1
Input: T : the number of iterations
Input: V: the intersection of the vocabularies of V 0 and V 1

Input: λ: the combination parameter determined by Equation 5.4
Result: sTcom: a vector containing the stability of words

1 for w P V do
2 s0compwq “ 1
3 end
4 for tÐ 1 to T do
5 for w P V do
6 for i, jÐ t0, 1u ^i ‰ j do
7 Ctijpwq “ |N

i
w| ˆ |N

i
w XN

j
w| ´

ř

w1PNi
wXN

j
w

rankjpw
1
q

st´1
compw1q

8 simt
ijpwq “

ř

w1PtNi
wzN

j
wu

cospW ijV i
w1
,V j

wqs
t´1
compw

1
q

|Ni
wzN

j
w|

9 end
10 sneipwq “

Ct
01pwq`C

t
10pwq

2
řNw

i“1 i

11 slinpwq “
simt

01pwq`sim
t
10pwq

2
12 stcompwq “ λsneipwq ` p1´ λqslinpwq
13 Min-Max normalize stcom to fall into [0,1] interval
14 end
15 end
Algorithm 2: The algorithm for computing the stability of words based on com-
bination of neighbor-based and linear mapping approaches. |Nw| is the number
of neighbors considered (i.e., 100), and rankjpw1q is the rank that neighbor w1—
which is an element of Nipwq XNjpwq— has in the ranked list of neighbors of w in
embedding space V j .

RQ4.3 How do the proposed approaches perform in summarizing different viewpoints
expressed in two large corpora about different concepts?

RQ4.4 Do temporal laws of semantic change hold for shifts across viewpoints?

RQ4.1 is concerned with the quality of stability values estimated for words using
different approaches. To answer RQ4.1, we construct an evaluation set and evaluate the
accuracy of different approaches in measuring stability of words. In Section 5.5.1 the
results of the experiments regarding RQ4.1 are reported.

To answer RQ4.2, we use the stability values for document classification. We first
expand the documents using the stability values and employ the expanded documents
for classifying the speeches in the UK parliament to the parties. The details of this
experiment are described in Section 5.4.4 and the results are reported in Section 5.5.2.

To answer RQ4.3, we utilize the word stability values for contrastive viewpoint
summarization. We first generate the summary for a set of chosen words using different
methods and ask human annotators to assess the summaries. The details of the evaluation
process are described in Section 5.4.4. The results of experiments related to RQ4.3 are
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reported in Section 5.5.3
RQ4.4 is concerned with the validity of laws of semantic shifts, namely the law of

Conformity (implying that the rate of semantic change scales with an inverse power-law
of word frequency) and the law of Innovation (reflecting that the semantic change
rate of words is highly correlated with their polysemy) across viewpoint. To answer
RQ4.4, we analyze the correlation of semantic shifts with their frequency, polysemy,
and concreteness. The results of the experiments concerning RQ4.4 are described in
Section 5.5.4.

5.4.1 Datasets
To evaluate how effectively the methods described in Section 5.3 capture and summarize
semantic shifts, we run multiple experiments using data sourced from the New York
Times corpus2 and the digitized proceedings of the British House of Commons— also
referred to as the Hansard.3

Our corpus of political texts comprises the parliamentary and public speeches from
the Thatcher years. This period contains 640,184 speeches. Within the broader context
of British postwar politics, this era represents a break with the postwar Keynesian
consensus, and was accompanied by a hardening division between left and right. In this
work, we study how much the concepts in the Thatcher period have different meaning
from a ‘Conservative’ and ‘Labour’ point of view.

The New York Times dataset contains 1,855,671 articles published between 1987
and 2007. We study how the meanings of words shifted after 9/11 in this newspaper.
For example, as the terrorists involved in the 9/11 attacks were professors of Islam,
it could be of value to investigate whether this had any affect on how Islamic faith is
framed in media discourse. To do this, we divide the articles in the New York Times
dataset into two viewpoints, i.e., articles before and after 9/11. We consider these two
sets as two different viewpoints and study how the meaning of concepts are different
based on these two point of views.

5.4.2 Preprocessing and general setting
We use Word2Vec [136] to generate word embeddings. We apply the Skipgram archi-
tecture and remove words with less than 20 occurrences. We train an embedding with
300 dimensions with a window size of 10.

Linear mapping refers to the linear transformation method introduced in Sec-
tion 5.3.2. Neighbor-based method is the method introduced in Section 5.3.3 and
Combination is the method described in Section 5.3.4. In estimating stability values
using the Combination method, we set |N i

w| “ 100 which reflects that we only use top
100 closest words to each word for estimating the stability values. In Algorithm 1, for
each word w, we again use the top 100 closest word to each word for estimating the
stability values, however from this set we remove neighbors with similarity lower than
0.4 to w. For calculating stability values we set T “ 5 (the number of iterations of the
Neighbor-based method and the Combination method) since based on our experiments

2https://catalog.ldc.upenn.edu/LDC2008T19
3http://www.parliament.uk/business/publications/hansard/commons/
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Table 5.1: The selected concepts for evaluating the word stability measures in detecting semantic
shifts and summarizing viewpoints.

Detecting semantic shifts task (the UK parliament) Summarization task (the New York Times)
privatisation, unemployment, working class, islam, muslim, fundamentalism, radicalized
society, homosexual, fairness, public sector, wtc, terrorism, terrorist, terrorist attacks
justice, liberalism, communism, constitution, ground zero, hijacking, terrorist targets, security

free market, sovereignty, accountability, inequality, anti terrorism, anti americanism, 911, airport
moral, conservatism, profit morality,

tolerance, opponent, poor, bureaucracy, rich

after 5 iterations the stability values do not change considerably. The linear mappings
are created using the gradient descent algorithm with a maximum number of 50,000
iterations and a learning rate of 0.01. Before creating embedding spaces, we use the
method proposed in [138] to detect bigrams. We consider documents as a combination
of unigram and bigram terms.

5.4.3 Intrinsic evaluation

In this section, we describe the dataset we use for evaluating our approaches in detecting
semantic shifts.

Ground truth for semantic shifts Following previous work [75, 76, 90, 104, 110],
we create a small dataset to evaluate the performance of the proposed approaches.
Because we do not possess text-book definitions to evaluate our model—the meaning
of the words we study are contested by politicians and academics alike—we assess
whether the representations we extract tie in with the perceptions of experts. To validate
our method, and see how well we do in the replicating diverging interpretations on
political concepts, we choose 24 words which we know were central to many of the
controversies of the Thatcher era (1979–1990) and ask experts whether they could
recognize the viewpoint. The selected concepts are shown in Table 5.1.

The words we select for evaluation, reflect the prevalent debates of the Thatcher
period described in Section 5.4.1, and focus on issues such as economic reform, labour
disputes and equality. For each word we select their most similar words in embedding
spaces created using speeches give by Conservative and Labour members. Therefore,
for each word, we create two lists of similar words. From these lists we discard the
overlapping or shared items. These two lists of related terms are then anonymized—
meaning that we remove the party where the list stems from—and given to experts,
whom we asked if, when shown a concept like ‘democracy,’ they could identify which
list described the Conservative or Labour interpretation. There were 4 annotators who
were all political scientists and familiar with the political history of UK. None of the
authors participated in the annotation. All annotators annotated all 24 words. The
agreement between the annotators, based on Fleiss’ Kappa, is 0.47 (p-valueă0.001)
and the overall accuracy is 0.75, indicating that they were able to detect the correct
labels in most of the cases. Upon closer inspection, the low agreement may result from
the fact that the summaries send mixed signals. The concept ‘homosexuality’, which
was mislabelled by all respondents, is a good example. While the Labour party, at the
end of the eighties, was largely supportive of gay rights, the Conservatives took a more
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negative stance, which led to the infamous Section 28 of the Local Government Act
(1988). The phrase ‘promoting homosexuality’ was as a Labour feature, and could be
interpreted as reflecting a more positive opinion, but the same words also figured in the
conservative Act, albeit prefixed with ‘not’. In general, the summaries fail to capture
whether the associated words are in a synonymic or antonymic relation with the target
concept, which significantly complicated the interpretation.

5.4.4 Extrinsic evaluation

In this section, we describe the datasets and approaches used for evaluating the pro-
posed word stability measures in document classification and contrastive viewpoint
summarization tasks.

Document classification: methods and metrics

We evaluate our stability measures by employing them in the task of ideology detection.
The input in this task is a speech held in the UK parliament and the task is to determine
the party (the ideology) of the speaker. We train an SVM classifier on a collection of
speeches, categorized as either Labour or Conservative. We aim to optimize classifier
accuracy by expanding documents as follows: we want to amplify the fact that a speech
belongs to a certain class by adding for each unstable word in the speech its top n
most similar but unstable words in the embedding space belonging to this class. This
is reminiscent of the idea behind doc2vec [121], with the difference that we explicitly
change the document. Note that we only expand the documents in the training set,
not in the test set. This setup has two parameters. The first is the threshold θ which
categorizes all terms as either ‘stable’ or ‘unstable’ depending on their stability value.
We will optimize this parameter in our experiments using a development set. The second
parameter is the number of terms to add for each unstable word. As usual in expansion
setups adding too few and too much will lead to worse performance. The effect of n on
the performance of different classifiers is shown in Figure 5.5.

We discard speeches of less than 50 words and then randomly select 50,000 speeches
from the Thatcher period for each of the parties for performing classification. The mean
and median length of the selected speeches are 282 and 107 words, respectively.

We do 10-fold cross validation and report Precision, Recall, and F1 measures in
the classification task. We use 8 folds as training data, one fold as development set
to tune θ, and one fold for testing. For each document we construct a feature vector
using TF-IDF values. Each element of this vector corresponds to a word and its value is
TF-IDF weight of the word in the document normalized by the length of the document.
After expanding documents in the training set, we re-compute TF-IDF values for words.

As a baseline, we compare the performance against a different expansion method,
which inserts neighboring words calculated from an embedding trained on the whole
corpus excluding test documents. Since we do not have stability values for this method,
we expand all words in speeches using the general embedding. We refer to this method
as ‘SVM+General’ in Section 5.5. The general word embedding is trained on all
speeches from the Thatcher period. We compared ‘raw SVM’ to ‘SVM+General’ and
the latter performed better. Therefore, we take ‘SVM+General’ as our baseline.
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Contrastive Viewpoint summarization: dataset, methods, and metrics

In this section, we describe the evaluation set and our approach for evaluating word
stability measures in the contrastive viewpoint summarization task.

Contrastive viewpoint summarization We use the estimated stability values to
summarize viewpoints about concepts. The input is a concept w, the stability values
estimated using the approaches introduced in this section and the length of the summary
l. The output is two lists of summaries in which each list contains l words describing a
viewpoint about w.

To summarize a viewpoint V i about a given concept w, we take the top 100 most
similar words tow in embedding space V i. Then starting from the most similar neighbor,
the word is added to the summary if a neighbor is in the overlapping vocabulary of
the two embedding spaces and if the stability of the neighbor is equal to or below the
set threshold. This process is continued and l words are selected as the summary. As
the top 100 neighbors are ordered from highest similarity to lowest, the summaries
will follow the same trend. In this task, we set the length of the summary to 5 and the
number of iterations of the Neighbor-based method and the Combination method to one
(i.e. we only use direct neighbors).

Ground truth for viewpoint summarizarion The summaries produced using
the three summarization methods are assessed through peer evaluation. To make the
evaluation set, we use the New York Times dataset. We study which method best
summarizes the shift in meaning after 9/11. We select a total of 16 concepts, which
are chosen based on relevant literature. The selected concepts are shown in Table 5.1.
Summarisation questions consist of a concept and its accompanying summaries before
and after 9/11 for all three summarisation methods. For each concept, the question is as
follows: In your opinion, which of the summaries belong to the given concept ‘Before
9/11’ and which of the summaries belong to ‘After 9/11’? No specifications regarding
how many summarizations per category were given per concept, leading to a fairly
open evaluation. Questions were randomized per survey, as were the options for the
summarisation questions. Each summary was annotated by 10 people. The agreement
between the annotators, based on Fleiss’ Kappa, is 0.54 (p-valueă0.001). Before asking
annotators, we have the labels of the summaries (before 9/11 and after 9/11). A perfect
summary would be the one that is annotated by 10 people correctly. Therefore, the
number of times the label of a summary generated by a particular method is annotated
correctly shows the performance of the method in summarization task. In Section 5.5
we report the performance of different methods as the number of times the annotators
detected the labels correctly in terms of Precision, Recall, and F1 of the annotators on
the generated summaries.

