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Biopolymer gels such as fibrin and collagen networks are known to develop tensile axial stress when subject
to torsion. This negative normal stress is opposite to the classical Poynting effect observed for most elastic
solids including synthetic polymer gels, where torsion provokes a positive normal stress. As shown recently,
this anomalous behavior in fibrin gels depends on the open, porous network structure of biopolymer gels, which
facilitates interstitial fluid flow during shear and can be described by a phenomenological two-fluid model with
viscous coupling between network and solvent. Here we extend this model and develop a microscopic model for
the individual diagonal components of the stress tensor that determine the axial response of semiflexible polymer
hydrogels. This microscopic model predicts that the magnitude of these stress components depends inversely
on the characteristic strain for the onset of nonlinear shear stress, which we confirm experimentally by shear
rheometry on fibrin gels. Moreover, our model predicts a transient behavior of the normal stress, which is in
excellent agreement with the full time-dependent normal stress we measure.

DOLI: 10.1103/PhysRevE.97.032418

I. INTRODUCTION

In the early 1900s, Poynting demonstrated in a series of
experiments that most elastic materials elongate axially when
subject to torsion, as in the case of a twisted wire or elastic rod
[1,2]. Fundamentally, this Poynting effect is a manifestation of
nonlinear elasticity, since symmetry requires that elongation
also occurs for torsion of the opposite sign, unless the material
is chiral. Being a nonlinear effect, the degree of elongation
can be expected to vary initially quadratically in the torsional
strain, meaning that the effect tends to be weak unless the
strain is large. The Poynting effect is also commonly observed
in torsional rheometry of soft materials. This is illustrated
schematically in Fig. 1 for a polymer gel, where a positive
axial force F generally develops if the sample height is fixed.
Again, this normal stress is generally quadratic in strain and
weak except at large strain [3].

Biopolymer gels, such as those that occur naturally in living
cells and tissues, represent a class of materials that have been
studied extensively, both theoretically and experimentally,
particularly for their highly nonlinear elastic properties [4-8].
Such systems have been shown to exhibit, for instance, 10-fold
or more stress-stiffening when subject to even small strains as
low as 5-10%, which suggests similarly strong normal stress
effects. It was recently shown that normal stresses are, indeed,
anomalously large for a wide range of biopolymer gels [9,10].
But, more surprisingly, it was also shown that the sign of the
normal stress was opposite to that of synthetic polymer gels:
collagen, fibrin, and other biopolymer gels tend to contract
axially when subject to torsion. It was argued theoretically
in Refs. [9-11] that the negative sign of the observed normal
stress was the result of compressibility of the network.
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Perhaps counterintuitively, the measured axial force in
an experiment such as the one sketched in Fig. 1 is not a
direct measure of the diagonal axial stress component o, in
the stress tensor. There is an additional contribution due to
the azimuthal term o,, that arises from hoop stress in the
torsional geometry [12]. It is not generally possible to directly
measure individual diagonal stress components such as o, by
conventional rheometry. This is due to the fact that the diagonal
terms in the stress tensor also involve pressure, which can
vary within the sample. Strictly speaking, for incompressible
materials, this means that only normal stress differences, such
as Ny = o,y — 0,;, can be measured by an experiment such
as the one illustrated in Fig. 1. The first of these terms arises
from the curved azimuthal streamlines that give rise to hoop
stresses proportional to oy, in the (inward) radial direction. In
an incompressible medium, no radial displacement of the gel is
possible, and aradial pressure gradient develops to satisfy force
balance. The resulting excess pressure (over ambient pressure
at the radial boundary) gives rise to the positive contribution to
the thrust ' measured on the cone. In contrast, biopolymer gels
such as those of fibrin, with pore sizes in the micrometer range
[13—15], can expel interstitial fluid to relax pressure gradients
on experimentally relevant time scales, allowing the network
to contract on shearing [16,17]. For torsional rheology, this
effectively leaves the pure axial o,; to dominate the measured
thrust [9-11]. The thrust is thus expected to change sign
from positive to negative over a time scale governed by the
porosity of the network that allows it to move relative to the
incompressible solvent.

We recently reported a direct observation of this predicted
change of sign of the normal stress from positive to negative

©2018 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.97.032418&domain=pdf&date_stamp=2018-03-28
https://doi.org/10.1103/PhysRevE.97.032418

M. VAHABI et al.

PHYSICAL REVIEW E 97, 032418 (2018)

Cone-plate

Rheometer :
%]

FIG. 1. Schematic representation of a semiflexible polymer hy-
drogel in a cone-plate rheometer and of the two-fluids model, which
allows for an inward, radial displacement of the network (u: red
inward arrows) relative to the radially stationary solvent on the
application of a shear stress by rotation of the cone. This geometry
also defines our coordinates, with x corresponding to the azimuthal
(shear) direction and z the axial (gradient) direction.

