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ABSTRACT: The dynamics of surfaces and interfaces describe many physical systems, in-
cluding fluid membranes, entanglement entropy and the coupling of defects to quantum
field theories. Based on the formulation of submanifold calculus developed by Carter, we
introduce a new variational principle for (entangling) surfaces. This principle captures
all diffeomorphism constraints on surface/interface actions and their associated spacetime
stress tensor. The different couplings to the geometric tensors appearing in the surface
action are interpreted in terms of response coefficients within elasticity theory. An exam-
ple of a surface action with edges at the two-derivative level is studied, including both
the parity-even and parity-odd sectors. Its conformally invariant counterpart restricts the
type of conformal anomalies that can appear in two-dimensional submanifolds with bound-
aries. Analogously to hydrodynamics, it is shown that classification methods can be used
to constrain the stress tensor of (entangling) surfaces at a given order in derivatives. This
analysis reveals a purely geometric parity-odd contribution to the Young modulus of a
thin elastic membrane. Extending this novel variational principle to BCFTs and DCFTs
in curved spacetimes allows to obtain the Ward identities for diffeomorphism and Weyl
transformations. In this context, we provide a formal derivation of the contact terms in

the stress tensor and of the displacement operator for a broad class of actions.
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1 Introduction

The dynamics of surfaces and interfaces describe a wide range of physical systems and
physical phenomena. One common example in nature is that of interfaces between different
fluids or fluid phases (e.g. soap bubbles). Another example is that of small deformations of
thin elastic membranes: at mesoscopic scales, the physical state of lipid membranes is well
captured by the geometric degrees of freedom of the membrane [1], while at microscopic
scales one may describe the coupling between quantum field theories and interfaces/defects
by approximating the latter as thin surfaces [2-4] or obtain entanglement properties of
quantum field theories by extremising surface functionals [5, 6]. Many of these systems can
be modelled by effective theories for the dynamics of surfaces, with numerous applications
ranging from cosmic strings [7], black hole physics [8-11] to the dynamics of D-branes [12],
to mention only a few.

The recent interest in some of these topics have prompted us to explore in detail the
formal aspects of these functionals within a framework that allows to treat both bulk
and surface actions (or vacuum energy functionals) simultaneously, thereby describing this
wide range of physical systems. Based on the spacetime approach to submanifold calculus
developed by Carter [7, 13, 14], this paper formulates a novel variational principle for
surface actions. This formulation determines the constraints on surface actions and its
associated spacetime stress tensor due to general covariance. These constraints had been
largely overlooked and, in a purely geometric setting, restrict the type of contributions
that can appear in entanglement entropy functionals. In addition, the variational principle
developed here allows for a direct derivation of the spacetime stress tensor and displacement
operator associated with surface/defect actions. In turn, this leads to a straightforward
extraction of Ward identities and can be used to evaluate correlation functions in conformal
field theories (CFTs) and constrain CFT data as in [4]. Extensions of this formalism to
include background gauge and dilaton fields are only natural.

Although the work that will be presented in this paper is broadly applicable, our orig-
inal motivation lies in the recent interest in two different research directions. The first one
was initiated by the Ryu-Takayanagi proposal [5], and its covariant counterpart [6], stating
that the extremisation of geometric functionals provides information, via holographic du-
alities, of the entangling properties of the dual quantum field theory. The nature of these
geometric functionals depends on the specifics of the gravitational theory. In particular, in
higher derivative gravity theories these geometric functionals may depend on the extrinsic
curvature of the surface or the background Riemann tensor [15-17]. The extremisation
of these functionals is required in order to extract information about the entanglement
entropy of the corresponding dual quantum field theory [18]. The second research direc-
tion is the study of the properties of conformal field theories with boundaries (BCFTs)
and of CFTs coupled to defects (DCFTs) [2-4, 19-25].1 In this context, it is necessary to
understand how to correctly couple a quantum field theory living on a boundary/interface

In the holographic context, BCFTs and DCFTs have been approached in numerous ways, e.g. (23, 26-34]
to mention only a few.



or defect, regardless of its shape, to a given bulk CF'T. This much is required in order to
obtain the Ward identities for such theories [2-4].

These considerations and research directions have lead us to perform a thorough anal-
ysis of the constraints on surface functionals with non-trivial edge geometry due to dif-
feomorphism invariance. The naive expectation, and a common misconception, is that,
analogous to spacetime actions and spacetime tensors, covariant surface actions can be
built by simply appropriately contracting surface tensors (e.g. contractions of extrinsic
curvatures). However, this is not the case, as these diffeomorphism constraints impose
stronger restrictions, in particular at the edges of the surface. As we shall see, one of these
constraints leads to the shape equation itself, describing the surface dynamics, but many
other constraints, which have been largely overlooked in the literature, must be satisfied
(see egs. (2.44)—(2.46), eq. (2.48) and eq. (2.62)). In the context of conformal anomalies for
submanifolds with boundaries, these constraints restrict the type of anomalies that can be
present, while in the context of DCF'Ts, they play an important role: once implemented in
the contact terms in the stress tensor and in the displacement operator they can be used
to correctly evaluate correlation functions and to obtain conserved currents and charges.

When dealing with entanglement entropy functionals, the main interest lies in deter-
mining the shape equation and evaluating the on-shell value of the entropy functional at
the extrema. In this context, barely no attention is given to the physical interpretation of
the different couplings that appear in surface actions. However, from the broader point
of view that such actions describe a wide range of physical systems such as lipid mem-
branes [35-38], it is important to understand the physical meaning of these couplings.
Following the general approach of [10], we interpret the different structures appearing in
surface actions in the context of elasticity theory. In section 4, we identify a new purely
geometric parity-odd contribution to the surface’s Young modulus, which breaks the classi-
cal symmetries associated with an elasticity tensor. Couplings to the background Riemann
tensor that appear in the context of entanglement entropy [15-17] can be interpreted as
quadrupole moments of stress which introduce new force terms in the shape equation and
characterise the response of the surface to changes in background curvature.? This leads

to an extension of classical elasticity theory [39] for the deformations of thin membranes.3

Different approaches to submanifold calculus. This paper deals with equilibrium
surfaces, that is, surfaces whose shape is determined by the extrema of an action or vacuum
energy functional. We assume that these actions or vacuum energy functionals are func-
tionals of geometric fields only, namely the background metric g, (), the embedding map
of the surface X* (o), and the embedding map of its edges X#(5). In order to perform vari-
ations of these functionals and obtain the shape equation and remaining diffeomorphism
constraints one may either (1) displace the background coordinates by an infinitesimal

2The interpretation of these couplings in terms of elasticity theory had been suggested in [16].

3Elastic membranes are characterised by a thickness scale 7. In order to write effective theories for
their deformations, one considers deformations with wavelength much larger than the membrane thickness.
In this regime, the membrane geometry can be described by a surface action whose response coefficients
are dimensionful. The accompanying membrane stress tensor has a derivative expansion in terms of the
membrane thickness.



Figure 1. Schematic representation of the two variational methods for the surface W. The figure
on the left corresponds to method (1), where the background coordinates x® are displaced while
the embedding map X* is kept fixed. The figure on the right corresponds to method (2) where
the background coordinates are kept fixed and the embedding map is displaced. The first method
can be thought of displacing a “mat” (background) underneath the surface while the second can be
thought of displacing the surface above the “mat”.

amount along some vector field ¥ such that z# — x# + # () while keeping the embedding
map fixed or (2) displace the embedding map by a small amount X# (o) — X*(0)+6X"(0)
while keeping the background coordinates fixed. We show in section 5 that these two
methods yield the same equations of motion once certain constraints are satisfied. This
is illustrated in figure 1. If the change in background coordinates is compensated by a
corresponding change in the embedding map, the surface is not displaced, though certain
constraints must be satisfied. Method (2) formally involves working with a foliation of
surfaces, even if just in a local neighbourhood, and it leads to a non-manifestly covariant
intermediate calculus.* On the other hand, when using method (1), the variational calcu-
lus is covariant and it is sufficient to work with a single surface. This is shown explicitly
in appendix A. When dealing with (entangling) surfaces one may use either one of the
methods in order to obtain the equations of motion (modulo constraints), but due to the
natural covariant properties and simplicity of method (1), we discard (2). In the context
of DCFTs, however, both methods must be employed since the defect must be coupled
regardless of its shape.

The action functional can be cast under two different formulations. One of these for-
mulations, which we refer to as gauge formulation due its natural analogue in gauge theory,
consists in working with natural quantities defined on the surface and using tangential and
transverse indices. For example, the induced metric on the surface v4;, has only tangential
indices a, b while the extrinsic curvature K’ has two tangential indices and one transverse
index ¢. This is, for instance, the type of approach followed in [10, 41, 44] and in most of the
entanglement entropy literature (see [45] and references therein). The other formulation is
the one championed by Carter in [7, 13, 14], which we refer to as spacetime formulation.
Within this formulation, it is only necessary to work with a single type of indices, namely

4Though it is possible to work with covariant deformations as developed by Guven et al. [40, 41]. Other
variational methods using auxiliary variables or constrained variations are also available in the literature
and deserve further exploration [42, 43].



spacetime indices p,v,---, such that using the set of tangent and normal vectors to the
surface {et,,n*;} one may define the spacetime analogue of the induced metric and ex-
trinsic curvature as y*¥ = e“ae”a'yab and K,,° = e“aeybn"’iKabi, respectively. Notice that
the latter fields have support on the surface and are not fields in spacetime. The necessity
of working with two types of indices in a gauge formulation is traded by the necessity of
keeping track of the index order in a given geometric structure in a spacetime formulation.

Both formulations introduced above have advantages and disadvantages. In particular,
the gauge formulation makes it more accessible to evaluate variations of purely intrinsic
quantities, such as the intrinsic Ricci scalar, while the spacetime formulation makes it
more accessible to compute variations of background quantities, such as the background
Ricci scalar. However, as we will argue and demonstrate, the spacetime formulation of the
action functional has several clear advantages. For example, when dealing with composite
systems of bulk and surface it is only natural to use spacetime indices since it is senseless to
differentiate between tangential and normal indices in the bulk, unless one could introduce
a foliation of surfaces or defects in the entire spacetime but this is neither always possible
nor necessary. Furthermore, when working with a single set of indices, general covariance
needs to be ensured only in that single set.? In a gauge formulation, general covariance must
be required on two different sets of indices separately, namely, on the tangent and normal
bundles. Most approaches to variational calculus within a gauge formulation introduce
a specific coordinate system [41, 46-48], leading to non-manifestly spacetime covariant

6 Finally, as we shall demonstrate, specifically in appendix B, the

intermediate steps.
spacetime formulation allows to extract all diffeomorphism constraints on surface actions
and their associated spacetime stress tensor while the gauge formulation does not. For
these reasons we adopt this spacetime formulation in the core of this paper and develop
it further not only by extending its variational calculus but also by formulating a new

variational principle for surface actions.

Organisation of the material. In section 2 we first introduce the reader to this space-
time formulation of surface geometry, as not only is this paper’s intent to be introductory
to those who would like to pursue submanifold calculus, but also because the majority
of works in both entanglement entropy and DCFTs have adopted the gauge formulation
of the action principle. We then introduce the new variational principle for surfaces and
obtain the diffeomorphism constraints and shape equation for surfaces/interfaces with non-
trivial edges or intersections (see eqs. (2.44)—(2.46), eq. (2.48) and eq. (2.62)). This action
includes couplings to several geometric structures with at most two-derivatives, though the
action itself can contain contributions with an arbitrary number of derivatives.

In section 3 we show how to extract the spacetime stress tensor associated with these
surface actions. This stress tensor has a multipole expansion in terms of derivatives of
the delta function. We analyse its symmetry properties and equivalent formulations. We

5We would like to invite the reader to get acquainted with the non-linear history of index proliferation
in submanifold calculus by reading the introductory remarks of [13].

5This issue could be bypassed by simply performing variations using method (1) within this formulation
as for instance in [4, 49].



identify frame-invariant tensor structures which can be used to count independent cou-
plings to the surface action. We then use this spacetime stress tensor to obtain conserved
surface/edge currents and charges.

In section 4, we analyse a generic two-derivative action based on a classification of
the different couplings that can appear in both the parity-even and parity-odd sectors
and interpret them in the context of elasticity theory. We impose the diffeomorphism
constraints in order to eliminate some of these contributions, which in the presence of
edges leads to highly non-trivial relations between surface and edge couplings. Using
methods analogous to those employed in hydrodynamics, we show in section 4 that these
methods can be used to constrain the stress tensor of (entangling) surfaces. We furthermore
study the constraints imposed by Weyl invariance and comment on their implications for
conformal anomalies of two-dimensional submanifolds.

In section 5 we extend the variational principle within this spacetime formulation
to BCFTs and DCFETs. In this context, we obtain Ward identities for defects with edges
coupled to bulk CE'Ts. We furthermore derive explicitly the contact terms in the spacetime
stress tensor. We encounter a mismatch with other ad-hoc forms of the stress tensor in
previous literature. We also derive a full-fledged displacement operator in curved spacetime
for a broad class of actions.

Finally, in section 6 we conclude with a brief summary and future research directions.
We also provide appendix A, which contains variational formulae for geometric tensors
while appendix B contains further details on the different types of variational principles.

2 Geometric actions for (entangling) surfaces and interfaces

This section introduces a new variational principle for surfaces/interfaces based on the no-
tion of Lagrangian variations (method (1) introduced above) within the spacetime formu-
lation championed by Carter [7, 13, 14, 50]. The advantage of this strategy resides in its po-
tential to capture all diffeomorphism constraints on surface actions and to yield directly the
components of the spacetime stress tensor associated to these surfaces. This formalism is
applicable to many physical systems and is useful for the study of extremal surfaces that de-
scribe, via holographic dualities, the entangling properties of the dual quantum field theory.

The first part of this section introduces the reader to the geometric quantities associ-
ated to surfaces in the spacetime formulation as well as the notation that is used throughout
the paper. We then proceed and show how the surface/interface dynamics and shape equa-
tions emerge from the requirement of diffeomorphism invariance, including the possibility
of non-trivial edges and intersections. The latter requires considerable attention due to the
several constraints imposed by the well-definiteness of the variational principle.

2.1 Geometry of submanifolds and geometric tensors

We consider a D-dimensional spacetime M endowed with a non-degenerate metric g, (%),
where % denotes the background spacetime coordinates and the Greek indices p, v, - - -
denote spacetime indices. In this spacetime we place a p-dimensional surface W with edges
OW. The location of this surface of codimension n = D — p is described by the embedding



map X#(0?), where 0% (a = 1,--- ,p) denote the coordinates on the surface, collectively
denoted by o.

Given the mapping functions, the tangent vectors take the form e, = 9, X*. In turn,
one may introduce the induced metric on the surface

Yab = G €"a€”y (2.1)

with inverse matrix components . We assume that neither v, nor its inverse are null
at any point on the surface. The set of normal vectors n*;, where i denotes the transverse
n directions is implicitly defined via the relations

ntin,d =69, etun,'=0. (2.2)

These conditions, though sufficient to describe the surface, do not fix entirely the normal
vectors, as they allow for the freedom of shifting the normal vectors by a sign or by a
rotation n,f — W jnuj where w¥ is an anti-symmetric matrix in O(n).”

A spacetime covariant approach can be formulated by appropriately contracting geo-
metric tensors with the tangential and normal vectors. This avoids the use of tangential
and orthogonal indices, a and i, in favour of spacetime indices p. In particular, the induced
metric and transverse metric can be expressed as

AR = e“ae”wab, LM = ptn?t (2.3)

Given the conditions (2.2), these two structures are obviously orthogonal to each other,
ie. 1A x = 0. This decomposition implies that we have chosen to describe the surface
in an adapted frame for which the background metric, restricted to the surface, can be
decomposed as

Guv = 7uu+ J—/uz . (24)

This naturally breaks the diffeomorphism symmetries of the background spacetime into
general coordinate transformations on the p-dimensional surface and (generalised) rotations
in the n-dimensional transverse space to the surface. This can only be expected since
the presence of the surface in the spacetime will naturally break some of the background
symmetries.

2.1.1 Covariant differentiation

The tensors v, and L, in (2.3), as well as the several geometric tensors that we introduce
below, have support only on the surface, i.e., they are not well defined anywhere else in
spacetime, with the only exceptions of background fields, such as the background metric
g and its derivatives, which are well defined everywhere in spacetime. It is possible to
extend all geometric tensors to the entirety of spacetime by working with a foliation of

"We are choosing an orthonormal frame in the transverse space. In the context of entangling surfaces,
which are codimension n = 2 surfaces, the time-like direction can be Wick rotated so that the transverse
space is still purely spatial. One may also work with a time-like transverse space for which n‘”nuj =¥
and the matrix w® is now an anti-symmetric matrix in O(1,n — 1). Our results can be straightforwardly
applied to the latter case by replacing §% — n'.



surfaces [47, 51, 52], however this is beyond the scope of this paper and unnecessary for
the calculus of variations of surface actions.

As a result of the necessity to restrict to tensors with support on the surface, covariant
differentiation of tensors with support on the surface is not a well defined operation: only
its tangential projection is. Therefore we introduce the surface covariant derivative

V=9V, (2.5)

where V, is the spacetime covariant derivative associated with g,, and its corresponding
Christoffel connection I',,. When applied to tensors with support only on the surface the
operator V) is meaningful, whereas the orthogonal projection of the background covariant
derivative, 1#\V,,, is not. On the other hand, if the covariant derivative acts on a tensor
with support on the whole background spacetime both projections are well defined.

2.1.2 The extrinsic curvature tensor

Given a well defined notion of covariant differentiation, one may introduce several geometric
objects of interest, characterising how the submanifold is embedded in the background
spacetime. These can be obtained by acting with the operator V“ on tangent and normal
vectors (and contractions thereof).

The first example is the extrinsic curvature of the surface

K;u/p = ’yayvu’)/po, = —’)/O'VvuJ_po—, (26)

which describes the rate of change of the normal vectors along surface directions. The ex-
trinsic curvature (2.6) transforms as a tensor in its spacetime indices and is invariant under
changes of the tangential and normal vectors that satisfy (2.2). Opting for a spacetime co-
variant formalism, in which there is no reference to surface and transverse indices, requires
keeping fixed the order of the indices in any given geometric structure. In particular, the
extrinsic curvature is tangential and symmetric in its first two indices and orthogonal in
its last index®

K’ =Ku', ¥, Ku’=1\Ku."=0. (2.7)

For many practical purposes it is useful to keep track of the number of derivatives associated
with a given tensor. Any tensor built from the operator ﬁu acting on zero-derivative tensors
(tangent vectors, normal vectors and contractions thereof) is a one-derivative tensor. This
is the case for (2.6) and also for the contraction

KP =" K,,° (2.8)

which denotes the mean extrinsic curvature of the submanifold and inherits the orthogo-
nality property in its index from (2.7). If the surface has codimension n = 1, then there is
only one normal direction, ¢ = 1, and hence only one normal vector, i.e. n*; = n*; = n*.
In this case, both the extrinsic curvature tensor and the mean extrinsic curvature have only
one transverse direction and instead one may work with the symmetric tensor K, ”n, and
the scalar K n,,.

8Throughout this paper we use symmetrisation with weight 2K ()’ = K’ + K,,,” and equivalently
for the anti-symmetrisation.



2.1.3 The external rotation tensor

Another one-derivative object of interest is obtained from tangential covariant differentia-
tion of the normal vectors. This object is referred to as external rotation tensor and takes
the form

wy'p =1 npi Vun%. (2.9)

One may clearly observe, from (2.9), that the definition of the external rotation tensor
necessarily includes the appearance of transverse indices 7. In fact, the external rotation
tensor is not invariant under rotations of the normal vectors that satisfy (2.2) and, indeed,
it transforms as a connection in the indices 7, though it is fully tensorial in its spacetime
indices. For this reason, it is usually referred to as a pseudo-tensor, and it can be understood
as a normal spin connection in the transverse space, characterising how a given pair of
normal vectors is being twisted around as one moves along surface directions.

The external rotation tensor is tangential in its first index, and transverse and anti-
symmetric in its last two indices

wuyp = w,u[yp] ) iu}\wuw} = 'YAVWMWJ =0. (2'10)

When coupling the external rotation tensor to a surface action, the resulting scalars, with
a few exceptions, do not in general satisfy the requirements of diffeomorphism invari-
ance. However, one may construct the associated curvature to the external rotation tensor,

namely the outer curvature tensor?

Q'uwz)\ =2 J—MJJ—TVVF[Avn]WWUT + 2W[Aﬂwwn]mx ) (2'11)

which is invariant under rotations of the normal vectors and hence fully tensorial in both
the spacetime and internal transverse indices (see eq. (2.21) bellow). The outer curvature
tensor is a two-derivative tensor structure which satisfies the following properties

Q;wm\ = Q;W[m\] = Q[;w]n)\ ;L% Q,uun)\ = '}/Ma QMVNA =0. (2'12)

Note that the outer curvature tensor only has a subset of the symmetries of a Riemann
tensor.

When the codimension of the surface is n = 2, the transverse rotation group is Abelian
and one may use the Levi-Civita tensor in the transverse space €/ in order to construct
the normal fundamental 1-form as

1
Wy = 561{‘/) wu"?, (for n = 2), (2.13)

which inherits the tangentiality property in its index from the external rotation tensor. In
this case the outer curvature tensor (2.11) becomes a field strength for the 1-form wy,, that is

Qur = 47{&?@0% , (for n =2), (2.14)

9We note that there is a minus sign typo in [7] in the second term of (2.11) and (2.18). Furthermore, we
have changed the notation slightly for the outer curvature tensor. The first two indices here are transverse
to the surface, while the first two indices in [7] are tangential.



and is tangential and anti-symmetric in its two indices. When p = n = 2 then one may
contract the field strength with the surface Levi-Civita tensor eﬁ)‘ in order to obtain the
outer curvature scalar

Q= eﬁAQKA = e“”“)‘QWm =4V, (eﬁ’”wy> , (for p=n=2), (2.15)

where €% is the D = 4 background Levi-Civita tensor. It is, therefore, clear from the
above that ) is purely topological. If the surface dimensionality is p = 1 (with n = 2),
then there is only one tangent vector e, = e’ = u*|y11|, with 711 being the single met-
ric component in the tangential direction, which can be interpreted as the unnormalised
point-particle’s velocity in Lorentzian signature. One may then use it to construct a scalar
utw,,, which has applications for spinning point-particle actions and the Post-Newtonian
approximation in General Relativity (see e.g. [53]).