We use the New York Times dataset instead of the parliamentary proceedings
from the Thatcher period for the summarization task. The reason is that it is more
straightforward for our annotators to assess whether the summary of a viewpoint about
a word belongs to before or after the 9/11 event, compared to assessing whether the
summary belongs to the Conservative or Labour party.
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5.4.5 Statistical significance
For statistical significance testing, we compare our methods to baselines using paired
two-tailed t-tests with Holm-Bonferroni correction for multiple hypothesis testing.
We set α (the desired significance) to 0.05. In Section 5.5, N and İ indicate that the
corresponding method performs significantly better and worse than the corresponding
baseline, respectively.

5.5 Results

In this section, following the four research questions described in Section 5.4, we report
the results of different word stability measures.

5.5.1 Results of word stability measures in detecting semantic
shifts

To answer RQ4.1, we use the dataset described in Section 5.4.3. This dataset contains
24 words which are expected to exhibit ideological divergence. The setup of this
experiment can be found in Section 5.4.3. We rank all words in the vocabulary based on
the reverse of their stability values (unstable words are ranked higher). A good stability
measure should rank the selected words higher. The average rank of the selected words
in the ranking created using the Combination method is 462. Based on a paired two-tail
t-test, this value is significantly lower than the one for the linear mapping method which
is 681. This shows that the proposed approach is effective in finding the words which
have different meanings in the UK parliament. Figure 5.2 shows the delta between
the rank of the selected words in the rankings created by the two other methods and
the Combination method. As can be seen, most of the words are ranked higher by the
Combination method compared to the other methods.

We run an additional analysis to see if our methods are robust with respect to
semantically stable words. Specifically, we assess if our approaches can detect words
that do not change when moving from one party to another. For comparison, we also
compute scores using speeches from the Blair period (1997–2007) and compare the tail
of the ranking with the tail of the ranking created on the speeches in the Thatcher period.
The main intuition is that if a word is stable, its meaning should not change over time
(across different periods of the parliament). Figure 5.3 shows the Jaccard similarity of
the tails of the two rankings for various tail sizes across all methods. By increasing the
size of the tail, more words are included and the intersection of the two lists and the
Jaccard similarities are increasing. As can be seen, the Combination method has higher
Jaccard similarity values in most of the cases. The Jaccard similarity of the tails when
we set the tail size to 5000 (the size of the intersection of ‘Labour’ and ‘Conservative’
vocabularies is about 50,000) for the Combination method is 0.83 which is a high value.
This value is 0.78 for the Neighbor-based approach and 0.75 for the linear mapping.

Table 5.2 shows the head and the tail of the rankings of words based on instability
values estimated for each of the used approaches. As can be seen, all approaches are
good in finding highly stable words (the tails), as the tails of the ranking contain very
general words which are expected to show little variation across viewpoints. However,
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Figure 5.2: The delta between the rank of the selected words in the rankings created by the linear
mapping method and the Combination method and the rankings created by the Neighbor-based
method and the Combination method.

the head of the list created by the linear mapping approach contains mostly words that
we did not expect to shift such as ‘north’ and ‘oil’. Unstable words in the Neighbor-
based method’s list such as ‘socialist’ and ‘democratic’ are expected to vary. This
method is effective in finding these words. However, there are words such as ‘noble’
and ‘space’ in top of this list. Based on our analysis, the Conservatives included more
aristocratic members (which are addressed as ‘noble’ Friend) while Labour MPs use
‘noble’ as a an adjective to reflect the quality. Also, Conservatives use the word ‘space’
when they refer to ‘space technology.’ However, Labour use the word ‘space’ to mostly
speak about ‘living space or urban space.’ Therefore, these two words do diverge and
the two parties use these words in different contexts to describe different concepts, but
the relationship with ideology is not always straightforward.

From the results presented here we conclude that the Combination method is highly
effective in detecting semantic shifts (as shown in Figure 5.2) and very robust with
respect to semantically stable words (as shown in Figure 5.2 and Table 5.2).
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Figure 5.3: Jaccard similarity of tails of the rankings created for the Thatcher and the Blair period
using linear mapping, Neighbor-based, and Combination methods.

5.5.2 Results of word stability measures in document classifica-
tion

To answer RQ4.2, we use the method described in Section 5.4.4 for expanding speeches
in the UK parliament during the Thatcher period and employ the expanded documents
for classifying speeches by party. The setup of this experiment can be found in Sec-
tion 5.4.4.

Table 5.3 shows the results of this experiment. In general, the results indicate that
the proposed word stability measures help in discriminating documents. Moreover, two
other observations can be made from the results. First, expanding documents, even with
a general embedding, can improve performance of the classifiers. Second, the Combina-
tion method performs better than the other approaches. The linear mapping approach
does not outperform the baseline. The higher accuracy of the Combination method
shows that, although the linear mapping approach does not improve the performance of
the classifier, when it is combined with the Neighbor-based method, the performance is
improved.

To gain additional insights about our approaches, we further analyze speeches that
are correctly classified by the Combination method but not by the “SVM+General”.
The following (part of a) speech is an example of such samples:

“...subsidise the residents of wasteful labour authorities. If we were to strip away
the surcharges and handouts, we would find that the labour party’s arithmetical
inexactitude is almost a case for reference to the advertising standards authority.
Having done that, we find that totally conservative areas have an average community
charge of 305 pound, compared with the rip-off in totally labour areas of 412 pound.
Opposition members may think that this is a laughing matter, but a differential of
no less than 107 pound per head for the privilege of voting labour has a devilish
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Table 5.2: The head and the tail of ranking of words achieved using different word stability
measures. For the Neighbor-based and the Combination methods the number of iterations is set
to 5.

Method Head Tail

Linear mapping

gas member
nuclear power tuesday

north thursday
oil thank

church nothing

Neighbor-based

noble wednesday
socialist friday
illegal monday

democratic tuesday
space december

Combination

legislative about
inequality tuesday

private enterprise side
noble nothing

democratic thursday

Table 5.3: Results of classification of speeches to parties using different word stability measures.
We consider SVM+General as our baseline.

Method Precision Recall F1
SVM 0.781 0.718 0.758
SVM+General 0.793 0.735 0.763
SVM+Linear mapping 0.804N 0.738 0.770
SVM+Neighbor-based 0.823N 0.768N 0.795N

SVM+Combination 0.839N 0.775N 0.806N

impact on the charge payers of those areas.”

This speech was given by a member of the Conservative party. However, it is mostly
about the Labour party since it mentions the ‘Labour’ party more than 4 times. ‘Labour’
is a very discriminative word for Labour party and that is the main reason that this
speech is classified in the Labour class. However, when we expand documents in the
training step with words the Conservatives characteristically use to describe Labour
members, the different sense of the word becomes apparent. Thus, in the example
mentioned above, the words such as ‘subsidize’, ‘wasteful’ and ‘inexactitude’ will help
more to classifying this example correctly.

Moreover, we analyze the speeches that are classified correctly by ‘SVM+General’
and incorrectly using the stability measure. Our analysis show that most of these
speeches are very short ones that do not contain any information about the author’s
viewpoint. When we filter out documents with less than 200 words length, the F1 score
of ‘SVM+General’ is increased to 0.79 and the F1 score of the Combination method is
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Figure 5.4: The accuracy of the Combination method in classifying the speeches in the Thatcher
period for different levels of expansion. %i in x-axis is representing the documents that %i of
their words are unstable.

0.85 and the improvement of the Combination method is more than the improvement of
‘SVM+General’. Another source of error is inaccurate stability values for words. This
causes the expansion of documents with wrong words and lowers the accuracy of the
classifier. Figure 5.4 shows the accuracy achieved for different levels of stability values.
We first calculate the percentage of unstable words (words for which their stability
calculated using the Combination method is less than θ) in documents. Then, we put the
documents into different bins based on their percentage of unstable words and calculate
the accuracy of the classifier for each bin. We only show the bins containing more than
1000 documents. For the highly unstable documents the accuracy is the lowest. This
is mostly due to extreme expansion of these documents (since their words have low
stability values) which are not accurate enough in most of the cases. The accuracy is
higher when the stability value does not skew towards one of the extremes.

5.5.3 Results of word stability approaches in contrastive view-
point summarization

This section answers RQ4.3. We use different word stability measures and the method
described in Section 5.4.4 to generate summaries for words. The setup of this exper-
iment can be found in Section 5.4.4. To evaluate the performance of our methods in
summarizing the viewpoints, we use the dataset described in Section 5.4.4 and report
results in Table 5.4. In general, the performance of the Combination method is slightly
better than the linear mapping approach. However, the difference is not statistically
significant. The F1 score achieved using the Combination method is 0.75 which is rea-
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Table 5.4: Results of different word stability measures in summarizing the viewpoints.

Method Precision Recall F1
Linear mapping 0.74 0.74 0.74
Neighbor-based 0.66 0.64 0.65
Combination 0.75 0.74 0.75

sonably good and indicates that the annotators were able to detect the viewpoints using
the provided summaries. The results show that the linear mapping method performs
better than the Neighbor-based approach in the summarization task. This result is in
contrast with the results achieved in the classification task. The summarization task
is done on the New York Times dataset, while the classification task is performed on
the UK parliamentary proceedings. In the parliamentary proceedings, the viewpoints
are more apparent as neighbors of a given word generally serve as reliable descriptors
of the viewpoint. Therefore, the Neighbor-based approach which is solely based on
the similarity of the neighbors in two spaces performs better than the linear mapping
method in the classification task.

5.5.4 Statistical laws of semantic change

In this section,we answer RQ4.4. Recently, Hamilton et al. [75] proposed two quan-
titative laws of semantic change: (1) the law of Conformity which implies that “the
rate of semantic change scales with an inverse power-law of word frequency”. (2)
the law of Innovation which reflects that “the semantic change rate of words is highly
correlated with their polysemy”. To test if, besides accounting for change over time,
these laws also help explain semantic shifts across ideological perspectives, we used
the UK parliamentary proceedings from the Thatcher period. To check the first law, we
construct two vectors (each entry in these vectors corresponds to a word and the length
of the vectors is equal to the size of the intersection of vocabularies of Labour and
Conservative parties): one using the frequency of words and one using their instability
(1´ stability). Then, we calculate the Pearson correlation between these vectors. To
check the second law, again we construct two vectors in a similar way: one using the
polysemy of words (we use WordNet to calculate the number of senses of words to
quantify their polysemy) and one using the instability of words.

The Pearson correlation values are shown in Table 5.5. The results show that: first,
the law of conformity strongly holds using all measures. This becomes even more
apparent when we use the linear mapping method. This is expected since we use highly
frequent words for training the mappings. Second, the law of innovation does not
strongly hold using all measures. We hypothesize that this is because even when parties
use a word with low polysemy, they inject it with diverging meanings for example by
using different sentiment words to express their opinion about the word.

Moreover, we hypothesize that lexically different word senses are unlikely to appear
in a short period, or in (still very similar) the political data we use. Thus, there are likely
other, deeper causes such as concreteness of words. We study how the semantic change
rate is correlated with the concreteness of words. Again, we construct two vectors: one
using the concreteness of words and one using their instability. We use a dataset [31]
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containing the concreteness rating of words for constructing the concreteness vector.
The results are shown in Table 5.5. The result indicate that there is a negative correlation
between concreteness and instability and concrete words are less likely to shift. In fact,
more abstract words are more likely to shift.

Table 5.5: The Pearson correlation between the instability of words with their frequency,
polysemy, and concreteness.

Measure Conformity Innovation Concreteness
Linear mapping -0.63 0.11 -0.31
Neighbor-based -0.42 0.18 -0.34
Combination -0.51 0.22 -0.39

5.5.5 Analysis

In this section, we analyze the quality of the trained mappings between the embedding
spaces and measure the effect of the word-expansion on the classifier’s accuracy.

