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Comment on “Application of Struvite Alters the Antibiotic
Resistome in Soil, Rhizosphere, and Phyllosphere”

Phosphate fertilizers are essential to grow crops that are
needed to feed everyone on our planet. The primary fossil

resource phosphate rock is, however, finite and its current linear
use is creating one of the biggest global environmental concerns
(eutrophication), which demands immediate action.1 To stay
within the planetary boundaries and target the United Nations’
Sustainable Development Goals, the development and imple-
mentation of phosphorus recovery and recycling techniques is
essential in order to realize a circular phosphorus economy.1,2 A
promising way to recover phosphates is by the precipitation of
struvite (MgNH4PO4·6H2O) from phosphorus and nitrogen
rich waste streams, such as manure, municipal wastewater, and
wastewater from food production, simply by the addition of
magnesium salts (typically MgCl2). A variety of struvite
production processes are available that, also depending on the
feedstocks used and the process conditions applied (e.g.,
washing and filtration steps, granule size, and the amount of
MgCl2 added), afford struvite with differing quality.3,4 For
example, the P2O5-content of struvite precipitated with several
technologies from municipal wastewater can range from 14.7 to
30.5% (Table 1). This means that just like phosphate rock

deposits that contain impurities (e.g., fluorine, cadmium,
uranium, radium, mercury, lead, chromium, zinc, iron, copper,
and rare-earth elements) also recovered, secondary phosphates
from urban mines have variable quality and can contain
undesired substances (e.g., pharmaceuticals, pathogens, and
other micropollutants) that need to be considered before reuse
becomes viable.5

Last year, Chen et al. published a research article in
Environmental Science & Technology entitled “Application of
Struvite Alters the Antibiotic Resistome in Soil, Rhizosphere,

and Phyllosphere”,9 which contained, in our view, some striking
generalizations. The authors conclude that the application of
struvite can facilitate the spread of antibiotic resistance into the
human food chain. Since the EU included phosphates on its
critical raw materials list and desires the local recovery and
recycling of phosphates, these conclusions created considerable
attention. On the 19th of April 2018, the European Commission
published a News Alert entitled “Antibiotic resistance in struvite
fertilizer from wastewater could enter the food chain’’,10 where
the European Commission states that the findings by Chen et al.
may be relevant for the ongoing revision of the EU Fertilisers
Regulation that will also define under what circumstances
struvite can be used as a component material for CE marked
fertilizers. We feel that the conclusions of this specific case study
by Chen et al. warrant a critical analysis before being used as a
guideline.
A closer look at the article by Chen et al. shows that they used

struvite produced from piggery wastewater, which, not
surprisingly, contains considerable quantities of antibiotics
(Supporting Information Table S1). Yet, Chen et al. show that
their struvite derived from piggery wastewater also contains high
amounts of antibiotics, such as four types of tetracycline
antibiotics (360.1−742.07 mg/kg struvite; Table 2). This is
striking since related studies show that the incorporation of
impurities in the struvite formed is much lower. For example, Ye
et al.11 analyzed struvite precipitated from piggery wastewater,
but in their case this resulted in much lower concentration levels
of several antbiotics (see Table 2). This raises questions on the
methodology used by Chen et al. and, in particular, the process
they applied to produce struvite, which unfortunately is not
described in their paper.
Interestingly, struvite produced from municipal wastewater,

currently the main source for struvite production (75%, the
remaining 25% comes from industrial wastewater, mainly food
processing),12 contains hardly any of these impurities and the
concentration of all measured substances are below any health or
environmental limits calculated with the acceptable daily intake
limits (Table 2). The sheer amount of antibiotics in the
recovered struvite in the Chen study could well have affected the
antibiotic resistance in the soil to which it was applied, but this is
not the case with the analyzed struvite by Ye et al. and from
municipal wastewater. Therefore, the conclusion of Chen et al.,
that struvite when applied as a fertilizer can facilitate the spread
of antibiotic resistance into human food chain should not be
applied to all types of struvite.

