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1 Introduction

The phase structure of asymptotically flat five-dimensional BPS objects in supergravity is

rich and intricate. For instance, there are spinning black holes [1], black rings [2], black

hole horizons with Lens space topologies [3], and BPS smooth geometries with no horizon

(see [4] and references therein). Moreover, there can be bound states between these objects,

such as concentric black rings or black saturns [5, 6], or a bound state of a black hole with

smooth centers outside the black hole horizon. For a review, see e.g. [7]. In this paper, we

investigate the possibility of having bound states of spinning black holes, where each of the

black holes has an S3 horizon topology.

All these objects can be realized microscopically in string theory. The case with least

supersymmetry is M-theory on a Calabi-Yau threefold X, or F-theory on X×S1 for elliptic
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X. When an F-theory picture is available, a 5d black hole arises from a 6d black string by

wrapping a D3-brane over C×S1, where C is a curve in the base of X [8]. Multicenter bound

states of spinning black holes arise when C degenerates into multiple curve components of

lower genus [9]. This work served as a motivation for the present study. Since the F-

theory picture describes the black holes as 6d black strings wrapped over a circle, we are

also led to investigate the question of the existence of multicentered black strings in six

dimensions. These multicentered string configurations can also be constructed from type

IIB compactifications on K3 or T 4. Such centers might bind or not in spacetime, and we

derive the conditions in 6d supergravity for them to form regular BPS bound states. Upon

reducing on S1, they describe black hole bound states in five dimensions. Our analysis will

be done in minimal (1,0) supergravity, which has an F-theory lift in terms of elliptically

fibered X with base P2. In 5d, the bound state black hole system will therefore be a BPS

solution of 5d supergravity coupled to one vector multiplet.1 We expect these bound states

to persist in the presence of additional matter multiplets. This would be relevant for string

compactifications with more supersymmetry, such as M-theory on T 6 or IIB on T 5.

One of the questions we address is whether regular, multicenter solutions exist in re-

gions of parameter space where the single-center solutions would violate the cosmic censor-

ship bound (CCB). This was addressed in the case in which only one center has a finite-size

horizon in [3, 12, 13]. However, to the best of our knowledge, a detailed analysis of the case

with multiple horizons has not been carried out. Although the local form of the solutions

is known, there are various regularity conditions that must be imposed on the metric for

the solution to be a good background, leading to a set of nontrivial constraints on the

parameters describing the local solution. Whether there is a nonzero space of solutions to

these constraints requires a careful analysis.

In this paper, we carry out this analysis in the case of a solution describing two identical

finite-size spinning black holes, and a smooth center. The space contains two topological

two-cycles connecting the black holes to the smooth center, and the whole system is bound

by a nonzero flux through these cycles. We find that there is a narrow region around the

CCB where these configurations exist and are everywhere regular. Moreover, their entropy

dominates over the single-centered black hole in a small subregion where both exist.

We begin our analysis with a description of multi-string solutions in six dimensions in

section 2. In section 3 we reduce over a circle to five dimensions and in section 4 we discuss

the bound states of 5d black holes. We end with some discussion in section 5, and give

some technical details in the appendices.

2 Multiple strings in 6d

Consider F-theory on an elliptically fibered Calabi-Yau threefold X with base B [14–16].

In six dimensions this gives rise to the Poincaré multiplet (containg the graviton and a

self-dual tensor), nT = h1,1(B) − 1 tensor multiplets (with anti-selfdual tensors), and

1Of course, there are also BPS black hole solutions in minimal 5d supergravity [10, 11], but these do not

uplift to F-theory. Therefore, there is no underlying microscopic description in terms of a 6d black string

with an AdS3 near horizon factor whose entropy is governed by a CFT2.
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nV = h1,1(X)− h1,1(B)− 1 vector multiplets. The tensors descend from the RR-four form

C(4) =

h1,1(B)∑
i=1

Ci(2) ∧ αi , Ci(2) =

∫
γi
C(4) , (2.1)

where αi and γi form a basis of harmonic (1,1)-forms and dual two-cycles respectively.

There are also nH = h2,1(X) hypermulitplets from the complex structure deformations of

X but they play no role in our analysis and are frozen to constant values. The simplest

setup for the study of black holes is when the base is chosen to be B = P2, for which

there are no vector multiplets and no tensor multiplets, so we are led to pure minimal

chiral (1,0) supergravity in six dimensions, with bosonic fields the metric and a self-dual

three-form Ĝ = dC(2). The BPS equations in this supergravity theory were studied and

analyzed in [17].

BPS black strings in six dimensions arise from wrapping D3-branes in F-theory over a

curve C in the base B [8, 9, 18]. The near-horizon geometry of such a string in six dimensions

is AdS3×S3. For B = P2, we have only one Kähler class [H] and thus [C] = d[H] for integer

d, the degree of the curve. Wrapping the string over an S1 with N units of momentum

yields a 5d black hole with entropy [1]

S = 2π

√
d2N

2
− J2 , (2.2)

where J is the angular momentum of the black hole.

Moving within the class, the curve C can degenerate into nC curve components and

multi-string branches with d = d1 + d2 + . . . + dnC can arise [9]. These multiple strings

may or may not bind in spacetime; we discuss the conditions under which they form BPS

bound states in subsection 2.2.

2.1 Supersymmetric solutions in 6d

The bosonic content of six-dimensional minimal supergravity is the graviton ĝµ̂ν̂ and a self-

dual three-form field Ĝµ̂ν̂ρ̂. All supersymmetric solutions of minimal supergravity in 6d

were described in [17] (for subsequent work see, e.g., [19]), which we closely follow below.

The metric is given by2

ds26 = −2H−1(du+ β)

(
dv + ω − F

2
(du+ β)

)
+H ds2HK4

, (2.3)

where ds2HK4
is a four-dimensional hyperkähler base and β, ω are 1-forms on HK4. The

vector field ∂v is a null Killing vector field. In full generality F = F(u, x), H = H(u, x),

where x are coordinates in the base, but here we consider the case in which ∂u is a (spacelike)

Killing vector, i.e.,

F = F(x) , H = H(x) . (2.4)

2Here we adopt the signature convention mostly plus, unlike [17], and redefined the function Fhere =

−Fthere.
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In this case the 3-form field is given by

Ĝ =
1

2
∗4 dH − 1

2
e+ ∧ (dω)− +

1

2
H−1e− ∧ dβ − 1

2
e+ ∧ e− ∧H−1dH , (2.5)

where

e+ = H−1(du+ β) , e− = dv + ω − F
2

(du+ β) , dω− =
1

2
(dω − ∗4dω) .

For these u-independent solutions, one may take the u-coordinate to be periodic, u ∼
u+ `, thus the total F-theory geometry is

R×HK4 × S1 × CY3 . (2.6)

Within this family of solutions, an interesting class is when HK4 is taken to be a mul-

ticenter Gibbons-Hawking (GH) space [20], whose metric has the form of a U(1) fibration

over flat R3:

ds2HK4
= H−12 (dψ + χ)2 +H2 ds2R3 , (2.7)

with H2 the harmonic function on R3:

H2 = m∞ +
∑
a

ma

|~x− ~xa|
, ∗3dχ = dH2 , (2.8)

where ma, a = 1, . . . , N are integers. The coordinates in R3 are (r, θ, φ), where θ ∈ [0, π]

and φ ∈ [0, 2π] are coordinates on the round S2 and ψ ∈ [0, 4π] is the fiber direction.

Before we proceed describing the full solution, let us review some well known facts

about the Gibbons-Hawking metrics (2.7) that will be useful later. Close to a center

~x → ~xa, the metric becomes R4/Z|ma|. In particular, this means that ma ∈ Z and for

|ma| = 1 the metric is locally R4. Another important property is that since the ψ-fiber

shrinks to zero size as one approaches any of the centers with ma 6= 0, there is a nontrivial

topological 2-cycle between any two centers, spanned by ψ and any curve connecting them.