2.1.4 Internal rotation tensor

The external rotation tensor describes how normal vectors twist when one moves along
the surface. It is convenient to introduce its internal counterpart, the internal rotation
tensor, as
P =" 5"V (2.16)
The definition of the internal rotation tensor includes the appearance of tangential indices.
As in the case of the external rotation tensor, this tensor, though fully tensorial in its
spacetime indices, is also a pseudo-tensor, as it is not invariant under changes of the
tangent vectors. All its indices are tangential and its last two indices are anti-symmetric,
that is
P’ = Pu[up] ;o Ll = 1, pu”’ =0. (2.17)

Couplings to the internal rotation tensor to surface actions do not generally satisfy the dif-
feomorphism constraints due to the fact that it transforms as a connection in its tangential
indices. However, its associated curvature, namely the intrinsic Riemann tensor

RE e =2 7“0771/7”[)\65]0#07 +2 P[,\Mpn}w ) (218)

is fully tensorial and invariant under coordinate transformations in the internal indices
(see eq. (2.20) bellow). All the indices of the intrinsic Riemann tensor are tangential
and, in addition, it has the same symmetry properties as the Riemann tensor associated
with the background metric, R*,.\. The definition (2.18) makes it apparent that the
internal rotation tensor may be seen as a connection associated to the intrinsic geometry.
In particular the contraction e”,e,“e”, p,”, is the Christoffel connection associated with
the induced metric ygp.

When the surface dimensionality is p = 2, it is possible to define the tangential
one-form 2p,, = €1, p”?. The contraction of the intrinsic Riemann tensor with eﬁ” be-
comes a field strength for p,, while a further contraction yields the intrinsic Ricci scalar
R = ’y““w”AR“l,,{)\, that is

eﬁ”RW,M = 47”[)\§,{}p7r , eﬁyeﬁ)‘me\ = 46# (6ﬁ”p,,> =2R, (forp=2). (2.19)

As it is well known, this makes it clear that the intrinsic Ricci scalar for p = 2 is topological.

,10,



2.1.5 Integrability conditions

Given an extrinsic curvature, an intrinsic Riemann tensor and an outer curvature tensor
of the embedding, the fundamental theorem of surfaces states that for theses tensors to be
supported in an embedded surface there are three equations to be satisfied (see e.g. [54]).
These are the Gauss-Codazzi equation

RF o = KT Kyur — KM K™ + W7 0 Rpo " s (2:20)
the Ricci-Voss equation
QFpan = Kip' Kn"y — K)p' Ky + 96" 07 LA L Rypo o (2.21)
and the Codazzi-Mainardi equation
297, L DV Ko = 7773 L a R rpo - (2:22)

In particular, (2.20) and (2.21) make explicit the fully tensorial character of the intrinsic
Riemann tensor and the outer curvature tensor, since they can be expressed in terms of
other fully tensorial quantities. These integrability conditions will play a crucial role in
proving conservation laws, as well as in the counting of independent terms that can appear
in surface actions.

2.1.6 Conformal tensors

In order to address the Weyl-invariant properties of surface actions, it is useful to define
the background Weyl tensor for D > 3 as

WW)‘/’ = Rm,)‘p — g#)‘SZ/’ — gl/’SﬂA + gupSl,’\ + gl,’\S#p, (2.23)

which is trace-free and has the same symmetry properties as the Riemann tensor. Here we
have introduced the background Schouten tensor, defined as

o (B = 5 =m0 ) (224

which encodes all the information about the curvature scales of the manifold. It is also

S =

useful to define the pull-back of the Weyl tensor onto the surface as

Wivpo = 'Yua’YVﬁ’Yp’y’YaaWaﬁyé . (2.25)

Finally, we introduce the conformation tensor
1
Cuw’ =K' — —vyuwK?, (2.26)
p

which is a well known Weyl-invariant tensor [13] (see eq. (A.43)). As we shall see, explicitly
in appendix A, other Weyl-invariant tensors include the outer curvature Q*,), and the
external rotation tensor w,"” .
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2.1.7 Edge geometry

The edges 0)V are the (p — 1)-dimensional boundaries of the surface W. The location of
these codimension (n + 1) edges in the ambient background metric g, is given by the
set of mapping functions X H(g). From the point of view of the surface W, the edges are
characterised by a single normal vector n” to the surface. This normal vector is such that
the induced metric on the surface can be written as

Vv = Iy + ﬁ#ﬁy ) (227)

where hy,, is the projected metric on OW. The spacetime metric, when restricted to the
edge, decomposes as

9w =l + P, Pu =1, +nun,, (2.28)

where P, is the transverse metric to 9YV. Analogously to the surface, covariant differen-
tiation of edge tensors is only well defined via the operator V, = h)‘,,V A In light of this
consideration, one may introduce the edge one-derivative tensors

K’ = hau%uhpaa @, p =P ﬁf} %uﬁf, 0. p = hyﬂgg 6/@3’ (2.29)

which denote the edge extrinsic curvature tensor, external rotation and internal rotation
i
P
while e, denotes the set of tangent vectors. We also define the edge mean extrinsic curvature

tensor, respectively. Here, n’ = (nz, ﬁp) denotes the set of normal vectors to the edge!”
as K = h*K,,”. The components of the edge extrinsic curvature along the normal
direction to the surface can be obtained via the contraction with the normal vector, that is

KT, KPii,. (2.30)

From (2.29) one may define their respective curvatures, which satisfy analogous integrabil-
ity conditions as (2.20)—(2.22). However, we will not need to consider these in this work.
When describing the edge dynamics by means of an action, it is possible to consider
couplings beyond the ones to the edge geometry. In the case of the surface action, one can
also consider couplings to the background metric and its derivatives besides couplings to
surface geometric tensors. In the case of the edge, however, all the tensors characterising
the surface geometry are background fields from the edge point of view. In particular,
for these surface fields, the covariant derivative n#V, is well defined. One example of a
possible coupling that can appear in this way is n“V,K,,”. These considerations hint at
the complexity of describing the edge dynamics. In this work, we have only considered
couplings to the edge fields and the background metric. While many of these implicitly
include couplings to the surface fields, we do not wish to claim that our work is exhaustive in
this respect. On the other hand, it is sufficient to exhibit the richness of the edge dynamics.

ONotice that we have abused slightly our notation, since i in ﬁf, runs from 1 to n + 1 whereas in nf,
runs just to n. The reader can immediately identify the range by the symbol it is accompanying. Similar
remarks can be made about ef, and €. Since in this work we always use spacetime indices, this distinction
should not cause any confusion.

— 12 —



2.2 Surface dynamics and shape equation

Now we proceed to find the dynamics of surfaces, assuming that such dynamics follow
from an action, which we consider to be a functional of the set of geometric fields that we
collectively denote by ®(o), that is'!

®(0)={X"(0), (o), L*v(0), Ly (o), K’ (o), WuAp(U)v Ryap(0), Quoap(0), Ryuwap(0)} -

(2.31)
For n = 1 we can consider the normal vector n* and trade it for 1*, = n#n,, which in
this case is obviously not independent of L,,. For n > 1 the consideration of both L#,
and 1,, in (2.31) as independent fields follows from the projective nature of L. Indeed,
since this tensor has zero eigenvalues there is no strict inverse that can be constructed, and
1H, £ 6*,.12 Ultimately, this implies that variations with respect to L*, and L, when
n > 1 give independent results, as shown explicitly in eq. (2.34) below.

Before proceeding, notice that it is possible to consider more general actions with
arbitrary couplings to the one- and two-derivative geometric tensors p,”, 6,\;)“” p and
%Awu” P, but up to second order in derivatives such couplings do not lead to covariant
actions, except for the specific couplings that are considered here.

Consider now a surface geometric action that takes the generic form

S[®(0)] = /W oL (o)), (2.32)

where L[®(0)] is a Lagrangian density. As mentioned in section 1, there are two ways of
obtaining the resulting dynamics. One way consists of slightly deforming the surface such
that X#(o) — X#(0) + 0X*(0o) for some small deformation §X*(o), without displacing
the background coordinates. However, this approach, as we shall see in section 5, deals
with non-manifestly covariant expressions and non-manifestly covariant intermediate steps.
Here, instead, we follow the approach by Carter [7, 13, 14, 50] and introduce a new type
of variational principle that leads to non-trivial constraints on the spacetime stress tensor,
does not require extending the surface to a foliation and always provides manifestly co-
variant expressions. This method employs Lagrangian variations, in which the background
coordinates are displaced by a small amount x# — x* + £#(x) while the mapping functions
XH(o) are held fixed. Under such infinitesimal displacements, parametrised by the flows
of the vector field &*, the background metric changes by a Lie derivative,

55 Juv = 2v(u§u) . (233)

Lagrangian variations are equivalent to infinitesimal diffeomorphism transformations with
fixed mapping functions. As explained in appendix A, a complete set of Lagrangian varia-
tions of g, in terms of v, and 1, is given by the three independent projections

5§7MV = _FVHA’YVp(S&g/\pa 55 J—;w: J—AMJ—puégg/\pa 55J—“1/ = _'VIJ)\J—pV(S&g/\p . (2'34)

"We have explicitly considered the geometric fields R .., and Q,.x, for practical purposes, as one may
find them more convenient to use instead of others. However, these are not independent from the remaining
fields due to the integrability conditions (2.20)—(2.21).

12A similar argument holds for 4*, = 6", — L*, but not for 4%, which is restricted to the surface’s
worldvolume and thus has no vanishing eigenvalues in general.
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From the three variations in (2.34) we can define the surface’s worldvolume stress
tensor 77“,, the mixed tangential-transverse stress tensor P#,, the transverse stress tensor
B as

2 5L 1 L 2 5L

v n

- ) 73 - T ) R )
Vil oy F VI deLry VI % Ly

where |y| denotes the absolute value of the determinant of the metric 74,. Naively, this

Tw = (2.35)

may appear to be in contradiction with the strategy of the current paper, which consists
of considering tensorial objects with spacetime (Greek) indices. However it must be noted
that Lagrangian variations are taken with d¢e’, = 0 (see appendix A), such that the
variation of the determinant is given by

YOSy = 9" e e, 0evan = 9" eu e P ue e gpr = —Yapder™” (2.36)

and therefore can be traded by the variation of the projector v,, with spacetime indices.
All the tensor structures introduced in (2.35) inherit their symmetry properties and index
structure from their variational counterparts. In particular, 7,, and B*” are symmetric,
with 7, being tangential and B*” being transverse in their indices. Furthermore, P*, is
tangential in its first index and transverse in its second index.

The mixed tangential-transverse and transverse stress tensors describe the normal
components of the full spacetime stress tensor of the surface, as shown in section 3. These
objects are not independent quantities and, as it will be shown, are given in terms of
the bending moment, spin current and curvature moments to be defined next. The precise
relation between them turns out to be a requirement of diffeomorphism invariance of (2.32).

For codimension n = 1 the tangential-transverse stress tensor P#, is identically zero,
since we have eliminated from the action any dependence on _L*, in favour of the orthog-
onal vector n* and the projector L,,. Although the projector is not independent of the
orthogonal vector, since L,,= n,n,, it is convenient to work with variations of the or-
thogonal vector with risen indices only and using the projector for the lowered ones. We

therefore introduce the tensor V, to account for couplings to n* such that!3

1 6L

V, = ——
"] dent

The variations with respect to objects with one derivative allow us to define the bending
14

(2.37)

moment, D*”,, and the spin current, S*),, as

1 6L . 1 6L

=—= ; === :
VI 0 Kpw? P VN bew,

3For p = 1 one could consider introducing couplings to the single normalised tangent vector u*. However,

D, (2.38)

for variations that keep the embedding map fixed de”, = 0 this is not necessary.

14YWe have introduced here the variation gg associated with certain geometric tensors. As explained in
appendix A, this is a Lagrangian variation for which we have stripped off the components that can be
incorporated into P*, and B"".
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It is clear from these definitions that the bending moment encodes responses of the sur-
face due to bending, whereas the spin current encodes surface motion in the transverse
space. The bending moment D*¥, is symmetric and tangential in its two first indices and
transverse in its last index, and the spin current S*), is tangential in its first index and
transverse and anti-symmetric in the last two.

Furthermore, variations with respect to the curvature tensors define the surface cur-
vature moment, Iu’”\p , the outer curvature moment, H,"” A and the background curvature
quadrupole moment, Q,"” A from the expressions

V |’Y’ 6§Rﬂ/\up V h’| 5£Q”Aup V |’Y| 55RM>\VP

The curvature moments encode responses due to the intrinsic, outer and background curva-

(2.39)

ture. The curvature moments inherit the symmetries of the Riemann tensor, in particular,
QAP — _ QMPAY  The surface curvature moment ZHY? is purely tangential while the outer
curvature moment H***? is transverse in its first and third indices and tangential in its
second and fourth indices.

Given the definitions in eq. (2.35)—(2.39) the action (2.32) transforms under a La-
grangian variation as

1 1
5:5(8(0)] = /W ®or/h ( — ST G = Py e Py B b Ly +V,8en b1
+ ijp (5§K;wp + S'u)\p gfw,u)\p + Q,uy/\p 5§RM)\Vp (240)
+ T G RY s + My 0 AV,,) .

We do not give considerable attention, due to the reasons explained in footnote 11, to
couplings to R*,», and Q#,,. For that reason we will not consider the last line in eq. (2.40)
in the core of this paper, with exception of a few comments in passing, and refer the reader
to appendix B for this generalisation.

The result of the variation in (2.40), after integration by parts and using formulae in
appendix A, can be expressed in terms of the vector field £ and its normal derivatives.
Terms that involve normal derivatives cannot be further integrated by parts and so need to
vanish independently for the variational principle to be well defined. This sets constraints
on the type of actions that can be constructed. Schematically, in terms of £* and its
derivatives, we find that'®

5S[®(0)] = / Por/ ] (B™ L7V 6, + B ¢,)

w N N (2.41)

b [ @G, (B PTG + B
ow

where we have assumed that the edges of the surface do not have edges themselves. Each of
the above terms must vanish independently. The last two terms are boundary terms and we
will give them special attention at the end of this section, where we describe edge dynamics.

51n principle, we should consider terms up to three normal derivatives of &,. However, for the couplings
we consider, such terms automatically vanish.
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2.2.1 Surface equations of motion and diffeomorphism constraints

Equating the first term in (2.41) to zero implies the following relation

Puy e ’Y,ua + B D,u)\oKuAa + S,u)\aKMcr)\ . J_)\UJ_pavuS,u/\p

\ (2.42)
= L\ + (Vy LF7 n* +V,4H7n%) 61,
where we have defined the tensor
A VA v A Av
I°* = QMY R, + Q7"HP R, + 2QMYPR ), (2.43)

By projecting (2.42) orthogonally in the index o and anti-symmetrising the two free indices
one finds
DMK+ 1,7 1,07, 8" 4 17 10l = 0. (2.44)

This equation expresses the violation of spin conservation and is a generalisation of that
found in [10] in order to account for possible couplings to background curvature. By
projecting (2.42) orthogonally in the index o and symmetrising both free indices leads to

B = DMMOR L\ 4 LA 1Y, 1R n®G,, (2.45)

As advertised earlier, this equation expresses the fact that the transverse stress tensor B4
is not independent but given in terms of the bending moment and the quadrupole moment
when n > 1. Finally, projecting (2.42) tangentially along the index o leads to

P =SSP KA+ % Laa TV, 10 601 (2.46)

which expresses the fact that the mixed worldvolume-transverse stress tensor is not inde-
pendent but given in terms of the spin current and the quadrupole moment when n > 1.
Egs. (2.45)-(2.46) state that one cannot trade off the bending moment, spin current and
quadrupole moment by the stresses BY? and P#, as the latter do not contain enough in-
formation to determine the former. As a reminder, for codimension n = 1 one should
write P7, = 0.

Consider now the vanishing of the second term in (2.41). This leads to the set of
equations

ﬁ)\ (7’)\0’ + ,y“)\ (J_VUHMV _ Hau) _ ,VAUWMDHVU _ QS“agK,u)\a> -
= (SH A _ DI RO QQ/W)\PV R° (2.47)
- pxp T vil puX

where we have made used of the constraint (2.46) in order to eliminate P*,. The equations
obtained in [10] correspond to the case in which the curvature quadrupole moment vanishes
and therefore QM = ().

The tangential projection of (2.47) along the o index leads to a conservation equation
that must be automatically satisfied for any action that is reparameterisation invariant

f)/pav)\ (T)\U + ’7;1‘)\ (J-VO.HMV - ng) - fYAuv,U‘ijo)

(2.48)
= SMAUquAU - DILAQ’VpoRJuAa =+ 2Quy>\a’7pavl/RUozu/\ )

where we have used the Ricci-Voss equation (2.21).
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The orthogonal projection in turn yields the non-trivial dynamics and the resulting
equation is often called the shape equation, which takes the form

TV Kpo” = =125V (7 (LT = I7) — 92, 0, DI7 — 2847 K, ) 10
2.49
L (890 = DAY Ry 208 LGV R gy

This equation can be seen as a force balance equation on the surface, where the bending
moment, spin current and curvature quadrupole moment introduce sources of stress on
the surface.

When both the bending moment and the curvature quadrupole moment vanish, these
equations reduce to those obtained by Papapetrou for spinning point-particles [55], while
if we restrict to codimension-1, this equation is a generalisation of membrane dynamics in
classical elasticity theory [10]. The simplicity of (2.47)—(2.49) is stunning, since the tensor
structures involved such as Q**? can contain any contraction of an arbitrary number of
copies of all the geometric tensors involved, e.g. Ry 1. In particular, the equations of
motion arising from any type of background Lovelock theory, surface Lovelock theory or
transverse Lovelock theory are included.

2.2.2 Edge equations of motion and diffeomorphism constraints

The edge terms in (2.40) deserve special attention. In the variational principle described
in (2.40) we have not assumed the existence of extra sources of stress at the edges, for
example the effect due to considering an edge tension in the action (2.32). The boundary
conditions we describe here apply therefore only to the case of free edges, such as open
strings without extra sources of matter attached to its ends. We postpone more general
boundaries to section 2.3. The third term in (2.41) leads to the boundary conditions, upon
projecting with 1) and n), respectively

1, S" o =0, 37, DM o =0, (2.50)

while the last term in (2.41) leads to the equation of motion for the boundary dynamics

%)\ (ﬁuhAV'Dumf) —ﬁ)\ (7‘)\0’_‘_,7“)\ (J_VUHMV_HUM) _,})\Vﬁ‘uDuua_zsuaaKﬂ)\a) ’ =0,
" 251)
where we have again used (2.46) in order to eliminate P*,. The first two boundary con-
ditions state that there should not be any flow of spin and bending moment along the
normal components to the boundary. Eq. (2.51) can be interpreted as the conservation of
the non-symmetric boundary stress tensor 7, D¥*? and can be projected in different ways.

The projection onto the transverse n-dimensional space yields

J—pU%A (ﬁuh/\VDVmT) +ﬁ)\J—pO' (’Y)\,u (ng_J—VUHHV)_{—LPO'V)\V?MD”VU _2S‘uocpKu/\a) - 07
(2.52)
while the projection along the normal to the boundary yields

7, DAV ATy = TixTig (—T*” LI %DW) , (2.53)
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which, by subtracting 7, D"V, 71, from the left hand side, can be interpreted as a Young-
Laplace law since %( Ay is (minus) the component of the extrinsic curvature normal to
the boundary but along the surface. On the other hand, the tangential projection along
boundary directions, using h”,, results in

DA g = sty (=T + T 42, 9,07 (2.54)

This equation appears to be a Young-Laplace equation for the stress 7, D**? and with a
pressure term equal to the r.h.s. but the free index is tangential. As a final remark, we will
show in section 2.3 that introducing new degrees of freedom on the boundary modifies the
r.h.s. of (2.50)(2.51), and therefore their projections.

2.2.3 An interpretation for the constraints

The constraints (2.44)—(2.46) can be understood as consequences of the invariance of the
action under local coordinate transformations. Choosing Riemann-normal coordinates in
the neighbourhood of a point ¢, such that I‘fly\q = 0, a linear coordinate transformation
can be decomposed as

ul(e) = (Wur + Apw) 27, (2.55)

where A, is a matrix in the Lorentz group and w,, a symmetric matrix with constant
coefficients in the completion of the group of general coordinate transformations. Under
this restricted variation, one finds

6., 5[®(0 ]|, = / P/ B (4 M) + / =1\ TH] iy B (p0+ M)
w ow
/ dpo\/|'y\B“§M+/ d"~'5\/|h| 7, B"E, .
w oW

On-shell, when the equations of motion (2.47) and (2.51) are satisfied, one has that
B = n,B" = 0 and the remaining terms above yield the constraints. In particular,

(2.56)

the transverse part in the two indices of the Lorentz matrix leads to
11, B =0, 1m0 i, B = 0, (2.57)

which leads to (2.45) and to the first equation in (2.50). Therefore, this constraint can
be interpreted as a consequence of invariance under local rotations of the normal coor-
dinates. In turn, the different projections of the symmetric part in (2.56) yield the con-
straints (2.45), (2.46) and the second constraint in (2.50). This expresses the fact that this
formulation incorporates all requirements of general covariance.

When no couplings to the background curvature are present, i.e. II* = 0, (2.50)
and (2.45) were also obtained by requiring the action (2.32) to be invariant under infinites-
imal rotations of the normal vectors when using a gauge formulation of the variational
principle [56].

