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a b s t r a c t 

We present a high-fidelity simulation model for dense suspensions of spherical and non-spherical parti- 

cles suspended in a Lattice–Boltzmann Method (LBM) based fluid. The non-spherical particles are com- 

posed of an arbitrary number of overlapping spheres of different sizes and arbitrary relative positions 

in the particle reference frame which stay fixed during the simulation. This approach allows to approxi- 

mate a wide range of rigid particle shapes. Fluid Structure Interactions (FSI) are realized using a hybrid 

of immersed-boundary methods and bounce-back schemes, that employs coupling coefficients dependent 

upon particle overlap with the fluid lattice, resulting in smooth hydrodynamic interactions when particles 

move over the lattice. Numerical lubrication breakdown is overcome by applying appropriate corrections 

for small inter-particle gaps and hydrodynamic interactions are resolved down to scales much smaller 

than the LBM lattice spacing. For improved numerical stability in the limit of stiff particle-particle in- 

teractions, a generalized- α method together with a dynamically refined time-step is used for rigid body 

dynamics. An unbounded shear flow with large shear rates is realized by splitting the computational do- 

main into multiple co-moving reference frames coupled through Galilean transformations of both fluid 

and particle phase. For fast simulations of hundreds of particles over physical times-spans of seconds, 

the LBM sub-model and FSI computations are accelerated on GPUs and MPI/OpenMP are used to paral- 

lelize the computation over networked/shared-memory resources. All these innovations together lead to a 

very powerful simulation environment for sheared dense suspensions, facilitating study of rheology close 

to the jamming limit. In this paper we present benchmark results and simulations of continuous and 

discontinuous shear-thickening of dense polydisperse frictional suspensions, demonstrating the accuracy 

and predictive power of the model over a large range of volume fractions of suspended particles and a 

large range of shear rates. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Shear thickening is the phenomenon in which the viscosity of a

suspension increases as a function of the shear rate or shear stress

imposed on the system. This is a commonly observed phenomenon

in dense suspensions [1–4] . Two realms of shear thickening exist,

continuous shear thickening(CST) and discontinuous shear thicken-

ing(DST). CST involves a gradual increase in the viscosity of the

suspensions with shear rate while DST entails an orders of magni-

tude increase in viscosity with small increments in shear rate. 
∗ Corresponding author. 

E-mail addresses: e.lorenz@electricant.com (E. Lorenz), v.sivadasan@uva.nl (V. 
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l  

s  

f  

s

https://doi.org/10.1016/j.compfluid.2018.03.056 

0045-7930/© 2018 Elsevier Ltd. All rights reserved. 
From recent experimental [5–8] , and computational [9–11] re-

ults, the emerging agreement is that the stress induced transition

f particle contacts from being lubricated and frictionless to being

rictional is the underlying mechanism behind shear thickening, as

riginally suggested by Huang et al. [12] . 

The first viable model that could successfully reproduce both

ontinuous and discontinuous shear thickening in the Stokes

egime was published by Mari et al. [10] , owing to the friction

odel introduced in their system that allows a transition be-

ween lubricated and frictional rheologies depending on a critical

oad. This model was recently validated experimentally [8] . John-

on et al. [13] presented a method to simulate shear thickening of

rictional particles in an LBM based fluid by varying the boundary

tiffness. 

https://doi.org/10.1016/j.compfluid.2018.03.056
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2018.03.056&domain=pdf
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In the model of Mari et al. [10] the fluid forces were approx-

mated as a combination of drag force and pairwise lubrication

nteractions. The fluid phase was not modeled explicitly in their

ork. Recently, Johnson et al. [13] used LBM to explicitly model

he fluid field and combined it with the Discrete Element Method

o simulate shear thickening as a consequence of system dilation.

his model was limited to low Reynold’s number flows, and lubri-

ation interactions were not resolved explicitly. Their simulations

ncluded the action of gravity, which according to Johnson et al.

eaves the possibility of a flow segregation dependent on the shear

ate or shear stress. 

The model proposed in this paper uses accurate hydrodynam-

cs from the particle scale down to scales much smaller than the

BM lattice spacing, owing to the advanced LBM fluid structure in-

eractions (proposed by Noble and Torczynski [14] ) and accurate

orrections to the lubrication forces when the inter-particle gaps

re smaller than the lattice spacing. We further improved numeri-

al stability through an adaptive refinement of particle timesteps

hen the inter-particle gaps are small and the lubrication and

ther inter-particle forces diverge. The model is able to simulate

olydisperse particle systems by sampling individual particle di-

meters from superpositions of normal distributions of particle

izes. The particles in the model can be spherical or any combi-

ation of overlapping spheres. This allows to generate and simu-

ate a wide range of particle shapes approximating typical particle

hapes found in real suspensions. The particles interact with each

ther using hydrodynamics and contact forces. The particle con-

acts involve normal and frictional (static and kinetic) forces. Lees–

dwards boundary conditions [15] , and their extension to multi-

le layered reference frames are used to simulate bulk behavior in

nbounded shear flow. The model is not limited to low Reynold’s

umber flows which allows to simulate and study inertial flow

egimes. Gravity is not considered in this model, so that its effects

an be excluded from the discussion of the mechanisms behind

hear thickening. 