See figure 1. Although there are 1
2N(N − 1) number of such cycles, there are a total of

N − 1 independent 2-cycles in homology. The asymptotics of these spaces depend on the

value of m∞. For m∞ = 0 the space is known as multi Eguchi-Hanson, with asymptotics

R4/Z|mT|, where mT =
∑

ama. For a single center with m = 1 the metric is simply flat R4.

The multicenter case with m∞ 6= 0 is known as multi Taub-NUT, with asymptotics

R3×S1. In this case one may reduce further along this asymptotic S1 to four dimensions.

It should be noted that for standard Gibbons-Hawking metrics one requires H2 > 0

(and hence ma > 0) to ensure the metric is positive definite. However, this condition can

be relaxed here as long as the warp factor H in (2.3) compensates for the sign change

in H2 and the full 6d metric has the correct signature. Indeed, we will be particularly

interested in configurations where some ma = −1. These metrics were used to construct

microstates geometries in 5d [21, 22] and 6d [23] and are often referred to as ambipolar

Gibbons-Hawking metrics.

We now return to the description of the full solution. Assuming that the Killing vector

∂ψ of the GH base extends to a symmetry of the full space, the complete supergravity

– 4 –
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u

ψ

~x3

~x1

Figure 1. A multi-string configuration in 6d. The distances between the strings are constrained

by the integrability equations (2.22). The base here is a 3-center Gibbons-Hawking space.

background is then given in terms of five additional generic harmonic functions on R3

(see [17] for more details)

H1 = µ∞ +
∑
a

µa
|~x− ~xa|

, H3 = q∞ +
∑
a

qa
|~x− ~xa|

, (2.9)

H4 = p∞ +
∑
a

pa
|~x− ~xa|

, H5 = n∞ +
∑
a

na
|~x− ~xa|

, H6 = j∞ +
∑
a

ja
|~x− ~xa|

.

In what follows we adopt a notation in which r ≡ |~x|, ra ≡ |~x − ~xa|, rab ≡ |~xa − ~xb| and

denote the set of harmonic functions by

H = (H1, H2, H3, H4, H5, H6) . (2.10)

The functions F , H appearing in the metric are given in terms of these by

F = H5 +H−12 H2
4 , H = H1 +H−12 H3H4 , (2.11)

and the 1-forms β = βψ (dψ + χ) + βi dxi and ω = ωψ (dψ + χ) + ωi dxi are given by

βψ = H−12 H3 , ∗3dβ = −dH3 , (2.12)

ωψ = H−22 H3H
2
4 +H−12

(
H1H4 +

1

2
H5H3

)
+H6 , ∗3dω = 〈H, dH〉 , (2.13)

where we introduced the symplectic product 〈u, v〉 ≡ u>Ω v, with

Ω =



0 0 0 −1 0 0

0 0 0 0 0 1

0 0 0 0 1
2 0

1 0 0 0 0 0

0 0 −1
2 0 0 0

0 −1 0 0 0 0


. (2.14)

It is convenient to denote the residues and constant parts in H by the vectors

Γa = (µa,ma, qa, pa, na, ja) , Γ∞ = (µ∞,m∞, q∞, p∞, n∞, j∞) , (2.15)

The symplectic pairing acts naturally on these by

〈Γa,Γb〉 = paµb − µapb +majb −mbja +
1

2
(qanb − qbna) . (2.16)
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As shown in [17], the solution reviewed above is the most general u-independent so-

lution with a Gibbons-Hawking base space whose Killing vector field ∂ψ extends to a

symmetry of the full solution. Specifying a particular local solution in this class amounts

to giving a set of locations {~xa} of the poles in the harmonic functions, their residues {Γa}
and the asymptotic values Γ∞. To write the solution explicitly one must determine the

1-forms χ,β,ω from equations (2.8), (2.12) and (2.13), respectively. The expression for

these is given in appendix A.1 in a simplified case where all the GH centers lie on a single

line inside R3.

The asymptotics of the metric (2.3) is controlled by the asymptotics of the GH base

and the behavior of the functions H,F and 1-forms ω, β as r → ∞. Setting m∞ = 0

and requiring that asymptotically H,F → 1 and ω, β → 0, the metric asymptotes to

R1,1 × R4/ZmT
, where mT ≡

∑
ama must be positive for the metric to have the correct

signature. See appendix A.2 for details.

Black strings and black tubes. The single black string solution is obtained by taking

the harmonic functions (2.8) and (2.9) to have a single pole at the origin with residues

Γ = (µ,m, q, p, n, j), with m positive integer3 and constant parts Γ∞ given by (A.7). The

metric (2.3) then reads

ds2 =− 2

(
1 +

Q̃

4
√

2mr

)−1 [
dv +

Jψ
8m2r

(dψ +m cos θ dφ)− 1

2

(
1 +

Q

4mr

)
du′
]

du′

+

(
1 +

Q̃

4
√

2mr

)[
r

m
(dψ +m cos θ dφ)2 +m

dr2

r
+mr dΩ2

2

]
, (2.17)

where we defined u′ = u + q
mψ. Since u and ψ are both periodic, we must impose the

quantization condition 4π
`
q
m ∈ Z in order for the reparametrization to be globally defined.

We also introduced the combinations

Q̃ = 4
√

2(µm+ qp) , Q = 4(nm+ p2) , Jψ = 8(qp2 + µpm+
qn

2
m+ jm2) . (2.18)

The spacetime (2.17) is asymptotically S1 × R1,4/Zm where the S1 is parametrized by u′

and has an event horizon at r = 0. The near-horizon geometry4 is a direct product of an

extremal BTZ black hole and a round S3/Zm. The Bekenstein-Hawking entropy associated

to the black string horizon reads

S =
Area

4G6
= 2π

√
QQ̃2

2m2
−
J2
ψ

m2
, (2.19)

where we chose conventions [18] in which G6 = `π
4 , with ` the period of u′. Setting m = 1

and with the identification with F-theory quantities J = Jψ, N = Q, d = Q̃, this matches

3For m 6= 1 the spacetime is a Zm orbifold which can be undone choosing ψ to have period 4πm. We

do not do this here since we want to obtain an entropy formula for a generic set of charges.
4A solution which is globally BTZ×S3 can be obtained by taking a single center and setting Γ∞ = 0.

For other six-dimensional solutions that asymptote to AdS3 × S3 see e.g. [24].
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the entropy (2.2). Since the F-theory quantities are quantized in the microscopic theory,

the charges Jψ, Q, Q̃ are integers, which explains our choice of normalizations in (2.18).

The extension to the multi-string case is straightforward. Taking a generic configura-

tions with charge vectors {Γa} the metric close to any center with ma 6= 0 will resemble the

r → 0 limit of (2.17) with coefficients Q̃a, Qa and Jψa. In fact, unlike the case of a single

string, one may (and we will) allow for some ma < 0 as long as the asymptotic condition

mT > 0 is satisfied. The entropy of each string is given by (2.19) with the corresponding

charges.

Although not the focus of the present paper, another interesting possibility is when

ma = 0 for some centers. In this case the topology of the horizon at ~x = ~xa degenerates into

S1
u × S3/Z|ma| → S1

u × S1 × S2 , (2.20)

and the object is then a (circular) black tube rather than a black string. This is nothing but

the 6d uplift of the supersymmetric black ring [2]. Although the entropy formula (2.19)

might look singular, it is still valid in the ma = 0 case by taking the limit (see expres-

sions (2.18)).

We will assume ma 6= 0 for the rest of the paper since we are interested in black

strings (black holes) in 6d (5d). Next, we discuss the conditions for these objects to form

bound states.

