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ARTICLE

Bond percolation in coloured and multiplex
networks
Ivan Kryven 1

Percolation in complex networks is a process that mimics network degradation and a tool that

reveals peculiarities of the network structure. During the course of percolation, the emergent

properties of networks undergo non-trivial transformations, which include a phase transition

in the connectivity, and in some special cases, multiple phase transitions. Such global

transformations are caused by only subtle changes in the degree distribution, which locally

describe the network. Here we establish a generic analytic theory that describes how

structure and sizes of all connected components in the network are affected by simple and

colour-dependent bond percolations. This theory predicts locations of the phase transitions,

existence of wide critical regimes that do not vanish in the thermodynamic limit, and a

phenomenon of colour switching in small components. These results may be used to design

percolation-like processes, optimise network response to percolation, and detect subtle

signals preceding network collapse.
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One of the richest tools for exploring properties of complex
networks is probing these networks by randomly
removing links. This process is called percolation, and on

many occasions percolation has shaped our understanding of
physical and social phenomena1. Naturally, percolation is related
to network resilience. This connection was exploited, for instance,
in studies on communication, transportation and supply
networks2–5. Percolation has defined the modern view on disease
epidemics2,6–9, as well as on other spreading processes10–12.
Percolation is instrumental in material science, where the
gelation13–16 and jamming17,18 have been both connected to this
process.

It is known that during percolation, complex networks
undergo a series of non-trivial transformations that include
splitting of connected components and criticality in the global
connectivity5,19–22. Even the simplest models that define net-
works solely by their degree distribution (the configuration
models) do also feature these phenomena. In many studies, this
observation justified the use of the configuration model as the
null-model, which one would compare against any real network,
in order to reveal presence of trends that are, or are not,
explainable by the degree distribution alone.

In the edge-coloured configuration model, also known as the
network of networks21 or multiplex23, the edges are categorised
into different layers or colours. This distinction leads to a more
realistic representation of complex networks. Indeed, most of
real networks do feature different types of interactions: che-
mical bonds, communication channels, social contacts between
infected individuals, among other examples, all require a par-
tition of the edges into discrete categories9,23–26. Furthermore, a
whole world of possibilities unfolds when the number of col-
ours is virtually unlimited: different edge colours may encode
all combinations of one interaction occurring between different
types of nodes, as was proposed in the assortative mixing
model27, or one type of interaction with discrete strengths28. In
modular networks, interactions within each community can
also be represented with a unique colour. In contrast to uni-
coloured networks29, less is known about how percolation
happens in coloured networks. For instance, presence of mul-
tiple phase transitions has been reported20,21,23, but no com-
plete theory could explain their nature nor predict locations
where these phase transitions occur. It has been observed that
negative correlation in the degree distribution may lead to
multiple phase transitions23.

This paper demonstrates that in order to explain percolation
in coloured networks, one has to study not only the giant
component but also the rest of the system. In fact, the tail
asymptote for the sizes of connected components already covers
sufficient amount of information. By building upon this result,
we establish universal criteria of phase transitions for two per-
colation processes: simple bond percolation, which removes
every edge with equal probability, and the colour-dependent
bond percolation, in which edges of different colours have dif-
ferent probability to be removed. This theory detects multiple
phase transitions, if such occur, and in the case of colour-
dependent percolation, the theory yields a manifold containing
all critical points. Besides critical points, the theory also predicts
existence of wide critical intervals that do not vanish in infinite
systems and colour switching that occurs in small connected
components during percolation.

Results
Connected components in random networks. In conventional
configuration model, see Fig. 1a, one starts with a set of nodes

that bear half edges as defined by the degree distribution. These
half edges are then joined randomly, so that a pair of half edges
belonging to different nodes becomes an edge. By treating any
configuration of such matchings as equiprobable we can then
ask various questions about the relationship between the degree
distribution (the only parameter of the model) and emergent
properties of the network. The question of characterising sizes
of connected components often arise in theoretical and applied
studies. Newman et al.19 observed that in configuration net-
works, the size distribution of connected components can be
found numerically, and these ideas have been later formalised
into an analytical theory30 (see the Methods section for a brief
summary). Interesting developments of the configuration
model can be obtained by constraining the configurations with
extra requirements. For example, by fixing the clustering
coefficient31, number of triangles32 or adding directionality to
edges33. In edge-coloured configuration model, edges are
labelled with an arbitrary number of colours, see Fig. 1b. That is
to say, we assign labels 1, 2, …, N to the half edges and then
constrain the configurations of edges to join only the matching
colours (see Fig. 1b). Network models that accommodate edges
of different types, also known as multilayer networks, are at the
core of contemporary network science as they feature better
predictions34. As a demonstration, Supplementary Note 1 dis-
cuses several examples of popular network problems that can be
non-trivially mapped to the edge-coloured configuration model.
In the same time, the edge-coloured configuration model fea-
tures a richer spectrum of behaviour that is not observed in
unicoloured networks. For instance, cascade events my occur
under strong notion of connectivity22,34–36. There are many
studies that focus on important special cases, and apply the
multiplex formalism to explain phenomena in empirical
data25,35,37–40. However, the theoretical aspects are less devel-
oped in these studies as they scatter between special cases to
explain empirical observations rather than to develop a single
universal theory.

The current paper presents a concise analytical theory for sizes
of connected components. In this theory N can be an arbitrarily
large number, and the key equations are presented in terms of
easy-to-use matrix algebra expressions. Surprisingly, even though
the input for the edge-coloured configuration model is a
multivariate degree distribution, for most of the results it suffices
to know only the first mixed moments of this distribution, which
practically means that one can easily characterise the size
distribution of connected components in networks with thou-
sands of colours.

Asymptotic theory for edge-coloured configuration model.
More formally, suppose that every edge is assigned one of N
colours, so that a randomly chosen node bears k1 edges
of colour one, k2 edges of colour two, and so on. A state of a
node is parametrised by a vector of colour counts k= (k1, …,
kN), see Fig. 1c. Let u(k) be the probability that a randomly
chosen node has state k. The expected value of function f(k)
with respect to probability distribution u(k), is defined by the
following sum:

E½f ðkÞ� :¼
X
k�0

f ðkÞuðkÞ: ð1Þ

For most of the results derived in this paper it is
enough to know a relatively small portion of information that
describes u(k), namely, this information is contained in μ0, M
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and Ti as defined via expectations of u(k) in the following way:

μ0 ¼ ðE½k1�; E½k2�; ¼ ; E½kN �Þ>; ð2Þ

Mi;j ¼
E½kikj�
E½kj�

� δi;j; i; j ¼ 1; ¼ ; N; ð3Þ

ðTiÞj;l ¼
E½kikjkl�
E½ki�

� E½kikj�E½kikl�
E½ki�2

; i; j; l ¼ 1; ¼ ; N: ð4Þ

In this work, we use weak connectivity notion as the working
definition of a connected component. This means that two nodes
are considered to be connected if there is a path that joins them
and this path may combine any colours. For example, in Fig. 1b
we have two connected components. Note, there are several other
ways to define a connected component, all of which lead to a
different asymptotic theory and percolation properties, for
example: strong, in-, and out-components19, colour-avoiding
components38 and mutually dependent components21,22,35,36. In
our previous work33, the formal expression for the size
distribution of connected components w(n) is derived by applying
Joyal’s theory of species,

wðnÞ ¼
X

k1 þ ¼ þ kN ¼ n� 1

ki � 0

eD � u � u�k11 � ¼ � u�kNN

� �
ðkÞ;

ð5Þ

where operations f � g and f �k denote, respectively, the N-
dimensional convolution product and the convolution power33.
The interpretation of Eqs. (3) and (4) and the definition of the
auxiliary funciton eD is given in the Methods section. Although
the Eq. (5) is mathematically robust, it cannot be practically
computed even when N is moderately large due to severe
computational complexity of O(nN log n). This issue can be
surpassed by deriving (see the Methods section) the tail
asymptote of Eq. (5) for arbitrary number of colours N and
non-scale free degree distribution:

w1ðnÞ ¼ C1n
�3=2e�C2n; n � 1; ð6Þ

where coefficients C1 > 0, C2 ≥ 0 are defined in terms of μ0, M and
Ti (the exact expressions are given in the Methods section). Here,

C2 � 0 implies exponentially rapid decrease of the asymptote;
close-to-zero values of C2 are associated with transient scale-free
behaviour that is eventually overrun by an exponentially fast
decrease, and C2= 0, triggers a scale-free behaviour. In fact, as
shown in the Methods section, the scale-free form occurs only
when the following criterion holds true:

v 2 ker½M � I�; and v
jvj> 0; ð7Þ

where jvj ¼Pi vi: This is the necessary and sufficient condition
for criticality. Recall that ker[A] denotes all vectors v for which
Av= 0. Eq. (7) is the N-colour generalisation to the famous
Molloy and Reed criterion41. Indeed by setting N= 1 one
recovers E½k21� � 2E½k1� ¼ 0.

We will now discuss the inner structure of the components. Let
a randomly selected component of size n has vi edges of colour i.
We found that the vector of colour fractions f= (f1, f2, …, fN),
fi :¼ vi

n�1 is distributed according to the N-variate Gaussian
distribution:

P½f jn� ¼ N f ; m;
1
n
Σ

� �
; n � 1; ð8Þ

where the expressions for the mean value vector and the
covariance matrix are known functions of M and Ti given in
the Methods section.

Despite being so short, Eqs. (6)–(8) together constitute a very
rich theoretical result, and most of the remaining text of the paper
is devoted to discussing the implications of these equations to
network science as well as applications to different types of
percolation. Note that all three of these equations are universal:
they do not depend on a specific degree distribution and are
suitable when working with analytical distributions as well as the
empirical ones. So far, similar universality has only been known
to hold in unicoloured networks19,30,42. A very small portion of
information that is encoded in the degree distribution, that is μ0,
M and Ti, is important when deriving the asymptotic emergent
properties. Moreover, the larger is a connected component, the
more it “forgets” about the exact shape of the degree distribution,
yet, some information is transmitted to the higher levels of the
hierarchy without any loss at all. This information is condensed
into parameters m, C1 and C2. Furthermore, the mean colour
fraction m does not depend on component size: the colour
fractions fluctuate around the same mean value in all finite
components.

