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We use a simple holographic toy model to study global quantum quenches in strongly coupled, hyperscaling-violating-Lifshitz
quantum field theories using entanglement entropy as a probe. Generalizing our conformal field theory results, we show that the
holographic entanglement entropy of small subsystems can be written as a simple linear response relation. We use this relation
to derive a time-dependent first law of entanglement entropy. In general, this law has a time-dependent term resembling relative
entropy which we propose as a good order parameter to characterize out-of-equilibrium states in the post-quench evolution. We
use these tools to study a broad class of quantum quenches in detail: instantaneous, power law, and periodic.

1. Introduction

1.1. Quantum Quenches and Entanglement Entropy. Studying
the evolution of quantum field theories (QFTs) after generic
time-dependent perturbations is an important problem. If𝐻0

denotes the time-independent Hamiltonian of a QFT defined
on a manifold R × R𝑑−1, one is often interested in a time-
dependent perturbation

𝐻(𝑡) = 𝐻0 + 𝛿𝐻 (𝑡) . (1)

where 𝛿𝐻(𝑡) could correspond to making a coupling in the
Hamiltonian time-dependent [1] such as

𝐻(𝑡) = 𝐻0 + ∫𝑑𝑑−1𝑥𝐽 (𝑡, 𝑥𝑖)𝑂 (𝑡, 𝑥𝑖) , (2)

with 𝑂(𝑡, 𝑥𝑖) denoting a generic operator in the theory and𝐽(𝑡, 𝑥𝑖) its corresponding source. A perturbation of the above
kind, followed by unitary quantum evolution, is called a
QuantumQuench. If the theory was in a pure state |Ψ0⟩ before
the quench, unitarity of the post-quench evolution implies
that it will remain in a pure state. However, experimental
studies in ultracold atoms [2] and theoretical arguments [3–
5] suggest that the end state of the evolution looks thermal to
a very good approximation when studied with local, coarse-
grained probes. This process is often termed thermalization.

If a quantum quench acts uniformly at all space points such
that 𝐽(𝑡, 𝑥𝑖) ≡ 𝐽(𝑡), it is known as a Global Quench. In this
paper, we will only discuss quenches of this kind.

Study of global quenches was initiated in [1] using
boundary conformal field theory techniques of [6]. For the
case of free field theories, [7] made significant progress using
symmetries of the theory. Let us begin by considering a global
quench to a more general conformal field theory (CFT). In
this case, one-point functions are known to thermalize
instantaneously [8–10], thus forcing one to look for better
probes of thermalization in CFTs. Natural choices are non-
local observables like two-point correlation functions, Wil-
son lines, and entanglement entropy. Although all of these
have been studied recently [11], entanglement entropy is the
most attractive of these, and for good reasons. As shown
in [11], entanglement entropy equilibriates slower compared
to other quantities for a finite-duration global quench, thus
determining the physical rate of thermalization of the theory.
It has further been used as an order parameter for phases
of quantum matter [12]. The entanglement shared between
regions codifies all possible correlations between them,
making it very useful. For example, mutual information,
a combination of entanglement entropies of two regions,
gives an upper bound on all possible connected two-point
functions between operators in the two regions [13]. Lastly,
entanglement entropy grows in time after a quench (as we
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will discuss in great detail later), thus making the quench a
way to generate entanglement. This is a goal of great interest
in quantum information theory [14].

Entanglement entropy of a subregion 𝐴 (also called
subsystem interchangeably) in the CFT is defined as the von
Nuemann entropy of 𝐴

𝑆𝐴 ≡ − tr (𝜌𝐴 log 𝜌𝐴) , (3)

where 𝜌𝐴 = tr𝐴𝑐 𝜌 is the reduced density matrix on the
region 𝐴. In a QFT, the entanglement entropy is generally
calculated using the replica trick [15] but it is UV-divergent
for any subregion𝐴 and any state 𝜌, due to the short-distance
divergences. To obtain a finite answer, one often considers the
difference between the entanglement entropies of 𝐴 in two
nearby states. The authors in [16] studied the time evolution
of entanglement entropy of a general subregion in (1+1)
dimensional CFT and showed that the entanglement entropy
increases linearly in time and saturates after a specific time.
However, technical difficulties do not allow one to generalize
these calculations to higher dimensions easily (Nevertheless,
recently some progress has been made on this account in the
dilute gas limit in [17]).

In such cases, the AdS/CFT correspondence [18–20] has
been very useful. It maps a strongly coupled holographic CFT
to a weakly coupled theory of gravity in AdS space. Thus
quantum quenches in such CFTs correspond to classical time
evolution of the semi-classical theory of gravity. A general
asymptotically AdS spacetime in the Feffermann-Graham
gauge looks like

𝑑𝑠2 = 𝐿2

𝑧2 (𝑑𝑧2 + 𝑔𝜇] (𝑧, 𝑥𝜇) 𝑑𝑥𝜇𝑑𝑥]) , (4)

where𝑥𝜇 parameterizes the CFTwhich lives on the boundary
of this spacetime 𝑧 → 0. Operators in theCFT correspond to
matter fields in this geometry. Then, if the CFT Hamiltonian
is perturbed such as in (2), the insertion of the operators𝑂(𝑡, 𝑥𝑖) in the CFT acts as sources for the matter fields in
AdS and changes their boundary conditions. The full matter
plus gravity system evolves in time and this evolution can be
used to understand the post-quench evolution in the CFT.
AdS spacetime can be thought of as a box and thus acts as
a potential well for the matter fields. These then fall into
the center of AdS and, after sufficient time, generically form
a black hole [21–23] (However, see [24] for an interesting
discussion of a class of initial conditions that do not result
in black hole formation. Whether a generic perturbative
initial condition leads to a collapse or not is still an open
problem. See [25] and references therein for a discussion
about this). Thermalization in the CFT is thus described by
black hole formation in the dual semi-classical theory of
gravity in AdS, as has been noted by several authors [23,
26, 27]. Consequently, collapsing solutions to semi-classical
gravity in AdS are one of the most widely used tools to study
quenches in holographic CFTs [11, 28–31]. Apart from weak-
field analytic study in [9], they have also been studied using
probe D-branes [32–34] and numerical methods [8, 35].

In 2006, Ryu and Takayanagi [36] proposed that the
entanglement entropy of a subregion 𝐴 in the CFT is given

by the minimal area of a bulk co-dimension 2 surface
homologous to 𝐴 at the AdS boundary

𝑆𝐴 = min
𝛾𝐴

Area (𝛾𝐴)4𝐺𝑁

, (5)

with the homology condition 𝜕𝛾𝐴 ≈ 𝜕𝐴. Due to the sim-
plicity of this formula, holographic entanglement entropy has
received a lot of attention in the past decade (see [37] for a
recent review). However, this formula works only for time-
independent states. To calculate entanglement entropy of a
subregion in a time-dependent state, one needs to use the
covariant generalization of this formula, proposed in [38].
This general proposal is called HRT proposal and it states that

𝑆𝐴 = ext
𝛾𝐴

Area (𝛾𝐴)4𝐺𝑁

, (6)

where 𝛾𝐴 now denotes an extremal codimension-2 surface in
the AdS bulk, i.e., one with vanishing trace of the extrinsic
curvature.

Using the HRT proposal, [39] initiated the study of time-
dependent holographic entanglement entropy, in the context
of quenching a holographic (1+1) D CFT.They considered an
abrupt (instantaneous) global quench to the CFT, such as

𝐻(𝑡) = 𝐻0 + Θ (𝑡) ∫𝑑𝑑−1𝑥𝑂 (𝑡, 𝑥𝑖) , (7)

where Θ(𝑡) is the Heaviside Theta function. As the operators𝑂(𝑡, 𝑥) are uniformly inserted in the CFT, the dual bulk fields
get sourced everywhere at the boundary of the AdS3. If these
operators have conformal dimensions much smaller than the
central charge, the bulk fields are light and then the quench
is described by a 3D geometry with a thin, uniform shell of
infallingmatter that forms a black hole.This geometry is well-
studied and known as the Vaidya Geometry [40]

𝑑𝑠2 = 𝐿2

𝑧2 ( 𝑑𝑧2𝑓 (𝑡, 𝑧) − 𝑓 (𝑡, 𝑧) 𝑑𝑡2 + 𝑑𝑥2) , (8)

where the function 𝑓(𝑡, 𝑧) determines the horizon(s) of the
black hole and is called the Blackening Function.The end state
of the quench will be a stationary state that looks thermal
locally, with a temperature fixed in terms of the blackening
function of the black hole. Like the field theory calculation
of [16] in the (1+1) D CFT, [39] found a linear growth of
entanglement entropy with time. Reference [41] generalized
this holographic calculation to the case where the initial state
is not vacuum but a thermal state or a typical pure state.
These works for lower-dimensional field theories using the
properties of (2+1) D AdS gravity, which is special in various
ways. Reference [42] instead considered the evolution of
holographic entanglement entropy in (2+1) D CFT, exploring
evolving geometries in AdS4. They also observed a linear
behavior for the growth of entanglement entropy, but noticed
some novel phenomena, such as a discontinuity in the time
derivative of entanglement entropy near the time when
it is about to saturate. Motivated by these examples, [43,
44] considered the case of general dimensional CFTs. For
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subsystems whose characteristic size 𝑅 is much greater than
the temperature scale 1/𝑇, they found that the time evolution
of holographic entanglement entropy has a linear regime

𝛿𝑆𝐴 (𝑡) = V𝐸𝑠eqAΣ𝑡, (9)

where 𝑠eq is the entropy density of the subsystem in the
final state, AΣ is the area of the entangling surface in the
CFT, and V𝐸 is a subsystem-independent constant called the
Entanglement Velocity. Furthermore, the rate of growth in this
linear regime was found to be bounded by 1 (in units 𝑐 = 1).
As envisaged by [16] using a quasi-particle description for
the propagation of this entanglement, [17] showed that this
bound is a consequence of the causality of the 𝑑 (spacetime)
dimensional CFT.

However, these works focused on the limit of large
subsystem sizes. Reference [45] proposed amethod to explore
the entanglement entropies when the subsystem sizes are
small compared to the final temperature. They observed a
perturbative expansion for the area of the extremal surface
and used that to study the post-quench evolution after an
instantaneous quench. Reference [46] used a similar method
to study the very interesting case of a global quench that is
linear in time. But it was only in [47] that a comprehensive
study of growth of entanglement entropy in the small subsys-
tem regime was undertaken. Reference [47] studied a wide
class of global quenches, including instantaneous, power law𝑡𝑝 with arbitrary 𝑝 and periodic quenches. This was possible
due to a novel interpretation that the growth of entanglement
entropy after a quench can be understood as a linear response
of the subsystem (in time) to the energy the quench injects.
This interpretation allows one to rewrite the entanglement
entropy (and other related information-theoretic quantities)
as a convolution of two functions: a kernel that depends on
the shape and size of the subsystem and a source that only
depends on the energetics of the quench:

𝛿𝑆𝐴 (𝑡) = ∫∞

−∞
d𝑡m (𝑡 − 𝑡)n (𝑡) . (10)

This interpretation is very useful. As described in detail in
[47], it implies the existence of a time-dependent first law
of entanglement for small subsystems. Moreover, such a law
can be used to define a time-dependent quantity analogous
to relative entropy that would measure the distance between
out-of-equilibrium states explored during the post-quench
evolution and either the initial or the final equilibrium state.

1.2. Hyperscaling-Violating-LifshitzTheories. In this paper, we
would like to study global quantum quenches when the CFT
is in an excited state |Ψ⟩ which partially breaks the full
conformal symmetry.These states have a finite energy density
and charge density 𝜌(𝑥𝜇). The conserved current for the
charge is dual to a𝑈(1) gauge field𝐴𝑀(𝑧, 𝑥𝜇) in the AdS bulk.
Finite charge density then implies that this gauge field has a
non-normalizeable mode at the boundary [48], which plays
the role of a chemical potential for the charge. Since there is
a finite energy and charge density, these generically backreact
on the AdS geometry, modifying the interior [49–51]. (In the
simplest case, the backreaction is known to uniquely give the

AdS-Reissner-Nordstrom metric [52]. But this is known to
be unstable at low temperatures [51]) We will further include
fermions 𝜓𝑀 in the bulk and focus on the action

S = ∫𝑑𝑑+1𝑥√−𝑔(𝑅 − 2Λ − 14𝑒2𝐹𝑀𝑁𝐹𝑀𝑁 +Lf) . (11)

where Lf denotes an ideal fluid Lagrangian at zero tem-
perature for the fermions. Using this, [50] showed that the
solutions to the equations of motion are

𝑑𝑠2 = 𝐿2

𝑦2
(𝑑𝑦2 − 𝑑𝑡2𝑦2(𝑧−1)

+ 𝑑𝑥2
𝑖) ,

𝐴 = 𝜎𝑒𝑦𝑧−1
𝑑𝑡,

(12)

where the exponent 𝑧 is fixed in terms of mass of the fermion.
AdS radius 𝐿 appears in the metric because the finite charge
density 𝜌(𝑥𝜇) is smeared in an appropriate finite spatial
region in the CFT. If we then zoom in near this region,
that would correspond to zooming in on the interior part
of the geometry. This part is not asymptotically AdS but
instead has only part of AdS isometries. If we take this metric
as an effective description of some field theory defined at
its asymptotic boundary, this field theory will not be fully
conformal. In fact, in the background given by themetric (12),
time and space scale in an anisotropic way

𝑡 → 𝛼𝑧𝑡,
𝑥𝑖 → 𝛼𝑥𝑖,
𝑦 → 𝛼𝑦.

