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1 Introduction

Recently considerable progress has been made in classifying and understanding basic prop-

erties of six-dimensional superconformal field theories [1–17]. Formulating these theories in

a way which leads to a computational scheme of physical amplitudes is still a major chal-

lenge. One idea along these lines is to note that on their tensor branch these theories have

light strings as basic ingredients, which naturally suggests that these strings should play a

key role in any computational scheme. For example, it is already known that their elliptic

genus can be used to compute the superconformal index of these 6d theories [1, 18, 19].

The main aim of this paper is to expand the known dictionary [1, 2, 10, 11] for describing

the degrees of freedom living on these strings.

The six-dimensional SCFTs that can be obtained via F-theory compactification were

classified in [3, 6, 13] (see also [14]). This includes all presently known 6d SCFTs, and it may

well be the case that all consistent 6d SCFTs can be realized this way. In this context, six-

dimensional SCFTs are realized by putting F-theory on elliptic Calabi-Yau threefold with

a non-compact base B with the property that all compact curves can be simultaneously

contracted to zero size. These curves are in fact two-spheres that have negative self-

intersection ranging from 1 to 12 (excluding 9,10,11) and intersect one another at a point,
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and are arranged into trees according to specific rules. In particular, one can identify

some basic building blocks (the curves with negative self-intersection 3, . . . , 8 and 12, and

a few combinations of two or three curves [20]) that can be glued together by joining them

with (−1)-curves. Each curve gives rise to a tensor multiplet in the 6d theory. D3 branes

wrapping a curve correspond to strings coupled to the corresponding tensor multiplet.

Furthermore, gauge multiplets arise whenever the elliptic fiber degenerates over a curve,

the nature of the resulting gauge group being determined by the type of degeneration. In

particular, non-Higgsable clusters necessarily support a nontrivial gauge group, whose rank

can be made larger by increasing the degree of the singularity.

Under favorable circumstances, bound states of strings admit a description in terms of

a two-dimensional (0,4) quiver gauge theory. In this paper we extend the list of theories

for which such a description is available to three additional classes of 6d SCFTs:

• The theory of M5 branes probing a singularity of A or D type. The first case was

studied in [2] and corresponds to a linear chain of (−2) curves and leads to a 6d

theory with SU-type gauge group; the second case is novel and corresponds to a

linear chain of alternating (−1) and (−4) curves which support respectively gauge

group SO(8 + 2p) and Sp(p).

• The theory of N small E8 instantons, or equivalently N M5 branes probing the M9

plane of Hořava-Witten theory [21, 22]. This corresponds to a single (−1) curve linked

to a chain of N − 1 curves of self-intersection −2. Upon circle compactification, this

theory admits deformation by a parameter corresponding to the mass of a 5d anti-

symmetric hypermultiplet. We focus on the case where this parameter is turned off.

• The theory of N D5 branes probing an ADE singularity. This corresponds in F-theory

to an ADE configuration of −2 curves supporting gauge groups of SU type.

Once the quiver gauge theory corresponding to a given configuration of strings is

specified, the elliptic genus can be computed by means of localization [23, 24]. We do

this for certain specific bound states of strings for the first two classes of theories, and for

arbitrary bound states of strings for the third class.

The organization of this paper is as follows: in section 2 we review some of the building

blocks for the (0,4) supersymmetric 2d quiver gauge theories which will be needed for the

description of the worldsheet degrees of freedom of the tensionless strings. In section 3

we discuss the 2d quiver for the strings of the theory of M5 branes probing A- or D- type

singularities. In section 4 we study the quiver for the strings of the theory of N small E8

instantons. In section 5 we discuss the quiver for strings of the theory of D5 branes probing

an ADE singularity. In appendix A we discuss a candidate 2d quiver for the strings of the

theory of N small E8 instantons with mass deformation.

2 Chains of strings

We are interested in computing the elliptic genera of the strings that arise on tensor

branches of 6d (1, 0) SCFTs with several tensor multiplets, along the lines of [11], and
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are wrapped around a torus of complex modulus τ . In this paper we aim to obtain 2d

quiver gauge theories for a variety of 6d SCFTs that arise within M- and F-theory. These

will generally consist of (0, 4) quiver gauge theories with gauge group
∏N
i=1Gi(ki), where

Gi is the gauge group associated to ki strings of the ith type, and will capture the dynamics

of a bound state of such a collection of strings. The gauge groups arising in the theories

discussed in this paper are either unitary, symplectic, or orthogonal.

Let us now discuss global symmetries of the 2d (0, 4) theory. A number of the global

symmetries have a geometric origin, since they arise from rotations of an R4
|| along the

worldvolume of the six-dimensional theory but transverse to the string’s worldsheet, or

from rotations of an R4
⊥ perpendicular to the six-dimensional worldvolume. Overall, an

SU(2)4 group acting as rotations of R4
|| × R4

⊥:

R4
|| : SU(2)A′ × SU(2)Ã′ ,

R4
⊥ : SU(2)A × SU(2)Y . (2.1)

The right-moving supercharges QAA
′

+ transform under the SO(4) R-symmetry given by

SO(4)R = SU(2)A × SU(2)A′ . (2.2)

Let us identify the Cartan of SU(2)4 as follows:

U(1)ε+ ×U(1)ε− ×U(1)m ×U(1)R ⊂ SU(2)A′ × SU(2)
Ã′ × SU(2)Y × SU(2)A,

where we identify U(1)R with the R-symmetry group of the (0, 4) theory when viewed as

a (0, 2) theory. When computing elliptic genera, we will turn on fugacities ε+ = 1
2(ε1 +

ε2), ε− = 1
2(ε1 − ε2), and m for the remaining U(1) factors in the Cartan.

1. To each gauge node i corresponds the following field content valued in representations

of Gi (corresponding to ni strings of the ith kind): a vector multiplet Υi; a Fermi

multiplet ΛΦ
i ; and two chiral multiplets Bi, B̃i.

Symbol (0,2) field content U(1)ε1 U(1)ε2 U(1)m U(1)R Gi

G
i

Υi (vector) 0 0 0 0 adj.

ΛΦ
i (Fermi) −1 −1 0 1 adj.

B (chiral) 1 0 0 0 R

B̃ (chiral) 0 1 0 0 R

The representation R is the adjoint representation whenever the gauge group is uni-

tary, symmetric whenever the gauge node is orthogonal, and anti-symmetric if the

gauge group is symplectic.

2. Between each pair of nodes i, j such that the corresponding element of the adjacency

matrix of the underlying quiver Mij is non-zero one has the following bifundamental

fields of Gi×Gj : two Fermi multiplets ΛB
ij ,Λ

B̃
ij , and chiral multiplets Φij ,Σij forming
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a twisted (0, 4) hypermultiplet.

Symbol (0,2) field content U(1)ε1 U(1)ε2 U(1)m U(1)R Gi×Gj
ΛBij (Fermi) 1/2 −1/2 1 0 �⊗�

ΛB̃ij (Fermi) −1/2 1/2 1 0 �⊗�

Σij (chiral) −1/2 −1/2 1 1 �⊗�

Φij (chiral) −1/2 −1/2 -1 1 �⊗�

3. Between each gauge node i and the corresponding global symmetry node one has a

link corresponding to two chiral multiplets, Q, Q̃, charged under Gi×Fi, where Fi is

the global symmetry group at that node, which we depict by a square in the quiver.

Symbol (0,2) field content U(1)ε1 U(1)ε2 U(1)m U(1)R Gi×Fi

Qi (chiral) 1/2 1/2 0 0 �⊗�

Q̃i (chiral) 1/2 1/2 0 0 �⊗�

4. Between each gauge node i and any successive node j one has a Fermi multiplet

ΛQij ; between the same gauge node i and any preceding node j one has a Fermi

multiplet ΛQ̃ji.

Symbol (0,2) field content U(1)ε1 U(1)ε2 U(1)m U(1)R Gi×Fj

ΛQij (chiral) 0 0 1 0 �⊗�

ΛQ̃ji (chiral) 0 0 1 0 �⊗�

3 Partition functions of M5 branes probing ADE Singularities

In this section we consider 6d (1, 0) SCFTs which arise from M5 branes probing singularities

of type A and D, and obtain the 2d quiver gauge theory describing the self-dual strings

that arise on the tensor branch of the corresponding 6d theory.

3.1 M5 branes probing an AN−1 singularity

Consider a setup where M parallel M5 branes span directions X0, . . . , X5 and are separated

along the X6 direction in 11d spacetime. Taking the transverse space of the M5 branes

to be R× C2/ZN and blowing up the singular locus gives rise to a (1, 0) 6d SCFT on the

tensor branch which enjoys a SU(N)× SU(N) flavor symmetry. The AN−1 singularity can

be thought of as a limit of Taub-NUT space with charge N ; this space has a canonical circle

fibration over R3, and compactifying M-theory along this circle one arrives at a system of

N parallel D6-branes stretched between NS5 branes. The dynamics of the strings that

arise in this system are captured by the two-dimensional quiver theory of figure 1:
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Figure 1. Non-critical strings in M5 branes probing AN−1 singularities.

The quiver corresponds to a 2d N = (0, 4) theory obtained from a ZM orbifold of a

N = (4, 4) supersymmetric Yang-Mills theory. As such, each gauge node contains a (0, 4)

vector multiplet together with an adjoint (0, 4) hypermultiplet and the bifundamental fields

between the gauge nodes consist of (0, 4) Fermi and twisted hypermultiplets. Furthermore,

between each gauge node and the adjacent flavor nodes one has (0, 2) Fermi multiplets in

the fundamental representation of the gauge group and between each gauge node and the

corresponding flavor node a fundamental (0, 4) hypermultiplet. The exact field content

is described in [2]. Following the rules of [24] and the charge tables of section 2 one can

straightforwardly write down an expression for the elliptic genus for any configuration of

strings, corresponding to different choices of the ranks of the gauge groups in the 2d quiver.

We will perform the computation in section 5.