Quality of linear mappings

To measure the quality of the created mappings, we report the average value estimated
using Equation 5.3 over all words in the vocabulary. Table 5.6 shows the results of this
experiment. The average similarity calculated using one-way mapping (simijpwq “
cospW ijV iw, V

j
wq) is low, meaning that when words are mapped from one space to the

other, they are not close to the same word in the destination space. However, when we
use Equation 5.3, the average similarity value is high indicating that when going back
to the same space, the word is mapped to its original vector. This shows that a low value
of similarity for the one-way mapping is mainly due to instability of words for which
their location in two spaces (and hence their meaning) are different based on different
viewpoints.

Table 5.6: Average cosine similarities of words after linear mappings on the UK parliamentary
proceedings in the Thatcher period and the New York Times datasets. i and j are the source and
destination spaces of the mappings. Con and Lab are Conservative and Labour. Before and after
are embeddings created for before 9/11 and after 9/11.

Dataset Setting cospW ijV iw, V
j
wq cospW jiW ijV iw, V

i
wq

UK i “ Con, j “ Lab 0.43 0.84
i “ Lab, j “ Con 0.43 0.85

NY Times i “ before, j “ after 0.49 0.85
i “ after, j “ before 0.48 0.87
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Figure 5.5: The effect of the number of expansion words on the F1 score of speech to party
classification using different word stability measures. n is the number of expansion words.

Parameter analysis

In this section, we analyze the effect of the number of expansion words on the effec-
tiveness of word stability approaches in the document classification task. Figure 5.5
shows the F1 scores achieved using different methods based on different number of
expansion words. For 1 ă n ă 3, the F1 score for all approaches is increased by
increasing n. Moreover, for the Combination method even adding 5 expansion words
boosts the performance of the classifier. This shows that adding more unstable words
to documents can help in discriminating documents belonging to different parties. For
n ą 5, adding more words decreases the performance of the classifiers for all methods
and the performance of all approaches are almost the same for n “ 20. This result
indicates that by adding more than a certain number of words, the expanded documents
become more and more similar, regardless of the measure used.

5.6 Conclusion

We introduced a general framework for computing semantic shifts by using word
embeddings trained on corpora that (are presumed to) represent specific viewpoints. We
proposed several methods that compare words across these vector spaces–with their
different dimensionality structures–and have demonstrated how these algorithms capture
valuable changes in word meaning. We evaluated the results on political speeches and
media reports. In doing so, we have shown that the techniques developed here adequately
detect words that exhibit ideologically or chronologically diverging sense, and can be
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applied to different types of discourse. We showed that semantic shifts not only occur
over time but also across viewpoints.

Our results demonstrated that the proposed word stability measures contribute to
other tasks such as contrastive viewpoint summarization, which generates summaries
that explicate the diverging viewpoints, and document classification. Moreover, we
showed that temporal laws of change also apply to other dimensions. Our results
demonstrated that the law of conformity strongly predicts the (in)stability of words,
while the law of innovation only has a minimal effect. This indicates that the meaning of
frequent words do not shift across viewpoints, while even the meaning of words with low
polysemy values can shift. Furthermore, we proposed another law for semantic shifts
which implies that more concrete words are insensitive to the viewpoint of speaker.

To the best of our knowledge, this study is the first attempt to detect semantic shifts
across viewpoints. We hope that the created datasets and proposed approaches will be
beneficial to future research in this area.

The estimated stability measures can be useful in various applications. As shown
in this research, it can be used for summarizing diverging viewpoints and document
classification. The generated summaries can be used in an exploratory search scenario
to uncover diverging aspects of a given topic. In this study, we only focused on detecting
shifts in political and media discourse, but our approaches are applicable in any other
kind of discourse such as different groups in social media.

Future work will focus on broadening the set of applications, by, for example,
examining how our approach contributes to controversy detection and locating people in
the “filter bubble.” If the language use of the specific group exhibits radically divergent
word meanings, then they might be in the filter bubble and word stability can be used to
quantify this.

In this chapter, we studied how metadata features can be helpful in an exploratory
search task. Next, we will focus on a different exploratory search task and study how
structure and metadata can be useful in finding similar questions in community question
answering forums.
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6
Learning Question Representations for

Question Retrieval using Content,
Structure and Attention

In this chapter, as the second case study, we focus on the task of similar question
retrieval in community questions answering forums. We study how the structure and
metadata associated with questions on these forums can be helpful in estimating the
similarity of questions and answer our research question RQ5.

6.1 Introduction

Community Question Answering (cQA) sites such as Stack Exchange and Yahoo!
Answers have become key platforms for exchanging knowledge [46, 142, 225, 231].
Users can post questions on different topics and receive high quality answers from
experts. On cQA sites, knowledge is captured in the form of questions from questioners
and the associated answers contributed by answerers. Questions and answers on cQA
sites are typically highly structured and contain different data fields such as question
title, body, category information, answer scores (upvotes) given by users, best answer
information, publication dates of questions and answers, etc.

The task of finding questions that are relevant to a newly posted question is called
question retrieval. Here, a question is relevant to a newly posted question if they have
a similar meaning and they are about a similar information need. The task matters
for a number of reasons. It can help to detect duplicate questions, i.e., questions that
are duplicates of questions that have already been answered on the cQA platform,
and thereby help reduce answerer effort [142, 178]. And it can help address question
starvation [46, 142, 152], which occurs when a new question is posted and there is no
immediate answer provided by answerers for it: if there is an already answered relevant
question, the answers to this question may provide an answer to the new question.

The main focus of this study is on question retrieval on cQA sites. This task is
challenging for two main reasons. The first has been well studied; it is the vocabulary
gap [46, 152, 225, 231]: the phenomenon that different users express the same question

This chapter was published as [11].
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using different words. The second problem has been less well studied; it is what we call
expressive inefficiency, the phenomenon that users do not explain their questions with
enough details.

Previous approaches to question retrieval have met with mixed success in addressing
the two challenges, the vocabulary gap and expressive inefficiency. One category of
question retrieval methods consists of traditional lexical matching methods [96, 139,
211, 229]. These approaches suffer from the vocabulary gap. Semantic matching models
try to overcome the vocabulary gap by modeling the semantics of questions [142, 152].
Topic model-based approaches try to bridge the vocabulary gap by modeling topical
similarity of questions [32, 93]. And recently, neural network-based approaches have
been used to learn semantic representations of questions that can be used to estimate the
similarity of questions [46, 122, 142, 149, 231]. These approaches achieve state-of-the-
art performance on the question retrieval task [142]. To address expressive inefficiency
previous work has tried to use question-answer pairs instead of question-question pairs
to learn a semantic matching model [46]. The idea is that since answers contain more
information and details about the questions they are answering, learning a retrieval
model based on answers can help overcome expressive inefficiency.

Most neural network-based question matching models only use the title of questions
for learning representations of questions, neglecting other valuable information such as
answers given to questions and tags associated with questions. When a new question
is posted, it usually contains a title, a body, and tags associated with it. However, for
existing questions much more information is available such as answers, comments and
scores. Our working hypothesis is that such information and structure can be used to
address both the vocabulary gap (in a better way than semantic matching models that
only use the title or body of questions) and expressive inefficiency challenges. It is
not straightforward to use multiple data fields in a unified way, de-noise the fields, and
match questions based on the representations achieved from the de-noised fields.

In this work, we propose a neural method for question retrieval that is effective in
addressing both the vocabulary gap and expressive inefficiency. Our proposed method
addresses the vocabulary gap by using the rich set of information available on cQA
platforms, not just the titles of questions, like most work which also tries to address the
the vocabulary gap before this study, but also the structure and data fields associated
with questions, such as tags and best answer information. Our proposed method
addresses expressive inefficiency by using a novel multi-context attention mechanism
that allows it to use different fields of questions differently, weight them, de-noise
their representations, and select the most relevant fields to be matched against indexed
questions and answers.

More specifically, we propose a neural architecture, called Question Retrieval using
Content, Structure and Attention (CSA), that first learns different representations for
different fields of a newly posted question Qq . For textual fields such as a question’s
title and body, we take a hierarchical approach. We first divide the input into sentences
and create representations of sentences by taking the average of embeddings of their
words. Then, we consider each textual field as a sequence of sentences. We use a
bi-directional RNN to produce the representation of each field using the representations
of its sentences. We treat tags as sequences of words and use a bi-directional RNN to
produce a representation of tags. For indexed questions Qc (including their answers and
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tags), we use a similar approach. We learn representations of textual fields by taking
the average of words in sentences and considering the input as a sequence of sentences.
After learning representations for different fields of questions, we use the representations
learned for Qq as a context and employ a multi-context attention mechanism to weight
different fields of Qc . Finally, we use the weighted representation of Qc to predict the
relevance label of Qc .

Our main goal in this study is to find out how we can use multiple data fields
associated with questions to find relevant questions to a newly posted question on
cQA sites and how different data fields can be incorporated to retrieve questions more
accurately. To this end, we address RQ5:

Does using the rich data and structure available on question answering forums
lead to a better score than the state of the art on the task of question retrieval?

We evaluate the proposed approach, CSA, using a Stack Overflow dataset1 to train the
model and select a subset of this dataset for evaluation. To the best of our knowledge,
this is the only large and publicly available dataset in which questions have multiple
fields and in which there are enough labeled samples. Most existing datasets, such as
the Yahoo! Answers and SemEval [142] datasets, have tags and answers associated
with questions. However, these datasets have a very small set of labeled data (pairs
of questions with relevance labels), making it hard to use them to train an effective
state-of-the-art neural model that exploits multiple fields.

Our main contributions are: (1) Question Retrieval using Content, Structure and At-
tention (CSA), a model that automatically learns representations of questions submitted
to cQA sites based on different fields and structure associated with them. Most existing
question retrieval methods only use the question text and best answer. CSA jointly
models and uses multiple data fields associated with questions. (2) A multi-context
attention mechanism that can use multiple signals to weight different fields of questions.
Most of the fields associated with questions provide valuable information to retrieve
questions. We perform extensive analyses to assess the importance of different fields of
questions for learning the question representations.

6.2 Problem Definition

Given a question Qq and an archive of previously submitted (and answered) questions,
we need to rank all archived questions according to their relevance to Qq . An archived
question is said to be relevant to the new question Qq if both are about the same topic
and seek answers to similar information needs. More precisely, the input in the question
retrieval task is a question Qq and a set of archived questions Arch “ tQ1

c , Q
2
c , . . .u.

The output is a ranking of questions in Arch based on their relevance to Qq .
We assume that questions have multiple fields. Each question is represented as

a vector consisting of four fields: title, body, tags, and best answer. For Qq the best
answer field is empty. For archived questions, the best answer field is assumed to be

1The Stack Overflow dataset can be obtained from https://archive.org/download/

stackexchange. We use the following files: stackoverflow.com-Comments, stackoverflow.com-PostHistory,
stackoverflow.com-PostLinks, stackoverflow.com-Posts, and stackoverflow.com-Tags.
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non-empty. We use these specific fields since they are available in almost every cQA
platforms and our goal is to make the model broadly applicable. Each textual field
(title, body, and best answer) is represented as a sequence of words (unigrams) within
sequences of sentences. Tags are represented as sequences of unigrams.

In order to rank questions in Arch, we take a point-wise approach and first estimate
the similarity of each question in Arch to Qq independently and then rank the questions
based on the similarity scores. Our proposed neural network has two inputs: Qq and
Qic (a question from Arch) and an output: a similarity score.

6.3 CSA: Question Retrieval using Content, Structure
and Attention

We first introduce the architecture of the proposed neural network. Then, we describe
the details of our input representation, employed attention mechanism, and the training
objective.

6.3.1 Model overview

The setting is as follows. We are given a question Qq, the query question, for which n
data fields, like title, body text, and associated tags are available, i.e., tfq1 , f

q
2 , . . . , f

q
nu,

and a set of candidate question, tQ1
c , Q

2
c , . . .u, each of which have m data fields like

title, body text, associated tags, and best answer, i.e., tf c1 , f
c
2 , . . . , f

c
mu.

2 Our task
is to rank the candidate queries based on their probability of relevance to the query
question. Our proposed model takes all the data fields of the query question and the
data fields associated with one of the candidate questions and predicts the probability of
the candidate question to be relevant to the query question. See Figure 6.1. The model
contains three major building blocks:

Input representation module that provides a set of functions for encoding different
data fields of the input, either from the query question or candidate question, each to a
dense vector xqi or xci P Rd. For simplicity, we assume that d is the dimension of the
representation vector of all data fields. These functions are defined to encode different
types of the data field with different properties. See Section 6.3.3.