(13)

The constant 𝑧 is aDynamical Critical Exponent in this theory.
It determines, for example, how the mass gap scales with
respect to the coherence length 𝜉 near the critical UV CFT

Gap ∼ 1𝜉𝑧 . (14)

Field theories with such properties are called Lifshitz Field
Theories. They have the usual time and space translation gen-
erators (the Hamiltonian𝐻 and spatial momenta 𝑃𝑖) and the
spatial rotation generators (angular momenta 𝑀𝑖𝑗) but only
an anisotropic dilatation 𝐷 with the following commutation
relations:

[𝐷, 𝑃𝑖] = 𝑖𝑃𝑖,
[𝐷,𝐻] = 𝑖𝑧𝐻. (15)

As a consequence, they are also known as non-relativistic
field theories. Such theories are known to describe general
quantum critical points in condensed matter [53] and they
can be constructed from 𝑆𝑈(𝑁) Yang-Mills theories [54, 55].
Thus, in this effective limit, we would be describing non-
relativistic holography.

The idea of investigating holography for theories without
conformal symmetry is not new. See [56–61] for older work
studying the holographic duals of Schrödinger field theories.
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The asymptotically Lifshitz geometry (12) was first intro-
duced in [62] to study Lifshitz field theories. They observed
that this metric is nonsingular and all its curvature invariants
are finite. However, it has a peculiar behavior near 𝑦 → ∞
(the interior of the geometry) and in fact it is geodesically
incomplete [62].Thus to have a well-defined holography, one
needs to find thismetric as a solution of string theory.We thus
need to embed the action (11) in some string model.There has
been a lot of work in this direction [50, 59–61, 63–67], to
name a few. Some works have advocated taking the asymp-
totically Lifshitz metric as a solution of general relativity with
appropriate matter [68]. Energy conditions on this matter
then decide what class of geometries are expected to have a
Lifshitz field theory as a holographic dual. In particular, [69]
showed that the condition 𝑧 > 1 needs to hold for the Null
EnergyCondition (NEC) to be satisfied in the bulk (Although
theseworks suggest that theremay exist a Lifshitz holography,
recently there has been some debate about what exactly the
geometry dual to a UV Lifshitz critical point looks like. See
[70]).

In this paper, we will study a class of excited states in the
CFTs that is further qualified as follows. The IR geometry
describing these states has an extra critical exponent, called
the Hyperscaling-Violating Parameter and denoted by 𝜃. As
before, we will zoom in on the IR and take the asymptotics
to define an effective, non-relativistic field theory. Following
investigations in the holography of charged dilatonic black
holes, it was realized [71, 72] that such geometries are good
effective holographic descriptions for condensed-matter sys-
tems. The metric looks like

𝑑𝑠2 = 𝐿2

𝑦2(𝑑−1−𝜃)/(𝑑−1)
(𝑑𝑦2 − 𝑑𝑡2𝑦2(𝑧−1)

+ 𝑑𝑥2
𝑖) , (16)

wherewe recall that 𝑖 = 1, 2, . . . , (𝑑−1). In addition to Lifshitz
symmetries, this metric transforms as

𝑑𝑠 → 𝛼𝜃/(𝑑−1)𝑑𝑠, (17)

under scaling. From now on, we will call this the Hyperscal-
ing-Violating-Lifshitz metric and denote it by the acronym
hvLif. Hyperscaling laws are well-known in condensed-
matter physics. Traditionally, they are defined as those laws
where the critical exponents depend on the dimension. In
our case, the presence of 𝜃 roughly means that the asymptotic
field theory effectively lives in (𝑑 − 𝜃 − 1) spatial dimensions
instead of (𝑑 − 1) spatial dimensions. This may be a concern
for dimensional analysis, but the issue is resolved when one
posits the existence of a length scale𝑦𝐹 that does not decouple
in the IR.

Hyperscaling violating metrics can be obtained from the
action [71]

S = ∫𝑑𝑑+1𝑥√−𝑔
⋅ (𝑅 − 𝑒𝛼𝜙4𝑒2𝐹𝑀𝑁𝐹𝑀𝑁 − 12 (𝜕𝜙)2 − 𝑉0 cosh (𝜂𝜙)) ,

(18)

where the parameters 𝛼 and 𝜂 determine the exponents 𝑧
and 𝜃. The potential cosh(𝜂𝜙) gives an asymptotically AdS

solution in the limit 𝜙 → 0 and an asymptotically hvLif
solution in the limit 𝜙 → ∞. For a range of exponents 𝛼 and𝜂, the metric can be shown to arise in a UV-complete theory
like string theory [66, 72–74]. With these pieces of evidence,
it is natural to study further the holography of hyperscaling-
violating solutions in AdS spacetime. The Null Energy Con-
dition (NEC) in the bulk imposes some constraints on the
class of non-relativistic field theories dual to the hyperscaling-
violating backgrounds, namely, that the critical exponents
must satisfy [72, 75]

(𝑑 − 1 − 𝜃) ((𝑑 − 1) (𝑧 − 1) − 𝜃) ≥ 0,
(𝑧 − 1) (𝑑 − 1 − 𝜃 + 𝑧) ≥ 0. (19)

We will study global quantum quenches in these field the-
ories. These quenches correspond to classical evolution of
the hyperscaling-violating background, possibly with some
matter fields. In analogy with AdS/CFT correspondence,
changing coupling constants in the field theory will cor-
respond to turning on the non-normalizeable modes of
some bulk matter fields. Owing to the natural gravitational
potential well in the AdS spacetime, these matter fields will
then collapse towards the center of AdS to eventually form
a black hole. Formation of the black hole will correspond to
thermalization in the dual field theory, which we assume will
happen generically thanks to the strong coupling and chaotic
dynamics. The simplest model to study this is to assume that
the bulk matter is light and that it falls as a homogenous, thin,
spherical shell. Its backreaction on the bulk geometry is then
given by the Vaidya-like metric

𝑑𝑠2
= 𝐿2

𝑦2(𝑑−1−𝜃)/(𝑑−1)
( 𝑑𝑦2

𝑓 (𝑡, 𝑦) −
𝑓 (𝑡, 𝑦) 𝑑𝑡2
𝑦2(𝑧−1)

+ 𝑑𝑥2
𝑖) , (20)

with 𝑓(𝑡, 𝑦) being the blackening function (Vaidya-like
solutions in asymptotically Lifshitz backgrounds were first
studied by [76]). We display it explicitly in equation (40).
We will study the time-dependent holographic entanglement
entropy in such a background and infer characteristics of the
quenches in the asymptotic non-relativistic field theory. The
entangling region in the boundary can have any geometry.
For the case of strip geometries, this problemwas also studied
in [77, 78] but in a regime complementary to what we will
study. They studied the evolution of entanglement entropy
when ℓ𝑇 ≫ 1, where 𝑇 denotes the temperature of the final
state after thermalization. Thermalization ofmutual informa-
tion between two widely separated regions in a hyperscaling-
violating field theory was studied in [79, 80]. We will instead
study the complementary regime ℓ𝑇 ≪ 1. Unlike [77,
78], we will also consider more general quantum quenches:
instantaneous, power-law with any power, and periodic in
time.

1.3. Reader’s Map. The plan of the paper is as follows. In Sec-
tion 2, we discuss the perturbative expansion of the HRT area
functional in the presence of a small parameter. In Section 2.1,
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we make some general comments on holographic renormal-
ization for asymptotically hvLif backgrounds. In Section 3,
we discuss our Vaidya model of global quantum quenches in
detail. In Section 3.1, we use the perturbative expansion of
the area functional in the Vaidya model to calculate a simple
integral expression for time-dependent holographic entan-
glement entropy (see equation (51)) which holds for any
global quantum quench. In Section 4, we interpret this equa-
tion as a linear response relation and use it to derive a time-
dependent generalization of the first law of entanglement
entropy for small subsystems in Section 4.1. Such a law allows
one to study a time-dependent analogue of relative entropy,
which we discuss in Section 4.2. In Section 5, we start study-
ing specific quantum quenches using the general machinery
we have developed so far. Section 5.1 discusses in detail
the instantaneous global quantum quench to the hvLif field
theory. We once again study small subsystems and display
explicitly various time-dependent quantities related to entan-
glement entropy. In Section 5.2, we study a finite-duration
global quench that is a power law in time, with an arbitrary
power. We discuss the method to obtain results in this
general case and for convenience discuss the case of integer
powers in detail. In Section 5.3, we elaborate on the case
of a global quench linear in time. This is a special case of
the power law quench but this is interesting in itself due to
earlier work [46, 47]. We then come to Section 5.4 where
we study a Floquet quench, a global quench that is periodic
in time.This is a case of particular importance in condensed-
matter community and we disucss thermalization of entan-
glement entropy for small subsystems for a Floquet quench.
Finally, in Section 6, we conclude with a summary of our
results and some directions for future work. There is an
Appendixwhere we compute the stress tensor for hvLif back-
grounds.

2. Perturbation Theory for Small Subsystems

From now on, we will work in an asymptotically hvLif space-
time and use that to study the quenches in the asymptotic
non-relativistic field theories. Our results will be an approx-
imation to quenching the specific class of excited states in
CFTs that we have discussed in Section 1.

2.1. Holographic Renormalization. In this subsection, we will
discuss holographic renormalization for asymptotically hvLif
spacetimes. This is a very important problem, albeit outside
the purview of this paper. Thus, we will be brief.

For a review of holographic renormalization in the case of
CFTs, see [81]. Discussion of holographic renormalization for
asymptotically Lifshitz backgrounds was initiated in [62, 68].
It was studied in more detail in [82–88], to name a few. In
this subsection, we will follow the excellent article [75]. They
study holographic renormalization in hvLif backgrounds
using radial Hamilton-Jacobi method. In this method, one
starts with a general action for the gravity-matter system

S = ∫𝑑𝑑+1𝑥√−𝑔(𝑅 − 𝐹1 (𝜙)4𝑒2 𝐹𝑀𝑁𝐹𝑀𝑁 − 12 (𝜕𝜙)2

− 𝐹2 (𝜙) − 𝐹3 (𝜙)𝐴2) ,
(21)

along with the usual Gibbons-Hawking boundary term.Then
one takes an ADM-like ansatz for the metric and finds the
Hamiltonian H as well Hamilton’s Principal Function W.
These are related by the Hamilton-Jacobi equation

−𝜕W𝜕𝑦 =H. (22)

Solving this equation and using the definition of W, one
obtains the normalizeable and non-normalizeable modes
for the fields. After an appropriate canonical transforma-
tion that diagonalizes the symplectic form on the space of
these solutions, the normalizeable modes of the fields are
identified as sources for some operators in the asymptotic
field theory and the non-normalizeable modes are identified
with the expectation values of these operators. Moreover, the
asymptotic behavior of the solution of the Hamilton-Jacobi
equation, including the finite terms, is useful in obtaining an
analogue of Feffermann-Graham expansion for the fields on
the hvLif backgrounds. The Feffermann-Graham expansion
for the metric looks like

𝑑𝑠2 = 𝐿2

𝑦2𝑑𝜃/(𝑑−1)
(𝑑𝑦2 + 𝑔𝜇] (𝑦, 𝑥𝜇; 𝑧, 𝜃) 𝑑𝑥𝜇𝑑𝑥]) , (23)

where, for economy of notation, we have defined

𝑑𝜃 ≡ 𝑑 − 1 − 𝜃, (24)

and 𝜇 = 0, 1, . . . , 𝑑 − 1. The metric 𝑔𝜇](0, 𝑥𝜇; 𝑧, 𝜃) defines the
metric on the asymptotic boundary. We demand that this be
given by

𝑔𝜇] (0, 𝑥𝜇; 𝑧, 𝜃) 𝑑𝑥𝜇𝑑𝑥] = lim
𝑦→0

(− 𝑑𝑡2𝑦2(𝑧−1)
+ 𝑑𝑥2

𝑖) . (25)

We are interested in studying quantum quenches in the
asymptotic field theory by calculating entanglement entropy
of a subregion holographically. If we consider a subregion 𝐴
in the field theory with a characteristic size ℓ, let 𝑦∗ denote
the turning point in the bulk up to which the extremal
homologous surface goes. The authors in [72] have argued
that the UV of the asymptotic field theory gets mapped to
the IR of the gravity theory on the hvLif background. Thus
if ℓ is small (compared to the temperature scale), 𝑦∗ will be
small (compared to the radius of the spacetime 𝐿). The bulk
surface will then probe only the near-boundary region of the
geometry.

When we do a global quantum quench in the field theory,
this will in general change the geometry by a finite amount
but because the subregion 𝐴 is small, the reduced density
matrices on 𝐴 before and after the quench will differ by a
small amount. In the bulk this implies that the area of the
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HRT surface dual to 𝐴 will get corrections from leading
perturbations to the asymptotic hvLif metric, such as

𝑔𝜇] (𝑦, 𝑥𝜇; 𝑧, 𝜃) = 𝑔𝜇] (0, 𝑥𝜇; 𝑧, 𝜃) + 𝛿𝑔𝜇]. (26)

The leading term in the perturbation with the perturbation is
a simple function of the expectation of the stress tensor

𝛿𝑔𝜇] = 𝑦𝑑𝜃+𝑧 ⟨𝑇𝜇]⟩ , (27)

with the power of 𝑦 fixed by symmetry. Higher powers of𝑇𝜇] are subleading for small 𝑦. If the quantum quench in-
volved changing the coupling constant of some operator𝑂(𝑡, 𝑥𝑖) in the field theory, the metric perturbation 𝛿𝑔𝜇] may
also get corrections from the expectation value of 𝑂(𝑡, 𝑥𝑖) as
well as from the source. We will assume that the (anioso-
tropic) scaling dimension Δ of this operator is such that its
contribution to themetric perturbation appears at subleading
orders compared to that of ⟨𝑇𝜇]⟩.