in both fibrin networks and synthetic polyacrylamide (PAAm)
hydrogels [18]. Moreover, the time scale for this change in
sign was shown to depend on the pore size and the elasticity
of the network, the solvent viscosity, and the gap size of the
rheometer. Networks of the blood-clotting protein fibrin were
used as model hydrogels, in part because their pore size can be
controllably adjusted through the polymerization temperature.
The smaller the pore size, the stronger the viscous coupling
between the network and the solvent and the longer the charac-
teristic time for reversal of normal stress, which was observed
in these experiments. The relative strength of the normal to
shear stresses was also shown to be larger in magnitude at a
given level of strain than for conventional hydrogels such as
PA Am. This represents yet another manifestation of the highly
nonlinear elastic properties of biopolymer gels. In contrast with
rubber, where normal and shear stresses become comparable
only at strains of order unity, both affine-thermal [9,10] and
athermal models [11,16,19] of semiflexible polymer networks
predict that this occurs at small strains y ~ 10% or less.
This threshold coincides with the onset strain ), of nonlinear
stiffening in the shear stress o,,. Specifically, it is predicted
that [9,11]
~ l’ (1)
Yo
where this ratio saturates to a value of order 1 for y 2 vy,
consistent with measurements on fibrin gels shown in Fig. 2.
In Ref. [18] we also developed a phenomenological model
for the time dependence of the normal stress, based on the so
called two-fluid model of an elastic network that is viscously
coupled to a fluid in which the network is embedded [20-23].
The model in Ref. [18] should be generally applicable to
flexible or semiflexible polymer gels with a solvent. We showed
that this model could account for the observed dependence of
the normal stress on porosity and sample geometry for both
flexible PAAm and semiflexible fibrin gels. Here, we expand
on the model presented in Ref. [18], with full derivations
of both transient and time-dependent steady-state evolution
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FIG. 2. (a) Magnitude of the normal stress oy = Zf>, as mea-

sured by the rheometer from the thrust F (see Fig. 1), normalized by
the shear stress oy is plotted versus the shear stress for a fibrin gel
polymerized at 22°C (G' = 963 Pa, v = 1 Hz). Following an initial
approximately linear regime (inset), a saturation of the ratio |oy /0| to
a value of order unity is found. (b) The dimensionless ratio of the axial
stress o, and shear stress o, plotted vs. shear stress (arbitrary units),
as predicted for a semiflexible gel in the limit of large persistence
length compared with the network mesh size (see Sec. III) [9,10].

of the normal stress. Moreover, we calculate the relevant
terms in the stress tensor for semiflexible polymer networks,
thereby identifying phenomenological parameters in the prior
model. We also present experimental data from fibrin networks
polymerized under different conditions for comparison with
our model. We find good agreement in both transient and
steady-state regimes.

The paper is organized as follows: Section II describes
the two-fluid model. Section III describes the calculation of
different stress components used in the model. Section IV
explains the experimental methodology. In Sec. V, we present
and discuss our results.

II. TWO-FLUID MODEL AND STRESS
RELAXATION IN GELS

When a viscoelastic gel is sheared in a cone and plate
rheometer, tension tends to build up along the streamlines,
giving rise to tensile circumferential (hoop) stress 6. Given
the curved nature of these streamlines, this stress leads to
inward-directed radial forces on the network. By symmetry,
hoop stress and, more generally, diagonal elastic contributions
to the stress tensor must be even in the applied strain, since they
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are independent of the direction of rotation of the rheometer.
Thus, to lowest order, a quadratic dependence on shear strain
y is expected. We define this force (per unit volume) to be

1 2
fr=——>~—-AGy~, 2

where G is the shear modulus and the coefficient A > 0 is
dimensionless. The minus sign and the inverse dependence on
the radius r account for the direction, as well as the curvature
dependence. In an incompressible medium, in which net radial
motion is not possible, this radial force must be balanced by
a pressure that builds up toward a maximum along the axis of
rotation. In the case of a free surface, as opposed to a rheometer
plate, this gives rise to the well-known rod-climbing behavior
[3]. In the case of arheometer, the pressure results in a positive,
compressive thrust F' in the axial direction. By contrast, if the
network is compressible, as for multicomponent systems, then
such stresses may relax by inward displacement of the network,
as sketched in Fig. 1.

In order to model the relaxation of hoop stress in a hydrogel,
we use the minimal two-fluid model [20-23]. Considering
their biphasic nature, both synthetic hydrogels and biopolymer
gels can be represented by this phenomenological model, in
which the network displacement u and solvent velocity v are
viscously coupled.

The equation for the net force per unit volume acting on the
fluid in the noninertial limit is

0=nV%—VP T —ii), 3)

where 7 is the solvent viscosity and P is the pressure. The
corresponding equation for the net force on the network is

0=GV%i+(G+MV-(V-i)+T@—i), (4

where the shear modulus G and Lamé coefficient A are assumed
to be of the same order. The viscous coupling constant I is
expected to be of order /&2 for a network with mesh or pore
size £. This can be estimated by considering the drag on a total
length ~¢ of polymer in a volume ~&* moving with relative
velocity U — u in a free-draining approximation.

