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The development of new fluorescent molecules and dyes requires precise determi-
nation of their emission efficiency, which ultimately defines the potential of the
developed materials. For this, the photoluminescence quantum yield (QY) is com-
monly used, given by the ratio of the number of emitted and absorbed photons,
where the latter can be determined by subtraction of the transmitted signal by the
sample and by a blank reference. In this work, we show that when the measure-
ment uncertainty is larger than 10% of the absorptance of the sample, the QY
distribution function becomes skewed, which can result in underestimated QY val-
ues by more than 200%. We demonstrate this effect in great detail by simulation
of the QY methodology that implements an integrating sphere, which is widely
used commercially and for research. Based on our simulations, we show that this
effect arises from the non-linear propagation of the measurement uncertainties. The
observed effect applies to the measurement of any variable defined as Z = X/Y, with
Y = U − V, where X, U and V are random, normally distributed parameters. For this
general case, we derive the analytical expression and quantify the range in which
the effect can be avoided. © 2018 Author(s). All article content, except where oth-
erwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5023295

I. INTRODUCTION

The photoluminescence quantum yield (QY) is commonly applied to quantify the emission
efficiency of fluorescent molecules and dyes in their development for lighting applications. The QY
is given by the ratio of the number of emitted Nem and absorbed Nabs photons, where the absorption
is commonly obtained by comparison of the total number of photons transmitted by the sample (NS)
and a blank reference (NRef ):

QY =
Nem

Nabs
=

Nem

NRef − NS
(1)

The QY is widely used also in research: In the past decade, research on quantum dot ‘phosphors’
has been relying on the QY methodology to show various size-,1–3 excitation-4–7 or concentration-
dependent properties.4,8 Several guidelines exist for the QY measurements,9,10 discussing e.g. the
effects of re-absorption11 and excitation geometry.12,13 However, none of them reflect on the critical
effect of low sample absorption in the presence of measurement uncertainty - which can lead to
dramatically biased results, as will be discussed here.

In this work we show that when the magnitude of the difference between the signals of the
reference and sample measurement, used to evaluate the QY, reach levels comparable to that of
experimental uncertainty (e.g. noise), the QY value can be heavily underestimated. This happens
already under common experimental conditions, especially when absorption of the sample is rela-
tively weak. For example, for noise levels of∼ 1% the QY estimates for samples with an absorptance14
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below∼ 10% are affected. The effect is analyzed here in a great detail by simulating the QY methodol-
ogy using an analytical model with careful consideration of the involved measurement uncertainties.
We show that the uncertainty in the variables used to estimate the QY propagates in a non-linear
way and leads, not only to a larger uncertainty in the QY value as is commonly assumed, but also to
a considerable underestimation of the most-likely observed QY. This underestimation arises purely
from the form in which the QY is defined, given by the general relation X/Y, and shows in case the
denominator Y = (U −V ) is small. Therefore, our findings can be extended to any quantity determined
by such type of a relation.

II. QY METHODOLOGY

We choose to demonstrate this effect on the QY method. To this end, we developed an analytical
model to simulate the QY experiment. For this we select the optical QY methodology introduced by
Greenham15 and de Mello et al.,16 and simplified by Mangolini et al.17 This technique implements an
integrating sphere (IS), a reflectively scattering cavity, that allows the determination of the absolute
number of emitted and absorbed photons, without the need for a QY calibration standard. The use
of the IS has been standardized for LED and display industry, and QY devices based on the IS
methodology are commercially available.18,19 Our model assumes a simplified and generalized IS
geometry as shown in Figure 1, implementing the experimental scheme described by Mangolini
et al.17 In this method, a sample (e.g. a cuvette containing a solvent in which emitting nanoparticles
are dispersed) is suspended inside the IS and excited from the entrance port. The excitation photons