Multi-context attention module where an attention mechanism is employed to address
the expressive inefficiency problem by weighting and exploiting the representation of
data fields of the candidate question, i.e., txciu

m
i“1, given the representation of different

data fields of the query question, i.e., txqi u
n
i“1. The output of this module is two

vectors: sc P Rd and sq P Rd, which can be considered as the aggregated de-noised
representations of the candidate question and the aggregated representation of the query
question, respectively. See Section 6.3.2.

2To simplify our notation, we drop the index of the candidate from its fields’ notation as the proposed
model is a point-wise model, dealing with a single candidate at a time.
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Figure 6.1: General schema of the proposed model, CSA.

Output module The output module captures the interaction between the query question
representation, sq, and the candidate question representation, sc, that are provided by
the previous module and predicts the probability of their relevance ŷ. See Section 6.3.4.

Below, we first define the multi-context attention unit, and then we explain the input
representation and output modules and how these modules are connected to each other.

6.3.2 Multi-context attention

We hypothesize that using multiple data fields for the candidate question can address
the expressive inefficiency problem. It is not straightforward to aggregate all fields in
a unified way, in particular for learning an effective representation for the (archived)
candidate question Qc. To tackle this problem, we propose an attention mechanism
to dynamically aggregate information from different data fields of Qc, with respect to
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Figure 6.2: Example of attention distribution given different contexts. In the top half of the figure,
a query question with three fields is shown. The red color indicates which field of the query
questions is used as the context vector. In the bottom half of the figure, a candidate question with
four fields is shown. The blue color shows, for the corresponding context vector, the distribution
of attention weights on the fields of candidate question.

the given data fields of query question Qq. The original attention function [192, 204]
can be described as mapping a context (also known as query) and a set of key-value
vector pairs to an output vector, where the output vector is supposed to be an effective
“summary” of the values focusing on information linked to the given context. In our
setting, we have multiple contexts and we propose an attention mechanism to learn a
de-noised representation for candidate questions. The output is computed as a weighted
sum of the values, and the weights assigned to different values (attention distribution),
are computed by a compatibility function of the context vector with the corresponding
key vectors.

For simplicity, we assume that each vector xci serves both as the key to compute the
attention vector over data fields of candidate questions Qc and as the value to encode
the representation of the i-th field of the candidate question. However, in our setup, we
have multiple context vectors, i.e., data fields of Qq , and each might lead to a different
attention distribution. Figure 6.2 shows a heat map representing the distribution of
attention given different contexts for a real example. As can be seen, given the title
of the query question as the context vector, the compatibility function assigns a high
weight to the value vector representing the body text of the candidate question. The
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value vector representing the tags associated with the candidate gets the highest weight
in the attention distribution when the vector representing tags of the query question is
considered as the context vector.

To capture the importance of different value vectors given multiple context vectors,
we propose a multi-context attention mechanism. Multi-context attention consists of n
attention functions, each taking xqi P Rd, i.e., the vector representing the i-th data field
of the query question as the context vector to estimate the contribution of each value
vector to a final local summary vector si. Given Xc “ rxc1, x

c
2, . . . , x

c
ms P Rdˆm as the

concatenation of all value vectors, we compute the local summary vector sci as follows:

Zi “ tanhpWWW pcqXc ` pWWW pqqxqi q111
T q P Rdˆm

αi “ softmaxpwwwTZiq P R1ˆm

sci “ XcαTi P Rd,

where 111 P Rm is a vector of ones, WWW pqq,WWW pcq P Rmˆm are trainable projection
matrices, andwww P Rm is a trainable vector.

The final summary of the candidate question, denoted by sc P Rd, is generated by an
aggregation function, a feed-forward layer to compute a non-linear combination of all
the local summaries. Assuming Sc “ rsc1 : sc2 : . . . : scns P Rdnˆ1 is the concatenation
of all local summaries generated by all the attention functions, we have:

sc “ tanhpWWW pI1qSc ` bbbpI1qq P Rd,

where WWW pI1q P Rdˆdn and bbbpI1q P Rd are a trainable projection matrix and bias,
respectively.

Similarly, having Xq “ rxq1 : xq2 : . . . : xqns P Rdnˆ1 as the concatenation of all
context vectors, we apply a similar aggregation function to generate a summary vector
for the query question:

sq “ tanhpWWW pI2qXq ` bbbp2qq P Rd,

whereWWW pI2q P Rdˆdn and bbbpI2q P Rd again are a trainable projection matrix and bias,
respectively.

6.3.3 Input representation

The input representation layer of CSA consists of a set of encoding functions that are in
charge of mapping data fields, both from the query question and the candidate question
to a set of dense vectors with dimension d. Defining these encoding functions depends
on the type and properties of the available data fields. We assume that we have a title,
a body text, and a sequence of tags for the query question and a title, a body text, a
sequence of tags, and the text of the best answer for the candidate question.

With respect to the properties of these data fields, we have tried different encoding
functions and ended up with two main functions ϕspT q and ϕlpT q, where the first one
is for encoding short sequences of words and the second one is specialized for encoding
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Figure 6.3: Architectures of encoding functions in the input representation module.

longer sequences of words.3 In both, we first have a trainable embedding layer that
maps words into vectors of dimension d. Let us now explain these two functions.

In CSA, ϕspT q is simply a bidirectional recurrent neural network (RNN) that
reads the input sequence T “ rt1, t2, . . . , tks in the left-to-right direction in the RNN
forward pass. It creates sequences of hidden states, rÝÑh 1,

ÝÑ
h 2, . . . ,

ÝÑ
h ks, where ÝÑh i “

RNNpti,
ÝÑ
h i´1q is a dynamic function for which we can use, for example, an LSTM [83]

or a GRU [38]. The RNN backward pass reads T in the reverse direction, i.e., ÐÝh i “
RNNpxi,

ÐÝ
h i`1q, resulting in a sequence of hidden states rÐÝh k,

ÐÝ
h k´1, . . . ,

ÐÝ
h 1s.

We take the concatenation of the last hidden state of the forward pass and the first
hidden state of the backward pass of the RRN, i.e., ϕspT q “ r

ÝÑ
h k;

ÐÝ
h 1s, as the final

3We use tokens and words interchangeably to represent unigrams.
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representation for the given data field (see Figure 6.3a).
To learn a representation for longer sequences, similar to [103, 215] we take a

hierarchical approach. We define another encoding function, ϕlpT q, in which first we
extract sentences from the input text and represent the input as a sequence of sentences,
and then, considering each sentence as a bag of words, we average word vectors to
compute sentence vectors. We consider these sentence vectors as a sequence of tokens
and use a bidirectional RNN (similar to the one we employed in ϕspT q) to encode the
given data field to a vector (see Figure 6.3b). We encode tags with ϕspfq and the other
data fields with ϕlpfq. Although titles are usually short, we choose to encode titles
using ϕlpfq as based on our experiments there are some quite long titles which are hard
to encode using ϕspfq. Tags associated with a question are treated as a sequence, and
not as a set, of tokens, to be able to capture the order of tags in the representation. Our
hypothesis is that when choosing tags, users pick the most important tags first and there
is an implicit order between chosen tags. We try to model this order using an RNN.

6.3.4 Output module

The output module of CSA, which is in charge of capturing the interaction between
query and candidate question, is a feed-forward layer with tanh non-linearity, followed
by a sigmoid. It receives the summary vectors of the query question and the candidate
question and predicts the probability of them being similar:

O “ tanhpWWW pOqrsq : scs ` bbbpOqq P R2d

ŷ “ sigmoidpwwwTOq P R,

whereWWW pOq P R2dˆ2d and bbbpOq P R2d are a trainable projection matrix and bias, and
www P R2d is a trainable vector.

6.3.5 Training objective

We train CSA in an end-to-end training process in which, given mini-batches of data
xQq, Qc, yy, we first predict ŷ as the estimated probability of the candidate question
being relevant to the query question and calculate the loss using the cross entropy loss:

LpQq, Qcq “ ´y log ŷ ´ p1´ yq logp1´ ŷq. (6.1)

6.4 Experimental Setup

We aim to understand how we can use all information associated with questions to find
relevant questions to a newly posted question in cQA forums and how different data
fields can be incorporated to retrieve questions more accurately. To this end, we answer
our fifth research question:

RQ5 Does using the rich data and structure available on question answering forums
lead to a better score than the state of the art on the task of question retrieval?
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RQ5 is concerned with the impact of using different data fields and the structure
associated with questions on the performance of question retrieval methods. To answer
this question, we use a Stack Overflow dataset to evaluate the performance of CSA
and compare it to the performance of the state-of-the-art for the question retrieval
task. Moreover, to gain additional insights on how CSA and multi-context attention
mechanism work, we perform several analyses and answer the following research
questions:

RQ5.1 Does the attention mechanism help to retrieve relevant questions more accu-
rately?

RQ5.2 What are the most informative components of questions for estimating the
similarity of questions?

RQ5.3 Is it beneficial to combine CSA with previous approaches?

To answer RQ5.1, we study the effect of using an attention mechanism in question
retrieval. We compare the performance of CSA to a variation of it without the attention
mechanism.

RQ5.2 concerns the effectiveness of the proposed attention mechanism in the
question retrieval task. To answer RQ5.2, we analyze the weights given to different
parts of questions by the attention mechanism.

RQ5.3 is concerned with the impact of combining different question retrieval
methods on the performance on the question retrieval task. To answer RQ5.3, we
consider the similarity scores estimated for pairs of questions by different methods as
features, use a learning to rank method to combine them, and compare its performance
to each individual method.

6.4.1 Datasets
To train and evaluate the models proposed in Section 6.3, we use a Stack Overflow
dataset (see footnote 1). This dataset contains programming related questions and
answers and metadata associated with them. Information about duplicate/near-duplicate
questions identified by users is also included in this dataset. To the best of our knowledge,
this dataset is the only large and publicly available dataset in which questions have
multiple fields. Although other datasets also have tags and answers associated with
questions, they are relatively small and creating a neural model that exploits multiple
fields is hard using these datasets.

We use pairs of questions labeled as “duplicate” and “near-duplicate” as positive
samples. Users usually specify very relevant but not duplicate questions as “possible
duplicates” in the comments. We extract “possible duplicate” questions from the dataset
and consider them to be positive samples as well. As negative samples we select 500K
questions and randomly select 1.5 million pairs of them. Table 6.1 contains the statistics
of the dataset. We use title, body, and tags associated with questions together with
their best answer for training CSA. In Stack Overflow terminology, the best answer
for a question corresponds to the accepted answer by the questioner for the question.
On the selected subset of Stack Overflow for training, the mean, median, and standard
deviation of the length of the title of questions are 8, 8, and 4 words, respectively. The
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Table 6.1: Statistics of the subset of the Stack Overflow dataset used for training models.

Label Number of samples
Duplicate 515,051
Possible duplicate 376,201
Non-relevant 1,500,000

mean, median, and standard deviation of the length of the body of questions are 120, 92,
and 112 words, respectively. For the length of answers, the mean, median, and standard
deviation are 83, 58, and 91 words, respectively.

For evaluation, we select 1,000 questions that have at least three duplicate questions.
For each question Q in this set, we consider its duplicates to be relevant questions.
Moreover, as non-relevant questions, for each question Q, we randomly pick 20 ques-
tions from the selected subset of the Stack Overflow dataset: 10 questions that share
at least one tag with Q and 10 questions without a common tag with Q. We evaluate
different question retrieval methods on this dataset.

6.4.2 Pre-processing

We remove stopwords included in the standard stop word list from Python’s NLTK
package. We remove all HTML tags from textual fields. We consider each line of
code as a separate sentence and do standard tokenization to extract tokens from them.
For splitting sentences, we use NLTK’s sentence tokenizer. We remove the 100 most
frequent words in the collection and words with fewer than 5 occurrences. We do
standard tokenization and apply the Porter stemmer to questions, answers, and tags.