. Models and methods 

.1. Fluid 

.1.1. Lattice Boltzmann Method (LBM) 

LBM [16–18] is a numerical method in which the Boltzmann dy-

amics of fluid particles is discretized in space and velocity space.

n the macroscopic limit it approximates the Navier–Stokes equa-

ions for viscous incompressible flow. Being rooted in kinetic the-

ry however, various interactions other than those found in ideal

ases can be incorporated in a natural way, making it possible to

imulate non-ideal gases, emulsions and a variety of other fluids.

elocity distributions can be modified and quantities can be eval-

ated locally which is highly beneficial in the realization of bound-

ry conditions at the surface of moving particles. 

LBM makes use of a regular grid of lattice nodes with a lat-

ice constant �x and a finite number of velocity vectors pointing

rom one node to its nearest or next-nearest neighbors . We use

 D3Q19 lattice [18] in this work. At each time-step, the particle

ensity f i = f i (x , t) at each node x is evolved according to: 

f i (x + e i �t, t + �t) = f i (x , t) + �(f ) + F i (1) 

here � is the collision operator used to reshuffle the velocities

t a node, and F i signifies the external forces (expressed in lattice

nits). In this work we use the LBGK collision operator that, us-

ng only one time-scale τ , relaxes the distributions f towards their

quilibrium values according to the theory by Bhatnagar et al. [19] :

(f ) = 

1 

τ
(f eq (u , ρ) − f (x , t)) (2)
here f eq ( u , ρ) corresponds to the equilibrium distribution and

he relaxation time τ can be related to the kinematic viscosity of

he fluid ν . We refer the reader to [18] for the details. As explained

n Section 2.8 , the fluid phase simulations are executed on GPUs.

sing single precision in GPUs however, has a few limitations as-

ociated with the reduced accuracy such as mass not being con-

erved and fluctuations in fluid-particle interaction forces due to

ocal instabilities at large density gradients. This is due to the poor

esolution in the representation of f i when single precision is used.

kordos [20] proposed a technique to improve the numerical ac-

uracy in this situation by rescaling the f i values as the difference

rom the zero velocity equilibrium case ( w i ) i.e h i = f i − w i . From

his, it follows that the LBGK equation ( Eq. (1) ) is translated to: 

 i (x + e i �t, t + �t) = h i (x , t) + �(h 

eq 
i 

− h i ) + F i (3) 

.2. Particles 

Particles are described as spheres or any combination of over-

apping spheres (see Fig. 1 ) to approximate other particle shapes

hat are found in experimental systems. The interactions between

articles (close to contact lubrication, particle contact, friction) are

lso modeled on this basis. 

.2.1. Particle-particle interactions 

Apart from far and mid-range hydrodynamic interactions me-

iated through the LBM fluid field, the interactions between the

articles include contact, frictional and explicit lubrication interac-

ions. 

ontact repulsion. If particle surfaces were perfectly smooth, lubri-

ation interactions diverging in the limit of small gaps between

wo particles would prevent contact. However, real surfaces have a

nite roughness and particles can make contact already at finite ef-

ective distances. It was recently found experimentally [8] that par-

icle contacts become frictional if the inter-particle forces, either a

esult of potential or dissipative interactions, exceed a critical force,

onfirming this hypothesis. Before this critical load is reached, par-

icles stay stabilized and well lubricated. 

Two particles in our model are considered in contact if their

nter-particle gap is smaller than a small contact layer thickness

f h cutoff = 0 . 1 μm mimicking surface roughness (see Fig. 2 ). We

ave run simulations with various cutoff values and found that the

hosen cutoffs are small enough to not impact the results through

n increase of the effective volume of the particles. On the other

and, the cutoffs are also sufficiently large to render the interac-

ion potentials soft enough for a stable numerical integration. The

ormal force F rep between the particles due to contact repulsion is

odelled as: 

 rep = 

{
−c (h −h cutoff ) 

2 

hh 2 
cutoff 

e h , h ≤ h cutoff 

0 otherwise 
(4) 

here c is the repulsion coefficient, h is the gap between the par-

icles, and e h is the connecting unit vector between the spheres.