FIG. 1. Schematics of a generalized integrating sphere (IS) setup used for our model. The IS cavity has a small entrance on
the left side and an exit on the bottom side, where a detector is placed. The sample/reference is modelled as a spherical object
suspended in the center. Lines represent the light paths between different objects inside the IS - wall (w), loss channel (l),
detector (d) and sample (s). The parameters represent the probabilities of taking each specific light path. Light paths shown
in dashed lines are prevented by the screen (so called ’baffles’). The light paths before the first reflection from the IS wall
(n = 1) are considered separately to account for the inhomogeneity of the light field in that instance. This differs for excitation
light (entering from outside) and emission (originating from the center). Emission (red lines) is assumed separately from the
excitation (blue lines) due to different spectral ranges, where the reflectivity of the sphere and the sample’s absorption differ.
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that are absorbed by the sample, are subsequently emitted at a different wavelength, with a probability
given by the quantum efficiency η. After multiple reflections and scattering events within the IS, the
excitation and emission photons are ultimately detected, lost or (re-) absorbed in the sample. The
same measurement is repeated with a blank reference sample (e.g. the cuvette with solvent). From the
difference in detected photon intensities at the excitation wavelengths (I) and emission wavelengths
(I∗), the numbers of absorbed and emitted photons are evaluated:

QY =
Nem

Nabs
=

N∗S − N∗Ref

NRef − NS
=
∫ (I∗S − I∗Ref )C∗dt

∫ (IRef − IS)Cdt
, (2)

where subscripts S and Ref refer to the sample and reference measurements. The factors C and C∗

correct for the spectral sensitivity of the detector and IS at the excitation and emission wavelength,
respectively. For this an additional calibration measurement is performed using an empty IS and a
calibration source with a known spectrum.

III. ANALYTICAL MODEL

We model the IS as a spherical cavity with two small openings: an entrance port from which
excitation light enters and an exit port equipped with a detector. The sample or reference is suspended
in the middle of the IS and is modeled as a spherical object with absorptance A, reflectance R and
transmittance T, where A + R + T = 1. The interior of the IS is covered by a coating that is highly
reflective over a broad spectral range R4 (usually > 97%) and acts as an ideal scatterer, i.e. the
directionality of the light is lost after a single reflection from the walls. We define the probability p
that a photon impinges on an object inside the IS by the relative area of the object to the area of the IS
interior. For example the probability of hitting the wall (p4), loss channel (pl), detector (pd) or sample
(ps), with 1 = pl + pd + ps + p4. Since the ideally scattering walls ensure spatially distribution of the
photons, we assumed that these probabilities do not depend on the exact location in the IS at which
the photon scatters. However, to take into account that all the light starts from a single point (i.e.
excitation from the entrance port and emission from the sample), we separate the first round of light
reflection (n = 1) from the consequent ones (n ≥ 2) (see Figure 1). We do this by assigning modified
probabilities p0x of hitting objects inside the IS, given by their visibility from the entrance. Again,
1 = p0l + p0d + p0s + p04 and 1= p∗04+p∗0l +p∗0d . p0s represents the fraction of the initial excitation light
intensity, Iexc

0 , that hits the sample directly, a parameter that is commonly varied in literature.12,13,16

To separate this parameter from the other probabilities, we set p0s = F, where F = 1 for direct or
F = 0 for indirect excitation conditions. Furthermore, in accordance with the standard IS methodology,
direct detection of the excitation and emission photons is prevented by an inserted baffle by setting
p0sd = psd = p0d = p∗0d = 0 (dashed lines in Figure 1). For the sake of completeness, we finally assume
that the measurement is in a regime in which the QY is independent of the excitation photon flux.

From the light paths illustrated in Figure 1 and their probabilities px, we simulate the transmitted
excitation intensities during the first (n = 1) up to the n-th reflections:

Iexc
1 = Iexc

0 [p04 + F(1 − A)p0s4]R4

Iexc
2 = Iexc

1 [p4 + ps(1 − A)ps4]R4

Iexc
3 = Iexc

2 [p4 + ps(1 − A)ps4]R4

...