But the area of the HRT surface will be divergent,
reflecting the fact that entanglement entropy of 𝐴 in any
state is UV-divergent. This divergence, however, is easy
to remove: we subtract the entanglement entropy of 𝐴 in
vacuum from all our answers. There will in general be con-
tributions to entanglement entropy from the source 𝐽(𝑡, 𝑥𝑖)
directly. Understanding them will need a source-dependent
renormalization, so we will subtract this as well. Thus we will
calculate

𝛿𝑆𝐴 (𝑡) ≡ 𝑆𝐴 (𝑡) − 𝑆𝐴 (0) − 𝑆𝐽 (0) , (28)

where 𝑆𝐽 is the contribution to the holographic entanglement
entropy from the source.

2.2. Perturbative Expansion of the Area Functional. In the
previous subsection, we have made precise the class of
universal corrections we will aim to capture by calculating
entanglement entropy holographically. In this subsection, we
briefly review the results of [45] where they set up a per-
turbative calculation of holographic entanglement entropy
of a subsystem in the presence of a small parameter (see
also [89]). They considered the case of a homogeneous
and instantaneous quench to the CFT ground state, while
[47] generalized this to any homogenous quench. We will
discuss such a calculation for the area of a bulk surface
in asymptotically hvLif spacetime. We start with the HRT
formula [36, 38]

𝑆𝐴 = ext
𝛾𝐴

Area (𝛾𝐴)4𝐺𝑁

, (29)

where𝐺𝑁 is (𝑑 + 1)Newton’s constant in (𝑑 + 1) dimensional
bulk and 𝛾𝐴 is a (𝑑 − 1) dimensional bulk surface that is
homologous to boundary subregion 𝐴. We will assume that
the characteristic size ℓ of 𝐴 is small compared to any other
scale in the field theory, following [45, 47]. To be precise, the
small parameter in our case will be

𝜆𝐴 = ℓ𝑧𝑇, (30)

with 𝑇 denoting the temperature of the final state. We will
discuss how to calculate it in Section 3.1. Let 𝜙𝐴(𝜉) denote
all the embedding fields for the surface 𝛾𝐴 andL[𝜙𝐴(𝜉); 𝜆𝐴]
denote the Lagrange functional for the area of the surface 𝛾𝐴

A ≡ Area (𝛾𝐴) = ∫𝑑𝜉L [𝜙𝐴 (𝜉) ; 𝜆𝐴] . (31)

Assuming the dimensionless parameter 𝜆𝐴 ≪ 1, we can
expand the embedding functions and the Lagrange function
as follows:

L [𝜙𝐴 (𝜉) ; 𝜆𝐴] =L
(0) [𝜙𝐴 (𝜉) ; 𝜆𝐴]

+ 𝜆𝐴L
(1) [𝜙𝐴 (𝜉) ; 𝜆𝐴]

+ O (𝜆2
𝐴) ,

𝜙 (𝜉) = 𝜙(0) (𝜉) + 𝜆𝐴𝜙(1) (𝜉) + O (𝜆2
𝐴) ,

(32)

where the embedding functions that extremize the area at
any given order in 𝜆𝐴 can in principle be obtained by solving
Euler-Lagrange equations order by order in 𝜆𝐴. However, as
first noted in [45], the calculation of the area to order O(𝜆𝐴)
becomes particularly simple. One gets

on-shell[[A()] = dℒ(0)[A(); A] +
A dℒ(1)[A(); A]

A d(1)
A
[ d

d

ℒ(1)
A


A
()

−
ℒ(0)

A()
]

0

+ · · · ,

+

∫
∫

∫
(33)

where we have used the equations of motion at zeroth
order in 𝜆𝐴. Hence the first-order correction to holographic
entanglement entropy is given by

A
(1) [𝜙𝐴 (𝜉)] = 𝜆𝐴∫𝑑𝜉L(1) [𝜙𝐴 (𝜉) ; 𝜆𝐴] . (34)

This is the term we will calculate, and as we will see, it will be
universal.

3. The Vaidya Model for Global Quenches

Let us start with the hvLif metric in (16)

𝑑𝑠2 = 1𝑦2𝑑𝜃/(𝑑−1)
(𝑑𝑦2 − 𝑑𝑡2𝑦2(𝑧−1)

+ 𝑑𝑥2
𝑖) , (35)

where 𝑦 > 0 is the bulk radial direction in the Schwarzschild
frame, with the boundary at 𝑦 = 0, and we have set the
radius of the spacetime to 1. We will assume that the critical
dynamical exponents 𝑧 and 𝜃, apart from the constraints (19),
also satisfy

𝑧 ≥ 1,
𝜃 ≥ 0. (36)
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As discussed in Section 1, the metric (20) (reproduced below)
describes a simple model of a thin, homogenous shell of in-
falling matter to form a black hole with asymptotically hvLif
geometry

𝑑𝑠2 = 1𝑦2𝑑𝜃/(𝑑−1)
( 𝑑𝑦2

𝑓 (𝑡, 𝑦) −
𝑓 (𝑡, 𝑦) 𝑑𝑡2
𝑦2(𝑧−1)

+ 𝑑𝑥2
𝑖) (37)

We will call this the hvLif-Vaidya geometry and use this to
model our quenches holographically. In what follows, it will
be useful to work in tortoise coordinates, also called Edding-
ton-Finkelstein coordinates, defined by

𝑑𝑢 ≡ 𝑑𝑦, 𝑑V ≡ 𝑑𝑡 − 𝑑𝑦𝑦(1−𝑧)𝑓 (𝑡, 𝑦) . (38)

In these coordinates, the metric takes the form

𝑑𝑠2 = 1𝑢2𝑑𝜃/(𝑑−1)
(−2𝑑𝑢𝑑V𝑢2(𝑧−1)

− 𝑓 (𝑢, V) 𝑑V2𝑢2(𝑧−1)
+ 𝑑𝑥2

𝑖) . (39)

The class of global quenches we study can be parameterized
in terms of the blackening function

𝑓 (𝑢, V) = 1 − 𝑔 (V) ( 𝑢𝑢𝐻

)(𝑧+𝑑𝜃) , (40)

where the time-dependent function 𝑔(V) corresponds to the
quench in the boundary. We can always choose it to be
bounded such that 0 ≤ 𝑔(V) ≤ 1 and the leading term 1 indi-
cates the time-independent vacuum. The constant 𝑢𝐻 is the
horizon radius and it encodes the equilibrium properties of
the final state, a long time after the time-dependent perturba-
tion. In case of pure AdS backgrounds, it precisely coincides
with the horizon radius of the black hole formed as a result of
perturbing the boundary CFT. Depending on the functional
form of 𝑔(V), we will distinguish between two kinds of global
quenches:

(i) Quenches of finite duration
Wewill denote the duration of the quench by 𝑡𝑞, with
reference to the Schwarzschild coordinate natural
to a lab. For quenches with finite duration, 𝑔(V)
interpolates smoothly between two values at 𝑡 = 0 and𝑡 = 𝑡𝑞. Denoting 𝑔(V(𝑡)) by 𝑔(𝑡) for a moment

𝑔 (𝑡 = 0) → 0,
𝑔 (𝑡 = 𝑡𝑞) → 1, (41)

where we have normalized the value of 𝑔 when the
quench ends. From a geometrical viewpoint, at 𝑡 = 0
we have the AdS-HSV geometry, and we turn on the
quench and as a result at 𝑡 = 𝑡𝑞 end up in a static black
hole solution with AdS-HSV asymptotics [72, 90–93].

(ii) Quenches of infinite duration
In this case, we keep on perturbing the system indefi-
nitely in time and as a result keep on inserting energy.
One can still formally expand in a small param-
eter 𝜆𝐴, but the expansion invariably becomes bad at
sufficiently late times. We will not discuss very late
time dynamics.

In this paper, we will mainly study quenches of finite dura-
tion.

3.1. Spread of Entanglement Entropy. In [47], we considered
boundary subregions with spherical and strip geometry to
study the time evolution of entanglement. But in this paper,
we will only study subregions with a strip geometry. This is
because, in a non-relativistic setting, it is very difficult to solve
for the embedding functions with spherical geometry that
extemize the area. The strip geometry will be defined on a
time-slice so as to have (𝑑 − 1) coordinates (𝑥, 𝑥𝑖

𝑝) such that

−ℓ2 ≤ 𝑥 ≤ ℓ2 , 0 ≤ 𝑥𝑖
𝑝 ≤ ℓ𝑝. (42)

Wewill assume that ℓ is the smallest energy scale in the theory
but, as we will see, will not need to assume anything about ℓ𝑝.
The strip has translation invariance along the 𝑥𝑖

𝑝 directions
since ℓ ≪ ℓ𝑝. This translation invariance can be used to
constrain the homologous surface in the bulk, which as a
result is completely specified by one function 𝑥 ≡ 𝑥(𝑢). We
follow the usual procedure to calculate the area of this homo-
logous surface in the bulk. It can be shown to be

A [𝑥 (𝑢) , V (𝑢)] = ∫𝑢∗

0
𝑑𝑢L [𝑥 (𝑢) , V (𝑢)] , (43)

where 𝑢∗ denotes the tip of the point in the bulk where the
surface curves, i.e., the depth up to which the surface falls
inside. The Lagrange function is given by

L [𝑥 (𝑢) , V (𝑢)]
= 2ℓ(𝑑−2)𝑝𝑢𝑑𝜃

√𝑥2 − 2V𝑢(𝑧−1)
− V2𝑓 (𝑢, V)𝑢2(𝑧−1)

. (44)

Before we proceed to calculate this, we remark the exact ex-
pansionparameter. Aswe argue in theAppendix, the blacken-
ing function can be used to define an “effective temperature”

𝑇 = 14𝜋

𝑑𝑓 (𝑢, V)𝑑𝑢

𝑢=𝑢𝐻 . (45)

Explicitly evaluating this, we see that the parameter ℓ𝑧𝑇 is
dimensionless and we define it to be 𝜆𝐴. It can also be written
differently using the bulk distance 𝑢∗ as

𝜆𝐴 ≡ (𝑑𝜃 + 𝑧)4𝜋 ( 𝑢∗𝑢𝐻

)𝑧 . (46)

The Lagrange function L[𝑥(𝑢), V(𝑢)] now can be written as
a function of this parameter and can be expanded around𝜆𝐴 = 0. The zeroth-order Lagrange function and its first-
order correction are then given by

L
(0) [𝑥 (𝑢) , V (𝑢)] = 2ℓ(𝑑−2)𝑝𝑢𝑑𝜃

√𝑥2 − 2V𝑢(𝑧−1)
− V2𝑢2(𝑧−1)

, (47)

L
(1) [𝑥 (𝑢) , V (𝑢)] = ℓ(𝑑−2)𝑝 V2𝑢(2−𝑑𝜃−2𝑧)𝑔 (V)

√𝑥2 − 2V/𝑢(𝑧−1) − V2/𝑢2(𝑧−1)
. (48)
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The Euler-Lagrange equations from the zeroth-order func-
tion can be solved to obtain the solution for the extremal
surface in the time-independent case. This solution is

𝑥 (𝑢) = √𝜋Γ [(𝑑𝜃 + 1) /2𝑑𝜃] 𝑢∗2𝑑𝜃Γ [(2𝑑𝜃 + 1) /2𝑑𝜃]
− 𝑢(𝑑𝜃+1)

(𝑑𝜃 + 1) 𝑢𝑑𝜃
∗

2𝐹1 [12 ,
(𝑑𝜃 + 1)2𝑑𝜃

, (3𝑑𝜃 + 1)2𝑑𝜃

; [ 𝑢𝑢∗

]2𝑑𝜃] ,
(49)

where 2𝐹1(𝑎, 𝑏, 𝑐; 𝑥) is the hypergeometric function and

V (𝑢) = 𝑡 − 𝑢𝑧

𝑧 . (50)

Evaluating the first correction to the area at these solutions,
the time-dependent change in the entanglement entropy be-
comes

𝛿𝑆𝐴 (𝑡)
= ℓ𝑑−2𝑝

4𝐺𝑁𝑢𝑑𝜃+𝑧
𝐻

∫𝑢∗

0
𝑑𝑢𝑢𝑧√1 − [ 𝑢𝑢∗

]2𝑑𝜃𝑔(𝑡 − 𝑢𝑧

𝑧 ) ,
(51)

where the turning point 𝑢∗ can be calculated from 𝑥(𝑢) to be
𝑢∗ = ℓ𝑑𝜃Γ [(2𝑑𝜃 + 1) /2𝑑𝜃]√𝜋Γ [(𝑑𝜃 + 1) /2𝑑𝜃] . (52)

4. Entanglement as a Linear Response

Equation (51) for time evolution of entanglement entropy has
a very interesting structure. In particular, if we define a time-
like coordinate

𝑡 ≡ 𝑢𝑧

𝑧 , (53)

the time-dependent change in entanglement entropy can be
written as the convolution equation

𝛿𝑆𝐴 (𝑡) = ∫∞

−∞
𝑑𝑡m (𝑡 − 𝑡)n (𝑡) ≡ m (𝑡) ∗ n (𝑡) , (54)

for some appropriate functions m(𝑡) and n(𝑡). In the theory
of linear response, one of these functions, say m(𝑡), is called
the input or Source function and the other one is called a
Response. However, the roles ofm and n are interchangeable
due to the properties of the convolution operation.