We have just shown that the constraints (2.45) can be understood as a consequence of
invariance of the action under local rotations of the normal coordinates. However, in gen-
eral, arbitrary tangential diffeomorphisms lead to the constraints (2.45)—(2.46) and (2.50).
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For example, in order to get the constraint (2.45), one may consider a tangential diffeo-
morphism §, = ﬁﬂ for which 1#, 1" 08“@1‘/‘] is non-vanishing. Alternatively, it suffices to
consider a diffeomorphism that vanishes at the surface but whose derivatives do not. This
is sufficient for obtaining only the first and third terms in (2.41). This implies that for
the action (2.32) to be well-defined, the constraints (2.45)—(2.46), (2.50) and the tangential
projection of the equations of motion (2.48) must be off-shell satisfied, i.e. they must be
satisfied for all shape configurations whether or not they are solutions to (2.49). In other
words, the constraints (2.45)-(2.46) and (2.50) are non-dynamical and only the shape equa-
tion (2.49) is non-trivial. As we shall see, the constraint (2.45) can restrict the type of terms
that can compose the action (2.32).

2.3 Surfaces with non-trivial edges and intersections

In the previous sections we considered surfaces with trivial edges, i.e. edges with no extra
sources of stress. However, the possibility of adding such extra sources of stress deserves to
be explored as it can have different physical applications. These include the dynamics of
strings with spinning point-particles attached, edge tension or entanglement entropy, among
others. The edges of the surface can be seen as codimension n = 1 surfaces embedded in
the p-dimensional surface. However, the most natural and general viewpoint, given the
covariant approach taken here, is to view the boundary of the surface of codimension n as
a surface of codimension n + 1 localised at the edges of the p-dimensional surface.

We therefore consider extending the action (2.32) to an action that also depends on
the set of edge fields

0 (5) = {X"(@), h"(5), P* u(7), P (5), Ky (&), @, (), Rywa (), ()}, (2.58)
and that takes the general form
S[®(0), .(5)] = /W PoL]®(o)] + /6 L), (2.59)

where the first contribution is the surface action Ss as in (2.32) while the second contri-
bution is the edge action S.. The variation of S is given in (2.40) while the Lagrangian
variation of the edge action, keeping X H(o) fixed, is organised analogously to (2.40) as

~ ~ 1~ S

5 Se[® / ar! \/|h< T O — P, 0P, + 5B 0c P + Vudeit
(2.60)

+ DM 0Ky + 8 Bew, ™ + Q;Apagmm> :

where the different tensor structures characterising the edges are defined as in (2.35)—(2.39)
and have the same interpretation but now applied to the edge. In particular, 7,, is the
edge tangential stress tensor. The total variation of (2.59) takes the form

5¢S[D(0), B.(5)) = /dea W] (B™ 1,7V 6, + B,) (2.61)

+/a dpl\/\f((BPanB‘“’p)PAV,\ﬁp ( +nuB“)§),
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where BY? and Ee” denote the contributions due to the edge action and we have again
assumed that the surface’s edges do not have edges themselves. The first line in eq. (2.61),
evaluated on W, leads to the constraints (2.44)—(2.46) and the equation of motion (2.47).
The second line in eq. (2.61), evaluated on OW, leads to constraints and equations of motion
analogous to those of (2.44)—(2.47) but they take into account the sources (2.50)—(2.51).
In particular, from the first boundary term, one finds the constraints

DK, 4 PP, S+ Pl PO T = Fiy, DR 470, P2, P, SME
goca _ 6M>\(UICM)\04) +P(UVPQ)AﬁVA _ﬁ)\ﬁ“zp)\u(oﬁa) +]7upu(aﬁa) 7 (262)
ﬁaa _ gua)\,CuUA'f‘hgyPa)\ﬁV)\+9u'y'uoﬁo¢ ’

where we have defined II*” as in (2.43) but with Q" replaced by OM*?. The first
equation expresses the violation of the conservation of the spin current on the edges and,
besides the usual terms also present in (2.44), extra sources due to the surface appear.
The second equation exhibits a new contribution to the transverse stress tensor due to the
presence of the surface bending moment while the third equation shows that the mixed
tangential-transverse stress tensor remains unchanged.

The equation of motion at the edges takes the form

%)\ (r’]v-)\a + h)xu (Pauﬁuu - ﬁau) i h)\l/%”ﬁuua - 2§ﬁaalcu>\a + ﬁuhAyDuua>
= (8% — D) BT, + 209NV R (2.63)

i (T 4 (LI = T1) = 2, T, D97 = 281,7 K, ) |

and one may observe that the effect of the sources (2.50)—(2.51) is to add a contribution
7, DY to an effective stress tensor on the surface and to add a pressure term on the right
hand side of the equation, composed of a linear combination of surface contributions.

2.3.1 Intersections

The results presented above for surfaces with edges can be easily generalised to any sur-
face/brane complex and its intersections. An intersection is a (p — 1)-dimensional surface
that acts as the edge/boundary of an arbitrary number of p-dimensional surfaces. Slightly
abusing the notation, we now consider the set of edge fields ®.(c) to be the set of geo-
metric fields living on the intersection, also denoted by 0. We consider an [ number of
surfaces W;) and their intersection 9W. The fields living on each p-dimensional surface
with coordinates o(;) are denoted by ®;)(o(;)) and they consist of the set (2.31) with the
subscript (¢). The action takes the following form

d"o ;) L[ ) ()] + /8 y PG L[Pe(5)] . (2.64)

[
S[200 (o10). 2.0 = 3 /W

(©)
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For each surface W;) there will be an analogous shape equation to the one derived above
for a single surface, while for the intersection, the equations of motion read

!
TAo A o TTHY 170 A o Puvo QL T A A ~(i vo
A<T A (POTIY —TI01) A, 0, DT 280, KM 1Y, S DL )

= (81D ) R, 4205V, R yin (2.65)
l i =@ vo o (e
+) [ﬁ(f) (T@)U*%A(i)( @Iy — HE?SL)—’YAMVL)DZ) —28"07 (i) K (i))}’
=1

(@)

where we have introduced the normal vectors to each p-dimensional surface’s edge n,” and

the surface covariant derivate ﬁfj) = ¢ #(i)Va on each p-dimensional surface. The effect of
each p-dimensional surface on the intersection is to contribute with an effective pressure on
the right hand side and with an effective stress tensor on the left hand side of the equation
of motion. It is straightforward to generalise this to more complicated surface complexes
where each of the p-dimensional surfaces considered above may also be the edges of other
(p + 1)-dimensional surfaces.

2.4 Interfaces

In this section we analyse in detail the diffeomorphism constraints and shape equations for
an interior region By in the spacetime M enclosed by an interface/surface W. This type
of actions are of interest, for example, in the context of soap bubbles, fluid membranes and
fluid droplets.

Consider actions for an interior spacetime region B;, enclosed by a dynamical interface
W separating another exterior region Bey.'® We write this general action as the sum of
three contributions

S[®int (), P(0), Pexet ( / dP TL[Pint ( )]+/dea£[<1>(a)]+/8 deE[ ext ()],

(2.66)
where the first contribution represents the enclosed internal region and the last contribution
the exterior region. The collective set of surface fields ®(o) is the same as in (2.31), while
for the interior and exterior regions we consider to be functions of the metric and the
background Riemann tensor

Ping(1) = {gm (2) . R}, Pexelr) = {gil (@), Ry, (2)} (2.67)

Here glnt and Rgllf/\ p denote the background metric and background Riemann tensor, re-

spectively, in the enclosed region while gext and Rt

HUAp
exterior one. From (2.66) it is clear that the stress tensor will have bulk and exterior com-

denote the same quantities in the

ponents besides the surface components that we have dealt with in the previous section.

16Note that this analysis is different than that considered in the context of boundary terms for variational
principles in General Relativity. In that context, the induced metric 4, on the boundary/interface is held
fixed under Lagrangian variations (see e.g. [57]).
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However, there can be an inflow of energy-momentum from the interior/exterior to the
surface. In what follows, we will drop the labels int/ext from the background fields for
simplicity and work as if only the enclosed region in (2.66) was present. However, one can
at any time easily restore the contribution from the exterior region by simply subtracting
equivalent terms to all contributions arising from the interior of the enclosed region.
Focusing on the action for the enclosed region, we organise its variation according to

1 v y
beS[®ini (2), B(0)] = 5 / AP/ lg] (T Segun + LR r ) + 8 S[@(0)], - (2.68)

int

while the variation of the interface ¢ S[®(0)] is given by (2.40). Here, T!; encodes responses
to variations of g,,, as is the case of a simple volume term, while L,” AP encodes the response
of changes in the background curvature. Formally, the variation (2.68) can be expressed as
a single variation with respect to d¢g,, but we have chosen to denote by T} the couplings

to g that appear explicitly in the action (2.66). These structures are defined according to
w2 0L VA 2 0cL

T = 7 _ 2 %k
/gl Oeguw ! Vgl 0 RFxp

The bulk curvature moment L,"” AP inherits the symmetries of the Riemann tensor, similarly

(2.69)

to the curvature moments introduced in the case of surfaces. The equations of motion that
will follow from (2.68) include any type of theory built out from arbitrary contractions of
the background Riemann tensor such as Lovelock gravity.

Using that for Lagrangian variations d¢g,,, = 2V (,§,, together with appendix A, the
total variation of the action, including the surface part, can be organised as

GeS(us(a),2(0) = [ aPz/IglBre,
Bins (2.70)
+ / o/ (Bwuy(uﬂvawgu+B“”LMPVP§V+B#§M),
w

for which, besides the appearance of a new term in the first line, there is a new term in
the surface variation proportional to B**? when compared to (2.41).!7 All the terms above
must vanish individually. From the bulk part we obtain the bulk equation of motion

Vi (T = 299,10 | =0, (2.71)

lgir)t

which not surprisingly is simply the conservation of the bulk components of the spacetime
stress tensor, as we will see in the next section. In turn, on the interface, we find the
diffeomorphism constraint

2, LA 1,31 D =0, (2.72)

which is always trivially satisfied since in this case L, = n,n, and L*?P” is anti-symmetric
in the indices o,v. The non-trivial diffeomorphism constraint that arises from the second

7 This term did not appear in (2.41) simply because all the variations taken there automatically satisfied
the constraint that arises from B*"”.
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term in the second line of (2.70) leads to the same two constraints (2.45) and (2.46). In
particular we have that

Y Lya T+ V4" 148,1 = 0. (2.73)

We remind the reader that since the interface is codimension n = 1 then PH¥ is absent
and the constraint (2.44) is automatically satisfied. Finally, the equation of motion on the
surface takes the form

Vi (T (LT =117 =, 9, D0 1A (197 -, (2,700 ) ) ) (2.74)

o 1 o
= DMV R\ +2QP NV, R i+ <T“aﬂ + 2J_”TTT°‘“> R oyt (T =29, 9,10
where we have set the spin current S,”” = 0 since it vanishes for codimension n = 1. We
have also defined

TH = 9n,\V, L) — 97, (% pngLW'“P‘”)) L Tre —op LN 1oy (2.75)

These definitions were introduced due to their frame-invariant properties, as explained in
appendix B. The last term in (2.74) is the usual contribution that takes into account the
effect of the bulk pressure in the Young-Laplace law. If the bulk action is only composed
of the volume term \/@P for constant P, then the normal projection of the last term
in (2.74) yields the bulk pressure P. The last contribution in the first line and the third
term in the second line in (2.74) take into account the inflow of energy-momentum from
the bulk to the interface.

3 Spacetime stress tensor

The variational principle cast in (2.40) in terms of Lagrangian variations is in essence a
variational principle in terms of variations of the underlying background metric. In partic-
ular, the tensorial objects defined in (2.35)—(2.39) are nothing but a convenient packaging
with a clear physical meaning from the point of view of the embedded surface, thus aiding
in the presentation of the resultant dynamics. In this section we relate explicitly these
tensorial objects to the stress tensor obtained from the variation of the surface action with
respect to the background metric g,,. The construction of the spacetime stress tensor
allows to define conserved currents and charges associated with a given surface.

3.1 Spacetime stress tensor for surfaces

One can recast the action (2.32) as an integral over the whole manifold M of a Lagrangian
dependent only on ®(0) = {g,.,(X), X#(0)} with the help of the reparametrisation invari-
ant delta function

< |’7| (n) (.« o
0(x) = +—=— 06" (2® — , .
() = VL6 - X (3.1)
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that is!®

S = [ 723w Lo (X). X(0)] (32)
With this reformulation, a Lagrangian variation where d¢ X* (o) = 0 takes the usual form
1 2 68
5:S[®(0)] = / dPx\/1g] (T" 5¢g) , TH = —— —— (3.3)
2 Jpm " Vgl 09
which upon using that d¢g, = 2V (,§,) leads to the equations of motion
VMT“V =0, T“VT]MQM =0, (3.4)

where we have introduced the unit-normalised normal co-vector 7, to the spacetime bound-
ary. We assume that this boundary condition is satisfied or that the spacetime has no
boundaries. The simplicity of the reformulation of the dynamics (3.4) in terms of the
conservation of a spacetime stress tensor is traded by the necessity of dealing with the
singular character of the stress tensor, which is now formulated as a multipole expansion
in derivatives of g(m) For the case of the actions that we are dealing with in eq. (2.32),
where couplings involve geometric tensors with at most two derivatives, the corresponding
stress tensor will at most involve two derivatives of g(a:) As such, it can be expressed as

~

TH = TH5(z) — ¥, (T““" S(x)) + VAV, (TWPA S(x)) : (3.5)

where the coefficients TH, TH*P and T**P* are only functions of the surface coordinates .
As we shall see in section 5, the terms TH, TF*P and T**P* are also known as contact terms
in the context of DCFTs. In essence, T*? and THP* represent the dipole and quadrupole
moments of stress, respectively, besides the monopole source TH".

The stress tensor (3.5) transforms as a tensor and, in its present form, also do the com-
ponents TH, THP and THP*. This can easily be show by evaluating the scalar functional

Tm—Aﬂ%VMW%w (3.6)

for an arbitrary tensor field f,, (z%) of compact support [58]. The invariance of the scalar
functional dictates the transformation properties of each of the components of the stress
tensor. An alternative basis for (3.5) is also common in the literature

TH = TH§(x) + TPV ,0(z) + TP VAV ,6(x) , (3.7)
where the coefficients in (3.7) are related to those in (3.5) according to

THY _ Ry V,THP 4+ V )\VPTAWP)\ 7 THYP — WP 4 9y \THV(PA) ’ THVPA _ vpA
(3.8)

¥The form of (3.2) implies that we have chosen to work in the static gauge z' = ot 2P = of.
However, this is only for convenience and does not affect the analysis carried out here. In full gen-
erality one could rewrite (3.2) as S[®(0)] = [,, Vl0gldPz £ (g, (X), X*(0)] where L[g(X), X*(0)] =
S d758(2) PV L [g (X), X*(0)] with 6P (z) = /[7][8P) (z* — X)/\/[g]. We will explicitly write the
stress tensor in this general form in (3.15) as derived from here.
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It is not only clear from the properties of T'[f] but also from the relation (3.8) that the
components of (3.7) do not transform like tensors. Since one has assumed that each
component is only a function of ¢ and hence that 9,7*"# = 0, the derivatives in (3.8)
lack their covariant properties. For some practical purposes, as describing fluids living
on surfaces or fluid droplets, one may wish to allow the components of stress to be also
functions of X* as in [59] or to extend them to a foliation of such surfaces as in [11]. In
the latter case, the components in both basis (3.5) and (3.7) transform covariantly. But
since most applications do not require such extensions, we opt for the basis (3.5).

By using the variation formulae in appendix A, the stress tensor following from
eq. (2.32) takes the form given in (3.5) with components'?

T =TH 4 2P, 1P V) B (V)\n)‘n“n” + QV)(y)‘(“n”)) Ot s

TP = 9 pPlv) _ phve 4 o S)p (3.9)
THPA — 4 QM) |

It is clear from (3.9) that the structures 7, P*, and B* for n > 1 characterise the
different components of the monopole part of the stress tensor, D**? and S**P characterise
the dipole part and Q**? characterises the quadrupole part. A posteriori, the equations
in (3.9) justify the definitions of these quantities in the previous section. In the case
n = 1 for which 73)‘,0 = 0, the terms involving V) contribute to both the mixed tangential-
transverse components and to the fully transverse components.

Using the constraints (2.45)—(2.46) we can rewrite the stress tensor in terms of its
independent components according to

T — {TW — 28OMUEC ) 4 2y, L \ITIPA 4 DOABE ) 4 (0 LAprA} 3(z)
. . (3.10)
-V, [(QDP(W) — pHvP 25(W)ﬂ) 5@)} —4V,V, [Q)\P(HV)g(x)} ]

It is worth noting that the constraints (2.45)(2.46) were derived in [58] with T**PA = 0 by
integrating (3.4) over spacetime using an analog of a Gaussian pillbox, that is, considering
the integral [ ™ ar :U\/HVMT‘“’ fu for some arbitrary vector field f,(z®) with compact
support. Here we have generalised these constraints to the case where T#PA is non-trivial
and furthermore shown that a Lagrangian variational principle captures all of them. By
the same token, the equations of motion that follow from (3.4) must be equivalent to those
obtained in (2.47). This has been shown to be the case in [10] when T#*?* = 0. It remains
to be shown, for the purpose of completeness, that by considering [ M dP x\/WVMT’“’ fv
one obtains (3.4) with a non-trivial T7#*?*. But this is not in doubt as consistency of (2.41)
with (3.3) requires it.

3.1.1 Edge contributions

The presence of non-trivial edges induces new contributions to the spacetime stress tensor

T =T + T (3.11)

90 writing 7" we have assumed that Q***¥ inherits all symmetries of the Riemann tensor while in
the writing of the equations of motion we have only assumed the symmetry Q*** = —Q>#*_ If only the
latter symmetry is assumed T"V?* can be written as TH** = 2 (Q(‘“p)‘l") + QUulplA _ QAP(‘“’)).
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where T#" is the surface contribution evaluated in (3.10) and T4 is the contribution due
to the non-zero edge action. This latter contribution has also an expansion in derivatives

~

of a delta function as in (3.5) but with §(x) replaced by

be(x) = \/\/g 5 (2% — X (3.12)

such that the total stress tensor has the form

TH = TH5(z) -V, (TWPS(;U)) +V,Y, (T’“"’Ag(a:))
o o o (3.13)
+ TH5.(2) — V7, (T’“’pée(aﬁ)) +V,Y, (T’“”’Aée(a:)> ,

where THV , THP and THYPX are the edge monopole, dipole and quadrupole sources of stress,
respectively. For the specific action (2.59), the surface components were given in (3.9) while
the edge components read

THY — THY 9 7’5/\10 Nz %\V) +BH _ﬁ)ﬁppx\p(uﬁV) _ ﬁ)\P)\(MﬁV) _ Q%\h)\(uﬁV) ,

THvp — o pp(kv) _ﬁuvp+2§(uV)p’ (3.14)
THPA — g 9 (k)

The difference between the edge contribution and its surface counterpart is the appearance
of the last three terms in TH".

3.1.2 Frame choices

The expression for the stress tensor given in eq. (3.5) contains redundant components,
which in turn leads to many equivalent descriptions of the stress tensor for a given surface,
and therefore to a symmetry.?? This redundancy is rooted in the fact that one may make
the expression (3.5) manifestly covariant in the embedding functions X* by integrating

over the p-surface directions?!

T = /W dPo (T“VS<D> ()~ V, (TWPE(D) (:c)) + VAV, (T S (a?))) o (319)

where now 0(P)(z) = 6@ (z* — X*)§(z). By adding such integration, it is clear that the
tangential components 17" p’yp)‘ and THP v, can be removed via an integration by parts
with appropriate boundary conditions. In particular, the stress tensor (3.15) is invariant
under two independent transformations, d., and d.,, acting according to

561 (TMVA,YA;)) — Euup’ 5€1T/J,V _ ﬁpguup’ EMVPﬁpbW — 0’
B (3.16)
Ocy (TMVPUVU)) = ehP ) O, THP = v)\guup)\ ) €uup>\ﬁ>\‘aw =0,

20Beyond the symmetry discussed here, in a perturbative setting there is a perturbative symmetry that
supervenes on the invariance of the stress tensor under surface displacements X* (o) — X*(0) + 6X" (o).
However, since we are not concerned with a perturbative analysis here we let the avid reader see [10, 58, 59]
for a discussion of this symmetry.

I This form of the stress tensor can also be obtained directly from the action (3.2) as explained in
footnote 18.
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where the coefficients e#*? and *P* are symmetric in their first two indices and tangential
in their last index. These transformation properties indicate that not all components of
the stress tensor are physical. Performing the transformations (3.16) without imposing
the boundary conditions on e**? and e**P* gives rise to different physics on the edges of
the surface.

With little effort, it is possible to identify the frame-invariant components. The fol-
lowing two combinations are invariant under d.,

5t (TW -v, (TWW’)) ~0, o, (LAPTW) ~0, (3.17)
while the following combinations are invariant under de,
5., (TWP -V, <TW/’HAU)) ~0, 0., (J_ A"TWM) —0. (3.18)

Ref. [58] had in fact identified a subset of (3.17) when T#"P? vanishes. The presence
of a non-zero THP* implies that only the last combination in (3.18) is invariant under
both symmetries by itself. Combining both transformations one arrives at the mutually
independent invariant combinations

T = 7~ (3} (T + T (T7773,%)) )

THE = | A (T/wp -, (TWP/\%U)) : (3.19)

T,uup)\ _ J_a)\TquU ]

The invariants (3.19) can be used as a means for comparison between stress tensors in
different frames. It can be observed from (3.19) that there are three components in the
first invariant T, one purely tangential and the other two with at least one transverse
index. The same holds for the invariant T#*?, while T#*P* has six independent compo-
nents. General covariance imposes four relations among these. The remaining independent
components can be chosen to be, in the frame explained below, TH, DHP SHP and QHAP,

In (3.10), we obtained the stress tensor that followed from (3.2) and by inspection it
comes in a given frame, dictated by the coefficients TH*7~,P = 2DP¥) and THPI A =
—4QP()~ A The fact that the stress tensor is obtained in a given frame from the
action (3.2) is not significant. While performing the variation (3.3), further integrations
by parts could have been performed in order to remove the tangential components from
THA and THP? | at the expense of finding a non-zero inflow of stress from the surface to
its edges. The natural frame (3.9) is defined as the frame with vanishing inflow of stress
from the surface to its edges. As a consequence of this ambiguity, the constraints found
in (2.45) and (2.46) are not frame-independent but only apply in the frame (3.9). In order
to make them applicable to any given frame, one may first move to a frame where T+ ~,”
and THP?~,* vanish and then add arbitrary d., and 6., transformations.