If the volume fraction of the network is small, as it is for
most biopolymer gels (~107?), then to a good approximation
the moving network displaces a negligible volume of fluid and
the fluid phase remains incompressible, with V - ¥ = 0. Thus,
we can assume that the hoop stress & drives the network to
move radially, against a solvent that is stationary in the radial
direction. In Fig. 1, i (red inward arrows) shows an inward,
radial contraction of the network relative to the solvent on
shearing the gel placed between the gap of the cone-plate
rheometer. In this case, with no-slip boundary conditions on the
network, the radial component u, of the network displacement
gives rise to stress and a restoring force that can be estimated
from Eq. (4). For a rheometer gap of thickness d < r, such
as in a cone-plane rheometer, the axial gradients in Eq. (4)
should be dominant, leading to an elastic contribution to
the restoring force of order Gu,/d>. Thus, for a cone-plate
rheometer with small cone angle «, in whichd = rtanoe < r,
the restoring force can be estimated as Ku,/r?, where the

phenomenological coefficient

tan (o)
Together with the viscous drag on the network moving relative
to a solvent that is stationary in the radial direction, the net
radial component of the force per unit volume acting on the
network can be written as

K 1_ .
O:——zu,——a—r'u,, (6)
r r
which combines with Egs. (2) and (3) to give
. K 1.,
V.P =Tu, = ——u, — —AGy~", @)
r r

where the strain y is independent of r for a cone-plate
geometry. Corrections to Eq. (7), fromboth Vi and V - (V - it)
terms in Eq. (4), are smaller by of order d /r?. The characteristic
relaxation time implicit in Eq. (7) is then
nd’
(Gg?)
For a cone-plate rheometer such as we use here, this suggests
a non-single-exponential relaxation, since d varies with r,
resulting in a range of relaxation times (see Sec. IIB). For a
parallel-plate rheometer, a single-exponential relaxation may

be expected. However, since the strain in this case is not
uniform in r, the force in Eq. (2) will cease to vary as 1/r.

~

®)

A. Incompressible or strong coupling limit

First, we consider the case of an incompressible medium,
corresponding to the limit of strong coupling I' — oo and
u, — 0. Here, the network effectively inherits the incompress-
ibility of the solvent and

1
V,P=—-5. 9)
r

This pressure gradient will lead to a positive normal stress
(thrust) contribution measured by the rheometer. Equation (9)
can be integrated to give

P(R)— P(r)= —¢6log (?), (10)

where P(R) is the pressure at the sample boundary, i.e.,
atmospheric pressure Py. The excess pressure,

AP = P(r) — P, (11)

can be integrated to give a positive (upward) contribution to
the thrust F,

R R R 7TR2
f 2nrAP dr = 271&/ r log (—)dr =—=0a. (12)
0 0 r 2

Adding this to the direct contribution
—nR%0.. (13)

from o, we find that the normal stress, as reported by a cone-
plate rheometer

2F

R 9

oN =
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is given by
oy = Ni = 00x — 05 = (Ac — A)GY?,  (15)
implying that
& =0y +0.. ~ AGY?, (16)

where A = (A, + A;). In Eq. (15) we have assumed not only
incompressibility of the medium but also the standard relation-
ship between the thrust F' and the first normal stress difference
Ni = 0y — 05, [12], valid for incompressible materials and a
cone-plate rheometer. We have used this assumption to identify
6 in Eq. (9). Although this relationship between F and N,
is a standard result for the cone-plate geometry, it is worth
noting that this can change, depending on the shape of the
sample-air interface or with finite surface tension [12]. In the
next section, we also show how this relationship can be violated
for compressible networks, such as hydrogels. Nevertheless,
because this relationship is so standard in rheology, with
rheometers usually reporting the thrust F as Nj, we will use
Eq. (14) to express the normal stress in the following sections.
Importantly, however, for multi-component systems such as
hydrogels, this should be considered an effective or apparent
Ny, i.e., as reported by a theometer, which may or may not be
equal to the actual stress difference Ny = o, — 0.

As noted, the various normal stress components are ex-
pected to have leading y? behavior, while the shear modulus
0y; = Gy in the linear (shear) elastic regime. Thus, we

J

u(r) = —

AGop?r[—K?cos(2tw) + K? — 2 Kr?w sin(2tw) + 42 r* w?]

define
0 = AyGy? and o.. = A.Gy>. (17)

Usually, o, is of order but larger than o, in magnitude, due
to the increasing alignment of fibers into the shear direction
with increasing strain [24]. As defined, both stress components
are strictly positive (tensile). Thus, we expect that A, 2> A,
and N; > 0 [25]. For semiflexible gels, we expect A, = A, ~
1/y9, based on the prior low-frequency model [9,10], where
yo represents the onset strain for nonlinear elasticity, which
is typically of order 10% for biopolymer networks. These
expectations, however, are based on the assumption of affine
deformation, which may not be valid for some stiff polymer
gels [8,16].