As we argue in equation (A.22) in the Appendix, the
energy density in hvLif-Vaidya spacetime is

𝜖 (𝑡) = 𝑑𝜃𝑔 (𝑡)16𝜋𝐺𝑁𝑢𝑑𝜃+𝑧
𝐻

. (55)

Now, without loss of generality, we identify the source with
the energy density

m (𝑡) ≡ 𝜖 (𝑡) = 𝑑𝜃𝑔 (𝑡)16𝜋𝐺𝑁𝑢𝑑𝜃+𝑧
𝐻

. (56)

This is a natural choice for the source because this function
depends only on the parameters in the quench. The response
functionn𝐴(𝑡)will then contain all the information about the
geometry of the entangling subregion:

n (𝑡) = 2𝜋AΣ (𝑧𝑡)1/𝑧𝑑𝜃

[1 − ( 𝑡𝑡∗)
2𝑑𝜃/𝑧]1/2

⋅ [Θ (𝑡) − Θ (𝑡 − 𝑡∗)] ,
(57)

where AΣ = 2ℓ𝑑−2𝑝 is the area of the entangling surface, the
boundary of the subregion 𝐴 along the perpendicular direc-
tions, and 𝑡∗ is defined in terms of 𝑢∗. Notice that we have
unbounded limits in (54), but the actual integral for entangle-
ment entropy (51) has bounded integration domain. To make
this change, we have made the response function n(𝑡) an
explicit function of these limits. The upper limit 𝑡∗ also pro-
vides a natural reference for the domain of the response func-
tion.

For 𝑡 < 0, there was no quench and as expected, the
response function vanishes as well. Thus, the spread of en-
tanglement is causal in our model. For finite quenches, the
source function increases only up to 𝑡 = 𝑡𝑞. In these cases,
owing to the properties of the convolution integral, the en-
tanglement growth saturates at a time

𝑡sat ≡ 𝑡∗ + 𝑡𝑞. (58)

As was noted in [47], writing the growth of entanglement
entropy as a convolution has the added benefit that convo-
lution integrals enjoy the following nice properties:

(i) Linearity
If a source is a linear combination of two independent
sources m(𝑡) = 𝑐1m1(𝑡) + 𝑐2m2(𝑡), the convolution
is the same linear combination of the individual con-
volutions

𝛿𝑆𝐴 (𝑡) = 𝑐1m1 (𝑡) ∗ n (𝑡) + 𝑐2m2 (𝑡) ∗ n (𝑡) . (59)

(ii) Time-translation invariance
A convolution is left invariant by translating it

𝛿𝑆𝐴 (𝑡 + 𝑡0) = m (𝑡 + 𝑡0) ∗ n (𝑡)
= m (𝑡) ∗ n (𝑡 + 𝑡0) . (60)

(iii) Differentiation rule
If 𝛿𝑆𝐴(𝑡) = m(𝑡) ∗ n(𝑡), differentiation follows the
simple rule

𝑑𝛿𝑆𝐴 (𝑡)𝑑𝑡 = 𝑑m (𝑡)𝑑𝑡 ∗ n (𝑡) = m (𝑡) ∗ 𝑑n (𝑡)𝑑𝑡 . (61)

(iv) Integration rule
If 𝛿𝑆𝑎(𝑡) = m(𝑡) ∗n(𝑡), the integral of the convolution
is the product of integrals.

∫𝑑𝑡𝛿𝑆𝐴 (𝑡) = [∫ 𝑑𝑡m (𝑡)] ⋅ [∫𝑑𝑡n (𝑡)] . (62)
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One can use these properties and study a class of source func-
tions m(𝑡) which are relatively simple. If the source function
is complicated, but decomposable into a series of such simpler
functions, these properties will prove useful in studying
evolution of entanglement entropy in such a case.

4.1. Time-Dependent First Law of Entanglement. There always
exists a First Law of Entanglement Entropy for small subre-
gions. For the kind of quenches we are studying, the reduced
density matrix for the subregion 𝐴 after the quench can be
written as 𝜌𝐴 = 𝜌(0)

𝐴 + 𝜆𝐴Δ𝜆𝜌𝐴 and so can the entanglement
entropy:

𝛿𝑆𝐴 (𝑡) = 𝛿𝑆(0)𝐴 + 𝜆𝐴Δ𝜆𝑆𝐴. (63)

In fact, the change in the entanglement entropy can be shown
to be

Δ𝜆𝑆𝐴 = tr (Δ𝜆𝜌𝐴𝐾(0)
𝐴 ) , (64)

where the Modular Hamiltonian 𝐾(0)
𝐴 is defined as 𝐾(0)

𝐴 ≡− log(𝜌(0)
𝐴 ). Equation (64) is called the First Law of Entangle-

ment Entropy.
In this subsection, we will show that there exists such a

first law even in the time-dependent case for the small sub-
regions. In (56), if we assume for a moment that the source
is constant in time 𝑔(𝑡) = 𝑔0, then the entanglement growth
(54) simplifies to

𝛿𝑆𝐴 (𝑡) = 𝑑𝜃𝑔016𝜋𝐺𝑁𝑢𝑑𝜃+𝑧
𝐻

∫∞

−∞
𝑑𝑡n (𝑡) . (65)

Observe that we can explicitly calculate the indefinite integral
of the non-trivial part of the response function (57):

∫𝑑𝑡 (𝑧𝑡)1/𝑧 [1 − ( 𝑡𝑡∗)
2𝑑𝜃/𝑧]1/2 = (𝑧𝑡)1+1/𝑧(𝑧 + 1) 2𝐹1 [−12 ,

𝑧 + 12𝑑𝜃

, 2𝑑𝜃 + 𝑧 + 12𝑑𝜃

; ( 𝑡𝑡∗)
2𝑑𝜃/𝑧] .

(66)

Using this, we define the function

B (𝑡) ≡ 2𝜋AΣ (𝑧𝑡)1+1/𝑧𝑑𝜃 (𝑧 + 1) 2𝐹1 [−12 , 𝑧 + 12𝑑𝜃

, 2𝑑𝜃 + 𝑧 + 12𝑑𝜃

;
( 𝑡𝑡∗)

2𝑑𝜃/𝑧] ,
(67)

which can be thought of as the indefinite integral of the full
response function. Taking the limits 𝑡 → 0 and 𝑡 → 𝑡∗ of
the functionB(𝑡), we get the entanglement growth to be

𝛿𝑆𝐴 (𝑡 ≤ 𝑡∗) = AΣ𝑔08𝐺𝑁𝑢𝑑𝜃+𝑧
𝐻

(𝑧𝑡)1+1/𝑧(𝑧 + 1) 2𝐹1 [−12 , 𝑧 + 12𝑑𝜃

,
2𝑑𝜃 + 𝑧 + 12𝑑𝜃

; ( 𝑡𝑡∗)
2𝑑𝜃/𝑧] ,

(68)

𝛿𝑆𝐴 (𝑡 ≥ 𝑡∗) = AΣ𝑔08𝐺𝑁𝑢𝑑𝜃+𝑧
𝐻

⋅ √𝜋 (𝑧𝑡∗)1+1/𝑧 Γ [(2𝑑𝜃 + 𝑧 + 1) /2𝑑𝜃]2 (𝑧 + 1) Γ [(3𝑑𝜃 + 𝑧 + 1) /2𝑑𝜃] .
(69)

We can rewrite the latter expression as

𝛿𝑆𝐴 (𝑡 ≥ 𝑡∗) = 𝛿𝐸𝐴𝑇𝐴

, (70)

where by 𝛿𝐸𝐴wedenote the total energy inside the entangling
surface:

𝛿𝐸𝐴 = 𝑑𝜃𝑔0𝑉𝐴16𝜋𝐺𝑁𝑢𝑑𝜃+𝑧
𝐻

= 𝑑𝜃𝑔0ℓ𝑑−2𝑝 ℓ
16𝜋𝐺𝑁𝑢𝑑𝜃+𝑧

𝐻

. (71)

Using (52) for ℓ in terms of 𝑡∗, we can write the parameter 𝑇𝐴

as

𝑇𝐴

= (𝑧 + 1) Γ [(3𝑑𝜃 + 𝑧 + 1) /2𝑑𝜃] Γ [(𝑑𝜃 + 1) /2𝑑𝜃]2𝜋𝑧Γ [(2𝑑𝜃 + 𝑧 + 1) /2𝑑𝜃] Γ [(2𝐷𝜃 + 1) /2𝑑𝜃] 𝑡∗ .
(72)

It is called the Entanglement Temperature and has been
extensively studied in literature [94–97]. Observe that the
entanglement temperature only depends on the shape of the
entangling surface (through 𝑡∗) and not on the quench.Thus,
it is a characteristic of the subregion. In the relativistic limit
(𝑧 → 1, 𝜃 → 0), it reduces to the well-known expression
[47, 94]

𝑇CFT
𝐴 = (𝑑 + 1) Γ [(𝑑 + 1) /2 (𝑑 − 1)] Γ [𝑑/2 (𝑑 − 1)]𝜋𝑡∗Γ [1/2 (𝑑 − 1)] Γ [𝑑/ (𝑑 − 1)] . (73)

This equation is a manifestation of the standard First Law of
Entanglement Entropy.

We now generalize this law to the case of adiabatic
sources. In this case, the function m(𝑡) varies slowly and is
approximately constant for time intervals of the order of 𝑡∗.
To derive the first law, let us start by partially integrating the
entanglement entropy integral (54), while using the source
function (56). We get

𝛿𝑆𝐴 (𝑡) = [𝜖 (𝑡 − 𝑡)B (𝑡)]𝑡=𝑡∗
𝑡=0

− ∫𝑡∗

0
𝑑𝑡 𝑑𝜖 (𝑡 − 𝑡)𝑑𝑡 B (𝑡) ,

(74)
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where B(𝑡) is defined in (67). Note that one cannot cancel
the integration measure 𝑑𝑡 in the numerator and the denom-
inator of the second term. One is supposed to think of the
derivative of 𝜖(𝑡 − 𝑡) as an independent function of 𝑡.

Naively, this gives us the full expression for the time-
dependent change in entanglement entropy. However, there
is still a choice of the integration constant in the definition
of the function B(𝑡), equation (67). For calculating the
entanglement growth after a constant quench (see equation
(68)), this choice did not matter because the integration
constant got cancelled when one implemented the limits of
the definite integral in the end. Here, the presence of the
integration constant matters because it gives a non-vanishing
term as 𝜖(𝑡) changes across an interval of size 𝑡∗. So, how do
we fix this constant? We would like to reproduce the time-
independent first law of entanglement entropy (70) when
we make the source 𝜖(𝑡) time-independent. This fixes the
constant to be −𝑉𝐴/𝑇𝐴. In particular, this implies the condi-
tion B(𝑡∗) = 0, which is not surprising for a integral of
a function with compact support. We also have B(0) =−𝑉𝐴/𝑇𝐴. Using these, we get

𝛿𝑆𝐴 (𝑡) = 𝛿𝐸𝐴 (𝑡)𝑇𝐴

− ∫𝑡∗

0
𝑑𝑡 𝑑𝜖 (𝑡 − 𝑡)𝑑𝑡 B (𝑡) . (75)

This is then our generalization of the First Law of Entangle-
ment to adiabatic time-dependent cases. We can identify the
precise condition when this first law will hold. The adiabatic
approximation is true if the integral in the equation above is
not very large compared to the first term. One can thus show
that if

𝑑𝜖 (𝑡)𝑑𝑡 ≪ 𝜖 (𝑡)𝑡∗ , (76)

then the above first law holds.

4.2. An Analogue of Relative Entropy. In time-independent
cases, relative entropy between two density matrices 𝜌 and 𝜎
can be shown to be [98, 99]

𝑆rel (𝜌 | 𝜎) = Δ⟨𝐾𝜎⟩ − Δ𝑆, (77)

where

Δ𝐾 ≡ − tr (𝜌 log 𝜎) + tr (𝜎 log 𝜎) ,
Δ𝑆 = tr (𝜌 log 𝜌) − tr (𝜎 log 𝜎) . (78)

We see that (75) is analogous to this. In particular, we can
define a time-dependent analogue of relative entropy between
the vacuum of non-relativistic field theories and thermal
states produced by action of a global quench

𝛿𝑆rel (𝑡) ≡ 𝛿𝐸𝐴 (𝑡)𝑇𝐴

− 𝛿𝑆𝐴 (𝑡) , (79)

where by 𝛿 we mean the term that remains after subtracting
the vacuum quantity as well as source-dependent terms. This
quantity has some nice properties. When there is no quench,

it vanishes owing to the time-independent first law. For an
adiabatic quench, it is very small, implying that the time-
dependent excited state is not very far from the vacuum. For
quenches of finite duration, it is non-zero only for 0 ≤ 𝑡 ≤ 𝑡sat.
Moreover, like the relative entropy, it is positive definite and
hence must have an extremum in the interval 0 ≤ 𝑡 ≤ 𝑡sat. All
these properties suggest that this quantity can be thought of
as an order parameter for out-of-equilibrium states. That is,
this quantity tells us how far an out-of-equilibrium state is at
time 𝑡 compared to an equilibrium state with the same energy
density 𝜖(𝑡).