The stress tensor (3.13) is affected by the same frame choices. In particular, the edge
contribution to (3.13) can be written in a different frame using the analogous transforma-
tions to (3.16).
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3.2 Conserved currents and charges

With the covariant formulation presented here one can identify a set of conserved charges
associated with symmetries of the background. The existence of an isometry implies the
existence of a background Killing vector field k*(z%) that can be totally transverse. If
k# is the Killing vector field associated with an isometry then the action (2.59) must be
invariant under variations along those Killing directions. This fact can be used in order
to obtain a set of conserved surface currents. Setting &# = Sk* for some constant 3, the
variation of the action (2.59) leads to

51S[®(0), 8. (5)] = / o [B“”J_,/’Vpk,,—kB“ku—kV,\ (T“kﬁzmvakaﬂ

+8 / P JW Brrp V,\kp—|—<B v (n,mA DW)) ky, -V (ﬁ*akﬁimvakg)},
(3.20)

where we have defined the effective surface stress tensor TA? and the effective edge stress
tensor TA? as

o _ 7—)\0 + 73/,LV | ve ,yx\u o ,YM)\HO',LL o ,y)\yvup,uuo . SuaoKuAa . V;f}/u}\ngén,l ,
7 =T 4 PPN, — h M — AV, DT — SR+ Ty b DI — VbR
(3.21)

as well as the tensors YA and $Aoo according to
E)\O’Ot _ D)\oaa + S/\Ja 7 i)\aa _ 5)\040 + g)\aa 7 (322)

which parametrise the non-trivial modification to the surface and edge currents due to
the presence of dipole terms in the stress tensor which couple to the background Riemann
tensor. The effective surface stress tensor T*? is not symmetric, is tangential in its first
index but has orthogonal components in its second index. The same holds for the effective

YA are also tangential in their first index.

edge stress tensor T*?. The structures £ and
Referring to T2 and T as effective surface and edge stress tensors, respectively, is
justified since the equations of motion (2.47) and (2.63) can be recast as stress conservation

equations, such that

VaTA = SHVRT |\ + 202V R,

~ ~ ~ ~ (3.23)
VaTA? = SR, on + 2QH YV, R iy + AT
On-shell, when the equations of motion (3.23) are satisfied, we have that
B™1,, =0, B*=0, B'FPY, = _pm\n,DMeopd —q\pe, P78, a0

7= Vi (D7) = T

where we have used the Killing equation V(,k,) = 0. Therefore, requiring the action to be
invariant under such isometry, we find the surface and edge current conservation equations

Vath =0, Vi —mTp =0, (3.25)
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for the purely tangential surface current tﬁ and edge current Ei‘ defined as
1 =TVk, + 3M°V, ok, , 1 = Tk, + 327V, k. . (3.26)

It is straightforward to see that egs. (3.25) are satisfied for the currents (3.26). In order to
do so, one must make use of the equations of motion (3.23), the constraints (2.44)—(2.46)
and (2.62), the Killing equation and the fact that for a Killing vector field one has that
Vo, V,.k, = Ry »k*. Having identified the set of conserved currents, one may define a set
of conserved charges. Assuming the topology of the surface to be R x B,_1 and that of the
edge to be R x gp_g, the conserved charge associated with a given Killing vector k* is

Q= [ @ oVhldng [ @I/, (3.27)
Bpfl BP*Q

where [y is a unit normalised timelike co-vector normal to B,—1 and B,_».

3.2.1 Currents from the spacetime stress tensor

The spacetime stress tensor can be used in order to provide an alternative derivation of
the currents (3.26). Given the spacetime stress tensor T, whose components include the
surface (3.9) and the edge contributions (3.13), one may straightforwardly construct a set

of conserved currents Té‘k) given by

o
T

=Tk, (3.28)

which obviously satisfy VHTéLk) = 0 due to the conservation equation (3.4) and the Killing

equation. An appropriate integration of the currents (3.28) over a fixed time-slice yields
a set of conserved charges, one for each k. However, in order to understand how the
currents (3.28) can be written in terms of the different components of the stress tensor, i.e.
as in (3.26), one needs to use a “Gaussian pillbox” to get rid of the delta functions. By
explicit evaluation of the integral

[ dPay/lg] 9, ) £ (3.20)
M

for some arbitrary function f(xz®) of compact support and using the specific form of the
stress tensor (3.11), with components (3.9) and (3.13), as well as the constraints (2.44)—
(2.46) and (2.62), one obtains the conservation equations (3.25) for the currents (3.26),
as expected.

3.3 Spacetime stress tensor for interfaces

One may turn the action (2.66) into an action over spacetime using the Theta and Dirac
delta functions, such that

S[®in (), B(0), Dot ()] = /M a7 (L@ (2)]0(x) + L[D(0)]5(x) + L[@exi (1)]O(~2))
(3.30)
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where O(z) = II,0(z* — X%(0)) and similarly for ©(—x) with the opposite sign. Using
this form, under a Lagrangian variation one finds, as in (3.4), that the equations of motion
are given by

vV, T =0, (3.31)

where the full spacetime stress tensor takes the form
T = T{" + T, (3.32)

where T1"” is the bulk contribution while T4 is the surface contribution. Taking into
account the specific couplings (2.68), the bulk stress tensor is given by

T, = T3"0(x), T}" = Th{ = 2V,V, L2, (3.33)

int
Using the form (3.33) into (3.31), one obtains two sets of equations

(V, T")O(z) =0, V, T =T"n,é(z), (3.34)

~

where we have used that V,0(x) = —n,d(z). The first equation in (3.34) gives rise
to (2.71) while the second equation gives rise to the diffeomorphism constraints and (2.74).
The surface spacetime stress tensor now takes the form

T = [T‘“’ + B*Y — <V>\n)‘n“n” + QVAfy)‘(“n”)> + 2n,\VpL)‘p(’“’)] ;5\(:1;)
~ . (3.35)
-V, [(21)/3(;”/) _ DHvp _ QnALP’\(‘“’)> 5(90)} —4V)\V, [QAP(NV)5($>} )

It can be observed that the bulk curvature moment L***? yields an inflow of energy-
momentum into the interface. Considering geometric bulk actions with derivatives of the
Riemann tensor will also induce an inflow of surface curvature moments, beyond the inflow
of monopole and dipole moments. If one takes the bulk action to be the Einstein-Hilbert
action \/@R then there will not be any inflow of monopole energy-momentum to the
interface but there will be a contribution to the dipole surface moment. This contribu-
tion is of the form THP = —2~vMpP 4 2p(HA?)P The second term can be removed by a
frame-choice, while the first contribution is twice that which arises from a surface action of
the form [, VI|d@PcKPn,. The two dipole moments (the one arising from the Einstein-
Hilbert action and the one arising from the mean extrinsic curvature), therefore, differ by
frame-choices.

3.3.1 Conserved currents and charges

Analogously to the case of surfaces studied above, one may obtain a set of conserved
currents associated with symmetries of the background by performing a diffeomorphism
along a Killing direction such that &# = Sk* for a constant 3, leading to

5108 [®int (), B(0)] = B / dPz\/]g] (é“ku—l—vu (Té“’kl,))

B (3.36)

+8 / @ [ B 1,09 K, + Bk, + V5 (TVk, + 5270V ok, ) |
w
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When the bulk equations of motion are satisfied B = 0 and hence for the bulk action to
be invariant under the symmetry associated with k* we must have

V.t =0, for #=T"k,, (3.37)

which indeed follows from the symmetry of the bulk stress tensor and the Killing equa-
tion. On the interface, in turn, when the equations of motion are satisfied we have
B* 1, =0 and

_ . _ . . 1 .
k=T (2 (7T, (78 ) Y (1904 12,7500 ) b s
(3.38)

Therefore, for the interface action to be invariant under this symmetry, we identify the
interface conservation equation and current

Vuth =n,it, for =Tk, + 9%V kK, , (3.39)
where, using the definitions of T and X% in (3.21)-(3.22), we have introduced
o, (19, (0, 00)) = e e (340

One can check that the current conservation equation (3.39) is satisfied given the equations
of motion (2.74). The corresponding conserved charges can be constructed as in (3.27) by
appropriately integrating the currents

Q- [ e
B

e VAR 7 N (3.41)
By 1
where we assumed that Biyy = R x Bijny and B, = R x B,_1. Here, [) is a unit normalised

int
timelike co-vector normal to Bi, and B),—1.

4 Two-derivative surface action with edges

In this section we employ classification methods analogous to those used in the context
of hydrodynamics to constrain the main results of section 2 in a derivative expansion, up
to second order in derivatives.?? To this end we first construct the most general surface
geometric bulk action of g, with at most two derivatives, including a quite general (but
not exhaustive) edge contribution. Spacetime covariance implies that the diffeomorphism
constraints (2.44)—(2.45), as well as the tangential projection (2.48), must be automatically
satisfied off-shell for all shape configurations, as explained at the end of section 2.2.3. This
implies that whenever a contribution is added to the action, it must be checked whether
or not such contribution satisfies the tangential diffeomorphism constraints.

This construction has applications in many physical systems whose description in-
cludes embedded surface in a given spacetime. These include fluid membranes, entangling
surfaces, spinning brane systems, membrane elasticity or effective theories of black holes.

2ZWe note that we are not assuming this derivative expansion to be a perturbative expansion.
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The restriction to a two-derivative action implies that the corresponding stress tensor
should include at most two derivative terms, and hence must be of the form (3.13). To
count the number of derivatives we use a bookkeeping parameter €. The components of
the stress tensor are at most of order O(¢?), and in particular, T ~ O(g2), TH? ~ O(e)
and T** ~ O(1). In turn, due to (3.9), this implies that

TH ~ P~ B~ O(2), DMA~SMA N O(), QM ~O(1),  (41)

and similarly for the edge components (3.14). However, since P*” and B*” are related
to the dipole and quadrupole terms via eqs. (2.45) and (2.46), it is not necessary to be
concerned with them here, as they will be determined by the remaining couplings.

It is convenient to split the action into the sum of parity-even S, parity-odd S_ and
edge S, contributions according to

S[®(0), ®c(9)] = S1[®(0), Pe(0)] + S-[®(0), Pe(0)] + Se[Pe ()], (4.2)

and first consider the parity-even sector, which does not depend on the dimension p nor
the codimension n of the surface.

4.1 Parity-even sector

The procedure for identifying all the covariant two-derivate scalars consists on classifying
the different independent contributions to the surface stress tensor 7+, to the dipole terms
DA and S as well as to the curvature quadrupole moment Q***?. and similarly for
the edge components.

Surface stress tensor. All terms in an action which involve contractions with the in-
duced metric will contribute to 7#”. Here we are interested in the contributions which do
not appear due to contractions with the other geometric tensors K,,,”, w,"”, R ., and
R, 5p, i.e., contributions which are purely intrinsic. This implies that such contributions
can only be composed of combinations of the induced metric v*, the internal rotation
tensor and its derivatives.

At order O(1), the only possible contribution to 7" arises from the surface tension
term

a / o/, (4.3)
w

for some constant a.

At first order in derivatives, as in General Relativity, there is no covariant scalar that
can be constructed from the induced metric vy, and internal rotation tensor p,”,, which
should be understood as the intrinsic Christoffel connection. At second order, the only
scalar is the induced Ricci scalar but that is included in the coupling to the intrinsic
Riemann tensor.

Bending moment. Turning our attention to DHP, it is noticeable that the symmetries
and index structure implies that at one derivative level one must have

DI = YHATK P (4.4)

— 32 —



where Y27 is the Young modulus of the surface, first introduced in the context of per-
turbations of black branes [60], and has the symmetry YEA9) - ag a classical elasticity
tensor. The above expression for the bending moment (4.4) takes the from of stress times
strain, where the extrinsic curvature Ky,” can be interpreted as strain.??

From the bending moment (4.4), one concludes that Y#)A?) ~ ©O(1). Therefore,

given the symmetries of Y***?_ the most general form of the Young modulus is
y,uu)mr _ 2>\1’Y”V’Y>\U + 2)\27;;()\,}/0)1/ 7 (4‘5)

for some constants A;, Ao, which turns out to have the symmetry Y#A7 = YA a5 g
classical elasticity tensor. It should also be noted that the form (4.4) immediately implies
that the term D*9 K, in (2.44) vanishes.

Spin current. Due to the symmetries of S#*# and its index structure, one observes that
the spin current must be of the general form

SHP = SPA\P (4.6)
for some spin tensor S** of O(1). The only possible component of S¥* would be, therefore
SFA = PogyH (4.7)

but the constraints fix ¥y = 0. To see this notice the first term in (2.44) vanishes, as does
also the third term in that equation, as we will see below. The spin current conservation
equation becomes | Aupavusw = 0. However, it is easy to see that a term of the form
given in eq. (4.7) does not satisfy this condition for arbitrary wy"” and therefore must be
discarded. This is an example of how diffeomorphism invariance along the surface leads to
non-trivial constraints on the action.

Surface curvature moment. The intrinsic Riemann tensor is of O(¢?), which in turn
implies that Z#* ~ O(1). The only possible choice is therefore

qu)xp — al,yu[v,ypp\ , (48)

where a7 is a constant. The contraction I’W’\”Ru,\yp is proportional to the induced Ricci
scalar R. Due to the Gauss-Codazzi equation (2.20), this term can be replaced by a linear
combination of terms to the square of the extrinsic curvature and a term proportional
to the background Riemann tensor. These two possibilities are equivalent, as it may be
checked using the equations of motion and spacetime stress tensor obtained in appendix B.
For practical reasons we keep this term explicitly.

#31n fact, when working with a foliation of surfaces, one has that 2n’,K,,* = —’yAM’yduﬁni'yAg, which
makes it clear that the extrinsic curvature is a measure of the change in distances on the surface along
transverse directions [60].

— 33 —



Background curvature moment. Similarly to the surface curvature moment, since
the background Riemann tensor is of O(£?), the curvature moment Qu”)‘p must be of order
O(1). Hence, its most general form, given its symmetries, is

Quw‘p = 042’Y[Vu7p])‘ + Oé3J—[Vu7p])\ + 0‘4J-[Vu LA (4.9)

Since J_,,["L ,\a] 1" = 0, this form of the background curvature moment satisfies the con-
straint in (2.44) for arbitrary constants ag, as and a4. Note also that the first term
in (4.9) can be replaced by the term (4.8) when using the Gauss-Codazzi equation (2.20).
For presentation purposes, given (4.9) it is useful to define the three contractions

RH = PVA#PVPVRMV)\pa Ré = J—AMVPVRMV/\/M RJ_ = J-)\# LY RMV}\P : (410)

4.1.1 Parity-even action at second order in derivatives

Taking these considerations into account, and the fact that there is no parity-even scalar
built out of the outer curvature moment, we can now write down the most general parity-
even two-derivative geometric action. This is given by

S+[(I)(O')] = /dea \’y|(a+ )\1Kpr + )\QKMVPK'LLVP +aR + a2R|| + agR/ +OZ4RJ_) ,
(4.11)

and, as mentioned above, the term proportional to «y is redundant. All the terms involved
in this action were implicitly classified earlier, in particular in the literature of conformal
anomalies of two-dimensional submanifolds (see e.g. [61]). The shape equation that arises
from this action was considered recently in [48] and agrees with the general form of (2.49).2*
All the terms in (4.11) may appear in entanglement entropy functionals [16, 17]. This
concludes the parity-even sector of the surface action and hence we now turn to the parity-
odd sector.

4.2 Parity-odd sector

In the parity-odd sector, the contributions to the action are either dependent on the di-
mension of the surface or on its codimension.

Codimension n = 1. In this case there is only one normal vector, n”, to the surface.
Since there is only one normal direction, the extrinsic twist potential vanishes and there
are no couplings to the spin current. However, the bending moment may have a O(1) term.
That is, besides (4.4) one can have a contribution of the form

DIP = Aoy 0P, 1 (4.12)

which, in the context of General Relativity, leads to the known Gibbons-Hawking boundary
term n,K”. This term is parity-odd, in the sense that, in the absence of any bulk (contrary
to the case of General Relativity for which there is a preferred orientation of the normal
vector) it is not invariant under reflection n, — —n,.

24The authors of [48] did not use the terms agRH + a3, in the action but instead two other linear
combinations, namely 1*” R, and R, which can be rewritten in terms of aaR|| + az R, + cuR . .
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Dimension p = 1 and codimension n = 2. In the case of p = 1, there is only one
tangent vector 01 X* = u*+/|y11|, which is interpreted as the unnormalised velocity of the
point-particle in the relativistic case. Also, when n = 2, one may make use of the Levi-
Civita tensor in the transverse space e’f in order to obtain new contributions. In this case
the spin current can have an O(1) and an O(e) contribution, such that

SHp — ﬁlu“elj_p5p715n,2 + 192u’\w,\u“61p(5p,15n,2 , (4.13)

where we have made used of the definition of the normal fundamental 1-form.

The first of these terms is the usual coupling due to the particle’s intrinsic spin and
the second contribution is its square - a sub-leading spin-orbit effect. However, using the
identity e**Pu, = ¢'”, it is easily verifiable that only the term with coefficient 9; satisfies
1 Aupaﬂsw = 0. The second term can satisfy the conservation equation if we assume
that the velocity u* is aligned with a surface Killing vector field. While this possibility is
interesting, as it allows to describe embedded fluids [10, 59] or fluids with surfaces [11, 62],
assuming the existence of surface Killing vectors is beyond the scope of this paper.2> There-
fore we set %5 = 0.

Finally, we note that the equations of motion for a point-particle do not change if
the codimension is increased. However, in order to write down such couplings, one must
specialise to backgrounds with further rotation symmetries for which the rotation group
is Abelian in a given transverse two-plane [56]. Here, we are performing an analysis that
holds for any background spacetime, irrespectively of its symmetries.

Dimension p = 2 and codimension n = 2. In this case, the spacetime Levi-Civita
tensor €#**? can be used to build new scalars by contracting it with eq. (2.21). In particular,
there are three apparent scalars

2eM po K0P €7 y0y g LA L2 Ry, QL (4.14)

It can be verified that the first two terms satisfy the constraints (2.44)—(2.46) individu-
ally, however, for arbitrary extrinsic curvature and background Riemann tensor they do
not satisfy individually the tangentiality condition (2.48), only a linear combination does.
Hence, only this combination provides a new contribution, as it will be proven in the next
section.?8 This is a non-trivial consequence of the diffeomorphism constraints and shows
that the naive expectation that any appropriate contraction of surface tensors yields a
covariant contribution, is not correct.?”

Given (4.14), the bending moment and the background curvature moment will re-
ceive new contributions. In particular, the bending moment (4.4) admits the following
generalisation

DHYP = YHATP Iy O (4.15)

25Tf this assumption would be taken seriously, it would lead to many extra couplings besides the ones
considered here. See [10, 59] for examples.

26This implies that we fully disagree with the counting of two independent parity-odd coefficients done
in [63] in the context of conformal anomalies for two-dimensional submanifolds, as only one coefficient is
allowed by diffeomorphism invariance along the surface.

27Since eA“W is a pseudo-tensor, one might have expected that none of the terms in (4.14) would be
covariant. However, the outer curvature scalar €2 is.
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where now the generalised Young modulus has the most general form
PE = 2 (M 4 Ay Py ) L0+ gy g 1805, 00,5 (4.16)

The coefficient A3 is a new purely geometric parity-odd contribution to the Young modulus
of thin elastic surfaces.

This generalised version still has the symmetry Y#Aor, = YW)(A)p  hut no longer
the symmetry VA7, = YAP | due to the parity-odd effects. It should not be surprising
that the Young modulus must be generalised compared to its classical counterpart. What
is surprising is that the usual classical definition (4.4), first introduced in the context of
codimension n = 1 surfaces, is sufficient for capturing all parity-even effects for arbitrary
codimension. In turn, the background curvature will now have the form

Q. = a4 + ag LV y P g LV 1P 40362y 00t LY L1800 . (4.17)

The linear combination of the first two terms in (4.14) proportional to A3 is equivalent to the
last term in Q due to the Ricci-Voss equation (2.21). However, similarly to the discussion
above for the coefficient a1, we keep it explicitly for practical purposes. Therefore, the
outer curvature moment can have one parity-odd contribution of the form

HNV)\,O _ a56ﬁ152ﬂsﬁ4 Lo 7V52J_A537p545p,25n,2 , (4'18)

which leads to a contribution proportional to 2. As explained in section 2.1, this term
is topological. Therefore, it will not affect the surface dynamics, though it will certainly
contribute to the on-shell value of the action as well as to the edge dynamics.

4.2.1 Parity-odd action at second order in derivatives

Given these considerations, we can write down the parity-odd sector of the two-derivative
surface action

S_ (@) = [ @ov/Al(Aanp kP8 + 2010,8,10,
W (4.19)

-+ <)\3 (26>\MPQK)\W)K#VOC + R_) + 0459) 5p,25n,2> ,

where we have defined R_ = eo‘”“Tyuav”UJ_’\,iJ_pTR“Mp. As mentioned earlier the con-
tributions involving A3 and as are equivalent. All the terms present in (4.19) had been
enumerated in [10] but the last two terms, in particular, had not been properly analysed.
The second term and the last term also have a role to play in the context of entanglement
entropy [64, 65].

4.3 Edge action

We now consider an example of a quite thorough, though not exhaustive, edge action up
to two derivatives. As explained in section 2.1, there are other possible couplings between
the edge and the surface geometry, which were not considered in (2.60). This supervenes
on the existence of the unit normal vector to the surface boundary n”, which can be used
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to introduce new contributions in the action. Nevertheless, without a full characterisation
of all couplings, the possible couplings that appear are sufficient to exhibit the richness of
the edge dynamics. We treat the parity-even and the parity-odd sectors of the edge action
simultaneously.