We can also relax the condition that all nodes should have the same SU(N) flavor

symmetry. In particular, we can consider the situation where the ith flavour node has

SU(Ni) symmetry together with the convexity condition

Ni ≥
1

2
(Ni−1 +Ni+1), (3.1)

which ensures that the parent 6d theory is not anomalous. In case of equality, all Ni

are ordered along a linear function and gauge anomaly cancellation is automatically sat-

isfied. However, if Ni is strictly greater than 1
2(Ni−1 + Ni+1) the net number of right

moving fermions is greater than the number of left-moving ones and the theory will be

anomalous. To cure this, we introduce for each gauge node a fourth flavor node with

left-moving fermions to compensate for the excess of the right-moving ones. The corre-

sponding quiver is the one depicted in figure 2. Again the elliptic genus can be computed

straightforwardly using the charge table of section 2, however one has to be careful with

the charge assignments of the new vertical Fermi multiplets: these are not charged un-

der U(1)m,U(1)ε+ or U(1)ε− . The origin of the different flavor groups can be explained

from the brane construction that corresponds to this theory: one has N1, . . . , NM+2 D6

branes separated by NS5 branes. The difference between the number of D6 branes on the

two sides of an NS5 brane must equal the negative of the cosmological constant in that

region [25]. So, for instance, if we have an NS5 brane with Ni−1 D6 branes on the left

and Ni on the right we must have cosmological constant Ni−1 − Ni there. At the next

NS5 brane, however, we must have cosmological constant Ni −Ni+1. This is achieved by

placing (Ni−Ni+1)− (Ni−1−Ni) = 2Ni− (Ni−1 +Ni+1) D8 branes between the two NS5
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Figure 2. Convex chain of −2 curves.

branes [26], which has the effect of changing the cosmological constant as required. This

leads to the two-dimensional quiver considered above.

3.2 M5 branes probing a Dp+4 singularity

A Dp+4 singularity gives rise to 7d SYM theory with gauge group SO(2p+8) for p ≥ 0. We

can place N M5 branes at the singularity and separate them along the remaining direction

in seven dimensions. Each M5 brane actually splits into two fractional branes, which gives

rise to parallel domain walls in the 7d theory [6]. Reducing along this direction leads to a

6d (1, 0) SCFT with SO(2p+8)×SO(2p+8) global symmetry. Following [6] we can obtain

a Type IIA description by replacing the Dp+4 singularity with the corresponding Dp+4

ALF space and taking the circle fiber to be the M-theory circle. This results in a stack of

p+4 parallel D6 branes on top of an O6− plane, together with their mirrors. Furthermore,

one has 2N fractional NS5 branes [27] which are of codimension 1 with respect to the

orientifold plane. Whenever an O6± plane meets an NS5-brane, it turns into an O6∓
plane. A system of p+ 4 D6-branes parallel to an O6+ plane gives rise to an Sp(p) gauge

theory, and therefore one obtains alternating SO(2p + 8) and Sp(p) gauge groups in 6d.

On top of this, the NS5 branes contribute a total of 2N − 1 tensor multiplets.

Furthermore, M2 branes suspended between M5 branes in the M-theory picture become

D2 branes suspended between NS5 branes in Type IIA. The brane setup we have arrived

at is pictured in figure 3. Upon reduction along the X6 direction, the D2 branes give rise

to the self-dual strings that arise on the tensor branch of the 6d SCFT. The resulting

two-dimensional quiver theory is depicted in figure 4. One can easily check that gauge

anomalies correctly cancel out for this theory. The U(1)m symmetry is absent in this case.

The reason is that the D-type singularity transverse to the M5 branes has only SU(2)R
symmetry which is the SU(2) ⊂ SO(4) commuting with the action of the binary extension

of the dihedral group. This SU(2)R is the R-symmetry group of 6d SCFT. The situation

has to be contrasted with the A-type singularity where the surviving isometry of the space

is U(1)m×SU(2)R. Therefore, we see that U(1)m is not present for the D-type theory and

hence the elliptic genus of it’s strings should not be refined with respect to it.

Having an explicit description of the two-dimensional quiver theory makes it possible to

compute the corresponding elliptic genus. In the simplest case of a single tensor multiplet

corresponding to a (−1) curve, this corresponds to the E-string elliptic genus which was

– 6 –
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+
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+D6−O6 –
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Figure 3. Type IIA brane setup corresponding to M5 branes probing Dp+4 a singularity. The

fundamental strings depicted as blue or red wavy lines in this figure give rise to fields in the 2d

quiver theory.

O (k1) U (k 2) U (k3) U (kM )

SO (2p+8) Sp( p) Sp( p)

Sp(k 2) O (k3) O (k M)

SO (2p+8) SO(2p+8)

Figure 4. Non-critical strings in M5 branes probing Dp+4 singularities.

studied in detail in [10] (although in the present setup one must identify the fugacities

associated to the two SO(8) subgroups of the SO(16) flavor symmetry group). For the

sake of illustration, let us also consider the non-Higgsable (−1)(−4)(−1) theory with three

tensor multiplets, gauge group SO(8)g and flavor group SO(8)L × SO(8)R. Let us denote

by m
(g)
` , ` = 1, . . . , 4 the fugacities associated to SO(8)g and by m

(L)
` (m

(R)
` ) the ones

associated to SO(8)L (SO(8)R). From the previous discussion, one can write down the

elliptic genus for any bound state of the strings associated to this theory. For instance, if

one considers the bound state of one string coupled to the first (−1) tensor multiplet and

one string coupled to the (−4) multiplet, one finds:

I(−1)(−4) =
1

4

∮
duη2

4∑
i=1

(
η2

θ1(ε1)θ1(ε2)

)( 4∏
`=1

θi(m
(L)
` )

η

)(
4∏
`=1

θi(m
(g)
` )

η

)

×
(
θ1(2u)2θ1(2ε+)θ1(2u+ 2ε+)θ1(−2u+ 2ε+)

η3θ1(ε1)θ1(ε2)

)
×

(
4∏
`=1

η4

θ1(ε++m
(g)
` +u)θ1(ε++m

(g)
` −u)θ1(ε+−m(g)

` +u)θ1(ε+−m(g)
` −u)

)

×
(

θi(ε− − u)θi(ε− + u)

θi(−ε+ − u)θi(−ε+ + u)

)
, (3.2)
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Figure 5. E-strings as suspended M2 branes between M5 branes probing an M9 wall.

where

η = q1/24
∞∏
i=1

(1− qi), q = e2πiτ (3.3)

and

θ1(x) = i q1/8e−πix(1− e2πix)
∞∏
i=1

(1− qi)(1− qie2πix)(1− qie−2πix). (3.4)

The contour integral can be performed by using the Jeffrey-Kirwan prescription for com-

puting residues [24]. Similarly, one can compute the elliptic genus for other bound states

of strings.

4 Multiple M5 branes probing an M9 wall

In this section we study the N = (1, 0) six-dimensional theory of N small E8 instantons [21,

22]; upon moving to the tensor branch, this becomes the theory of N parallel M5 branes

in the proximity of the M9 boundary wall of M-theory. The strings originate from M2

branes that are suspended between neighboring M5 branes or between the M5 branes

and the M9 plane (see figure 5). Upon circle reduction to five dimensions with an E8

background Wilson line (which breaks E8 global symmetry to SO(16)), the theory of N

small instantons reduces to the Sp(N) theory with 8 fundamental and 1 antisymmetric

hypermultiplets [22]. The instanton calculus for this five-dimensional theory provides a

way to check elliptic genus computations and will be exploited in section 4.2.

4.1 Two-dimensional quiver

In order to derive a quiver description for the theory of the strings, it again proves useful to

switch to an equivalent brane configuration within string theory. Let us begin by discussing
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Figure 6. Brane configuration for the theory of N small E8 instantons.

N = 1 theory of a single small E8 instanton, whose associated two-dimensional quiver

gauge theory has been worked out in [10]. The quiver was derived from a Type I’ brane

configuration, which arises as follows: upon reduction of M-theory on a circle, the M9 plane

is replaced by eight D8 branes on top of an O8− orientifold plane (which has D8 brane

charge −8); the M5 brane, on the other hand, becomes an NS5 brane. Furthermore, M2

branes are replaced by D2 branes that stretch between the NS5 brane and the D8-O8−

system. By studying the two-dimensional reduction of the worldvolume theory of the D2

branes in the limit of small separation between the NS5 and eight-branes, one arrives at the

two-dimensional quiver gauge theory of [10]. The (0,4) quiver gauge theory for n strings

has gauge group O(n) and the following field content: a vector multiplet in the adjoint

(anti-symmetric) representation of O(n), a hypermultiplet in the symmetric representation,

and eight Fermi multiplets in the bifundamental representation of O(n)× SO(16). Elliptic

genera for this theory have been computed in [10] for up to four strings and shown to agree

with results from the instanton calculus for the five-dimensional Sp(1) theory with eight

fundamental hypermultiplets.

The generalization of the Type I’ brane setup to the case of N small instantons is

illustrated in figure 6 and is again obtained by reducing the above M9-M5 setup on a

circle. The brane setup is a combination of the E-string and M-string brane configurations

without the D6 branes which are usually present for the M-string system. As we will see

this becomes crucial when we look at the quiver-gauge theory governing the dynamics of

the strings to which we now turn.

The brane setup implies a simple quiver gauge theory governing the dynamics of the

strings. The first n1 D2 branes ending on the D8-O8 system correspond to a O(n1) gauge

node; from the D2-D8 strings one finds eight bifundamental Fermi multiplets charged under

O(n1) × SO(16). Furthermore, there is a symmetric hyper at the O(n1) node as already

observed in [10]. All other gauge nodes corresponding to the D2 branes suspended between

– 9 –
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NS5 branes have unitary gauge groups with bi-fundamental matter between them familiar

from the orbifolds of M-strings [2]. Finally, one also obtains O(n1)×U(n2) bifundamentals

from strings ending on the n1 and n2 D2 branes. These bifundamental fields consist of a

(0,4) hyper and a (0,4) Fermi multiplet, as is the case for M-strings. The resulting quiver

is illustrated in figure 7.