1 432

a b

k1

k2

k3
k4

c

k = (k1,k2,k3,k4)

Fig. 1 The concept of edge-coloured configuration model. a The configuration model with unicoloured edges19: any configuration of edges that matches all
pairs of half-edges produces a valid network. b Edge-coloured configuration model: valid configurations have to link matching pairs of colours. In this
example, N= 4 colours are used as indicated by the colour palette, although the methodology of this paper allows N to be an arbitrary number. c The
configuration of a randomly chosen node is a vector of colour counts
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Eqs. (6)–(8) also provide a powerful tool for analysis in the
context of evolving networks. In this case, one has to provide the
trajectory for an evolving degree distribution. This trajectory may
be empirical or driven by a known mechanism. An important
example of such a evolution mechanism is a random removal of
edges also known as the percolation process. In the course of this
process, the parameters that define Eqs. (6)–(8) also evolve, which
may lead to interesting dynamics. For instance the network
becomes critical every time when C2 vanishes during the
evolution of the process. Figure 2 gives a schematic representation
for several such scenarios and the next section introduces
analytical equations for evolving parameters of Eqs. (6)–(8) as
driven by two types of percolation processes. When the degree
distribution is altered as a consequence of edge removal, colour
fractions m may also change. In the Discussion section we
provide several examples where m features an unexpected
switching behaviour.

Finally, it needs to be mentioned that the giant component
itself is an exception from the general trend featured by finite
components: it has a different distribution of colour fractions, and
unlike in the case of finite components, the whole degree
distribution becomes important.

Simple bond percolation. As shown in Eq. ( 7), there exists a
class of degree distributions for which C2= 0 and therefore the
asymptote (6) is scale-free. We call these degree distributions
critical. Let us investigate a simple process that continuously
changes the degree distribution in such a way that the latter
traverses though this critical class. See Fig. 2 for a few conceptual
illustrations of how such evolution may look like.

We first consider a process that thinners the network by
randomly removing edges with probability 1− p, or equivalently,
by keeping edges with probability p, which is independent of the
edge colour. As shown in the Methods section, such removal of
edges affects the degree distribution so that it becomes
characterised by a new triple μ′0;M

′; T ′
i that depends on p:

μ′0 ¼ pμ0; ð9Þ

M′ ¼ pM; ð10Þ

T ′
i

� �
j;l¼ p2ðT iÞj;l þ pð1� pÞMj;iδj;l: ð11Þ

By plugging M′ into the general criticality criterion (7) one
obtains the following p-dependent criterion: the edge-coloured
network features the critical behaviour at p= pc ∈ (0, 1] if there is
vector v for which,

v 2 ker½pcM � I�; and v
jvj � 0: ð12Þ

An alternative way of looking at Eq. (12) is reformulating this
criterion as an eigenvalue problem. Eq. (12) is satisfied at pc= λ−1

if and only if all of the following conditions hold true:

1. (λ, v) is an eigenpair of M,
2. λ > 1,
3. v is non-negative when normalised, i.e., v

jvj � 0.

Note, that if M is not primitive, Eq. (12) may have multiple
solutions pc.

Colour-dependent percolation and critical manifolds. We will
now consider the case when the probability p ¼
ðp1; p2; ¼ ; pNÞ> is a vector instead of a scalar. In this more

general setting, pi are the probabilities that i-coloured edge is not
removed, so that we have a colour-dependent percolation. Such
situation has a clear interpretation: edges of different type may
have different susceptibility to damage, or resistance to infection
transition. In the Methods section we show that the colour-
dependent percolation with parameter p affects the degree dis-
tribution in the following fashion:

μ′0 ¼ diagfpgμ0; ð13Þ

M′ ¼ diagfpgM; ð14Þ

T ′
i ¼ diagfpgT idiagfpg þ diagfpgdiagf1� pgdiagfM1;j; ¼ ; MN;jg:

ð15Þ
By plugging M′ into Eq. (7) one obtains the criterion for colour-
dependent percolation: edge-coloured network features the cri-
tical behaviour at 0 < p < 1 if and only if

v 2 ker½diagfpgM � I�; and v
jvj � 0: ð16Þ

The latter criterion can be viewed as a parameter equation for a
critical manifold placed in an N-dimensional space, and, unlike in
the case of simple percolation, one cannot reduce criterion (16) to
an eigenvalue problem. In the Discussion section we present a few
examples of critical manifolds that have been computed
numerically using criterion (16). The other asymptotic properties
derived in this work, as for instance the size distribution
asymptote (6) and the distribution of colour fractions (8), can be
readily computed by plugging expressions (13)–(15) in these
equations.

It is important to mention that criticality criteria (7), (12) and
(16) contribute to the series of findings that exist in the literature.
Note that these criteria provide necessary and sufficient
conditions for criticality. If one is interested only in the necessary
condition then it is sufficient to check if the corresponding
determinant vanishes. Namely, the necessary condition for
criticality (as follows from Eq. (7)) is then given by:

detðM � IÞ ¼ 0: ð17Þ

This equation has also been derived in ref. 43 (Eq. (11)). The
other link with previous works emerges if we assume that M is
primitive, then (12) reduces to:

pc ¼ ρðMÞ�1; ð18Þ

where ρ(⋅) denotes the spectral radius. This equation has been
also derived in ref. 44 (Eq. (27)) and independently in ref. 23 (Eq.
( 7)). WhenM is not primitive, then there is an elementary matrix
that transforms M to the block diagonal form, in which case, one
may study the blocks separately with Eq. (18). In ref. 36 the
authors also use a similar concept to the critical manifolds
introduced in Eq. (16) to study cascades of failures on
interdependent networks with two colours (N= 2). In Supple-
mentary Note 1, several other extensions of the configuration
model are reformulated in such a way that the current theory can
be applied to these generalisations as well. Most importantly,
these include: directed edge-coloured networks (see also Supple-
mentary Figure 1), multi-graphs, multiplex networks with edge
overlap, and node-labelled networks24,45,46.

Hierarchy of critical points and secondary phase transitions. By
excluding some of the colours, one may define stronger notions of
connectivities. Any non-empty subset S ⊂ {1,…,N} gives rise to a
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valid definition of a path, and all possibilities collected together
comprise a power set Pf1; ¼ ; Ngnf;g, i.e. the set of all subsets.
Similar considerations were explored in colour-avoiding perco-
lation38. This power set features a natural hierarchy as defined by
the inclusion relation “⊂”, and if S1 ⊂ S2 then the criticality
associated to this colour subsets are strictly ordered pS2<pS1 . The
criterion (12) can be readily adjusted to detect criticalities under
S-connectivity notion. It is enough to replace M by

diagfxSgM diag fxSg; ð19Þ

where xS is the indicator vector for colour subset S. In this way,
one has means of identifying all critical points pS and all colour
subsets that correspond to them. Although, recovering all pS
requires solving 2N− 1 eigenvalue problems as defined by Eq.
(19), much can be said about how pS are distributed when M is a
diagonal-dominant matrix. In this case, the critical points are
grouped into batches, and the locations of this batches are given
by the Gershgorin circle theorem: each critical point pS belongs to
at least one of the following intervals:

maxðMi;i þ ri; 1Þ�1;maxðMi;i � ri; 1Þ�1
h i

; ri ¼
X
j≠i

Mi;j; i ¼ 1; ¼ ; N:

ð20Þ

The latter relation shows that there is a “downward causation
effect”: the mutual criticality of many colours sets the boundary
on when the criticality of any subset of this colours can occur.
Since diagonal dominance of matrix M corresponds to a highly
modular structure of the network, we may conclude that the
secondary critical points in such networks are not uniformly
distributed but appear in groups.

The giant component and the average component size. The
node-size of the giant component gnode is the probability that a
randomly sampled node belongs to the giant component. This
quantity is often simply called the size of the giant component
and used as a measure of connectedness in sparse networks. As
shown in the Methods section, the node-size of giant component
can be written in terms of expectations E½�� of the degree dis-
tribution:

gnode ¼ 1� E½sk�; s ¼ ðs1; s2; ¼ ; sNÞ>; ð21Þ

where elements of vector s are defined by an implicit relation,

si ¼
E kis

k�ei
� 	
E½ki�

; i ¼ 1; ¼ ; N; ð22Þ

and ei are the standard basis vectors. In a similar fashion, the
edge-size of the giant component (the probability that a randomly

sampled edge of colour i is a part of the giant component) is given
by gi ¼ 1� s2i ; g ¼ ðg1; ¼ ; gNÞ. By weighting this vector with

the total fractions of coloured edges ci ¼ E½ki�=
PN
j¼1

E½kj�; one

obtains the vector of colour fractions in the giant component,

v� ¼ ðv�1 ; v�2 ; ¼ ; v�NÞ; v�i ¼
gici
gTc

; ð23Þ

which is the giant-component analog of vector m introduced in
Eq. (8). Since the giant component is infinite by definition, v* is
deterministic and does not feature fluctations.