Edge stress tensor. As in the case of the surface action, there is only one purely intrinsic
independent contribution to the surface stress tensor. This is the edge tension term

X /8 "G \/h]. (4.20)

Edge bending moment. The bending moment exhibits quite a rich structure due to
the existence of the normal vector n” which represents a preferred direction. It is, in
essence, a mixture of arbitrary codimension and codimension n = 1 contributions. The
edge bending moment can be written in the same form as in (4.15) but with the additional
contribution (4.12), that is*®

Do = JHAP Ky, 1 Rh il (4.21)
where the generalised Young modulus takes the form

Jjuu)\ap =2 (thm/h/\a + XQhM(Aha)V) 17, + 4’)\v3h'j(06>\)u6p 0p.30m.1
" e (4.22)

) (LWW + X5h“(’\h")”) Pl

The existence of the preferred direction n” appears to introduce further possible contribu-
tions to the Young modulus. However, it is easily seen that the first three terms above
satisfy the condition DrAlo ,\O‘] = 0 but last two do not, except in the case for which the
boundary is codimension n = 1 but we have excluded such possibility by only consider-
ing non-space-filling surfaces. Hence, we must set A = )\5 = 0. Furthermore, the term
Xo in (4.21) does not satisfy the condition DAl ,\a] = (0. However, explicit evaluation
of (2.44) leads to

DMK, — ym, DR =

- 4.23
= (/\0 + 2)\1) K77l — 2 (A + Mo) fiati, KMo = 0 (4.23)

For this condition to be satisfied for arbitrary surface and edge extrinsic curvature one must
set Xg = —2)\; and Ay = —);.22 The presence of the surface bending moment introduces
extra terms that violate the edge spin conservation equation (2.62). Requiring consistency
on the edges implies a constraint among the two surface response coefficients besides fixing

Z8Note that this term proportional to XU, contrary to Ao, is not parity-odd because the presence of the
surface and the natural outward-pointing direction of n” breaks the reflection symmetry n” — —n”.

2Note that in the absence of non-trivial edges, the edge conditions (2.50) implied constraints on the
extrinsic curvature and spin current at the edges, in particular, certain components must vanish. Here we
are not requiring this though one could insist on such edge conditions. Instead, we allow for the surface
extrinsic curvatures to be arbitrary at the edges and, by continuity, do not impose any restrictions on the
edge components of the extrinsic curvature.
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Xo in terms of a surface coefficient. This consistency condition implies that the surface
cannot have arbitrary elastic response coefficients, in fact, the condition Ao = — X1 implies
that the linear combination involving extrinsic curvatures in (4.11) must be proportional to
the linear combination (R — R)|) due to the Gauss-Codazzi equation (2.20). Furthermore,
the presence of a term proportional to R requires a non-vanishing edge coefficient XO such
that Xo = —2X1.30 This is the equivalent of the Gibbons-Hawking boundary term (with
the appropriate coefficient) in General Relativity. In fact, if we keep the term proportional
to aq explicitly in (4.11) then one obtains that, using appendix B, XO = —2)\1 — 20.

Edge spin current. At the edge there is a similar contribution to the spin current, as
for the surface, and an additional contribution, such that

SHP = 9 P 5201 + V2N PUATAT 5 202 - (4.24)

The first term satisfies (2.62) individually but the second term does not. However, explicit
evaluation of (2.44) leads to

P7AP®,, 8% iy, D) = 0

! (4.25)
= 2(2)\3 + 192)ﬁuﬁV6>\uﬁpKV)\pJ_[aﬂﬁa] =0,

which is satisfied if we set 52 = —2)3.31 This is expected since the term proportional to
Q2 in (4.19) is a total derivative ﬁu(eﬁywy) which leads to the edge contribution ﬁueﬁyw,,.

This contribution is proportional to the contribution induced by the term 52. In fact, if
we keep the term as explicitly in (4.19) we find, using appendix B, that 52 = —2)\3 — 2as.
In essence, this means that the topological term 2 cannot be added to an action for a
surface with non-trivial edges. This is yet another instance where it does not suffice to
enumerate terms that can contribute to the action, as it is also necessary to check the
constraints imposed by tangential diffeomorphism invariance. Furthermore, note that the
term proportional to 91 in (4.19) satisfies the constraint nyP*, P LS = 0 automatically.

Edge background curvature moment. The background curvature bending moment
can have the following contributions

Q. = aphl WP+ G P PP+ Gy P PP X3e7 T hyyo b o PY . PP 28, 30,1

(4.26)
+ashl mPRr +ae PV PR

which are analogous to those in (4.17), except for the last two contributions. In particular,
the parity-odd term has the same coefficient as the last parity-odd term in (4.22), as in
the surface case since such is necessary for that linear combination to satisfy the tangential
projection of (2.63). The last two terms do not satisfy (2.62) and hence we must set
as = ag = 0.

30This can also be derived using the edge constraints involving Z#**” in appendix B. We note that if
p = 2, then R is topological and the necessary term n,KC” = ﬁueﬁl’pu/Q is equal to its boundary contribution
(see (2.19)). This means that a term proportional to R for p = 2 is not allowed by diffeomorphism invariance
if the surface has edges.

3! Again, we are insisting on arbitrary surface spin current components on the edges. See footnote 29.
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4.3.1 Edge action up to second order in derivatives

One may also consider the analogous contributions to the surface and outer curvature
moments as in the surface case. However, since they can always be exchanged by linear
combinations of the remaining terms, we have not consider them here. Given the above
considerations, the total edge action reads

Se[q)e(gﬂ = /aw dp_lg ’h‘ (X_2(/\1 +a1)ﬁpICp+X11Cple+X21CH,/OIC“”,,—|—&2§H+&3§4
+&4§L+22§1ﬂ“wﬂc5p725n7172()\3+oz5)ea’\ypﬂaﬁAﬂ“wN”p5p725n72

s (26N 10N P+ R 030 ) (4.27)

where we must set Ay = —A; in (4.11). The scalars éll’ R,, R, and R_ are defined
analogously to (4.10) and below (4.19).

4.4 Constraints on the stress tensor

In this section we consider the constraints on the stress tensor that arise from requiring
that the dynamics are determined by an action of the type (2.32).

We study the parity-even and parity-odd sectors of the action, including the edge con-
tribution. The method employed is analogous to the classification methods, inspired by
effective field theories, used in the context of hydrodynamics. In the present context, the
results presented below yield the first example of constraining the stress tensor of entan-
gling surfaces using a conservation equation. In particular, invariance of the action (2.32)
under tangential diffeomorphisms implies that the constraints (2.44)—(2.45) and the tan-
gential projection of the equation of motion (2.48) must be automatically satisfied. This
implies that by classifying the tensor structures that can appear at the two-derivative level
in the independent quantities 7+, D*P, SHP QM P and imposing invariance under tan-
gential diffeomorphisms must yield the stress tensor as derived directly from (4.11), (4.19)
and (4.27). It is shown that this is indeed the case.

4.4.1 Constraints from the parity-even sector

We now classify the contributions to the surface stress tensor 7#”, which must be purely
tangential and symmetric in the two indices. The most general form at the two-derivative
level is given by

TH = ay™ + Biy™ K, KP 4+ 4B KMP K, + 537MVKQBPKQBP + 4ﬂ4K(“apK”)°‘p
+ Bsv™ Ry + 28677 Y Rgrao + By Ry + 2Bs7°4" LY Rgrao  (4.28)
+ By R + k1" R + 2k RM + /igfy“”w)\o‘pw)‘ap + 2/14w“,\pw”)‘p .

Note that we have added a term proportional to R* and another to v**R, but these
could be replaced by linear combinations of the remaining terms using the Gauss-Codazzi
equation (2.20). The reason for keeping them is just to demonstrate that one could also
choose to work with k1 and k9 instead of the terms involving 85 and fg.
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Given the general form of 7", imposing the conservation equation (2.48), and us-
ing (4.4), (4.7) and (4.9), a lengthy calculation reveals

4B+ M7, T (KVP) 42081~ M)KPTT K, + 2(Bs — Ao) K, K
+ 4(64 + AQ)’YUVW)\ (Kﬂ)\pKw/ﬂ) + ’YGA’YW/’YQP ((65 - a2)vARuan + 2(66 + QZ)VaR,upV)\)
+2(B + a2y ('YMVK'DR,upl/a _ pr)\RVoa/\P) +2(8s + 205 — a2),7WKPUaRM)Va

+ L ,yap,ycr)\ ((/87 - a3)v)\Ruaup + 2(/88 + a3)vo¢Rp)\1/p) - 2(/87 - O‘B)KU#V'YQPRuaup
+ 2(B8 + CVS)’YUOC (J—MV KpRp,cwp + 2pr/Ra;wp) + 2(57 + 58) 1 KU&pRuavp

+ (Bg — ) (ﬂ”ﬁﬂ YOV o Rynp — 4 LOP KWRWW) + (k1 + Kk2)V'R
+ 2(k3 — ﬂo)wA"pVUw/\yp + 2(kg + 00)w)‘,,p§,\wa”p + 2/14w"”pv)\w’\l,p =0. (4.29)

Note that we have made use of the equation (B.12) to account for the terms appearing
in Z#** however, these yield vanishing contributions to (4.29). The conservation equa-
tion must be satisfied for arbitrary geometric tensors, and since each of these terms is
independent?®? there is the unique solution

1= A, B2 = —A1, B3 = A2, Ba=—X, Bs=oa2, [s=—az,

(4.30)
Br=a3, fPs=-—a3, Py9=ay, K1 = —Ka, kg =Ky =109 =0,

with the surface tension « being unconstrained. Indeed, one may check that once intro-
ducing this solution into the stress tensor (4.28) one gets precisely what is obtained by
direct variation of (4.11). Note that the last term in (4.29) is precisely the conservation
equation for the spin current (4.7) and forces k3 = k4 = Y9 = 0. As mentioned in the
previous section, adding a term of the form (4.7) is not allowed as it violates the off-shell
diffeomorphism constraint (2.44). Furthermore, note that the term appearing in ZH” AP s
unconstrained, but it will be related to x; via the edge constraints. This analysis shows
that, as in hydrodynamics, these methods can successfully constrain the stress tensor of
(entangling) surfaces.

4.4.2 Constraints from the parity-odd sector

For the parity-odd sector we proceed in a similar manner. First of all, we note that
the bending moment, spin current and background curvature moment have non-trivial
contributions given by (4.12), (4.15), (4.13) and (4.17). For the present purposes, however,
we will not assume that the coefficient A3 appearing in the parity-odd contribution to
the Young modulus (4.15) is the same as the one appearing in the background curvature
moment (4.17). Therefore, we replace the coefficient A3 appearing in the Young modulus
by another coefficient 03, though we will at the end derive that we must have A3 = 3. In

32The term involving (k1 + k2) is not independent but we are treating it as so because one could have
chosen to work with k1, ko instead of (s, Bs.
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this case, the most general surface stress tensor can be written as®3

TH = (Broy"" KPn, + 2811 K"Pn,) 6,1
+ (2#@57’“%)‘0»\ + ke (U wq ) + 2%77(“Aﬁu)w)‘> 0p,10n,2 (4.31)

+ (4613E>\UpaK)\(MpKV)Ja + 28147 LT E(Mon‘r’}/y)ﬁRﬂa)\p) 5p,25n,2 .

A similarly lengthy calculation as in the parity-even case, using (2.48), (4.12), (4.15), (4.13)
and (4.17) leads to

(Bio = M)V (K”mp) b1 +2(B11 + o)V (K2*7m, ) Gy

+ [2/@;?0 (uwy,) + /ﬁ;ﬁvg(uawa)ﬂ 9p,10n,2

+ 7 (Ka V7w + Vo V7w 4+ Ky7V o 976V 0" ) 8,100,

+ [(/314 — Ag)eﬁae/ijAR”agp +4(B13 + 93)e|’\|aeﬁp (KA sV K ap + 97, K" 0pV 1K)\ )
+ (405 — 2(B14 + Ag))eﬁo‘eip'y”,,R”aup +2(03 — Ag)eﬁaeipKyggR”paA

+ (B = 2007V (7€ R asp) |82z = 0, (4.32)

where we have made use of eq. (B.12) in order to deal with the parity-odd contribution to
HH A However, this contribution drops out from the conservation equation and will only
be related to the other coefficients via an edge analysis. Since all these terms are inde-
pendent from each other, satisfying this equation implies that all terms must individually
vanish, giving the unique solution

B1o = Ao, Bi1 = —Xo, ks = ke = k7 =0,
P13 =—03,  Pua= A3, A3 =03.

Note that the terms in the spin current proportional to ¥, J2 do not appear in (4.32)

(4.33)

and so are unconstrained by the stress conservation equation. This is a consequence of the
surface dimensionality p = 1. However, one must still impose the off-shell constraint (2.44)
which leads to ¥ = 0, as in the previous section, and 91 is unconstrained, as expected for a
spinning point-particle. This shows that the conservation equation (2.48) is not sufficient in
order to implement all diffeomorphism constraints. Furthermore, the result (4.33) provides
a formal derivation of the fact that only the linear combination of the first two terms
in (4.14) satisfies the requirements of tangential diffeomorphism invariance, as advertised
in the previous section, since we must have A3 = 3. Finally, we note that the solution (4.33)
agrees with the surface stress tensor that is obtained by direct variation of (4.19).

4.4.3 Constraints from the edges

We now consider the constraints on the edge stress tensor. The edge stress tensor contains
the analogous contributions to (4.28) and (4.31). The tangential projection of (2.63) leads

33We could have added terms to 7*" of the form 'ylfy“”e”paKAB"‘Kgﬁp, Yoy"" R— and 73eﬁ(“Ka”>Aerf\‘p.
However, ultimately, the conservation equation (2.48) requires 1 = 72 = 3 = 0 and therefore we have
avoided making this explicit for clarity of presentation.
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to the same constraints as (4.29) and (4.33). Here, we will therefore derive the constraints
due to contributions that are a feature of the edge dynamics, considering the parity-even
and parity-odd sectors simultaneously. We therefore consider the non-trivial contributions

to the edge stress tensor3*

TH = Bish 7, kP + 2B16KM ji? + 281 W™ €2 5 pliaTio U0, 6y 2002 - (4.34)

We now use the stress tensors (4.31), (4.31), together with the surface bending mo-
ment (4.15), spin current (4.13) and the constraints (4.29), (4.33), as well as the edge
bending moment (4.23) and spin current (4.24), and introduce it into (2.63). The tangen-
tial projection of (2.63) then yields

(Bis — Xo) V7 (71,KP) + 2(Brs + Ao)h ¥V (KM ,7P) + (Ao + 2M1 + 2k1)KPVI T,
+2(aq — k1)KP7,V 0" 4 2(k1 — al)ﬁ,\h”ph’“’RAupy (4.35)
+ 2()\1 + AZ)hU)‘ﬁuﬁyﬁaKW/PKa/\p + 2:‘%160 <€ay,\paaﬁyﬂuw#)\p> (5],725”72 =0,

which leads to the constraints
Bis =X, Bis=—-Xo, do=-2M\—2k1, M=-X, R =0, ki=ar. (4.36)

Note that these constraints capture the correct conditions found in the previous section
for the terms involving the parity-even sector of the bending moment. As advertised, the
boundary analysis relates the surface quadrupole moment with the stress tensor coefficient
k1 and the presence of « also requires a non-trivial Xo. Note also that the terms involving
A3, U, 51, 52 and as have dropped out from (4.35). The term proportional to 51 is left
unconstrained as in the surface case but in order to constraint the remaining terms we
must impose the off-shell constraints

BNk iy DWRE] — 72, PR, P, S .
_ _ 4.37
—2P° P74V, (h%ﬁmﬁm) — %y LM LN M, =0,

which leads to 52 = —2)3—2as5 as in the previous section, where we have used appendix B.
The form of (4.34) with the constraints (4.36) can be obtained directly from (4.27). The
edge dynamics provide a very non-trivial example of the diffeomorphism constraints im-
posed by a well-defined variational principle.

4.5 Constraints from Weyl invariance

In this section we study the constrains imposed on actions of the form (2.40) and (2.60)
if the action is required to be invariant under infinitesimal Weyl rescalings, i.e. under the
metric rescaling

5wg/u/ = 2w 9uv (438)

34We could have added other terms such as those proportional to 51 h*” (leﬁp)2 and 7o h‘“’IC"BpﬁplCagaﬁg

but a similar analysis would ultimately set 71 = 52 = 0 and therefore we have avoided presenting these for

the sake of clarity of presentation.
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where w(x) is an arbitrary real function. The transformation properties of the various
geometric quantities is given in appendix A. The variation of the action still takes the form
of (2.40) and (2.60) but with the variations being those associated with Weyl rescalings
instead of Lagrangian variations. Under these variations the action varies according to

008 = / o/ [(T"u + D" K+ Ly T ) w + DH PV w0 + 4@,5””*%%4
w

/ @GR [T+ D + Pl ) w + D, 09y + 40, V49, V]
ow
(4.39)

where we have used the diffeomorphism constraints (2.44)—(2.46) and (2.62) and also ig-
nored variations with respect to the intrinsic and outer curvatures, since they are not
necessary. For the action to be invariant under Weyl rescalings each of the terms above
must vanish independently, therefore a total of six conditions must be satisfied. We will first
analyse the case of a two-derivative surface action without edges and then later consider
the inclusion of the edges.

4.5.1 Weyl invariance for the edgeless surface
In the case of a surface without edges the first line in (4.39) leads to three independent

conditions. The last term in (4.39) implies that

1 1
Qu(y/\)” =75 (042(19 —1)+ 043%) V- 5 <a4(n - 1)+ 043%) LA=0

= g = —Q3

n (4.40)

_n _r
2(p—1)° 2(n—1)"
where we have used (4.17). Note that the term A3 in (4.17) drops out from this equation.

a4 = —Q3

In turn, the second condition in (4.39) leads to

'D“Mp =2(Mp+ A2)K?P 4+ Npn” =0
A2 (4.41)

for which we have used (4.12) and (4.15) and where again A3 in (4.15) does not play a role.
Finally, the requirement that the first term in (4.39) vanishes, using (4.28) and (4.31),
leads to

ap+ (p = 2) (MKPK, + MK K", + aaRy + agR, + auR1) = 0. (4.42)

This condition, together with (4.40) and (4.41) leads to p = 2 and a = 0. These results im-
ply that A3 (or equivalently ai5) as well as 91 are free coefficients. Using the conformal ten-
sors defined in section 2.1, the two-derivative Weyl-invariant surface action takes the form

1 —~
S2(0)] = [ @ovh (e Cuuperr + 0, ) 5,
+ /W P/ ( [/\3 (zewpacwcwa + R_) +as Q] Spadns  (4.43)

+ 2791uuw,u5p,15n,2> >

with C,” the conformation tensor defined in eq. (2.26).
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4.5.2 Edge contribution

If the surface has edges, the analysis changes considerably due to the non-trivial diffeomor-
phism constraints obtained in (2.62), which relate surface coefficients to edge coefficients.
If the surface has dimensionality p = 1 then the only non-trivial contribution to the full
Weyl-invariant action is the last term in (4.43), as the edge is point-like. For p = 2 there
is a non-trivial contribution in (4.43) due to the extrinsic curvatures. As shown in sec-
tion 4, diffeomorphism invariance at the edges requires Ay = —\o, which is incompatible
with (4.41) for p = 2. Therefore we must set Ao = 0. Similarly, in the presence of edges,
the contributions due to A3 (or as) must be balanced by an equivalent edge term as A3 is
topological. In other words, we must set A3 = as = 0. For a two-dimensional surface, the
edges are one-dimensional lines and, analogously to the surface, the edge Weyl constraints
in (4.39) do not impose any restrictions on 1. In this case, the full Weyl-invariant action
is given by

S[B(0), ®o(3)] = /W d%m”(”;”aﬁuyﬂuz /8 A (444)
This is rather significantly different from the edgeless case. If the dimensionality of the
surface is p = 3, then there is no contribution from the surface action, however, the last
three edge conditions in (4.39) lead to the equivalent results as in the case of surface actions
with p = 2. In particular, we have that y = as = az = 0 and the Weyl-invariant action is
given by

S[®.(5)] = / d25+/Th] <X2 (/cwﬂicwp - izcﬂ/cp> + AR,
o (4.45)
+&<%MWK{%¢P+R>5M>.

The first term above is the square of the edge conformation tensor (defined analogously
to (2.26)) while the second term coincides with the trace of the pull-back of the Weyl
tensor onto the edge. For p > 4 there are no non-trivial two-derivative Weyl-invariant
contributions.

4.5.3 Weyl anomalies

The above results are pertinent in the context of Weyl anomalies for two-dimensional
submanifolds. In particular, certain classes of CFTs with vacuum energy W{g,,, X*] living
on embedding surfaces have conformal anomalies, denoted by A, which are defined as

%W:/&%JMAM (4.46)

Using the formulation of the action (3.2) in terms of the spacetime stress tensor (with S
replaced by W), a Weyl transformation simply yields3?

A=TH + Tt (4.47)

3%Formally, the quantities T.", and T.", are one-point functions since they are obtained via the variation
of the vacuum energy W with respect to gu..
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where the trace of the surface spacetime stress tensor is given by

Ts“M _ <7'uu + D“)‘O‘K,M—i— Lyg HAa) g(ac) +VY, (D"up3<w)) —4V,V, (Qummg(m)) 7

(4.48)
and similarly for the edge contribution. Anomalies can be classified into three different
types [66]. In particular, type B anomalies are anomalies composed of local terms which
are Weyl invariant. All the terms in (4.43) are locally Weyl invariant and hence are possible
conformal anomalies for two-dimensional submanifolds. The first line corresponds to the
Graham-Witten anomalies found in [67] but the term corresponding to €2, which is present
in D = 4, seems not to have received attention in the literature.