We comment on the global symmetries of this quiver gauge theory, and compare them

with the symmetries that we expect for the infrared CFT on these strings. Our (0, 4)

gauge theory has SO(4) = SU(2) × SU(2) R-symmetry. The first SU(2) is part of the

SO(4) symmetry which rotates R4 along the worldvolume of NS5-branes, transverse to the

strings. The second SU(2) ∼ SO(3) rotates the R3 space transverse to the NS5-branes and

D2-branes. The infrared (or equivalently strong coupling) limit of the 2d gauge theory

is realized by going to the M-theory regime of the type I’ theory. Then the space R3

transverse to NS5-D2 is replaced by R3 × S1, including the M-theory circle, and becomes

R4 in the strong coupling limit. So in the IR, we expect the SO(3) symmetry to enhance

to SO(4). Any analysis from our gauge theory, such as the elliptic genus calculus below,

will be missing the extra Cartan charges of the enhanced SO(4). Let us denote by ε1,2 the

chemical potentials for the rotations on R4, as in the previous sections. Apart from rotating

R4 along the 5-brane, there will be an extra rotation on R4 transverse to the M5-brane,

with ε+ ≡ ε1+ε2
2 . Let us denote by m the chemical potential for the missing Cartan of

the enhanced IR symmetry. Then the R3 part in the type I’ setting is rotated by m+ ε+,

while the rotation by m − ε+ is invisible on R3 × S1. Thus, our UV gauge theory will be

computing the elliptic genus only at m = ε+.1

At N = 1, it is known that the 6d SCFT engineered by a single M5 and M9 brane

does not see the extra Cartan of SO(4) (conjugate to m) at all. In other words, all the

states in the Hilbert space of the 6d SCFT are completely neutral under this U(1) charge

(while the full M-theory would see the charged states decoupled from the 6d SCFT).

One way to see this is from the 5 dimensional Sp(N) gauge theory obtained after circle

compactification. Namely, the parameter m above corresponds to the mass parameter

for the Sp(N) antisymmetric hypermultiplet in the resulting 5d theory. At N = 1, the

antisymmetric representation is neutral in Sp(1) and the corresponding hypermultiplet

decouples. This implies that the extra U(1) for m decouples from the 6d CFT at N = 1,

and this has been tested from the instanton partition function in [28]. This is the reason

why the 2d gauge theory above provided maximally refined elliptic genera at N = 1 in [10],

since the restriction m = ε+ loses no information about the 6d SCFT. However, the

parameter m appears in the 6d CFT spectrum for N ≥ 2, which was checked from the

Sp(N) instanton calculus [28].

Below we present sample computations for the elliptic genera corresponding to the

lowest charge sectors, namely (n1, n2) = (1, 1), (n1, n2) = (1, 2), and (n1, n2) = (2, 1) for

the N = 2 quiver.

1The parameter m is the one appearing in the instanton calculus of the Nekrasov partition function and

should not be confused with the fugacity of U(1)m in the 2d gauge theory. With respect to the 2d fugacity

it is shifted by ε+.
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SO(16) O(n1) U(n3)U(n2)

Figure 7. Quiver for the theory of N small E8 instantons.

Charge sector (n1, n2) = (1, 1). Combining the one-loop determinants, the zero-mode

integral I(1,1) is given by

−
∮
du

2

4∑
i=1

(
η2

θ1(ε1)θ1(ε2)

)
1

(
η3θ1(ε1+ε2)

θ1(ε1)θ1(ε2)

)
2

(
8∏
l=1

θ1(ml+ai)

η

)
3

(
θ1(+ε−±(ai−u))

θ1(−ε+±(ai−u))

)
4

(4.1)

where ai = (0, 1
2 ,

1+τ
2 , τ2 )i. Repeated signs ± in the arguments mean that both factors are

multiplied: θ1(−ε+ ± (ai − u)) ≡ θ1(−ε+ + ai − u)θ1(−ε+ − ai + u). The contour integral

given by the JK-Res is done with η = e1. Then the only nonzero JK-Res comes from the

pole u = ai + ε+. The result is

I(1,1) =− η5θ1(ε1 + ε2)

2θ1(ε1)2θ1(ε2)2

4∑
i=1

(
8∏
l=1

θ1(ml + ai)

η

)
θ1(ε1)θ1(−ε2)

η3θ1(−ε1 − ε2)
(4.2)

=− η2

2θ1(ε1)θ1(ε2)

4∑
i=1

(
8∏
l=1

θi(ml)

η

)
= I(1,0) .

This is the elliptic genus of the single E-string, i.e. with charge (n1, n2) = (1, 0) [10, 29].

Charge sector (n1, n2) = (1, 2). The zero-mode integral is given by

I(1,2) =−
∮
du1du2

4

4∑
i=1

η2

θ1(ε1)θ1(ε2)

(
η3θ1(ε1 + ε2)

θ1(ε1)θ1(ε2)

)2( 8∏
l=1

θ1(ml + ai)

η

)

× θ1(±(u1−u2))θ1(ε1+ε2±(u1−u2))

θ1(ε1±(u1−u2))θ1(ε2±(u1−u2))

θ1(+ε−±ai∓u1)

θ1(−ε+±(ai−u1))

θ1(+ε−±ai∓u2)

θ1(−ε+±ai∓u2)
. (4.3)

If we choose η = e1 + ε e2 in which ε � 1, nonzero JK-Res can only come from the

following poles.

• (ε1,2 − u1 + u2,−ε+ − ai + u1) = (0, 0)

• (ε1,2 + u1 − u2,−ε+ − ai + u2) = (0, 0)

• (−ε+ − ai + u1,−ε+ − ai + u2) = (0, 0).

Actually evaluating the residues, it turns out that all these poles yield vanishing residues,

so that

I(1,2) =0. (4.4)
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Charge sector (n1, n2) = (2, 1). Now the gauge theory comes with O(2)×U(1) gauge

group. In the elliptic genus calculus, there are seven disconnected sectors of O(2) flat

connections [10]. In six sectors, the flat connections are discrete, while in one sector it

comes with one complex parameter.

In the first sector with continuous parameter, which we label by superscript 0, one has

to do the following rank 2 contour integral for the elliptic genus:

I0
(2,1) =

∮
du1du2

2

η7θ1(ε1 + ε2)

θ1(ε1,2)θ1(ε1,2 ± 2u1)

η3θ1(ε1 + ε2)

θ1(ε1)θ1(ε2)

(
8∏
l=1

θ1(ml ± u1)

η2

)
(4.5)

× θ1(+ε− ± u1 + u2)

θ1(−ε+ ± u1 + u2)

θ1(+ε− ± u1 − u2)

θ1(−ε+ ± u1 − u2)

If we choose η = e1 + ε e2 in which ε � 1, nonzero JK-res can only appear from the

following poles.

• (−ε+ − u1 + u2, ε1,2 + 2u1) = (0, 0) −→ (u1, u2) = (− ε1,2
2 + ai,

ε2,1
2 + ai). Its residue

is zero.

• (−ε+ + u1 − u2,−ε+ + u1 + u2) = (0, 0) −→ (u1, u2) = (ε+ + ai, ai)

• (−ε+ + u1 + u2, ε1,2 + 2u1) = (0, 0) −→ (u1, u2) = (− ε1,2
2 + ai, ε1,2 +

ε2,1
2 − ai)

Collecting all the residues, I0
(2,1) is given by

I0
(2,1) =

η−12

4θ1(ε1)θ1(ε2)

4∑
i=1

[ ∏8
l=1 θi(ml ± ε+)

θ1(2ε1 + ε2)θ1(ε1 + 2ε2)

−

(
θ1(ε1 + ε2)

∏8
l=1 θi(ml ± ε1

2 )

θ1(ε1)θ1(ε1 − ε2)θ1(2ε1 + ε2)
+ (ε1 ↔ ε2)

)]

=
η4

4θ1(ε1)2θ1(ε2)2

4∑
i=1

(
8∏
l=1

θi(ml)
2

η2

)
. (4.6)

On the second line, we used the following identity

4∑
i=1

8∏
l=1

θi(ml)
2 =

4∑
i=1

[
θ1(ε1,2)

∏8
l=1 θi(ml ± ε+)

θ1(2ε1 + ε2)θ1(ε1 + 2ε2)

−

(
θ1(ε2)θ1(ε1 + ε2)

∏8
l=1 θi(ml ± ε1

2 )

θ1(2ε1 + ε2)θ1(ε1 − ε2)
+ (ε1 ↔ ε2)

)]
,

which we checked in an expansion in e2πiτ , for the first 5 terms up to (e2πiτ )5/2 order.

The contributions from the other six sectors are given by

Im(2,1) =

∮
du

4

η4θ1(a1 + a2)θ1(ε1 + ε2 + a1 + a2)

θ1(ε1,2)2θ1(ε1,2 + a1 + a2)

η3θ1(ε1 + ε2)

θ1(ε1)θ1(ε2)

×

(
8∏
l=1

θ1(ml + a1)θ1(ml + a2)

η2

)
θ1(+ε− ± a1 ∓ u)

θ1(−ε+ ± a1 ∓ u)

θ1(+ε− ± a2 ∓ u)

θ1(−ε+ ± a2 ∓ u)
, (4.7)
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where we take the discrete O(2) holonomies (a1, a2) = (0, 1
2), ( τ2 ,

1+τ
2 ), (0, τ2 ), (1

2 ,
1+τ

2 ),

(0, 1+τ
2 ), (1

2 ,
τ
2 ) for m = 1, 2, · · · , 6, respectively. JK-res with η = e1 can be nonzero only

at the pole u = a1 + ε+ or u = a2 + ε+, yielding the following result:

Im(2,1) =
η4

2θ1(ε1,2)2

8∏
l=1

θi(ml)θj(ml)

η2
(4.8)

where (i, j) = (1, 2), (4, 3), (1, 4), (2, 3), (1, 3), (2, 4) for m = 1, 2, · · · , 6. Combining (4.5)

and (4.8), one obtains

I(2,1) = I0
(2,1) +

6∑
m=1

Im(2,1) =
(
I(1,1)

)2
=
(
I(1,0)

)2
, (4.9)

which exhibits a factorization structure.