B. Compressible limit of hydrogels

In the limit of long times ¢ > t in Eq. (8) and low
frequencies wt < 1, u, — 0 in Eq. (7). Here A P vanishes
and the apparent N| measured is that of Refs. [9,10],

2F

7 R?
For intermediate times and frequencies, we solve Eq. (7) for
u,(t) with y(t) = 7 sin(wt). The net elastic force per volume
on a network element must be balanced by its drag through the
solvent, which sets up a pressure gradient in the solvent. Impor-
tantly, in spite of the nonlinear dependence on strain, Eq. (18)
remains a linear equation in u,, albeit inhomogeneous. The
long-time, intermediate frequency steady-state (ss) solution to
this is given by

=oy = —20.. = —2A.Gy". (18)

Using this and V, P = I'u, we find

AG0372 2 2.4 2 : -1
P = TA cos(2tw) log(K? + 4T r*w?) — 2sin(2tw) tan

where g(#) is a constant of integration with respect to r,
although a function of ¢, which is determined by P(R) = Py
as above. After a further integration of AP = P(r) — Py, as
in Eq. (12), and combining with Eq. (13), we find the steady
state

oY = —2A.G7?sin’(wt)

+ AGp*[AcosQwt) + BsinQwr)],  (21)

where
1
A=——[2tan"'(1 + 2y/w1)
8wt
+2tan (1 — 2/w7) — 7 + dor] (22)
and

1
B =—1log(l +4w*t?). (23)
8wt

Figure 3 shows the parameters —.A and B versus wt. Both of
these dimensionless coefficients vanish in the low frequency

2(K3 +4T2Kr4w?)

19)

2I'r?w ; 20
X )} + g(), (20)

(

or fully compressible limit, leaving only the first (axial stress)
term on the right-hand side of Eq. (21).

In addition to the steady-state solution for u,(¢), there is
also a transient contribution u"”(¢), which can be found by

0.50"
-A
B
0.10}
0.05/
0.01+
0.1 0.5 1 5 10

wTt

FIG. 3. Plot of —A from Eq. (22) and B from Eq. (23) vs wr.
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choosing a homogeneous solution of Eq. (7) such that u,(t) =
u @) +u(@)=0atr =0:
52
W) = GV (24)

2K (1 + 3r4,77)

This transient is most relevgmt to the case where its characteris-
tic relaxation time 7 ~ rR' is large compared with the period

of oscillation ~1. Thus we neglect the second term in the
denominator of Eq (24) to find

AGy7p?
U () ~ %e_r%t, (25)
from which we determine
AGop?

v, P® — [, ~ — et (26)

2r

and the transient contribution to oy

(tr) r_. t _t
AG())/ E1 —— ) +e -
T
0.78
| t
~ —AGyp-exp| —191| — . 27
2 T

where Ei(x) is the exponential integral function. As can be seen

either from t ~ which depends on the gap d, or from the
time dependence 0% éq (26), there is no single relaxation time.
Thus, o ,(\f ? can be well approximated by a stretched exponential
response. The final approximation in Eq. (27) is valid to within
less than 2% until the transient has decayed to less than 2% of
its initial value.

The general expression for oy is given by the sum of
Eqgs. (21) and (27). For an incompressible system, Eq. (15)
is recovered for u,(t) = u®(t) + u™@(t) as v — oo. In the
limit of low frequency and long times, the steady-state solution
reduces to the fully compressible limit of Eq. (18).

III. CALCULATION OF STRESS COMPONENTS
FOR SEMIFLEXIBLE GELS

In the model above, the thrust F measured on the top plate of
the rheometer depends on the leading-order, ~y? dependence
of o, and o,,. We calculate these for semiflexible polymer
networks within the affine approximation, in which the stress
arises from the longitudinal compliance of polymer segments.
For an inextensible chain, the entropic response comes from
the thermal bending fluctuations of the filament [5,6,8,26]. Itis
often useful to consider the limit of large persistence length £,
that is much larger than the length of segments between cross-
links, £, which we assume to be constant. Perhaps surprisingly,
even for £ <« £, the longitudinal response can be dominated
by the transverse thermal fluctuations. In this limit, the filament
is nearly straight, with only small transverse fluctuations [27].
Reconstituted fibrin networks constitute a prominent example,
having typical persistence lengths of tens of xm, much larger
than the um scale cross-link distance [28].

In the presence of longitudinal tension f acting on a
segment of length £, the thermal average contraction of the

segment is given by [26]

(Al — kT 1 28)
= K7T2 = n2 + ¢a
where « = kT £, is the bending rigidity and
e
= 29
¢ = ) (29)

is a dimensionless measure of force. In the absence of tension
f, the contraction reduces to (Af)g = %, which also repre-
sents the full extension or compliance in the limit of high force.
This scaling can be anticipated by noting that the mean-square
transverse fluctuations (u%) should be proportional to kT
and inversely proportional to «. Thus, (u2) ~ €2/¢ p- These
longitudinal fluctuations give rise to (Af),, thus we expect
(AL ~ £/L,.

