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We construct entanglement renormalization schemes that provably approximate the ground states of
noninteracting-fermion nearest-neighbor hopping Hamiltonians on the one-dimensional discrete line and
the two-dimensional square lattice. These schemes give hierarchical quantum circuits that build up the
states from unentangled degrees of freedom. The circuits are based on pairs of discrete wavelet transforms,
which are approximately related by a “half-shift”: translation by half a unit cell. The presence of the Fermi
surface in the two-dimensional model requires a special kind of circuit architecture to properly capture the
entanglement in the ground state. We show how the error in the approximation can be controlled without
ever performing a variational optimization.

DOI: 10.1103/PhysRevX.8.011003 Subject Areas: Condensed Matter Physics,
Quantum Information

I. INTRODUCTION

Characterizing quantum phases of matter and computing
their low-temperature physical properties are two of the
central challenges of quantum many-body physics. Part of
the challenge is that many phases and phase transitions are
best characterized in terms of their pattern of entanglement,
as opposed to, say, their pattern of symmetry breaking [1].
As an extreme case, topological phases of matter (see
Ref. [2] for a review) are solely characterized by entangle-
ment, and since a topological state is gapped, it is
insensitive to any local perturbation [3,4] and need not
break any symmetry. By contrast, metallic states with
Fermi surfaces have many low-energy excitations, but
they can also be usefully characterized in terms of their
anomalously high entanglement. In this work, we are
concerned with such metallic states.
A useful idealization is to focus on ground-state physics,

where the entanglement entropy of spatial subsystems
provides powerful nonlocal diagnostics of phases. For

example, most known ground states obey an “area law”:
The entanglement entropy of a subsystem scales as the
boundary size of the subsystem [5]. Topological states have
a subleading (in subsystem size) shape-independent “topo-
logical entanglement entropy” term that partially character-
izes the state [6,7]. Another diagnostic is the scaling of
entropy with subsystem size itself: Metals logarithmically
violate the area law when they have a Fermi surface [8–10].
However, discussions based on entanglement entropy

are only the beginning. We can more fully characterize the
pattern of entanglement in a quantum state by giving a
recipe for physically constructing it from unentangled
degrees of freedom (d.o.f.). Such a recipe is called a
quantum circuit and constitutes a sequence of local unitary
transformations that produce the desired state from an
unentangled state. While symmetry-breaking states, e.g., a
ferromagnet with all spins aligned, can be caricatured by an
unentangled state (or, more realistically, by a state in which
only nearby d.o.f. are entangled), it is known that topo-
logical states must have a high degree of nonlocal entan-
glement as measured by the minimal number of circuit
layers needed to prepare them from an unentangled state
[11]. The anomalously high entanglement in metallic states
similarly implies that any circuit that prepares a metallic
state starting from an unentangled state must have many
layers.
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In terms of calculations, quantum circuits often yield
efficient classical algorithms for computing physical prop-
erties such as correlation functions. Moreover, they give
rise to a local description of the multipartite entanglement
structure in terms of multilinear maps. As such, they form
an important subclass of tensor network states, a very
successful variational class of quantum states that have
been shown to be applicable in situations when other
methods fail, e.g., because of a fermion sign problem in
Monte Carlo methods (for a review, see Refs. [12,13]).
In terms of experiments, quantum circuits provide a

precise operational procedure, implementable on a suffi-
ciently versatile quantum simulator or quantum computer,
to prepare interesting states. For example, while it might be
difficult to directly cool a system to its ground state, a
quantum circuit provides an alternative way to directly
engineer the ground state.
In this work, we provide quantum circuits that, when

acting on a suitable unentangled state, prepare approxima-
tions to the metallic ground states of certain one- and two-
dimensional noninteracting fermion Hamiltonians. This is a
nontrivial task in part because these states of matter are
highly entangled and violate the area law. We work
primarily in the thermodynamic limit of an infinite lattice,
but our constructions can also be applied to finite-size
systems. The circuits themselves are composed of layers
having a hierarchical renormalization group structure, in
which the size of the system is doubled (or halved) after
each layer. In one dimension, the scheme is a version of the
multiscale entanglement renormalization ansatz (MERA)
[14], while in two dimensions, it yields an interesting
branching network structure [15]. Such renormalization-
group-inspired quantum circuits have been useful in
describing a variety of gapless states in one dimension
[16–19], and inroads have been made in two-dimensional
systems [20–24]. They have also been instrumental for
recent progress in our understanding of the holographic
duality [25–28]. As in the pioneering work [29], our
construction is based on discrete wavelet transforms,
although we take a somewhat different approach here.
The key features of our work are the following. Our

circuits are hand-crafted—no variational optimization is
used—and come with provable error bounds. The essential
physics is a certain “half-shift” condition discussed in detail
below [30]. Our two-dimensional circuit provides a repre-
sentation of a state with a Fermi surface, albeit on a special
lattice and at a special filling where the Fermi surface has
no curvature. The error scaling with circuit size is con-
sistent with the hypothesis that an exact renormalization-
group circuit can be implemented using a quasilocal circuit
with rapidly decaying tails [31]. Together, our results
address a long-standing challenge: to rigorously construct
tensor networks for gapless states of matter with Fermi
surfaces.

This paper is organized as follows. We first briefly set the
stage for our work and review the basics of noninteracting
fermion systems and some wavelet terminology (Sec. II).
Then, we discuss the one-dimensional model and construct
MERA quantum circuits that approximate its ground state
(Sec. III). Next, we generalize to the two-dimensional
model, which has a square Fermi surface (Sec. IV). We then
explain how to obtain a priori error bounds for our
constructions (Sec. V), and we illustrate the effectiveness
of our results through numerical experiments (Sec. VI). We
conclude in Sec. VII.

II. SETUP

Throughout this paper, we work in the context of non-
interacting fermion systems. At the single-particle level, the
systems can be described by a Hilbert space spanned by a
basis of single-particle states or modes ϕα. These data
depend on the physical setup, but in the cases below, ϕα

can be taken to be a single-particle state in which the particle
is localized at site α in some lattice Zd. The many-body
description is achieved by second quantization, i.e., passing
to creation,a†α, and annihilation,aα, operators that create and
destroy a fermion in the single-particle state ϕα.
The Hamiltonians we study will all consist of fermion

bilinears of the form H ¼ P
α;βa

†
αh

ð1Þ
α;βaβ, where h

ð1Þ
α;β can be

regarded as a single-particle Hamiltonian acting on the
mode space. The eigenstates of such a “quadratic”
Hamiltonian are many-body quantum states of fermions
that obey Wick’s theorem. This, in turn, implies that these
states are uniquely specified by the two-point correlation
functionGα;β ¼ ha†αaβi. In particular, the ground state ofH
is obtained from the state with no fermions by diagonal-

izing the matrix hð1Þα;β and placing one fermion in each mode
with negative single-particle energy. It is therefore possible
to carry out much of the analysis of the ground state at the
level of single-particle states. In particular, the circuit
approximation of the ground state is constructed from
single-particle unitaries u ¼ eiz. The corresponding “quad-
ratic” many-body unitary U ¼ eiZ with Z ¼ P