2.2 Bubble equations

Although any set of locations ~xa of the strings in R3 provide local supergravity solutions,

these will typically have Dirac string-like singularities. In similar settings in four [25] and

five dimensions [21], it is well known that imposing the absence of such singularities leads

to a constraint on the relative locations of the GH centers. This is also the case in six

dimensions (see e.g. [26]). As in the lower-dimensional cases, this arises from requiring the

1-form ω appearing in the metric to be globally defined, which implies

d2ω = 0 . (2.21)

Taking d∗3 on both sides of (2.13) leads to∑
b 6=a

〈Γa,Γb〉
rab

= 〈Γ∞,Γa〉 , a = 1, . . . , N . (2.22)

These equations impose constraints on the relative distances rab in R3 of the GH centers and

their charges. These are usually referred to as “bubble equations,” because they control

the size of the “bubbles,” or 2-cycles, in the Gibbons-Hawking base (see e.g. [7]). In a

similar setting in four dimensions [25], they are referred to as “integrability equations.”

We note that summing over a on both sides of (2.22), the left-hand side vanishes

identically and thus a consistency requirement is∑
a

〈Γ∞,Γa〉 ≡ 〈Γ∞,ΓT〉 = 0 , (2.23)

which can be interpreted as the condition that there are no Dirac strings running to infinity.

– 7 –
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The constraint (2.22) coincides with the bubble equations found in five dimensions [21].

This is not hard to explain. As we will discuss in section 3, a 5d BPS solution (in the time-

like class) is obtained from the 6d solution by reducing along the direction u ∼ u+ `. Since

the bubble equations depend only on the GH base, which is unaffected by the dimensional

reduction, these coincide in 5d and 6d.

2.3 Dualities and charges

As reviewed above, the class of solutions considered in this paper is characterized by the

six harmonic functions H = (H1, H2, H3, H4, H5, H6). Since these are generic harmonic

functions, and a linear combination of harmonic functions is harmonic, it is clear that

sending H → gH with g ∈ GL(6,R) will send a solution to a solution. An interesting

question is whether this operation preserves regularity, in particular the absence of Dirac-

string singularities. One way to ensure this is if the bubble equations (2.22) are preserved,

which leads us to consider the subgroup, Sp(6,R), preserving the symplectic product, i.e.,

g>Ωg = Ω.

One example of such transformations is given by the two-parameter set of transfor-

mations

ggauge =



1 −g1g2 −g1 −g2 0 0

0 1 0 0 0 0

0 g2 1 0 0 0

0 g1 0 1 0 0

0 −g21 0 −2g1 1 0

−g1 1
2g2g

2
1

1
2g

2
1 g1g2 −1

2g2 1


, (2.24)

where g1,2 are real parameters. In fact, these transformations form a two-dimensional

subgroup of Sp(6,R) and it is easy to see that they leave the functions H,F , as well as the

1-form ω invariant. The 1-form β transforms by an exact term: β → β − g2 dψ, which can

be undone by the coordinate transformation u→ u+ g2ψ. Furthermore, since the function

H2 is invariant, the effect of the transformation (2.24) is a simple, unphysical, change of

coordinates. The explicit action on the residues reads

µa → µa − g1qa − g2pa − g1g2ma , ma → ma , qa → qa + g2ma ,

pa → pa + g1ma , na → na − 2g1pa − g21ma , (2.25)

ja → ja − g1µa −
1

2
g2na + g1g2pa +

1

2
g21qa +

1

2
g2g

2
1ma .

In particular, we note that one may always set the pa, qa charges of one center to zero by

choosing g1, g2 appropriately (provided ma 6= 0). In the context of M-theory on T 6 these

are referred to as “gauge” transformations [27]. This symmetry can be used to construct

physically relevant combinations of the residues, as we discuss next.

For an N number of centers, there are a total of 6N residues in the harmonic func-

tions.5 Due to the redundancy we just described, the residues themselves are not physical

5In principle there are six more parameters in Γ∞ which should be considered in the counting. In fact,

one can construct gauge-invariant combinations analogous to (2.26). However, the latter vanish in the

asymptotically flat solutions considered here.

– 8 –
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quantities. Since the redundancy is characterized by two parameters g1,2 there should be

a total of 6N − 2 gauge-invariant combinations. These are the ma’s themselves, together

with the 5N − 2 independent combinations

Q̃a ≡ 4
√

2(µama + qapa) , Qa ≡ 4(nama + p2a) ,

Jψa ≡ 8(qap
2
a + µapama +

qana
2

ma + jam
2
a) , (2.26)

fa,a+1 ≡
qa+1

ma+1
− qa
ma

, f̃a,a+1 ≡
√

2

(
pa+1

ma+1
− pa
ma

)
.

In the last line we have assumed ma 6= 0 for all a. The quantities above have a clear

physical interpretation, as we will discuss in section 3. In the case of a single GH center,

these quantities reduce exactly to the quantities (2.18).

Another interesting subgroup of Sp(6,R) is given by

gSF =



1 0 0 0 0 −2γ1
−2γ1γ2 1 γ2 2γ1 −γ21 2γ21γ2
−2γ1 0 1 0 0 2γ21
−γ2 0 0 1 −γ1 2γ1γ2

0 0 0 0 1 −2γ2
0 0 0 0 0 1


, (2.27)

where γ1,2 are real parameters. These transformations do not leave the quantities (2.26)

invariant. Instead, they lead to a new solution, characterized by the transformed quan-

tities {m′a, Q′a, Q̃′a, J
ψ ′
a , f ′a,a+1, f̃

′
a,a+1}. Although the transformation acts non-trivially on

these quantities one can see that the entropy (2.19) is invariant. Since the transformation

preserves the bubble equations, the new supergravity background will necessarily be free

of Dirac singularities, provided the original background is. In the case of M-theory on T 6,

these correspond to a subgroup of the E7(7) U-duality group, referred to as generalized

spectral flow transformations in [26].

Finally, another subgroup of Sp(6,R) leaving the entropy invariant is given by

gresc. =



β1 0 0 0 0 0

0 β2 0 0 0 0

0 0 β21β2 0 0 0

0 0 0 β−11 0 0

0 0 0 0 β−21 β−12 0

0 0 0 0 0 β−12


, (2.28)

with β1,2 real parameters, which acts by a simple rescaling of the residues.

Before we proceed we make a brief comment. We have shown that the particular

Sp(6,R) group elements (2.24), (2.27) and (2.28) leave the entropy invariant. In fact it

is not difficult to show that combinations of these transformations form the most general

subgroup H ⊂ Sp(6,R) with this property and that they form the direct product

H = SL(2,R)× SL(2,R) ,

where each factor is a combination of all three types of transformations described above.

The meaning of the Sp(6,R) group and its consequences will be studied in [28].
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3 Reduction to five dimensions

Compactification of F-theory on X×S1 yields an effectively five-dimensional theory which

is the circle reduction of the 6d theory we considered in the previous section. By wrapping

the black strings over S1
u with quantized momenta, we obtain charged spinning black holes

in five dimensions. In this section, we discuss the dimensional reduction from 6d to 5d.