For a finite longitudinal tension f, the extension of the chain
segment (toward full extension (Af)() is given by

2 ¢
o, gy OO

SL(f) = (AL)o — (AL) =

The sum above can be evaluated to give
2

3e(f) = 2 (o), (3D
p
where
72¢ — 3m/P coth(m/¢) + 3
L(¢) = G . (32)
¢
From the inverse function I'!, the force-extension curve is
K’ w24 »
f©e) = £—2¢ = g2 F e 8 ). (33)

In practice, this inversion needs to be done numerically. One
can, however, determine this term by term in an expansion
about §¢ =0, e.g., as

8¢ s0\*
= ] — =) .., 34
f=m 7 +M2< 6) 34
where the one-dimensional Young’s modulus [26]
_Kﬁpn“ 1 _90/(6,, (35)
M= T~ &
and
PEAT A —I"(0) 5400k £2
po=—72 (= (36)
£ [T7(0)] 70

Here it is important to notice that the longitudinal strain §¢/¢
on each segment is bounded above by £/(6£,), since § <
(AL)o. Thus, in the semiflexible limit £ < £,, nonlinearities
are expected to appear at small strains of order £/£,,. Using a
variant of the Kirkwood formula for the stress, o, in terms of
multiple segments [24],

1
o =32 11" (37)
B

032418-5



M. VAHABI et al.

PHYSICAL REVIEW E 97, 032418 (2018)

where V is the sample volume and the sum is over all segments
B. The segment lengths are |7 #)| and the orientations are
#P)_The (tensile) force in segment f is £ ®. Since this force
f® =#® £® is directed along the segment, the stress can
be expressed as [29,30]

oij = p{fninj), (38)

where p is the total length of polymer per unit volume and (- - - )
represents an average over all segment orientations, which
we represent as 71 = (sin(6) cos(¢), cos() sin(¢), cos(d)) in
terms of the usual polar and azimuthal angles. Simple volume
preserving shear strain y in the x direction with gradient in
the z direction can be represented by the deformation gradient
tensor

1
A=|o0 (39)
0

S = O
— O

To linear order in the strain, the relative segment ex-
tension 6¢/¢ = sin(f)cos(f)cos(¢p)y. To this order, f =
11 sin(@) cos(f) cos(¢p)y in Eq. (38) and

1
0. = piy (cos(8)? sin(0)* cos(¢)?) = sPmy. (40

By symmetry, corrections to this will only involve odd powers
of strain y.

The various normal stress components can be calculated
similarly [9,10], e.g., with

2 2
O, = %<cos(t9)21"1 <anp sin(6) cos(0) cos(¢)y>>.
(41)

where by symmetry only even terms in the expansion of '~}
can contribute. Thus, the general form of the nonzero terms
involves the average

(n2[n,n.1*") = (cos(9)*[sin(8) cos(d) cos(@)y1*"),  (42)

where m = 1,2,3, .. .. The corresponding averages

(ni[nxnz]zm> (43)

contributing to oy, are identical by symmetry. Thus, we can
see that, in the extreme semiflexible limit £ < £,

Oxx = Ozz- (44)
The lowest-order contribution to these is

Orx = 0, = piiay?{cos(9)*[sin(B) cos(d) cos(¢)]*)

1

= — 45
35p/w (45)

_ 180¢ 1806, - 2.
49¢
where G = pu/15.

In addition to the contributions to o, and o, above,
which come from the intrinsically nonlinear stretching re-
sponse of semiflexible chains and are dominant in the limit of
¢ K £, there are additional terms arising from purely geo-
metric nonlinearities [6,31,32]. For the deformation gradient
above, the relative extension §¢/¢ is determined from the

deformed 7’ according to

s0/0 =i —1
= y sin(0) cos(6) cos(¢)
+ 1y (sin®(0) cos*(9) sin*(¢) + cos*(0)) - - . (46)

From this [6,31,32],

n'n! kw? n E,, -,
xx = —»__F -
o p< i e — (7’1 =1

1
- 13 3 47
105/))/( w1+ 3u2) 47
_ 180¢, 195 Gy,
49¢ 105

. n;’n;’xnzrfl nzép
W =P\ e ¢

1
= — 2 2
105”7 2Qu1 + 2u2)
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and

That is,

and
A=2A.+1 (28

above, where yy is the strain at the onset on nonlinearity,
defined as the point at which do,./dy increases by a factor of
~?2 above its linear value, G. Figure 4 shows the steady-state
(SS) in Eq. (21) versus shear stress for various values of wt,
where we have used the specific predictions in Eqgs. (50) and
(51) for yp = 0.1.
Interestingly, we find that the Lodge-Meissner relation

N =0y (52)

still holds for the various stress terms calculated above in the
incompressible limit [25]. Although this relation is derived
for flexible polymer systems, it is expected to be valid even
for the present model of semiflexible polymers, since this
model assumes both purely central force (polymer stretching)
response and purely affine deformation.