The weight-average size of finite connected components wavg ¼
E½n2�
E½n� is given by:

wavg ¼
s>D½I � XðsÞ��1s

1� gnode
þ 1; ð24Þ

where D ¼ diagfE½k1�; ¼ ;E½kN �g and X(s) is a matrix function
with the following elements

Xi;jðsÞ ¼
E½ðkikj � δi;jkiÞsk�ei�ej �

E½ki�
; i; j ¼ 1; ¼ ;N: ð25Þ

When subjected to the bond percolation, gnode and wavg

become functions of the percolation parameter p.

gnodeðpÞ ¼ 1� E½ðpðsp � 1Þ þ 1Þk�; ð26Þ

where

ðspÞi ¼
E kiðpðsp � 1Þ þ 1Þk�ei
h i

E½ki�
; i ¼ 1; ¼ ;N; ð27Þ

and

wavgðpÞ ¼
sTpD½p�1I � Xðpðsp � 1Þ þ 1Þ��1sp

1� gnodeðpÞ
þ 1: ð28Þ

Physical systems that go through a phase transition, as spin
glasses for example, feature a universal behaviour around critical
points. Similar universality has also been shown to hold in critical
networks during percolation47. We also notice that at p= pc,
when the network is critical, wavg(p) diverges to infinity.
Moreover, as shown in the Methods section, when the giant

C2>0

C2>0

u(k,1)

u(k,p)

u(k,pc)

C2=0u(k,0)

C2>0

C2>0

u(k,1)
u(k,pc)

C2=0

u(k,0)

C2>0

C2>0

u(k,1)

C2=0

u(k,0)

a b c

Fig. 2 Evolution trajectories of the degree distribution during edge removal. An example of a scenario when the network: a becomes critical once along the
trajectory, b becomes critical at three disjoint points, and c becomes critical on a continuous interval of the trajectory
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component emerges, this singularity is universally of type 1
ðpc�pÞ:

lim
p!p�c

wavgðpÞ
pc � p

¼ Oð1Þ: ð29Þ

In the case of colour-dependent percolation, when p is a vector,
it is enough to replace p in Eqs (26)–(28) with diag{p}:

gnodeðpÞ ¼ 1� E½ðdiagfpgðsp � 1Þ þ 1Þk�; ð30Þ

where

ðspÞi ¼
E kiðdiagfpgðsp � 1Þ þ 1Þk�ei
h i

E½ki�
; i ¼ 1; ¼ ;N; ð31Þ

and

wavgðpÞ ¼
s>p D½diagfpg�1I � Xðdiagfpgðsp � 1Þ þ 1Þ��1sp

1� gnodeðpÞ
þ 1:

ð32Þ

We therefore see that the whole degree distribution contributes
to the giant component size and its evolution during percolation.
Equation (26) has been also derived in refs. 23,43 and (28)
generalises a similar relation for unicoloured networks16 to the
case of arbitrary N. The Methods section presents derivations for
Eqs. (21)–(32).

Discussion
In this section, we compare the asymptotic theory against sto-
chastic simulations on a few examples of generated networks.
These examples are defined by simple analytical degree dis-
tributions for more transparent explanation. That said, the theory
is also suitable and computationally feasible for any empirical
degree distribution of arbitrary dimensionality. Consider a con-
figuration model with three colours that is defined by

uðkÞ ¼ C Poissð2k1 þ 3k2 þ 4k3; 3Þ; k≠0; ð33Þ

where Poissðk; λÞ :¼ e�λ λk

k! is the Poisson mass density function
and C ensures the appropriate normalisation. This expression for
the degree distribution was chosen since it features non-zero
mixed moments, which in turn means that there are many nodes
that bear edges of different colours. From Eqs. (3), (4) we obtain
matrices μ0, M, T1, T2 and T3, which completely define the
asymptotical properties of the finite components in the network.
These matrices are then plugged into Eq. (6) to obtain the
asymptote of the size distribution of connected components:

w1ðnÞ ¼ 0:7992n�3=2e�0:00043n: ð34Þ

Figure 3a compares this asymptote to the size distribution
obtained from simulations. In accordance with small theoretical
value of C2= 0.00043, this asymptote appears to be almost scale-
free. The network is very close to the critical point, however, one
cannot assess if the network is just below or just above the phase
transition by simply looking at the asymptote. Since M is a pri-
mitive matrix, we can safely apply the simplified test (18): the
network is below its critical point since ρ(M)−1 < 1. As Fig. 3a
illustrates, simple bond percolation with p= 0.9 and p= 0.8 gives
a progressively faster decreasing size distribution.

The colour fractions in the finite components settle down on
an uneven proportion. By applying Eq. (8), we find that

connected components have mean colour fractions as given by:
m1= 0.19, m2= 0.74 and m3= 0.7. The covariance matrix of the
colour fraction distribution (8), features negative pair correlations
and vanishes when n is large:

Σ ¼ 1
n

0:22 �0:20 �0:02

�0:20 0:25 �0:05

�0:02 �0:05 0:07

264
375: ð35Þ

The fact that covariance matrix vanishes for large compo-
nents means that although the colour fractions fluctuate around
m, they converge to deterministic quantities in large compo-
nents. This trend can also be seen in Fig. 3b that compares the
theory with simulated colour fractions. The extent of the spread
present in the scattered data in Fig. 3b is explained the theo-
retical covariance matrix given in Eq. (35) and therefore
decreases as 1ffiffi

n
p .

In the following example, we consider degree distribution

uðkÞ ¼ C

Poissðk1; 1:5Þ; k2; k3 ¼ 0;

Poissðk2; 2:5Þ; k1; k3 ¼ 0;

Poissðk3; 5Þ; k1; k2 ¼ 0;

α; k1; k2; k3 ¼ 1:

8>>><>>>: ð36Þ

When α= 0, each node has solely links of one colour, so that
the whole system is a composition of three unicoloured networks.
This fact results in a somewhat exotic situation when multiple
giant components can stably coexist, which is an attractive phe-
nomenon from the perspective of many applied disciplines48.
When α > 0, some nodes have links with different colours and the
whole network contains, if any, one giant component. Never-
theless, as Fig. 4a shows, the network features high modularity in
both cases, which points towards the utility of coloured edges for
modelling networks with community structures. Conceptually,
the difference between the cases of α > 0 and α= 0 is depicted by
diagrams in respectively Fig. 2a, b.

In the case α= 0, the dependence of C2 on the percolation
probability p, as given by the solid line in Fig. 4d, reveals that such
criticalities occur three times at pc ¼ 1

5 ;
2
5, and

2
3. Figure 4e shows

that the weight-average component size is singular at these cri-
tical points. The values of pc can be easily deduced from matrix
M, which is diagonal when α= 0:

M ¼
2:5 0 0

0 1:5 0

0 0 5

264
375: ð37Þ

In this case, the diagonal elements of M are also its eigenvalues,
and all three eigenvectors are positive when normalised. So that,
according to the criterion (12), all three eigenvalues are associated
with valid phase transitions. Since all off-diagonal elements are
zeros, one can invoke Eq. (20) to show that all secondary phase
transitions coincide with the primary critical points. Note, that
when α= 0, matrix M not primitive, and therefore the simplified
phase transition criterion (18) is not applicable.

Setting α= 0.1 in degree distribution (36) perturbs M so that it
becomes a full matrix with small off-diagonal elements,

M ¼
2:4 0:1 0:02

0:04 1:4 0:02

0:04 0:1 4:71

264
375: ð38Þ

Although the total size of the giant components, as shown
in Fig. 4e, f differs only a little, the eigenvalue decomposition of
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M shows that there is only one positive eigenvector, and
therefore, one phase transition. This observation is supported
by the fact that C2(p)= 0 only once, as shown by the
dashed line in Fig. 4d, and that the size average of connected
component, as defined by Eq. (28), is singular only at p ≈ 0.21
(see Fig. 4f). One can yet observe that C2(p) has two local
minima at the locations where the case of α= 0 features phase
transitions. These local minima correspond to points where the
average component size has maxima: a very similar phenom-
enon of “multiple phase transitions” was also observed in
empirical data9. This constitutes an intricate situation: on one
hand we know that Eq. (12) has multiple solutions only when M

is not a primitive matrix, which corresponds to a disjoint net-
work. On the other hand, when a fully connected network has
strongly segregated communities, C2(p) may drop multiple
times so low that one is not able to distinguish the empirical
size distribution form being not scale-free. See also ref. 26 for a
similar discussion. Moreover, since M is strongly diagonal
dominant for α= 0.1, the secondary critical points appear in
groups. The full list, as obtained from criterion (19), is given
in Fig. 4b. Phase transitions associated with three colours fea-
ture the hierarchy as indicated by the partially ordered set in
Fig. 4c, one may also think of Fig. 4b as a linear sorting of this
partial order.
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Probably the most surprising implication of the equation
describing the internal structure of connected components is not
that the colour fractions settle on an uneven ratio, as depicted in
Fig. 3b, but that this ratio peculiarly evolves as a function of p. For
instance, in the case of α= 0.1, the colour fractions f1, f2 and f3
feature a switching behaviour. None of the switching points
coincides with the phase transitions, but as Fig. 5a reveals, they
are rather equidistant from the critical points. This trend may be
exploited to device early warning strategies that, similar to those
devised in ref. 39, detect proximity of a phase transition in
empirical networks. In contrast to large components, in which the
colour fractions converge to a deterministic values as shown in
Fig. 3b, the structure of small components is not deterministic but
features fluctuations. The spread of these fluctuations (as given by
Σ) is predicted by the theory and if the component size is fixed,
this spread does not vanish even when the total size of the net-
work is infinitely large. Figure 5c illustrates how the spread of
simulated data points in a small component (n= 50) follows the
theoretical predictions as given by this covariance matrix.
Although the colour switching during percolation can be pre-
dicted theoretically, it is hard to say what are the sufficient pre-
requisite for this phenomenon to occur. Supplementary Table 1
provides a parametric study of the colour switching profiles in
networks with various proportions of nodes that bear edges of
different colours. The latter quantity is a proxy for how modular
is the test network. On the basis of this observation we conjecture
that segregated networks with large difference in community sizes
are more prone to colour switching. Another observation one can
derive from Fig. 5b, is that the mean colour fraction in finite
components is often drastically different from that in the giant
component (see also Supplementary Table 1). Such difference on
the level of nodes of these large structures may pave way to
differentiating if a small sample of nodes was taken from the giant
component or from a finite one.

In colour-dependent percolation, one investigates the proper-
ties of the percolated network as a function of probability vector
p= (p1, p2 p3). All configurations of p amount to the volume of a
unit cube. Figure 6 presents the regions of this parameter space
where the network becomes critical, that is C2= 0, or close-to-
critical, C2 is small. This configurations are recovered by
numerically solving Eq. (16) that parametrises the corresponding
manifolds. One can see that what appears as single curves in
Fig. 4d, e for simple percolation, is now a surface placed in the
unit cube, see Fig. 6. When p1= p2= p3, which corresponds to a
diagonal of the cube as indicated by the yellow line, the colour-
dependent and simple percolations are equivalent. Figure 6b
shows that in the case α= 0.1, the critical points form a box-
shaped surface, whereas α= 0 changes this surface into a more
complex shape, see Fig. 6a. Note, in Fig. 6a the yellow line
intersects this surface three times, which corresponds to the three
phase-transition points that are also observed in Fig. 4e. Although
there is a conceptual difference between the cases presented in
Fig. 6a, b, one would expect that the actual networks should be
close in some sense. Indeed, Fig. 6b is obtained by perturbing the
network represented in Fig. 6a with a small parameter α. This
similarity can be highlighted if we compare the isosurfaces at
which C2 is small. In Fig. 6c, d: one can see that these isosurfaces
do bear resemblance.