α;βa
†
αzα;βaβ

then acts asU†aαU ¼ P
βuα;βaβ. Any state obeyingWick’s

theorem can always be prepared from an unentangled state
(consisting of fermions localized to sites) by acting with
such a “quadratic” unitary.
The models we study are translation invariant, so we

immediately know how to diagonalize the single-particle
Hamiltonian hð1Þ using the Fourier transform (up to a small
eigenvalue problem in the case of having several modes per
site). However, the Fourier transform is not a local unitary
transformation (it mixes modes arbitrarily far away), so it
fails to fully capture the special physics of the ground state
and its real-space entanglement renormalization structure.
For example, the Fourier transform typically takes an
unentangled state to a state with volume law entanglement.
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Importantly, however, the ground state is invariant under
basis transformations within the filled and empty spaces
(negative- and positive-energy eigenspaces, respectively),
where the former is also known as the Fermi sea. We can
therefore prepare the same state by filling modes that are
suitable linear combinations of negative-energy eigen-
states, chosen to be approximately local in real space.
Vice versa, we can approximate the ground state by filling
strictly local modes that are approximately supported
within the Fermi sea.
Wavelets [32] provide a suitable basis to construct such

local modes. As first discussed in Ref. [29], the hierarchical
structure of a wavelet transform provides the single-particle
version of an entanglement renormalization quantum cir-
cuit. In one dimension, wavelet transforms can be specified
by a scaling filter hs and a wavelet filter hw. An input signal
ψ ∈ l2ðZÞ (the space of square summable sequences) is
then decomposed by convolution and downsampling into a
scaling output ψ s½n� ¼

P
mh

�
s ½m − 2n�ψ ½m� and a wavelet

output ψw½n� ¼
P

mh
�
w½m − 2n�ψ ½m�. Intuitively, the wave-

let filter should project onto details of a certain scale, while
the scaling filter should project on all features up to this
scale. The (discrete) wavelet transform is obtained by
iterating this scheme: The scaling output is taken as the
input signal for the next iteration. It decomposes the Hilbert
space into orthogonal subspaces, each describing details at
a certain scale. Its inverse reassembles the input signal from
the wavelet outputs at all scales.
If we design the wavelet transform such that it separates

negative-energy from positive-energy modes, we obtain a
renormalization scheme from the “quadratic” unitary URG
corresponding to one step of the wavelet transform. If the
filters have finite length, thenURG is a finite-depth quantum
circuit [33], meaning it is composed of a finite number of
layers of two-site unitaries. The unitary URG constitutes
one renormalization step: Given the ground state jψi of the
Hamiltonian,

jψi ≈URGðjψi ⊗ jχiÞ;

where, on the right-hand side, jψi is the ground state on the
renormalized lattice and jχi is some unentangled state.
Crucially, the disentangled sites are interleaved with the
renormalized lattice, and each unitary layer is a local
transformation. By composing many layers of URG, we
thus obtain a quantum circuit that approximately prepares
the ground state. The layout of the circuit is illustrated in
Fig. 1. The bottom of the figure corresponds to the state
jψi, each layer of red and green blocks constitutes the
quantum circuit implementing URG, the product states
j1ij0i on half of the sites make up jχi, and the lines that
go up into the next layer correspond to jψi on the other half
of the sites, which can be identified with the renormalized
lattice. To realize this approach, we still need to design
finite-length filters hs, hw such that the wavelet transform

separates negative- from positive-energy modes. We now
discuss in detail how this can be done systematically and to
arbitrarily high fidelity for two fundamental model systems.

III. FERMIONS ON THE DISCRETE LINE

We first consider the fermion nearest-neighbor hopping
Hamiltonian on the one-dimensional infinite discrete line,

H ¼ −
X
n∈Z

a†nanþ1 þ a†nþ1an: ð1Þ

After blocking neighboring sites using the modes b1;n ¼
ð−1Þna2n and b2;n ¼ ð−1Þna2nþ1, corresponding to the
even and odd sublattices, respectively, we can write

H ¼ −
X
n

b†1;nb2;n − b†2;nb1;nþ1 þ b†2;nb1;n − b†1;nþ1b2;n:

In terms of momentum modes bjðkÞ ¼
P

nbj;ne
−ink, the

Hamiltonian is

FIG. 1. MERA quantum circuit preparing an approximate
ground state of the one-dimensional hopping Hamiltonian (1),
using the notation of Ref. [29]. As discussed in Sec. III, the tensor
network consists of an initial “preprocessing” step followed by
repeated layers of “renormalization-group” circuits. Each re-
peated layer consists of a finite depth circuit followed by
projection of half the d.o.f. onto a product state. In more detail,
we first apply phase gates (yellow circles) and swapping sub-
lattices in order to let the following gates act either on the even or
the odd sublattice. The bulk of the MERA corresponds to two
independent wavelet transforms, one for hs (even sublattice) and
one for gs (odd sublattice). Each step of the two wavelet
transforms gives rise to a layer (red boxes) of two parallel
quantum circuits of depth K þ L, consisting of 2 × 2 unitary
gates (solid or hatched blue boxes). At the end of each layer, we
apply second quantized Hadamard unitaries (green boxes) that
couple both sublattices, and we occupy the negative-energy
modes. The figure illustrates the case of K ¼ L ¼ 1 and
L ¼ 2 layers. As we increase K, L, and the number of layers
L, we systematically obtain better and better approximations to
the ground state (see Sec. V).
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H ¼
Z

π

−π

dk
2π

�
b1ðkÞ
b2ðkÞ

�†� 0 e−ik − 1

eik − 1 0

��
b1ðkÞ
b2ðkÞ

�
ð2Þ

This is the discretized one-dimensional Dirac Hamiltonian
using the staggered Kogut-Susskind prescription [34]. The
eigenmodes of the single-particle Hamiltonian hð1ÞðkÞ, i.e.,
the k-dependent 2 × 2 matrix in Eq. (2), are

ϕ�ðkÞ ¼
1ffiffiffi
2

p
�

1

�ieiðk=2Þ

�
;

with energies �2 sinðk=2Þ and velocities � cosðk=2Þ,
corresponding to left (−) and right (þ) movers [35].
Thus, the many-body ground state is obtained by filling
the negative-energy eigenmodes ϕ−signðkÞðkÞ, correspond-
ing to the Fermi sea ½−π=2; π=2� in the original lattice.
To design a quantum circuit for the ground state, it is

convenient to diagonalize the single-particle Hamiltonian
into negative- and positive-energy eigenmodes by using the
unitary uðkÞ ¼ dðkÞh2, where h2 ¼ ð1= ffiffiffi

2
p Þ½1

1
1
−1� is the

Hadamard gate and d is of the form

dðkÞ ∝
�
1 0

0 −isignðkÞeik=2
�
; ð3Þ

where, importantly, we are free to choose a k-dependent
phase. Note that the matrix dðkÞ is discontinuous around
k ¼ 0 because of the sign function, but not around k ¼ �π,
where the discontinuity in the sign is canceled by the
discontinuity in the half-shift phase factor (and the result is
even smooth). The many-fermion ground state correspond-
ing to the diagonalized single-particle Hamiltonian

uðkÞ†hð1ÞðkÞuðkÞ ¼
�−2 sin ðjkj=2Þ 0

0 2 sin ðjkj=2Þ

�
ð4Þ

is disentangled and can be prepared in a completely local
fashion by filling the even sublattice, corresponding to the
first component, while leaving the odd sublattice empty.
We now show that the “quadratic” unitary corresponding

to uðkÞ can be well approximated by a finite-depth quantum
circuit. The Hadamard h2 is not k dependent, and thus, its
second quantization simply corresponds to a local unitary
between neighboring sites of the original nonblocked
lattice. Hence, it suffices to focus on the unitary dðkÞ,
which is block diagonal between the even and odd
sublattices. In view of the quantum circuit/wavelet corre-
spondence discussed in Sec. II, we thus need to design a
pair of wavelet transforms, acting on the even and odd
sublattices and specified by filters hs, hw and gs, gw,
respectively, whose Fourier transforms are related by