Iexc
n = Iexc

n−1[p4 + ps(1 − A)ps4]R4

= Iexc
0 [p04 + F(1 − A)p0s4]R4

×
{
[p4 + ps(1 − A)ps4]R4

}n−2.

Here, p0s4 and ps4 indicate the probabilities of light passing through the sample and hitting the wall
for the first and consecutive reflections, respectively. Similarly, we evaluate the absorbed intensity
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(Iabs) by the sample/reference and the intensity recorded by the detector (Idet) at the exit of the IS by:

Iabs
1 = Iexc

0 FA

Iabs
n = Iexc

n−1psA

Idet
1 = Iexc

0 [p0d + F(1 − A)p0sd]

Idet
n = Iexc

n−1[pd + ps(1 − A)psd].

For the emitted light intensity (Iem) and its fraction recorded by the detector (Idet∗ ), we consider
a different reflectivity of the IS coating R∗4 and an effective sample absorptance A∗:

Iem
1 = Iem

0 p∗04R∗4
Iem
n = Iem

n−1R∗4[p4 + ps(1 − A∗)ps4]

Idet∗
1 = Iem

0 p∗0d

Idet∗
n = Iem

n−1[pd + ps(1 − A∗)ps4].

To account for re-absorption and subsequent re-emission, A∗ is defined as A∗ = A(λem)(1 − η),
i.e. the fraction that is absorbed by the sample, but not re-emitted. The initial emission intensity
originating from the sample is given by Iem

0 = Iabs
tot cη, where Iabs

tot is the total excitation intensity
absorbed in the sample and c is the fraction of light absorbed by the emitters in the sample (i.e.
c < 1 when the emitters are dispersed in an absorbing matrix or solvent). The total absorbed intensity
by the sample during the measurement is calculated by summation of Iabs

n over all reflection-steps.
Using the geometric series,

∑∞
n=0 xn = 1

1−x , we obtain:

Idet
tot =

∞∑
n=1

Idet
n = Iexc

0

{
p0d + F(1 − A)p0sd + R4[p04 + F(1 − A)p0s4]

pd + ps(1 − A)psd

1 − R4[p4 + ps(1 − A)ps4]

}
(3)

Iabs
tot =

∞∑
n=1

Iabs
n = Iexc

0 A
{
F + R4[p04 + F(1 − A)p0s4]

ps

1 − R4[p4 + ps(1 − A)ps4]

}
(4)

Idet∗
tot =

∞∑
n=1

Idet∗
n = Iem

0

{
p∗0d + p∗04R∗4

pd + ps(1 − A∗)psd

1 − R∗4[p4 + ps(1 − A∗)ps4]

}
. (5)

For the spectral sensitivity correction factors C and C∗ we assume an empty sphere (A = 0)
and compare the theoretical intensity, equal to the input intensity at the sphere entrance Iexc

0 , with
the detected intensity at the sphere exit. This is done separately for the excitation and emission
wavelengths, where in the latter case we replace R4 by R∗4.

C =
Iexc
0

I tot
det(A= 0)

=

[
pod + Fp0sd + R4(p04 + Fp0s4)

pd + pspsd

1 − R4(p4 + psps4)

]−1

. (6)

Assuming that the reference sample does not emit (N∗Ref = 0), the QY is given by:

QY =
Nem

Nabs
=

∫ Idet∗
tot (AS)C∗dt

∫ [Idet
tot (ARef ) − Idet

tot (AS)]Cdt
(7)

For common IS conditions, such as a non-absorbing reference (ARef = 0), no re-absorption
(A∗S = 0) and inserted baffles (p0d = p0sd = p∗0d = psd = 0), the number of emitted Nem and absorbed
Nabs photons in Equation (7) can be expressed as:

Nem =N∗S =
∫

Iexc
0

[
F + (p04 + F(1 − AS)p0s4)Mps

]
ASη

p∗04M∗pd

(p04 + Fp0s4)M∗calpd
dt (8)