In the next subsection, we will show that all the results above are in complete agreement

with the 5 dimensional Sp(2) instanton calculus of [28]. Before that, let us first try to

interpret these rather simple results that we have found at m = ε+.

The strings made of n1 and n2 D2-branes in figure 6, winding a circle, contribute to

the elliptic genus as both n1 + n2 multi-particle states, and also through various threshold

bound states with lower particle numbers. There could be various kinds of bound states.

Generally, m1(≤ n1) of the n1 strings and m2(≤ n2) of the n2 strings may form bounds.

One can first deduce that the index is zero at m = ε+ in the sector which contains bound

states with charges (0,m2). This is because the (0,m2) bounds are basically M-strings in a

maximally supersymmetric theory. Note that the M-strings are half-BPS states of the 6d

(2, 0) theory, so will see 8 broken supercharges as Goldstone fermions. This is in contrast

to the strings in 6d QFTs preserving (1, 0) SUSY only. The extra fermionic zero modes for

M-strings provide the factor

sinπ(m+ ε+) sinπ(m− ε+) (4.10)

to the elliptic genus [30]. Thus, M-strings which are unbound to E-strings (i.e. at m1 = 0)

will contribute a 0 factor to the elliptic genus at m = ±ε±.

With this understood, let us start by considering the sector with (n1, n2) = (1, 1).

At m = ε+, there is no contribution from the two particle states (1, 0) + (0, 1) due to

the above reasoning. So one should only obtain a single particle contribution in the (1, 1)

sector. This is consistent with our finding I(1,1) = I(1,0). A slightly surprising fact from our

finding is that the single particle bound with charges (1, 1) behaves exactly the same as a

single E-string with charge (1, 0), at least at m = ε+. Although the (1, 1) bound look like

one long E-string suspended between the M9-plane and the second M5-brane, it penetrates

through the first M5-brane so in principle there could be extra contributions to the BPS

degeneracies from the intersection. For instance, in the case of M-strings, it is known that

the charge (1, 0) M-string and the single particle bound part of the (1, 1) M-string exhibit

different spectra (at general chemical potentials, with m 6= ε+) [30]. So we interpret that

I(1,1) = I(1,0) implies some simplification of the (1, 1) elliptic genus at m = ε+.
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Other results also have nontrivial implications on the E-/M-string bound state elliptic

genera at m = ε+. For (n1, n2) = (1, 2), I(1,2) = 0 implies that there are no (1, 2) bound

states captured by the elliptic genus at m = ε+, since we know that (1, 1) + (0, 1), (1, 0) +

(0, 2), or (1, 0) + 2(0, 1) multi-particles cannot contribute to the elliptic genus at m = ε+.

As we will consider from the 5d Sp(2) instanton calculus, this feature generalizes to higher

string numbers: the (m1,m2) bounds with m1 < m2 do not contribute to the elliptic genus

at m = ε+.

Finally, I(2,1) = I2
(1,0) can also be understood with the above observations. Namely,

with a (0,m2) particle yielding a factor of zero in the elliptic genus, the nonzero contribution

can come from (1, 1) + (1, 0) two particle states. But since we already know that these

contributions give equal elliptic genera namely that of a single E-string, we can naturally

understand this relation. (So our finding implies that the (2, 1) bound does not contribute

to the index at m = ε+.)

Based on the above observations, we propose that

I(n1,n2) = 0 if n1 < n2 (4.11)

= I(n2,0)I(n1−n2,0) if n1 ≥ n2 .

Namely, at m = ε+, the (n1, n2) string elliptic genus factorizes to two E-string elliptic

genera. Although we have shown this result for only a few charges from the 2d gauge

theories, we shall confirm such factorizations to a much higher order in n1, n2 from the 5d

Sp(2) instanton calculus below.

4.2 Five dimensional Sp(2) instanton calculus

In this subsection, we shall consider the circle compactification of the (1, 0) theory on 2 M5

and one M9, and consider the string spectra from the instanton calculus of the resulting

5d gauge theory.

Let us consider the six-dimensional conformal field theory living on two M5 branes

probing the M9 plane. The space transverse to the two M5-branes is R4 × R+, where the

latter R+ is obtained by the Z2 action of M9. This space has SO(4) = SU(2) × SU(2)

symmetry. The first SU(2) is the superconformal R-symmetry, and the second SU(2) is a

flavor symmetry. The full flavor symmetry is thus SU(2) × E8.

We compactify this system on a circle, with an E8 Wilson line which breaks E8 into

SO(16). Then at low energy, one obtains a 5 dimensional N = 1 Sp(N) gauge theory with

Nf = 8 fundamental and one anti-symmetric hypermultiplet. The 8 masses m̃i for the

fundamental hypermultiplets and the mass m for the antisymmetric hypermultiplet are in

1-1 correspondence to the chemical potentials of the E8 × SU(2) flavor symmetries. The

precise relations that we use are given in [10, 28]. m is simply uplifting to the SU(2) flavor

chemical potential, while the masses m̃i are related to the E8 chemical potentials mi by [10]

m̃i = mi (for i = 1, · · · , 7) , m̃8 = m8 − τ . (4.12)

The chemical potentials α̃1, α̃2 for the Sp(2) electric charges are related to those α1,2 for

the string winding numbers n1 − n2, n2 by

α̃1 = α1 +
τ

2
−m8 , α̃2 = α2 +

τ

2
−m8 . (4.13)
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We chose the convention for α1, α2 in a way that they correspond to the distances from

the M5-branes to the M9-plane.

The elliptic genera of the previous subsection are related to the instanton partition

function for this 5d Sp(2) Yang-Mills, as follows. Let us first define the fugacities

s = e2πiε+ , u = e2πiε− , v = e2πim, w̃i = e2πiα̃i , ỹi = e2πim̃i (4.14)

where w̃i satisfy w̃2 < w̃1 < 1 to probe the sectors with n1 > 0 and n2 > 0. One should

first consider the perturbative partition function Z
Sp(2)
pert , given by

Z
Sp(2)
pert = PE

[
− s(s+ s−1)

(1− su)(su−1)

[
w̃1w̃2 + w̃2/w̃1 + w̃2

2 + w̃2
1

]
+

s(v + v−1)

(1− su)(1− su−1)

[
w̃1w̃2 + w̃2/w̃1

]
+

8∑
i=1

s(ỹi + ỹ−1
i )

(1− su)(1− su−1)

[
w̃1 + w̃2

]]
, (4.15)

where PE[f ] is defined as

PE[f(s, u, v, w̃1,2, ỹi, q)] = exp

[ ∞∑
n=1

1

n
f(sn, un, vn, w̃n1,2, ỹ

n
i , q

n)

]
. (4.16)

The instanton part Z
Sp(2)
inst is computed from the ADHM quantum mechanics. It is well

known (see, for instance [28] and references therein) that the ADHM calculus sometimes

captures extra decoupled contributions apart from the field theory index. This decoupled

contribution is computed in our case in [28], which is given by

Z
Sp(2)
extra =PE

[
−s2

(1− su)(1− su−1)(1− sv)(1− sv−1)

×

(
χ

SO(16)
128 (ỹi)q + χ

SO(16)
120 (ỹi)q

2

1− q2
+

(s+ s−1)(u+ u−1 + v + v−1)q2

2(1− q2)

)]
.

(4.17)

The instanton partition function is given by

Z
Sp(2)
inst = Z

Sp(2)
ADHM/Z

Sp(2)
extra (4.18)

where Z
Sp(2)
ADHM is the index computed from the ADHM quantum mechanics for Sp(2) in-

stantons. See [28] for the computation of Z
Sp(2)
ADHM, which uses the quantum mechanical

version of the contour integral formula using Jeffrey-Kirwan residues.

Let us consider the full index ZSp(2) ≡ Z
Sp(2)
pert Z

Sp(2)
inst . ZSp(2) is very complicated in

general. However, setting m = ε+, ZSp(2) simplifies a lot and reduces to

ZSp(2)(w̃1, w̃2, q, s, u, ỹi, v = s) = ZSp(1)(w̃1, q, s, u, ỹi)Z
Sp(1)(w̃2, q, s, u, ỹi), (4.19)
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where ZSp(1) is the partition function for the 5d Sp(1) gauge theory obtained by compacti-

fying the rank 1 6d SCFT for one M5 and M9. (ZSp(1) is computed by the same procedure

as explained in the previous paragraph. See [28] for the details.) This factorization was

checked up to q2 and w̃5
1,2 order.

Now we would like to connect the above findings to the 2d calculus of the previous

subsection. The two indices are essentially the same, but the latter captures the contribu-

tions only with positive winding numbers (or 5d electric charges). On the other hand, the

former also captures some Sp(2) neutral states’ contribution with instanton number only.

The missing part in the 2d calculus can be supplemented by multiplying a U(1) instan-

ton partition function factor for 5d maximal SYM, for each M5-brane [1]. This factor is

given by

ZU(1) = PE

[
s(−u− u−1 + v + v−1)

(1− su)(1− su−1)

q2

1− q2

]
. (4.20)

Therefore, setting v = s, the E-string elliptic genera I(n,0) are given by

ZU(1)
∞∑
n=0

wnI(n,0)(q, s, u, yi) = ZSp(1)(w̃, q, s, u, ỹi) (4.21)

where I(0,0) ≡ 1. The coefficients I(n,0) computed from the two different approaches (2d

gauge theory and instanton calculus) were shown to agree with each other [10], for n ≤ 4.