gwðkÞ ≈ −isignðkÞeiðk=2ÞhwðkÞ: ð5Þ

One can verify that Eq. (5) is fulfilled if the corresponding
scaling filters satisfy [36]

hsðkÞ ≈ eiðk=2ÞgsðkÞ: ð6Þ

The phase difference eik=2 in Fourier space implies that the
two scaling filters are related by a half-shift or half-delay in
real space. Its appearance is not surprising, given the
translation invariance of the original (unblocked) lattice
[37]. It is easily seen that the outputs of the inverse wavelet
transforms are then, at all levels, related approximately as
in Eq. (3), as illustrated in Fig. 2; thus, they can be used
to implement dðkÞ [38]. In other words, the same filters
can be used throughout, and a scale-invariant circuit will be
obtained.
Because of the discontinuity of the half-shift at k ¼ �π,

a pair of local filters cannot satisfy Eq. (6) exactly.
Fortunately, approximate solutions were studied in great
detail in the context of filter design in the signal-processing
literature [30,37]. Selesnick devised a general algorithm to
construct filter pairs, indexed by two integers K, L and
having length 2ðK þ LÞ, whose Fourier transforms have
exactly equal magnitude and differ by a phase eiδðkÞ [30].
The parameter K determines the usual moment condition
used in the wavelet literature, which controls the smooth-
ness of the wavelets and the localization properties of the
filters in momentum space. The difference between eiδðkÞ
and the ideal half-shift is controlled by the parameter L and
decreases quickly in the region around k ¼ 0. While eiδðkÞ
is continuous at k ¼ �π and therefore necessarily deviates
from the half-shift in this region, the support of the scaling
filter is, in this same region, suppressed with increased K.
This allows us to control the error of the approximation (6)

FIG. 2. Fourier spectrum of the outputs of the inverse wavelet
transform for levels l ¼ 1, 2, 3 and wavelet parameters K ¼ 4,
L ¼ 6. Both filters have equal magnitude in momentum space
(shaded regions). The relative phase difference of their Fourier
transforms (solid lines) approximates the exact phase difference
of the two components of Eq. (3) or, equivalently, of the negative-
energy eigenstates of the single-particle Hamiltonian (black
dotted line).
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by increasing the parameters K and L (see right panel
of Fig. 3).
We thus obtain entanglement renormalization quantum

circuits by combining the circuits for the “quadratic”
unitaries corresponding to the wavelet transforms, con-
structed using the procedure described in Sec. II, with the
Hadamard unitaries and the disentangled ground state of
the diagonal Hamiltonian (4). These circuits, illustrated in
Fig. 1, are composed of self-similar layers, each of which is a
quantumcircuit of finite depthK þ L that consists of nearest-
neighbor 2 × 2-unitary matrices. This corresponds to a bond
dimension χ ¼ 2KþL if the circuit is represented in the
standard form of a binary MERA, written in terms of single
layers of disentanglers and isometries [14,39]. These quan-
tum circuits allow us to rigorously approximate correlation
functions of the ground state of the Hamiltonian (1) as
discussed in Sec. V and illustrated numerically in Sec. VI.
From the perspective of the renormalization group, it is

natural to consider the coarse-grained or renormalized
Hamiltonian. Recall that the original single-particle
Hamiltonian is of the form hð1ÞðkÞ ¼ eðkÞ( cosðk=2Þσy−
sinðk=2Þσx), where eðkÞ ¼ 2 sinðk=2Þ. Because of the

downsampling, both the wavelet and scaling outputs couple
hð1ÞðkÞ andhð1Þðkþ πÞ (i.e., a single layer of a binaryMERA
is invariant under shifts over two sites). The Hamiltonian can
be naturally divided into three terms—corresponding to the
scaling modes, the wavelet modes, and the mutual “inter-
action” between scaling and wavelet modes, respectively,
each of which are a free-fermion Hamiltonian. The wavelet
Hamiltonian takes the exact single-particle form −ϵlðkÞσz
(after the additional local Hadamard transforms). Here, l
denotes the level of thewavelet transform, viz. the layer of the
MERA, and ϵlðkÞ > 0, so that its ground state is a product
state in real space, obtained by filling the first mode on every
site, in agreement with Eq. (4). If Eq. (6) is satisfied exactly,
then the scaling Hamiltonian or renormalized Hamiltonian
has the structure elðkÞ( cosðk=2Þσy − sinðk=2Þσx), where
only the eigenvalues�elðkÞ changewith the level l, and not
the eigenvectors; in general, this is still approximately true.
This is the proclaimed scale invariance, and it provides an
alternative way to see that the same pairs of scaling and
wavelet filters should be used in every layer. The coarse-
grained dispersion relation elðkÞ does eventually reach a
fixed point (up to a scaling 2l that accounts for the rescaled
lattice spacing), as illustrated in the left panel of Fig. 3. Note
that there is also a residual wavelet-scaling interaction term,
originating from the overlap between the momentum-space
support of thewavelet and scaling filters, so the Hamiltonian
is not exactly block diagonal. In particular, the dispersion
relation elþ1ðkÞ is not simply elðk=2Þ (the lower half
of the dispersion relation of the preceding level), and
liml→∞2

lelðkÞ does not simply converge to jkj for all k
because of deviations around k ¼ �π (see also the left panel
in Fig. 3). An exact block diagonalization would require
filters with nonoverlapping support, which are therefore
nonlocal in real space. While this behavior is more closely
approximated with increasing K, the magnitude of the
interaction term decays, at most, polynomially in K.
However, full block diagonalization of H is too strong of
a requirement and would allow the creation of arbitrary
eigenstates by replacing the product states with a plane-wave
state within a single layer. For the ground state itself,
convergence of correlation functions is still exponential in
K and L, as discussed in Sec. V.

IV. SQUARE LATTICE AND FERMI SURFACE

We now extend our construction to fermions hopping on
the two-dimensional infinite square lattice:

H ¼ −
X
m;n∈Z

a†m;namþ1;n þ a†m;nam;nþ1 þ H:c: ð7Þ

We again start by focusing on the single-particle domain
and then later transform everything into second-quantized
form. The two-dimensional problem we study is special
because of the Fermi surface structure: The two-
dimensional fermion Green function ha†x;ya0;0i factorizes

FIG. 3. Left panel: Plots of the eigenvalues 2lelðkÞ of the
scaling Hamiltonian (solid lines) and the eigenvalues 2lϵlðkÞ of
the wavelet Hamiltonian (dashed lines) for levels l ¼ 1;…; 5 and
wavelet parameters K ¼ 4, L ¼ 6. We observe convergence to a
fixed-point Hamiltonian. The original dispersion eðkÞ is shown
by the solid black line. The residual off-diagonal interaction
between scaling and wavelet modes explains why the eigenvalues
e1ðkÞ, ϵ1ðkÞ deviate slightly from eðk=2Þ, eðk=2þ πÞ (dotted
blue lines). Right panel: The single-particle modes obtained from
level l ¼ 1 of the wavelet transform, translated back to the
original lattice before blocking, should have momentum-space
support inside (blue lines) or outside (red lines) the Fermi sea
½−π=2;þπ=2�. While the wavelets exactly vanish at the Fermi
points, small errors originate from the side lobes on the opposite
side of the Fermi points. The solid lines are K ¼ L ¼ 4. For
fixed L ¼ 4 and K ¼ 6, 8, 10, the support is pushed away from
the Fermi surface, but the magnitude of the side lobes does
not decrease much (dotted lines). For fixed K ¼ 4 and
L ¼ 6, 8, 10, the side lobes appear to decrease exponentially fast
(dashed lines).
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into two one-dimensional Green functions, one that
depends on xþ y and one that depends on x − y. Thus,
as in the one-dimensional case, we decompose the lattice
into an even and an odd sublattice, now defined by
demanding that the sum of both coordinates is even or
odd, respectively; we likewise shift the Brillouin zone by
momentum ðπ; πÞ, resulting in new mode operators b1;x;y ¼
ð−1Þxþyaxþy;x−y and b2;x;y ¼ ð−1Þxþyaxþyþ1;x−y, with cor-
responding momentum modes biðkx; kyÞ, i ¼ 1, 2. Note
that these momenta are now defined with respect to the
even or odd sublattice and hence are rotated by 45 degrees
with respect to the original lattice. This transformation
effectively decouples the x and y directions, as the
corresponding one-particle Hamiltonian is now of the form

hð1Þ ¼ −
�

0 ð1 − e−ikxÞð1 − e−ikyÞ
ð1 − eþikxÞð1 − eþikyÞ 0

�

Its eigenvalues are products of the eigenvalues in
the one-dimensional case, �4 sinðkx=2Þ sinðky=2Þ, with
eigenmodes