6.4.3 Model parameters

We train a word2vec model on the Stack Overflow dataset. We use questions, their
best answers, and tags for training the word2vec model. We apply the Skipgram
architecture and remove words with fewer than 20 occurrences. We train an embedding
with dimension 300 with a window size of 10. We use the trained embedding for
creating word representations used in CSA. We set the number of hidden layers of the
LSTM (forward and backward) model to 128. We set the initial learning rate to 10´3.
The batch size is set to 64. Training consists of 10 epochs. The size of the question
embeddings (the first fully connected layer) is 64.

6.4.4 Baselines

We compare CSA to five baselines. We chose a question retrieval method that achieves
state-of-the-art results [46] in this task; this method also addresses both the vocabulary
gap and expressive inefficiency. We use some conventional lexical matching methods,
some semantic matching models, and a learning to rank model that uses all fields of
questions and the structure for matching as baselines.
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Lexical matching. This baseline is based on the similarity of language models of
questions. We construct language models of archived questions using their title, body,
best answer, and tags. For query questions, we build language models using their
title, body, and tags. The language models are estimated using maximum likelihood
estimation and Jelinek-Mercer smoothing. We compute the similarity of language
models of questions using KL-divergence.

Word2vec. We use the trained word2vec model and average embeddings of question
words (body and title) and use it as their representation. Each question is represented
as the weighted average of the embeddings of the words occurring in its title and body.
Cosine is the used similarity measure.

Learning to rank. We extract a set of features for pairs of questions in the training
set and build a Learning to Rank (LTR) model using them. We use LambdaMart to
create a ranking model. To create training data we randomly select 1,000 questions
that have at least two duplicate questions. For a question q in this set, we consider
the duplicates of q to be relevant questions. Moreover, as non-relevant questions, for
each query question q, we select 10 questions randomly from non-duplicate questions
that share at least one tag with q and 10 questions that share no tag with q. We take
different parts of query questions (title, body, and tags) and compute their similarity to
different parts of archived questions (title, body, tags, and best answer). We compute the
similarity between all fields in the query question and all fields in the archived question
in three ways: language models with Jelinek-Mercer and Dirichlet smoothing and Okapi
BM25. This yields 36 features (3 (for query questions) ˆ 4 (for archived questions)
ˆ 3 (similarity measures)). The Jaccard similarity between tags is added as the 37-th
feature.

Siamese Convolutional Neural Network. We use the Siamese Convolutional Neural
Network for cQA (SCQA) model proposed by Das et al. [46] as a baseline. The results
reported in the paper are state-of-the-art results on the Yahoo! Answers dataset. This
method is a Siamese network that uses convolution layers to embed questions into a
low-dimensional space in which cosine similarity of questions can be calculated. We
use the hyper-parameters stated in [46]. The architecture contains three convolution
layers followed by max-pooling and ReLU units. We use the dataset explained in §5.4.1
for training the SCQA model. Models of questions are based on all fields except the
best answer. This field is excluded because it is very long for most of the questions and
SCQA cannot encode it very accurately.

LSTM-based method. We use a bidirectional LSTM model to learn representations of
questions.4 Only the title field is used for training as it achieves better performance than
using all fields. Each question in a pair of questions is represented as the concatenation of
the forward and backward representations learned by the LSTM model. We concatenate
representations of pairs of questions and feed them to a fully-connected layer to predict
a relevance label. As the objective function, we use the cross-entropy loss. The number
of hidden layers of the forward and backward LSTMs is set to 128. We initialize

4LSTMs have been used successfully for question retrieval. This particular architecture has been taken
from https://engineering.quora.com/Semantic-Question-Matching-with-Deep-Learning. A similar approach
is used in [202] for matching sentences.
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the embeddings of words with a pre-trained word2vec model and update them during
training.

6.4.5 Evaluation metrics

Question retrieval is a ranking task and ranking-based evaluation metrics have previously
been used for this task [46, 142, 225, 231]. Mean Average Precision (MAP) is a
common ranking metric for evaluating questions retrieval methods. Mean Reciprocal
Rank (MRR) is another used metric that captures how far the first relevant question
is in the ranking and how much effort should be put to find a relevant question in the
returned ranking. R-Precision is used to capture recall and reflects how far should one
go down in the ranked list to find all relevant questions. P@1 captures the quality of the
top ranked question.

6.4.6 Statistical significance

For testing statistical significance of observed differences, we use a paired two-tailed
t-test. We set α (the desired significance level) to 0.05; N and İ indicate that a method
performs significantly better or worse than the corresponding baseline, respectively.

6.5 Results

Following the four research questions described in Section 6.4, we report the results of
our proposed question retrieval method, CSA.

6.5.1 Question retrieval results

To answer RQ5, we use the evaluation setup described in Section 6.4.1 and report the
results of different question retrieval methods on this dataset. Table 6.2 shows the results
of this experiment. First, methods that use data fields in an intelligent way (CSA and
LTR) are best performing. Although all other methods also use different data fields,
they do not treat different parts of questions differently. Therefore, they are not able to
learn the individual importance of different question fields.

Second, CSA significantly outperforms all baselines. Thus, automatically learning
the weights of different parts of questions per sample by the attention mechanism is
more effective than learning a global ranking function as done in the LTR method.

Third, for SCQA, we could not achieve the performance reported in [46]. We report
the results of SCQA trained using all fields except the best answer field; including the
best answer only further decreased performance. Unfortunately, the implementation
details provided by the authors did not allow us to fully reproduce the authors’ method.

Fourth, all methods have relatively good performance. This is due to the fact that
we randomly selected non-relevant samples and in most cases there is a low similarity
between the non-relevant samples compared to the duplicate question to the query
questions. Therefore, distinguishing relevant from non-relevant questions is relatively
easy.
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Table 6.2: Results of different question retrieval methods on the Stack Overflow dataset. The
significance test is done on the improvements of CSA over the closest competitor, that is, the
learning to rank method.

Method MAP P@1 R-Precision MRR
Language Model 0.71 0.70 0.62 0.76
Word Embedding 0.74 0.71 0.64 0.78
Learning to Rank 0.84 0.81 0.73 0.87
SCQA 0.63 0.59 0.51 0.68
LSTM 0.79 0.76 0.65 0.84
CSA 0.88N 0.85N 0.78N 0.91N

Table 6.3: Results of using different fields of questions as input. Ti, Bo, Ta, BA, and all stand for
Title, Body, Tags, Best Answer, and all fields of questions, respectively.

Method MAP P@1 R-Precision MRR
QqpTiq, QcpTiq 0.73 0.68 0.61 0.75
QqpBoq, QcpBoq 0.71 0.65 0.57 0.71
QqpTiq, QcpTi,Boq 0.77 0.73 0.65 0.80
QqpBoq, QcpTi,Boq 0.75 0.70 0.62 0.79
QqpTiq, QcpTi,Bo,BAq 0.78 0.74 0.70 0.81
QqpBoq, QcpTi,Bo,BAq 0.77 0.73 0.64 0.80
QqpTiq, Qcpallq 0.81 0.78 0.72 0.83
QqpBoq, Qcpallq 0.80 0.77 0.67 0.84
Qqpallq, QcpTiq 0.81 0.77 0.70 0.84
Qqpallq, QcpBoq 0.79 0.75 0.69 0.82
Qqpallq, QcpTi,Boq 0.83 0.80 0.73 0.87
Qqpallq, QcpTi,Bo, TAq 0.86 0.83 0.75 0.90
Qqpallq, QcpTi,Bo,BAq 0.85 0.81 0.73 0.88
Qqpallq, Qcpallq 0.88 0.85 0.78 0.91

Fifth, the LSTM baseline, which only uses titles, performs better than the language
model, word2vec, and SCQA methods. Adding more information to the input of the
LSTM leads to a lower performance. Thus, titles are good indicators of the relevance of
questions. As the results for CSA show, other fields are also informative but the LSTM
is not able to exploit all of them in an effective way.

To analyze the effect of using different fields of questions on the performance of
our method, we design another experiment in which we feed different combinations of
fields as input to the model. Table 6.3 shows the results of this experiment. The results
indicate that each field contributes to the achieved performance in the question retrieval
task. The best performance is achieved when we use all fields of the query question
and candidate questions. Titles of questions are in general more informative than other
fields. We achieve a higher performance when we use titles of question than with other
fields.

To sum up, using more data fields and rich content available for questions leads to
a higher performance in the question retrieval task. CSA can effectively combine and
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Table 6.4: Results of using different fields of questions as input to the CSA architecture without
attention mechanism. N and İ indicate that the corresponding method performs significantly better
or worse than its attention-enabled counterpart in Table 6.3.

Method MAP P@1 R-Precision MRR
QqpTiq, QcpTiq 0.82N 0.78N 0.71N 0.84N

QqpBoq, QcpBoq 0.79N 0.74N 0.66N 0.81N

QqpTiq, QcpTi,Boq 0.80N 0.76N 0.68N 0.83N

QqpBoq, QcpTi,Boq 0.77 0.73 0.65 0.80
QqpTiq, QcpTi,Bo,BAq 0.78 0.74 0.67 0.82
QqpBoq, QcpTi,Bo,BAq 0.75 0.70 0.62 0.78
QqpTiq, Qcpallq 0.77İ 0.72İ 0.65İ 0.80İ

QqpBoq, Qcpallq 0.76İ 0.71İ 0.62İ 0.79İ

Qqpallq, QcpTiq 0.77İ 0.73İ 0.65İ 0.81İ

Qqpallq, QcpBoq 0.76İ 0.72İ 0.64İ 0.81İ

Qqpallq, QcpTi,Boq 0.75İ 0.72İ 0.62İ 0.81İ

Qqpallq, QcpTi,Bo, TAq 0.74İ 0.70İ 0.60İ 0.78İ

Qqpallq, QcpTi,Bo,BAq 0.73İ 0.70İ 0.59İ 0.77İ

Qqpallq, Qcpallq 0.73İ 0.69İ 0.58İ 0.77İ

exploit the available information.

6.5.2 Attention mechanism

To answer RQ5.1, we design an experiment in which we train a variation of our model
without attention mechanism. In this architecture, the input representation and output
modules remain the same. However, in the multi-context attention module, the attention
and linear functions are removed and all αi’s are set to 1. This removes the attention
mechanism completely. The input to the aggregation function of candidate questions
consists of representations of different fields without any attention to the context vectors.

Table 6.4 presents the results of this experiment. The performance of CSA without
the attention mechanism (the last row in Table 6.4) drops dramatically and significantly.
This demonsrtates the importance of the attention mechanism. Interestingly, the per-
formance improves as we remove fields from questions. The best performance of CSA
without attention mechanism is achieved when we only use titles of questions. This
result is even better than the performance of the LSTM baseline, which indicates the
ability of the proposed architecture to bridge the vocabulary gap. When we add more
fields the performance drops. Adding more fields may end up adding noise to the input.
Titles are usually accurate and very short, so even a simple architecture without attention
mechanism can capture semantic similarity of questions through their titles. However,
as we add more fields, the architecture cannot exploit extra information and address the
expressive inefficiency challenge.

The performance of CSA (with attention mechanism) is significantly better than the
performance of CSA without attention that only uses titles of questions. This result
confirms that although titles are the most important parts of questions, other fields also
contain useful information and adding them to an attention enabled model leads to
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Figure 6.4: The relative number of times different fields of candidate questions in the evaluation
set are selected as the most important field by the attention mechanism using different context
vectors from query questions. The X-axis corresponds to the fields of candidate questions.

higher performance. However, without the attention mechanism it is not possible to add
and exploit them in an effective way.

The results in this section confirm the importance of the attention mechanism and its
ability to address expressive inefficiency by taking into account all valuable information
associated with questions.

6.5.3 Analysis of the attention mechanism

To answer RQ5.2, we perform a quantitative analysis of the weights assigned by
the attention mechanism to different fields of questions. Figure 6.4 shows the relative
number of times different fields of candidate questions are selected as the most important
field based on different context vectors obtained from query questions. This experiment
is done on the evaluation set described in Section 6.4.1. The results show that the
attention mechanism pays more attention to titles of candidate questions in general.
This indicates that titles are the most informative parts of questions. A question’s body
and best answer are the next most important fields. Interestingly, when tags are used
as context vectors, the attention mechanism pays more attention to tags of candidate
questions than to their body and best answers. This result suggests that when using
tags the attention mechanism tries to capture how relevant questions are topically and
incorporate it in the matching mechanism.