Dimensional reduction of 6d minimal supergravity to 5d leads to the following bosonic

fields: a metric gµν , a scalar ϕ, and two vector fields Aµ and Ãµ. For further details we

refer the reader to appendix A.3. Reduction of the 6d metric and three-form along the

u-direction6 yields

ds26 = e2ϕ (du+A)2 + e−2ϕ/3 ds25 ,

Ĝ = G+
1

2
dÃ ∧ (du+A) , (3.1)

with the five-dimensional, Einstein-frame metric

ds25 = −f2 (dt+ ω)2 + f−1ds2HK4
, f−1 =

(
H2F

)1/3
, (3.2)

where we relabeled dt = dv. For BPS solutions of the Gibbons-Hawking type, the radius

and the two vector fields read

e2ϕ = H−1F ,

A = −
(
H5 +H−12 H2

4

)−1
(dt+ ω) + β , (3.3)

Ã = −
(
H1 +H−12 H3H4

)−1
(dt+ ω) + γ ,

where β satisfies (2.12) and γ = γψ (dψ + χ) + γi dxi similarly satisfies

γψ = H−12 H4 , ∗3dγ = −dH4 . (3.4)

These solutions — and their extensions with an arbitrary number of vector multiplets —

were studied in [6].

Note that the five-dimensional solution is still described by six harmonic functions

and the residues and locations of the centers are still constrained by the same bubble

equations (2.22). One then concludes that the five-dimensional solution describes a bound

state of black holes if and only if the six-dimensional solution corresponds to a bound state

of black strings. Before discussing the variety of possible five-dimensional configurations

we briefly comment on the M-theory setup of these solutions.

The five-dimensional theory in question can also be obtained directly from eleven

dimensions by using F-theory/M-theory duality. F-theory on X × S1 is dual to M-theory

on X. The D3-brane wrapping C × S1 with n units of momentum is dual to an M2 brane

wrapping a curve in the class n[T 2] + [C], where C is the curve in the base B ⊂ X, and

T 2 is the elliptic fiber of X. In a type IIA setting, this is a bound state of n D2-branes

wrapping T 2 and one D2 wrapping C.
6Another possibility would be to reduce along the GH fiber dψ, in this way one can obtain 5d solutions

of the “null” class [11]. We do not discuss this here.
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KK-monopole M5-flux M2-charge ∂ψ

ma fa,a+1, f̃a,a+1 Qa, Q̃a Jψa

Table 1. Relation between residues in the functions H and charges of M-theory objects.

Generically, M-theory on a Calabi-Yau manifold X gives nV = h1,1(X) − 1 vector

multiplets and nH = h1,2(X) + 1 hypermultiplets [29, 30]. h1,1(X) vectors arise from

expanding the eleven dimensional three-form in H2(X,R),

C(3) =

h1,1(X)∑
A=1

AA ∧ ωA + . . . , (3.5)

where the ellipsis denote the terms leading to five-dimensional hypermultiplet scalars. One

of these vector fields becomes the graviphoton while the others sit in the nV vector multi-

plets. The 5d real scalars in the vector multiplet correspond to the h1,1 (uncomplexified)

Kähler moduli of X. One combination, however, forms the volume modulus and sits in

a hypermultiplet. These hypermultiplets play no role in our analysis, and are frozen to

constant values. In the example of the elliptically fibered X over base B = P2, we obtain

5d supergravity coupled to a single vector multiplet. The two one-forms from (3.5) corre-

spond to A and Ã in (3.1). They define the M2-brane charges, and their duals can support

M5-brane flux. The radius field in (3.1) becomes the real scalar in the five-dimensional

vector multiplet and measures the inverse area of the elliptic fiber (in 11d Planck units).

For black hole solutions, the scalar is subject to the 5d attractor mechanism [31, 32], and

we find at the horizon

e2ϕ|Hor. =
√

2
Q

Q̃
. (3.6)

At infinity we have set e2ϕ → 1. (See footnote 11.) As an additional remark, we notice that

we can truncate the 5d theory down to minimal supergravity. This can be done by choosing

F = H such that the radius is constant everywhere, e2ϕ = 1. This can be achieved on

BPS solutions by taking H1 = H5 and H3 = H4, such that, for single centers, µ = n and

q = p and hence Q̃ =
√

2Q, consistent with (3.6). Bound state solutions we discuss below

can therefore be truncated to minimal supergravity as well. Minimal supergravity can be

embedded in F-theory by adding and freezing another 5d vector multiplet to the theory.

If such a multiplet is not part of the spectrum, an F-theory embedding is not possible, as

mentioned in footnote 1. The M-theory picture does remain though.

The M-theory interpretation of the quantities (2.26) is given in table 1. Thus, the

configurations of interest arise from configurations of KK-monopoles and antimonopoles,

M2-branes and M5-brane charge fluxes.

3.1 Horizons and conserved charges

The dimensional reduction presented above allows one to obtain the full spectrum of five-

dimensional BPS solutions in the time-like class [11]: reducing the solution (2.17) along u

one obtains, depending on the value of m, the BMPV black hole [1] or the black hole with
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lens topology (black lens) recently discussed in [3]; the supersymmetric black ring [2] can

be obtained reducing a black tube solution. Finally there can be bound states of all these

objects such as concentric black rings [5, 6].

The nature of each object, characterized by the topology of the horizon H, in a mul-

ticenter solution depends on the choice of charge vectors {Γa} or, rather, the value of

the gauge-invariant combinations (2.26). Schematically,7 the situation is summarized as

follows:

i. Black hole (or black lens)

QaQ̃a 6= 0 , ma 6= 0 =⇒ Ha ∼ S3/Z|ma|

ii. Black ring

QaQ̃a 6= 0 , ma = 0 =⇒ Ha ∼ S1 × S2

iii. Smooth center

Qa = Q̃a = Jψa = 0 , ma 6= 0 =⇒ no horizon

The last case can be thought of a limit of the first case; the black hole horizon shrinks to

zero size but it does so smoothly and the metric near such a GH center becomes R4/Z|ma|.
Here we focus our attention on configurations of bound states of black holes with finite

S3 horizons and, possibly, smooth centers in asymptotically flat R1,4. Rather surprisingly,

these solutions have not been studied in the literature in detail. For a study of black

hole bound states in asymptotically AdS3 × S2 see [33]. For the rest of the paper, unless

otherwise specified, we will assume ma 6= 0. Although conical singularities are harmless

in string theory, we take |ma| = 1 to have black holes with smooth S3 horizons. Since

asymptotic flatness requires m
T

= 1, we are necessarily led to consider ambipolar GH bases.

In all the cases listed above, the entropy of the corresponding object is given by

Sa =
Area(Ha)

4G5
=

2π

|ma|

√
QaQ̃2

a

2
− J2

ψ a , (3.7)

where G5 = π/4 in our conventions.

The chargesQa, Q̃a and Jψa in (2.26) can be given a geometric meaning, as the following

integrals performed on the horizons Ha:8

Jψa =
1

4π2

∫
Ha
∗5 dK(ψ) ,

Q̃a = −
√

2

8π2

∫
Ha
∗5 F̃ , (3.8)

Qa = − 1

8π2

∫
Ha
∗5 F ,

7See appendix B.2 for a more detailed discussion.
8The prefactors in the definitions of Q and Q̃ are due to non-canonical kinetic terms for the gauge fields.
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where K(ψ) is the one-form associated to the Killing vector ∂ψ. Thus, Qa, Q̃a and Jψa are

identified with the two electric charges and the angular momentum, respectively, of the

black hole located at ~x = ~xa. To interpret the quantities fa,a+1 and f̃a,a+1 we recall the

discussion below (2.8). In particular, the fact that a multicenter GH space contains N − 1

independent 2-cycles, a basis for which is provided by the elements Ca,a+1 connecting the

centers xa and xa+1. Following [7] one can compute the fluxes of the magnetic part of the

U(1) field strengths F and F̃ , giving

fa,a+1 =
1

4π

∫
Ca,a+1

F , f̃a,a+1 =

√
2

4π

∫
Ca,a+1

F̃ . (3.9)

This also shows that all the combinations (2.26) can be expressed as integrals of gauge-

invariant quantities.