ϕ�ðkx; kyÞ ¼
1ffiffiffi
2

p
�

1

�eiðkxþky=2Þ

�

As in the one-dimensional case, the eigenmodes exhibit a
phase difference between the two sublattices corresponding
to a half-shift in real space, but now the half-shift is in
both lattice directions. The positive- and negative-energy
eigenmodes are given by ϕ�signðkxÞsignðkyÞðkx; kyÞ, respec-
tively, and are thus discontinuous around both kx ¼ 0 and
ky ¼ 0, as illustrated in the left panel of Fig. 4.

It is now clear that we can diagonalize the single-particle
Hamiltonian with the unitary uðkÞ ¼ dðkxÞdðkyÞh2, where
d is the block-diagonal unitary (3) and h2 the Hadamard
gate defined previously. We can implement

dðkxÞdðkyÞ ∝
�
1 0

0 −signðkxÞsignðkyÞeiðkxþkyÞ=2

�
ð8Þ

using the tensor products of two one-dimensional wavelet
transforms as before—one acting in the x direction and the
other in the y direction. More specifically, let us denote by
Wψ ¼ ψ s ⊕ ψw a single step of the one-dimensional
wavelet transform with filters hw, hs. Then,

ðW ⊗ WÞψ ¼ ψ ss ⊕ ψ sw ⊕ ψws ⊕ ψww; ð9Þ

which we identify as a single step of the two-dimensional
separable wavelet transform. In particular, the wavelet-
wavelet component ψww corresponds to the filter
hwwðkx; kyÞ ¼ hwðkxÞhwðkyÞ, and similarly if we use the
one-dimensional filters gs, gw instead. Thus, Eq. (5) implies
that

hwwðkx; kyÞ ≈ −signðkxÞsignðkyÞeiðkxþky=2Þgwwðkx; kyÞ;

which is precisely the desired phase relation between the
two components of dðkxÞdðkyÞ (see left panel in Fig. 4). To
obtain the tensor product of the two wavelet transforms, we
now iteratively apply W ⊗ W to the scaling-scaling com-
ponent ψ ss, as well asW ⊗ I to ψ sw and I ⊗ W to ψws [40].
The resulting transform is thus labeled by two levels, lx
and ly, corresponding to the number of renormalization
steps in each direction.
After the second quantization procedure and converting

these transformations into a quantum circuit, we obtain an
entanglement renormalization quantum circuit of the form
sketched in Figs. 5 and 6. This is a particular example of a
branching MERA, which generalizes the MERA to allow
for logarithmic corrections to the area law [15,41,42] and
which was explicitly built with Fermi surfaces in mind.
Unlike in the original proposal, our network has three
branches instead of two. Indeed, after each layer, we are left
with four branches, of which only one can be projected into
a product state while the remaining three have to be
analyzed further. However, only one of the three branches
keeps branching in the higher levels. The other two are
further disentangled by ordinary one-dimensional MERAs
as in Fig. 1. This ensures that the ground state produced
by our network satisfies an appropriate area law of the
form SðRÞ≃ R log2 R for the entropy of the reduced
density matrix of an R × R box. Indeed, let us first recall
the estimation of the entanglement entropy in a one-
dimensional MERA. Each layer is a finite-depth quantum
circuit that increases the entanglement entropy of a
region by, at most, a constant amount c1, so we obtain

FIG. 4. Left panel: The relative phase difference between the
Fourier transforms of hww, gww (smooth surface), which approx-
imates the exact phase difference of the two components of
Eq. (8) or, equivalently, of the negative-energy eigenstates of the
single-particle Hamiltonian (wireframe mesh). The colored shad-
ing of the coordinate plane indicates the momentum-space
support of hww and gww. It is concentrated around kx ¼ ky ¼
�π and vanishes for kx ¼ 0 or ky ¼ 0. Right panel: The positive-
energy branch of the original Hamiltonian (wireframe mesh) and
of the renormalized Hamiltonian (smooth surface) after six
layers, where it has approximately reached its fixed point. The
eigenmodes of both Hamiltonians are exactly characterized by
the relative phase difference displayed in the left panel.
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S1DðRÞ ≤ c1 þ S1DðR=2Þ ≤ … ≤ c1 log2 R. For a regular
two-dimensional MERA, every layer can increase the
entanglement entropy of an R × R box by c2R, leading
to S2DðRÞ ≤ c2Rþ S2DðR=2Þ ≤ … ≤ 2c2R. Thus, the
entanglement entropy in a regular two-dimensional
MERA obeys a strict area law. In contrast, our branching
MERA adds, in every layer, the entanglement contribution
of a collection of one-dimensional MERAs in the horizon-
tal and vertical directions. The resulting entanglement
entropy is bounded by

SðRÞ ≤ c2Rþ 2ðR=2ÞS1DðR=2Þ þ SðR=2Þ
≤ c2Rþ c1Rlog2ðR=2Þ þ SðR=2Þ ≤ …

≲ 2c1Rlog2Rþ ð2c2 − 4c1ÞR:

While only an upper bound, this estimate illustrates how a
logarithmic violation of the area law can be obtained from
the one-dimensional MERAs in each layer.
From the perspective of the renormalization group, the

scaling-scaling branch gives rise to a renormalized
Hamiltonian whose eigenmode structure is exactly the
same as that of the original Hamiltonian, so it can indeed
be further processed in a self-similar fashion. The eigen-
values of the renormalized Hamiltonian converge to a fixed
point upon successive coarse-graining (see right panel of

Fig. 4). The other two branches, resulting from a scaling
filter in one direction and a wavelet filter in the other
direction, give rise to the coarse-grained Hamiltonians
depicted in Fig. 7. The structure of their eigenmodes is

FIG. 5. Branching MERA quantum circuit preparing an
approximate ground state of the two-dimensional hopping
Hamiltonian (7). The bottom layer consists of applying one-
dimensional wavelet transforms in both the x and y directions of
the 45-degree rotated lattice. This gives rise to four outputs,
as illustrated in detail in Fig. 6. The wavelet-wavelet output
corresponds to approximate eigenstates and hence can be
projected out after a subsequent Hadamard transform that couples
the even and the odd sublattice, indicated by yellow triangles. The
mixed wavelet-scaling outputs are disentangled in one direction
and therefore have to be processed further by one-dimensional
transformations in the scaling directions, giving rise to two
branches that take the form of binary trees as in Fig. 1. The
scaling-scaling output contains no disentangled d.o.f. and is thus
connected to a copy of the circuit on the renormalized lattice.