n the limit h → 0 it diverges as ∼ h −1 preventing actual over-

ap of the particles. At h = h cutoff , F rep ( h cutoff) and its first deriva-

ive ∂ h F rep ( h cutoff) is zero. The latter is enforced in order to re-

lize a smooth onset of the repulsion, further improving the nu-

erical stability of the particle dynamics. Certainly in simulating

ery dense suspensions, such regularization to have a continuous

nd smooth onset of the repulsive force is required to obtain nu-

erically stable dynamics. In the case of more complex particles

uilt from multiple spheres, the repulsion is applied to each pair

f spheres of both particles. 
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Fig. 1. Snapshots of a system with (a) spherical particles (b) non-spherical parti- 

cles for φ = 0 . 5 , ˙ γ = 30 . 0 /s. The colors represent the absolute shear stress on the 

particles in lattice units. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 2. Illustration of a typical spherical particle in the model (not to scale), of ra- 

dius R i and contact interaction cutoff h cutoff and frictional interaction cutoff at h fric . 
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t  
riction force. Both static and sliding friction, are modeled in a

imilar fashion to Luding [21] . The idea is that once two particle’s

riction interaction layers overlap, a linear spring of length ξ mim-

cking static friction will be initialized between the closest surface

oints and updated using the relative tangential velocity of the two

urface points. Applying Coulomb’s law, we say that the maximum

tatic friction is F s ≤μs | F norm, fric |. If the amplitude of the spring

orce F spr = −kξ is smaller than the maximum possible static fric-

ion F s then the spring force is applied. If it exceeds F s , kinetic fric-

ion F k = μk | F norm , fric | is applied as a tangential force at the surface

oints. In case of kinetic friction, the static friction spring is not

roken, but its length is rescaled so that F spr = F k . This ensures a

mooth transition back to static friction. 

ritical load model. For particles in a suspension to interact fric-

ionally, it is necessary to overcome stabilizing forces between the

articles. It was found experimentally [8] that particles interact

rictionally only if the inter-particle forces exceed a critical force.

efore this critical load is reached, particles contacts remain lubri-

ated and do not interact through friction. 

In this work a minimal model of this mechanism is realized,

alled the Critical Load Model (CLM) [10] . If the normal force be-

ween two particle surfaces exceeds a critical load F CL , a frictional

ontact can be established. 

 norm , fric = 

{| F rep | − F CL if | F rep | ≥ F CL , 

0 otherwise . 
(5)

he resulting F norm, fric from this model is then used as the normal

orce for the calculation of the friction. Since the contact repulsion

s a potential interaction, a constant critical gap h fric can be derived

hat defines a friction layer around the particles (see Fig. 2 ). 

.3. Fluid-structure interaction 

Particles and fluid exchange forces at the surface of the parti-

les, using the Noble–Torczynski method [14] for fluid structure

nteraction. It can be seen as a hybrid of standard LBM bounce-

ack methods and immersed-boundary approaches. In the Noble–

orczynski method (NT) the fractional overlap ε of a particle with

 lattice node at x is used to calculate the particle-fluid interaction

s an interpolation between free collision and bounce-back at the

uid nodes. The collision operator in the Lattice–Boltzmann equa-

ion then reads 

i = 

[
1 −

∑ 

s 

B (εs , τ ) 

]
�BGK 

i + 

∑ 

s 

B (εs , τ )�s 
i (6)

here B is a function of the overlap εs with particle s . In this work,

e have used 

 (εs , τ ) = 

εs 

1 + 

1 −εs 

τ−0 . 5 

. (7)

he collision operator in case of full overlap with the particle reads

s 
i = f eq (ρ, U s ) − f i (x , t) − ( f eq 

−i 
(ρ, u ) − f −i (x , t)) (8)

rom this equation the exchanged momentum can be derived and

he force on the particle ’ s ’ at x then reads 

 s = 

�x 3 

�t 
B (εs ) 

∑ 

i 

�s 
i e i (9)

rom this, the total hydrodynamic force and torque on the particle

an be computed as a sum over all nodes x for which εs > 0. 

The fractional overlap εs is estimated using the assumption that

he radius of a sphere within a particle is larger than �x . This al-

ows to estimate the partial overlap of a sphere with the cubic lat-

ice node as an intersection of a plane (the particle surface) with
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Fig. 3. Normal force between approaching spheres in a fluid medium with sphere 

radius R = 8 μm and fluid viscosity η = 1 . 002 × 10 −3 Pa s at various gaps for dif- 

ferent lattice spacings ( �x ). The forces are normalized by the drag on an isolated 

sphere, F 0 = 6 πηRU n . The vertical lines indicate the corresponding h c . The result of 

the lack of application of the lubrication correction are shown, as the forces be- 

come constant at smaller gaps. With the application of the lubrication corrections, 

the simulation approximates the analytical solutions better. Analytical solutions to 

Stokes drag force at long gaps and lubrication interactions at short gaps (lim g → 0 ) 

are also shown. 