032418-6



NORMAL STRESSES IN SEMIFLEXIBLE POLYMER HYDROGELS

PHYSICAL REVIEW E 97, 032418 (2018)

N

FIG. 4. A series of Lissajous figures for wt = 0.1, 1, 10. The
shear stress in Eq. (40) has been normalized by its maximum, G,
and the steady-state oy in Eq. (21) has been normalized by G2 /.
Here we have also used Egs. (50) and (51) to calculate A, and A for
Yo = 0.1

IV. EXPERIMENTAL

Fibrin gels were polymerized from human plasma fib-
rinogen and «-thrombin. Fibrin was polymerized in a buffer
containing 150 mM NaCl, 20 mM HEPES, and 5 mM CaCl,, at
pH 7.4. Fibrinogen stock solution was diluted in the assembly
buffer to reach a final concentration of 8 mg/ml. Polymer-
ization was initiated by the addition of 0.5 U/ml thrombin.
The samples were then transferred to the rheometer geometry
where the polymerization reaction occurred at a specified
temperature (22°C, 27°C, or 37°C) for at least 12 h. All
chemicals were bought from Sigma Aldrich (Zwijndrecht, The
Netherlands); fibrinogen and thrombin were purchased from
Enzyme Research Laboratories (Swansea, United Kingdom).

We used an MCR 302 rheometer (Anton Paar, Graz, Austria)
with stainless steel cone-plate geometry (40-mm diameter, 2°)
for all normal force measurements. A solvent trap was used
to prevent evaporation during the measurement, in addition
to a small layer of low viscosity mineral oil added around
the sample. During polymerization, a small shear oscillation
(amplitude 0.1% and frequency 1 Hz) was applied to monitor
the evolution of the storage modulus. The unprocessed, time-
dependent normal force response to an applied shear was
recorded using an oscilloscope Tectronix DPO 3014 plugged
to the analog outputs of the rheometer. The applied stress was
800 Pa and the shearing frequency varied from 0.001 to 7 Hz.
To obtain the differential modulus K’ as a function of applied
shear strain, we used a MCR 501 rheometer with a 40 mm, 1°
cone-plate geometry and applied a stepwise increasing shear
stress with a superimposed oscillatory strain with amplitude
10% of the constant shear level.

V. RESULTS AND DISCUSSION

The model presented above predicts a transient response
in the normal stress at the beginning of the shearing process.
We test this by measuring the full time dependence of oy, as
determined by the thrust F', according to Eq. (14), as shown in
Fig. 5. InFig. 5(a), a constant shear stress is applied, whereas in
Fig. 5(b) we show the transient normal stress response to an 0s-
cillatory shear stress. The red line shows the experimental data,

-800 o

fibrin data
stretched exponential: m=4.15
-1000 : : -
5 10 15 20
t(s)
-200 -350
® =
A, -400
- =,
= 300 &
&
= -400 |
e
-500 1
— fibrin data
stretched exponential: 7=6.62
-600 : : : :
0 20 40 60 80 100

—=a&— fibrin data

7=6.62

stretched exponential:

-700 : : '
-400 -200 0 200 400

os(Pa)

FIG. 5. Fibrin gels polymerized at 22°C. (a) The red line shows
the normal stress relaxation versus time for a constant shear stress.
The blue line is a stretched exponential fit to the data, which yields the
relaxation time 7 = 4.15 s. (b) The red line shows the normal stress
versus time for an oscillatory shear stress with frequency v = 0.3 Hz.
The blue line is the fit using Eq. (27), which yields the relaxation time
T = 6.62 s. The inset zooms in on the steady-state response. (c) The
same data shown in (b) plotted as normal stress versus shear stress.

and the blue line is the fit using Eq. (27). As predicted by the
theory, in both panels, the normal stress decays until itreaches a
steady state, where the fitted decay constants are very compara-
ble between the experiments with the constant shear stress and
the oscillatory shear stress. In Fig. 5(c) the data of Fig. 5(b) are
replotted, with oy as a function of shear stress instead of time.
This representation (also known as Lissajous curve) allows us
to have a better perspective of the initial transient behavior
found in both the experimental data and the model.

Changing the polymerization temperature of the fibrin gels
can change the mesh size of the network and therefore influence
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FIG. 6. Normal stress response (blue square symbols) of a fibrin gel polymerized at 27°C to an oscillating shear stress (dashed line) for
different frequencies v versus time. The fit (red line) according to Eqs. (21)—(23) is also shown where the fitting parameters are 24 and A. In
these equations the shear modulus G is independently obtained from the rheology data. The data shown at v > 0.1 Hz represent averages with
standard deviations obtained by averaging over 34 cycles to compensate for the low sampling frequency of the rheometer. [Data in (a), (d), and

(h) from Ref. [18].]