The time evolution of the colour-dependent percolation can be
represented with a path p(t), t ∈ [0, 1] that starts at
pð1Þ ¼ ð1; 1; 1Þ>, which corresponds to the intact network, and
ends at pð0Þ ¼ ð0; 0; 0Þ>—a completely disintegrated one.
(To keep the analogy with the simple percolation we let time to go
in reverse.) Furthermore, the question of how an individual
network responds to percolation is about how this path relates to

the above-described geometric structures, and it turns out that
colour-dependent percolation can lead to completely different
types of behaviour that are not observed in simple percolation. In
order to demonstrate this fact, we devise a path p(t) in such a way
that C2(p) is minimal on it. This is achieved by solving the path

minimisation:
R1
0
C2ðpðtÞÞdt ! min. Our target is thus to repro-

duce the scenario given in Fig. 2c. The optimal paths for the
networks with α= 0 and α= 0.1 are illustrated in Fig. 7a, d,
whereas Fig. 7b, e depict the corresponding profiles of C2(t). One
immediately notices that in these examples the profiles of C2(t)
vanish not at discrete points, as was the case with simple per-
colation, but on continuous intervals. Everywhere on this inter-
vals the network is critical: that is the sizes of connected
components feature the scale-free behaviour and thus the
weight-average component size is infinite. As Fig. 7c, f shows, this
theoretical considerations are also supported by numerically
generated networks. Generated networks comprise of finite
number of nodes, and therefore, they cannot feature infinite
average component size. However, this quantity features macro-
scopic fluctuations within the critical interval and diverges to
infinity with growing system size. Remarkably, the width of this
critical interval does not shrink to zero in infinite systems. This
phenomenon constitutes a previously undocumented type of
phase transitions in coloured networks—the phase transitions
with wide critical regimes. Within this critical regimes, the
average size of a connected component features macroscopic
fluctuations. Such a behaviour is somewhat reminiscent to critical
windows found in finite random graphs49,50.

To summarise, in this paper edge colours provide an
abstraction of an additional layer of information that a network
can be equipped with, as well as an abstraction of various net-
work structures. The colours may represent an affiliation to
communities, multiplexity, different types of interactions,
assortative/disassortative relationships and other aspects pre-
valent to complex networks. We have shown that colour
dependencies may amplify failures in connectivity or make the
collapse of the network less sudden. This is why this theory
provides the foundation for answering the key question of
complex networks science: “How can we economically design
robust multilayer networks of infrastructures or financial net-
works with trustworthy links?”51. In many ways a modeller may
exploit the above-described geometric interpretation of colour-
dependent percolation in sake of network design and control. By
following similar motivations to the ones in ref. 4, one could aim
to optimise the percolation path so that minimal/maximal
number of edges is removed before percolation reaches the
phase transition, or for a fixed path, one might optimise the
network robustness so that the critical manifold avoids the path
as much as possible. Another objective, reducing the sharpness
of the phase transition35,52, can be achieved by reducing the
angle between the path and the surface at the intersection point.
In fact, as we have demonstrated by an example, one may even
construct a path that does not immediately intersect the mani-
fold but stays inside for a long time, and therefore, keeps the
network in the critical regime. The latter observation shifts the
paradigm of the critical point itself, as it demonstrates that even
in infinite systems, the criticality may occur continuously on a
whole, non-vanishing interval.

Methods
Summary of the asymptotic theory for unicoloured networks. When there is
only one type of edges, N= 1, u(k) is simply the probability that a randomly
selected node bears k edges. In the configuration model, the size distribution of
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connected components is given by convolution powers of the degree distribution30:

wðnÞ ¼
E½k�
n�1 u

�n
1 ðn� 2Þ; n>1;

uð0Þ n ¼ 1:

(
ð39Þ

Here u1ðkÞ ¼ ðkþ1Þuðkþ1Þ
E½k� is the excess degree distribution29, the convolution

product d(n)= f(n) � g(n) is defined as

dðnÞ :¼
X
jþk¼n

f ðjÞgðkÞ; j; k � 0; ð40Þ

and the convolution power is defined by induction: f(k)�n = f(k)�n−1 � f(k),
f(k)�0:= δ(k). When the degree distribution has a light tail, the Eq. (39) features the
universal asymptote30,

w1ðnÞ ¼ C1e
�C2nn�3=2: ð41Þ

The expressions for C1 and C2 are given in terms of the first three moments:

E½k�, E½k2�, and E½k3�. Namely, C1 ¼ E½k�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðE½k�E½k3 ��E½k2 �2Þ

p ; C2 ¼ ðE½k2 ��2E½k�Þ2
2ðE½k�E½k3 ��E½k2 �2Þ. At

the critical point, when C2= 0, the asymptote (41) indicates scale-free behaviour,
and features exponent � 3

2. The condition C2= 0 is equivalent to Molloy and Reed
giant component criterion:

E½k2� � 2E½k� ¼ 0: ð42Þ

The next section derives a generalisation of this theory for the case of arbitrary
number of colours, in which case the coefficients of the N-colour asymptote are
derived in terms of mixed moments up to the third order.

Size distribution of connected components. In a network with N colours, the
degree distribution u(k), k= (k1, …, kN) is the probability that a randomly selected
node bears ki edges of colour i= 1, 2, …, N. Let μ0 is the vector-valued expectation

of this distribution,

μ0 ¼ ðE½k1�; E½k2�; ¼ ; E½kN �Þ>: ð43Þ

If one choses a node at the end of a random, i-coloured edge instead of choosing
a node at random, the corresponding degree distribution is called i-excess:

uiðkÞ ¼ ðk þ eiÞ
uðk þ eiÞ
E½ki�

; ð44Þ

where ei are the standard basis vectors. The expected column-vectors μi of i-excess
degree distributions can be expressed in terms of expectations of u(k):

ðμiÞj ¼
E½kikj�
E½ki�

� δi;j; i; j ¼ 1; ¼ ;N: ð45Þ

For convenience of notation, we introduce M= (μ1, μ2, …, μN), a matrix that
contains μi as its columns. The covariance matrices of i-excess degree distributions
are given by

ðT iÞj;l ¼
E½kikjkl �
E½ki�

� E½kikj�E½kikl �
E½ki�2

; i; j; l ¼ 1; ¼ ;N: ð46Þ

In a similar fashion to how Eq. (39) was derived, ref. 33 applies Joyal’s theory of
combinatorial species53 to write the exact expression for the size distribution of
weakly connected components:

wðnÞ ¼
X

k1þ¼þkN¼n�1
ki�0

eD � u � u�k11 � ¼ �u�kNN

� �
ðkÞ; ð47Þ
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where the N-dimensional convolution d(n)= f(n) � g(n), is defined as

dðnÞ :¼
X
jþk¼n

f ðjÞgðkÞ; j; k � 0: ð48Þ

The sum in Eq. (48) runs over all partitions of the N-dimensional vector n into
two non-negative terms j and k; eD ¼ det�ðDÞ refers to the determinant computed
with the multiplication replaced by the convolution, and matrix D has the
following elements:

Di;j ¼ δðkÞδi;j � ½kjuiðkÞ� � uiðkÞ�ð�1Þ; i; j ¼ 1; ¼ ;N: ð49Þ

The asymptote of the size distribution. The size distribution given in Eq. (47)
features the following asymptote when n is large:

w1ðnÞ ¼ C1n
�3=2e�C2n: ð50Þ

This asymptote has to coefficients C1 > 0 and C2 > 0. We first define the
exponent coefficient C2:

C2 ¼
1
2
½1; z�T�KTσ�1

z� K
1

z�

� �
; ð51Þ

where

σz ¼ ð1� jzjÞT1 þ
XN�1

i¼1

ziT iþ1; jzj :¼
XN�1

i¼1

zi; ð52Þ

and K= (M− I)A−1,

Ai;j ¼
1 i ¼ 1;

δi;j i > 1;

(
ð53Þ

and z� = arg min f(z), z� > 0, |z�| ≤ 1, is the point where f(z) reaches its minimum
value:

f ðzÞ :¼ 1
2

1; z>
� 	

K>σ�1
z K

1

z

� �
; ð54Þ

Note that z is a vector of dimension N− 1.
The scaling coefficient C1 is given by:

C1 ¼ detðM � IÞtrðadjðQÞRÞ det H�1
z�

� 	
2πdet σz�½ �
� �1=2

e� 1;z�>½ �K>σ�1
z� μ0 ; ð55Þ

where Qi;j ¼ δi;j � ½1; z��>K>σ�1
z� adjðM � IÞT i ej; and Ri;j ¼ μ>0 σ�1

z� adjðM �
IÞT i ej are square matrices of size N ×N, and

ðHzÞi;j ¼ ½1; z>�K>σ�1
z ðT jþ1 � T1Þσ�1

z ðT iþ1 � T1Þσ�1
z K

1

z

� �
þ e>iþ1K

>σ�1
z Kejþ1

�½1; z>�K>σ�1
z ðT jþ1 � T1Þσ�1

z Keiþ1 � ½1; z>�K>σ�1
z ðT iþ1 � T1Þσ�1

z Kejþ1

ð56Þ

is the Hessian matrix of f(z) having size N− 1 by N− 1, the standard basis vectors
are denoted by (ei)j= δi,j. The next section derives this expressions.