Fig. 4. Torque between two rotating spheres at various particles gaps in a fluid 

medium with sphere radius R = 8 μm and fluid viscosity η = 1 . 002 × 10 −3 Pa s at 

various gaps for different lattice spacings ( �x ). The torques are normalized by the 

torque on an isolates sphere, T 0 = 8 πηω R 3 . The vertical lines indicate the corre- 

sponding h c . The effects of the lack of application of the corrections are shown, as 

the torques becomes constant at smaller gaps. With corrections applied, the model 

approximates the analytical solution well for sufficiently small lattice spacings �x . 
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 cube (the lattice node). This is still a non-trivial calculation be-

ause of the many cases that need to be distinguished here and

hat make further assumptions necessary. A discussion of a validity

f these assumptions however would overlap with a discussion of

he shape and inner structure of a Lattice–Boltzmann node which

s undefined. The calculations of εs is done at every time step for

ll lattice nodes x and particles s and takes about 25% of the total

omputing time. Since multiple particles can overlap with a sin-

le LBM node, a list of particles overlapping with that node stored

ogether with their εs ( x ) and additional information such as local

article velocity v s ( x ) and distance to particle center x − r s that are

ecessary when total forces, torques and stresses are computed. 

The NT method has a number of advantages for simulations

f dense suspensions with stiff interactions, the need for consis-

ent lubrication corrections, and using a multiple Lees–Edwards

pproach explained in Section 2.6 . In the majority of works com-

ining LBM and rigid particles the momentum exchange method

y Ladd [22,23] and the methods proposed by Aidun et al. [24] are

pplied which are based on bouncing back probability density f ’s

t links that intersect the fluid-particle interface. In this case, the

nderlying binary stair-case representation of particles on the fluid

attice, i.e. ε being either 1 or 0, leads to peaks in the exchanged

omentum when a fluid node turns solid and vice versa [25] . In

his situation also the momentum from the removed or created

uid needs to be exchanged with the particle. In the stiff inter-

ction limit of dense suspensions in dynamical jamming situations

uch discontinuities would quickly lead to numerical stability prob-

ems. We also find that the lubrication breakdown using the NT

ethod is rather consistent, i.e. not dependent on the lattice posi-

ions of the two close particles and can therefore be corrected in

 much more consistent way, see Section 2.3.1 . The NT FSI is also

ore consistent than immersed-boundary methods which tend to

verestimate lubrication interactions depending on the lattice po-

ition of the particles (or mesh points in that case), see [26] . 

.3.1. Explicit lubrication corrections 

Below a certain threshold gap, the lubrication force calcu-

ated from LBM is no longer accurate, and tends to stay constant

27] (see Fig. 3 ). Using the explicit calculation of lubrication forces

28] , we can calculate corrections to the lubrication forces from

BM if the inter particle gap h is below a threshold gap h c . Similar

o but slightly improving over the lubrication corrections proposed

n [27] , we use the following form for normal lubrication force 

 

n 
lub = 6 πη

R 

2 
1 + R 

2 
2 

(R 1 + R 2 ) 2 
(h − h c ) 2 

hh 

2 
c 

U n · ˆ n , h ≤ h c (10) 

imilarly, the corrections to the tangential lubrication force for the

otational motion of a sphere past another [28] is expressed as 

 

t 
lub = 8 πηR 1 

β(4 + β) 

10(1 + β) 2 

(
log 

(
h 

h c 

)
−

(
h 

h c 
− 1 

))
U t · ˆ t , 

h ≤ h c (11) 

here β = R 2 /R 1 , R 1 , R 2 being particle radii. η is the fluid viscos-

ty. U n and U t corresponds to the normal and tangential relative

elocities of the particles at the closest surface points. ˆ n and 

ˆ t are

nit vectors in the corresponding normal and tangential directions.

These forms of lubrication correction are modified so that both,

heir values as well as their first derivative, are continuous func-

ions of the gap which contributes to the numerical stability of the

ime integration. In the range of small gaps, these corrections ap-

roximate analytical solutions well, as shown in Figs. 3 and 4 . 

In Fig. 3 , we compare the hydrodynamic normal force between

wo approaching spherical particles of radius R = 8 μm at various

nterparticle gaps for a set of lattice spacings ( �x ) to the analyt-

cal solutions to long and short range hydrodynamic interactions.
he vertical lines indicate the cutoff h c = 1�x . The hydrodynamic

orces plateauing without lubrication corrections is also shown in

he figure. With corrections applied, the interparticle forces ap-

roximate well the analytical solutions at smaller gaps. In the limit

f large gaps, hydrodynamic forces on the particles converge to the

tokes situation of a single particle dragged through a viscous fluid.

eviations can be attributed to the finite size of the periodic sim-

lation domain in which particles interact through many copies of

he other particle and themselves. 

In Fig. 4 , we compare the hydrodynamic torque between two

otating spheres ( ω = 100 rad/s) at different interparticle gaps for

ifferent lattice spacings ( �t ). In the long ranges, the torque on
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a rotating sphere is given by T Stokes = 8 πμR 3 ω, and in the short

ranges, the torque on particle 1 due to the lubrication interaction

between particle 1 and particle 2 is given by, 

T lub = 8 πηω R 

3 
1 

2 β

5(1 + β) 
log 

(
R 1 

h 

)
(12)

It is seen that the model approximates the analytical solutions for

large gaps, and in the short gaps the model is consistent with an-

alytical solution for small enough lattice spacings. 