Nabs =NRef − NS =

∫
Iexc
0

[
1 −

(p04 + F(1 − AS)p0s4)Mpd

(p04 + Fp0s4)M∗calpd

]
dt. (9)

The parameters M and M∗ are ‘sphere-multipliers’, defined as M =R4(1−R4 [p4+ps(1−A)ps4)−1

and M∗ =R∗4(1 − R4 [p4 + ps(1 − A)ps4)−1 and describe how light is distributed over the IS interior
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and the objects inside it.10 For the calibration measurements, Mcal = M(A = 0) and M∗cal =M∗(A= 0).
Assuming that loss channels are small, p04 = 1 − F − p0l ∼ 1 − F, Equations (8) and (9) reduce to
the QY descriptions found elsewhere.10,12,16 In addition, the validity of our analytical approach has
been separately verified using ray-tracing simulations.

IV. RESULTS

Using the procedure outlined above, we simulate the QY that would be measured in a typical
QY geometry, for which we select an IS with a diameter of 10 cm, a reflectance at the excitation
and emission wavelengths of 0.97 and 0.99 and set the diameter of the sample, input port and
output to 1 cm, 4 mm and 1 mm respectively. The reference sample is assumed to be non-absorbing
and non-emitting (ARef = 0 and N∗Ref = 0) and the sample emission efficiency is set to an arbitrary
value of η = 80%. To account for measurement uncertainties in the number of detected excitation
and emission photons, we describe those variables by a distribution function with an expectation
value determined by Equations (3) and (5) (Figure 2a). The peak of the distribution indicates the
most-likely value of the variable, whereas the standard deviation of the distribution σ indicates its
fluctuations.

To cover commonly encountered measurement uncertainties, we discuss two types of distribu-

tions: A Poisson and a normal distribution. The Poisson distribution is given by P(k, µ)= µke−µ

k! , where
µ is the expected value and P(k, µ) the probability of measuring a photon count value k = 0, 1, 2, 3,
. . .. It is used to describe shot noise, which arises from the discrete nature of photons and will show
especially for low flux signals, since the signal-to-noise ratio of the Poisson distribution increases
with the square root of the number of detected photons (

√
N). The normal distribution is given by

G(k, µ,σ2)= e
−

(k−µ)2

2σ2
√

2πσ2
, where µ is again the expected (mean) value, σ2 is the variance and k is the vari-

able, i.e. photon counts. The normal distribution can be used to model measurement uncertainties that
arise from e.g. mechanical/electronic stability of the detection and excitation chains and describes
a more general situation in which the variance σ2 can be set independently from the expectation
value µ.

In typical QY experiments, the recorded counts NRef and NS are usually very high (105 photon
counts or more) and can otherwise easily be increased, by extending the measurement time or by
doing multiple runs of the same measurement. As a consequence, the scenario in which (Poissonian)
shot noise dominates the signal is unlikely in practice. Moreover, for higher photon fluxes the Poisson
distribution can be well approximated by a normal distribution P(k, µ) ∼ G(k, µ, µ). We therefore
choose to discuss the fluctuations resulting from a normal distribution of the measured variables, to
describe a more general source of experimental uncertainty in QY measurements. We will confine
the specific case of Poisson distributed variables to the supplementary material.

To study the effect of measurement uncertainty on the QY, we simulate the distribution of
the number of detected photons NS , N∗S ≡Nem and NRef by drawing semi-randomly from a normal
distribution, NS ∼G(k, µS ,σ2

S), N∗S ∼G(k, µS∗ ,σ2
S∗ ) and NRef ∼G(k, µRef ,σ2

Ref ). We set the standard
deviation of each variable by choosing a fixed value of the relative uncertainty, α, defined as α = σ