In addition to the individual charges above, for asymptotically flat spacetimes one can

define the total charges measured at infinity, given by the Komar integrals

Jψ =
1

4π2

∫
S3
∞

∗5 dK(ψ) = 8

(
jT + µTpT +

1

2
nTqT + qTp

2
T

)
,

Q̃ = −
√

2

8π2

∫
S3
∞

∗5 dÃ = 4
√

2(µT + pTqT) ,

Q = − 1

8π2

∫
S3
∞

∗5 dA = 4(nT + p2
T
) , (3.10)

where xT ≡
∑

a xa and we used mT = 1 for asymptotically flat spacetimes. We note the

the asymptotic charges are not simply given by the sum of the corresponding charges of

each center. One can also define the total energy of the solution as the charge associated

to the canonical time-like Killing vector ∂t:

M = − 3

8π2

∫
S3
∞

∗5 dK(t) = Q+
√

2Q̃ , (3.11)

where the second equality is a consequence of the BPS condition.

In the next section we will specialize the setting to multicenter configurations where

all the centers lie on a single line, which we take to be the z-axis. As a consequence, the

solution has an additional U(1) isometry generated by rotations along the coordinate φ.

The corresponding angular momentum is given by

Jφ =
1

32π2

∫
S3
∞

∗5 dK(φ) =
∑
a

za〈Γa,Γ∞〉 , (3.12)

where za is the position of the ath center on the z-axis. For these axisymmetric solutions,

the equations of motion (2.8), (2.12) and (2.13) can be easily solved for any number of

centers. The expressions for the 1-forms χ,β,ω in this case are given in appendix A.1.

3.2 A comment on notations

The five-dimensional solutions presented in this section can also be viewed as particular

instances of the three-charge solutions, considered e.g. in [7], where two of the three vectors

multiplets are identified.
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The harmonic functions in [7] are labeled using the V,K,L,M coding which is more

standard in the literature about 5d solutions. In order to make contact with the notation

there, one should identify

M = H6, V = H2, L1 = L2 = H1, L3 = H5, K1 = K2 = H4, K3 = H3 . (3.13)

The three charges of the solution are then identified as

Q1 = Q2 =
Q̃√

2
, Q3 = Q , (3.14)

and (3.11) is consistent with the usual BPS relation between the ADM mass and the charges

in the three-charge system:

M = Q1 +Q2 +Q3.

Although the two theories are equivalent at tree-level they are obtained as the low

energy limit of two distinct microscopic theories. The one presented here comes from

F-theory on X ∼ T 2 × P2 and the one in [7] from M-theory on T 6. The quantization

conditions on the charges are different in the two cases. The charge Q̃ is more appropriate

for the F-theory compactification [18] and will be used in this paper.

4 Bound states of two black holes in 5d

In this section, we study the simplest configuration of bound black holes with S3 horizons

in asymptotically flat R1,4 space. The configuration consists of two identical BMPV black

holes and a smooth center, bound together by M5-charge flux through nontrivial topological

cycles exterior to the horizons. We shall show that, for fixed asymptotic charges, there is

a small but finite region in parameter space where the twin black hole solutions exists and

is regular, and even a region where it is entropically favored over the single-center black

hole with the same asymptotic charges.

Consider a three-center configuration with charge vectors Γa, a = 1, 2, 3. Since we are

interested in smooth horizons with S3 topologies we take ma = ±1 and since asymptotic

flatness requires m
T

= 1, the only choice is ma = (1,−1, 1), up to trivial permutations.

We take one of these centers, which we choose to be Γ2, to be smooth, i.e.,

Q̃2 = Q2 = J2 = 0 . (4.1)

Thus, the charge vectors read

Γ1 = (µ1, 1, 0, 0, n1, j1) , Γ2 =

(
qp,−1, q, p, p2,

1

2
qp2
)
, Γ3 = (µ3, 1, q3, p3, n3, j3) , (4.2)

where we have set p1 = q1 = 0 without loss of generality by the gauge transformation (2.25).

If Γ3 was chosen to be a smooth center, this would describe a single black hole and two

smooth centers studied in [13]. Here, instead, we set q3 = p3 = 0 and assume Q1,3, Q̃1,3 6= 0,

in which case the system corresponds to two BMPV black holes and a smooth center, as

shown in figure 2.
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R3

ψ

~x3

~x1

Figure 2. A configuration of two black holes and a smooth center in the middle, bound by flux

through the two 2-cycles of the GH base.

Explicitly, the harmonic functions are given by

H1 = 1 +
qp

r
+
µ1
r1

+
µ3
r3
, H2 = −1

r
+

1

r1
+

1

r3
,

H3 =
q

r
, H4 =

p

r
, (4.3)

H5 = 1 +
p2

r
+
n1
r1

+
n3
r3
, H6 = j∞ +

qp2

2r
+
j1
r1

+
j3
r3
,

where we have set ~x2 = 0 without loss of generality and j∞ = −p − q
2 to ensure R1,4

asymptotics (see (A.7)).

We emphasize that although the space is asymptotically R1,4 the GH base space is

nontrivial so this is not a configuration of two BMPV black holes in R1,4. Instead, the

geometry contains two nontrivial topological 2-cycles connecting each black hole to the

smooth center. As we discuss next, magnetic (or M5-charge) fluxes through these cycles

keep the system bound.

4.1 Solving the bubble equations

We now study the constraints on the relative locations of the GH centers imposed by

the bubble equations. For simplicity, we focus on axisymmetric configurations, where the

three GH centers lie on a straight line inside R3, which we take to be the z-axis and

place the smooth center at the origin. We denote the locations of the two black holes by

~x1 = {0, 0, z1}, ~x3 = {0, 0, z3} and choose the orientation of the axis such that z1 > 0.

The bubble equations (2.22) read:

2µ1p+ n1q − p2q − 2j1
2 z1

+
j1 − j3
|z1 − z3|

= j∞ ,

2µ3p+ n3q − p2q − 2j3
2|z3|

+
j3 − j1
|z1 − z3|

= j∞ , (4.4)

together with j∞ + p+ q
2 = 0, from (2.23).

Let us assume for the moment that j∞ 6= 0. We first note that in the case of identical

twin black holes, i.e., Γ1 = Γ3 ≡ (µ, 1, 0, 0, n, j), it follows from (4.4) that z3 = ±z1. Thus,

to avoid Dirac-string singularities the two black holes must be either symmetrically located

with respect to the origin, or sit on top of each other. In the latter case, the configuration is
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in fact a two-center solution, consisting of a single black hole with horizon topology S3/Z2

and a smooth center, studied in [3]. Here, instead, we consider the former case, for which

a ≡ z1 = −z3 =
2j − nq + p2q − 2pµ

q + 2p
. (4.5)

Thus, in this simple three-center configuration the distances between the black holes and

the smooth center are completely fixed. Since z1 > 0, for consistency we must require

2j − nq + p2q − 2pµ

q + 2p
> 0 . (4.6)

This is the first restriction on the parameter space (µ, q, p, n, j) characterizing the solution.

4.2 Spacetime regularity

In order for the solution to be physically acceptable, one must ensure the absence of

closed timelike curves (CTCs) anywhere in spacetime [35]. The absence of Dirac-string

singularities discussed above is a necessary condition for the absence of CTCs close to the

centers [21]. However, as pointed out in [7], this is not enough. For example, in order to

avoid CTCs one must also impose

grr = H2f
−1 > 0 , (4.7a)

gψψ =
1

fH2
− f2ω2

ψ > 0 . (4.7b)

A somewhat stronger requirement [22, 36], which is sufficient to ensure the absence of

CTCs globally, is to demand the metric to be stably causal and that t provides a global

time function. This is achieved if and only if

gtt = −f−2 + fH2ω
2
ψ + fH−12 |ωi|

2 < 0 . (4.8)

Note that this condition does not necessarily imply both equations in (4.7). If, however,

grr > 0 is satisfied then (4.8) does imply gψψ > 0.