We can in fact show that, for 0 ≤ 𝑡 ≤ 𝑡sat, 𝛿𝑆rel(𝑡) ≥ 0. To
see this, first we recall the integral expression for the relative
entropy

𝛿𝑆rel (𝑡) = ∫𝑡∗

0
𝑑𝑡 𝑑𝜖 (𝑡 − 𝑡)𝑑𝑡 B (𝑡)

= ∫∞

−∞
𝑑𝑡 𝑑𝜖 (𝑡 − 𝑡)𝑑𝑡 B (𝑡) [Θ (𝑡) − Θ (𝑡 − 𝑡∗)] .

(80)

Now, we observe that

𝑑𝜖 (𝑡 − 𝑡)
𝑑𝑡 = −𝑑𝜖 (𝑡 − 𝑡)𝑑𝑡 . (81)

Hence we get

𝛿𝑆rel (𝑡)
= −∫∞

−∞
𝑑𝑡 𝑑𝜖 (𝑡 − 𝑡)𝑑𝑡 B (𝑡) [Θ (𝑡) − Θ (𝑡 − 𝑡∗)]

= −𝑑𝜖 (𝑡)𝑑𝑡 ∗ B̃ (𝑡) ,
(82)

with B̃(𝑡) ≡ B(𝑡)[Θ(𝑡) − Θ(𝑡 − 𝑡∗)]. Now referring to the
discussion above equation (75), B(𝑡) ≤ 0 for 0 ≤ 𝑡 ≤𝑡∗ because of the choice of the integration constant. Also,𝑑𝜖(𝑡)/𝑑𝑡 ≥ 0 due to the Null Energy Condition in the bulk.
Hence, 𝛿𝑆rel ≥ 0 for 0 ≤ 𝑡 ≤ 𝑡∗.

Apart from providing an order parameter to under-
stand out-of-equilibrium states, the time-dependent relative
entropy also helps us to organize the post-quench time
evolution of the field theory. To see how this is done, let us
first calculate the time derivative of the relative entropy using
the differentiation rule of convolution

𝑑𝛿𝑆rel𝑑𝑡 = −𝑑𝜖 (𝑡)𝑑𝑡 ∗ 𝑑B̃ (𝑡)𝑑𝑡
= 𝑑𝜖 (𝑡)𝑑𝑡 ∗ 𝑉𝐴𝑇𝐴

− 𝑑𝜖 (𝑡)𝑑𝑡 ∗ n (𝑡) ,
(83)

where the first term is a boundary term from the boundary at𝑡 = 𝑡∗. We can now define the following regimes during the
post-quench evolution:
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(i) Driven regime ( 0 ≤ 𝑡 ≤ 𝑡𝑞 )
For 0 ≤ 𝑡 ≤ 𝑡𝑞, the system is being driven by the
quench as 𝑑𝜖(𝑡)/𝑑𝑡 ≥ 0. Since n(𝑡) ≥ 0, the second
term is negative wrt first in (83). However, both the
terms contribute in general and there is a change in
relative entropy as a function of time.

(ii) Transient regime ( 𝑡𝑞 ≤ 𝑡 ≤ 𝑡sat )
For 𝑡𝑞 ≤ 𝑡 ≤ 𝑡sat, the quench has stopped acting and
hence 𝑑𝜖(𝑡)/𝑑𝑡 = 0. Thus, only the second term in
(83) contributes. As a result, we get

𝑑𝛿𝑆rel𝑑𝑡 ≤ 0. (84)

Thedistance in theHilbert space between the vacuum
and the excited state thus keeps decreasing with time
in this regime.

5. Special Cases

In this section, we will study the growth of entanglement for
small subsystems for some explicit quenches. As we will see,
they cover a wide range of time-dependent perturbations to
the field theory.

5.1. Instantaneous Quench. As a first example, we will study
the instantaneous global quantum quench defined by 𝑔(𝑡) =Θ(𝑡). This will elucidate the use of the convolution formula
(54) for entanglement entropy. Further, our discussion fills in
a gap in the literature [77, 78] for entanglement growth after
instantaneous quenches, which has focused more on large
subsystems. From (51), the entanglement entropy in this case
is
𝛿𝑆𝐴
= ℓ(𝑑−2)𝑝

4𝐺𝑁𝑢(𝑑𝜃+𝑧)
𝐻

∫𝑢∗

0
𝑑𝑢𝑢𝑧√1 − [ 𝑢𝑢∗

]2𝑑𝜃Θ(𝑡 − 𝑢𝑧
∗𝑧 ) .

(85)

The Heaviside Theta function can be used to naturally divide
the evolution of entanglement entropy into the following
three regimes:

(1) Pre-quench regime
When 𝑡 < 0 the integrand vanishes for the entire in-
tegration domain. Hence

𝛿𝑆𝐴 (𝑡 < 0) = 0. (86)

(2) Post-saturation regime
When 𝑡 > 𝑡∗ = 𝑢𝑧

∗/𝑧, the integrand is nonzero
for the entire integration domain. Furthermore the
final result then does not depend on time. Thus the
growth of entanglement saturates in this regime and
gives us the value 𝛿𝑆𝑒𝑞 of entanglement entropy in the
final equilibrium state. We will use this value later to
normalize our plots.

𝛿𝑆𝑒𝑞 = √𝜋ℓ𝑑−2𝑝 𝑢1+𝑧
∗ Γ [(2𝑑𝜃 + 𝑧 + 1) /2𝑑𝜃]

8𝐺𝑁 (1 + 𝑧) 𝑢𝑑𝜃+𝑧
𝐻 Γ [(3𝑑𝜃 + 𝑧 + 1) /2𝑑𝜃] . (87)

(3) Time-dependent regime
For 0 < 𝑡 < 𝑡∗, the value of 𝛿𝑆(𝑡) is actually time-
dependent.This is thus an out-of-equilibrium regime.
To study this regime, we split off the equilibrium
entanglement entropy of (87) and observe that we can
define a dimensionless parameter

𝑥 ≡ ( 𝑡𝑡∗)
1/𝑧 , with 𝑡∗ = 𝑢𝑧

∗𝑧 . (88)

In terms of this parameter, the time evolution of the
entanglement entropy is

𝛿𝑆𝐴 (𝑡) = 𝛿𝑆𝑒𝑞F (𝑥) , (89)

F (𝑥) ≡ Γ [(3𝑑𝜃 + 𝑧 + 1) /2𝑑𝜃]Γ [3/2] Γ [(𝑧 + 1) /2𝑑𝜃]
⋅ 𝛽 [𝑥2𝑑𝜃 , 𝑧 + 12𝑑𝜃

, 32] .
(90)

where 𝛽(𝑧, 𝑎, 𝑏) is the Incomplete Beta Function.
Having described the regimes, we now observe that the
problem of studying the evolution of entanglement entropy
simplifies to the problem of studying the behavior of F(𝑥)
for different time scales. Before we study this in detail, we
depict in Figure 1 the evolution of entanglement entropy for
instantaneous global quenches.

5.1.1. Nature of Entanglement Growth. We now study in
detail the time-dependent regime. To organize our study,
we observe that the time-dependent regime can be further
classified into three different subregimes. The existence of
these subregimes can also be seen from Figure 1, where, as a
function of time, the entanglement growth has three different
functional forms. We now describe each of these subregimes
in detail.

(1) Early Time Growth.The first subregime is the one where
time is very close to zero, 𝑡 ≈ 0. This implies that the
dimensionless parameter 𝑥 ≈ 0. This motivates us to expand
F(𝑥), given by (90), near 𝑥 = 0. We expect that this simplifies
the expression for the entanglement growth near 𝑡 ≈ 0. The
expansion ofF(𝑥) near 𝑥 = 0 is

F (𝑥) = 2𝑑𝜃Γ [(3𝑑𝜃 + 𝑧 + 1) /2𝑑𝜃] 𝑥𝑧+1

(𝑧 + 1) Γ [3/2] Γ [(𝑧 + 1) /2𝑑𝜃] (1
− 𝑧 + 12 (2𝑑𝜃 + 𝑧 + 1)𝑥

2𝑑𝜃 + O (𝑥4𝑑𝜃)) ,
(91)

wherewe have assumed 𝑧 ≥ 1 and 𝑑𝜃 ≥ 0 following [62].Thus
the time growth of entanglement entropy 𝛿𝑆(𝑡) near 𝑡 ≈ 0
becomes

𝛿𝑆𝐴 (𝑡) = ℓ𝑑−2𝑝 (𝑧𝑡)1+1/𝑧
4𝐺𝑁 (𝑧 + 1) 𝑢𝑑𝜃+𝑧

𝐻

(1

− 𝑧 + 12 (2𝑑𝜃 + 𝑧 + 1) [
𝑡𝑡∗ ]

2𝑑𝜃/𝑧) .
(92)
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Figure 1: Entanglement entropy (a) and relative entropy (b) after an instantaneous quench in 𝑑 = {2, 3, 4, 5} dimensions, depicted in red,
orange, green, and blue, respectively. We have set 𝑧 = 1.5, 𝜃 = 0.1, and 𝑡𝑞 + 𝑡∗ = 1 to obtain the plots.

If we take the limit 𝑧 → 1, we recover the Vaidya solution
with an asymptotically AdS background. In this limit, the
above equation reproduces the well-known results for early
time growth of entanglement [45], in particular the quadratic
function of time. It was also argued that this time dependence
is universal irrespective of the size of the subsystem [43–45].
The argument is that it is theUVpart of theCFTwhich largely
determines the early time growth and hence depends only
on the symmetries [45]. We expect the same to be true of
the early time entanglement growth for non-relativistic field
theories under investigation here.

(2) Quasilinear Growth. The time dependence of entangle-
ment entropy is not universal for intermediate time scales

0 ≪ 𝑡 ≪ 𝑢𝑧
∗𝑧 . (93)

It was shown in [43, 44, 77, 78] that there is a linear regime
for large subsystems. But as was argued in [45, 47], there is
no such regime for small subsystems. These results were for
CFTs, but even in the case of non-relativistic field theories,
we observe similar features. In particular, Figure 1 suggests
that we can model the growth of entanglement as quasilinear.
Then to study such a regime, [43–45, 47, 78] identified a
parameter called Entanglement Velocity. For CFTs, it was
defined as [43, 44]

RCFT ≡ 𝑉𝛿𝑆eqAΣ

𝑑𝛿𝑆𝐴 (𝑡)𝑑𝑡 . (94)

Following [78], we define entanglement velocity for the case
of non-relativistic theories to be

RHSV (𝑡) = 𝑉
AΣ

𝑑F (𝑥 (𝑡))𝑑𝑡 . (95)

Recall that from (52) we have

𝑉
AΣ

= Γ [3/2] Γ [(𝑑 − 𝜃) /2𝑑𝜃] 𝑢∗𝑑𝜃Γ [(𝑑𝜃 + 1) /2𝑑𝜃] . (96)

t

RHSV(t)

0.5

1.0

1.5

0.2 0.4 0.6 0.8 1.0 1.2−0.2

Figure 2: Entanglement velocity as a function of time for different
values of 𝑑. The colors blue, green, red, and orange represent 𝑑 ={5, 4, 3, 2}, respectively. We have set 𝜃 = 0.1, 𝑧 = 1.5, and 𝑡∗ = 1.

A simple calculation then shows that the entanglement velo-
city is equal to

RHSV (𝑡)
= 2Γ [(3𝑑𝜃 + 𝑧 + 1) /2𝑑𝜃] Γ [(𝑑 − 𝜃) /2𝑑𝜃]𝑧𝑡∗Γ [(𝑧 + 1) /2𝑑𝜃] Γ [(2𝑑𝜃 + 1) /𝑑𝜃] (𝑧𝑡)1/𝑧

⋅ √1 − [ 𝑡𝑡∗ ]
2𝑑𝜃/𝑧.

(97)

As we can see, this is not independent of the subsystem. A
similar feature was observed in [45, 47], contrary to the large
subsystem limit, where the entanglement velocity is universal
[43, 44]. In Figure 2, we plot the entanglement velocity as a
function of time for different dimensions.

To understand this instantaneous velocity better, we
study it in some limits. First we set 𝑧 = 1.5 but keep 𝜃
arbitrary. This is the limit of relativistic but non-conformal
field theories or the purely hyperscaling-violating theories.
The time dependence of the velocity then is shown in part (a)
of Figure 3. In part (b) of the same figure, we keep 𝜃 = 0.1 and
plot the time dependence of the velocity for different values of
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Figure 3: Time dependence of entanglement velocity for different values of 𝜃 and 𝑧. The colors blue, green, red, and orange represent 𝜃 ={0.1, 0.8, 1.1, 1.7} in part (a) and 𝑧 = {1.5, 2, 2.5, 3} in part (b), respectively. Common parameters are 𝑑 = 3, 𝑡∗ = 1.

𝑧. For large subsystems, the entanglement velocity was found
to be connected to the velocity of quasiparticles produced
during the quench [16]. It was argued later that the spread of
entanglement is causal and that this velocity is bounded by 1
in units of 𝑐 [17, 43, 44]. However, the instantaneous velocity
does not satisfy this bound [45, 47, 100, 101], although the time
average of the velocity is bounded. This suggests that there is
no quasi-particle picture for the production and propagation
of entanglement for small subsystems. In the case of non-
relativistic theories, the situation becomesmoremuddled.We
will comment on these issues by studying the maximum and
average velocity.