µ , i.e.
the fluctuation in the measured variables relative to the mean value. The distributions are illustrated
for α = 1% (green) and α = 0.1% (black) in Figure 2a. Using Equation (2) we then compute the
QY distribution, shown for different values of α in Figure 2b. For a low uncertainty α (black curve),
the simulated distribution of the number of absorbed photons Nabs = NRef − NS is narrow, which
leads to a QY distribution that lies symmetrically around the expected QY value (dashed vertical
line). Upon increasing α (green curve), however, the distribution of Nabs broadens with one tail
approaching zero, and the QY distribution (QY ∝ 1/Nabs) becomes asymmetric. In this case, the
most-likely QY value (the peak of the distribution) is shifted towards lower, underestimated values.
Moreover, there is a finite probability of finding negative QY values when NS > NRef . A similar effect
occurs when α is fixed and the absorptance is varied, as shown for in Figure 2c. For an absorptance
of 1%, the most-likely QY estimate is underestimated by more than a factor of ∼ 2, i.e. 200%. The
absorption value for which the QY is underestimated strongly depends on the relative uncertainty of
the measurement as shown in Figure 2d. For α = 0.1%, the most-likely QY agrees very well with

ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-053808
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FIG. 2. Simulated effect of normally distributed noise on the QY: (a) Normalized histograms of the number of detected
emission photons Nem (red) and excitation photons NS and NRef for a sample absorptance of 2.5% (black and green). The
latter are shown for a relative measurement uncertainty of 1% (green) and 0.1% (black). The thick solid lines show normal
distributions; the vertical dashed lines indicate the (noiseless) most-likely values. (b) Normalized histograms of the simulated
QY values for a fixed sample absorptance (AS ∼ 2.5%) and different relative measurement uncertainties and (c) for a fixed
measurement uncertainty (α =1%) and a varying sample absorptance. The thick solid lines in (b, c) indicate fits by the analytical
expression for the ratio-distribution (Equation (10)). (d) The simulated most-likely QY value (lines) and the full-width at half-
maximum (FWHM) of the positive part of the simulated QY distribution (shaded regions) against the single-pass absorptance
of the sample. The horizontal dashed line shows the simulated QY without added noise. Relative uncertainties are set to
α = 1, 0.5 and 0.1%. The arrows indicate the absorptance values used in panel (c).

the expected QY, independent of the absorption of the sample. However, already for the relative
uncertainties of 0.5%, the QY estimate is reliable only when the sample’s absorptance exceeds ∼5%.
For even higher uncertainties of 1%, the absorption limit is as high as ∼15%.

V. DISCUSSION

Figure 2b–d shows that the QY distribution becomes skewed when the fluctuations in the num-
ber of detected photons become comparable to the one tenth of the absorptance of the sample:
α/AS ∼ 10%. This results in a large variance in the number of absorbed photons (Nabs, Figure 2a),
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FIG. 3. (a) Simulated most-likely QY value against the relative measurement uncertainty, normalized to the sample’s single-
pass absorptance AS for AS = 5% (black) and AS = 25% (red). The horizontal dashed black line indicates the noiseless QY
value. For a relative noise level of > 10% of the single-pass absorptance value, the QY is underestimated (yellow area). The
arrow indicates the situation in panel (b). (b) Simulated distribution of NRef , NS and Nabs = NRef − NS for AS = 5% and
α = 2% (black) and AS = 25% and α = 10% (red). (c) QY (color bar) as a function of the normalized number of absorbed
photons (NRef −NS)/N0

Ref and relative uncertainty in the NRef and NS estimates. The dashed white line indicates the threshold
below which the QY is unreliable. This holds for any quantity given by the general relation X/(U − V ).

which due to the inverse proportionality QY ∝ 1/Nabs results in an skewed distribution function of
the QY. The relative fluctuations in the number of emitted photons, given by the same α, are small
(Figure 3b). Moreover, since Nem is in the nominator of the QY definition (Equation (1)), it therefore
has a negligible effect on the shape of the QY distribution. The full dependence of the QY on the
relative uncertainty and absorptance is shown in Figure 3a for samples with a single-pass absorp-
tance of 5% (black) and 25% (red). When α is small compared to the absorptance, α/AS < 10%,
the most-likely QY is in good agreement with the unbiased result, whereas for α/AS > 10% (yellow
area) the QY is increasingly underestimated. For α equal to the sample’s single-pass absorptance, the
most-likely QY is already reduced to 50% of the unbiased value. A nearly identical curve is obtained
for an arbitrary absorption value, even when the absorptance is high (red curve). In both cases, there
is a large variance in the distribution of Nabs (Figure 3b). This shows that it is the ratio of the relative
uncertainty and the sample absorption that determines the underestimation of the QY.