The elliptic genera I(n1,n2) for the (n1, n2) strings can be computed from the instanton

calculus by(
ZU(1)

)2
∞∑

n1,n2=0

wn1−n2
1 wn2

2 I(n1,n2)(q, s, u, yi) = ZSp(2)(w̃1, w̃2, q, s, u, ỹi) . (4.22)

One can show that the right hand side of (4.22), computed up to q2 and w̃5
1,2 orders from

the instanton calculus, completely agrees with I(n1,n2) computed in the previous subsection

for (n1, n2) = (1, 1), (1, 2), (2, 1). In particular, our proposal (4.11) is justified from the

factorization (4.19) of the Sp(2) instanton partition function at m = ε+. We show this

result pictorially in Figre 8.

5 D5 branes probing ADE singularities

In this section we study a third class of theories that arises from F-theory compactified

on an elliptic Calabi-Yau threefold X defined as follows: we take the base to be the

blown-up ALE singularity of ADE type, and over each blown up P1 we let the elliptic

fiber have Kodaira degeneration IN . Equivalently, we can interpret this setup as Type

IIB string theory with N D5 branes probing an ALF singularity of ADE type. We soon

will be interested in decompactifying the circle at infinity of ALF and recover the ALE

singularity. As follows from the Douglas-Moore construction [31], the resulting N = (1, 0)

six dimensional theory is captured by an affine quiver of ADE type, with the following field

content: to a node i of the affine quiver with Coxeter label di is associated a gauge group

SU(diN), and to each edge is associated bifundamental matter. Furthermore, to each node
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Figure 8. String charge sector (3, 2) for the configuration of two M5 branes probing an M9 wall.

In the massless case the strings can recombine and one arrives at a configuration of a single E-string

from the first M5 brane and two E-strings from the second.

U (n
1
) U (k

2
) U (k

3
) U (kM )

SU (N ) SU (N ) SU (N ) SU (N ) SU (N )

U (n
2
) U (n

3
) U (n

r
)

Figure 9. Quiver gauge theory for the non-critical strings of N D5 branes probing an Ar singularity.

Note that the global symmetry are obtained from the affine Âr quiver by ‘opening up’ the quiver

at the affine node.

of the quiver corresponds an abelian tensor multiplet. Naively one would expect to have

gauge groups U(diN), but one finds that in fact the abelian factor
∏
i U(1) is Higgsed via

a Green-Schwarz mechanism (apart from a decoupled global U(1) factor) [32]. We now

take the ALF → ALE limit, so that the D5 brane associated to the affine node becomes

noncompact and gives rise to a global (as opposed to gauge) SU(N) symmetry. In fact,

in the Ar case, one can actually associate distinct SU(N) global symmetries to the two

non-compact half–P1’s that arise from the affine node.

Of even more interest to us is the quiver gauge theory associated to the self-dual

strings of the theory, which arise in F-theory as D3 branes wrapping the blown-up P1s, or

equivalently in Type IIB string theory as D1 branes probing the singularity. The resulting

two-dimensional quiver theory was derived for the AN singularity by following a suitable

generalization of Douglas-Moore construction [33], and is pictured in figure 9 (this quiver

is equivalent to the one depicted in figure 1). Note that there is no restriction on the ranks

of the gauge groups; the rank at any node is equal to the number of D3 branes (self-dual

strings) coupled to the corresponding tensor multiplet.
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To avoid clutter, in this section, we work with the exponentiated variables,

t = e2πiε1 , d = e2πiε2 , c = e2πim. (5.1)

We also use exponentiated fugacity variables for gauge and global symmetries, so that, for

example, θ1(z) = iq1/8(z−1/2 − z1/2)
∏∞
i=1(1− qi)(1− qiz)(1− qiz−1).

With that, let us first consider an Ar singularity probed by a single D5 brane, that is

we set N = 1. The elliptic genus for this case, in the (n1, . . . , nr) sector corresponding to

n1 strings associated to the first node, n2 for the second node, and so on, is computed by

a contour integral which we write schematically as

ZAr,1
n1,...,nr

=

∮ ( r∏
i=1

1

ni!

ni∏
a=1

η2dz
(i)
a

2πiz
(i)
a

) r∏
i=1

ni∏
a,b=1
a 6=b

θ1(z
(i)
a /z

(i)
b )

η


 r∏
i=1

ni∏
a,b=1

η θ1(td
z
(i)
b

z
(i)
a

)

θ1(t z
(i)
a

z
(i)
b

)θ1(d z
(i)
a

z
(i)
b

)



×

r−1∏
i=1

ni∏
a=1

ni+1∏
b=1

θ1(c
√

d
t

z
(i+1)
b

z
(i)
a

)

θ1(c
√
td
z
(i+1)
b

z
(i)
a

)


 r∏
i=2

ni∏
a=1

ni−1∏
b=1

θ1(c
√

t
d

z
(i)
a

z
(i−1)
b

)

θ1( c√
td

z
(i)
a

z
(i−1)
b

)


×

 r∏
i=1

ni∏
a=1

θ1(cz
(i)
a )θ1(c 1

z
(i)
a

)

θ1(
√
tdz

(i)
a )θ1(

√
td 1

z
(i)
a

)

 . (5.2)

The poles of the integral are labeled by collections of r Young diagrams Y = {Y (i)}ri=1,

such that |Y (i)| = ni, and are located at

z(i)
a = tx+ 1

2dy+ 1
2 (5.3)

where (x, y) are the coordinates of a-th box in Y (i) (for example, the two boxes in the

diagram �� have coordinates (0,0) and (1,0)). Evaluating the residues, we get:

ZAr,1
n1,...,nr

=
1∏r

i=1 ni!

∑
Y


r∏
i=1

∏
(x1,y1)∈Y (i)

(x2,y2)∈Y (i)

ηθ1(tx1−x2+1dy1−y2+1)

θ1(tx1−x2+1dy1−y2)θ1(tx1−x2dy1−y2+1)



×


r∏
i=1

∏
(x1,y1)∈Y (i)

(x2,y2)∈Y (i)

(x1,y1) 6=(x2,y2)

θ1(tx1−x2dy1−y2)

η



×


r−1∏
i=1

∏
(x1,y1)∈Y (i+1)

(x2,y2)∈Y (i)

θ1(ctx1−x2−
1
2dy1−y2+ 1

2 )

θ1(ctx1−x2+ 1
2dy1−y2+ 1

2 )


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×


r∏
i=2

∏
(x1,y1)∈Y (i)

(x2,y2)∈Y (i−1)

θ1(ctx1−x2+ 1
2dy1−y2−

1
2 )

θ1(ctx1−x2−
1
2dy1−y2−

1
2 )


×

 r∏
i=1

∏
(x1,y1)∈Y (i)

θ1(ctx1+ 1
2dy1+ 1

2 )θ1(ct−x1−
1
2d−y1−

1
2 )

θ1(tx1+1dy1+1)η



×


r∏
i=1

∏
(x1,y1)∈Y (i)

(x1,y1) 6=(0,0)

η

θ1(t−x1d−y1)

 . (5.4)

The computation for an arbitrary number N of D5 branes is only slightly more involved;

the flavor symmetry group now also includes a SU(N)r+2 factor; for the factor of SU(N)

corresponding to the i-th node, we introduce fugacities s
(i)
b , b = 1, . . . , N . These fugacities

obey
∏
s

(i)
b = 1. We label the leftmost and rightmost flavor symmetry nodes in figure 9

respectively by i = 0 and i = r + 1.2 The elliptic genus is now given by:

ZAr,N
n1,...,nr

=

∮ ( r∏
i=1

1

ni!

ni∏
a=1

η2dz
(i)
a

2πiz
(i)
a

) r∏
i=1

ni∏
a,b=1
a 6=b

θ1(z
(i)
a /z

(i)
b )

η


 r∏
i=1

ni∏
a,b=1

η θ1(td
z
(i)
b

z
(i)
a

)

θ1(t z
(i)
a

z
(i)
b

)θ1(d z
(i)
a

z
(i)
b

)



×

r−1∏
i=1

ni∏
a=1

ni+1∏
b=1

θ1(c
√

d
t

z
(i+1)
b

z
(i)
a

)

θ1(c
√
td
z
(i+1)
b

z
(i)
a

)


 r∏
i=2

ni∏
a=1

ni−1∏
b=1

θ1(c
√

t
d

z
(i)
a

z
(i−1)
b

)

θ1( c√
td

z
(i)
a

z
(i−1)
b

)



×

 r∏
i=1

ni∏
a=1

N∏
b=1

θ1(c z
(i)
a

s
(i−1)
b

)θ1(c
s
(i+1)
b

z
(i)
a

)

θ1(
√
td z

(i)
a

s
(i)
b

)θ1(
√
td
s
(i)
b

z
(i)
a

)

 . (5.5)

The poles of this integral are classified by collections Y of colored Young diagrams: Y =

{{Y (i)
`i
}N`i=1}ri=1, subject to the constraint

∑N
`i=1 |Y

(i)
`i
| = ni. The pole associated to the

a-box in the Young diagram Y
(i)
`i

, with coordinates (x, y), is at

z(i)
a = s

(i)
`i
t
1
2

+xd
1
2

+y. (5.6)

Evaluating the residues we find:

ZAr,N
n1,...,nr

=
1∏r

i=1 ni!

∑
Y


r∏
i=1

N∏
`,m=1

∏
(x1,y1)∈Y (i)

`

(x2,y2)∈Y (i)
m

θ1(tx1−x2dy1−y2)θ1(
s
(i)
`

s
(i)
m

tx1−x2+1dy1−y2+1)

θ1(
s
(i)
`

s
(i)
m

tx1−x2+1dy1−y2)θ1(
s
(i)
`

s
(i)
m

tx1−x2dy1−y2+1)


2In the ALE limit, we are free to assign independent fugacities to these two flavor symmetry groups.
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Figure 10. Quiver gauge theory for the non-critical strings of N D5 branes probing a Dr singularity.