the characteristic time constant 7 according to Eq. (8). From
the results in Ref. [18], fibrin gels polymerized at 22°C and
27°C are expected to have time constants 7 of around 5 and
12 s, respectively. The latter is especially interesting, since the
frequency (1/t ~ 0.08 Hz) associated with this characteristic
time is in the middle of frequency range accessible with
our setup (approximately 0.001 to 1 Hz). This allows us to
probe the behavior of the gels at frequencies above and below
the characteristic frequency. The normal stress response to
oscillatory shear at different frequencies is plotted for these
gels in Fig. 6 (blue squares), together with the applied shear
stress (black dashed line) and the corresponding fits of the
steady-state oscillatory normal stress [Eq. (21), red line] as
functions of time. Here the shear modulus G is measured
independently from the shear stress at small strain. Hence the
only fitting parameters are 2A. and A. We use a common
relaxation time v = 26.9 s for all data sets at 27°C. This is
obtained by first fitting the data sets with t as fitting parameter
(together with 2A, and A). Then the average is calculated of the
values of T over the frequency range where T shows sensitivity
to the frequency. Finally, this average relaxation time is used
as a constant when the data sets are fitted again (Fig. 6).
Qualitatively, when the frequency of the applied oscillatory
shear stress increases, the amplitude of the normal stress signal
decreases, together with the average value of the normal stress.
This is in agreement with Fig. 4, which shows the theoretical
signals for different values of wt. The fits follow this trend.
Perhaps the agreement between experimental data and the
theoretical predictions plotted in Fig. 4 is easier to spot in
Fig. 7(a) where the normal stress response from Fig. 6 (blue
square symbols) is plotted versus shear stress. As clearly
seen in the figures, the Lissajous curves change shape as
the frequency of the applied shear stress is increased. For
oscillation periods longer than t (low frequencies), the normal
stress decreases with increasing shear stress, demonstrating
contractile behavior under shear. In contrast, for oscillation

periods shorter than t (high frequencies), the normal stress
increases with increasing shear stress, demonstrating extensile
behavior.

Figure 7(b) shows the normal stress response for a fibrin
gel polymerized this time at 22°C. Although the modulus G of
the gel does not change significantly, the mesh size of the gel
is larger when the gel is polymerized at a lower temperature
and hence the characteristic time scale t is expected to be
shorter (and the characteristic frequency higher). This means
that if both gels are sheared at the same frequency, then they
are expected to show different Lissajous shapes. Indeed, the
Lissajous curve of the 27°C gel sheared at v = 0.01 Hz is
similar to the Lissajous curve of the 22°C gel sheared at
v = 0.1 Hz. We observe excellent agreement between the data
and the model over the entire range of applied oscillation
frequencies both for fibrin gels polymerized at 22°C and 27°C.

In Fig. 8(a), the resulting fitting parameters 2A., A and
shear modulus G are plotted as a function of frequency for a
27°C gel. The first of these parameters 2A, is insensitive to the
frequency of the oscillation, as expected from the model. The
parameter A is also insensitive to frequencies v > 1072, The
observed deviation in A for lower frequencies is to be expected,
since the normal stress here is expected to be dominated by the
axial stress o, which corresponds to the first term in Eq. (21).
Equivalently, both .4 and B vanish in the low-frequency limit,
as can be seen in Fig. 3. Thus, the fitting becomes increasingly
independent of A at low frequency, making the values of A
unreliable there. In practice, for v < 1072, the fits in Fig. 7(a)
would be largely unchanged using the nearly constant values
of A obtained for v > 1072, As a further test of our model,
we note that the relative values of the parameters 2A, and
A are roughly consistent with the prediction A = 2A, + 1,
particularly in the regime v > 1072, where both can be ob-
tained reliably. This prediction is a consequence of the model
in Sec. I and does not depend on the specific stress calculations
in Sec. III.
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FIG. 7. [(a)-(h)] Normal stress response (blue square symbols) of fibrin gels polymerized at 27°C for different shearing frequencies versus
shear stress. The fit (red solid line) according to Eqgs. (21)—(23) is also shown. The data are the same as in Fig. 6. [Data in (a), (d) and (h) from
Ref. [18].] [(1)—(1)] Normal stress response (blue square symbols) of a fibrin gels polymerized at 22°C for different shear stress frequencies versus
shear stress. The fit (red solid line) according to Egs. (21)—(23) is also shown where the fitting parameters are 24, and A. The characteristic
time t for this gel is shorter (r = 10.17 s) than for the gel in (a), such that similar “butterfly shapes” are found at a higher frequency. The data
shown at v > 0.1 Hz represent averages with standard deviations obtained by averaging over 34 cycles to compensate for the low sampling

frequency of the rheometer.

In order to test the predictions of the semiflexible model in
Sec. III, we note that the values of 2A, and A are expected to
vary with the onset strain y4, at which nonlinearity in the shear
response appears. In Fig. 8(a), we see that 2A, ~ 22, which
implies a value of yy >~ 0.06 according to Eq. (50). To verify
if this is in agreement with experiments, we show in Fig. 8(b)
the differential or tangent storage modulus K = do/dy of a
fibrin gel polymerized at 27°C. The arrow indicates yy =~ 0.06,
which is in good agreement with the onset of nonlinearity in K .