An another important finding it that in the ideal case, in which noise is absent, the IS method-
ology itself does not yield biased results. The bias (Figure 2) arises only when accounting for the
measurement uncertainty in the simulated number of detected photons predicted by Equations (3)
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and (5). Hence we conclude that the bias results purely from the relation from which the QY and,
in particular, the absorption part of the QY is determined: QY ∝ 1/(NRef − NS). The same effect is
therefore expected to show for any quantity with the general form Z = X/Y and Y = U − V, when the
uncertainty in U and V is comparable to the value of (U − V ).

We can derive the analytical expression for the probability distribution of this general case. By tak-
ing normally distributed random variables X ∼G(k, µX ,σ2

X ), U ∼G(k, µU ,σ2
U ) and V ∼G(k, µV ,σ2

V ),
we get Y ∼G(k, µY ,σ2

Y ) with µY = µU − µV and variance σ2
Y =σ

2
U + σ2

V . It then follows that the
derived ratio Z = X/Y is a continuously distributed random variable with the probability density
function (for more details, see the supplementary material):20

pZ (z)=
θ

π(z2 + θ2)
[
√

2πB(z)Φ(B(z))e−
C(z)

2 + K], (10)

where

B(z)=
αY z + αXθ

αXαY

√
z2 + θ2

Φ(z)=
∫ z

−∞

1
√

2π
e−

1
2 u2

du

C(z)=
(αY θ − αXz)2

α2
Xα

2
Y (z2 + θ2)

K = exp(−
α2

X + α2
Y

2α2
Xα

2
Y

).

Here, we again define the relative uncertainty αi = σi/µi with i = X, Y, U, V and the parameter
θ = σX /σY . For simplicity, we assume that the measurements of variables X, Y, U and V are all
independent, which typically holds for QY measurements. The general case with dependent variables
is discussed in the supplementary material.

The first factor in Equation (10) is the ‘standard’ part of the density of a non-centered Cauchy
distribution, which is independent of µX ,Y and has no mean or variance. The factor in brackets is
known as the ‘deviant’ part, and leads to the skewed shape of the distribution. Using the analytical
expression in Equation (10), we can very precisely fit our simulated QY distributions in Figure 2b,c
(colored full lines), thus validating our results.

Finally, in Figure 3c we summarize the limitations of the determination of the QY (or any
analogous quantity Z = X/(U − V )) by plotting the general dependence of the most-likely QY (Z) on
the relative measurement uncertainty α and the absorptance AS (or general analogue to absorptance
(U − V )/U0), i.e. the fraction of the number of incident photons N0

Ref that is absorbed by the sample,

(NRef − NS)/N0
Ref . The threshold below which the QY estimate becomes unreliable is designated by

the white dotted line in Figure 3c and corresponds to the yellow area in Figure 3a. As a rule of thumb,
the QY can be reliably estimated for a sample with an absorptance that exceeds ∼10% of the relative
measurement uncertainty, e.g. for an absorptance > 1% when α = 0.1%. The QY becomes unreliable
upon decreasing absorption or increasing measurement uncertainty.