The maximum entanglement velocity in our case can be
found using

𝑑RHSV(𝑡)𝑑𝑡 = 0 ⇒ 𝑡max = 𝑡∗ (𝑑 − 𝜃)−1/2𝑑𝜃 , (98)

where we have assumed that 𝑧 ≥ 1 and 𝜃 > 0. This has the
value

RHSV (𝑡max)
= 2Γ [(3𝑑𝜃 + 𝑧 + 1) /2𝑑𝜃] Γ [(𝑑 − 𝜃) /2𝑑𝜃]Γ [(𝑧 + 1) /2𝑑𝜃] Γ [(2𝑑𝜃 + 1) /𝑑𝜃] [ 𝑑𝜃𝑑 − 𝜃]

1/2

⋅ (𝑑 − 𝜃)−1/2𝑑𝜃 (𝑧𝑡∗)(1−𝑧)/𝑧 ,
(99)

In the AdS limit 𝜃 → 0, 𝑧 → 1, we reproduce the known
result [45]

RCFT (𝑡max)
= 4Γ [3/2 − 1/ (𝑑 − 1)] Γ [𝑑/2 (𝑑 − 1)] (𝑑 − 1)3/2Γ [1/2 (𝑑 − 1)] Γ [1/ (𝑑 − 1)] 𝑑𝑑/2(𝑑−1)

, (100)

which gives, for example, a maximum velocity of 3/2 for 𝑑 =2. In part (a) of Figure 4 we plot the maximum as a function
of dimension.

It is also interesting to consider the maximum entan-
glement velocity as a function of 𝑧. This problem was
studied numerically in [102, 103] recently. They found that
the entanglement entropy for small subsystems is a linear
function of 𝑧. We observe the same linear behavior, above𝑧 = 1, as we show in part (a) of Figure 5. Now we turn to the
average entanglement velocity. It is given by

Ravg ≡ 1𝑡∗ ∫
𝑡∗

0
RHSV (𝑡) 𝑑𝑡. (101)

Using (97), this can be shown to be

Ravg = √𝜋Γ [(𝑑 − 𝜃) /2𝑑𝜃] (𝑧𝑡∗)1/𝑧𝑡∗Γ [1/2𝑑𝜃] . (102)

As expected, it reduces to the known expression [45, 47] in
the limit of AdS-Vaidya

R
avg
CFT = √𝜋Γ [𝑑/2 (𝑑 − 1)]Γ [1/2 (𝑑 − 1)] . (103)

In part (b) of Figure 4 we show the average velocity as a func-
tion of the dimension. And we display the average velocity
as a function of 𝑧 in part (b) of Figure 5. We observe that
both the maximum and the average entanglement velocities
violate the bound. However, the bound was derived from
relativistic considerations. The states that we work with are
actually excited states that break conformal invariance. As a
result, like a wave traveling in a matter that is refracting with
respect to vacuum, the velocities are greater than 1.

(3) Near-Saturation Regime. We now study the last sub-
regime of the growth of entanglement after the instantaneous
quench. This is defined to be when the time 𝑡 is close to the
saturation time, 𝑡 ≈ 𝑡∗. Recall that 𝑡𝑞 = 0 for instantaneous
quenches and hence 𝑡sat = 𝑡∗. Thus, we would like to expand
F(𝑥) as defined in (90) around 𝑥 = 1, approaching from
below.The expansion is given by



14 Advances in High Energy Physics

d

1.0

1.5

2.0

4 5 63

R（３６(tＧ；Ｒ)

(a)

d

0.6

0.8

1.0

1.2

1.4

1.6

4 5 63

R；ＰＡ

(b)
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Figure 5: (a) Maximum and (b) average entanglement velocities as a function of 𝑧. The colors blue, green, orange, and red correspond to𝑑 = {5, 4, 3, 2}, respectively, and we have set 𝜃 = 0.1, 𝑡∗ = 1.

F (𝑥) =
{{{{{{{{{

1 − 25/2𝑑3/2
𝜃
Γ [(3𝑑𝜃 + 𝑧 + 1) /2𝑑𝜃]3Γ [3/2] Γ [(𝑧 + 1) /2𝑑𝜃] (1 − 𝑥)3/2 , 𝑥2𝑑 < 𝑥2(1+𝜃),

1 + 25/2𝑑3/2
𝜃
Γ [(3𝑑𝜃 + 𝑧 + 1) /2𝑑𝜃]3Γ [3/2] Γ [(𝑧 + 1) /2𝑑𝜃] (1 − 𝑥)3/2 , 𝑥2𝑑 > 𝑥2(1+𝜃).

(104)

This is consistent with the known results in the AdS-Vaidya
limit [45, 47].

5.2. Power LawQuench. Wenow consider global quench that
is a power law with respect to time. We will denote the power
by 𝑝 and keep it arbitrary. Once we have obtained the evolu-
tion of entanglement entropy in this general case, we could
study the evolution of entanglement entropy for any smooth
quench, by using, for example, Remez algorithm to rewrite
the quench in a basis of polynomials. The perturbation we
will consider is

𝑔 (𝑡) = 𝜎𝑡𝑝 [Θ (𝑡) − Θ (𝑡 − 𝑡𝑞)] + 𝜖0Θ(𝑡 − 𝑡𝑞) , (105)

where𝑝 ∈ Z and 𝜖0 = 𝜎𝑡𝑝𝑞 is the final energy density when the
quench stops at 𝑡 = 𝑡𝑞. This perturbation defines the source
function m(𝑡) in the convolution equation (54). Using the
kernel (57), we get the entanglement growth to be given by
the integral

𝛿𝑆𝐴 (𝑡) = 𝜎AΣ𝑧1/𝑧8𝐺𝑁𝑢𝑑𝜃+𝑧
𝐻

∫∞

−∞
𝑑𝜏

⋅ 𝜏1/𝑧√1 − [𝜏/𝑡∗]2𝑑𝜃/𝑧 [Θ (𝜏) − Θ (𝜏 − 𝑡∗)]
× [(𝑡 − 𝜏)𝑝 [Θ (𝑡 − 𝜏) − Θ (𝑡 − 𝑡𝑞 − 𝜏)]
+ 𝑡𝑝𝑞Θ(𝑡 − 𝑡𝑞 − 𝜏)] .

(106)
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We naturally encounter two cases: (1) 𝑡𝑞 < 𝑡∗ and (2) 𝑡𝑞 > 𝑡∗.
In both these cases, the evolution of entanglement entropy
is very similar; namely, the system is driven by the quench
up to some time resulting in entanglement growth, followed

by a transient regime which finally leads to saturation to an
equilibrium value. In both the scenarios, the saturation time
is given by 𝑡sat = 𝑡𝑞 + 𝑡∗ and the evolution can be split and
analyzed in various intervals as follows:

Regime : Pre-quench Initial Intermediate Final Post-saturation
Case I : 𝑡𝑞 < 𝑡∗ 𝑡 < 0 0 < 𝑡 < 𝑡𝑞 𝑡𝑞 < 𝑡 < 𝑡∗ 𝑡∗ < 𝑡 < 𝑡sat 𝑡 > 𝑡sat
Case II : 𝑡∗ < 𝑡𝑞 𝑡 < 0 0 < 𝑡 < 𝑡∗ 𝑡∗ < 𝑡 < 𝑡𝑞 𝑡𝑞 < 𝑡 < 𝑡sat 𝑡 > 𝑡sat

In Figure 6, we show schematically (this figure is a modifica-
tion of a code written by Gerben W. J. Oling. I am thankful
to them) the use of convolution integrals (54) to calculate the
entanglement entropy in each of these regimes.

The pre-quench and post-saturation regimes are in equi-
librium. In particular

𝛿𝑆𝐴 (𝑡) = 0 for 𝑡 < 0, (107)

𝛿𝑆𝐴 (𝑡) = 𝜖0𝑉𝐴𝑇𝐴

for 𝑡 > 𝑡sat. (108)

as expected, with 𝑇𝐴 being given by (72). Due to equilibrium,
the time-dependent relative entropy vanishes in both cases,𝛿𝑆rel(𝑡) = 0. The initial, intermediate, and final regimes are
generally time-dependent.

We now derive analytic expressions for entanglement
growth. To write them succinctly, we define the following
indefinite integral that depends on the subsystem:

I
(𝑝) (𝑡, 𝜏)
≡ AΣ8𝐺𝑁𝑢𝑑𝜃+𝑧

𝐻

∫𝑑𝜏 (𝑡 − 𝜏)𝑝 (𝑧𝜏)1/𝑧√1 − [ 𝜏𝑡∗ ]
2𝑑𝜃/𝑧, (109)

The entanglement growth in different regimes will be given
by this integral evaluated at appropriate limits.

Now, using the binomial series

(𝑡 − 𝜏)𝑝 = ∞∑
𝑘=0

(𝑝𝑘) 𝑡𝑝−𝑘 (−𝜏)𝑘 , (110)

where 𝑝 is a real number, we can do the integral explicitly to
obtain

I
(𝑝) (𝑡, 𝜏) = AΣ8𝐺𝑁𝑢𝑑𝜃+𝑧

𝐻

∞∑
𝑘=0

(𝑝𝑘) 𝑡𝑝−𝑘 (𝑧𝜏)1+1/𝑧 (−𝜏)𝑘(𝑧 + 1 + 𝑘𝑧)
× 2𝐹1 [−12 , 𝑧 + 1 + 𝑘𝑧2𝑑𝜃

, 2𝑑𝜃 + 𝑧 + 1 + 𝑘𝑧2𝑑𝜃

; [ 𝜏𝑡∗ ]
2𝑑𝜃/𝑧] .

(111)

This can be evaluated for any given 𝑝. For 𝑝 ∈ R, we get an
infinite series but when 𝑝 is a non-negative integer, the series
is finite and gives a closed-form expression. In terms of this

integral, the entanglement growth for different regimes can
be written as follows:

𝛿𝑆(I)𝐴 (𝑡)

=

{{{{{{{{{{{{{{{{{{{{{{{

0, 𝑡 < 0,
𝜎I(𝑝) (𝑡, 𝜏)𝑡0 , 0 < 𝑡 < 𝑡𝑞,
𝜖0I(0) (𝑡, 𝜏)𝑡−𝑡𝑞0

+ 𝜎I(𝑝) (𝑡, 𝑡)𝑡𝑡−𝑡𝑞 , 𝑡𝑞 < 𝑡 < 𝑡∗,
𝜖0I(0) (𝑡, 𝜏)𝑡−𝑡𝑞0

+ 𝜎I(𝑝) (𝑡, 𝑡)𝑡∗𝑡−𝑡𝑞 , 𝑡∗ < 𝑡 < 𝑡sat,
𝜖0I(0) (𝑡, 𝜏)𝑡∗0 , 𝑡 > 𝑡sat,

(112)

for case I and

𝛿𝑆(II)𝐴 (𝑡)

=

{{{{{{{{{{{{{{{{{{{{{{{

0, 𝑡 < 0,
𝜎I(𝑝) (𝑡, 𝜏)𝑡0 , 0 < 𝑡 < 𝑡∗,
𝜎I(𝑝) (𝑡, 𝜏)𝑡∗0 , 𝑡∗ < 𝑡 < 𝑡𝑞,
𝜖0I(0) (𝑡, 𝜏)𝑡−𝑡𝑞0

+ 𝜎I(𝑝) (𝑡, 𝜏)𝑡∗𝑡−𝑡𝑞 , 𝑡𝑞 < 𝑡 < 𝑡sat,
𝜖0I(0) (𝑡, 𝜏)𝑡∗0 , 𝑡 > 𝑡sat,

(113)

for case II, respectively, where all the evaluations are for
the integration variable 𝜏. Note that I(0)(𝑡, 𝜏) is particularly
simple and has the closed-form expression

I
(0) (𝑡, 𝜏) = AΣ (𝑧𝜏)1/𝑧8𝐺𝑁𝑢𝑑𝜃+𝑧

𝐻 (𝑧 + 1) 2𝐹1 [−12 , 𝑧 + 12𝑑𝜃

,
2𝑑𝜃 + 𝑧 + 12𝑑𝜃

; [ 𝜏𝑡∗ ]
2𝑑𝜃/𝑧] .

(114)

These expressions can be easily understood graphically.
In the first row of Figure 7, we plot the time-dependent
entanglement entropy after a power-law quench for different
powers. Different regimes of entanglement growth can be
identified from these plots. Nonetheless, they can be made
manifest by plotting the relative entropy as a function of time,
as shown in the second row of Figure 7. The figure shows
a conspicuous cusp, which denotes the end of the driven
regime. However, there is no singular behavior at the location
of the cusp, as can be verified by studying the instantaneous
rate of entanglement growth. We show this in the third row
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Figure 6: Schematic representation of the convolution integral for a power-law quench with 𝑝 = 1. The right and left columns show the two
possible cases I: 𝑡𝑞 < 𝑡∗ and II: 𝑡∗ < 𝑡𝑞, respectively. In the pre-quench and post-saturation regimes the integral is a constant. In the initial,
intermediate, and final growth regimes the integral is time-dependent and can be performed by splitting it in various intervals, as shown in
(112) and (113).

of Figure 7. As in the case of the instantaneous quench, we
observe that the instantaneous entanglement velocity need
not be bounded by 1.