6.5.4 Combining question retrieval methods

Next, we answer RQ5.3 by combining different question retrieval methods. We take
the scores generated by all baselines (lexical matching, word2vec, learning to rank,
SCQA, and LSTM) and CSA and combine them in a learning to rank framework. We
do 5-fold cross validation on the evaluation set. In each fold, we use 800 queries and
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Table 6.5: Results of combining different question retrieval methods.

Method MAP P@1 R-Precision MRR
CSA 0.88 0.85 0.78 0.91
Combination 0.92N 0.89N 0.83N 0.94N

Table 6.6: The performance drop (absolute difference) by removing different methods from the
combination model.

Method ∆MAP
CSA ´0.06
LTR ´0.03
LSTM ´0.01
word2vec ´0.01
Language model ´0.006
SCQA ´0.002

their associated candidate questions for training the learning to rank model and 200
queries of evaluation. We use LambdaMart for creating the ranking model.

Table 6.5 shows the results of this experiment, next to the results of CSA. The results
show that adding other methods on top of CSA leads to a significant improvement. This
indicates that CSA and the other methods are capturing different signals about question
relevance. To gain more insights into the contribution of each individual method on the
results achieved by the learned combination model, we perform an additional analysis.
We remove methods from the combination model one by one and measure the drop in
performance in terms of MAP; see Table 6.6. When CSA is removed from the model the
performance drops most. Moreover, removing the LTR model also causes a considerable
drop in performance. Removing other features does not have a significant effect on the
final performance. This shows that CSA and LTR are the most important features in the
combination and are capturing different information about the relevance of questions.

6.6 Related Work

We review related work from four angles: question retrieval, short text embeddings,
attention mechanisms, and evaluation.

6.6.1 Question retrieval

Relevant question retrieval is a task associated with cQA sites [142, 152, 178]. Tra-
ditional approaches for question retrieval are term matching based methods such as
BM25 and language models [92, 96, 139, 178]. Term matching methods have a poor
performance on the question retrieval task [152, 178]. The main reason is the vocabulary
gap [46, 178, 231]. To overcome this problem, many approaches have been proposed
that try to capture the semantics of questions and match questions based on that. An
early example are translation models, which treat question/answer pairs as parallel sen-
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tences and extract semantically similar word/phrase pairs. Translation-based question
matching models outperform traditional term matching models [34, 211, 217, 229].
Syntactic tree-based methods are another type of approach that try to augment term
matching and translation-based models with syntactic information included in questions
[198–200]. Other semantic resources such as entities contained in questions and user
intent information have also been exploited to augment term matching approaches
[174, 230].

Recently, neural network-based approaches have been adapted to learn semantic
representations of questions and use those for question retrieval [27, 46, 149, 157, 201,
231, 232]. Das et al. [46] propose a Siamese network that consists of twin convolutional
neural networks (CNNs) with shared parameters for learning question representations.
Qiu and Huang [157] use a similar approach for matching questions and answers for
finding most relevant answers of questions. Zhou et al. [231] propose a model that
can learn word embeddings empowered by category information within cQA sites.
Similar to the skip-gram model [138], they use co-occurrence information of words to
learn embeddings. Wang et al. [201] propose a similar approach for learning question
representations; they also empower the skip-gram model with category information and
use a CNN to learn representations of questions based on word embeddings.

Most neural approaches only use titles of questions for estimating the semantic
similarity. Only a few have tried to use more information such as tags associated with
questions [201, 231]. To the best of our knowledge, we are the first to exploit multiple
data fields available for questions such as a question’s title/body, answers, and tags in a
unified way for learning the representations of questions.

We perform our experiments on the Stack Overflow dataset which contains program-
ming related questions which are a mixture of text and code. In this regard, our task is
also related to source code retrieval task in which given a piece of code the goal is to
find similar code snippets from a collection [140, 153]. Our task however differs as we
deal with a mixture of code and text, while in the code retrieval task, the query code is a
piece of code.

6.6.2 Short text embeddings

In this study, we learn embeddings of questions based on the embedding of their
words. There are different approaches for aggregating word embeddings into sen-
tence/document embeddings. The simplest approach is taking the average of word
embeddings [2, 222]. This approach cannot capture all information included in doc-
uments such as frequency of words and word order. More advanced methods have
been proposed to learn to combine embeddings of words. E.g., De Boom et al. [48]
incorporate the frequency of words in learning the composition; Kenter et al. [105] use
the average operator on word embeddings to estimate sentence embeddings. CNNs
and recurrent neural networks (RNNs) are also used for aggregating word embed-
dings [38, 101]. The Fisher Vectors method is a popular approach for aggregation too
[40, 231]. This approach assumes that word embeddings are generated by a universal
probability density function that is assumed to be a Gaussian mixture model.

We take a hierarchical approach to embedding short texts. To avoid complexity, we
represent sentences by the average of embeddings of their words. Unlike previous work,
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at the document level, we learn a representation based on a recurrent representation of
sentences.

6.6.3 Neural attention mechanisms

In this work, we use an attention mechanism for weighting different parts of questions.
Attention mechanisms are mostly used in the context of machine translation in which
there is an encoder and a decoder [204]. Attention mechanisms have previously been
used for question answering and reading comprehension [78, 181]. Here, the goal is to
read a set of sentences and then answer a question relevant to those sentences. Attention
helps to find the most relevant sentences to the question and generate the answer. Similar
to this work, we use an attention mechanism for matching questions. However, our
setting is different from the reading comprehension task in important ways. We use
multiple data fields to estimate similarity and use an attention mechanism as a weighting
function to choose relevant parts of questions rather than having one data field and
selecting answers of questions using an attention mechanism. Therefore, the goal, input,
and outputs of the two tasks differ, and, hence, so do the attention mechanisms. To the
best of our knowledge, there is no existing work on using an attention mechanism for
capturing text similarity using multiple data fields.

In general, attention mechanisms have a great potential to automatically ignore the
unimportant parts in the entire input sequence and highlighting important parts. In the
case of cQA, Hsu et al. [85] use an attention mechanism for computing the similarity of
questions and answers. A similar approach has been used in [184], where an attention
mechanism is used for matching questions and answers.

We use a similar approach to Hsu et al. [85]. An important difference, however, is
that we use multiple context vectors to weight different parts of questions and combine
the achieved attention signals in a principled way. Our attention mechanism is very
different from the conventional attention mechanism used for machine translation and
relevant tasks. Instead of using one context vector, it uses multiple context vectors and
in the end weights and combines the representation obtained from multiple fields based
on different context vectors.

6.6.4 Evaluating question retrieval methods

Most question retrieval methods are trained and evaluated on Yahoo! Answers and
Stack Exchange datasets [142, 178]. Among existing datasets, only these two datasets
have multiple data fields associated with them. However, no ground-truth is available
for the Yahoo! Answers dataset. Zhang et al. [224] made a test collection on this
dataset by annotating pairs of questions and assigning ground-truth labels to them. This
evaluation set has been used in several studies [46, 224, 225]. The created dataset is
relatively small, making it very hard to train a generalizable state-of-the-art neural model.
Unlike the Yahoo! Answers dataset, the Stack Exchange dataset contains information
of duplicate/near-duplicate questions identified by users, which can be directly used
for training and evaluating question retrieval models. Recently, this dataset has been
used in the SemEval-2017 competition [142]. Therefore, in this study, we use the Stack
Exchange dataset for creating our model.
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We are the first to build an evaluation set using Stack Overflow dataset that contains
questions with multiple data fields.

6.7 Conclusion

We have proposed CSA (Question Retrieval using Content, Structure and Attention),
a method for finding relevant questions on cQA forums based on different data fields
associated with questions. CSA is built around a multi-context attention mechanism
to combine all information associated with questions and learn their representations.
We have shown that CSA is able to exploit rich content and structure available on cQA
forums and address two main challenges with the question retrieval task: the vocabulary
gap and expressive inefficiency.

Our main findings are the following: (1) Semantic matching models are quite
successful in bridging the vocabulary gap problem for the question retrieval task. These
methods achieve a good performance using only titles of questions. Using different
data fields beside the title, we can further bridge the vocabulary gap and improve the
performance of title-only based approaches. (2) Expressive inefficiency is one of the big
challenges in finding relevant questions. Using rich content and structure of questions
can help to address this problem. None of the existing semantic matching models
can effectively exploit multiple data fields available for questions. A multi-context
attention mechanism can overcome this problem by adjusting the weights of different
fields of questions while learning their representation. (3) When we combine lexical
matching with semantic matching models for question retrieval, we achieve even higher
performances. This result confirms that semantic and lexical matching models provide
complementary signals.

The main limitation of our work is the way our evaluation set is constructed. Since
there are no available datasets for evaluating question retrieval methods that contain
multiple data fields for questions, we had to construct an evaluation set automatically
using information about duplicate questions. A more natural way would to construct an
evaluation set using a pooling approach.

As to future work, for input representation, we represented textual fields as sequences
of sentences in which each sentence representation is the average of embeddings of
their words; a more principled alternative would be to have an attention mechanism to
further weight sentences and words based on the amount of information they contain
and use the weighted combination for learning question representation. Moreover, in
CSA we projected all data fields into the same embedding space. A possible future
direction would be to learn a separate representation for each field and then learning a
transformation between these spaces. This would let the model capture characteristics
of each field even more accurately.

This chapter was the last chapter in this thesis. We studied how metadata and structure
can be useful in exploratory search. Next, we will conclude the thesis and elaborate on
possible future work in this direction.
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In this chapter, we first revisit our research questions introduced in Chapter 1 and
summarize main findings and implications of our research in Section 7.1. Then, in
Section 7.2, we describe the main limitations of our work and the possible future
directions.

7.1 Main Findings

7.1.1 Multi-label text classification
We started with the task of Multi-label Text Classification (MLTC) and asked:

RQ1 How helpful is integrating a variety of sources of information extracted from
content, structure, and metadata as features to improve the performance of MLTC
systems?

To answer this question, we considered MLTC, a ranking problem in which the goal
was ranking class labels given a document. We used a Learning to Rank (LTR) approach
to rank classes and estimate a classifier: we simply rank all classes given a document and
assign the top k classes (k to be determined by another classifier) as labels to the input
document. To exploit structure and metadata, we used different sources of information
associated with documents and classes to extract features which reflect the similarity of
documents and classes. In addition to the associated explicit information with classes,
we used co-occurrence patterns of classes as labels of documents as another source of
information. This is crucial information for MLTC as the main characteristic of this task
is that documents have multiple class labels and there are implicit relations between the
classes.

Starting from simple classification approaches for MLTC such as support vector
machines, we observed that these approaches are not optimal for the task of MLTC
when there is a high number of classes. They cannot model the underlying relations
between classes and they are very inefficient. We showed by experimental means
that without even using all information sources, ranking-based approaches achieve a
reasonable performance for this task and outperform simple classifiers. Our proposed
LTR approach further improved the performance of ranking-based models by integrating
all features extracted from all sources of information. We performed a feature analysis to
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determine the effectiveness of different source of information for MLTC. We observed
that, labeled training documents is the primary and most effective source of information.
However, exploiting structure of documents, we interestingly, found that it is more
effective to use the structure and treat different parts of documents differently rather
than considering all parts of documents a single text. Moreover, we found that other
sources of information such as the hierarchical thesaurus of classes contribute to the
performance of the designed classifier. We showed that we can use the outcomes of
this feature analysis to design a lean-and-mean classifier which is both efficient and
effective. Then, we focused on using implicit co-occurrence patterns of classes and
found that using this information also helps in classifying documents more accurately.
Interestingly, we found that the co-occurrence information is more helpful when the
underlying classifier has a poor performance. We studied different aspects of the MLTC
task, including the effect of size of the training set and a dynamic method for selecting
the number of classes. We found that ranking-based models are more robust against the
size of the dataset compared to the classification-based approaches. Our analysis on the
use of a dynamic approach for selecting the number of classes revealed that the better
the underlying classifier, the more the dynamic model can further improve performance.
These findings indicate that ranking-based models are better alternatives in the MLTC
task.

7.1.2 Measuring topical diversity of documents
Similar to previous work, we used topic models for measuring topical diversity. We
characterized two drawbacks with using topic models for measuring topical diversity
and proposed a method to address them and answered our second research question:

RQ2 How effective is our hierarchical re-estimation approach in measuring topical
diversity of documents? Are the topic models that have been improved in this
way also successfully applicable for other tasks such as documents clustering and
classification?