Thus, we find very good agreement overall with the main
predictions of our model in Secs. II and III. These predic-
tions are, strictly speaking, derived in the low strain regime,
corresponding to linear shear elasticity. We note that our
experimental results in Figs. 6 and 7 were measured at a
strain amplitude near 20%, as indicated by the dashed line in
Fig. 8(b). This is a level of strain below the point at which the
response becomes strongly nonlinear: the differential modulus
at y >~ 20% is within approximately a factor of 2 of its linear
value. In practice, it is difficult to measure normal stress
accurately at lower strains over the full frequency range we
study here, since such stress varies quadratically with strain:
At a strain level indicated by the arrow in Fig. 8(b), the normal
stresses would already be approximately a factor of 10 smaller,
which would significantly reduce our ability to accurately
probe the time dependence shown in Fig. 7. Nevertheless, our
results here provide significant support for both our general

model of normal stresses in porous hydrogels in Sec. II, as
well as the specific predictions in Sec. III of the various stress
components for semiflexible polymer gels.

VI. CONCLUSIONS

Here we have presented an extended derivation of the
phenomenological model for normal stress relaxation that was
introduced in Ref. [18]. In the present work, we have also
given a derivation of the key phenomenological parameters
in the earlier model. We have done this for the specific
case of semiflexible polymer networks [5,6,26]. While the
phenomenological model presented in Sec. II should be more
generally applicable to two-component gels, the derivation in
Sec. III is limited to networks of semiflexible chains with
persistence length £, of order or larger than the mesh size
& of the network. Moreover, our derivation in Sec. III assumes
that the network deforms affinely.

Our experimental results for fibrin gels are consistent with
the phenomenological model in Sec. II, as well as the more
specific predictions of the stress components in Sec. III. Our
calculation of stresses in Sec. III shows that the phenomenolog-
ical parameters A and A, should depend on the network but not
on the frequency of oscillation. Importantly, our experiments
demonstrate a nearly frequency-independent value of A, even
though this was allowed to be a free parameter in the fits for
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FIG. 8. (a) Fitting parameters 2A, and A versus frequency for a
fibrin gel polymerized at 27°C. The inset shows the shear modulus
versus frequency, measured independently by rheology. (b) Differ-
ential storage modulus K’ as a function of applied shear strain for
a fibrin gel polymerized at 27°C. The arrow indicates the onset of
nonlinearity at yp = 6.0%, calculated using Eq. (50). The dashed line
corresponds to an applied shear stress of 800 Pa, which is the applied
stress in Figs. 6 and 7.

various frequencies v, ranging from ~1073 to 1 Hz. While
some variation in fit values for A is observed at low frequencies
<1072, this is a range where the normal stress becomes
insensitive to A, as can be seen from Eq. (21) and the fact
that both .4 and B decrease at low frequency wt < 1 (Fig. 3).
In this low-frequency regime, the Lissajous curves of normal
vs. shear stress in Fig. 7 reverse from concave up to concave
down. Thus, the relaxation time t in Eq. (8) is expected to
govern the sign of the apparent normal stress, independent of
the microscopic details, including polymer flexibility.

The basic mechanism determining the sign of normal stress
is the porosity and relative motion of network and solvent, as
sketched in Fig. 1. Qualitatively, the torsion of the rheometer

tends to squeeze out solvent and drive the network radially
inward, as the sketch suggests. This is similar to other processes
of syneresis, in which solvent can be expelled from a gel. But, it
is important to note that our model does not suggest or require
the macroscopic separation of solvent and network. In fact,
with fixed boundary conditions of the network to the rheometer
surfaces, only a small displacement of order the gap size d or
smaller is expected. This is consistent with the experimental
observation that no solvent is irreversibly expelled in the course
of an oscillatory shear. In principle, this mechanism of local
relative motion of solvent and network can apply to any two-
component gel with network and solvent. In practice, however,
the relaxation time 7 can become very long for small pores,
making the gel effectively behave as incompressible single-
component systems.

Finally, it is worth noting the distinction between the
phenomenology of a negative or inverse Poynting effect and
the sign of N;. The Poynting effect refers to the elongation and
corresponding axial compressive stress in a system subject to
torsion. In the rheology of single-component polymer systems,
for instance, this is regularly observed in the form of rod
climbing or the Weissenberg effect [24] and can be directly
attributed to a positive (first) normal stress difference Ny =
Oxx — 0. But, this interpretation assumes an incompressible
material. As shown in Ref. [9], a wide range of biopolymer gels
exhibit an inverse Poynting effect with tensile axial force. It
was argued that this was due, in part, to the two-component
nature of such hydrogels. This was confirmed in Ref. [18]
for fibrin gels, where it was also shown that even PAAm
gels can exhibit an inverse Poynting effect on long enough
time scales. However, both of these systems were shown to
exhibit a positive or conventional Poynting effect on short time
scales, where the systems effectively become incompressible,
due to the viscous coupling of solvent and gel. This behavior
is consistent with a strictly positive normal stress difference
Nj = o,y — 0,;. This begs the question as to whether N| =
Oxx — 07z < 01s possible.
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