It is interesting to ask how does the entanglement grow
in different dimensions. As shown in Figure 8, we see that for
different dimensions the time dependence of entanglement
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Figure 7: Entanglement entropy, relative entropy, and entanglement velocity for different powers after a power-law quench. Colors blue,
green, orange, and red represent 𝑝 = {1, 2.5, 5, 11.5}, respectively. Plots from left to right have 𝑡𝑞/𝑡∗ = {0.5, 1, 2}. In all plots, the dashed
vertical line denotes the end of the driven phase 𝑡 = 𝑡𝑞. We have set 𝑑 = 3, 𝜃 = 0.1, and 𝑧 = 1.5.

entropy, relative entropy, and entanglement velocity is quali-
tatively uniform.

Finally, in Figures 9 and 10, we plot the dependence of en-
tanglement entropy, relative entropy, and entanglement
velocity as a function of 𝑧 and 𝜃, respectively. We see a quali-
tatively similar growth.

5.3. Linear Pump. In this subsection we will comment on the
case of a linear quench 𝑔(𝑡) ∼ 𝑡. We call this the linear pump.
For a CFT, it was studied in detail in [46, 47]. Reference [46]
in particular proposed a First Law of Entanglement Rates for
small subsystems given by

𝑑𝛿𝑆𝐴 (𝑡)𝑑𝑡 = 𝑑𝜖 (𝑡)𝑑𝑡 𝑉𝐴𝑇𝐴

, (115)

where 𝑇𝐴 is the entanglement temperature for a CFT cal-
culated by the CFT limit of equation (72). This law can
be interpreted as a derivative form of our general time-
dependent first law of entanglement entropy (75) in the CFT
limit. We now use our detailed discussion of the general
power law quench from Section 5.2 to discuss the spread
of entanglement entropy after a linear pump. In fact the
cases 𝑝 = 1, 2 can be solved completely analytically. The

exact integrals for the linear quench can be derived from
the general equations (112) and (113). Here we only discuss
the plots in brief. In the first row of Figure 8, we can see
the growth of entanglement entropy after a linear pump.
The dashed black line indicates the end of the driven phase
of entanglement growth. The four different colors indicate
different dimensions. In the second row of the same figure,
we have relative entropy as a function of time for different
dimensions. It first increases and then decreases, unlike
the case of the instantaneous quench. This behavior can
be understood by observing that, until time 𝑡𝑞, the system
is forced. As a result of this, it keeps going farther away
from equilibrium. Keeping in line with our philosophy that
the relative entropy measures how far the system is from
equilibrium, it makes sense that it increases initially. The
initial and the final states are both equilibrium states; hence
the relative entropy is zero in these states. If it increases
initially, it must decrease later to account for this fact.

5.4. Floquet Quench. Time periodic forces are commonly
used in laboratory situations. The study of differential equa-
tions with a periodic function in the differential operator
is called Floquet Theory. Adopting this name, we refer to a
quench that is periodic in time as Floquet quench. Thus, the
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Figure 8: Entanglement entropy, relative entropy, and entanglement velocity for different dimensions. Colors blue, green, orange, and red
represent 𝑑 = {5, 4, 3, 2}, respectively. Plots from left to right have 𝑡𝑞/𝑡∗ = {0.5, 1, 2}. In all plots, the dashed vertical line denotes the end of
the driven phase 𝑡 = 𝑡𝑞. We have set 𝑝 = 1, 𝜃 = 0.1, and 𝑧 = 1.5.

time-dependent function 𝑔(𝑡) in the source function m(𝑡)
(see (56)) looks like

𝑔 (𝑡) = sin (Ω𝑡) Θ (𝑡) , (116)

where Ω is frequency of the external source and we have
set the amplitude of the source to 1. Also observe that the
quench does not have a finite duration (𝑡𝑞 → ∞). This
case is more interesting because a Floquet quench that acts
for finite duration can be very-well approximated by a finite
combination of power-law quenches, whose exact description
we know.

From the convolution equation (54), at late times we
expect the entanglement growth to also be periodic in time.
In particular, there is no saturation of entanglement. This is
because the parameter 𝑡 only appears in the source function,
and there it is periodic with a trigonometric expression.Thus,
we expect the entanglement growth to have the form

𝛿𝑆 (𝑡) = 𝑃 (𝑡) + Ψ sin (Ω𝑡 + Φ) , (117)

where 𝑃(𝑡) is some smooth polynomial in 𝑡 that interpolates
to the sin function around 𝑡 = 𝑡∗. The function 𝑃(𝑡),
the amplitude Ψ, and the phase Φ are all functions of the
parameters 𝑑, 𝜃, 𝑧, Ω and the subsystem size ℓ. In fact, we
can argue for the the existence of 𝑃(𝑡) on general grounds.

The entanglement entropy is zero for 𝑡 < 0 and then it starts
growing at 𝑡 = 0. However, the initial growth of entanglement
is dictated solely by the symmetries of the theory to be 𝑡1+𝑧.
Since, at late times, the entanglement growth is entirely driven
by the periodic source, there must exist a polynomial 𝑃(𝑡)
such that it interpolates smoothly between the early and the
late time growth.

Expanding the sin function in a Taylor series, the exact
expression for the growth of entanglement entropy becomes

𝛿𝑆 (𝑡) = ∞∑
𝑝=0

− (−1)(𝑝+1)2 AΣΩ2𝑝+1

8𝐺𝑁𝑢𝑑𝜃+𝑧
𝐻 (2𝑝 + 1)! ∫

𝑡∗

0
𝑑𝜏 (𝑡 − 𝜏)2𝑝+1

⋅ (𝑧𝜏)1/𝑧√1 − [ 𝜏𝑡∗ ]
2𝑑𝜃/𝑧.

(118)

Referring to the indefinite integral (109), we can write this as

𝛿𝑆 (𝑡) = ∞∑
𝑝=0

− (−1)(𝑝+1)2 Ω2𝑝+1

(2𝑝 + 1)! I
(2𝑝+1) (𝑡, 𝜏)


𝜏=𝑡∗

𝜏=0

(119)

where the exact expression for I(𝑝)(𝑡, 𝜏) is given in (111).
This gives us the entanglement growth as an infinite series of
hypergeometric functions. This description of the growth is
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Figure 9: Entanglement entropy, relative entropy, and entanglement velocity for different values of 𝑧. Colors blue, green, orange, and red
represent 𝑧 = {1.1, 1.5, 2, 3}, respectively. Plots from left to right have 𝑡𝑞/𝑡∗ = {0.5, 1, 2}. In all plots, the dashed vertical line denotes the end
of the driven phase 𝑡 = 𝑡𝑞. We have set 𝑑 = 3, 𝑝 = 1, and 𝜃 = 0.1.

most useful when the driving frequencyΩ is small compared
to 1. Then, it is possible to get a good approximation to
the entanglement growth by truncating the above series at
some appropriate power of Ω. In the cases when the driving
frequency is not small, it is not possible to get a closed-form
analytic expression for the entanglement growth with the
usual methods. Thus, we will study the general case numer-
ically instead. This interesting problem was also studied
numerically in [104], without a discussion of the underlying
analytic form of entanglement entropy. For the limit of
small subsystems as defined in this paper, our expression for
entanglement entropy as a convolution provides an expla-
nation and the underlying analytics for their numerical re-
sults.

In Figure 11, we verify our expectation that the entan-
glement grows with time according to (117). In fact, after a
time 𝑡∗ it grows as a sin function of the same frequency as
the source 𝑔(𝑡). One can also observe the relative amplitude
and phase between the entanglement entropy and the energy
density. The entanglement entropy has a smaller amplitude,
which can be understood from the fact that, to leading order,
it is the convolution of a sin function and 𝜏1/𝑧, both smaller
than 1 (since 𝑡∗ is effectively 1). The plots moreover show that
the entanglement growth at early times interpolates to the
sin growth at late time smoothly. It is possible to model this

smooth interpolation using spline theory. But we will not do
so in this paper.

As the dashed red line in Figure 11 indicates, the energy
density oscillates. This is not physical because if the Null
Energy Condition (NEC) is satisfied in the bulk, energy
density should not decrease. There are two ways one can rec-
tify this situation. The Floquet quench involves continuously
driving the system externally and if NEC is applied to the
whole system of the external apparatus plus hvLif theory
together, we expect the NEC to be satisfied. Secondly, one
could modify the quench by adding a linear pump to the
Floquet quench. In this case, we have verified that the NEC is
satisfied.

In Figure 12, we show how the entanglement growth
changes as we change the number of dimensions and also its
dependence on the frequency of the source.

We see that, at higher dimensions, the amplitude of the
entanglement entropy is higher but it decreases as the fre-
quency increases.

In Figure 13, we plot the dependence of entanglement
entropy on the non-relativistic parameters 𝜃 and 𝑧. We see an
increase in the amplitude upon increasing 𝑧 but a decrease as𝜃 is increased. Figures 11, 12, and 13 are indicative of how the
amplitude of the entanglement entropy depends on various
parameters but it is not very clear what is happening to the
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Figure 10: Entanglement entropy, relative entropy, and entanglement velocity for different values of 𝜃. Colors blue, green, orange, and red
represent 𝜃 = {0.1, 0.7, 1.2, 1.7}, respectively. Plots from left to right have 𝑡𝑞/𝑡∗ = {0.5, 1, 2}. In all plots, the dashed vertical line denotes the
end of the driven phase 𝑡 = 𝑡𝑞. We have set 𝑑 = 3, 𝑝 = 1, and 𝑧 = 1.5.
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Figure 11: Entanglement entropy (solid line) as a function of time
after a Floquet quench, plotted against the periodic source (dashed
line). The colors blue and red denote frequencies Ω = {5, 1},
respectively. We have set 𝑑 = 3, 𝜃 = 0.1, and 𝑧 = 1.5.

phase. Hence, we can now discuss both the amplitude and the
phase in somemore detail. In Figure 14, we plot the amplitude
of entanglement entropy as a function of dimension, 𝑧 and 𝜃.
Observe that the amplitude vanishes for 𝜃 > 𝑑−1 because the
Vaidya solution is defined only for these values.

In Figure 15, we plot the phase of the entangle-
ment entropy relative to the energy density as a function of

dimension, 𝑧 and 𝜃. With this we conclude our discussion of
Floquet quench.

6. Summary and Outlook

In this paper, we studied global quantum quenches to holo-
graphic hyperscaling-violating-Lifshitz (hvLif) field theories,
using entanglement entropy of a subregion as a probe to study
thermalization. In Section 1, we argued that such theories
appear in the IR description of finite energy and finite charge
density excited states in the CFT. Thus, our results describe
thermalization in such states approximately.

In Section 2.1, we specialized our discussion to small
subregions (ℓ𝑧 ≪ 1/𝑇) and precisely defined the univer-
sal corrections we calculate. Using ℓ𝑧𝑇 as a perturbative
parameter, we argued in Section 2.2 that the holographic
entanglement entropy becomes simple. In Section 3, we
proposed the hvLif-Vaidya geometry

𝑑𝑠2 = 1𝑢2𝑑𝜃/(𝑑−1)
(−2𝑑𝑢𝑑V𝑢2(𝑧−1)

− 𝑓 (𝑢, V) 𝑑V2𝑢2(𝑧−1)
+ 𝑑𝑥2

𝑖) ,
𝑓 (𝑢, V) = 1 − 𝑔 (V) ( 𝑢𝑢𝐻

)𝑧+𝑑𝜃 .
(120)
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Figure 12: Entanglement entropy after a Floquet quench as a function of (a) dimension and (b) frequency. The colors blue, green, orange,
and red denote 𝑑 = {5, 4, 3, 2} in part (a) andΩ = {15, 10, 5, 2} in part (b), respectively. We have set 𝜃 = 0.1, 𝑧 = 1.5.
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Figure 13: Entanglement entropy after a Floquet quench as a function of (a) 𝜃 and (b) 𝑧. The colors blue, green, orange, and red denote𝜃 = {1.3, 0.8, 0.5, 0.1} in part (a) and 𝑧 = {2.1, 1.8, 1.5, 1.3} in part (b), respectively. We have set 𝑑 = 3,Ω = 1.
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Figure 14: Amplitude Ψ of entanglement entropy as a function of (a) dimension, (b) 𝑧, and (c) 𝜃. In (a), we have {𝑧 = 1.5, 𝜃 = 0.1}. In (b), we
have {𝑑 = 3, 𝜃 = 0.1} and in (c), {𝑑 = 3, 𝑧 = 1.5}. We have setΩ = 1 everywhere.
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Figure 15: Relative phaseΦ of entanglement entropy as a function of (a) dimension, (b) 𝑧, and (c) 𝜃. In (a), we have {𝑧 = 1.5, 𝜃 = 0.1}. In (b),
we have {𝑑 = 3, 𝜃 = 0.1} and in (c), {𝑑 = 3, 𝑧 = 1.5}. We have setΩ = 1 everywhere.
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as a simple holographic toymodel to study the time evolution
of entanglement entropy.