(a) (b)

(d) (c)

(e) (f)

(g) (h)

FIG. 6. One layer of the branching MERA for two-dimensional
free fermions. (a) The 2D lattice of fermionic modes. (b) A series
of 1D wavelet transformations, as depicted in Fig. 1, applied
diagonally. (c) Lattice sites corresponding either to scaling (solid)
or wavelet (striped) outputs from the preceding transformations.
(d) A series of 1D wavelet transformations applied across the
other diagonal. (e) The lattice, which now contains five different
types of sites (labeled A–E). (f) Sites A and B, differentiated by
the application of Hadamards and truncated, with new sublattices
formed separately from sites C–E. (g) The Brillouin zone of the
2D free fermions, where the shaded region denotes the Fermi sea.
(h) The sites in (e), approximately corresponding to the distinct
regions of the Brillouin zone as shown. Sites A and B contain
modes in the occupied j1i or unoccupied j0i states, respectively,
and may be truncated. Sublattices from sites C and D consist of
products of 1D chains that are only correlated in the back-sloping
diagonal or forward-sloping diagonal directions, respectively.
The sublattice from site E is self-similar to the original lattice.
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purely one dimensional. Indeed, for both outputs, one
direction is already of wavelet type, so we only have to
apply the one-dimensional MERA in the other direction to
obtain wavelet outputs at each scale.

V. RIGOROUS ERROR ESTIMATES

In Secs. III and IV, we constructed entanglement
renormalization quantum circuits to approximately prepare
the ground state of free-fermion Hamiltonians in one and
two dimensions, and we gave a heuristic account of the
improved quality of our approximations with increased
circuit parameters K and L. We now discuss how this
intuition can be turned into rigorous a priori error esti-
mates. For simplicity, we only formulate our result in the
one-dimensional case, but its statement and proof are
completely analogous for two dimensions.
Our theorem is stated in terms of correlation functions

of fermion creation and annihilation operators. Given a
sequence f ∈ l2ðZÞ, we define the corresponding annihi-
lation and creation operators via aðfÞ ¼ P

n∈Zf½n�an and
a†ðfÞ ¼ P

n∈Zf½n��a†n. We are interested in computing
correlation functions of 2N creation and annihilation
operators in a many-body state Ψ,

GðffigÞΨ ¼ hΨja†ðf1Þ…a†ðfNÞaðfNþ1Þ…aðf2NÞjΨi:

Other orderings of operators can be obtained by using the
canonical anticommutation relations faðfÞ; aðgÞ†g ¼ hfjgi
and faðfÞ; aðgÞg ¼ 0. The number of creation and anni-
hilation operators must be equal to obtain a nonvanishing
result since we are interested in states that are invariant (up
to an overall phase) under a global Uð1Þ (particle number)
transformation of the form aα ↦ eiθaα. For a pure state of a
finite-size system, this invariance would simply imply that
the state has a fixed number of particles. Let DðffigÞ
denote the maximal support of any linear combination of

the observables fi (e.g., n for an n-point function). We find
that correlation functions of sparse observables are easier to
approximate.
Our result is independent of any specific filter con-

struction and only depends on the following parameters.
Let hs and gs be two scaling filters of finite length M such
that the half-delay condition (6) is approximately satisfied:

jhsðkÞ − eiðk=2ÞgsðkÞj ≤ ε < 1: ð10Þ

We also assume that the filters generate corresponding
multiresolution analyses with scaling functions bounded in
absolute value by some constant B ≥ 1. Then, we have the
following a priori error estimate:
Theorem 1 Let jΩi denote the exact ground state of the

Hamiltonian (1) and jΩMERAi the many-body state prepared
by L layers of the MERA quantum circuit constructed from
two scaling filters as above. Then, we have the following
error bound for correlation functions: For all f1;…; f2N
with jfij2 ≤ 1,

jGðffigÞΩ −GðffigÞΩMERA
j

≤ 24
ffiffiffiffi
N

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2−L=2 þ 6εlog22ðC=εÞ

q

where the constant C is given by 23=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðffigÞ

p
BM.

Theorem 1 shows that correlation functions can be
approximated to arbitrarily high fidelity for a MERA
constructed from suitable scaling filters. As discussed in
Sec. III, Selesnick’s algorithm gives rise to such filters,
parametrized by two integers K and L [30]. Their length is
M ¼ K þ L, and we numerically find that B remains
bounded, while ε decreases exponentially as we increase
K and L (see Fig. 8). Thus, the error bound in Theorem 1 is
likewise exponentially small if the number of layers L is
sufficiently large. We illustrate this in Sec. VI below, where
we numerically approximate the energy density and more
general two-point functions.

FIG. 7. Coarse-grained Hamiltonians for the wavelet-scaling
and scaling-wavelet branches. We show the positive-energy
branch (surface) and the relative phase difference between the
two components of the positive-energy eigenmodes (color coding
of the coordinate plane). Because the eigenmodes are indepen-
dent of one of the two directions and take the form of the one-
dimensional problem studied in Sec. III, the ground state can be
disentangled by a tensor product of one-dimensional MERAs as
in Fig. 1.

FIG. 8. Illustration of the error term ε in Theorem 1. The error ε
decreases exponentially for Selesnick’s construction as the
parameters K and L are increased.
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It is instructive to consider a few features of Theorem 1.
Suppose f1½n� ¼ δn;x and f2½n� ¼ δn;y. Then, GðffigÞ is
simply the two-point function Cðx; yÞ ¼ ha†xayi, which, in
the true ground state, decays with jy − xj as a power law,
C ∼ jy − xj−1=2. Yet, Theorem 1 gives a bound that is
independent of the separation jy − xj. This might seem
puzzling since for a finite depth L, all correlations between
operators separated by more than 2LM vanish. However, at
a distance of jy − xj ¼ M2L, the two-point function is of
orderC ∼M−1=22−L=2, which is consistent with Theorem 1:
Dropping the second term in the square root, we still
have M−1=22−L=2 ≤ M1=22−L=4.
More generally, the two terms in the square root in

Theorem 1 have different physical interpretations. The first
is associated with the convergence of the renormalization-
group transformation, while the second is associated with
the goodness of approximation of the phase relation.
Indeed, Eq. (10) requires that the phase relation (5) is
approximately correct or, when this is not the case for
some k, that both hsðkÞ and gsðkÞ are small in magnitude
(cf. Sec. III).
Our proof of Theorem 1 makes this intuition precise. We

show that Eq. (10) guarantees that the single-particle modes
prepared by the MERA are approximate eigenmodes, and
the boundedness of the scaling function ensures that the
truncation error decreases exponentially with the number of
layers of the tensor network. Together, this implies that the
two-point correlation functions of the states jΩi and
jΩMERAi are approximately equal. We then use a robust
version of Wick’s theorem [43] to show that higher
correlation functions can likewise be approximated up to
small errors. We refer to the Appendix for a rigorous
mathematical proof.
It is remarkable that the error converges as L → ∞: Even

though correlation functions now depend on an infinite
number of “nonideal” (finite ε) layers, the total error is
bounded. This is a consequence of the hierarchical renorm-
alization-group structure of the network combined with the
boundedness of the scaling functions.
Note that Theorem 1 does not provide an error estimate

on the fidelity between the true ground state and the
MERA state for an infinite system. Indeed, these two
states are expected to necessarily be orthogonal in the
thermodynamic limit since any finite error per unit volume
will result in zero overlap as the system size is taken to
infinity. Nevertheless, Theorem 1 proves that our con-
struction can yield correlation functions that approximate
those of the true ground state to arbitrary accuracy.
Therefore, all intensive (not scaling with system size)
physical properties that can be inferred from these are
likewise well reproduced. Our results can thus be seen as
another instance where we can rigorously construct tensor
network states for critical systems or for quantum field
theories if we focus on correlation functions, a point first
raised in Refs. [44,45].