■ CONCLUSIONS

Mined phosphate rock, the primary source of phosphorus-based
fertilizers, has its challenges due to toxic and radioactive
elements, such as cadmium and uranium, that naturally occur in
phosphate rock deposits and can be transferred into fertilizers
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Table 1. Struvite Currently Produced by Various Techniques,
Including Elemental Composition

% P2O5 % N % MgO source

MgNH4PO4·6H2O
(theoretical values)

28.9 5.7 16.4

obtained by crystallization
PHOSNIX6 30.5 5.3 19.1 liquor
AirPrex6a 19.8−22.9 3.0−5.0 10.2 liquor
Pearl6b 28 5 16.7−17 liquor
Struvia6 28−29 4.5−5.5 15.8−16.8 liquor
NuReSys6 26.5−27.8 5.1−5.5 15.3−23.4c liquor
ANPHOS6 14.7 2.0 7.6 liquor
REPHOS7 24.9 4.7 13.6 liquor
obtained by leaching
Gifhorn6 25.2−36.7 0.18 3.1−14.3 sludge
Stuttgart6 25.9−59.6 1.2−5.0 10.9−13.3 sludge
PHOXAN8 26.8 5.1 sludge
Leachphos6 20−40 ash
aRelated to WWTP influent. bMoisture content of 14.9%. cFormation
of magnesium phosphate phases other than struvite.
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and further accumulate into the soil. Similarly, recovered,
secondary phosphates have their challenges too concerning
pollutants from their (waste) sources. Notwithstanding, the use
of secondary phosphates is essential for obtaining a circular
phosphorus economy. Therefore, it is crucial that the quality of
the renewable fertilizers should be guaranteed and the risk
minimized. Currently, organic fertilizers are used on large scale,
including the spreading of sewage sludge and manure on arable
land.13 These phosphate sources are undoubtedly less clean and
safe to use than the majority of recovered phosphates in struvite.
This clearly unveils the need for standardized analytical methods
and quality assurance (e.g., ISO standardization) as well as
appropriate policy measures for struvite and all other recovered
phosphates, which will bridge the gap between phosphate
recovery and recycling enabling the safe and sustainable (re)use
of phosphorus.
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Table 2. Antibiotics Found in Struvite from Piggery Wastewater and Municipal Wastewater, see also Table S2 in the
Supplementary Information

Struvite Chen et al. from
piggery wastewater (mg/kg)9

Struvite Ye et al. from piggery wastewater
by using a fluidized bed (mg/kg)11

AirPrex struvite from
municipal wastewater

(mg/kg)a
Crystal Green struvite from

municipal wastewater (mg/kg)b

tetracycline 415.21 0.3−2 <0.005 <0.01
oxytetracycline 360.1 0.5−2 <0.005 <0.01
chlorotetracycline 420.32 0.2−0.7 <0.005 <0.01
doxycycline 742.07 0.3−1.9 <0.005 <0.01
sulfadiazine 13.63 NA <0.005 <0.01
sulfamethazine 1.86 NA <0.005 <0.01
ciprofloxacin 5.10 0.1−1.1 0.009 <0.01
enrofloxacin 59.10 0−0.2 <0.005 <0.01

aOne sample; detection limit of 0.005 mg/kg, < 0.005 mg/kg means not detected. bFour samples; detection limit of 0.01 mg/kg, < 0.01 mg/kg
means not detected.

Environmental Science & Technology Correspondence/Rebuttal

DOI: 10.1021/acs.est.8b03524
Environ. Sci. Technol. 2018, 52, 14564−14565

14565

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.est.8b03524
http://pubs.acs.org/doi/suppl/10.1021/acs.est.8b03524/suppl_file/es8b03524_si_001.pdf
mailto:m.a.deboer@uva.nl
mailto:j.c.slootweg@uva.nl
http://orcid.org/0000-0001-7511-887X
http://orcid.org/0000-0001-7818-7766
https://zenodo.org/record/242550#.WzEFPKczZdj
https://zenodo.org/record/242550#.WzEFPKczZdj
http://dx.doi.org/10.1021/acs.est.7b01420
http://pubs.acs.org/doi/suppl/10.1021/acs.est.8b03524/suppl_file/es8b03524_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.8b03524/suppl_file/es8b03524_si_001.pdf
http://dx.doi.org/10.1021/acs.est.8b03524