Derivations for the asymptote of the component size distribution. This section
derives the asymptote for the Eq. (47). Note that in Eq. (47), the arguments of the
convolved functions and the convolution powers are both taken from the same
vector k. In order to circumvent this issue, let us decouple the argument from the
powers. We thus define Gðk′; kÞ :¼ u1ðk′Þ�k1 � ¼ � uN ðk′Þ�kN . To introduce the
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idea of the asymptotic analysis, we first start with a simplified version of (47).

w′ðnþ 1Þ ¼
X

k1þ¼þkN¼n
ki�0

u1ðkÞ�k1 � ¼ � uN ðkÞ�kN ¼
X

k1þ¼þkN¼n
ki�0

Gðk; kÞ: ð57Þ

Thus we will now study the asymptotical behaviour of the product of
convolution powers. Let ϕ(ω) denotes the characteristic function of u(k),

ϕðωÞ ¼
X
k�0

eiω
>kuðkÞ; ω 2 R

N ; i2 ¼ �1; ð58Þ

and ϕi(ω) denote the characteristic functions of ui(k). Then, by keeping the second
argument of G(k′, k) as a parameter, the characteristic function is given by the
product:

ψðω; kÞ ¼ ϕðωÞ
YN
i¼1

ϕkii ðωÞ; ð59Þ

however, as follows from the central limit theorem, ϕkii ðωÞ approach the limit
functions when ki is large:

lim
ki!1

jϕkii ðωÞ � ϕkii;1ðωÞj ¼ 0; ð60Þ

where

ϕkii;1ðωÞ ¼ eikiμ
>
i ω�1

2ω
>kiT iω; ð61Þ

and μi and Ti are the expected values and covariance matrices as defined by (45)
and (46). Applying similar procedure to the Eq. (59), we obtain:

lim
k1 ;¼ ;kN!1

jψðω; kÞ � ψ1ðω; kÞj ¼ 0; ð62Þ

where

ψ1ðω; kÞ ¼ eiωðMkþμ0Þ�1
2ω

>σðkÞω; ð63Þ

and σðkÞ ¼PN
i¼1

kiT i þ oðkÞ: Inverse flourier transform of Eq. (63) is easy to obtain

since ψ∞(ω, k) itself is the characteristic function of the multivariate Gaussian
function:

Gðk′; kÞ ¼ det½2πσðkÞ��1=2e�
1
2 k′�Mk�μ0ð Þ>σ�1ðkÞðk′�Mk�μ0Þ

¼ det½2πðkÞ��1=2e�ðMk�k′Þ>σ�1ðkÞμ0�1
2μ

>
0 σ

�1ðkÞμ0 e�
1
2ðk′�MkÞ>σ�1ðkÞðk′�MkÞ:

ð64Þ

Consider the following matrix,

ðAÞi;j ¼
1 i ¼ 1;

δi;j i>1;

(
ð65Þ

and the transformation it induces, z′ ¼ 1
nAk. Since k1 + k2 +… + kN= n, we have

z′1= 1 and therefore we may write z′ ¼ 1
z

� �
, where z is a vector of dimension

N− 1. Let us now set k′= k and introduce the transformation of variables k ¼

nA�1 1
z

� �
; which replaces the functions appearing in the exponent of (64) with

1
2
ðk′�MkÞ>σ�1ðkÞðk′�MkÞ ¼ 1

2
n½1; z>�K>σ�1

z K
1

z

� �
¼ nf ðzÞ; ð66Þ

and

ðMk � k′ÞTσ�1ðkÞμ0 þ
1
2
μT0 σ

�1ðkÞμ0 ¼ ½1; zT�KTσ�1
z μ0 þ

1
2n

μT0 σ
�1
z μ0

¼ gðzÞ þ Oðn�1Þ;
ð67Þ
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Fig. 7 Colour-dependent percolation that features wide critical regimes. Networks corresponding to the degree distribution defined by Eq. (36) with: a–c
α= 0 and d–f α= 0.1. a, d Optimal percolation paths p(t) together with the reference isosurfaces (C2= 0.02). b, e The C2-profiles corresponding to the
optimal paths. c, f Comparisons of the theoretical weighted-average component size profiles against the corresponding profiles extracted from
stochastically generated networks with 105 nodes
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where gðzÞ ¼ ½1; z>�K>σ�1
z μ0, K= (M− I)A−1 and

σz ¼ ð1� jzjÞT1 þ
XN�1

i¼1

ziT iþ1; jzj :¼
XN�1

i¼1

zi; ð68Þ

are independent of n. The Taylor expansion of f(z) around the point where this
function reaches its minimum value,

z� ¼ argmin f ðzÞ; ð69Þ

gives:

f ðzÞ ¼ f ðz�Þ þ ∇f ðz�Þ>ðz� z�Þ þ 1
2
ðz� z�Þ>Hz� ðz� z�Þ þ Rðz; z�Þ; ð70Þ

where the N− 1-by-N− 1 matrix Hz� is the Hessian of f(z) at z= z� :

ðHzÞi;j ¼ ½1; z>�K>σ�1
z ðT jþ1 � T1Þσ�1

z ðT iþ1 � T1Þσ�1
z K

1

z

� �
þ e>iþ1K

>σ�1
z Kejþ1

�½1; z>�K>σ�1
z ðT jþ1 � T1Þσ�1

z Keiþ1 � ½1; z>�K>σ�1
z ðT iþ1 � T1Þσ�1

z Kejþ1;

ð71Þ

and R(z, z�) is the expansion residue. Note that the gradient ∇f(z�)= 0 since z� is a
minimum of f(z), and by plugging these expansion into (64) we obtain:

FnðzÞ :¼ Gðk; kÞ ¼ det½2πσz��1=2e�gðzÞe�nf ðzÞ

¼ det½2πσz��1=2e�gðzÞe�nf z�ð Þ�1
2 z�z�ð ÞTnHz� z�z�ð Þ�nR z;z�ð Þ:

ð72Þ

Now, by multiplying Fn(z) with 1 ¼ det 2π1
nH

�1
z�½ �1=2

det 2π1
nH

�1
z�½ �1=2 and rewriting the sum of

exponents as a product of exponential functions isolates a multivariate Gaussian
function in the expression of Fn(z):

FnðzÞ ¼
e�

1
2 z�z�ð Þ> 1

nH
�1
z�½ ��1

z�z�ð Þ

det 2π 1
nH

�1
z�

� 	1=2 det 2π 1
nH

�1
z�

� 	1=2
det½2πz�1=2

e�gðzÞe�
1
2nf z�ð Þ�1

2nR z;z�ð Þ: ð73Þ

Let us turn back to the asymptotic analysis of the Eq. (57), which becomes now
written as:

w′ðnþ 1Þ ¼
X

k1 þ ¼ þ kN ¼ n

ki � 0

Fn
1
n
Ak

� �
¼
X
z2Ωn

FnðzÞ:
ð74Þ

The latter summation is performed over a sequence of sets:

Ωn :¼ ð1; z1; ¼ ; zN�1Þ> : jzj � 1; zi ¼
m
n
; m ¼ 0; ¼ ; n

n o
; ð75Þ

which, as n →∞, becomes dense in the limiting set

Ω1 :¼ fð1; z1; ¼ ; zN�1Þ : jzj � 1; zi>0; zi 2 Rg; ð76Þ

so that, on one hand, the sum form (74) converges to the integral

lim

n ! 1
X
z2Ωn

FnðzÞ � nN�1
Z
Ω1

FnðzÞdz
















 ¼ 0; ð77Þ

and on another hand, the first fraction in Eq. (73) is a properly normalised
multivariate Gaussian function with mean z� and shrinking variance 1

nH
�1
z . This

Gaussian function approaches the Dirac’s delta δ(z− z�) in the large n limit: its
variance vanishes as O 1

n

� �
while the mean remains constant. By combining these

two observations together we obtain:

lim
n!1

w′ðnÞ
w′1ðnÞ ¼ 1; ð78Þ

where

w′
1ðnÞ ¼ nN�1

R
Ω1

δ z� z�ð Þ det 2π
1
nH

�1
z�½ �1=2

det½2πz �1=2
e�g z�ð Þe�nf z�ð Þ�nR z;z�ð Þ

¼ nN�1 det 2π1
nH

�1ðz�Þ½ �1=2
det 2πz�½ �1=2 e�g z�ð Þe�nf z�ð Þ�nR z� ;z�ð Þ:

ð79Þ

Note that by the definition, the residue vanishes at the expansion point:
R(z� , z�)= 0. Finally, by moving 2π and 1

n outside the determinants, one obtains

w′
1ðnÞ ¼ C0n

�1=2e�nC2 ; ð80Þ

where C0 ¼
det H�1

z�½ �
2π det σz�½ �

� �1=2

e�g z�ð Þ and C2= f(z�).

In what follows, we will consider the asymptote for the complete size
distribution. The characteristic function for (49) is given by:

Di;jðωÞ ¼ δi;j þ i
∂

∂ωj
ϕiðωÞϕ�1

i ðωÞ; ð81Þ

so that the characteristic function of the full expression appearing under the sum in

(47) is given by det DðωÞ½ �ϕðωÞQN
l¼1

ϕkll ðωÞ ¼ det D′ðωÞ½ �, where

D′
i;j :¼ δi;jϕ

1
NðωÞψ 1

Nðω; kÞ þ i ∂
∂ωj

ϕiðωÞϕ
ki
N�1
i ðωÞϕ1

NðωÞ Q
l¼f1;:::;Ngni

ϕ
kl
N
l ðωÞ

¼ δi;jϕ
1
NðωÞψ 1

Nðω; kÞ þ i Nki
∂
∂ωj

ϕ
ki
N
i ðωÞϕ

1
NðωÞ Q

l¼f1;:::;Ngni
ϕ

kl
N
l ðωÞ:

ð82Þ

The limiting functions for ϕi(ω) are given in (61), so that one can write

ϕ
ki
N
i;1ðωÞ ¼ ei

ki
Nμ

>
i ω�1

2ω
> ki
NT iω; ð83Þ

which feature the following partial derivatives

i
N
ki

∂

∂ωj
ϕ

ki
N
i;1 ωð Þ ¼ � μ>i � iω>T i

� �
ejϕ

ki
N
i;1 ωð Þ; ð84Þ

By replacing ϕi(ω) and i Nki
∂
∂ωj

ϕiðωÞ with their limiting functions, (83) and (84),
we obtain a chain of transformations:

D′
i;j ¼ δi;jϕðωÞψ

1
N1ðω; kÞ þ i Nki

∂
∂ωj

ϕ
ki
N
i;1ðωÞϕðωÞ Q

l¼f1;:::;Ngni
ϕ

kl
N
l;1ðωÞ

¼ δi;jϕðωÞψ
1
N1ðω; kÞ � μ>i �> T i

� �
ejϕ

ki
N
i;1ðωÞϕðωÞ Q

l¼f1;:::;Ngni
ϕ

kl
N
l;1ðωÞ

¼ δi;jϕðωÞψ
1
N1ðω; kÞ � μ>i � iω>T i

� �
ejψ1ðω; kÞ

¼ ϕ
1
NðωÞψ 1

N1ðω; kÞ δi;j μ
>
i � iω>T i

� �
ej

h i
:

ð85Þ

Determinant det[D′] can be now rewritten in the matrix form:

det½D′� ¼ ψ1ðω; kÞdetðI �MÞdet½D′′�; D′′
i;j ¼ δi;j þ iω>ti;j; ð86Þ

where ti,j= (I−M)−1Tiej. Let us expand determinant det[D′] into the sum over
SN, the set of all permutations of {1,2,…,N}:

det½D′� ¼ ψ1ðω; kÞdetðI �MÞ P
σ 2 SN

sgnðσÞQN
i¼1

ðδi;σ i þ iω>ti;σ i Þ

¼ ψ1ðω; kÞdetðI �MÞ c0 þ iω>c1;1 þ ðiω>c2;1Þðiω>c2;2Þ þ ¼ þ QN
i¼1

iω>cN;i

� �
;

ð87Þ

where ci;j 2 R
N . Since the gradient of ψ∞(ω, k) is given by

∇ψ1ðω; kÞ ¼ ½iðMk þ μ0Þ � σðkÞ�ωψ1ðω; kÞ; ð88Þ

one can express the iωψ∞(ω, k) from the latter equation as:

iωψ1ðω; kÞ ¼ �σ�1ðkÞMkψ1ðω; kÞ � σ�1ðkÞμ0ψ1ðω; kÞ � iσ�1ðkÞ∇ψ1ðω; kÞ;
ð89Þ
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which is the characteristic function for

xnðzÞ ¼
1
n
σ�1
z ðnðM � IÞA�1zþ μ0Þ ¼ �σ�1

z ðM � IÞA�1zþ 1
n
σ�1
z μ0: ð90Þ

Since series (87) is the sum of powers of iωψ∞(ω, k), this series is the
characteristic function for an identical expression in which iωψ∞(ω, k) is
substituted by (90):

dðn; zÞ ¼ detðI �MÞ c0 þ x>n ðzÞc1;1 þ ðx>n ðzÞc2;1Þðx>n ðzÞc2;2Þ þ ¼ þ
YN
i¼1

xTn ðzÞcN;i

 !
FnðzÞ:

ð91Þ

The latter expression is the product of Fn(z) and a polynomial in the
indeterminate y ¼ 1

n:

dðn; zÞ ¼ ða0ðzÞ þ a1ðzÞy þ a2ðzÞy2 þ ¼ þ aN ðzÞyN ÞFnðzÞ: ð92Þ

Instead of this polynomial, it is convenient to consider its collapsed form that
we obtain by observing that the series from Eqs. (87) and (91) coincide under the
substitution iω! x>n ðzÞ; and therefore performing the same substitution in Eq.
(86) leads to: d(n, z�)= p(n)Fn(z�), where p(n) is independent of z� :

pðnÞ ¼ detðM � IÞdet I þ Qþ 1
n
R

� �
; ð93Þ

square matrices Qi;j ¼ δi;j � ½1; z��>K>σ�1
z� adjðM � IÞT i ej;Ri;j ¼ μ>0 σ�1

z� adjðM �
IÞT i ej; are of size N ×N, and (ei)j= δi,j are the standard basis vectors. One can derive

the coefficients of the expansion (92) by applying differential operator 1
k!

∂k

∂yk jy¼0 to Eq.

(93). For k= 0,1 this procedure yields, a0= det(M− I)det[Q]= 0, and a1= det(M−
I)tr(adj(Q)R) > 0. By taking into the account the asymptotical behaviour of Fn(z) as
given by (80), the complete expression for the asymptote of (47) reads:

w1ðnÞ ¼ pðnÞC0n
�1=2e�C2n ¼ a1n

�1 þ Oðn�2Þ� 	
C0n

�1=2e�C2n 	 C1n
�3=2e�C2n;

ð94Þ

where

C1 ¼ C0a1 ¼ detðM � IÞtrðadjðQÞRÞ det H�1
z�

� 	
2πdet σz�½ �
� �1=2

e� 1;z�>½ �K>σ�1
z� μ0 : ð95Þ

and

C2 ¼
1
2

1; z�>
� 	

K>σ�1
z� K

1

z�

� �
: ð96Þ

Necessary and sufficient criteria for scale-free behaviour. In this section of
Methods, we prove that C2= 0 if and only if

v 2 kerðM � IÞ; v
jvj � 0: ð97Þ

According to the definition (68), σz is a linear combination of covariance
matrices, and therefore σ�1

z is a positive definite matrix that features the Cholesky
factorisation:

σ�1
z ¼ L>L; det L≠0: ð98Þ

Suppose C2= 0. Then, according to the definition of C2, f(z*)= 0 and therefore:

½1; z�>�K>σ�1
z� K

1

z�

� �
¼ ½1; z�>�K>L>LK

1

z�

� �
¼ LK

1

z�

� �� �>
LK

1

z�

� �
¼ 0:

ð99Þ

Recall that K= (M− I)A−1 and since det L ≠ 0 we have:

K
1

z�

� �
¼ ðM � IÞA�1 1

z�

� �
¼ ðM � IÞv ¼ 0; v ¼ A�1 1

z�

� �
: ð100Þ

So that v∈ ker(M−I).

According to the definition (65), jvj ¼ 1�PN
i¼2

z�i þ
PN
i¼2

z�i ¼ 1: We will now

demonstrate that v > 0. Assume that z� ∉Ω∞, then for any z∈Ω∞, f(z) > 0, and

therefore for arbitrary α > 0 and non-singular function γ(z) the following product
vanish in the limit of large n,

lim

n ! 1 nα
Z
Ωn

γðzÞe�1
2nf ðzÞdz ! 0; ð101Þ

which contradicts our assumption that the asymptote is scale-free. One therefore
concludes that z� ∈Ω∞, so that the set of inequalities (76) holds for z� . This
inequalities imply: v1= 1− |z�| > 0 and vi= zi−1 > 0, for i= 2, 3, …, N, and
therefore v

jvj ¼ v>0: This completes the proof of the forward implication.

Consider the reverse implication: suppose v∈ ker(M− I), and v
jvj>0. Without

loss of generality, assume |v|= 1. We will demonstrate that vector z� = (v2, v3, …,
vN)Τ gives minimum to f(z), and f(z�)= 0. On the one hand, we have a chain of
transformations that is reverse to (99):

0¼ ðM � IÞv ¼ K
1

z�

� �
¼ LK

1

z�

� �
¼ LK

1

z�

� �� �>
LK

1

z�

� �
¼ ½1; z�>�K>L>LK

1

z�

� �
¼ ½1; z�>�K>σ�1

z� K
1

z�

� �
¼ f ðz�Þ:

On the other hand, since f(z)≥0 for z ≥ 0, z� must also be a minimum of f(z).
Furthermore, this minimum belongs to Ω∞. Indeed, z�i ¼ viþ1>0 for i= 1,…,N− 1,

and jz�j ¼PN
i¼2

vi ¼ jvj � v1<1. The latter inequalities imply that z� ∈Ω∞, which

guarantees validity of asymptote (94), and since C2= f(z�)= 0, this asymptote is a
scale-free one.

Derivations of the critical percolation probability. From the perspective of a
randomly chosen node, each adjacent edge has equal and independent chances to
be removed, so that the actual degree distribution after percolation can be
expressed by multiplying u(k) with the binomial distribution:

u′ðk′Þ ¼
X
k�0

YN
i¼1

ki
k′i

� �
pk

′
i ð1� pÞki�k′i uðkÞ: ð102Þ

The expectations of u′(k′) and those of u(k) are related:

E½k′i� ¼ pE½ki�; ð103Þ

E½k′i; k′j � ¼ p2E½ki; kj� þ ðp� p2ÞE½ki�δi;j; ð104Þ

E½k′i; k′j; k′l � ¼ pipjplE½ki; kk; kl� þ plpið1� piÞE½ki; kl �δi;j
þpipjð1� piÞE½ki; kj�δi;l þ pjpið1� pjÞE½kj; ki�δj;l
þpið1� 3pi þ 2p2i ÞEδi;jδi;l ;

ð105Þ

and by plugging these substitutions into (43), (45) and (46) one obtains:

μ′ ¼ pμ; ð106Þ

M′ ¼ pM; ð107Þ

ðT ′
iÞj;l ¼ p2ðT iÞj;l þ pð1 � pÞMj;iδj;l : ð108Þ

These can be now used to compute the asymptotic properties of the percolated
network. For instance, by plugging M′ into the criticality criterion (97), one obtains
a p-dependant criterion that reads: the edge-coloured network features critical
percolation at p= pc∈ (0, 1] if there is vector v, for which

v 2 ker½pcM � I�; v
jvj � 0: ð109Þ

Derivations for colour-dependant percolation. In colour-dependent percolation,
the percolation probability depends on the colour of an edge. In this case, we
consider a vector p ¼ ðp1; p2; ¼ ; pN Þ> , where pi is the probability that an edge of
colour i is not removed. Colour-dependant percolation affects the degree
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distribution, so that after the percolation process the degree distribution becomes:

u′ðk′Þ ¼
X
k�0

YN
i¼1

ki
k′i

� �
p
k′i
i ð1� piÞki�k′i uðkÞ: ð110Þ

Computing the expectations for the latter distribution gives:

E½k′i� ¼ piE½ki�; ð111Þ

E½k′i; k′j� ¼ pipjE½ki; kj� þ ðpi � p2i ÞE½ki�δi;j; ð112Þ

E½k′i; k′j ; k′l � ¼ pipjplE½ki; kk; kl� þ plpið1� piÞE½ki; kl �δi;j
þpipjð1� piÞE½ki; kj�δi;l þ pjpið1� pjÞE½kj; ki�δi;l
þpið1� 3pi þ 2p2i ÞE½ki�δi;jδi;l ;