Using the perturbative expansion in hvLif-Vaidya geom-
etry, we calculated the holographic entanglement entropy of
a small subsystem 𝐴 in Section 3.1 to be

𝛿𝑆 (𝑡)
= ℓ𝑑−2𝑝

4𝐺𝑁𝑢𝑑𝜃+𝑧
𝐻

∫𝑢∗

0
𝑑𝑢𝑢𝑧√1 − [ 𝑢𝑢∗

]2𝑑𝜃𝑔(𝑡 − 𝑢𝑧

𝑧 ) ,
(121)

for a general quench parameterized by the function 𝑔(V).
Motivated by the simplicity of this equation, we interpreted
this equation in Section 4 as a Linear Response

𝛿𝑆 (𝑡) = ∫∞

−∞
𝑑𝑡m (𝑡 − 𝑡)n (𝑡) (122)

with the Source functionm(𝑡) given by the energy density of
the quench

m (𝑡) ≡ 𝜖 (𝑡) = 𝑑𝜃𝑔 (𝑡)16𝜋𝐺𝑁𝑢𝑑𝜃+𝑧
𝐻

. (123)

and the Kernel function n(𝑡) given in terms of the shape and
the size of the subregion

n (𝑡) = 2𝜋AΣ (𝑧𝑡)1/𝑧𝑑𝜃

[1 − ( 𝑡𝑡∗)
2𝑑𝜃/𝑧]1/2

⋅ [Θ (𝑡) − Θ (𝑡 − 𝑡∗)] ,
(124)

This interpretation allowed us to define an adiabatic time-
dependent first law of entanglement entropy for small sub-
systems in Section 4.1

𝛿𝑆𝐴 (𝑡) = 𝛿𝐸𝐴 (𝑡)𝑇𝐴

− ∫𝑡∗

0
𝑑𝑡 𝑑𝜖 (𝑡 − 𝑡)𝑑𝑡 B (𝑡) . (125)

where the function B(𝑡) can be thought of as the anti-
derivative of the kernel function

B (𝑡) ≡ 2𝜋AΣ (𝑧𝑡)1+1/𝑧𝑑𝜃 (𝑧 + 1) 2𝐹1 [−12 , 𝑧 + 12𝑑𝜃

, 2𝑑𝜃 + 𝑧 + 12𝑑𝜃

;

( 𝑡𝑡∗)
2𝑑𝜃/𝑧] − 𝑉𝐴𝑇𝐴

.
(126)

Here, −𝑉𝐴/𝑇𝐴 denotes an integration constant that is chosen
to reproduce the time-independent first law of entanglement
entropy (70). See the discussion above (75) for details.
Moreover, in Section 4.2, we used the linear response to study
a time-dependent analogue of relative entropy

𝛿𝑆rel (𝑡) ≡ 𝛿𝐸𝐴 (𝑡)𝑇𝐴

− 𝛿𝑆𝐴 (𝑡) , (127)

which we argued is a good parameter to characterize out-of-
equilibrium states at a time 𝑡 compared to an equilibrium state
with the energy density 𝜖(𝑡).

In Section 5, we started studying special examples of
global quenches, in particular

𝑔 (𝑡) = Θ (𝑡) ,
𝑔 (𝑡) = 𝜎𝑡𝑝 [Θ (𝑡) − Θ (𝑡 − 𝑡𝑞)] + 𝜖0Θ(𝑡 − 𝑡𝑞) ,
𝑔 (𝑡) = sin (Ω𝑡) Θ (𝑡) .

(128)

In Section 5.1, we studied the first of these cases, i.e., the
instantaneous quench 𝑔(𝑡) = Θ(𝑡), and showed that the
entanglement entropy is

𝛿𝑆 (𝑡) = 𝛿𝑆𝑒𝑞F (𝑥) ,
F (𝑥) ≡ Γ [(3𝑑𝜃 + 𝑧 + 1) /2𝑑𝜃]Γ [3/2] Γ [(𝑧 + 1) /2𝑑𝜃]

⋅ 𝛽 [𝑥2𝑑𝜃 , 𝑧 + 12𝑑𝜃

, 32] ,

𝛿𝑆𝑒𝑞 = √𝜋ℓ𝑑−2𝑝 𝑢1+𝑧
∗ Γ [(2𝑑𝜃 + 𝑧 + 1) /2𝑑𝜃]

8𝐺𝑁 (1 + 𝑧) 𝑢𝑑𝜃+𝑧
𝐻 Γ [(3𝑑𝜃 + 𝑧 + 1) /2𝑑𝜃] .

(129)

We then studied this example in great detail: deriving the
early time universal growth given in equation (92), the
quasilinear growth with a slope (the entanglement velocity)
given by equation (97) and the near-saturation regime of the
evolution characterized using equation (104).

For the case of the power law quench, we studied the
entanglement entropy in detail in Section 5.2. For arbitrary
real power 𝑝 ∈ R, we obtained a formal expression for the
entanglement entropy as an infinite series using the explicit
function

I
(𝑝) (𝑡, 𝜏) = AΣ8𝐺𝑁𝑢𝑑𝜃+𝑧

𝐻

∞∑
𝑘=0

(𝑝𝑘) 𝑡𝑝−𝑘
(𝑧𝜏)1+1/𝑧 (−𝜏)𝑘(𝑧 + 1 + 𝑘𝑧)

× 2𝐹1 [−12 , 𝑧 + 1 + 𝑘𝑧2𝑑𝜃

, 2𝑑𝜃 + 𝑧 + 1 + 𝑘𝑧2𝑑𝜃

;

[ 𝜏𝑡∗ ]
2𝑑𝜃/𝑧] .

(130)

For an integral power 𝑝 ∈ Z, we derived an explicit closed
form expression for the entanglement entropy in (112) and
(113). We plotted the evolution of (normalized) entangle-
ment entropy 𝛿𝑆(𝑡)/𝛿𝑆eq, relative entropy 𝛿𝑆rel(𝑡)/𝛿𝑆eq, and
entanglement velocity RHSV(𝑡) in Figures 7, 8, 9, and 10. In
Section 5.3, we made some comments about the interesting
particular case of the linear in time quench.

Finally, in Section 5.4, we studied a quench that is periodic
in time, also called Floquet quench. We derived a formal
expression for entanglement entropy in equation (119) as
an infinite series. This expression is not illuminating, so
we plotted entanglement entropy in Figure 11 as a function
of time and in Figure 12 as a function of dimension and
frequency. Figures 14 and 15 show the amplitude and the
phase of the entanglement entropy as a function of 𝑑, 𝜃, and𝑧.
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In this paper, we could not study the problem of holo-
graphic renormalization in detail.That is an obvious direction
to extend our work in. Further, notwithstanding the expec-
tation that our simple holographic toy model captures gross
universal features of thermalization, it is not very realistic.
It would be interesting to have a more realistic holographic
model for studying quenches in hvLif field theories. We wish
to come back to these issues in the future.

Appendix

Stress Tensor for hvLif Theories

In this appendix, we use the so-called Minimal Approach
to find the stress-energy tensor for an asymptotically hvLif
black hole in general dimensions. This method is essentially
an application of the first law of thermodynamics. Let us
consider the following metric of a static black hole in a hvLif
background [72, 90–93]

𝑑𝑠2 = 1𝑢2𝑑𝜃/(𝑑−1)
( 𝑑𝑢2

𝑓 (𝑢) − 𝑓 (𝑢)𝑢2(𝑧−1)
𝑑𝑡2 + 𝑑𝑥2

𝑖) , (A.1)

where the blackening function is

𝑓 (𝑢) = 1 − ( 𝑢𝑢𝐻

)(𝑑𝜃+𝑧) , (A.2)

and 𝑢𝐻 is as usual the horizon radius. The entropy of this
black hole will be given by the area of the horizon in units
of the (𝑑 + 1) dimensional Planck area 4𝐺𝑁. Using the above
metric we get

𝑆𝐵𝐻 = 14𝐺𝑁

( 1
𝑢2𝑑𝜃/(𝑑−1)
𝐻

)
(𝑑−1)/2

× Volume. (A.3)

Hence the entropy density becomes

𝑠𝐵𝐻 = 14𝐺𝑁

1
𝑢𝑑𝜃
𝐻

. (A.4)

Now let us calculate the temperature of this black hole. First
we Eulideanize the metric as follows:

𝑑𝑠2𝐸 = 1𝑢2𝑑𝜃/(𝑑−1)
( 𝑓 (𝑢)𝑢2(𝑧−1)

𝑑𝜏2 + 𝑑𝑢2

𝑓 (𝑢) + 𝑑𝑥2
𝑖) . (A.5)

Then, we evaluate the blackening function near the horizon.

𝑓 (𝑢) ∼ (𝑢𝐻 − 𝑢) (𝑑𝜃 + 𝑧)𝑢𝐻

. (A.6)

Taking into account the functionmultiplying the paranthesis,
the 𝑥𝑖 directions form a conformal orthogonal sphere and
decouple. So we focus only on the (𝜏, 𝑟) direction. Then the
near-horizon metric becomes

𝑑𝑠2𝐸 = Ω2 (𝑢)
⋅ ((𝑢𝐻 − 𝑢) (𝑑𝜃 + 𝑧)𝑢𝐻𝑢2(𝑧−1)

𝐻

𝑑𝜏2 + 𝑢𝐻𝑑𝑢2

(𝑢𝐻 − 𝑢) (𝑑𝜃 + 𝑧)) ,
(A.7)

where the conformal pre-factor

Ω2 (𝑢) = 𝑢−2𝑑𝜃/(𝑑−1) (A.8)

plays no role in defining the black hole temperature. We also
note that we have evaluated the denominator of 𝑑𝜏2 at the
horizon radius 𝑢𝐻, being consistent with the fact that we are
evaluating the metric near the horizon. We want to find the
periodicity of the coordinate 𝜏. To do this, let us define the
following coordinates:

𝜌2 ≡ (𝑢𝐻 − 𝑢) ,
𝜏 ≡ (𝑑𝜃 + 𝑧)𝑢𝑧

𝐻

𝜏. (A.9)

In terms of these new coordinates the metric becomes

𝑑𝑠2𝐸 = Ω2 (𝑢)(𝜌2𝑢𝐻𝑑𝜏2(𝑑𝜃 + 𝑧) +
4𝑢𝐻𝜌2𝑑𝜌2

𝜌2 (𝑑𝜃 + 𝑧)) . (A.10)

Absorbing the factor 4𝑢𝐻/(𝑑𝜃 + 𝑧) into Ω2(𝑢), we get
𝑑𝑠2𝐸 = Ω2 (𝑢)(𝜌2𝑑𝜏24 + 𝑑𝜌2) . (A.11)

Here the coordinate 𝜏/2 has periodicity 2𝜋. Thus, denoting
the periodicity of the coordinate 𝜏 by 𝛽, we obtain

𝛽 = 4𝜋(𝑑𝜃 + 𝑧𝑢𝑧
𝐻

)−1 ⇒ 𝑇 = (𝑑𝜃 + 𝑧)4𝜋𝑢𝑧
𝐻

. (A.12)

As one can check, we get the same expression for the tempera-
ture if we define it using the equation

𝑇 = 14𝜋

𝑑𝑓 (𝑢)𝑑𝑢

𝑢𝐻 . (A.13)

Now we can proceed to obtain an expression for energy
density using the first law

𝑑𝜖 = 𝑇𝑑𝑠𝐵𝐻. (A.14)

The differential of the entropy density is

𝑑𝑠𝐵𝐻 = 14𝐺𝑁

−𝑑𝜃𝑢(𝑑−2−𝜃)
𝐻

. (A.15)

Therefore the energy density is given by

𝑑𝜖 = (𝑑𝜃 + 𝑧)4𝜋𝑢𝑧
𝐻

14𝐺𝑁

−𝑑𝜃𝑢(𝑑−2−𝜃)
𝐻

,

= − 𝑑𝜃16𝜋𝐺𝑁

(𝑑𝜃 + 𝑧)𝑢𝑑−2−𝜃+𝑧
𝐻

.
(A.16)

Integrating and setting the integration constant to zero, this
becomes

𝜖 = 𝑑𝜃16𝜋𝐺𝑁

1
𝑢𝑑𝜃+𝑧
𝐻

. (A.17)
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In the case of small subsystems, the black hole entropy be-
comes the final entanglement entropy after the perturbation.

We could now consider making the bulk solution time-
dependent in an adiabatic way, such that the blackening
function is given by

𝑓 (𝑡, 𝑢) = 1 − 𝑔 (𝑡) ( 𝑢𝑢𝐻

)𝑑𝜃+𝑧

(A.18)

with 𝑔(𝑡) being an adiabatic function in time. This property
implies that thermodynamics can still be defined as before
and we can repeat the above derivation to obtain an energy
density

𝜖 (𝑡) = 𝑑𝜃16𝜋𝐺𝑁

𝑔 (𝑡)
𝑢𝑑𝜃+𝑧
𝐻

. (A.19)

This remains mostly constant as 𝑔(𝑡) varies slowly with time.
We may now consider a time-dependent bulk geometry

that is not a small perturbation of (A.1). For example, consider
the scenario where the blackening function changes abruptly
at time 𝑡 = 0

𝑓 (𝑡, 𝑢) = 1 − Θ (𝑡) ( 𝑢𝑢𝐻

)𝑑𝜃+𝑧 . (A.20)

In this case, thermodynamics is well-defined before and after
time 𝑡 = 0 and the respective bulk geometries are in fact
static. If we repeat our derivation, we will see that there is no
hindrance and now temperature will be given by (A.12) timesΘ(𝑡). Hence the energy density for these time-dependent bulk
solutions will be

𝜖 (𝑡) = 𝑑𝜃16𝜋𝐺𝑁

Θ (𝑡)
𝑢𝑑𝜃+𝑧
𝐻

. (A.21)

Thus for adiabatic time-dependent bulk geometries or for
the ones with abrupt changes, the expression for the energy
density is the same. This suggests that, for general time de-
pendence in the blackening function, the energy density may
be given by the same expression. In particular, we expect the
energy density to be

𝜖 (𝑡) = 𝑑𝜃16𝜋𝐺𝑁

𝑔 (𝑡)
𝑢𝑑𝜃+𝑧
𝐻

, (A.22)

where 𝑔(𝑡) is now a general time-dependent function that
characterizes the time-dependent bulk geometry.
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