2.4. Particle stresses 

The mean value of the stress σ over a body of volume V can be

calculated directly from the forces over the surface without solving

the equilibrium stress distribution inside the solid [29] In the sim-

ulations, the mean stresses inside a particle s due to hydrodynamic

interactions on its surface is estimated by a sum of the local stress

over all fluid nodes with a non-zero εs . 

〈 σi j,s 〉 (t) = 

1 

2 V s 

∑ 

x 

εs (F i (x , t) r j + F j (x , t) r i ) (13)

Where r = x − r s is the vector from the center of mass of the par-

ticle to the point of action of force. Because the virtual fluid inside

the particle is pinned to the movement of the solid matrix, the

stresses evaluated inside the particle are negligibly small. 

Similarly, but using a single term, mean stresses due to inter-

actions F ( su ) between particles s and particle u , such as lubrication

corrections, repulsion and friction, are evaluated as 

〈 σ (su ) 
i j,s 

〉 (t) = 

1 

2 V s 

(
F (su ) 

i 
(t) r (cs ) 

j 
+ F (su ) 

j 
(t) r (cs ) 

i 

)
with r ( cs ) being the point of action on the surface of particle s rel-

ative to the particle’s center of mass. 

2.5. Rigid body dynamics 

Since non-spherical particles are also modeled, we employ

a full rigid-body description of the dynamics of the particles

(see [30,31] for an introduction to rigid-body dynamics). The iner-

tia tensor I b of each particle in the reference frame of the particle’s

principle axes i, j , and k is computed as a pre-processing step by

first numerically evaluating 

I b ,i = 

∫ 
V 

ρ(r )(r 2 p, j + r 2 p,k ) d V (14)

with r p , < ijk > being a point in the particle reference frame and ρ( r )

being either ρsolid or 0 depending on whether r is inside or outside

the particle, respectively. 

The rotational state of a particle is represented using quater-

nions. This choice makes it necessary to derive rotation matrices

from quaternions in order to compute inertia tensors and rota-

tional states in the world frame, however, no numerical instabili-

ties or drift occurs that are associated with the singularities of the

rotation group SO(3) when using three angles to represent the ro-

tational state. 

Updates of the particle’s translational and rotational state are

performed using the explicit generalized- α method using the pa-

rameters proposed in Hulbert et al. [32] . The update is second-

order accurate and parameters are such that non-physical high-

frequency modes on the time-scale of the particle update are ef-

ficiently damped. 

The algorithm for the translational state is as follows. First, the

acceleration at the new time step t + �t is computed as 

r̈ (t + �t) = 

F /m − αm ̈

r (t) 

1 − αm 

(15)
dditionally, the acceleration is evaluated at two different times

etween t and t + �t . 

¨
 β = 

(
1 

2 

− β
)

r̈ (t) + β r̈ (t + �t) (16)

¨
 γ = (1 − γ ) ̈r (t) + γ r̈ (t + �t) (17)

Using these approximated accelerations, position and velocity

f the particle are updated following 

 (t + �t) = r (t) + �t ̇ r (t) + �t 2 a β (18)

˙ 
 (t + �t) = 

˙ r (t) + �ta γ (19)

The inter/extra-polation parameters are functions of a single

amping parameter λ. 

m 

= 

2 λ − 1 

1 + λ
(20)

= 

5 − 3 λ

(1 + λ) 2 (2 − λ) 
(21)

= 

3 

2 

− αm 

(22)

The update of the rotational state has the same structure. In it,

he inertia tensor plays the role of mass and its inverse in global

eference frame can be computed as 

 

−1 (t) = R (q (t)) · ( I b −1 · R 

T (q (t))) (23)

here q ( t ) is the quaternion describing the rotational state at time

 an R is the corresponding rotation matrix. 

The angular velocity ω and acceleration α can be calculated as

 = I −1 · L and α = I −1 · T , respectively, with L and T being the an-

ular momentum and torque. The rotation matrix R can be com-

uted from the quaternion representing the rotational state of the

article. 

.6. Multiple Lees Edwards reference frames 

Lees–Edwards boundary conditions are a common approach to

imulate sheared flow in quasi infinite systems and are therefore

he appropriate choice for studies of bulk rheological properties in

he absence of walls. Implementation of Lees–Edwards boundary

onditions in an LBM framework, however, introduces a limit on

he shear rates as the fluid velocity, in lattice units, is bound to

ow Mach numbers. As a result, either the system size in velocity

radient direction or the Reynolds numbers are limited. 