×


r−1∏
i=1

N∏
`,m=1

∏
(x1,y1)∈Y (i)

`

(x2,y2)∈Y (i+1)
m

θ1(c−1 s
(i)
`

s
(i+1)
m

tx1−x2+ 1
2dy1−y2−

1
2 )

θ1(c−1 s
(i)
`

s
(i+1)
m

tx1−x2−
1
2dy1−y2−

1
2 )



×


r∏
i=2

N∏
`,m=1

∏
(x1,y1)∈Y (i)

`

(x2,y2)∈Y (i−1)
m

θ1(c
s
(i)
`

s
(i−1)
m

tx1−x2+ 1
2dy1−y2−

1
2 )

θ1(c
s
(i)
`

s
(i−1)
m

tx1−x2−
1
2dy1−y2−

1
2 )



×

 r∏
i=1

N∏
`,m=1

∏
(x,y)∈Y (i)

`

θ1(c
s
(i)
`

s
(i−1)
m

tx+ 1
2dy+ 1

2 )θ1(c s
(i+1)
m

s
(i)
`

t−x−
1
2d−y−

1
2 )

θ1(
s
(i)
`

s
(i)
m

tx+1dy+1)θ1( s
(i)
m

s
(i)
`

t−xd−y)

 ; (5.7)

note that the products include various factors of θ1(1), which however completely cancel

against each other.

Finally we pass to the case of N D5 branes probing singularities of type Dr or

E6, E7, E8. Their two-dimensional quivers are pictured in figures 10 –14. An important

difference between the A case and the D and E cases is that in the latter the U(1)m sym-

metry is absent. Hence, we will not be able to refine the index with the corresponding

fugacity c. The Lagrangian of the (0, 4) theory is chiral. This is apparent from the fact

that ΛQ and ΛQ̃ transform oppositely. The same is the case with the fields ΛB,ΛB̃,Σ and

Φ. Although, for D and E type quivers there is no preferred orientation of, say, the Φ

arrow. But as it will soon become clear, the elliptic genus of the theory does not depend

on the choice of this orientation.
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Figure 11. Oriented Ê6 quiver with a particular labelling of the nodes i. The numbers in the

parentheses represent the Coxeter labels di.
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Figure 12. Quiver gauge theory for the non-critical strings of N D5 branes probing an E6

singularity.
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Figure 13. Quiver gauge theory for the non-critical strings of N D5 branes probing an E7

singularity.
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Figure 14. Quiver gauge theory for the non-critical strings of N D5 branes probing an E8

singularity.

Let us label the gauge nodes by an index i taking the values from 1 to r. The range of

the index for the flavor nodes, on the other hand, runs from 0 to r, where i = 0 corresponds

to the affine node. Let s
(i)
b , b = 1, . . . , diN be the fugacity corresponding to the flavor

symmetry group SU(diN) where di is the Coxeter label of the node i. These fugacities

obey
∏
s

(i)
b = 1. Let Mij be the adjacency matrix of the quiver with some orientation.

For example, figure 11 shows the Coxeter labels of the affine E6 quiver together with a

particular labeling. The corresponding adjacency matrix is given by

M Ê6 =



0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0


. (5.8)

The elliptic genus of the 2d theory for G = Dr, E6, E7, E8 is then given by

ZG,Nn1,...,nr
=

∮ ( r∏
i=1

1

ni!

ni∏
a=1

η2dz
(i)
a

2πiz
(i)
a

) r∏
i=1

ni∏
a,b=1
a 6=b

θ1(z
(i)
a /z

(i)
b )

η


 r∏
i=1

ni∏
a,b=1

η θ1(td
z
(i)
b

z
(i)
a

)

θ1(t z
(i)
a

z
(i)
b

)θ1(d z
(i)
a

z
(i)
b

)



×

 r∏
i=1

ni∏
a=1

Ndi∏
b=1

η2

θ1(
√
td z

(i)
a

s
(i)
b

)θ1(
√
td
s
(i)
b

z
(i)
a

)



×

 r∏
j=0

djN∏
b=1

θ1( z
(i)
a

s
(j)
b

)

η


Mij θ1(

s
(j)
b

z
(i)
a

)

η


Mji

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 r∏
i,j=1

ni∏
a=1

nj∏
b=1

θ1(
√

d
t
z
(i)
a

z
(j)
b

)θ1(
√

t
d
z
(i)
a

z
(j)
b

)

θ1( 1√
td

z
(j)
b

z
(i)
a

)θ1( 1√
td

z
(i)
a

z
(j)
b

)


Mij
 . (5.9)

Using the identity θ1(x) = −θ1(x−1) we get (up to a sign):

ZG,Nn1,...,nr
=

∮ ( r∏
i=1

1

ni!

ni∏
a=1

η2dz
(i)
a

2πiz
(i)
a

) r∏
i=1

ni∏
a,b=1
a 6=b

θ1(z
(i)
a /z

(i)
b )

η


 r∏
i=1

ni∏
a,b=1

η θ1(td
z
(i)
b

z
(i)
a

)

θ1(t z
(i)
a

z
(i)
b

)θ1(d z
(i)
a

z
(i)
b

)



×

 r∏
i=1

ni∏
a=1

Ndi∏
b=1

η2

θ1(
√
td z

(i)
a

s
(i)
b

)θ1(
√
td
s
(i)
b

z
(i)
a

)


 r∏
i=1

r∏
j=0

djN∏
b=1

θ1(
s
(j)
b

z
(i)
a

)

η


Mij+MT

ij


×

 r∏
i,j=1

ni∏
a=1

nj∏
b=1

θ1(
√

d
t
z
(i)
a

z
(j)
b

)

θ1( 1√
td

z
(i)
a

z
(j)
b

)


Mij+MT

ij
 . (5.10)

As it is clear from the expression, the elliptic genus depends only on the combination

Mij +MT
ij ≡ Aij , the undirected adjacency matrix of the affine D or E quiver. The poles of

this integral are classified by collections Y of colored Young diagrams: Y = {{Y (i)
`i
}diN`i=1}

r
i=1,

subject to the constraint
∑diN

`i=1 |Y
(i)
`i
| = ni. The pole associated to the a-box in the Young

diagram Y
(i)
`i

, with coordinates (x
(i)
`i
, y

(i)
`i

), is at

z(i)
a = s

(i)
`i
t
1
2

+x
(i)
`i d

1
2

+y
(i)
`i . (5.11)

Evaluating the residues we find:

ZG,Nn1,...,nr
=

1∏r
i=1 ni!

∑
Y


r∏
i=1

diN∏
`,m=1

∏
(x1,y1)∈Y (i)

`

(x2,y2)∈Y (i)
m

θ1(
s
(i)
`

s
(i)
m

tx1−x2dy1−y2)θ1(
s
(i)
`

s
(i)
m

tx1−x2+1dy1−y2+1)

θ1(
s
(i)
`

s
(i)
m

tx1−x2+1dy1−y2)θ1(
s
(i)
`

s
(i)
m

tx1−x2dy1−y2+1)



×


r∏

i,j=1

diN∏
`=1

djN∏
m=1

∏
(x1,y1)∈Y (i)

`

(x2,y2)∈Y (j)
m

θ1(
s
(i)
`

s
(j)
m

tx1−x2−
1
2dy1−y2+ 1

2 )

θ1(
s
(i)
`

s
(j)
m

tx1−x2−
1
2dy1−y2−

1
2 )


Aij



×


r∏
i=1

diN∏
`=1

∏
(x,y)∈Y (i)

`

∏r
j=0

∏djN
m=1

(
θ1(

s
(i)
`

s
(j)
m

tx+ 1
2dy+ 1

2 )/η

)Aij

∏diN
m=1 θ1(

s
(i)
`

s
(i)
m

tx+1dy+1)θ1( s
(i)
m

s
(i)
`

t−xd−y)/η2

. (5.12)
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Figure 15. (0,2) quiver for two small E8 instantons.
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A Quiver for N small E8 instantons with m 6= 0

In this appendix we present a quiver (figure 15) which we conjecture to reproduce elliptic

genera for the strings of two small E8 instantons with non-zero value of the antisymmetric

hypermultiplet mass. The generalization to N small E8 instantons is obtained straight-

forwardly by adjoining additional nodes with unitary gauge group, as for the M-strings.

The results for the elliptic genera of the lowest charge sectors agree with the instanton

computation for 5d Sp(2) gauge theory with 8 fundamental hypermultiplets with masses

ml and one anti-symmetric hypermultiplet of mass m. Although the quiver in figure 15 has

only manifest (0, 2) supersymmetry we conjecture that it flows to a (0, 4) theory in the IR.

The matter content of the 2d theory is a combination of that for E-string and that

for M-strings, with (0, 4) bifundamental twisted hypermultiplets and Fermi multiplets; it

is summarized in table 1. Let us denote the sector corresponding to n1 M9-M5 strings and

n2 M5-M5 strings by (n1, n2). If n1 = 0 or n2 = 0 the 2d CFT reduces respectively to

the one for M-strings or E-strings. In the following we compute the elliptic genera for a

number of other sectors.

A.1 The (n1, n2) = (1, 1) sector

The gauge group in this case is O(1) × U(1). Combining the one-loop determinants, the

zero-mode integral I(1,1) is given by∮
du

2

4∑
i=1

(
−η2

θ1(ε1)θ1(ε2)

)
1

(
η3θ1(ε1 + ε2)

θ1(ε1)θ1(ε2)

)
2

(
8∏
l=1

θi(ml)

η

)
3(

θ1(±m+ ε− ± ai ∓ u)

θ1(±m− ε+ ± ai ∓ u)

)
4

(
θ1(m± u)

θ1(ε+ ± u)

)
5,6

, (A.1)
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Type Field Multiplet Representation

1 (aαβ̇ , λ
αA
− )1 hyper. symm.

2 (aαβ̇ , λ
αA
− )2 hyper. adjoint

3 (Ψ+) Fermi fund.

4 (ϕA, χ
α̇
−)1 ⊕ (ϕA, χ

α̇
−)2 twisted hyper. bifund.