If the submanifold has edges and assuming diffeomorphism invariance, the usual
anomaly proportional to the square of the conformation tensor must vanish and we are
left with (4.44).36 This includes a new possible edge anomaly in D = 3 which is type B. It
is also worth noting that for p = 2 there is only one type A surface anomaly given by (see
e.g. [61])

/ d>o\/|IR . (4.49)
w

However, as we have seen in section 4 (see footnote 30), in the presence of edges and
assuming diffeomorphism invariance, this term must vanish. Therefore, there are no type
A anomalies for submanifolds with boundaries. In turn, this implies that the weak c-
theorem of [3] for CFTs coupled to defects simply does not apply if the defect has edges.

5 Actions for DCFTs and BCFTs

In previous sections we focused on the consequences of spacetime diffeomorphism invariance
on embedded surfaces where the embedding map X#(o®) was kept fixed. This gave rise to
a rich set of equations of motion and constraints that such a surface must satisfy. In this
last section of the paper we relax the requirement that the embedding map is kept fixed,
and in particular we will consider the transformation properties

5§g,ul/ = 2v(u£l/) ) dx XM = _gli, (51)

i.e. the change in the local coordinates is compensated by the change on the embedding
map such that the surface is unmoved.

This new set of variations, (5.1), is of special interest to particular cases of conformal
field theories coupled to defects (surfaces) with edges (DCFTs) and boundary conformal
field theories (BCFTs). When coupling defects to CFTs one wishes that the defect is
consistently coupled regardless of its shape. In turn, this implies that there is no dynamics
associated with a shape equation. Instead, the variational principle must render the shape
equation trivial, which implies the simultaneously displacement of the embedding map
under a diffeomorphism. This is precisely what eq. (5.1) ensures.

35Here we are insisting that the diffeomorphism constraints are satisfied for arbitrary extrinsic curvature
components of both surface and edge geometry instead of imposing ad-hoc boundary conditions on them.
See footnote 29.
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A further generalisation can be taken into account, by letting actions have more dy-
namics than those dictated by pure geometry, in particular with the existence of couplings
to a scalar field and g-form gauge fields. These fields are not background fields to which
the defect couples to, as when coupling probes to supergravity actions [49], such that the
variation of the action with respect to them produces a source term in the equations of
motion. Instead, the fields are dynamic and variation of the defect action with respect to
these fields yields the corresponding equation of motion. We use the spacetime formulation
of the variational principle to deal with these extra fields and identify new contributions
to these Ward identities, which arise due to the spacetime formulation of the variational
principle and were previously overlooked (see egs. (5.22)).

Some of these results were considered in [4]. Here, we provide a different method and
interpretation, using a spacetime formulation, and also include further degrees of generality,
e.g. the Ward identities are derived for defects in curved space and include the existence
of non-trivial defect edges, whose detailed analysis is given in appendix B.4.

5.1 Variational principle

Consider a quantum field theory living on a manifold M with boundary or defect W of
dimensionality p. This quantum field theory is characterised by a vacuum energy functional
of the form

W gy X = log / (DY) exp (— S[gpu X", 0,00, ), (5.2)

where W denotes a collection of fields, while S denotes the action functional which can
depend on the fields ¥ and its derivatives. We require the action S to be invariant under
diffeomorphisms when all fields are allowed to vary accordingly, namely

S[9u, XH, W, 0¥, - - - | = S[gu40¢ g, X* + ox XH, W + 6.V, 00 + 6.0V, - -], (5.3)

where the metric and embedding map have the transformation properties given by eq. (5.1).

The variation of the collection of fields ¥ under diffeomorphisms is not necessary to
be given since we assume that diffeomorphism invariance holds on-shell, i.e. when the
equations of motion for the fields ¥ are satisfied. The variation of X* is defined differently
than in [4], in particular, it is defined as the total variation of S with respect to X*, instead
of just being the variation restricted to a particular set of fields.

As in section 3, we can recast the action in terms of a spacetime action and define its
total variation as the sum of a Lagrangian variation and a variation of the embedding map,
such that

SV gy, X7 = /M JIgldPz <;<Tﬂy>5€gw— (D,)(SXX“) , (5.4)

where (D) is the one-point function referred to as the displacement operator, as it is the
operator dual to an infinitesimal displacement of the surface and defined as

1 oW

_\/H(SxX“ '

(Dy) = (5.5)
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Introducing the variations for background diffeomorphisms leads to the conservation
equation
Vu(TH) = (D), (5.6)

where (T*) is the one-point function defined as in (3.3) but using the vacuum energy, i.e.
by trading S — W. It takes the general form

(TH) = (T)") +(T¢") +(T¢) (5.7)

with Th" = T}!" for DCFTs and T}” = T}""©(x) for BCFTs and the remaining two
contributions being the surface and edge contributions respectively, which for the case of
BCFT’s may contain additional contributions due to an inflow of energy-momentum from
the bulk part of the action as in (3.35).

It is clear from (5.6) that the displacement operator has the role of a force term in the
stress tensor conservation equation. Its role is to force or to displace the surface in such
a way that the orthogonal components of (5.6) are trivially satisfied. The displacement
operator has an expansion analogous to the stress tensor, that is

(DF) = (D§) + (Dg) (5-8)

where both the surface and edge contributions to the displacement operator can be

written as3’

D! = DF§(z), DF = DM (). (5.9)

This definition agrees with the definition of displacement operator introduced in [2, 3]
and it accounts for the full displacement of the surface as it appears in the conservation
equation (5.6).3® We will determine the Ward identities for CFTs with vacuum energy (5.2)
and in the process uncover the stress tensor and the displacement operator.

5.2 Ward identities for DCFTs and BCFTs

In order to obtain the Ward identities, consider a set of bulk operators O; and define the
collection x of bulk operators as

X =01(x1,21) - Op(xn, 2n) . (5.10)

It follows from (5.6) that for any correlation function the Ward identity for diffeomorphism
invariance can be written as

e (x) + /M VIgldPz (—V,T"x) + (Dyx)) & = 0. (5.11)

370One could expect that the displacement operator, analogously to the stress tensor, would have an
expansion in terms of derivatives of g(m) This is however not the case. Derivatives of the embedding
map appearing in all geometric structures are tangential since orthogonal derivatives are not well-defined.
Therefore, any variation of the embedding map will at most involve tangential derivatives. These tangential
derivatives can be integrated out, as for the case of the stress tensor, by making a frame choice. It turns out
that the frame choice that yields the same equations of motion and boundary conditions as for the stress
tensor is the one for which all tangential derivatives of the variation are integrated out.

381n full generality, the surface and edge displacement operators (5.9) should be defined as integrals over
the surface and edges, respectively, as for the spacetime stress tensor (see footnote 18).
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Hence, in the absence of external operators or when the correlator is invariant under the
symmetry, one must have
(VTx) = (D"X) . (5.12)

While (5.12) does capture all constraints from diffeomorphism invariance, we require that
the defect action, including its edges, is invariant under tangential diffeomorphisms that
do not displace the surface. From (5.12), this implies the stricter results3’

(Y, V. THx) =0, (77,D"x)=0. (5.13)

The first condition above states that the invariance of the action under tangential diffeomor-
phism while the second condition states that the defect action must be reparametrisation
invariant. As we will see below, for specific classes of DCF'T actions, these two Ward
identities will lead to different constraints. Finally, for a Weyl transformation in which
dwGuw = 2wgu, and §, X* = 0 one obtains the Ward identity

00+ [ Vgl e (1,00 0. (5.14)

Hence, in the absence of external operators, up to possible conformal anomalies, this leads
to (T*,x) = 0. This concludes the general study of Ward identities which holds for
any DCFT or BCFT. However, when written in this abstract manner, its usefulness is
questionable. Below, we focus on a large class of DCFTs/BCFTs and write down the
Ward identities in a more practical manner. We also give examples in which further local
symmetries are imposed, leading to further Ward identities. The inclusion of edges in full
generality is considered in appendix B.4.

5.3 Ward identities for a class of DCFT actions

We now consider a class of DCF'T actions and write down their Ward identities. We focus
on the case in which the defect couples to the different geometric tensors introduced in
section 2 but we ignore couplings to curvature tensors for simplicity. As we have noted
above, the vacuum energy is a functional of g, and X*# but the action can be a function
of non-geometric fields. If the fields are background fields such as a scalar field ¢(x) or
some vector field ¢*(x) then the couplings to the geometric fields introduced in (2.40) are
sufficient. However, if the fields are purely surface fields such as a vector field ¢*(X) or
¢*(X) that only have support on W, then one may define their respective push-forwards
onto the background spacetime as ¢‘n*; or ¢%e*,. Hence their variations will need to
include variations with respect to n#; and e#, which were not accounted for in (2.40).4°

3¥The authors of [3] claim to have derived surface reparametrisation invariance in eq. (B3) of [3]. This
however is not something that can be derived but something that must be imposed on abstract actions of
the form (5.4). In particular, they seem to have forgotten the change in the argument in g, (X) in (B2)
of [3]. If such had been taken into account, a linear combination of the two Ward identities in (5.13) would
have been obtained.

49This means that in practice, we need to work with both spacetime and surface indices though, as we
shall see, we can always push-forward the required structures in order to have a purely spacetime description.
In the gauge formulation of the variational principle, the problem is reversed and it would be necessary to
introduce couplings to n*; and e, in order to deal with background fields leading again to the necessity
of dealing with both spacetime and surface indices.
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Consider a general variation of a correlator such that*!
3 (x)+ % /M d”x\/lgl (T} X) 39,
+ /W dPo/|7| < ( - %77“’ ey =P, 0 LM, + %BW 0¢ Ly +D" [ 6¢ K1)’
+8Hy, 0w, M + DX+ VR, 0n,Y + c#yée,ﬁ> x> (5.15)
/a . d"'5/|h| < ( = %ﬁw(sghw —PYocP", + %gwgp,w + DM 5Ky’
+8% 0ew, M + DudXF + V! om0 + 5%5@;) X> =0,

where we have defined the variations de,,” = e,%5¢”, and dn,” = n,'0n”; and analogously
for the edge variation. These are the required structures to deal with fields with support on
W and 0WW. We have also introduced the dual operators to these variations in the manner

1 1 1
0L Vi, = ——=nt oL CH, = ——=e” oL (5.16)

s VI0XE e tea W/ e T ] Yot
and similarly for the edge action. Here V¥, is transverse in its first index while C#, is
tangential in its first index and similarly for the edge terms. These variations and their
conjugate operators mark the difference between the analysis presented in this section
and that of section 2. These three variations were introduced in order to deal with non-
geometric fields such as gauge fields and scalar fields. In particular, D, is defined as
the variation of the action with respect to variations of the embedding map keeping the
intrinsic and extrinsic geometry fixed. Therefore, it should not be confused with D,,, which
takes into account variations of the geometric fields as well. Similarly, the variations with
respect to de,” and dn,” should be understood as couplings between the purely surface
non-geometric fields and background non-geometric fields or the surface geometry, except
in the case p = 1 for which the coupling to e,,” is essentially a coupling to the point particle

velocity u# or in the case of a BCFT where the coupling to n,"”

is essentially a coupling
to the normal co-vector n,. In these particular cases, their variations also include direct

couplings between the geometric fields.

Ward identity for tangential diffeomorphisms. We now wish to express the Ward
identities (5.13) for the class of DCFTs whose action varies according to (5.15). We begin
by considering the first of the identities in (5.13) and perform a tangential Lagrangian
variation that does not displace the mapping functions, i.e.

Segur = 2V, 0eXM =0, & =¥, e". (5.17)

Under this restricted variation, the variations associated with the operators D, and C¥,
vanish, and similarly for the corresponding edge operators, however V¥, and V¥, do play

41 A subclass of this class of DCFTs was studied in [4] but using a gauge formulation of the variational
principle and without considering the possibility of non-trivial edges.
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a role. Under the tangential diffeomorphism, one finds
b1 00— [ VIala (9,10 [ VRl (B 12x) Vil +(57x) ¢l)

3 : (5.18)
+/8W VIR 7, (B2 Py ) Vagll+ (B x ) €)) 0.

The quantities B*, BY, E“p”, BM were introduced in section 2.2. However, now there is a
new contribution to B*” and n,B**. In particular,

P L7V g B — DN K\ 4 SPMEY ) — L\ L VSO — L YA vy —

(5.19)
while ﬁugw’” is a linear combination of the three equations (2.62) with the analogous
addition of V", as for B, Contrary to section 2.2, in the presence of a defect one cannot
conclude that B*”, BY, Brev , B must vanish independently. This is because on-shell the

divergence of the bulk stress tensor can be decomposed as

o~

VI = EY5(z) — YV, (5>‘”J_“>\g(x)) +E5,(z) - V,, (EMPN@(:U)) Fo (520

where the dots correspond to higher order terms that we are neglecting in this analysis.
Introducing this into (5.18), one finds, in the absence of correlators, the constraints

Biy, = ¥ ENLE = BVLR, | BN, =, B EVPH, = i BV P,
(5.21)
This implies that a priori, without knowing the specific on-shell value of (5.20), one cannot
determine the components of stress P, and B*”. As we shall see, this is in contrast with
the case of BCFTs. However, one can write general constraints imposed by the Ward
identity. From the second condition in (5.21), we are lead to three conditions

DK\ 13710V, 80 = g1l 10,
B _ fDu)\(aKMAa) o J_(O'VVOL)I/ _ gul/J—(aHJ—a)V’ (522)
poa _ SHCMKMJ)\ _ Vau,y;w _ gle—ua’Yaya

which are modifications of (2.44)-(2.46) due to the presence of the bulk stress tensor.4?
Finally, the first condition (5.21) yields
Vo VATY = 9" SV R0 = EMY", (5.23)

where T?? is a modification of the one introduced in (3.21), namely,
T)\U _ T)\U + P,LLV e ,y/\u o ,YM)\HO',LL o ,y)\yvup,uyo . SuaaKM)\a . VO‘V,_YV)\ , (524)

while ¥#* was defined in (3.21), and similarly for the two last edge conditions in (5.21)
as we shall see in appendix B.4.

“2We note that these constraints are altogether lacking in the analysis of [4].
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Ward identity for tangential displacements of X#. We now study the second Ward
identity in (5.13) obtained by displacing the mapping functions according to

Ox X" =g (5.25)

This corresponds to a reparametrisation of the surface coordinates. Under this displace-
ment, and contrary to the case of a BCFT, there is no contribution from the bulk action
and bulk operators. Using the variation formulae of appendix A we find

(D47, +7°7 (S, + Bl + N, —PF, — CHy = V)TV ) X)
+ <(§A (NAV —- P, — C%) 7"”x> (5.26)
_ <<,YUV§A (T,\u _ gup,yxu Iz _,,Y)\pvupj_l/‘u) _ ,YUVEN)\pRVup)\) X>

where we have used the last condition in (5.22) and, for convenience, defined

NMV - TNV - ’Yﬂy + 2D)\lupKl/)\p + SM}\PwV)\p I IPMV - Pul/ + Sa)\l/KOcN)\ )

c
vl (5.27)

BN — (B/\P _ DW(/\KWP)> ’ SeB — (D’“’[’\KWP] + ﬁugu/\p + V[/\p]) J_QALﬁp‘

The Lh.s. of eq. (5.26) is not manifestly covariant thought its combination must be as the
r.h.s. is. This is a feature of working with variations of the embedding map.

In the absence of couplings to non-geometric fields D* = C*,, = V*, = 0, this Ward
identity reduces to the Ward identity for surface reparametrisations in the pure geometric
setting of section 2. However, in such case, it does not follow that S#,, B*, P*, and N*,
vanish. In order to recover the correct equations of motion, including the shape equation,
from variations of the embedding map in the pure geometric setting, one must implement
the diffeomorphism constraints (2.44)—(2.46) or equivalently (5.22) with £* = 0. This
sets S#, = B*, = P*, = 0. Once introducing this into (5.26), we note that one of the
terms involving NH, still contributes with non-covariant terms. Since the action obeys
the diffeomorphism constraints and the last two lines in (5.26) are manifestly covariant, it
follows that requiring (5.26) to be covariant implies that the first line must vanish, leading
to N¥, = 0. This is, however, an extra requirement beyond those obtained in (5.22) and
it is satisfied for all pure geometric actions that we consider. It can also be obtained by
requiring the spacetime and gauge variational principles to be equivalent (see appendix B).

Ward identity for diffeomorphism invariance. We now turn to the Ward identity
for diffeomorphism invariance (5.11). Using appendix A, a diffeomorphism that changes
the metric and the embedding map simultaneously as in (5.1) leads to the relation

b () - /M Vigld®a (V. x) & + /W VIl (B 12,936 - Dre*) x)
+ /W VI dPo ((NF, =P, — C1,) 9,67 + (VM — BF, — %) T %) X) (5.28)

_ /W VldPo <?A <‘€“V7Au Lo +7AVWQU#) fax> o
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This Ward identity can be turned into an unintegrated expression as in (5.12) with a
specific spacetime stress tensor and displacement operator that will be given below. One
may demand the action to be invariant under further local symmetries. For instance, using
a gauge variational principle, as in [4], requiring invariance under rotations of the normal
vectors sets S* = 0.

Ward identity for Weyl transformations. Lastly, consider the Ward identity ob-
tained from Weyl invariance 0,9, = 2wg,u, with d,e#, = 0 and 5wn,f = wnui. The
variation (5.15) becomes

b () + /M dP /] (T ) w
+ [ @ VRHT o+ Bl = V) w = D2, aw)X) (5.29)
w
p—1~ T BRI VK _ P« —
—f—/awd o |h|<((Tﬂ+BM VM>W Duvaw)x>_0’

Notice that the trace 7#, only runs over the tangential indices while the traces V¥, and
B, only run over the transverse directions. An equivalent statement holds for the edge
tensors. This expression can be compared to the analysis performed in [4]. Using the
second identity in (5.22) and ignoring edge contributions one finds

5 () + / 4P /9] (T, w
- (5.30)
b [ BT+ DB 485 L)oo~ D7V ) =0,

w

which agrees with eq. (5.14) of [4] only if £ 1,,= —V#,, or alternatively if the con-
straint (2.45) is satisfied. However, this is not an a priori requirement.

5.4 Ward identities for a class of BCFT actions

We now consider a similar class of BCFTs and write explicitly the Ward identities. This
case is comparatively different than the case of DCEFTs. The class of BCFTs studied
here is broader than that in [2], in particular, it includes couplings to arbitrary non-
geometric fields. Consider the variation of a correlator under some unspecified symmetry.
As previously, this variation can be written as

1 v
30+ 5 [ Pav/BlOw) (T4X) b
1 1
+ / dPor/|9] <( — 5T 0y + 5B 8¢ Ly, +D 0K + Dud XV (5.31)
w
+V,6nt + C“l,éeul’>x> =0.

As there is only one normal vector to the CFT boundary n* there is no spin current,
contrary to (5.15). Furthermore, note the appearance of the function ©(z) in the bulk
contribution. We now consider the Ward identities associated with this class of BCFTs.
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Ward identity for tangential diffeomorphisms. Under a tangential diffeomorphism
that does not displace the mapping functions, the first Ward identity in (5.13) reads

Seil (x) — /M V0gldPz0(z) (V, T x) €l

(5.32)
+ /W VldPo <<B“”qu> Vel + (BYx) 5”) _0.

Contrary to the case of a DCF'T, VMTS ¥ does not have an expansion in terms of derivatives
of d(x), therefore, in the absence of external operators one is lead to the results obtained
for an interface in section 2.4. In particular, from (5.22) we have that

B = DMK\ L Ynt 197 Vi, =0, (5.33)
and from (2.74) that
VeVuTy” =0, 7o VATY — o/ DV RT 5 = ma 137" (5.34)

with TA? and $# defined in (3.21). It is worth noting that, as in section 2.4, there may
be contributions to the surface operators such as 7" due to an inflow from the bulk.

Ward identity for tangential displacements of X*. We now consider the second
Ward identity in (5.13) by displacing tangentially the mapping functions. One obtains

e
_ <(,YUVV)\T)\V o VUVZM/\PRVNP)\ _ nATk;\V7oy> X> =0,

where N* was given in (5.27) but now with vanishing spin current and the last equality
follows due to (5.34). The quite simpler form of this Ward identity compared to a DCFT
is due to the fact that the constraints (5.33) are generally valid. Furthermore note that
the L.h.s. is not manifestly covariant but this is just an artefact of working with variations
of the embedding map.

Ward identity for diffeomorphism invariance. Turning to the Ward identity for
diffeomorphism invariance (5.11) we find

00 [ Ve (V.1 %),
- (5.36)
— | VP (D7, = VA (€ =), = (€N Ty ) X € =0,

which, in the absence of external operators leads to the two separate requirements
(V. I™) O(x) =0, (D" — Y, (CHT —NHTY — (CH, — NM,) FZ)\gAU> 5(x)=0. (5.37)

The last condition, in particular, states that the non-manifestly covariant combination of
terms must vanish for arbitrary spacetime directions.
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Ward identity for Weyl transformations. The Ward identity for Weyl transforma-
tions is just a simple addition of the bulk term to the Weyl transformation for codimension
n = 1 surfaces studied in section 4.5. It reads

b () + /M dP\/[g10() (T yox)

(5.38)
+ / de\/m ((THy + D" pKw”) w — D" Vaw) x) =0,
w

where we have used (5.33).

5.5 Spacetime stress tensor and displacement operator

From the variational principle (5.15), one can easily extract the spacetime stress tensor

and the displacement operator by making use of the delta function §(z). In particular we
obtain the stress tensor for the bulk and defect®3

TH — Tg“’ + [T/U’ + 273>\p | P %\V) + BHY J_(HAVV)/\ _ 27)‘(”]/"),\ S(ac)
~ (5.39)
-V, [(21),0(;“/) _pHrp 4 25(#V)p> 6(95)} .

In turn, for a BCEFT, the stress tensor on the boundary is (3.35). This provides a formal
derivation of the contact terms in the stress tensor for a DCF'T that was in general lacking
in the literature.