This limit can be shifted to N L times larger shear rates by

ecomposing the domain into N L Lees–Edwards layers in shear-

radient direction, each with their own reference frames where

he above mentioned constraints apply (see Fig. 5 ). These reference

rames are co-moving with the shear flow, with small velocities

n lattice units. At the interface of these domains, Galilei trans-

ormations are applied as proposed in Wagner et al. [33] for the

BM subsystem, and in Lorenz et al. [15] where it also has been

pplied to suspended particles. Because fluid–solid boundary con-

itions were applied to LBM probability densities ( f ) in [15] dur-

ng the streaming step, interpolation and transformations had to

e applied selectively to streamed f ’s depending on whether they

ould bounce back into their original reference frame or not. In

he current work, a node-local boundary condition is used and f ’s

an be streamed and transformed independently from fluid–solid

oundary conditions which simplifies the situation significantly.

n order to complete a fully periodic boundary setup with multi-

le Lees–Edwards reference frames, the top interface of uppermost

ayer is linked to the bottom of the lowermost layer. 
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Fig. 5. Lees Edwards Boundary conditions, with periodic copies moving past each 

other with their own reference frames. The individual layers are marked as L0, L1, 

L2 and L3. The local fluid velocities in the individual reference frames are shown. 
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Fig. 6. Normalized histograms of the particle substeps per fluid timestep in sim- 

ulations for three cases (a) only hydrodynamic forces, (b) hydrodynamic forces 

and contact forces, (c) hydrodynamic, contact and frictional forces, where φ = 0 . 5 , 

˙ γ = 10 3 s −1 . The Y axis has been normalized by the sample sizes of the respective 

cases. 
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.7. Adaptive time-step refinement 

At small gaps, the lubrication force and the contact forces be-

ween the particles diverge. In situations where shear stresses are

arge enough that particles overcome stabilizing interactions and

herefore inter-particle gaps become very small, this potentially

eads to numerical instabilities of the particle time integration. The

bvious solution is to decrease the time step. Feng et al. [34] pro-

osed to precompute a constant sub-cycling factor between fluid

nd particle timesteps, �t LBM 

and �t solid based on the critical

amping of a spring-damper system using the contact forces | F rep |.

ubrication and contact forces diverge as ∼ ˙ r /r and ∼ 1/ r lead-

ng to a non-trivial non-linear mixed-order ODE stability problem

hen combined with an explicit integration. Also, for dynamically

amming particle systems the interaction strength cannot be easily

redicted from the typical stresses. We therefore chose to dynam-

cally adapt the particle time-step �t solid based on an estimate of

he numerical stability of the integration. Doing so, time-steps are

arge when the stresses in the system are low and only become

mall when particles interact heavily as during jamming. There

s no limitation of the subcycling factor. This allows to simulate

lose to jammed systems. Of course, computational costs increase

n these situations. 

The dynamical subcycling is applied to particle dynamics and

he evaluation of all inter-particle forces including the lubrica-

ion corrections. Forces and torques from hydrodynamic interac-

ions through the fluid field, which have no divergence and change

ather smoothly on the fluid timescale �t LBM 

(see Section 2.3 ), are

stimated as a linear extrapolation using F hd and T hd evaluated at

he last two full fluid timesteps. Other simple predictor schemes

ave been tested without observing significant deviations and we

ound that the method used here results in smooth hydrodynamic

orces and torques. 

The subcycling factor is evaluated and applied globally (i.e. for

ll particles). Extensions of this scheme where an optimal timestep

s determined dynamically for each particle or particle pair are
ossible but would make synchronization of the particles neces-

ary which would result in increased overhead for handling and

ommunication in parallel simulations. 

In this work, adaptive refinement of particle timesteps is based

n Fourier “sensors” on the particles linear and rotational accelera-

ions. Fourier modes of acceleration of particles are tracked, and if

nsets of oscillations in the time signals of acceleration are found,

he particle timesteps are reduced or increased accordingly. Adap-

ation of the particle timesteps is done by observing simple esti-

ates of the first four high-frequency coefficients c ( k ) of a sim-

le discrete Fourier series using the last h max = 4 values of trans-

ational and rotational particle acceleration, a ( t ) and α( t ), which

eed to be stored and updated for each particle at each particle

ime step. The coefficients for translational accelerations are deter-

ined as 

 

a 
p (k ) = 

h max −1 ∑ 

h =0 

a p (t − h ) cos 

(
2 πkh 

h max 

)
(24)

nd in a similar way for the rotational accelerations αp . 

The maximum coefficient c max ( t ), which is determined over all

articles, wave numbers k = 1 .h max , and acceleration types a and

, is then used to set the new timestep according to 

t solid = 

(
c ceiling 

c max (t) 

)e 

�t. (25) 

n it, c ceiling defines the maximum tolerated Fourier coefficient. For

he simulations in this work, we find that c ceiling = 10 −8 (in simula-

ion units) results in a good compromise between fast integration

with large timesteps) and stability (small timesteps). The expo-

ent e in Eq. (25) defines how fast the timestep is changed. We

ound that e = 0 . 05 is an appropriate choice to adapt the timestep

uick enough to suppress numerical oscillations that build up in

ituations with stiff particle interactions on one hand, and slow

nough to prevent overshooting in this adaptive scheme on the

ther. 