4 (χα+)1 ⊕ (χα+)2 Fermi bifund.

5 (qα̇, ψ
A
+) hyper. fund.

6 (ψ−)1 ⊕ (ψ−)2 Fermi. fund.

Table 1. Field content of the 2d quiver theory for two small E8 instantons.

where ai = (0, 1
2 ,

1+τ
2 , τ2 )i. Note that we are using compact ± notation; for example:

θ1(±m+ ε− ± ai ∓ u) ≡ θ1(m+ ε− + ai − u)θ1(−m+ ε− − ai + u) (A.2)

θ1(m± u1) ≡ θ1(m+ u1)θ1(m− u1), (A.3)

and so on. The Jeffrey-Kirwan residue operation picks the poles u = −ε+ and u = m +

ε+ + ai. Collecting the residues one finds:

I(1,1) =

[
4∑
i=1

(
8∏
l=1

θi(ml)

η

)
·

(
θ1(m+ ε+)θ1(m− ε+)

η3θ1(ε1 + ε2)

θi(m+ ε1)θi(m+ ε2)

θi(m)θi(m+ ε1 + ε2)
(A.4)

+
θ1(ε1)θ1(ε2)

η3θ1(ε1 + ε2)

θi(2m+ ε+)θi(ε+)

θi(m+ ε1 + ε2)θi(m)

)]
× −η

5θ1(ε1 + ε2)

2θ1(ε1)2θ1(ε2)2
.

We have checked up to powers of q4 (here, q = e2πiτ ) that this matches with results from

Sp(2) instanton calculus

I(1,1) =
η2θ1(m− ε−)θ1(−m− ε−)

2θ1(ε1)2θ1(ε2)2

4∑
i=1

(
8∏
l=1

θi(ml)

η

)
. (A.5)

A.2 The (n1, n2) = (1, 2) sector

The zero-mode integral is given by

I(1,2) =

∮
du1du2

4

4∑
i=1

(
8∏
l=1

θi(ml)

η

)
θ1(±(u1 − u2))θ1(ε1 + ε2 ± (u1 − u2))

θ1(ε1 ± (u1 − u2))θ1(ε2 ± (u1 − u2))

× θ1(±m+ ε− ± ai ∓ u1)

θ1(±m− ε+ ± ai ∓ u1)

θ1(±m+ ε− ± ai ∓ u2)

θ1(±m− ε+ ± ai ∓ u2)

θ1(m± u1)

θ1(ε+ ± u1)

θ1(m± u2)

θ1(ε+ ± u2)

× −η2

θ1(ε1)θ1(ε2)

(
η3θ1(ε1 + ε2)

θ1(ε1)θ1(ε2)

)2

, (A.6)

where ai = (0, 1
2 ,

1+τ
2 , τ2 )i. The Jeffrey-Kirwan prescription picks the poles at (u1, u2) =

(−ε+,m + ε+ + ai), (m + ε+ + ai,−ε+), (−ε+,−ε+ − ε1,2), (−ε+ − ε1,2,−ε+), as well as
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(m+ ε+ + ai,m+ ε+ + ai − ε1,2), (m+ ε+ + ai − ε1,2,m+ ε+ + ai), where the last two give

us vanishing residues. The final result is

I(1,2) = −
4∑
i=1

(
8∏
l=1

θi(ml)

η

)
η2θ1(m± ε+)

θ1(ε1)2θ1(ε2)2

[
θi(ε+)θi(4ε+ +m)θi(2m+ ε+)

θi(m)θi(2ε1 + ε2 +m)θi(ε1 + 2ε2 +m)

+
θ1(m± (3ε1

2 + ε2
2 ))

θ1(2ε1)θ1(ε2 − ε1)

θi(ε2 +m)θi(2ε1 +m)

θi(2ε1 + ε2 +m)θi(m)

+
θ1(m± ( ε12 + 3ε2

2 ))

θ1(2ε2)θ1(ε1 − ε2)

θi(ε1 +m)θi(2ε2 +m)

θi(ε1 + 2ε2 +m)θi(m)

]
, (A.7)

which again agrees with results from Sp(2) instanton calculus.

A.3 The (n1, n2) = (2, 1) sector

For the continuous O(2) holonomy, we have to deal with a rank two contour integration.

One finds:

I0
(2,1) =

∮
du1du2

2

η7θ1(ε1 + ε2)

θ1(ε1,2)θ1(ε1,2 ± 2u1)

η3θ1(ε1 + ε2)

θ1(ε1)θ1(ε2)

(
8∏
l=1

θ1(ml ± u1)

η

)
(A.8)

× θ1(±m+ ε− + u1 ∓ u2)

θ1(±m− ε+ + u1 ∓ u2)

θ1(±m+ ε− − u1 ∓ u2)

θ1(±m− ε+ − u1 ∓ u2)

θ1(m± u2)

θ1(ε+ ± u2)
.

If we choose η = e1 + ε e2 with ε � 1, the Jeffrey-Kirwan residue prescription picks the

following poles:

• u1 + u2 − ε+ −m = 0, ε+ − u2 = 0: (u1, u2) = (m, ε+).

• u2 + ε+ = 0, u1 − u2 − ε+ +m = 0: (u1, u2) = (−m,−ε+).

• u1 + u2 − ε+ −m = 0, u1 − u2 − ε+ +m = 0: (u1, u2) = (ε+ + ai,m+ ai).

• 2u1 + ε1,2 = 0, u1 + u2 − ε+ −m = 0: (u1, u2) =(− ε1,2
2 + ai, ε1,2+

ε2,1
2 +m− ai).

• 2u1 + ε1,2 = 0, u2 + ε+ = 0: (u1, u2) = (− ε1,2
2 + ai,−ε+).

• 2u1 + ε1,2 = 0, −u1 + u2 − ε+ −m = 0: (u1, u2) = (− ε1,2
2 + ai,

ε2,1
2 +m+ ai).

These poles will give zero residues, due to numerators θ1(−m+ ε− + u1 + u2)θ1(m+

ε− − u1 − u2).

Here, ai runs over {0, 1
2 ,

1+τ
2 , τ2}. Doing the integration with sign factors dictated by

Jeffrey-Kirwan residue prescription, one finds

I0
(2,1) = +

η−12θ1(ε+ ±m)
∏8
l=1 θ1(ml ±m)

2θ1(ε1,2)θ1(ε1,2 + 2m)θ1(2m)θ1(ε1 + ε2 − 2m)

−
η−12θ1(ε+ ±m)

∏8
l=1 θ1(ml ±m)

2θ1(ε1,2)θ1(ε1,2 − 2m)θ1(2m)θ1(ε1 + ε2 + 2m)

+

4∑
i=1

η−12θi(0)θi(2m)
∏8
l=1 θi(ml ± ε+)

4θ1(ε1)θ1(ε2)θ1(2ε1 + ε2)θ1(ε1 + 2ε2)θi(m± ε+)
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−
4∑
i=1

η−12θ1(ε1 + ε2)θi(ε1 + 1
2ε2 + 2m)θi(ε1 + 1

2ε2)
∏8
l=1 θi(ml ± 1

2ε1)

4θ1(ε1)2θ1(ε2)θ1(2ε1 + ε2)θ1(ε1 − ε2)θi(
3
2ε1 + ε2 +m)θi(

1
2ε1 +m)

+(ε1↔ε2)

+

4∑
i=1

η−12θ1(ε+ ±m)θi(
1
2ε1 − ε2 −m)θi(

3ε1
2 +m)

∏8
l=1 θi(ml ± 1

2ε1)

4θ1(ε1,2)2θ1(2ε1)θ1(ε1 − ε2)θi(
3
2ε1 + ε2 +m)θi(

1
2ε1 −m)

+ (ε1↔ε2),

(A.9)

where residues are arranged in the order in which the poles are listed in. There are six

O(2) also discrete holonomies whose zero-mode integrals give

Im(2,1) =

∮
du

4

η4 θ1(a1 + a2)θ1(ε1 + ε2 + a1 + a2)

θ1(ε1,2)2θ1(ε1,2 + a1 + a2)

η3θ1(ε1 + ε2)

θ1(ε1)θ1(ε2)

(
8∏
l=1

2∏
j=1

θ1(ml + aj)

η

)

× θ1(±m+ ε− ± a1 ∓ u)

θ1(±m− ε+ ± a1 ∓ u)

θ1(±m+ ε− ± a2 ∓ u)

θ1(±m− ε+ ± a2 ∓ u)

θ1(m± u)

θ1(ε+ ± u)

=
η7θ1(ε1 + ε2)θ1(a1 + a2)θ1(ε1 + ε2 + a1 + a2)

4θ1(ε1,2)3θ1(ε1,2 + a1 + a2)

(
8∏
l=1

θ1(ml + a1)θ1(ml + a2)

η2

)

×

[
θ1(m+ ε+)θ1(m− ε+)

η3θ1(ε1 + ε2)

θ1(m+ ε1 + a1,2)θ1(m+ ε2 + a1,2)

θ1(m+ a1,2)θ1(m+ ε1 + ε2 + a1,2)

+
θ1(ε1)θ1(ε2)

η3θ1(ε1 + ε2)

θ1(ε1 + a1 − a2)θ1(ε2 + a1 − a2)

θ1(a1 − a2)θ1(ε1 + ε2 + a1 − a2)

θ1(2m+ ε+ + a1)θ1(ε+ + a1)

θ1(m+ ε1 + ε2 + a1)θ1(m+ a1)

+
θ1(ε1)θ1(ε2)

η3θ1(ε1 + ε2)

θ1(ε1 + a2 − a1)θ1(ε2 + a2 − a1)

θ1(a2 − a1)θ1(ε1 + ε2 + a2 − a1)

θ1(2m+ ε+ + a2)θ1(ε+ + a2)

θ1(m+ ε1 + ε2 + a2)θ1(m+ a2)

]
.