VI. CONCLUSION

In conclusion, we report on a general issue arising in experimental methodologies where a
quantity in the form Z = X/Y with small Y = U − V is evaluated, such as the photoluminescence
QY. These quantities are biased towards lower values when (U − V )/U0 is ∼ 10% of the uncertainty
in the variables U and V. This happens commonly in QY measurements of low-absorbing samples,
since for typical noise levels of ∼ 1%, absorptance below 10% is already affected. Those numbers
are not uncommon in many experiments, which suggests that this bias could have been present in
published results that rely on the QY methodology.2–4,12 This artifact has passed undetected for a
long time, due to the assumption that the error in the measured signal intensities propagates in a
linear manner and therefore that low photon fluxes, e.g. when measuring low-absorption or emission
materials, merely result in a larger uncertainty in the obtained QY value.10,21 The underestimation

ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-053808
ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-053808
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arises purely from the uncertainty in the measured variables U and V compared to the normalized
difference (U − V )/U0. Hence we anticipate that, not only the absolute QY, but also the comparative
and relative QY techniques will suffer from this effect. By detailed numerical simulations and by
derivation of the skewed probability density function of the QY we quantify this effect and provide
guidelines for the range of absorption values for which the QY can be reliably determined in each
specific experimental setup.

SUPPLEMENTARY MATERIAL

See the supplementary material for a discussion of Poisson distributed variables, the full
description of the ratio distribution and for experimentally determined QY distributions.
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4 D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, Nature Nanotechnology 6, 710

(2011).
5 S. Saeed, E. M. L. D. de Jong, K. Dohnalova, and T. Gregorkiewicz, Nature Communications 5, 4665 (2014).
6 N. X. Chung, R. Limpens, and T. Gregorkiewicz, Advanced Optical Materials 5, 1600709 (2017).
7 J. Valenta, M. Greben, S. Gutsch, D. Hiller, and M. Zacharias, Applied Physics Letters 105, 243107 (2014).
8 M. Greben, A. Fucikova, and J. Valenta, Journal of Applied Physics 117, 144306 (2015).
9 C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, Nature Protocols 8, 1535 (2013).

10 J. Valenta, Nanoscience Methods 3, 11 (2014).
11 T. S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz, and C. J. Bardeen, Review of Scientific Instruments 78, 2005 (2007).
12 D. O. Faulkner, J. J. Mcdowell, A. J. Price, D. D. Perovic, N. P. Kherani, and G. A. Ozin, Laser and Photonics Reviews 6,

802 (2012).
13 C. Wurth and U. Resch-Genger, Applied Spectroscopy 69, 749 (2015).
14 Defined as the fraction of the incident light that is absorbed.
15 N. Greenham, I. Samuel, G. Hayes, R. Phillips, Y. Kessener, S. Moratti, A. Holmes, and R. Friend, Chemical Physics Letters

241, 89 (1995).
16 J. C. de Mello, H. F. Wittmannn, and R. Friend, Advanced Materials 9, 230 (1997), arXiv:97/0302-O23 [0935-9648].
17 L. Mangolini, D. Jurbergs, E. Rogojina, and U. Kortshagen, Journal of Luminescence 121, 327 (2006).
18 “Hamamatsu C9920-02G.”
19 “Horiba Quanta-phi.”
20 A. Cedilnik, K. Kosmelj, and A. Blejec, Metodoloski Zvezki 1, 99 (2004).
21 N. X. Chung, R. Limpens, and T. Gregorkiewicz, Proc. SPIE 9562, 95620O (2015).

ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-053808
https://doi.org/10.1021/nl2036194
https://doi.org/10.1021/nn302524k
https://doi.org/10.1002/adma.201403552
https://doi.org/10.1038/nnano.2011.167
https://doi.org/10.1038/ncomms5665
https://doi.org/10.1002/adom.201600709
https://doi.org/10.1063/1.4904472
https://doi.org/10.1063/1.4917388
https://doi.org/10.1038/nprot.2013.087
https://doi.org/10.1080/21642311.2014.884288
https://doi.org/10.1063/1.2768926
https://doi.org/10.1002/lpor.201200077
https://doi.org/10.1366/14-07679
https://doi.org/10.1016/0009-2614(95)00584-q
https://doi.org/10.1002/adma.19970090308
https://arxiv.org/abs/97/0302-O23
https://doi.org/10.1016/j.jlumin.2006.08.068
https://doi.org/10.1117/12.2191105