We will thus study the constraints imposed by (4.7a) and (4.8) on the parameters

characterizing the configuration. We will show that the parameter space where these are

satisfied is nonempty and, furthermore, that there is a region where it coexists with the

single-center BMPV black hole with the same asymptotic charges and a region where the

single-center solution would violate the CCB, but the multicenter is regular. We carry out

the analysis for the case of twin black holes, located symmetrically from the smooth center

at the distance (4.5) as in figure 2. We begin by analyzing (4.7) close to the centers.

Close to the centers. As discussed in appendix B.2, close to the black hole horizons

the regularity conditions grr > 0 and gtt < 0 imply, respectively,

µ, n > 0 , −µ
√
n < j < µ

√
n . (4.9)
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Note that since close to a center ω = 0 (see appendix B.2) the condition (4.8) coincides

with (4.7b). These are the standard regularity conditions for a single-center BMPV black

hole. At the smooth centers the condition grr > 0 reads

p2 > n+
1

2
a , pq > µ+

1

2
a , (4.10)

where we have used the fact that z1 = −z3 ≡ a from (4.5) to simplify the expressions. In

addition, using the bubble equation (4.5) one can see that close to the origin −gttg−2rr = r2+

O(r3). Thus, if (4.10) holds, gtt < 0 is automatically satisfied close to the smooth center.

Away from the centers. We begin with the condition grr > 0, which amounts to

studying the positivity (4.7a) for all r, θ. Remarkably, it is possible to prove that the

positivity of this function close to the centers and at infinity is sufficient to ensure this

globally. Precisely, under the assumption that the space is asymptotic to R1,4 and using

the first inequalities in (4.9) and (4.10) one can prove that H2f
−1 > 0 for any r, θ. Thus,

grr > 0 at all centers ⇔ grr > 0 everywhere . (4.11)

We turn now to the study of possible CTCs, which amounts to studying (4.8) for

all r, θ. This is a rather nontrivial constraint and one should not expect the regularity

conditions close to the centers (4.9), (4.10) to be sufficient to ensure the absence of CTCs

globally. In fact, there are known examples where this is not the case (see e.g. discussion

in [7]). However, within this class of solutions we have checked numerically in a vast

number of instances of solutions to (4.9), (4.10), that gtt < 0 is, in fact, satisfied on

the entire coordinate patch. Thus, the region in the five-dimensional parameter space

(µ, q, p, n, j) where the configuration of twin back holes is globally regular (within our

numerical analysis) is given by (4.6), (4.9) and (4.10). Before we analyze this parameter

space in more detail, we discuss the physical properties of these solutions.

Comment on scaling solutions. Consider the special case j∞ = p + q
2 = 0. For

this class of solutions (4.4) do not fix the overall size of the system and one can define a

scaling limit in which the asymptotically flat region of the metric decouples, resulting in an

asymptotically AdS2×S3 space-time. Since the metric as one approaches any of the finite

horizons is also AdS2 × S3, these solutions can be seen as interpolations between different

AdS2 × S3 regions. These are usually referred to as scaling solutions [34].

We will now show that, within the choice (4.3), any scaling solution will violate the

requirement (4.7a) close to the smooth center. Consider the function H2H = H2H1 +

H3H4 which must be necessarily positive in order for (4.7a) to be satisfied everywhere.

Close to r = 0 we have

H2H =
qp(|z1|+ |z3|)− µ1|z3| − µ3|z1| − |z1z3|

r|z1z3|
+O(r0) > 0 (4.12)

which implies

qp >
µ1|z3|+ µ3|z1|+ |z1z3|

|z1|+ |z3|
> 0 . (4.13)

However, for a scaling solution we have qp = −2p2 ≤ 0 and the above is necessarily violated.
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4.3 Global charges

The mass, electric charges, and angular momenta of the twin black hole solution are given

by the general expressions (3.10), (3.11), (3.12) and read, in this particular case,

M = 8
(
n+ p2 + 2(µ+ pq)

)
, Q = 8(n+ p2), Q̃ = 8

√
2(µ+ pq) ,

Jψ = 8
(
2j + nq + 2µp+ 3p2q

)
, Jφ = 0 . (4.14)

We note that for this system Jφ = 0, which is a consequence of the bubble equations;

computing the angular momentum (3.12) gives Jφ =
(
p+ q

2

)
(z1 + z3), which vanishes

since z1 = −z3 as shown above.9 Solutions with Jφ 6= 0 can be obtained by considering

nonidentical black holes.

In addition to the asymptotic charges, the solution is characterized by the fluxes (3.9)

through the two independent 2-cycles C12 and C23 of the GH base:

f12 = f23 = q , f̃12 = f̃23 =
√

2 p . (4.15)

Recall that (4.10) requires, in particular, pq > 0 and thus both fluxes must be nonzero for

regularity.

4.4 Parameter space and entropy

Fixing the asymptotic charges does not completely specify the three-center solution. In-

deed, one may solve say for n, µ, q in terms of Q, Q̃, Jψ, leaving the local quantities j, p

undetermined (although bounded by the regularity constraints). Thus, for a given set of

asymptotic charges, there is a two-parameter family of twin black hole systems with the

same asymptotics as the single-center solution. It is natural to compare the entropy of

the two configurations. To first approximation, the entropy of the twin black hole system

is simply given by the sum of the Bekenstein-Hawking entropies of the two black holes,

namely,

Stwin = 32π
√
µ2 n− j2

=
32π

Q

√√√√2

[
8jp−

Jψ
2
p+

Q̃

4
√

2

(
4p2 +

1

4
Q

)]2(
Q

4
− 2p2

)
−Q2 j2 , (4.16)

where in the second line we have used (4.14) to write the expression in terms of asymptotic

charges. For comparison, the entropy of the single-center BMPV black hole with same

asymptotic charges reads

SBMPV = 2π

√
Q̃2Q

2
− J2

ψ . (4.17)

At this point one can already see that for some choice of the asymptotic charges the

twin black hole system can be entropically favored over the BMPV black hole. Indeed,

9We note that in the case of scaling solutions 2p+ q = 0 and hence Jφ = 0, even for nonidentical black

holes.
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consider a maximally-spinning BMPV black hole, i.e.,

|Jψ| =
1√
2
Q̃
√
Q : SBMPV = 0 and Stwin > 0 , (4.18)

provided the requirements (4.9) and (4.10) are satisfied.

We now discuss the region of existence of this solution in parameter space. Before

discussing this we note the entropy function has the following useful scaling properties

S(Q,λ Q̃, λ Jψ, p, λ j) = λS(Q, Q̃, Jψ, p, j) , (4.19)

S(Λ2Q, Q̃,ΛJψ,Λp,Λj) = ΛS(Q, Q̃, Jψ, p, j) , (4.20)

which can be used to write

S(Q, Q̃, Jψ, p, j) = Q̃
√
QS

(
1, 1,

Jψ

Q̃
√
Q
,
p√
Q
,

j

Q̃
√
Q

)
. (4.21)

Thus, it is convenient to define

x =

√
2Jψ

Q̃
√
Q
, α =

2p√
Q
, β =

8
√

2j

Q̃
√
Q
, (4.22)

in terms of which
√

2Stwin

Q̃
√
Q
≡ σ(α, β;x) = 4π

√
1

8
(1− 2α2) (4α(α+ 2β − x) + 1)2 − β2 (4.23)

and √
2SBMPV

Q̃
√
Q

= 2π
√

1− x2 . (4.24)

We note x = 1 corresponds to the CCB for the single-center.