(A.10)

where (a1, a2) = (0, 1
2), ( τ2 ,

1+τ
2 ), (0, τ2 ), (1

2 ,
1+τ

2 ), (0, 1+τ
2 ), (1

2 ,
τ
2 ) for m = 1, 2, · · · , 6. Again,

this result is in agreement with Sp(2) instanton calculus.

A.4 The (n1, n2) = (3, 1) sector

This sector contains four rank one integrals and four rank two integrals. The rank one

integrals are given by

In′(3,1) =
η3 θ1(2ε+)

θ1(ε1,2)

η6

θ1(ε1,2)3

∏
(i,j)

θ1(ai + aj)θ1(2ε+ + ai + aj)

θ1(ε1,2 + ai + aj)

( 8∏
l=1

3∏
i=1

θ1(ml + ai)

η

)

×
∮
du

8

(
3∏
i=1

θ1(±m+ ε− ± ai ∓ u)

θ1(±m− ε+ ± ai ∓ u)

)
θ1(m± u)

θ1(ε+ ± u)
, (A.11)

where (i, j) ∈ {(1, 2), (2, 3), (3, 1)} and (a1, a2, a3) take the following values:{(
1

2
,

1 + τ

2
,
τ

2

)
,

(
1

2
,

1 + τ

2
, 0

)
,

(
τ

2
,

1 + τ

2
, 0

)
,

(
0,
τ

2
,

1

2

)}
.
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Picking up poles at u = −ε+, u = m+ ε+ + a1, u = m+ ε+ + a2, u = m+ ε+ + a3, we get

In′(3,1) =
η9 θ1(2ε+)

8θ1(ε1,2)4

∏
(s,t)

θ1(as + at)θ1(2ε+ + as + at)

θ1(ε1,2 + as + at)

( 8∏
l=1

3∏
i=1

θ1(ml + ai)

η

)

×

[
θ1(m± ε+)

η3 θ1(2ε+)

3∏
i=1

θ1(ε1,2 +m+ ai)

θ1(m+ ai)θ1(2ε+ +m+ ai)

+
∑

(i,j,k)

θ1(ε1,2)

η3 θ1(2ε+)

θ1(ε++ai)θ1(ε++2m+ai)

θ1(m+ai)θ1(2ε++m+ai)

θ1(ε1+ai−aj,k)θ1(ε2+ai−aj,k)
θ1(ai−aj,k)θ1(2ε++ai−aj,k)

]
(A.12)

for (s, t) ∈ {(1, 2), (2, 3), (3, 1)} and (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. The rank two

integrals are:

In(3,1) =

∮
du1du2

4

θ1(2ε+)2θ1(2ε+ ± u1 + a0)θ1(±u1 + a0)

θ1(ε1,2)

8∏
l=1

θ1(ml ± u1)θ1(ml + a0)

η3

× η6

θ1(ε1,2)2θ1(ε1,2 ± u1 + a0)θ1(ε1,2 ± 2u1)

θ1(±m+ ε− ± a0 ∓ u2)

θ1(±m− ε+ ± a0 ∓ u2)

θ1(m± u2)

θ1(ε+ ± u2)

× θ1(±m+ ε− + u1 ∓ u2)

θ1(±m− ε+ + u1 ∓ u2)

θ1(±m+ ε− − u1 ∓ u2)

θ1(±m− ε+ − u1 ∓ u2)
,

where a0 takes the value (0, 1
2 ,

1+τ
2 , τ2 ) for n = 1, . . . , 4. If we choose η = e1 + ε e2 with

ε� 1, the following poles are picked by the Jeffrey-Kirwan prescription:

• u1 + u2 − ε+ −m = 0, ε+ − u2 = 0: (u1, u2) = (m, ε+).

• u1 + u2 − ε+ −m = 0, m− ε+ + a0 − u2 = 0: (u1, u2) = (2ε+ − a0,m− ε+ + a0).

The corresponding residue does vanish because of θ1(2ε+±u1 +a0) in the numerator.

• u1 − u2 − ε+ +m = 0, ε+ + u2 = 0: (u1, u2) = (−m,−ε+).

• u1 − u2 − ε+ +m = 0, −m− ε+ − a0 + u2 = 0: (u1, u2) = (2ε+ + a0,m+ ε+ + a0).

The corresponding residue does vanish because of θ1(2ε+±u1 +a0) in the numerator.

• u1 + u2 − ε+ −m = 0, u1 − u2 − ε+ +m = 0: (u1, u2) = (ε+ + ai,m+ ai).

• u1 + u2 − ε+ −m = 0, 2u1 + ε1,2 = 0: (u1, u2) = (− ε1,2
2 + ai, ε1,2 +

ε2,1
2 +m− ai).

• u1 +u2− ε+−m = 0, u1 + ε1,2 + a0 = 0: (u1, u2) = (−ε1,2− a0,
3ε1,2

2 +
ε2,1
2 +m+ a0).

• −u1 + u2 − ε+ −m = 0, 2u1 + ε1,2 = 0: (u1, u2) = (− ε1,2
2 + ai,

ε2,1
2 +m+ ai).

The corresponding residue does vanish because of θ1(∓m + ε− ± u1 ± u2) in the

numerator.

• −u1 +u2−ε+−m = 0, u1 +ε1,2 +a0 = 0: (u1, u2) = (−ε1,2−a0,− ε1,2
2 +

ε2,1
2 −a0 +m).

The corresponding residue does vanish because of θ1(±m + ε− ± a0 ∓ u2) in the

numerator.

– 28 –



J
H
E
P
0
2
(
2
0
1
8
)
1
4
3

• 2u1 + ε1,2 = 0, u2 + ε+ = 0: (u1, u2) = (− ε1,2
2 + ai,−ε+).

• 2u1 + ε1,2 = 0, u2 −m− ε+ − a0 = 0: (u1, u2) = (− ε1,2
2 + ai,m+ ε+ + a0).

• u1 + ε1,2 + a0 = 0, u2 + ε+ = 0: (u1, u2) = (−ε1,2 − a0,−ε+).

• u1 + ε1,2 + a0 = 0, u2 −m− ε+ − a0 = 0: (u1, u2) = (−ε1,2 − a0,m+ ε+ + a0).

The corresponding residue does vanish because of θ1(∓m + ε− ± u1 ± u2) in the

numerator.

In the above, ai runs over {0, 1
2 ,

1+τ
2 , τ2} while a0 is fixed (dependent on n). Collecting the

contributions from all residues, one gets:

I(3,1) = −
η−18 θ1(ε+ ±m)θn(2ε+ +m)θn(m)

∏8
l=1 θ1(ml ±m)θn(ml)

4θ1(ε1,2)2θ1(2ε+ − 2m)θ1(2m)θ1(ε1,2 + 2m)θn(ε1,2 +m)

+
η−18 θ1(ε+ ±m)θn(2ε+ −m)θn(m)

∏8
l=1 θ1(ml ±m)θn(ml)

4θ1(ε1,2)2θ1(2ε+ + 2m)θ1(2m)θ1(ε1,2 − 2m)θn(ε1,2 −m)

−
∑

(i,j)∈Sn

η−18 θi(0)θi(2m)θj(ε+)θj(3ε+)
∏8
l=1 θi(ml ± ε+)θn(ml)

8θ1(ε1,2)2θi(m± ε+)θj(
3ε1,2

2 +
ε2,1
2 )θ1(2ε1,2 + ε2,1)

+

[ ∑
(i,j)∈Sn

η−18θ1(2ε+)θi(ε1+ ε2
2 )θi(ε1+ ε2

2 +2m)θj(
ε1
2 +ε2)

∏8
l=1 θi(ml± ε1

2 )θn(ml)

8θ1(ε1)3θ1(ε2)2θ1(ε1−ε2)θ1(2ε1+ε2)θi(
ε1
2 +m)θi(

3ε1
2 +ε2 +m)θj(

ε1
2 −ε2)

−
η−18θ1(2ε+)θn(3ε1

2 + ε2
2 + 2m)θn(3ε1

2 + ε2
2 )
∏8
l=1 θn(ml ± ε1)θn(ml)

4θ1(ε1)2θ1(2ε1)θ1(ε1−ε2)θ1(2ε1−ε2)θ1(ε2)θ1(3ε1+ε2)θn(ε1+m)θn(2ε1+ε2 +m)

−
∑

(i,j)∈Sn

(
η−18θ1(ε+ ±m)θn(ε1,2 +m)θi(

ε1
2 − ε2 −m)θi(

3ε1
2 +m)

8θ1(ε1,2)3θ1(2ε1)θ1(ε1 − ε2)θn(m)θn(ε1 + ε2 +m)

×
θj(

ε1
2 )θj(

3ε1
2 + ε2)

∏8
l=1 θi(ml ± ε1

2 )θn(ml)

θi(
ε1
2 −m)θi(

3ε1
2 + ε2 +m)θj(

ε1
2 − ε2)θj(

3ε1
2 )

)

−
∑

(i,j)∈Sn

η−18θn(ε+)θn(ε+ + 2m)
∏
l=1 θi(ml ± ε1

2 )θn(ml)

8θ1(ε1,2)2θ1(2ε1)θ1(ε1 − ε2)θn(m)θn(ε1 + ε2 +m)

−
η−18θ1(m±ε+)θn(ε1 − ε2 −m)θn(2ε1 +m)

∏8
l=1 θn(ml ± ε1)θn(ml)

4θ1(ε1,2)2θ1(2ε1)θ1(3ε1)θ1(ε1−ε2)θ1(2ε1−ε2)θn(ε1−m)θn(2ε1+ε2+m)

+ (ε1 ↔ ε2)

]
,

where terms are arranged in order which poles are listed in. In the above,

S1 = {(1, 1), (2, 2), (3, 3), (4, 4)},
S2 = {(1, 2), (2, 1), (3, 4), (4, 3)},
S3 = {(1, 3), (2, 4), (3, 1), (4, 2)},
S4 = {(1, 4), (2, 3), (3, 2), (4, 1)}.

We have checked that this computation also agrees with Sp(2) instanton calculus.
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