ð113Þ

and plugging these into Eqs. (45)–(46) allows us to express μ, M Ti as functions of
p:

μ′ ¼ diagfpgμ; ð114Þ

M′ ¼ diagfpgM; ð115Þ

T ′
t ¼ diagfpgT i diagfpg þ diagfpgdiagf1� pgdiagfM1;j; ¼ ; MN;jg: ð116Þ

By plugging M′ into Eq. (97) one obtains the criterion for criticality: edge-
coloured network features a critical behaviour at percolation probability vector
0 < p < 1 if and only if:

z 2 ker½diagfpgM � I�; z
jzj � 0: ð117Þ

In order to recover the manifold containing all critical points p numerically, one
may follow this practical procedure:

1. for all the points from a discretised unit hypercube test if det(diag{p}M− I)= 0;
2. for those points that pass the first test, find the eigenpair (v, 0) of diag{p}M− I

and check whether v
jvj>0:

Derivation of colour fractions in finite components. For the same reason as in
the conventional configuration model, every connected component of finite
size n has a tree-like structure, and therefore this component contains n− 1
edges. The generalised model operates with N types of edges and it is inter-
esting to see how these n− 1 edges are partitioned among N edge types. It
turns out that z� , as defined in (69), plays an essential role in defining this
partition. Let vi, i= 1, …, N denotes the number of edges of ith type in a
component of size n. Since the total number of edges is |v|= n− 1, one writes

v1 ¼ 1�PN
i¼2

vi; and the probabilities of configurations for the rest of edge types

v2, v3,…vN follow form Fn(z�) as defined in Eq. (73). In fact, since we are
interested in the conditional probability given component size is n, it is
enough to consider the first fraction appearing in (73). So that the following
law of large numbers holds:

P nz1b c � v2 � nz1d e^; ¼ ;^ nzN�1b c � vN � nzN�1d ejcomponent size ¼ n½ �

¼ Rnzd e

nzb c
e
�1
2ðz�z� Þ> 1

nH
�1
z�½ ��1

ðz�z�Þ

det 2π1
nH

�1
z�½ �1=2 	 e

�1
2ðz�z� Þ> 1

nH
�1
z�½ ��1

ðz�z�Þ

det 2π1
nH

�1
z�½ �1=2 :

ð118Þ

Evidently, the multivariate stochastic variable v2
n�1 ;

v3
n�1 ; ¼ ; vN

n�1

� �
is normally

distributed with mean z� and variance 1
nHz� ; and the whole vector v

n�1 is normally
distributed, with probability density N f;m; 1nΣ

� �
having mean vector

m ¼ ð1� jz�j; z�1 ; z�2 ; ¼ ; z�N�1Þ ð119Þ

and covariance matrix

Σ ¼ 1
n

a b>

b Hz�

" #
; ð120Þ

where a ¼ PN�1

i;j¼1
Hz�ð Þi;j; and b is a column vector of length N− 1,

bi ¼ � PN�1

j¼1
Hz�ð Þi;j:

Derivation of the size of the giant component. Let random variable n is the size
of the component containing a randomly chosen node. Naturally, we assume that
nodes are sampled uniformly at random. The generating function for n, W(x)
satisfies the system of N equations:

WðxÞ ¼ xU½W1ðxÞ; ¼ ;WN ðxÞ�;
W1ðxÞ ¼ xU1½W1ðxÞ; ¼ ;WNðxÞ�;
¼
WNðxÞ ¼ xUN ½W1ðxÞ; ¼ ;WN ðxÞ�:

8>>><>>>: ð121Þ

These equations constitute a generalisation of the corresponding system
introduced for uncoloured networks19. In Eq. (121), Wi(x) generate probabilities
that a randomly selected node is connected to a component of size m on either of
its sides. Since the network may contain infinitely large components, n and m are
improper random variables. We formalise this facts by writing:

gnode :¼ 1�Wð1Þ ¼ P½n ¼ 1� � 0; ð122Þ

si :¼ Wið1Þ ¼ 1� P½m ¼ 1� � 1: ð123Þ

Plugging these definitions into (121) yields the following equations:

gnode ¼ 1� E½sk �; s ¼ ðs1; ¼ ; sN Þ>; ð124Þ

and

si ¼
E½kisk�ei �
E½ki�

; i ¼ 1; ¼ ;N: ð125Þ

Here, ei are the standard basis vectors, and vector power is evaluated element-

wisely: sk ¼ QN
i¼1

skii : The quantities gnode and s have straightforward interpretations:

gnode, or the node size of the ginat component, is the probability that a randomly
sampled node belongs to the giant component; si are the probabilities that a
randomly sampled i-coloured edge is not connected to a giant component on at
least one side. So that the edge size of the giant component is written as the
probability that a randomly chosen edge of colour i belongs to the giant
component, gi ¼ 1� s2i ; i ¼ 1; ¼ ;N: By weighting these numbers with the total

fractions of coloured edges ci ¼ E½ki�=
PN
i¼1

E½ki�; one obtains the vector of colour

fractions in the giant component,

v� ¼ ðv�1 ; v�2 ; ¼ ; v�NÞ; v�i ¼ gici
g>c

; ð126Þ

which is the giant-component analog of (118). Since the giant component is infinite
by definition, v� is not a random variable as is the case with colour fractions in
finite components (118).

Derivation of the expected size of finite components. We will now give a
quantitive estimate for the size of typical finite connected component. Formally
speaking, we wish to extract some properties of the size of uniformly at randomly
chosen component. Let us denote this size as random variable n′. It is important to
note the subtle difference between n′ and n—they differ in the method of sampling.
For the former, we first chose a node, and then take the size of the component the
node belongs to, for the latter—we chose the component itself.

Given the tools at hand, it is not easy to derive the expression for average
component size E½n′�. With little efforts, however, we can derive one for the ratio:

wavg :¼ E½n′2�
E½n′� ¼ E½n�

1� gnode
¼

d
dxWðxÞjx¼1

1� gnode
: ð127Þ

In polymer literature, this ratio is commonly referred to as the weight-average
size16 and we thus conveniently borrow this terminology. The weight-average size
of finite connected components wavg is found by first expressing the derivatives of
Wi(x) and W(x) from Eq. (125).
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Let y ¼ ðy1; y2; ¼ ; yNÞ> , yi ¼ d
dxWiðxÞjx¼1, then

yi ¼ W′1 ðxÞ ∂
∂s1

Ui½W1ðxÞ; ¼ ;WNðxÞ� þ ¼ þW′N ðxÞ ∂
∂sN

Ui½W1ðxÞ; ¼ ;WN ðxÞ�
� �

jx¼1

þUi½W1ð1Þ; ¼ ;WN ð1Þ�;
ð128Þ

or alternatively in the matrix form: y= [I−X(s)]−1s, where

Xi;jðsÞ ¼
∂

∂sj
Ui½W1ðxÞ; ¼ ;WN ðxÞ�jx¼1 ¼

E½ðkikj � δi;jkiÞsk�ei�ej �
E½ki�

; i; j ¼ 1; ¼ ;N:

ð129Þ

In a similar fashion one obtains the expression for W′(1):
d
dxWðxÞjx¼1 ¼ W′1 ðxÞ ∂

∂s1
U½W1ðxÞ; ¼ ;WN ðxÞ� þ ¼ þW′NðxÞ ∂

∂sN
U½W1ðxÞ; ¼ ;WN ðxÞ�

� �
jx¼1

þU½W1ð1Þ; ¼ ;WN ð1Þ� ¼ s>Dy þ 1� gnode;D ¼ diagfE½k1�; ¼ ;E½kN �g:
ð130Þ

So that

wavg ¼
d
dxWðxÞjx¼1

1� gnode
¼ s>D½I� XðsÞ��1s

1� gnode
þ 1: ð131Þ

See also Ref. 16 for the derivation of the wight-average size of connected
components in the case of unicoloured networks.

Finally, we show how expressions (132) and (131) change as a result of simple
bond percolation. In this case, the degree distribution becomes dependant on
percolation probability p as defined in Eq. (102), which induces the following
transformation of the giant component size:

gnodeðpÞ ¼ 1� E½ðpðsp � 1Þ þ 1Þk �; ð132Þ

where ðspÞi ¼
E½kiðpðsp�1Þþ1Þk�ei �

E½ki � ; i ¼ 1; ¼ ;N: In a similar fashion, wavg also

becomes a function of p:

wavgðpÞ ¼
sTpD½p�1I � Xðpðsp � 1Þ þ 1Þ��1sp

1� gnodeðpÞ
þ 1: ð133Þ

The first singularity of the weight-average component size. Let pc be the
earliest critical point, that is to say the smallest value that solves Eq. (109). When p
< pc, the giant component does not exist, and we have sp= 1, gnode(p)= 0 and
consequently X(p(sp− 1)+ 1)= X(1)=M′. By plugging these expressions into Eq.
(133) gives:

wavgðpÞ ¼ 1>D½p�1I �M′��11þ 1; p < pc: ð134Þ

Let M= Pdiag{λi}P−1 be the eigenvalue decomposition of M, then

½p�1I �M′��1 ¼ P�1diag
1

p�1 � λi

� �
P ¼ P�1diag

p=λi
λ�1
i � p

( )
P; ð135Þ

and therefore wavg(p) can be represented as a linear combination with finite
coefficients:

wavgðpÞ ¼
XN
i¼1

ci
λ�1
i � p

; ci ¼
X
j

ðDP�1Þj;i
X
k

ðPÞi;k<1: ð136Þ

Since there is such i that pc ¼ λ�1
i , it becomes clear that wavg(p) diverges at p= pc.

Moreover, the singularity is characterised by lim
p!p�c

wavgðpÞ
pc�p ¼ Oð1Þ; which is identical

to the case of unicoloured networks16.

Data availability
The source code reproducing the examples is available at the GitHub repository:
https://github.com/ikryven/ColorPercolation. The datasets generated during the
current study are available from the author on reasonable request.