We proposed a hierarchical re-estimation method aimed at removing the two issues
associated with topic models which make them less suitable for measuring diversity:
generality and impurity. The quality of topic models depends on three distributions:
words in documents, words in topics and topics in documents. We showed that distribu-
tions of words in documents and topics in documents suffer from the generality problem.
On the other hand, both distributions of words in topics and topics in documents suffer
from the impurity issue. Based on this finding, we proposed three re-estimation ap-
proaches aimed at removing generality and impurity from the mentioned distributions.
Our analysis indicated that generality is the more important issue with topic models
when they are used for the task of measuring topical diversity. This shows that distribu-
tions of words in documents and topics in documents are more important in the topical
diversity task and to achieve a good performance they should be modeled accurately.
Although impurity has less negative impact on the performance, removing it helps
to achieve more improvements. We found that although our re-estimation approach
was originally proposed for the topical diversity task, it has a good performance in
other document management tasks such as classification and clustering. Therefore,
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the improved topic models achieved using the re-estimation approach can be seen as a
generic framework for improving the performance in any document management task
that uses topic models.

7.1.3 Commitment detection in email
Our third research question was:

RQ3 Can commitments be reliably detected in emails? And how does the performance
of commitment models change when they are tested on a different domain than
they are trained on?

Our findings indicate that there is a domain bias associated with email datasets and
it can affect the performance and generalizability of any model trained on them. We
cannot train a model on one dataset and apply it reliably on a different domain.

We created a large-scale dataset with commitment labels from two publicly available
email datasets. We characterized the core language of commitments using a feature
selection approach. We then modeled commitment detection as a binary classification
task (on sentences) and used logistic regression to check how well one can detect
commitments. We found that, indeed, a simple classifier can detect commitments
effectively when we train and test them on the same domain (email dataset). We
argued that the publicly available datasets are skewed in different ways: they have very
specific focus areas and they are quite old. To see if this has a negative impact on the
performance of the trained commitment model, we evaluated its performance across
domains and found that domain difference has a strong negative impact on performance.
Interestingly, we found that we can characterize the domain difference using some
simple feature analysis. We used this characterization to remove domain information
from email datasets and design domain-independent commitment models. We compared
the effectiveness of domain adaptation methods working on different levels (feature-
level and sample-level) and found that domain adaptation can undo the domain bias
present in email datasets. We designed a deep autoencoder to do feature-level and
sample-level adaptation jointly and showed that it can outperform existing adaptation
models in commitment detection task.

7.1.4 Computing semantic shifts
In the second part of the thesis, we focused on using metadata and structure for improv-
ing the performance in two exploratory search tasks. The first task is detecting semantic
shifts across viewpoints. We were interested in using metadata features such as time
and groups associated with documents for detecting shifts in meaning of words. Our
fourth research questions was:

RQ4 How can we use metadata information to measure semantic shifts? How effective
are the proposed approaches in quantifying the changes in word meaning over
various dimensions such as time and political context?

We argued that semantic shifts can occur both over a long period of time and
in a short period of time across groups of people with diverging viewpoints. The
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existence of shifts in meanings over a long period of time is known from the literature
[118, 175, 187, 210]. We focused on uncovering shifts in a short period of time. We
performed an analysis on the UK parliamentary proceedings and found that indeed
shifts can occur in a short period of time across groups which have diverging viewpoints.
Then, we focused on measuring such shifts. We used distributional semantics to
extract meaning of words and compared several methods to use these meanings to detect
semantic shifts. We showed that the proposed methods are very successful in discovering
shifts on political speeches and news. Moreover, we used information about semantic
shifts to boost performance in ideology detection and viewpoint summarization. We
found that temporal laws of change also apply to other dimensions. This indicates that
the meaning of frequent words do not shift across viewpoints, while even the meaning
of words with low polysemy values can shift. Furthermore, we proposed another law for
semantic shifts which implies that more concrete words are insensitive to the viewpoint
of speaker.

7.1.5 Question retrieval in cQA forums

Finally, we focused on finding similar questions in cQA forums and boosting perfor-
mance using content, metadata, and structure. Our last research question was:

RQ5 Does using the rich data and structure available on question answering forums
lead to a better score than the state of the art on the task of question retrieval?

We argued that two main issues associated with question retrieval are the vocabulary
gap and expressive inefficiency problems. Existing semantic matching methods are
successful in bridging the vocabulary gap to some extent. Most of them are only using
the title of questions for matching since other fields are quite long and these methods
do not have an effective mechanism to handle large inputs and multiple fields. Based
on our analysis, we found that expressive inefficiency is still a hard problem to handle
for existing question retrieval methods. This is another reason why existing models
only use titles since titles are usually more accurate that other fields. Inspired by
recent advancements in the machine reading comprehension task [78, 181], we used
an attention mechanism to control the contribution of different fields of questions for
computing their semantic similarity. We showed that this approach can further bridge the
vocabulary gap since it is using more information beside titles. Moreover, by controlling
the contribution of fields, the attention mechanism automatically controls the noise and
addresses the expressive inefficiency problem. We further combined similarity scores
estimated for questions using different question retrieval methods in a learning to rank
framework and found that when we combine lexical matching with semantic matching
models, we achieve even higher performances. This result confirms that semantic and
lexical matching models provide complementary signals.

7.2 Future Work

We list possible directions for future work grouped by our main research questions.
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7.2.1 Optimizing a ranking loss for MLTC

Based on our results simple classification approaches (such as binary classification
methods) for MLTC fail when there is a high number of classes and ranking-based
approaches outperform classification-based systems. Moreover, rather than just using
a set of training samples, utilizing various sources of information leads to better per-
formances in MLTC. This opens up an interesting direction to design more effective
MLTC systems by defining and optimizing a ranking loss rather than a classification loss
which can integrate multiple sources of information. Our work was based on extracting
features from document-class pairs and learning a ranking function on top of them. It
would be interesting to use raw document-class features to optimize a ranking loss. This
can be done using a neural model which takes different fields of documents together
with other sources of information as input, encodes them and produces scores per class.
A ranking loss then can be used to train the model.

7.2.2 Removing specificity from topic models

Our topic models re-estimation approach is most effective in removing general infor-
mation from probability distributions. Another issue with topic models is the existence
of very specific information in them. Specific information is not representative of the
collection and it can lower the purity of topic models. Therefore, to train a more accurate
topic model which has a good performance in topical diversity task it is also important
to remove very specific words from documents. Current approaches, including ours, are
not able to address this problem adequately. An interesting direction would be designing
re-estimation methods that can remove undesired specific information from probability
distributions.

7.2.3 Contextualizing commitment models

We modeled commitment detection as a binary classification task: does a given sentence
from an email contain a commitment or not? For simplicity and generalizeability
reasons, we only used sentences as samples and did not use the context around them.
The context such as the rest of the email and previous emails could potentially be useful
to disambiguate the input sentence and detect commitments more accurately. In addition
to this information, the information about the sender and receiver of emails, time of
sending the email, and history of interaction of the sender and the receiver can be further
used for detecting commitments. Future work could integrate all this information in
a unified way to learn a commitment model from it. This can be done by learning
a representation for each data field (e.g., sentence itself, whole email, sender, etc),
computing a probability of constituting a commitment using each field, and weighting
and integrating them to predict the class. In addition to this, it would be interesting to
see if this additional information can help make a more robust and domain-independent
commitment model.

127



7. Conclusions

7.2.4 Applications of stability measures
The estimated stability measures in Chapter 5 can be useful in various applications. We
used them in two extrinsic tasks, e.g., summarizing diverging viewpoints and ideology
detection defined in terms of document classification. The generated summaries using
the stability measures can be used in exploratory search scenario to uncover diverging
aspects of a given topic. We only focused on detecting shifts in political and media
discourse, but our approaches are applicable in any other kind of discourse such as
different groups in social media. The input would be two or more groups and for each
group a collection of text and our measures can automatically detect topics for which the
groups have different viewpoints and a summary of viewpoints of each group regarding
the topic. We can also broaden the set of applications of stability measures, by, for
example, examining how our approach contributes to other tasks such as controversy
detection and locating people in a ”filter bubble”. If the language use of a specific group
exhibits radically divergent word meanings, then they might be in a filter bubble and
word stability can be used to quantify this.

7.2.5 Learning semantic spaces for different fields
For representing the input in the question retrieval task, we represented textual fields
as sequences of sentences in which each sentence representation is the average of
embeddings of their words. The embeddings are learned during training the model.
In this approach, there is no weighting and attention mechanism for selecting most
informative words in sentences. A more principled alternative would be to have an
attention mechanism to further weight sentences and words based on the amount
of information they contain and use the weighted combination for learning question
representation. Moreover, in our approach, we projected all data fields into the same
embedding space. However, the nature of the fields are somewhat different. For example,
tags are very different than textual fields such as title, body, and answers. In addition
to the used fields, if we want to use other fields such as time of creation, questioner
and answerer information, it does not make sense to project all the fields to the same
embedding space. To address this issue, a possible future direction would be to learn a
separate representation for each field. Then, a transformation between these spaces can
be learned to make it possible to compute similarities on different spaces. This would
let the model capture characteristics of each field even more accurately.

128



Bibliography

[1] National Center for Biotechnology Information, U.S. National Library of Medicine. Pubmed Central
Open Access Initiative. 2010. (Cited on page 43.)

[2] S. Arora, Y. Liang, and T. Ma. A simple but tough-to-beat baseline for sentence embeddings. In
Proceedings of International Conference on Learning Representations, ICLR ’17, 2017. (Cited on
page 120.)

[3] R. Artstein and M. Poesio. Inter-coder agreement for computational linguistics. Computational
Linguistics, 34(4):555–596, 2008. (Cited on page 64.)

[4] H. Azarbonyad. Measuring interestingness of political documents. In Proceedings of the 39th
International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR
’16, pages 1175–1175, 2016. (Cited on page 9.)

[5] H. Azarbonyad and E. Kanoulas. Power analysis for interleaving experiments by means of offline
evaluation. In Proceedings of the 2017 ACM International Conference on the Theory of Information
Retrieval, ICTIR ’17, pages 87–90, 2016. (Cited on page 9.)

[6] H. Azarbonyad, M. Dehghani, M. Marx, and J. Kamps. Time-aware authorship attribution for short
text streams. In Proceedings of the 38th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’15, pages 727–730, 2015. (Cited on page 9.)

[7] H. Azarbonyad, F. Saan, M. Dehghani, M. Marx, and J. Kamps. Are topically diverse documents
also interesting? In Proceedings of the 6th International Conference on Experimental IR Meets
Multilinguality, Multimodality, and Interaction, CLEF ’15, pages 215–221, 2015. (Cited on pages 7,
33, 36, and 42.)

[8] H. Azarbonyad, M. Dehghani, K. Beelen, A. Arkut, M. Marx, and J. Kamps. Words are malleable:
Computing semantic shifts in political and media discourse. In Proceedings of the ACM on Conference
on Information and Knowledge Management, CIKM ’17, pages 1509–1518, 2017. (Cited on pages 8,
66, and 81.)

[9] H. Azarbonyad, M. Dehghani, T. Kenter, M. Marx, J. Kamps, and M. de Rijke. Hierarchical re-
estimation of topic models for measuring topical diversity. In Proceedings of the 39th European
Conference on IR Research, ECIR ’17, pages 68–81, 2017. (Cited on pages 7 and 17.)

[10] H. Azarbonyad, M. Dehghani, T. Kenter, M. Marx, J. Kamps, and M. de Rijke. HiTR: Hierarchical
topic model re-estimation for measuring topical diversity of documents. IEEE Transactions on
Knowledge and Data Engineering, to appear, 2018. (Cited on pages 7 and 33.)

[11] H. Azarbonyad, M. Dehghani, M. Marx, and M. de Rijke. Learning question representations for ques-
tion retrieval using content, structure and attention. In Proceedings of the Twelfth ACM International
Conference on Web Search and Data Mining, WSDM ’19, under review, 2018. (Cited on pages 8
and 103.)

[12] H. Azarbonyad, M. Dehghani, M. Marx, and J. Kamps. Learning to rank for multi label text classifica-
tion: Combining different sources of information. Journal of Natural Language Engineering, under
review, 2018. (Cited on pages 7 and 13.)