The displacement operator can be derived by making an arbitrary variation of the
embedding map. In general, there will be tangential derivatives of the variation of the
embedding map but these can always be integrated out. Performing this variation leads to
the displacement operator

DY = |: (v}\T)\cr . Z,u)\pRo"up)\) . v)\ <5MV'Y)\M e +'Y)\VV“VJ-UM)
— (D7 + g™ (S", + B, + NI, — P, —CF, = VI'))T},) (5.40)
_ (ﬁ)\ (N)\V . ]P))\V - C)\V) goy) }g(l‘) ’
while for a BCFT, the displacement operator takes a simpler form

b7 = [ (?ATAU — SMYRT = maTy) 0)
= (D7 = VA (e~ ) — (€t~ N Tag™ ) [3(a) >4

The form of the stress tensor and displacement operator provided here satisfy the Ward
identity (5.12), given the constraints (5.22).

43For the special case S*¥ = B = P* = 0, this stress tensor is different than the ad-hoc stress tensor
introduced in eq. (5.21) of [4]. In particular the authors of [4] missed the dipole contribution 28*)?
in (5.39). In turn, this lead them to postulate a Ward identity in the form of eq. (5.22) of [4] which is not
generally valid neither physically meaningful.
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6 Discussion

In this paper we have introduced a new type of variational principle for (entangling) sur-
faces, interfaces and BCFTs/DCFTs. This variational principle is based on Carter’s space-
time formulation of surface actions and the concept of Lagrangian variations [7, 14, 50], for
which the background coordinates are displaced but the embedding map is kept fixed, as in
the case of (entangling) surfaces. In the case of actions for BCFTs/DCFTs, it is required to
consider both Lagrangian variations and variations of the embedding map simultaneously,
since one wishes to couple defects/boundaries to CFTs regardless of their shape. This led
us to extend the variational calculus within this spacetime formulation in two different
directions: on the one hand, we give explicit variational formulae for Lagrangian variations
of many geometric structures of interest while on the other, we provide variational formu-
lae for variations of the embedding map of the same geometric structures.** In particular,
Lagrangian variations are always manifestly spacetime covariant and only require defining
geometric tensors on a single surface, rather than working with a foliation of such surfaces,
even if just in a local neighbourhood.

The variational principle introduced here encompasses all diffeomorphism constraints
on surface/interface actions, as show in section 2.2, in particular egs. (2.44)-(2.49) and
egs. (2.62)—(2.63). One of these constraints is the shape equation itself, describing the
non-trivial dynamics of these surfaces. Others include a component of tangential diffeo-
morphism invariance (2.48) and invariance under local rotations of the transverse back-
ground coordinates (2.44).% An additional set of constraints (egs. (2.45)—(2.46)) describes
the relations between certain components of the spacetime stress tensor associated with
a given surface/interface, while others (eq. (B.22)) are related to invariance under local
Lorentz transformations on the surface and other local transformations. This last set of
constraints is not captured within a gauge formulation of the variational principle, as show
in appendix B. A subset of these constraints allows to explicitly relate this spacetime for-
mulation of the action with the multipole expansion of the stress tensor introduced in [58].

These diffeomorphism constraints impose restrictions on the type of terms that can
contribute to surface actions. The naive expectation that, analogous to spacetime actions,
contractions of tensor fields yield covariant scalars does not hold in the case of surface
actions, as the diffeomorphism constraints impose stronger restrictions. These restrictions
become intrinsically more complex when the surface has edges, such as in the case of an
open string worldsheet with a point-particle attached to both its ends. Based on an enu-
meration of response coeflicients, we analysed a two-derivative action with non-trivial edges
in section 4. It was seen that requiring such action to be diffeomorphism invariant for all
shape configurations (i.e. without imposing ad-hoc edge conditions that restrict the edge
dynamics) imposed relations between surface and edge response coefficients. In particular,
if the surface has edges then an arbitrary combination of extrinsic curvature invariants is

44 As far as we are aware, variations of the embedding map within this spacetime formulation had not
been carried out earlier.

%5In a gauge formulation of the variational principle these two correspond to surface reparametrisation
invariance and invariance under infinitesimal rotations of the normal vectors (see appendix B). However,
we have not investigated whether this statement also holds when taking into account non-trivial edges.
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not allowed. Diffeomorphism invariance at the edges requires that a particular combination
of extrinsic curvatures to be equal to the intrinsic Ricci scalar plus a tangential contrac-
tion with the background Riemann tensor. In turn, these considerations implied that the
presence of edges restricts considerably possible conformal anomalies for two-dimensional
submanifolds, as seen in section 4.5. It would be interesting to investigate whether these
constraints also impose any restrictions on actions in the context of renormalised entangle-
ment entropy [68].

Analogous to classification procedures inspired by effective field theory methods em-
ployed in the context of hydrodynamics to constraint constitutive relations, it was shown
that similar classification procedures can be employed to constraint the stress tensor of
(entangling) surfaces at a given order in derivatives. This leads to non-trivial constraints
among the response coefficients and the coefficients appearing in the surface/edge stress
tensor. It would be interesting to extend this work by including couplings to background
Killing vectors and worldvolume Killing vector fields. This direction has been pursued to
a certain extent in e.g. [11, 59, 62] but in light of this new variational principle it would be
interesting to revisit these constructions and to push them to higher levels of generality,
such as including arbitrary couplings to derivatives of the Killing vector fields.

In the context of BCFTs/DCFTs, this new variational principle leads to several con-
straints among the bulk stress tensor and the spacetime surface/edge stress tensor as shown
in section 5. Some of these constraints had been previously overlooked in the literature
(see eq. (5.22)). A formal derivation of the contact terms in the spacetime stress tensor and
a formal derivation of the displacement operator in curved spacetimes was given. Ad-hoc
constructions of this spacetime stress tensor were present in earlier literature and turn out
not to be fully correct. Partly, the reason for this supervenes on the usage of a gauge formu-
lation of the variational principle. While this form is more suitable to deal with variations
of intrinsic quantities, it is less suitable to deal with the variations of background quantities
and the existence of a bulk, for which a split between normal and tangential components is
meaningless unless a foliation of surfaces is introduced. The correct form of the spacetime
stress tensor and displacement operator can now be used to evaluate correlation functions
in a broad class of BCFT/DCFT actions and to constrain CFT data as in [4].

The main purpose of this work was to develop a spacetime framework to deal with
a broad range of systems, however, we have only dealt with actions or vacuum energy
functionals that can be treated as functionals of geometric fields only, namely, g,.(z),
X#(o) and X#(o). It would be interesting to apply the same methods to actions that
are functionals of other background fields such as vector fields, gauge fields and scalar
fields. This extension is pertinent in the context of black holes and the coupling of probe
branes to supergravity [49] as well as in the context of entangling surfaces in theories
with gauge or scalar fields (see e.g. [69, 70]). The existence of symmetries, such as gauge
symmetries, will impose further restrictions on the type of couplings that can appear on
surface actions. Furthermore, we have stream-lined a method for obtaining the surface
diffeomorphism constraints in full generality for an arbitrary number of derivatives in terms
of frame-invariant tensors in appendix B. It would be interesting to obtain these constraints
explicitly at higher orders following this procedure. We plan on addressing some of these
problems in future work.
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A Variational calculus for submanifolds

In this appendix we review the variational calculus of submanifolds. We focus on La-
grangian variations that were studied in some detail in [7, 14] and we generalise it to several
geometric structures. The variations of the same geometric quantities under changes of the
embedding map is also given and, as far as we aware, it is the first time that they are prop-
erly addressed in a spacetime formulation. Furthermore, we also present the transformation
properties of many geometric structures under Weyl rescalings.

A.1 Lagrangian variations

For a given submanifold for which one has chosen the adapted frame where the background

metric evaluated at the submanifold can be written as g,, = v, + L., the tangent and

normal vectors obey the conditions*®

eMe,b =~ phind =5 etn,t=0. (A1)
When performing a variation such that the tangent and normal vectors change according to

elg = el = ety + dety, i =0l =nt 4 dnty, (A.2)

the new tangent and normal vectors € and 7' must continue to obey (A.1). For a general
variation where the background metric may also vary, one obtains from (A.1) the relations

. 1 . . . ,
ont'n; = —in‘”n”iégw, ont'eq = —nt'e” 410G, — ny'det (A.3)
and hence in general one finds
ni 1 UA Pt i At v 15N na
ontt = —3 LHnfgy, +w'int — (n €"a0gx, + ny'de a) et

g | o (A4)
on,' = §J_>‘anz5g>\p +w'jn,’ — nxleﬂaée)‘ay

460ne may also work with a time-like transverse space by replacing 6 — n%. See footnote 7.
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for some anti-symmetric matrix w’; in O(n). The term w’;n*J expresses the freedom of
rotating the normal vectors and still satisfying (A.1).

We now focus on a specific class of variations, which we refer to as Lagrangian variations
and denote by d¢. In this case, dggu = 2V (,8,), w'; = 0 and the embedding functions
remain fixed 6¢ X* = 0 so that d¢e”, = 0. Using the fact that

55’7ab = euaeubéﬁguu7 5{7(11) = _Vacﬁydb(sﬁf}/cda (A5)
one obtains the variational formulae
5§7MV = _7M>\7Vp6£g)\pa 5{ J—;w: J—)\yJ—pu(sggApa 5€J—Mu = _'YMAJ—pu(SEg)\pa (AG)

and also 6¢v#, = —6¢L#,. The metric variations (A.6) form a complete set of Lagrangian
variations of g, as they account for the different tangential and orthogonal projections of
d¢guv- For completeness, we also have that

8¢ = —Yau 18067 = 210 (uL0) 06 L,

AT
Jg LM = — LHOLYP §e Loy +2 LM 4Y) 6e 1% A

Given this, one may now evaluate the variations of the extrinsic curvature, leading to
0ek” = |21 K™ = YV K™ | Segra + L0700 0 (A.8)
where
0l = %QW (Vabeguw + Viudegor — Videgua) = V (V)€ — R (1a)pE" - (A.9)
The Lagrangian variation of the normal vectors is also of interest. Using (A.4), we find that
Jents = —nPiV € — nPiyVLE, —nley LV, (A.10)
In turn, for the external rotation tensor we obtain
Setw, P = [2%‘*[”%1* F LA wOP w0 1PN R Mﬂ Segra + Ly 1A% 47 5T,
(A.11)

It is useful to write down the contractions

DM 5 Ky =DM ,6c10,, (A.12)
S“ypdﬁwuyp = S'u)\awuowé& Loa +S'u)\UK,ua)\6£J-ao +SM)\p (RU/MP&’ +v/ﬁvf’§)‘) ’ '

and to define the variation 5~5

St 0wy = SHy By — SFA%w, e Loa —SPATK o e L%y = St (AL13)

where we have extracted the transverse components of the metric variations from the varia-
tion of the external rotation tensor. The reason for this, is that the transverse components
of the metric variations are included in the definitions of P* and B*” in (2.35). In order
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to consider variations of the intrinsic Riemann tensor, it is useful to obtain the variation
of the internal rotation tensor, which reads

6£puyp = <7ua70p ,UUﬁ + pMVaJ‘ﬁP + ‘Lﬁupal/p> 5590!5 + ,YVJ,VAP,}/&M(%I‘Z)\ : (A‘14)
As for the variation of the external rotation tensor, we define the variation
5&0#”,0 = Vyafykp'yauéﬁrgk ) (A‘15)

where we have stripped away the transverse components of the metric variations. Since the
variation of the intrinsic rotation tensor is purely tangential, the effect on the spacetime
stress tensor is to add dipole terms that can be removed by a choice of frame. It is also useful
to consider the variation of the background Riemann tensor, Ricci tensor and Ricci scalar

Ge R \vp = Vou0eTh ) = VTR, 6eRyw = Vadely, — V0T,

e (A.16)
bR =V, (90Tl ) = V40T — R*dg,, . '

The Lagrangian variations of the intrinsic Riemann tensor are also of interest. A lengthy
calculation reveals that

eRMyen = 27“0771,77r[>\ﬁ,€]55pﬂﬂ + (09*, terms) , (A.17)

for which the last terms can be removed, since they are already included in the transverse
monopole components of the stress tensor. Using the variation (A.14) into (A.17) we re-
move the additional transverse components of the metric variations but keep the tangential
components of the metric variations. Therefore, we define the independent variation

ngul/I{A = 27MaKu[npK)\]ﬁp5§gaﬂ + 27M(XKV[>\/va}5€ga,8

7 ) (A.18)
+ 2’YHU’YTV’YW[)\V.‘€] (’YUafyp‘r’yﬁﬂdEFﬁp) :

In the core of this paper we the definition of 7,, as the tangential components of the
monopole part of the stress tensor coincided with that which is obtained by direct varia-
tion with respect to v*¥. However, the variation of the intrinsic Riemann tensor gives new
contributions to these tangential components. It is convenient to keep the definition of 7,
as that which is obtained by direct variation. Therefore, additional tangential components
will appear in the spacetime stress tensor, as it will be seen in appendix B.

Similarly, it is also useful to consider Lagrangian variations of the outer curvature,
which take the form

0eQHyen = QL“ULTV'y”[Aﬁ,ﬂ(SwaUT + (97#, terms) + (L, terms) . (A.19)

Removing the transverse components of the metric variations and using (A.11), the shifted
variation takes form
&Q#V’M =21k, 1., K[Aﬂ[aKK]IaIT}(;fgaﬁ - QJ_apKP\B[uJ_P]MﬁR](;ggaﬁ

_ (A.20)
+ 200 Ly v 3V (L5 171797 677 )
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Analogously to variations of the intrinsic Riemann tensor, variations of the outer curvature
will also induce new contributions to the tangential components of the monopole part of
the stress tensor.

Finally, we note that variations of the edge geometry take the same form as for the
surface geometry but with the surface projectors and tensor structures replaced by the
edge projectors and tensor structures.

A.2 Variations of the embedding map

In order to obtain the equations of motion for a given surface action, one may perform an
infinitesimal variation of the embedding map according to

XH(o) = XM (o) — €(0), (A.21)

though in general it will not lead to manifestly covariant variations. Under this transfor-
mation the background metric evaluated at the surface g,,(X) and the tangent vectors
vary as

5Xgp,u = _faaag;w7 dxel'y = — aé-,u’ (A22)

and w;; = 0 in (A.4). It is easier to work with a gauge formulation to calculate these
variations and then transcribe them into a spacetime formulation. Under an arbitrary
variation of the induced metric one finds

Yab = €"a€”b0gum + 2€50€My (A.23)
and, hence, specialising to variations of the embedding map (A.22) one gets
6X7ab - _2euaeybv(ufy) ) 5X7MV - QVMAVVPV(/\gp) + 26(1('“5X€V)a, . (A24)

Clearly, for a diffeomorphism for which the mapping functions are allowed to vary one finds,
using (A.5), that d¢vep + 0xVep = 0. In turn, for variations of the normal vectors we find

Sxns = nPiV € + nay" Vot — nP0,8" — Dimt (A.25)

where C\uji is the anti-symmetric matrix jS = n“inajﬁ)‘(?[agu] \- Using the corresponding

Lagrangian variation (A.10), one obtains
(5511“1- +oxnt; = —n”iapf“ + wijn“j R (A26)

for the anti-symmetric matrix wji = najn[ui&x]f“. Therefore, under diffeomorphisms that

also displace the embedding map, the normal vectors n*; transform as vectors, up to a

transverse rotation.4?

For the extrinsic curvature we first introduce its alternative definition

Kt = euaeVwa/p =9.e%, (A.27)

4 For completeness, one also has that 5Xn#i = gwéxn"i — n”ifa@agw and that dxe,” = gu.dxe’® —

e"afagw .
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where D, is the covariant derivative compatible with both metrics g,, and 7, and acts
on all indices p,a,i. The action of this covariant derivative is better expressed via the
Weingarten decomposition

Qaepb =0, e'ub - Vabeuc + F)\ae ae b= nuiKabZ s

) (A.28)
Dnt; = Ognt +F e o + Wi n“ = —e"" K,

where v, is the Christoffel connection built from ~,,. The external rotation tensor has
been expressed as wg! = e“am\inpjwu’\p . Using this, we find that for a general variation

of the extrinsic curvature one gets
SK ' = nMiQ(a(Se“b) + n#"e/\aeabﬂ";a + n#iée/\(aeo‘b)f";a + Ko ony,t (A.29)

Hence, under a variation of the embedding map one obtains

Ox Kap' = =1, D (Dp) 6" + 1, e €7y R oor + KB} (A.30)
where, in deriving this, we have used that oxI', = —gaaarﬁA. One may also evaluate
(55Kab which leads to the result (5§Kab + ox Ky = abjc'uij. This means that under

diffeomorphisms for which the mapping functions are allowed to vary we find that the
extrinsic curvature K' is invariant up to a normal rotation. Converting the result (A.30)
into a spacetime formulation one obtains

5XK;wp = _’V/A T J—pﬁv 56 J—paK;wavafa + J—pB’YQM’YUVRﬁ(aa))\é)\

L (A.31)
+KMV w)\ +K#V n\ 5ani+2K)\(up€ béxe,,) .

Using the Lagrangian variation in (A.12) one finds that

5§K,pr + 5XK,uup = _J—poK/wavaga + K,uu/\&’\)\p -+ K,uu/\n)\iéani + 2Kv)\(upe)\b(sX'eu)b >
(A.32)
where we have ignored terms that vanish when contracted with D*”,. The second term
in this variation leads to the invariance of the action under rotations of the normal vec-
tors, contributing to (2.44), as in the gauge formulation of the variational principle where
0eKap' + Ox Kap' = Kapd' ;.
between the spacetime and the gauge version of the variational principle. In particular,

The other three terms in the variation mark the departure

it implies that spacetime variations carry more information than the corresponding gauge

variations. The last two terms, in fact, will contribute to new constraints as shown in ap-

pendix B.3. The first term is responsible for the diffeomorphism constraints (2.44)—(2.46).
By the same token, we consider a general variation of the external rotation tensor

Swa" = nu[i@aénﬂ“ + nu[inj]yfﬁyée)‘a + nu[inﬂ”eAaéfﬁy + 6“bKab[i5nuj] , (A.33)
which, when specialised to variations of the embedding map leads to

Sxwa? = 2K, 0] 0,60 + 0, v ere® R1 o\ + D07 . (A.34)

— 61 —



Evaluating the corresponding Lagrangian variation one finds 5§waij + Oxwad = D',
while translating the variation into the spacetime formulation and using the shifted varia-
tion (A.13) one obtains

Oxw ™ = 2K, P LAV, €7 — 4% 1Py 1Y R apt” + 17617,V ,5% (4.35)
+ wl,)‘pe”aéxeﬂa + KHV[)‘J_p}aeyaéxeaa .

Given this and (A.12) one can compute the total variation under a diffeomorphism that
shifts the embedding map

ggwukp + gxwﬂ/\” =7, LR AT TV + QK#”[/\J_p]UVI,EU (A.36)

+ J_/\aJ_”UW”CJO“’ + wVApe”a(SXe#“ + Ku”[’\J_”]aeyadxeaa , '
where we have used that n#;dyn,; is symmetric in the indices 4, j since under a variation
of the embedding map w;; = 0in (A.4). Again, we clearly see that the spacetime version of
these variations carries more information than the corresponding gauge variation for which
5§waij +0xwe” =D, . The last two terms in (A.36) will contribute to new constraints as
shown in appendix B.3. The third term contributes to the invariance of the action under ro-
tations of the normal vectors while the first two contribute to the constraints (2.44)—-(2.46).

The same type of variations can be performed for the background Riemann tensor.
In particular, for the background Ricci scalar, one simply obtains dx R = —£*V,R. Also,
consider the contraction with the background Ricci tensor L2 R, so that

Ox (L2 Ry ) = 20 Ryodxn?i— LY €780, Raa
(1 Raa) - (A7)
= — 12 €7V, Ry + 2L% 7 R\o V€,

where we have used (A.25) in the second line. For specific examples, such as these con-
tractions with the background Riemann tensor, one readily obtains, via variations of the
embedding map, that there are not contributions to the constraints (2.44)—(2.46). Recast-
ing the variational principle of section 2.2 in terms of variations of the embedding map leads
to the same final results but without giving the explicit couplings the abstract results are
not manifestly covariant. Nevertheless, the resulting equations of motion are equivalent,
as one may explicitly check for all terms in section 4. Equivalent variational formulae is
obtained for the edge geometry.

A.3 Weyl transformations

In this part of the appendix we provide the Weyl transformations needed in the bulk of
the paper. Weyl transformations are defined according to

Guv — €2wg;w, (A.38)
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and are inherited by 7, and L,,. In particular, the surface measure transforms accordingly
as \/|y| = eP“+/|y|. The background curvature tensors transform as

R — R0 +9,"VoVyuw—9,"VoVw+ 96,V VTw — 90, V, VT w
+9,"VowV,w—g,"VowV,w+ 9oV, wV™w — g9, V, wV"™ w

+ (QOuguﬂ- - g@uguﬂ-) VP va w, (A39a)
R, — Ry — g Ow—(D—-2)(V,Vyw—-V,wV,w+ gV wVrw), (A.39b)
R—e2(R-2D—-1)0w—(D-1)(D -2V wV,w), (A.39¢)

whereas the background Schouten tensor (2.24) transforms as
S = Suw =V Vyw+V,wV,w— %g,wvw wViw. (A.40)
The former expressions imply the invariance of the Weyl tensor defined in (2.23), that is
W — W, . (A.41)
In turn, the second fundamental form (2.6) and its trace (2.8) transform as

K™ = K™ =y L7 Vow, (A.42a)
K™ — e 2 (K“ —p L7V, w) , (A.42b)

which imply the invariance of the conformation tensor (2.26), that is
Cu™ = Cu™. (A.43)

The transformation of the internal curvature tensors can be deduced from the former
expressions by means of the Gauss-Codazzi equation (2.20)

Rwﬁ,uu — Rﬂe,uu + ('Y;LG’YVW _’YVG'YMW) ’ngvp wVew
+ (V% 0 =Y 0 a0 YT =10V YT ) (Vo Vpw =V, wV yw)

- (K,uwv%/@ _Kuﬂv’Y,u0+Ku0v'Yu7r - ;LGU'VVW) Vow, (A~44a)
Ruv = Ry =Y’V Vew—(0—2)7."7%° (V,Vow—V,wV,w)
—(P=2) (VY VowVew+ K, "Vew) =y K" Viw, (A.44Db)
R—e v (R—2(p—1)7v"°V,Vow—(p—1)(p—2)7v"°V,wV,w—2(p—1) K"V, w) ,
(A.44c)

whereas the Ricci-Voss equation (2.21) implies the invariance of the outer curvature
tensor (2.11)
nguy — Qﬂgw, . (A.45)

This could have also been derived by noticing that the external rotation tensor (2.9) is
Weyl invariant
wu’p = wu”p (A.46)
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On the other hand, the internal rotation tensor (2.16) has the transformation property
pu’p = pu’p+ 27”(Mﬁp)w — ”yupﬁyw . (A.47)

For the particular Riemann curvature contractions defined in eq. (4.10) and appearing in
the parity-even action (4.11) we find the following transformation properties

R — e [RH —2(p— 1)y*° (V,Vpw — V,wVaw) +p(1 — p)VO‘wVQw} ,
Rl — e [RL —2(n—1) 1P (V,Vsw — V,wVsw) +n(1l — n)Vo‘wVaw] . (A48)
R, — e 2 [R4 - (nvpfg +p J_p'B) (V,Vgw — V,wVaw) —pnvawvaw] ,

whereas the transformations of the tensors contributing to the parity-odd part of the action
given in eq. (4.19) are

4w w o —w M
€uvps — € Euvpo Wy — Wy, Np — €Ny, U —e “e, (A 49)
R.—e ™R, Q=™ MoK\ K — e e KK

B Details on the variational principle for actions

In this section we give further details on the variational principle used in the core of this
paper and provide the generalised constraints and equations of motion, which include the
couplings to the intrinsic Riemann tensor and the outer curvature. We also provide a
brief comparison between the spacetime and gauge variational principles. At the end of
this appendix we give further details on the Ward identities and displacement operator for
CF'Ts coupled to defects with edges, along with specific instructive examples.