Received: 27 June 2018 Accepted: 10 December 2018

References
1. D’Souza, R. M. & Nagler, J. Anomalous critical and supercritical phenomena

in explosive percolation. Nat. Phys. 11, 531–538 (2015).
2. Callaway, D. S., Newman, M. E. J., Strogatz, S. H. & Watts, D. J. Network

robustness and fragility: percolation on random graphs. Phys. Rev. Lett. 85,
5468–5471 (2000).

3. Onnela, J.-P. et al. Structure and tie strengths in mobile communication
networks. Proc. Natl Acad. Sci. 104, 7332–7336 (2007).

4. Osat, S., Faqeeh, A. & Radicchi, F. Optimal percolation on multiplex networks.
Nat. Commun. 8, 1540 (2017).

5. Radicchi, F. Percolation in real interdependent networks. Nat. Phys. 11,
597–602 (2015).

6. Newman, M. E. J. Spread of epidemic disease on networks. Phys. Rev. E 66,
016128 (2002).

7. Davis, S., Trapman, P., Leirs, H., Begon, M. & Heesterbeek, J. The abundance
threshold for plague as a critical percolation phenomenon. Nature 454, 634
(2008).

8. Zuzek, L. A., Stanley, H. & Braunstein, L. Epidemic model with isolation in
multilayer networks. Sci. Rep. 5, 12151 (2015).

9. Allard, A., Althouse, B. M., Scarpino, S. V. & Hébert-Dufresne, L. Asymmetric
percolation drives a double transition in sexual contact networks. Proc. Natl
Acad. Sci. 114, 8969–8973 (2017).

10. Radicchi, F. & Fortunato, S. Explosive percolation in scale-free networks. Phys.
Rev. Lett. 103, 168701 (2009).

11. Roukny, T., Bersini, H., Pirotte, H., Caldarelli, G. & Battiston, S. Default
cascades in complex networks: topology and systemic risk. Sci. Rep. 3, 2759
(2013).

12. De Domenico, M., Granell, C., Porter, M. A. & Arenas, A. The physics of
spreading processes in multilayer networks. Nat. Phys. 12, 901 (2016).

13. Coniglio, A., Stanley, H. E. & Klein, W. Site-bond correlated-percolation problem:
a statistical mechanical model of polymer gelation. Phys. Rev. Lett. 42, 518 (1979).

14. Kryven, I. Emergence of the giant weak component in directed random graphs
with arbitrary degree distributions. Phys. Rev. E 94, 012315 (2016).

15. Jaspers, M. et al. Nonlinear mechanics of hybrid polymer networks that mimic
the complex mechanical environment of cells. Nat. Commun. 8, 15478 (2017).

16. Kryven, I. Analytic results on the polymerisation random graph model. J.
Math. Chem. 56, 140–157 (2018).

17. Family, F. & Landau, D. P. Kinetics of aggregation and gelation (Elsevier,
Amsterdam, 1984).

18. Papadopoulos, L., Porter, M. A., Daniels, K. E. & Bassett, D. S. Network
analysis of particles and grains. J. Complex Netw. 6, 485–565 (2018).

19. Newman, M. E. J., Strogatz, S. H. & Watts, D. J. Random graphs with arbitrary
degree distributions and their applications. Phys. Rev. E 64, 026118 (2001).

20. Baxter, G., Dorogovtsev, S., Goltsev, A. & Mendes, J. Avalanche collapse of
interdependent networks. Phys. Rev. Lett. 109, 248701 (2012).

21. Bianconi, G. & Dorogovtsev, S. N. Multiple percolation transitions in a
configuration model of a network of networks. Phys. Rev. E 89, 062814 (2014).

22. Gleeson, J. P. Cascades on correlated and modular random networks. Phys.
Rev. E 77, 046117 (2008).

23. Hackett, A., Cellai, D., Gómez, S., Arenas, A. & Gleeson, J. P. Bond percolation
on multiplex networks. Phys. Rev. X 6, 021002 (2016).

24. Kivelä, M. et al. Multilayer networks. J. Complex Netw. 2, 203–271 (2014).
25. Klosik, D. F., Grimbs, A., Bornholdt, S. & Hütt, M.-T. The interdependent

network of gene regulation and metabolism is robust where it needs to be.
Nat. Commun. 8, 534 (2017).

26. Colomer-de Simón, P. & Boguñá, M. Double percolation phase transition in
clustered complex networks. Phys. Rev. X 4, 041020 (2014).

27. Newman, M. E. J. Assortative mixing in networks. Phys. Rev. Lett. 89, 208701
(2002).

28. Mastrandrea, R., Squartini, T., Fagiolo, G. & Garlaschelli, D. Enhanced
reconstruction of weighted networks from strengths and degrees. New J. Phys.
16, 043022 (2014).

29. Newman, M. E. J. Networks: An Introduction (Oxford University Press,
Oxford, 2010).

30. Kryven, I. General expression for the component size distribution in infinite
configuration networks. Phys. Rev. E 95, 052303 (2017).

31. Gleeson, J. P. Bond percolation on a class of clustered random networks. Phys.
Rev. E 80, 036107 (2009).

32. Newman, M. E. J. Random graphs with clustering. Phys. Rev. Lett. 103, 058701
(2009).

33. Kryven, I. Finite connected components in infinite directed and multiplex
networks with arbitrary degree distributions. Phys. Rev. E 96, 052304 (2017).

34. Bianconi, G. Multilayer Networks: Structure and Function (Oxford University
Press, Oxford, 2018).

35. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic
cascade of failures in interdependent networks. Nature 464, 1025–1028
(2010).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-08009-9 ARTICLE

NATURE COMMUNICATIONS |          (2019) 10:404 | https://doi.org/10.1038/s41467-018-08009-9 |www.nature.com/naturecommunications 15

https://github.com/ikryven/ColorPercolation
www.nature.com/naturecommunications
www.nature.com/naturecommunications


36. Shao, J., Buldyrev, S. V., Havlin, S. & Stanley, H. E. Cascade of failures in
coupled network systems with multiple support-dependence relations. Phys.
Rev. E 83, 036116 (2011).

37. Torres-Knoop, A., Kryven, I., Schamboeck, V. & Iedema, P. D. Modeling the
free-radical polymerization of hexanediol diacrylate (HDDA): a molecular
dynamics and graph theory approach. Soft Matter 14, 3404–3414 (2018).

38. Krause, S. M., Danziger, M. M. & Zlatić, V. Color-avoiding percolation. Phys.
Rev. E 96, 022313 (2017).

39. Squartini, T., Van Lelyveld, I. & Garlaschelli, D. Early-warning signals of
topological collapse in interbank networks. Sci. Rep. 3, 3357 (2013).

40. Orlova, Y., Kryven, I. & Iedema, P. D. Automated reaction generation for
polymer networks. Comp. Chem. Eng. 112, 37–47 (2018).

41. Molloy, M. & Reed, B. A critical point for random graphs with a given degree
sequence. Random Struct. Algor. 6, 161–180 (1995).

42. Neri, I. & Metz, F. L. Eigenvalue outliers of non-hermitian random matrices
with a local tree structure. Phys. Rev. Lett. 117, 224101 (2016).

43. Allard, A., Hébert-Dufresne, L., Young, J.-G. & Dubé, L. J. General and exact
approach to percolation on random graphs. Phys. Rev. E 92, 062807 (2015).

44. Bianconi, G. Epidemic spreading and bond percolation on multilayer
networks. J. Stat. Mech. Theory Exp. 2017, 034001 (2017).

45. Cellai, D., López, E., Zhou, J., Gleeson, J. P. & Bianconi, G. Percolation in
multiplex networks with overlap. Phys. Rev. E 88, 052811 (2013).

46. Boguná, M. & Serrano, M. Á. Generalized percolation in random directed
networks. Phys. Rev. E 72, 016106 (2005).

47. Dong, G. et al. Resilience of networks with community structure behaves as if
under an external field. Proc. Natl Acad. Sci. 115, 6911–6915 (2018).

48. Ben-Naim, E. & Krapivsky, P. Percolation with multiple giant clusters. J. Phys.
A 38, L417 (2005).

49. Spencer, J. The giant component: the golden anniversary. Not. Am. Math. Soc.
57, 720–724 (2010).

50. Dhara, S., van der Hofstad, R., van Leeuwaarden, J. S. & Sen, S. Critical
window for the configuration model: finite third moment degrees. Electron. J.
Probab. 22, 1–33 (2017).

51. Bianconi, G. Multilayer networks: dangerous liaisons? Nat. Phys. 10, 712–714
(2014).

52. Son, S.-W., Grassberger, P. & Paczuski, M. Percolation transitions are not always
sharpened by making networks interdependent. Phys. Rev. Lett. 107, 195702 (2011).

53. Bergeron, F., Labelle, G. & Leroux, P. Combinatorial Species and Tree-like
Structures (Cambridge University Press, Cambridge, 1998).

Acknowledgements
This work was part of the research programme VENI with Project no. 639.071.511,
which was financed by the Netherlands Organisation for Scientific Research (NWO).

Author contributions
Conceived, implemented and written by I. Kryven.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-08009-9.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Journal peer review information: Nature Communications thanks the anonymous
reviewers for their contributions to the peer review of this work. Peer Reviewer Reports
are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-08009-9

16 NATURE COMMUNICATIONS |          (2019) 10:404 | https://doi.org/10.1038/s41467-018-08009-9 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-018-08009-9
https://doi.org/10.1038/s41467-018-08009-9
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Bond percolation in coloured and multiplex networks
	Results
	Connected components in random networks
	Asymptotic theory for edge-coloured configuration model
	Simple bond percolation
	Colour-dependent percolation and critical manifolds
	Hierarchy of critical points and secondary phase transitions
	The giant component and the average component size

	Discussion
	Methods
	Summary of the asymptotic theory for unicoloured networks
	Size distribution of connected components
	The asymptote of the size distribution
	Derivations for the asymptote of the component size distribution
	Necessary and sufficient criteria for scale-free behaviour
	Derivations of the critical percolation probability
	Derivations for colour-dependant percolation
	Derivation of colour fractions in finite components
	Derivation of the size of the giant component
	Derivation of the expected size of finite components
	The first singularity of the weight-average component size

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