[13] H. Azarbonyad, R. Sim, and R. W.White. Domain adaptation for commitment detection in email. In
Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, WSDM
’19, 2018. (Cited on pages 7 and 59.)

[14] R. Babbar and B. Schölkopf. Dismec: Distributed sparse machines for extreme multi-label classifica-
tion. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining,
WSDM ’17, pages 721–729, 2017. (Cited on page 15.)

[15] K. Bache, D. Newman, and P. Smyth. Text-based measures of document diversity. In Proceedings of
the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, SIGKDD
’13, pages 23–31, 2013. (Cited on pages 1, 3, 33, 36, 41, 43, and 44.)

[16] O. Becher, L. Hollink, and D. Elliott. Exploring concept representations for concept drift detection. In
SEMANTiCS 2017 Workshop Proceedings: Drift-a-LOD, 2017. (Cited on page 84.)

[17] V. Bellotti, N. Ducheneaut, M. Howard, and I. Smith. Taking email to task: the design and evaluation
of a task management centered email tool. In Proceedings of the SIGCHI conference on Human factors
in computing systems, SIGCHI ’03, pages 345–352, 2003. (Cited on pages 2, 3, 59, and 61.)

[18] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan. A theory of learning
from different domains. Machine Learning, 79(1-2):151–175, 2010. (Cited on page 62.)

[19] Y. Bengio. Learning deep architectures for ai. Foundations and Trends in Machine Learning, 2(1):
1–127, 2009. (Cited on pages 60 and 68.)

[20] P. N. Bennett and J. Carbonell. Detecting action-items in e-mail. In Proceedings of the 28th Interna-

129



7. Bibliography

tional ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’05,
pages 585–586, 2005. (Cited on pages 2, 3, 59, and 61.)

[21] W. Bi and J. T. Kwok. Multi-label classification on tree and dag-structured hierarchies. In Proceedings
of the 28th International Conference on Machine Learning, ICML ’11, pages 17–24, 2011. (Cited on
page 16.)

[22] W. Bi and J. T. Kwok. Efficient multi-label classification with many labels. In Proceedings of the 30th
International Conference on Machine Learning, ICML ’13, pages 405–413, 2013. (Cited on pages 13
and 15.)

[23] D. M. Blei. Probabilistic topic models. Commun. ACM, 55(4):77–84, 2012. (Cited on page 39.)
[24] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of Machine Learning

Research, 3:993–1022, 2003. (Cited on pages 35, 36, and 39.)
[25] E. Bleich, H. Nisar, and R. Abdelhamid. The effect of terrorist events on media portrayals of islam

and muslims: evidence from new york times headlines, 1985–2013. Ethnic and Racial Studies, 39(7):
1109–1127, 2016. (Cited on page 81.)

[26] J. Blitzer, M. Dredze, and F. Pereira. Biographies, bollywood, boom-boxes and blenders: Domain
adaptation for sentiment classification. In Proceedings of the 45th Annual Meeting of the Association
of Computational Linguistics, ACL ’07, pages 440–447, 2007. (Cited on page 60.)

[27] D. Bonadiman, A. Uva, and A. Moschitti. Multitask learning with deep neural networks for community
question answering. arXiv preprint arXiv:1702.03706, 2017. (Cited on page 120.)

[28] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan. Domain separation networks.
In Proceedings of Advances in Neural Information Processing Systems, NIPS ’16, pages 343–351,
2016. (Cited on page 62.)

[29] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learning multi-label scene classification. Pattern
recognition, 37(9):1757–1771, 2004. (Cited on page 16.)

[30] J. Boyd-Gaber, D. Mimno, and D. Newman. Care and feeding of topic models: Problems, diagnostics,
and improvements. In Handbook of Mixed Membership Models and Their Applications. CRC Press,
2014. (Cited on pages 35 and 40.)

[31] M. Brysbaert, A. B. Warriner, and V. Kuperman. Concreteness ratings for 40 thousand generally
known english word lemmas. Behavior research methods, 46(3):904–911, 2014. (Cited on page 99.)

[32] L. Cai, G. Zhou, K. Liu, and J. Zhao. Learning the latent topics for question retrieval in community
QA. In Proceedings of 5th international joint conference on Natural Language Processing, IJCNLP
’11, pages 273–281, 2011. (Cited on page 104.)

[33] R. Campos, G. Dias, A. M. Jorge, and A. Jatowt. Survey of temporal information retrieval and related
applications. ACM Computing Surveys (CSUR), 47(2):15, 2015. (Cited on page 1.)

[34] X. Cao, G. Cong, B. Cui, C. S. Jensen, and Q. Yuan. Approaches to exploring category information for
question retrieval in community question-answer archives. ACM Transaction on Information Systems,
30(2):7:1–7:38, 2012. (Cited on page 120.)

[35] J. Chang, S. Gerrish, C. Wang, J. L. Boyd-graber, and D. M. Blei. Reading tea leaves: How humans
interpret topic models. In Proceedings of Advances in Neural Information Processing Systems, NIPS
’09, pages 288–296, 2009. (Cited on page 36.)

[36] M. Chen, Z. Xu, K. Weinberger, and F. Sha. Marginalized denoising autoencoders for domain
adaptation. arXiv preprint arXiv:1206.4683, 2012. (Cited on pages 62 and 68.)

[37] X. Chen and C. Cardie. Multinomial adversarial networks for multi-domain text classification. arXiv
preprint arXiv:1802.05694, 2018. (Cited on page 62.)
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Summary

The Web is a major source of information for many users. Automatically grouping and
classifying documents on the Web is an important ingredient when trying to support
effective search of Web documents. Documents on the Web are a mixture of content
(text, image, etc.), structure, and metadata. Beside content, metadata and structure can
be helpful in managing documents and supporting exploratory search over them. In this
thesis, we aim at empowering content-based approaches—for managing documents and
exploratory search—with structure and metadata and study how metadata and structure
associated with documents can help to both manage documents more accurately and
support different exploratory search tasks.

In the first part of the thesis, we study how we can leverage metadata and structure
to manage documents. We define document management as the task of grouping similar
documents together and classifying them. We define the similarity from three different
angles in the three chapters of the first part. We first start by classifying documents
based on their topical similarity and use content, structure, and metadata associated
with documents to classify them. We show that a metadata/structure powered classifier
performs much better than a classifier that is solely based on the content. We then
focus on classifying documents based on their topical diversity. We measure topical
diversity by means of topic models. In doing this, we characterize the main drawbacks
of topic models when they are applied to the task of measuring topical diversity and
propose a hierarchical approach to address these drawbacks. We find that the topic
models achieved using our hierarchical approach not only have a superior performance
in the topical diversity task compared to the previous approaches, but also are useful in
other tasks such as classification and clustering of topically similar documents. Finally,
we move to the email domain and study how we can help users automatically manage
their tasks created via email. We focus on the task of detecting commitments made in
email as it enables digital assistants to help their users recall promises they have made
and assist them in meeting those promises in a timely manner. We show that domain
bias associated with email corpora has a large negative impact on the performance of
commitment detection models. We adapt and use transfer learning methods to remove
the domain bias from email corpora and show that by means of transfer learning we can
reliably detect commitments even if there is a domain bias.

In the second part of the thesis, we devote two chapters to study how metadata and
structure can be useful in two different exploratory search tasks. First, we consider
detecting shifts in the meaning of words and study how metadata features such as time
and social entities such as political party can be used to discover shifts in a short period
of time. We use distributional semantics models to represent the meaning of words
and propose different approaches to measure the difference between the meaning of a
term in different semantic spaces. We show that the detected shifts can be helpful in
various tasks such as automatic text summarization and ideology detection. Second,
we focus on finding similar questions in community question answering forums. Our
aim is to use structure and metadata associated with questions beside their content
to measure the semantic similarity between questions. We show that a neural model
that effectively exploits the heterogeneous information associated with questions can
improve the performance of content-based approaches in this task.
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Samenvatting

Het web is voor veel gebruikers een belangrijke informatiebron. Het automatisch
groeperen en classificeren van documenten op het web is een belangrijk ingrediënt
voor het effectief zoeken naar webdocumenten. Documenten op het web bestaan uit
een combinatie van verschillende soorten inhoud (tekstueel, visueel, etc.), structuur
en metadata. Naast inhoud, kunnen ook metadata en structuur nuttig zijn bij het
beheren van en verkennend zoeken naar webdocumenten. Ons doel in dit proefschrift
is het versterken van inhoud gebaseerde methodes—voor het beheren van en zoeken
naar documenten—met structuur en metadata en het bestuderen hoe metadata en de
structuur van documenten kunnen helpen om zowel documenten accurater te beheren
en verschillende verkennende zoektaken beter te ondersteunen.

In het eerste deel van dit proefschrift, bestuderen we hoe we het best gebruik
kunnen maken van de metadata en structuur om documenten te beheren. We definiëren
documentbeheer als de taak om soortgelijke documenten samen te groeperen en te
classificeren. We definiëren gelijksoortigheid van documenten vanuit drie verschillende
perspectieven in de eerste drie hoofdstukken. We beginnen met het classificeren van
documenten op basis van hun topical similarity, de overeenkomst in het onderwerp
van de documenten, en gebruiken hiervoor zowel de inhoud, structuur als metadata
van de documenten. We laten zien dat een classifier dat gebruik maakt van de extra
metadata/structuur beter werkt dan een classifier dat enkel gebaseerd is op inhoud.
Vervolgens concentreren we ons op het classificeren van documenten op basis van
topical diversity, de diversiteit in onderwerpen van een document. We meten de
diversiteit door middel van topic models. Daarmee kenmerken we de belangrijkste
nadelen van het gebruik van topic models voor het meten van diversiteit en introduceren
wij een hiërarchische aanpak om deze nadelen aan te pakken. Als uitkomst vinden
we dat een topic model met een hiërarchische aanpak niet alleen voordelen heeft voor
het vinden van diverse onderwerpen binnen documenten, maar ook bruikbaar is voor
andere taken zoals document classificatie en het clusteren van soortgelijke documenten.
Ten slotte gaan we naar het domein van e-mails en bestuderen we hoe we gebruikers
kunnen helpen hun taken, die via e-mail zijn gemaakt, automatisch te beheren. We
richten ons op het detecteren van toezeggingen in e-mails, omdat dit digitale assistenten
in staat stelt gebruikers van hun beloften te herinneren en hen tijdig te helpen bij het
nakomen van deze beloften. E-mail corpora worden geassocieerd met een bepaald
domein. Dit wordt de domain bias genoemd. We tonen aan dat deze domain bias er
voor zorgt dat toezeggingen die gedaan worden in e-mails minder goed gedetecteerd
worden. We passen transfer learning methodes aan en gebruiken deze om de domain
bias van e-mailcorpora te verwijderen en tonen aan dat we door middel van transfer
learning betrouwbaar toezeggingen kunnen detecteren, zelfs wanneer er sprake is van
domain bias.

In het tweede deel van dit proefschrift, wijden we twee hoofdstukken toe aan de
studie van hoe metadata en structuur ingezet kunnen worden voor twee verschillende
verkennende zoektaken. Ten eerste beschouwen we het ontdekken van verschuivingen in
de betekenis van woorden en bestuderen we hoe metadata zoals tijd en sociale entiteiten
zoals de politieke partij gebruikt kunnen worden om deze verschuivingen in een korte
periode te ontdekken. We maken gebruik van distributional semantics models om de
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betekenis van woorden te modelleren en stellen verschillende methodes voor om het
verschil in betekenis van een woord te kunnen meten in verschillende semantische
ruimtes. Wij laten zien dat het detecteren van zulke verschuivingen nuttig kan zijn voor
verschillende taken zoals het automatisch samenvatten van tekst en het ontdekken van
ideologie. Ten tweede concentreren we ons op het vinden van soortgelijke vragen op
vraagbeantwoording forums. Ons doel is om, naast de inhoud van de vraag, ook de
structuur en metadata geassocieerd met de vraag te gebruiken om soortgelijke vragen
te vinden. We laten zien dat een neuraal model, dat effectief de heterogene informatie
geassocieerd met vragen gebruikt, beter werkt dan de inhoud-gebaseerde aanpakken
voor deze taak.
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