On a finite ring of size V, the one-dimensional model has
an energy gap Δ ∼ 1=V. In such a situation, the infinite-
system L → ∞ circuit must be modified to fit into the
finite-size system. We expect that there exists an analogue
of Theorem 1 that guarantees correlation functions are well
approximated for sufficiently small ε. Moreover, in this
finite-size setting and with sufficiently small ε, the state
jΩMERAi can have high overlap with jΩi. Indeed, if PΩ ¼
jΩihΩj is the ground-state projector and EΩ is the ground-
state energy, then we have Δð1 − PΩÞ ≤ ðH − EΩÞ and
hence

1 − jhΩjΩMERAij2 ≤
1

Δ
ðhΩMERAjHjΩMERAi − EΩÞ:

Thus, if the energies of jΩi and jΩMERAi are within
1=polyðVÞ of each other, then the overlap jhΩjΩMERAij2
is within 1=polyðVÞ of one. If, as suggested by our
numerics, the error ε achieved by Selesnick’s wavelets,
say, decreases exponentially with minðK;LÞ, then one
would have high overlap between a MERA state and the
true ground state using a bond dimension scaling only
polynomially in V.

VI. NUMERICAL RESULTS

Our construction can be used to effectively calculate
physical properties in real space [46]. For example, con-
sider the energy density of the approximate ground state. Its
value for the MERA quantum circuit for the infinite one-
dimensional discrete line, truncated at depth L, is given byPL

l¼1 2
−ðlþ1ÞeðlÞ, with eðlÞ ¼ −2Re

P
nϕðlÞ½n�ϕ�

ðlÞ½nþ 1�
the single-particle energy of a mode ϕðlÞ obtained from the
lth layer. The scaling factor comes from the fact that at the
lth level of the MERA, the density of d.o.f. is 2−l, half of
which are filled. This can be easily evaluated numerically,
and it displays convergence to the true value −2=π, as
illustrated in the left panel of Fig. 9. The numerical results
are consistent with a power-law convergence in the
effective bond dimension χ ¼ 2KþL, in agreement with
our discussion below Theorem 1. We find that our
analytical construction systematically improves over the
one from Ref. [29], but its energy-density estimate is
outperformed by the variationally optimized non-
Gaussian MERA from Ref. [47].
A similar procedure works for the two-dimensional

square lattice. The energy density is now given byPLx
lx¼1

PLy

ly¼1 2
−ðlxþlyþ1Þeðlx;lyÞ, where eðlx;lyÞ denotes

the single-particle energy of a mode obtained from levels
lx, ly of the quantum circuit, which, we recall, denote the
number of renormalization steps in the x and y directions,
respectively. In other words, minðlx;lyÞ is the level at
which we switch to a one-dimensional branch (cf. Fig. 5). It
is useful to note that, since the two wavelet transforms
involved are separable, the modes obtained on each
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sublattice are tensor products of one-dimensional modes,
coupled only by the final Hadamard transforms. This
allows us to carry out all computations in the one-
dimensional setting. Our numerical results are shown in
the right panel of Fig. 9, and they again show power-law
convergence in the effective bond dimension to the true
value −8=π2.
As a last example, we consider a general two-point

function Cðx; yÞ ¼ ha†xayi. While the true ground state is
translation invariant, Cðx; yÞ ≠ Cðy − xÞ for the approxi-
mate ground state prepared by the quantum circuit
since the latter is not perfectly invariant under arbitrary
lattice translations. For simplicity, we only discuss
the one-dimensional case. As above, let ϕðlÞ denote a
single-particle mode obtained from the lth level of the

MERA quantum circuit. Then, we have Cðx; yÞ ¼PL
l¼1

P
z∈Z ϕðlÞ½x − 2lþ1z�ϕ�

ðlÞ½y − 2lþ1z�. The inner

sum corresponds to the different modes obtained from
the lth level, obtained as translations of ϕðlÞ; we note that
only finitely many translations yield a nonzero summand
since the ϕðlÞ are finitely supported. The result is shown in
Fig. 10. Again, we find convergence to the exact solution
Cðy − xÞ ¼ sinðπðy − xÞ=2Þ=ðπðy − xÞÞ. In particular, the
two-point function becomes more and more translation
invariant with increased K, L.

VII. CONCLUSIONS

In this work, we showed how wavelet theory can be used
to rigorously construct quantum circuits that approximate
metallic states of noninteracting fermions. Working directly
in the thermodynamic limit, we showed that arbitrary
correlation functions of fermion creation and annihilation
operators can be approximated to high accuracy for an
appropriate choice of circuit parameters. In a finite-size
system, we argued, based on our numerics, that a tensor
network with bond dimension scaling only polynomially
with system size can achieve unit overlap with the true
ground state in the large-system-size limit. Although such a
bond dimension is high from the point of view of numerical
calculations using a classical computer, from an informa-
tion-theoretic point of view, it represents an astounding
compression of the quantum state. At no point did we use a
variational optimization to determine the circuit parame-
ters, and the circuits we construct have a plain physical
meaning. The essential physics arose from the structure of
negative- and positive-energy eigenspaces and was encap-
sulated in a half-shift delay between pairs of wavelet filters.
The design of such pairs of wavelets had already been
carried out in the signal-processing community.
The constructions reported here are closely related to a

forthcoming work by three of the authors; it uses wavelet
technology to approximate correlation functions in a
continuum quantum field theory, namely, the free Dirac
field in 1þ 1 dimensions. As in the case of the thermo-
dynamic limit of the lattice system, the correct notion of
approximation turns out to be the approximation of
correlation functions instead of the approximation of states.
Using the free Dirac field construction, it is also possible to
construct MERA circuits that approximate the correlation
functions of interacting Wess-Zumino-Witten field theories
in 1þ 1 dimensions.
There are many immediate directions for further devel-

opment. It is of considerable interest to adapt existing
wavelets or design new wavelets that can capture curved
Fermi surfaces; then, we would truly be able to describe a
general class of metallic states in two or more dimensions.
This would, for example, enable us to address different
chemical potentials in the square lattice model. It is also
interesting to adapt our wavelet approach to describe Dirac

FIG. 10. Two-point function Cðx; yÞ of the approximate ground
states in one dimension for wavelet parameters K ¼ L ¼ 1 (left
panel) and K ¼ L ¼ 3 (right panel).

FIG. 9. Relative error in the energy density for the approximate
ground states prepared by our quantum circuits in one dimension
(left panel) and in two dimensions (right panel), for various
values of the wavelet parameters K, L (dashed lines indicate the
same L). For comparison, we also display the relative error for the
analytical construction from Ref. [29] and for the numerically
optimized non-Gaussian MERA from Ref. [47].
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points in two or more dimensions; the basic approach used
here is clearly sound, but there is an interesting wavelet
design problem to capture the physics of the filled Dirac
sea. Another very interesting direction is interacting fer-
mions. For example, similar in spirit to Slater-Jastrow wave
functions, our noninteracting wavelet MERA construction
might be used as the starting point for a variational class of
wave functions for interacting metals.
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APPENDIX: PROOF OF THEOREM 1

We start by describing the setup in precise mathematical
terms. Any pure gauge-invariant generalized free state Ψ
can be described by an operator ψ ≥ 0, known as the
symbol, such that the correlation functions are given by

GðffigÞΨ ¼ det½hfijψ jfNþ1−ji�Ni;j¼1: ðA1Þ

For pure states, ψ is a projection that we can think of as the
projection onto the Fermi sea. To connect with physics
notation, note that “gauge-invariant” effectively means that
the density matrix Ψ is invariant under a global Uð1Þ
(particle number) transformation of the form aα ↦ eiθaα.
Both the true ground state and the state prepared by the