In Fig. 6 , histograms of the subcycling factor ( s ) are shown for

hree different cases of particle-particle interactions. In the first

ase, we have only hydrodynamic and lubrication interactions be-

ween particles and no contact or friction. In this case, heavy par-

icle subcycling is observed, as the particles get closer because of

he lack of stabilizing forces. This large subcycling behavior res-

nates with the observations of Melrose et al. [35] , who proposed
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Table 1 

System parameters used for simulation. 

System dimensions 64 μm × 48 μm × 64 μm 

Particle size 8 μm (50%), 11.2 μm (50%) 

Particle standard deviation 0.1 μm 

Static friction coefficient ( μs ) 1.0 

Kinetic friction coefficient ( μk ) 1.0 

Contact interaction distance ( h cutoff) 0.1 μm 

Contact repulsion coefficient ( c ) 10 −16 Nm 

Critical Load ( F CL ) 0.2 nN 

Fluid Viscosity ( ηf ) 1.002 ·10 −3 Pa s 

Max. Strain 10 

�x LBM 1 μm 

Lubrication correction threshold gap ( h c ) 1 μm 
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f
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that there is no steady state numerical solution for a purely vis-

cous flow. This is because there is no other way for a gap between

particles to bear compressive load than to shrink, which leads to

increasingly smaller gaps, diverging lubrication interactions, and

an increase of the particle timestep subcycling. Because in flow-

ing systems the interactions between particle pairs (compressive,

tensile) will change during the evolution of the microstructure on

finite time-scales, typical particle gaps have a finite lower limit and

the subcycling stays finite. We also observed situations in which

the subcycling became so heavy that within finite computing time

we could not judge whether the system was still flowing or (phys-

ically) jammed. In the next case, where contact forces are added,

we observe that particle subcycling is significantly reduced as ex-

pected. Finally, when friction is also introduced into this system, it

is observed that the subcycling increases again as a consequence of

frictionally arrested particles, its associated dissipation, and conse-

quently smaller inter-particle gaps. 

2.8. Parallelization 

The simulation code is written in modern Fortran (F2008) and

parallelized using three different approaches. In shear-gradient di-

rection the computational domain is decomposed into subdomains

with their own reference frame as described in Section 2.6 that

are handled by one MPI process each. These MPI processes can

be distributed over a number of compute nodes. Galileian trans-

formations of the LBM and particle subsystems are applied during

the communication step. Communication envelope of the D3Q19

LBM subsystem is 1 �x wide while for the particle system it is cho-

sen such that all information is available for interaction of particle

pairs that lie across an interface. Within each subdomain (i.e. MPI

process) computation of the LBM subsystem including mapping of

the particles onto the lattice and FSI is carried out on GPGPU’s us-

ing OpenCL (through the FortranCL wrapper [36] ). Running multi-

ple MPI processes per compute node allows to use multiple GPU

cards on each node. The locality of LBM on a structured grid of

thousands to millions of nodes and the node-local FSI method (see

Section 2.3 ) is well suited for GPU computing, see e.g. [37] . For

pure single-phase fluid problems a speed-up of about 20 can be

achieved through OpenCL parallelization on a Nvidia GTX1080, in-

cluding all overhead such as host-GPU communication which takes

approximately 20% of the total execution time, compared to a simi-

lar implementation on one core of an Intel i7-4770K CPU. The com-

putations of particle-particle interactions and dynamics are dis-

tributed over multiple OpenMP threads on the host CPU using the

standard approach of spatially binning particles into grid nodes of

the size of at least the maximum interaction range (reducing the

N 

2 
p scaling of the many-body problem to N n N 

2 
pn with the total num-

ber of particles N p , the number of grid nodes N n , and the average

number of particles per grid node N pn ). The number of particles

per subdomain is too low (max a few hundred) and the interaction

neighborhood of moving particles is too unstructured to gain any

speedup from using GPUs for the particle subsystem. Also, most

of the computations on GPU (LBM, FSI) and CPU (particle interac-

tions, dynamics) can run in parallel this way. Naturally, the load

on the CPU scales with the momentary particle timestep subcy-

cling factor while the GPU load from the fluid subsystem with a

constant timestep stays practically constant, so in case of jammed

dense suspensions the load on CPU can increase far beyond the

GPU load. Since the subdomains do not change their size during

a simulation, inhomogeneous distributions of particles can poten-

tially lead to load imbalances between subdomains [38,39] . This

was not observed for the dense systems studied in this work. The

complexity of the physical system, adaptive numerical solvers and

the parallelization scheme results in various non-trivial dependen-
ies influencing parallel performance which will be discussed in a

uture publication. 