The five-dimensional parameter space of the twin black solution is spanned by the

coordinates (Q, Q̃, x, α, β). To truly establish the existence and regularity of this solution,

one must study whether there exists a region in this space where all the regularity conditions

close to the centers (4.6), (4.9), and (4.10) are satisfied. As discussed in subsection 4.2 this

is enough to also ensure global regularity in this class of solutions, at least within our

numerical analysis of gtt. It is easy to see that there exists a five-dimensional region in

parameter space where all these conditions are satisfied and, in fact, it is infinite in extent.

A more interesting question, however, is whether this is the case if the asymptotic charges

Q, Q̃, Jψ are fixed, i.e., the two-dimensional slices of this space spanned by the parameters

α, β. The situation is slightly different in the cases x < 1 and x ≥ 1, i.e., above and below

the CCB of the single-center solution. The schematic situation is shown in figure 3. For

xmin < x < 1 with xmin = 7
√
2/5
√
5 the single-center and twin black solutions coexist. As

shown in the left plot, the region where the twin black hole is regular is bounded on one

side by the curve a = 0, where the separation between the black holes goes to zero, and

on the other side by the CCB for each individual black hole. For 1 ≤ x < xmax with

xmax = 3/2
√
2 (right plot), the curve gψψ = 0 closes on itself and entirely bounds the region
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α
α

β β

g
(bh)
ψψ =0

g
(bh)
ψψ =0a=0

Figure 3. Region in α, β plane where the twin black hole solution is regular. For xmin < x < 1

(left figure) the single-center and twin black solutions coexist. For 1 ≤ x < xmax (right figure) the

single-center solution violates the CCB but the twin black hole with the same asymptotic charges

is regular.

of existence. For x = xmin and x = xmax the regions in figure 3 shrink to a point. Although

this figure suggests that the other regularity conditions, such as grr > 0 or gψψ > 0 close to

the smooth center are unimportant, this is not the case; these are responsible for excluding

other regions of parameter space which are not shown in the figure.

We now discuss the entropy of the twin black hole system. For any value of the

parameters α, β belonging to the region shown in figure 3 there exists a twin black hole

solution with the same asymptotic charges as the single-center solution. Although the

asymptotic charges are fixed, the entropy (4.16) of the twin black hole system depends on

the values of j, p. To compare with the single-center entropy we may maximize Stwin with

respect to these quantities. Performing this maximization, making sure that the location

of the maximum belongs to the regions in figure 3, one obtains the behavior displayed in

the left plot in figure 4. For certain values of the the variable x, the maximum of the

entropy is not an extremum, but in fact lies on the boundary of the allowed region; this is

responsible for the kink in Smax
twin in figure 4.

As shown in the right plot in figure 4, in (Q, Q̃, Jψ) space there is a narrow region

where the twin black holes and the BMPV solution coexist. Namely, where the narrow

dark strip overlaps with the interior of the gray region. The parabola represents the CCB

for the single-center solution, where its entropy vanishes. In a small neighborhood to the

left of the CCB both solutions exist and the twin black hole system has more entropy.

Of course, there is a vast number of multicenter solutions with the same asymptotic

charges and some of these may be entropically favored over the twin back hole configuration

discussed above. For instance, following the discussion in [12, 33] one should expect that,

for a given set of asymptotic charges and fixed number of centers, the configuration with

just one black center is in general entropically favored over the ones with more black

centers. In the present case, this means that the solution with one black hole and two

smooth centers (see [13] for a study of this solution) should carry more entropy than the

twin black hole system presented in this paper. A numerical analysis shows that this is

indeed the case: the solution of [13] is entropically favored over the bound state presented

in this paper, in the region of parameter space shared by the two solutions. In principle, a

full analysis of the ensemble defined by fixing the asymptotic charges would require one to
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|Jψ|x

Smax.
twin

Q̃
√
Q

Q

xmin 1 xmax
Q̃ 2Q̃ 3Q̃

2

8

18

Figure 4. Left plot: maximum of the entropy as a function of Jψ, for fixed values of Q, Q̃. Here

xmin = 7
√
2/5

√
5 and xmax = 3/2

√
2. The dashed vertical line represents the maximum value of the

spin for the BMPV black hole. Right plot: region where the twin black hole solution exists (dark

gray) in the (Jψ, Q) plane, for a fixed value of Q̃. In the light gray region only the BMPV black

hole exists. In the darkest region in the middle the two solutions coexist.

consider even more exotic configurations with arbitrary number of black rings, black holes,

black lenses and smooth centers. This is beyond the aim of the present paper.

5 Summary and discussion

We have shown the existence of a large class of regular, BPS black hole bound state solutions

in asymptotically R1,4 spacetime. These were obtained by dimensional reduction of six-

dimensional configurations of strings in minimal 6d (1,0) supergravity which admit an uplift

to F-theory on an elliptically fibered Calabi-Yau threefold X with base P2. Other threefolds

X may also be considered, as long as the low-energy theory can be truncated to minimal

6d supergravity with frozen hypermultiplets. Presumably, these black hole bound states

still exist in theories with additional supersymmetry, such as toroidal compactifications of

M-theory or type IIB theory.

The particular multicenter configurations we have discussed consist of bound states of

black holes with S3 horizons and smooth, horizonless, centers. We have shown that there is

a finite region in parameter space where these configurations coexist with the single-center

BMPV black hole with the same asymptotic charges, and a region where the single-center

solution would violate the CCB, but the multicenter is regular.

Although a detailed analysis of the regularity constraints imposed on parameter space

was carried out only in the three-center case (two black holes and a smooth center), one

would expect similar results to hold in the case of an arbitrary number of centers. In

particular, one may consider adding N pairs of smooth centers with ma = −1 and black

holes with mb = 1 without changing the R1,4 asymptotics.

Clearly, our results ask for a microscopic description. In F-theory, this might be

possible using the recent results presented in [9], though we should stress that the bound
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states described here are not the ones described in [9]. The latter are described by states

with an entropy that is linear in the charges, and correspond to bound states of small black

holes (with Taub-NUT asymptotics), while the bound states described in this paper can

consist of large black holes. Moreover, we have additional fluxes that support the bound

states which are absent in [9]. Presumably, the microscopics is easier to analyze in toroidal

compactifications when the CFT has (4,4) supersymmetry rather than (0,4).

We have also discussed a set of Sp(6,R) transformations acting nontrivially on the

solutions which, nonetheless, as a consequence of preserving the symplectic product, pre-

serve the bubble equations. Subsets of these transformations have been considered in the

literature before, including the generalized spectral flow transformations discussed and ex-

ploited in [26]. It would be interesting to study the consequence of the full set of Sp(6,R)

transformations [28].

Finally, we comment on the possibility of an ambipolar Taub-NUT base space, in

which case the asymptotics in five dimensions would be R1,3 × S1. This is interesting as

the S1 in the Taub-NUT geometry allows the further dimensional reduction down to four

dimensions. The relation among various parameters that ensure the correct asymptotics

of the six-dimensional solution are discussed in appendix A.2. Although the setting is very

similar to the asymptotically R1,4 case, to truly establish the existence and regularity of

these solutions one must repeat the analysis performed above, which is left for future work.
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A 6d solution and reduction to 5d

In this appendix, we provide some details of the six- and five-dimensional solutions dis-

cussed in the main text.

A.1 The 1-forms χ, β, ω

To fully specify the metric (3.2) one must determine the 1-forms χ,β,ω from equa-

tions (2.8), (2.12) and (2.13), respectively. For simplicity, we restrict ourselves to ax-

isymmetric configurations, with all N centers lying on a single line, which we take to be

the z-axis, located at θ = (0, π). In this case it is easy to solve these equations, obtaining

χ =
N∑
a=1

ma
r cos(θ)− za

ra
dφ , β = −

N∑
a=1

qa
r cos(θ)− za

ra
dφ , (A.1)

and

ω =
1

2

N∑
{a,b}=1
a 6=b

〈Γa,Γb〉
(za − zb)2 − (ra − rb)2

2(za − zb)rarb
dφ+

N∑
a=1

〈Γ∞,Γa〉
r cos(θ)− za

ra
dφ , (A.2)
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where ra ≡ |~x − ~xa| =
√
r2 + z2a − 2 r za cos θ. Of course, these 1-forms are defined up to

gauge transformations; we have chosen a gauge in (A.2) such that asymptotically ω →
〈Γ∞,ΓT〉 cos θdφ, which vanishes when (2.23) is imposed.