MERA are pure gauge-invariant generalized free states.
Following the discussion in Sec. III, their symbols can be
described as follows. We denote by v∶l2ðZÞ ⊗ C2 →
l2ðZÞ the unitary corresponding to the transformation
ðb1; b2Þ ↦ a and by mðθwÞ∶l2ðZÞ → l2ðZÞ the Fourier
multiplier by θwðkÞ ¼ −isignðkÞeiðk=2Þ, so the operator (3)

can be written as d¼½I
0

0

mðθwÞ�. Recall that u ¼ dðI ⊗ h2Þ,
with h2 the Hadamard gate. Then, the symbol of the true
ground state jΩi is given by

ω ¼ vu

�
I 0

0 0

�
u†v†

¼ v

�
I 0

0 mðθwÞ

�
ðI ⊗ jþihþjÞ

�
I 0

0 mðθwÞ†
�
v†; ðA2Þ

where jþi ¼ ðj0i þ j1iÞ= ffiffiffi
2

p
. Next, recall that we are given

two pairs of filters, hs, hw and gs, gw. We denote the
corresponding wavelet transforms, truncated at level L, by

WðLÞ
h ;WðLÞ

g ∶l2ðZÞ → l2ðZÞ ⊗ CLþ1;

where the first L coordinates of the output correspond to
the wavelet outputs and the last one to the remaining
scaling output (see, e.g., Ref. [32] for an introduction to

wavelet theory). Let us denote by pðLÞ
w , pðLÞ

s the projection
onto the wavelet outputs and the scaling output, respec-
tively. Then, the many-body ground state jΩiMERA prepared
by the MERA quantum circuit has the symbol

ωMERA ¼ v

�
WðLÞ;†

h 0

0 WðLÞ;†
g

�
ðpðLÞ

w ⊗ jþihþjÞ

×

�
WðLÞ

h 0

0 WðLÞ
g

�
v†: ðA3Þ

Let F⊆l2ðZÞ denote a subspace (which we will later take
to be the span of the observables fi). Let

DðFÞ ≔ sup
f∈F

jfx ∈ Z∶fðxÞ ≠ 0gj

denote the maximal support of any sequence in F. We
denote by pF the orthogonal projector onto F and abbre-
viate as ωjF ≔ pFωpF.
As usual, we write ∥ − ∥p for p-norms, ∥ − ∥∞ for

supremum norms, and ∥ − ∥ for operator norms. We use
mðθÞ∶l2ðZÞ → l2ðZÞ more generally for the Fourier
multiplier by some periodic function θðkÞ.
We first prove that the truncation of the MERA only

incurs an error that is exponentially small in L.
Lemma 1. Let hs ∈ l2ðZÞ be a scaling filter of length

M such that the associated scaling function ϕh ∈ L2ðRÞ is
bounded. Let f ∈ l1ðZÞ. Then,

∥pðLÞ
s WðLÞ

h f∥2 ≤ M2−ðL−1Þ=2∥ϕh∥∞∥f∥1:

Proof.—Let δn denote the sequence that is equal to one
at site n and zero elsewhere. By the definition of the
discrete wavelet transform, we have

∥pðLÞ
s WðLÞ

h δn∥22

¼
X
m∈Z

����
Z

∞

−∞
dxϕ�

hðx − nÞ2−L=2ϕhð2−Lx −mÞ
����2:
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Since the scaling filter has lengthM, the scaling function ϕh is supported in some interval ½x0; x0 þM − 1�, so the above is
equal to

X
m∈Z

����
Z

x0þM−1

x0

dxϕ�
hðx − nÞ2−L=2ϕhð2−Lx −mÞ

����2 ≤ X
m∈Z

Z
2−Lðx0þM−1Þ−m

2−Lx0−m
dyjϕhðyÞj2;

where we have used the Cauchy-Schwarz inequality. Since there are, at most, 2M nonzero summands, we can upper bound
this by M22−Lþ1∥ϕh∥2∞. We have thus established that

∥pðLÞ
s WðLÞ

h δn∥2 ≤ M2−ðL−1Þ=2∥ϕh∥∞;

from which the lemma immediately follows. □

Now, recall that our two scaling filters hs and gs have lengthM and that the associated scaling functions are bounded in
absolute value by B. Let f ∈ F. Then, v†f ¼ ðfh; fgÞ, where ∥f∥1 ¼ ∥fh∥1 þ ∥fg∥1, and we obtain

∥ðpðLÞ
s ⊗ IÞ

"
WðLÞ

h 0

0 WðLÞ
g

#
v†f∥2 ≤ ∥pðLÞ

s WðLÞ
h fh∥2 þ ∥pðLÞ

s WðLÞ
g fg∥2 ≤ M2−ðL−1Þ=2B∥f∥1 ≤

ffiffiffiffiffiffiffiffiffiffiffi
DðFÞ

p
BM2−ðL−1Þ=2∥f∥2;

where the second inequality is Lemma 1 applied to both hs and gs; the last inequality is the Cauchy-Schwarz inequality.
Therefore,

∥pFv

�
WðLÞ;†

h 0

0 WðLÞ;†
g

�
ðpðLÞ

s ⊗ IÞ∥ ≤
ffiffiffiffiffiffiffiffiffiffiffi
DðFÞ

p
BM2−ðL−1Þ=2: ðA4Þ

The same argument establishes that

∥pFv

�
I 0

0 mðθwÞ

�
ðWðLÞ;†

h pðLÞ
s ⊗ IÞ∥ ≤

ffiffiffiffiffiffiffiffiffiffiffi
DðFÞ

p
BM2−ðL−1Þ=2: ðA5Þ

We now show that the MERA generates approximate eigenmodes.
Lemma 2. Let hs, gs be scaling filters such that Eq. (10) holds. Then, we have, for all l ¼ 1;…;L, that

∥WðLÞ;†
g ðI ⊗ jliÞ −mðθwÞWðLÞ;†

h ðI ⊗ jliÞ∥ ≤ εl:

Proof—We start with the formula

WðLÞ;†
h ðI ⊗ jliÞ ¼ ½mðhsÞ↑�l−1mðhwÞ↑ ¼ mðhsÞ↑…mðhsÞ↑|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

l−1 times

mðhwÞ↑; ðA6Þ

where ↑ denotes the upsampling operator on l2ðZÞ, defined by δn ↦ δ2n.
Now, recall that θwðkÞ ¼ −isignðkÞeiðk=2Þ. Let us define θsðkÞ ¼ e−iðk=2Þ. It is easily verified that θsðkÞθwð2kÞ ¼ θwðkÞ,

which can equivalently be written as mðθsÞ↑mðθwÞ ¼ mðθwÞ. Using Eq. (A6) and iteratively applying this relation,

½WðLÞ;†
g −mðθwÞWðLÞ;†

h �ðI ⊗ jliÞ ¼ ½mðgsÞ↑�l−1mðgwÞ↑ − ½mðθshsÞ↑�l−1mðθwhwÞ↑;

which can be written as a telescoping sum,�Xl−2
j¼0

½mðθshsÞ↑�j½mðgsÞ −mðθshsÞ�↑½mðgsÞ↑�l−2−jmðgwÞ↑
�
þ ½mðθshsÞ↑�l−1½mðgwÞ −mðθwhwÞ�↑:

The unitary of the wavelet transform implies that all four mapsmðhsÞ↑,mðhwÞ↑,mðgsÞ↑,mðgwÞ↑ are isometries. Since the
upsampling operator ↑ is an isometry and the Fourier multipliers mðθsÞ, mðθwÞ are clearly unitaries, we obtain the desired
bound
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∥½WðLÞ;†
g −mðθwÞWðLÞ;†

h �ðI ⊗ jliÞ∥ ≤ ðl − 1Þ∥mðgsÞ −mðθshsÞ∥þ ∥mðgwÞ −mðθwhwÞ∥ ≤ εl:

For the second inequality, we note that Eq. (10) is not only equivalent to ∥mðgsÞ −mðθshsÞ∥ ≤ ε, but it also ensures that
∥mðgwÞ −mðθwhwÞ∥ ≤ ε, which follows from the relation hwðkÞ ¼ eikh�sðkþ πÞ and its analogue for gw, gs. □

It follows directly from Lemma 2 that

∥WðLÞ;†
g pðLÞ

w −mðθwÞWðLÞ;†
h pðLÞ

w ∥ ≤ ε
XL
l¼1

l ≤ εL2: ðA7Þ

However, this upper bound can be arbitrarily large. We show how to circumvent this issue.
Lemma 3. Under the assumptions of Theorem 1, we have that

∥pFv

"
WðSÞ;†

h 0

0 WðLÞ;†
g

#
ðpðLÞ

w ⊗ IÞ − pFv

�
I 0

0 mðθwÞ

�
ðWðLÞ;†

h ⊗ IÞ∥ ≤ C2−L=2 þ 6εlog22ðC=εÞ;

where C ≔ 23=2
ffiffiffiffiffiffiffiffiffiffiffi
DðFÞp

BM ≥ 2.
Proof.—Let L0 ∈ f1;…;Lg and write qðL0;LÞ∶l2ðZÞ ⊗ CLþ1 → l2ðZÞ ⊗ CL0þ1 for the projection onto the first L0 þ 1

components. It follows from the hierarchical form of the wavelet transform thatWðLÞ;†
h andWðL0Þ;†

h pðL0Þ
w qðL0;LÞ and differ by a

term that is the composition of WðL0Þ;†
h pðL0Þ

s with a partial isometry and likewise for the other wavelet transform. Thus,
Eq. (A5) implies that

∥pFv

�
I 0

0 mðθwÞ

�
ðWðLÞ;†

h ⊗ IÞ − pFv

�
I 0

0 mðθwÞ

�
ðWðL0Þ;†

h pðL0Þ
w qðL0;LÞ ⊗ IÞ∥ ≤

ffiffiffiffiffiffiffiffiffiffiffi
DðFÞ

p
BM2−ðL0−1Þ=2:

Similarly, Eq. (A4), together with the observation that pðL0Þ
w qðL0;LÞpðLÞ

w ¼ pðL0Þ
w qðL0;LÞ, implies that

∥pFv

"
WðLÞ;†

h 0

0 WðLÞ;†
g

#
ðpðLÞ

w ⊗ IÞ − pFv

"
WðL0Þ;†

h 0

0 WðL0Þ;†
g

#
ðpðL0Þ

w qðL0;LÞ ⊗ IÞ∥ ≤
ffiffiffiffiffiffiffiffiffiffiffi
DðFÞ

p
BM2−ðL0−1Þ=2:

On the other hand, Eq. (A7) ensures that

∥pFv

�
I 0

0 mðθwÞ

�
ðWðL0Þ;†

h pðL0Þ
w qðL0;LÞ ⊗ IÞ − pFv

�
WðL0Þ;†

h 0

0 WðL0Þ;†
g

�
ðpðL0Þ

w qðL0;LÞ ⊗ IÞ∥ ≤ εL02:

By combining the above bounds, we obtain

∥pFv

"
WðLÞ;†

h 0

0 WðLÞ;†
g

#
ðpðLÞ

w ⊗ IÞ − pFv

�
I 0

0 mðθwÞ

�
ðWðLÞ;†

h ⊗ IÞ∥ ≤
ffiffiffiffiffiffiffiffiffiffiffi
DðFÞ

p
BM2−ðL0−3Þ=2 þ εL02 ¼ C2−L

0=2 þ εL02:

We can still optimize this expression over L0 ∈ f1;…;Lg. For this, we distinguish two cases: If 2−L=2 > ε=C, then we
choose L0 ¼ L, leading to the bound C2−L=2 þ 4ε log22ðC=εÞ. Otherwise, if 2−L=2 ≤ ε=C, we can choose L0 ¼
⌊2 log2ðC=εÞ⌋ and obtain the bound 2εþ 4ε log22ðC=εÞ. In either case, it is true that

min
L0

ðC2−L0=2 þ εL02Þ ≤ maxfC2−L=2; 2εg þ 4εlog22ðC=εÞ ≤ C2−L=2 þ 6εlog22ðC=εÞ:

□

Finally, we can establish our main result.
Proof.—[Proof of Theorem 1] We choose F as the span of the observables f1;…; f2N , so DðFÞ ¼ DðffigÞ and

dimF ≤ 2N. Let δ ≔ C2−L=2 þ 6ε log22ðC=εÞ. We first establish that ∥ωjF − ωMERAjF∥ ≤ 2δ. For this, we note that
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ωjF −ωMERAjF
¼ pFv

�
I 0

0 m

�
ðI ⊗ jþihþjÞ

�
I 0

0 m†

�
v†pF

−pFv

�
WðLÞ;†

h 0

0 WðLÞ;†
g

�
ðpðLÞ

w ⊗ jþihþjÞ

×

�
WðLÞ

h 0

0 WðLÞ
g

�
v†pF;

where we have inserted Eqs. (A2) and (A3). We now use
the triangle inequality and Lemma 3 twice to obtain

∥ωjF − ωMERAjF∥

≤ ∥ðWðLÞ
h ⊗ IÞ

�
I 0

0 m†

�
v†pF

− ðpðLÞ
w ⊗ IÞ

�
WðLÞ

h 0

0 WðLÞ
g

�
v†pF∥

þ ∥pFv

�
I 0

0 m

�
ðWðLÞ;†

h ⊗ IÞ

− pFv

�
WðLÞ;†

h 0

0 WðLÞ;†
g

�
ðpðLÞ

w ⊗ IÞ∥ ≤ 2δ: ðA8Þ

Next, we show that

jGðffigÞΩ −GðffigÞΩMERA
j ≤ 24∥f1∥ � � � ∥f2N∥

ffiffiffiffiffiffi
Nδ

p
:

ðA9Þ

For this, let us denote by ΩjF and ΩMERAjF the mixed
gauge-invariant generalized free states with symbols ωjF
and ωMERAjF, respectively, which capture all n-point
functions with observables from F. It is clear from
Eq. (A1) that

jGðffigÞΩ −GðffigÞΩMERA
j

¼ jGðffigÞΩjF −GðffigÞΩMERAjF j
≤ ∥f1∥ � � � ∥f2N∥ · ∥ΩjF −ΩMERAjF∥1;

where ∥ − ∥1 denotes the trace norm. We now use a result
by Powers and Størmer to bound the trace-norm distance
between generalized free states in terms of the trace-norm
distance of their symbol. Specifically, we use Lemmas 4.1
and 4.6 of Ref. [43] to obtain the first inequality in

∥ΩjF −ΩMERAjF∥1
≤ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∥ωjF − ωMERAjF∥1

p
≤ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N∥ωjF − ωMERAjF∥

p
≤ 24

ffiffiffiffiffiffi
Nδ

p

(as long as the right-hand side is smaller than 1=6); for the
second inequality, we use dimF ≤ 2N, and the last one is
Eq. (A8). We have thus established Eq. (A9) and, thereby,
the theorem. □
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