. Results 

.1. Spherical particles 

Simulations of shear thickening suspensions were performed on

 system 64 μm × 48 μm × 64 μm. The diameter of the particles

ere distributed in a binormal distribution with peaks at 8 μm and

1.2 μm, with a standard deviation of 0.1 μm. This distribution of

articles with a size ratio of 1.4 is commonly used in the literature

o avoid ordering and crystallization effects found in monomodal

istributions [10,40,41] . For simulating dense suspensions, the vol-

me fraction ( φ) is varied between 0.4 and 0.56, resulting in num-

er of particles in the system ranging between 180 and 250 de-

ending on the volume fraction. The shear rates are varied be-

ween 1 /s and 10 0 0 /s. The particles have a contact interaction

istance of 0.01 a ≈ 0.1 μm. The critical load value for friction was

et to 0.2 nN so as to have frictional contacts around a shear rate

f 10 /s for φ = 0 . 56 . The relevant simulation parameters are given

n Table 1 . 

We compared the viscosity at near zero shear rates against

he Krieger Dougherty prediction for zero-shear viscosity [42] for

pherical particles: 

r = 

(
1 − φ

φmax 

)−2 . 5 φmax 

(26)

here ηr is the relative viscosity and φmax is the maximum pack-

ng fraction. A maximum packing fraction of φmax = 0 . 646 was cal-

ulated for the bimodal distribution as shown by Dames et al. [43] ,

nstead of the random close packing φrcp 
max = 0 . 64 for monomodal

istributions. The results of the simulations match the Krieger–

ougherty predictions quite well (see Fig. 7 ). In the limit of small

, the Krieger–Dougherty relation as well as the numerical re-

ults converge to Einstein’s viscosity [44,45] ηr = 1 + 2 . 5 φ (data for

< 0.2 not shown). 

At lower shear rates, the system stays in a Newtonian flow

egime where the viscosity remains constant over the shear rates.

he system shear thickens at higher shear rates, as evident from

ig. 8 . For lower volume fractions, we observe a continuous in-

rease in the relative viscosities, signifying CST, and at higher vol-

me fractions, we observe orders of magnitude increase in rela-

ive viscosities over a small shear rate change, characteristic of DST.

hese results are in agreement with the results of Mari et al. [10] . 

.2. Non spherical particles 

Simulations of shear thickening were performed for non spher-

cal particles created by overlapping 5 spherical particles (see

ig. 1 ). The longest diameter of the non spherical particles adhere
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Fig. 7. Krieger Dougherty prediction vs. simulation results for φmax = 0 . 646 . The er- 

ror bars correspond to the oscillations in the viscosity timeseries of the individual 

simulations. 

Fig. 8. Relative viscosity ( ηr ) (time averaged) vs. Shear rate ( ̇ γ ) for different particle 

volume fractions ( φ). 
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Fig. 9. comparison of the relative viscosity vs. shear rate curves for spherical and 

non spherical particles. 
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o the particle size distribution used for the spherical particles in

ection 3.1 . All the other properties of the particles and the fluid

atches that of the spherical particle’s case. 

We observed that in the system of non spherical particles, shear

hickening is stronger for a given volume fraction compared to

hat of the spherical particle system. In Fig. 9 , we see that for

= 0 . 45 , 0 . 50 cases, the non spherical particle system has higher

elative viscosities compared to that of a spherical particle system

ith the same volume fraction. This increased shear thickening as-

ociated with non spherical particles has been reported before in

xperimental systems [46,47] as well. This could be attributed to

he lower jamming particle volume fractions that were observed

or non spherical particles in our system. A detailed analysis is the

opic of future work. 

. Conclusion 

We have successfully reproduced shear thickening by using La-

rangian particles in an LBM fluid. The particle phase uses accurate

ontact and frictional interactions to model particle-particle inter-

ction dynamics. Multiple spherical particles can be overlapped to

reate a wide range of particle shapes to approximate real non-
pherical particles in suspensions. A quaternion based description

f the particle dynamics is used to simulate the motion of non

pherical particles effectively. Explicit lubrication corrections are

pplied , and particle timestep sub-cycling is used to ensure nu-

erical stability and accuracy. Noble–Torczynsky method, which

vercomes the limitations of the Ladd’s method is used for the

uid structure interaction. Lubrication benchmarks for Noble Tor-

zynsky method is presented for the first time. Finally, shear sim-

lations were performed on both spherical and non spherical par-

icles and shear thickening was observed in both the cases. The

odel opens the possibility to explore shear thickening in differ-

nt systems by virtue of its efficiency, accuracy and robustness.

t is possible to add more interactions to the model (electrostatic,

agnetic) between the particles to simulate different types of sus-

ensions. These works are underway [48] and will be discussed in

he following publications. 
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