B.1 Framework for variations at any derivative order

We consider a purely geometric action that takes the form (2.32) for arbitrary geometric
fields ®(o). The Lagrangian variation of any explicit term that appears in such action can
be organised as

1
5eS(@(0)) = /W P/l (T Segur + T e + TPV NV abeguus + -+ ), (B1)

where the dots represent higher multipole terms T#”#1#2H with | being the highest order
multipole moment, that can appear when terms involving more than two derivatives are
taken into account. It is clear that, with the aid of the delta function, the spacetime stress
tensor that arises from (B.1) takes the general form

1
T = T3() + 3 (1), -+« Vi, (T 915(2)) (B.2)
=1

and hence is in agreement with that of (3.5). Using that for a Lagrangian variation one
has d¢gu = 2V (,§,), one may obtain the shape equation and diffeomorphism constraints
from (B.1). In general, this is quite involved and here we provide a method that can be
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applied to higher orders, though we explicit use it only up to [ = 1. First, we decompose
the p index in the second term in (B.1) in tangential and transverse parts and integrate
the tangential component by parts in order to find

5eS[®(0)] = % /W o/ ((TW -V, (fyApT‘“’p» Segu + THALP Avp(sgg,w)

1 - e
+3 /M AP~/ |h| R TH P 5e gy

It may be observed that now each of the terms in the variation is frame-invariant, as it can

(B.3)

be compared with (3.17), except for the boundary term, as earlier advertised. Therefore, the
constraints and equations of motion that will be derived from this variation will necessarily
be frame-invariant in the surface but not on the edges. We introduce the quantities Thv
and THP to denote these two invariants such that

g, (o) | T s, -

Making use of d¢g,, = 2V (,§,) and the Riemann identity V|,V {x = R%),.8q into (B.1),
one finds the two sets of constraints

Tovleym, =0, 1°, (?W _v, (’y)‘arl\'a'/“)> —0, (B.5)
and the equation of motion
Ta (7 (P =9, (12, 72)) ) = (? n ;Lpﬁmu> Rlow.  (B6)
Keeping track of the boundary terms one arrives at the edge constraint
(ﬁpT’“’pPo‘u + 7, T "”“) low =0, (B.7)
and equation of motion on the edge
@ (Wi 10) i (15— T (7)) oy = 0. B3

One finds perfect agreement of this form of the constraints and equations with those ob-
tained in section 2.2 when no quadrupole moments are present. These equations had
been derived in [58] via a different method but here we have provided a cleaner, quicker,
spacetime covariant and more physical derivation of these equations (i.e. in terms of frame-
invariant quantities). We leave the problem of obtaining the higher order equations of
motion in full generality to future work. Below, we derive these equations for a specific
form of the spacetime stress tensor.

B.2 Generalised diffeomorphism constraints and shape equation

We now provide the constraints and equations of motion for the action (2.40) including the
couplings to the intrinsic Riemann tensor and outer curvature. Using the variations (A.17)
and (A.20), we find the spin conservation equation

DN\ 137 L, 0,84 L7 1,0 2195 17,9, (17 100, 9 3,77 ) =0.
(B.9)
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The coupling to the intrinsic and outer curvatures introduce further modifications of this
equation. The orthogonal components of the monopole stress tensor take the form

B — D,u)\(o'K“)\a) + _LV(O'_L)\Q)HV)\ + 4IM,'-@1//\K)\V(0'KKM0¢) - 4L(au—l—a)ﬁﬁn <rH;Lm/)\KXBM> 7

(B.10)
while the mixed tangential-transverse components read
P, v ,Y“J _ SuocAKMU)\ + PYVUJ—AO[HVA + 2'70ﬁJ—ap§n (IBK/V/\KAVP>
+ 4907 ) K gV THA — 41° 477 5V (Hmw KAﬂ)ﬂ) (B.11)

—9 | KﬁaTﬁnrHVﬁeﬂr )

In turn, given the mixed tangential-transverse components, the surface equations of motion

can be written as
Vi (TA” + 3, N (LT —TI7H) — A N, DIV — 25%"1@“)
— 4V (Vs (1095 VT ) = Ay KTV T )
=2V (5% (L9 L7 Vo™ ) + 1 KV H, ) 2
= (8" = D) Ry + 208V R s+ 4 LY 104 Vi (HA) R o
B.2.1 Edge constraints and equations of motion

The constraints and equations of motion on the edges are significantly modified by these
extra couplings. The edge spin conservation equation now takes the form

DK, + P7AP?V,SH + Pl PO — iy, DR — 7y P, PO, S
— i, T, ) = 2P P79, (W HI) = 20y L1 L0V H, T = 0,
(B.13)

The transverse components of the edge monopole stress tensor read
B = 15“)‘(”ICMO‘) + P, po) 1A — ﬁ,\ﬁu’l))‘“(”ﬁa) + 46p <hpyﬁKI““”A) P(auP")A,
+ 49, (7 h ghV, T3 ) P€, Py — diig g T K\ )
+ 4P(aTPU)ﬂﬁKHﬂ”T)\K/\5M ’ (B.14)
while the mixed components take the form
PR PYORT, = SHOAK,T \ + h?, PO — 20750 he V. T, — 20, TP W 5,0
+ 49, (R RT) PR + AV (igdiph gh Y T3 ) PR

+ 4PaT UﬁﬁnHum-)\K/\ﬁu + 2Parh056u (hMAﬁHHﬂm—)\> ) (B.15)
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Given this, the equations of motion at the edges take the form
V <7~’>‘0+hAM (P”Vﬁw _ﬁau) WA, Do _23;&0,%,\&4_%##”@”1’0)
_46)\ (h(AMhU)ﬁﬁa (haVﬁHIﬁHV“> _ﬁnh(aThﬁ)yl-mW]Cﬁ)\u)
495 (P72, (TnfiahO gt TP ) DO g9 it oV, T, )

=V (47RO gHI K P+ 20 9 (5T HP) ) -
= (812D ) Ry + 209NV R s+ i il TR0 g R v '

—I—ﬁ)\ (T/\U _|_,yu>\ (J_VUH/W _Hou) _,ykyﬁlu'p;wa _ QSuaaKuAa>
_46)\?{) (KV)\(O'I)\)PV/\ _i_,yﬂp,.)/(dy,y)\)avnl'umfa) _4ﬁ)\K()\HpIO')m—ozKan

i MR g A1 O K ) =205V (3 177 L7V M)

B.2.2 Spacetime stress tensor

The spacetime stress tensor acquires new components due to these couplings. It takes the
form of (3.5) but with the components

THY — THY —4K(“npzy)m)‘K)\ap +4H0KT>\K)\(!LUKHV)T+27JAP P ’Y)\V) +B",  (B.17)

THve — 9pP(Ww) _prvp +28(NV)P+4K/\U(MIV)PU/\ _ ﬂanﬁ(uﬁn (’YV)B’Yap)
o (B.18)
4K, W HPIPN gyt <ly)rlpa> ,

THVPA — _ 4 Q) _ g7Ae () _ g Ae(uv) (B.19)

One observes that there are extra contributions to the tangential components of the
monopole part of the stress tensor. One may explicitly check that choosing Z*°* =
a1y P vields the same stress tensor as choosing DHYP = ar (YW KP — KFP) and
QMY — o 4MPA¥Ii - This means that the stress tensor due to the contribution proportional
to R in the action (4.11) is equivalent to the stress tensor obtained once the Gauss-Codazzi
equation (2.20) is used. Consequently, both the surface and edge dynamics are equivalent,
as expected. The same holds true for the equations of motion that arise due to the term
proportional to Az in (4.19) and that proportional to as.

B.3 Comparison between spacetime and gauge variational principles

In this section we compare the variational principle of section 2.2 with the gauge variational
principle employed previously in the literature (see e.g. [10, 41, 44]). We show that the
two principles are equivalent, modulo certain constraints, including the diffeomorphism
constraints (2.45) and (2.46). For simplicity, we do not consider couplings to the intrinsic,
outer and background curvatures, though these can be straightforwardly included. The
variation of the action (2.40) can be recast into gauge formulation language by using the
tangent and normal vectors. Consider for example the couplings to v appearing in (2.40).
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One may write a general variation as
1
089w, XH] = —2/ VP o Tuwé (*yabe“ae”b>
w
1 ~
- / VIl (Tady™ 4+ 27%e,20e, )
w

A few remarks are now in place. Gauge variational principles only consider the first term

(B.20)

in the second line above. For Lagrangian variations for which ;X = 0 and d¢e”, = 0
the two variational principles are equivalent but if the mapping functions are allowed to
vary as well, they differ. In the second term in the second line above we have defined
Tab = Tab _ ~abf with £ = L/\/|7] being the Lagrangian density. The reason for this
technical detail of reasonable importance is that the determinant of the induced metric is
computed with 74, and not with 7,,. For any action there will be a contribution to the
surface stress tensor of the form %bf(wab, which by using the tangential vectors, can be
turned into the form vwfévﬂ” — 2EA'yWe““56“a. If the variation is Lagrangian then we
have the equivalence ’yabféyab = 7#1,257’” but otherwise this equivalence is not valid and
hence we must in general subtract this component from the second term in (B.20). The
same type of considerations apply to the other terms in (2.40).
Performing this tedious exercise for all terms, we find the variation

6S[guws X / VrldPo (- Tap0™ + D6 K o' + Saw(swaw)
— /W \/Mdpa (T“b + 2D K ' + S“Z-jwbij> e#bée“a
+ /W Vhldo (P - SbjiK,,aj) nioety
+ /W VIldro (Bl = DK ) nhjom,

Here we have allowed for arbitrary variations of the action (2.40) and not only Lagrangian

(B.21)

variations, that is, we have also allowed for variations of the embedding map. On the other
hand, the variational principle (2.40) does not allow for internal rotations of the normal
vectors w” = 0 because the action has been formulated in terms of spacetime indices. This
implies, using (A.4), that the last variation in (B.21) is proportional to the variation of the
background metric, namely n*; 6nui = —nt nPis 9xp and hence symmetric in the indices i, j.
The first line in (B.21) is the gauge formulation of the variational principle as encountered
n [10], hence, for the two principles to be equivalent in full generality one must require

Tab _ "}/abE— 2fDC(aich)i _ S(aijwb)ij ’ Qch[aich]z’ + S[aijwb}ij -0, (B.22)
P =S Ky B = DWW 7). (B.23)
These last two conditions are the constraints (2.46) and (2.45) when no curvature moments
are present while the two conditions (B.22) are new constraints that are only obtained when

performing a variation of the mapping functions and requiring the result to be equivalent
to that obtained when Lagrangian variations are performed instead.
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If variations of (B.21) would consider the fields e#, and n,’ to be independent of
7%, Kq' amd w,”, such as in [42], the constraints (B.22)—(B.23) would follow as furthers
requirements on the invariance of S{g,,, X*]. In such case, the second constraint in (B.22)
would be the consequence of invariance under intrinsic local Lorentz transformations, that
is, invariance under the infinitesimal transformation X* — A*yo? where A, is an anti-
symmetric tangential matrix of constant coefficients.

The two conditions (B.22) and the first condition in (B.23) are obtained by allowing
the mapping functions to vary while the last condition in (B.23) is obtained for pure
Lagrangian variations. These constraints are left unknown if the gauge variational principle
(first line in (B.21)) is used as a starting point. If only the first line in (B.21) is taken
into account, then the equations of motion (2.47) can be obtained as well as the spin
conservation equation (2.44) when Q¥ = ( (see e.g. [10, 56]). This implies that tangential
diffeomorphism invariance in a spacetime formulation, besides (B.22)—(B.23), implies that
the surface, in a gauge formulation, must be reparametrisation invariant and invariant
under infinitesimal variations of the normal vectors.

B.4 Actions for defects with edges and instructive examples

In this section we provide further details on the actions for CF'Ts coupled to defects with
edges and their corresponding displacement operator, whose surface contribution was anal-
ysed in section 5.3. We then give concrete well-known examples of actions, including DCFT
actions, with the purpose of illustrating the correctness of these Ward identities.

B.4.1 Ward identities for defects with non-trivial edges

We begin with the Ward identity for tangential diffeomorphisms (5.18). According to (5.21),
this Ward identity required the identifications

v, — B PR, =, BV P, (B.24)
From the first condition above we obtain the requirement
B (VAT = SR 0 = 3T ) = 8, (B.25)

where S/ was defined in (3.22), T* was introduced in (5.24), while T is a modification
of (3.21), namely,

ﬁf)\a _ %)\cr + j)vp,ypl/ohku o hﬂkﬁa,u o hAy%ﬂﬁpua o gp,aalcuka + ﬁuh)\yD'LWU - ]701,}1”)\ )
(B.26)
In turn, the second condition in (B.24) implies a modification of the constraints (2.62), in
particular we now obtain

BI04 P P, S8 it DMTRE) i3y P P, S G ple ol
gaa _5#)\(016‘1)\04) —I—ﬁ)\ﬁMDA“(gﬁa) _P(oyi;a)l/ _ g,u,VP(oMPa)V ’ (B27)
7500‘ _gua)\lc‘ua)\ N ?auh,ua _ g;uzpauhozl/ 7
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where we have set I = 0 in (2.62) since we did not consider, for simplicity, couplings to
the background curvatures in section 5.3.

We now consider the Ward identity for reparametrisation invariance for which the
surface contribution was obtained in (5.26). The edge contribution is similar to its surface
counterpart, in particular, it reads

((B"ne,+hom (S, +B*  +R0, —P* ,—C = V", ) Th, ) X)
+<(% (IF\VIAV—@V—@V) h“”x> (B.28)
= ((n7u VA (T =8 0 PP = VPP ) =17 SRy ~in TR, ) x )

where we have defined

R, = T — 2 g, 42D K0P 4§ N, B, =P 4§ K,
v v \/m P Ap v v v
B — (g/\p_ﬁuV(/\;CWp)_i_ﬁyﬁ#ﬁvu()\ﬁp)) 7 (B.29)

§o7 = POy P? , (DG, 4V, 89 — 7y DN, PP P (87 YV )

Furthermore, the Ward identity for diffeomorphism invariance in the presence of defects

with non-trivial edges reads
e~ [ VI (Va0 6+ [ Vhlae (B 956 - i) x)
M w

+ / Vo (N, — P#, — C*,) 9,6 + (V¥ — BF, — §4,) T 6%) x)

w
- /W Vo <VA (5%7*“ 1ve +7AVV“”L"M) §ax>
b [ VI E ((RaB 2,958 - Brg) x)

ow

—1~ N ™ A v ) ™ S, v o

+/8W \/mdp O-<<(N#zx _P“l/ _Cuu> aﬂg + (V'LLV _Bﬁ _Sﬂu) F,u,af ) X>

- /BW Nl <% (E’Nﬂ*ﬁ”" + h*ﬁ*‘”P"M> £ax> =0.

(B.30)

Finally, the spacetime stress tensor associated with the edges takes the same form as
in (5.39) but with all quantities replaced by their tilde definitions. On the other hand the
edge displacement operator takes the form

Df = [VAT — SR 0 — iy (TN = 0%, 107 =2 00 1)
(57 g (B, B, R, B, -G, -0, T) (B31)
= U (WP =B = ) = 0 (8,2 PP B D P [Bu(a).

This completes the analysis of the Ward identities for defects with non-trivial edges.
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B.4.2 Instructive examples

We now provide a few examples of well defined actions and show how to extract the
different objects introduced here in order to verify the Ward identities. Most of these
examples have been discussed elsewhere. We will focus on classes of actions that obey
St = B = P = 0 and similarly for the edge counterparts. This class of actions, in the
context of DCFTs and in flat space, is the one analysed in [4].

Free scalar field. Consider a free bulk scalar field coupled to surface and edge defects
in curved space such that

Sl X9, X00) = 5 [ VIl (V09764 706%) 71 [ VRl o)
en [ VR o).

where 7 = (D — 2)/4(D — 1) and 71,7 are arbitrary constants. The surface defect can

(B.32)

be made conformal if p = (D — 2)/2, in which case the edge defect cannot be made
simultaneously conformal. However, it is nevertheless interesting to keep it in order to
show the correctness of the Ward identities. We now evaluate the non-zero quantities of
interest, in particular the bulk stress tensor reads

Ty =VHeV o — % gAYV 47 (RW - ;R;;’“’) P*—7(VFVY—g"0)¢*.  (B.33)
The equation of motion for the field ¢ takes the form
O¢ — TRp = —110(2) — Ta0e() - (B.34)
Using the equation of motion for ¢ in the divergence of the bulk stress tensor one obtains
VT = = VYo () — 1Y 0, () . (B.35)
From here one readily obtains that
El=—nVFp, EF=—nVlp, &M =EM=0. (B.36)

The remaining quantities of interest, such as the surface and edge stress tensors, are easily
obtained from the action and read

T =ny"¢, TW =nh"¢, D'=nVip, D'=nVie. (B.37)

In this specific case, the Ward identity for diffeomorphism invariance (B.30) implies that
VT = —DF(x) — DHo(x) . (B.38)
Introducing (B.37) into (B.38) leads to (B.35) and hence the Ward identity (B.38) is satis-
fied, as expected. Furthermore, the Ward identities for reparametrisation invariance (5.26)

and (B.28) imply that

~7, (V)\T)\V — 'DV> =0, h%, (6)\'7—)"/ — ﬁ)\T)\V — ﬁy> =0, (B.39)
which upon using (B.37) are seen to be satisfied since 1, 7**h?, = 0. Finally, consider the

Ward identity for tangential diffeomorphisms which essentially reduces to (5.23) and (B.25).
Upon using (B.36), these are seen to be equivalent to (B.39) and hence satisfied.
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Minimally coupled p-form. Consider the action of a background p-form gauge field
coupled to a defect of dimensionality p. The action takes the simple form

2(p+ / \/gd 5”( - ALPHFM'"MPH)

- Tla /W Aﬂl--.ﬂpe‘ulm s eupapdo-al AwooNdo®,

SlGpws X Apy o] =
(B.40)

where F, 01
one requires that p = (D — 2)/2. The coupling to the defect is simply the pull-back of the

=dA,, .. up and 71 is an arbitrary constant. For the defect to be conformal

gauge field onto the surface. The equation of motion for the gauge field reads

¥, Fry = —Eem'””pg(ac) , (B.41)

which can be used to deduce that the r.h.s. of the bulk stress tensor conservation equations
leads to a Lorentz force term localised on the defect, that is

1 v
vV, = - ] ﬁl M Fy, 0(2) . (B.42)

Consider now the diffeomorphism constraint for this specific case. From (B.30), we obtain
VT = gVl + CHal g™ — D (B.43)

Extracting the relevant terms from the action leads to

oh— T M Ay s DV = fﬂeul""’“”@"flm...up« (B.44)

(p—1

Inserting these quantities into (B.44) leads to (B.42), as expected.

Coupling between vector fields and extrinsic curvature. We now consider a case
for which a background vector field ¢* couples to the extrinsic curvature of the defect. We
assume that there is some well-defined bulk action given in terms of this vector field and
that gives rise to a non-trivial equation of motion. Here, for the purposes of exemplifying
the different terms in the Ward identities, we do not require the exact form of the bulk
action as we just want to test the Ward identity for surface reparametrisations. Therefore,
consider the defect action

Sguw, XH, "] = / Vo (a+n¢'e" K K,) (B.45)

where for simplicity we have assumed that the background vector field when restricted to
the surface is purely tangential, that is ¢"(X) = y*,¢”(X). From this action we compute
the relevant quantities, namely
TH = oyt + Ty 6 " Ko K — 21107 0" Koo KM
BY =216 0" KoM KY) | DM =271 0P ¢ K)o K, (B.46)
D = 1@l ¢" KP + miy" 9 ¢ K P
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from which we can derive that B#” = S*¥” = 0 and

NH, =21 ¢l K \P K, . (B.47)

The Ward identity for reparametrization invariance (5.26) for this specific case takes
the form

D"47, + N T AN 447 VAN = 47 VTV — 47 DAY RY, (B.48)

for which the non-manifestly covariant part can be made manifestly covariant using (B.46)—
(B.47) and yields
D7, + N TN = 2110 Ko K,V 6 (B.49)

Using this, together with (B.46)—(B.47), one can verify that (B.48) is satisfied.
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any medium, provided the original author(s) and source are credited.
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