We note that evaluating (A.2) on the (positive) z-axis gives

ω|θ=0 =
N∑
a=1

sign(r − za)

〈Γ∞,Γa〉 −∑
b 6=a

〈Γa,Γb〉
|za − zb|

 dφ . (A.3)

Since the function sign(r − za) is discontinuous across the centers, the bubble equa-

tions (2.22) ensure that ω is regular (in fact, vanishing) along the axis.10

A.2 Asymptotics

Requiring that asymptotically (r →∞) the functions H,F → 1 and the 1-forms ω, β → 0,

the metric (2.3) asymptotes to R1 × S1
u ×X, where X is the asymptotics of the Gibbons-

Hawking base.11 Setting m∞ = 0 and mT =
∑

ama = 1 one has X = R4, while setting

m∞ = 1 gives X = R3 × S1.

In each case, this requirement leads to different relations among the parameters de-

scribing the solution. Setting m∞ = 0 and mT = 1 and requiring that H,F → 1 and that

ω, β → 0 one finds

µ∞ = n∞ = 1 , p∞ = q∞ = 0 . (A.4)

Then the 1-forms are given asymptotically by

β = qTdψ +O(r−1) , ω = −〈Γ∞,ΓT〉dψ +O(r−1) . (A.5)

Imposing the bubble equation (2.23) implies ω identically vanishes at infinity in this gauge.

The asymptotic form of β can be absorbed by the simple coordinate redefinition du →
du− qTdψ. Note that, if the coordiante u is periodic, then this is a change of coordinates

on a torus and for it to be well-defined one must require

` qT
4π
∈ Z . (A.6)

When the u-direction is compacified, this is a necessary condition for the space to be

asymptotically R1,4×S1
u with no conical defect. Imposing the constant term in ω to vanish

we obtain

Γ∞ =
(

1, 0, 0, 0, 1,−pT −
qT
2

)
, (A.7)

where xT ≡
∑

a xa.

In the case of Taub-NUT, setting m∞ = 1 and imposing that H,F → 1 requires

µ∞ + p∞q∞ = 1 , n∞ + p2∞ = 1 . (A.8)

10The expression on the negative z-axis is obtained by sending r → −r in this expression, and the same

conclusion follows.
11One can also relax the condition to H2F → 1 thus allowing for H → µ∞. This will rescale the radius

of the asymptotic S1
u. Here we fix µ∞ = 1.
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In this case, the 1-forms are given asymptotically by

β = q∞ dψ + (mTq∞ − qT) cos θ dφ+O(r−1) ,

ω = Jψ∞ dψ + (mTJψ∞ + 〈Γ∞,ΓT〉) cos θ dφ+O(r−1) ,

where Jψ∞ is as in (2.26). Thus, if the bubble equation (2.23) is imposed one must set

mTq∞ = qT , mTJψ∞ = 0 . (A.9)

Assuming mT 6= 0 the vector Γ∞ therefore reads

Γ∞ =

(
1− p∞qT

mT

, 1,
qT
mT

, p∞, 1− p2∞,−p∞ −
qT(1− p2∞)

2mT

)
. (A.10)

The parameter p∞ is fixed in terms of ΓT from 〈Γ∞,ΓT〉 = 0.

A.3 Reduction to 5d

The generic metric Ansatz for the reduction along a spacelike direction u is

ds26 = e2ϕ (du+A)2 + e2αϕ ds25 ,

Ĝ = G+
1

2
dÃ ∧ (du+A) , (A.11)

where α is an arbitrary constant. Upon dimensional reduction along u ds25 becomes the

five-dimensional metric, ϕ becomes the dilaton field, A the graviphoton, G a 3-form field

in five dimensions and Ã another vector multiplet. The 6d Einstein-Hilbert Lagrangian, in

terms of the 5d fields reads√
−g(6)R(6) =

√
g(5) e(3α+1)ϕ

(
R(5) − 2 c (∂ϕ)2 − 1

4
e−2(α−1)ϕF 2

)
, (A.12)

where F = dA and c = (6α2 + 3α + 1). If we demand the 5d Lagrangian to contain a

canonical Einstein Hilbert term (Einstein frame) we must choose α = −1/3.

We now apply this generic reduction to the solutions at hand. We assume the solu-

tion (2.3) is u-independent and reduce along this direction. The first step is to bring the

metric into the form (A.11), namely:

ds26 = H−1F
(
du+ β −F−1(dv + ω)

)2 −H−1F−1 (dv + ω)2 +H ds24 . (A.13)

Comparing this to (A.11), we identify the dilaton

e2ϕ = H−1F (A.14)

and the five-dimensional metric in Einstein frame reads:

ds25 = − 1

(H2F)2/3
(dt+ w)2 + (H2F)1/3ds24 , (A.15)

where we renamed dv = dt and t is a time-like direction in 5d. The graviphoton is given by

A = β −F−1(dt+ ω) . (A.16)
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Now we turn to the reduction of the three-form field. In six dimensions, it is given by

(see [17])

Ĝ =
1

2
∗4 dH − 1

2
e+ ∧ (dω)− +

1

2
H−1e− ∧ dβ − 1

2
e+ ∧ e− ∧H−1dH , (A.17)

where

e+ = H−1(du+ β) , e− = dv + ω − F
2

(du+ β) . (A.18)

In order to bring this into the form form (A.11) we perform some simple manipulations to

write

Ĝ = −1

2

(
d(H−1(dv + ω))− G+

)
∧(du+A)+

1

2
∗4dH+

1

2
H−1(dv+ω)∧

(
1

2
dβ −F−1(dω)−

)
(A.19)

where we used dω− = 1
2(dω − ∗4dω) and defined

G+ = H−1
(

(dω)+ − 1

2
F dβ

)
. (A.20)

For this class of solutions

G+ = ∂i(H
−1
2 H4)dx

i ∧ σ − 1

2
εijk∂k(H

−1
2 H4)H2dx

i ∧ dxj , (A.21)

which can be written as

G+ = d(H−12 H4σ)− ∗3dH4 = d
(
H−12 H4σ + γ

)
(A.22)

where in the second equality we introduced the 1-form γ satisfying

∗3 dγ = −dH4 . (A.23)

Combining this with (A.19) we have

Ĝ =
1

2
d[−H−1(dv + ω) +H−12 H4σ + γ] ∧ (du+A)

+
1

2
∗4 dH +

1

2
H−1(dv + ω) ∧

(
1

2
dβ −F−1(dω)−

)
. (A.24)

We may now compare this expression to (A.11) and identify the five-dimensional fields

Ã = −H−1(dt+ ω) +H−12 H4σ + γ , (A.25)

G =
1

2
∗4 dH +

1

2
H−1(dt+ ω) ∧

(
1

2
dβ −F−1(dω)−

)
, (A.26)

where dt = dv. Due to the self-duality of the 3-form Ĝ in six dimensions, the 3-form G in

5d is related to ∗5dÃ and is not an independent field. The field strengths of the two vector

fields read:

F = dA = F−2 ∂iF dxi ∧ (dt+ ω) + dβ −F−1dω , (A.27)

F̃ = dÃ = −d(H−1(dt+ ω)) + G+ . (A.28)
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B Five-dimensional metrics

Here we provide some details of the five-dimensional metrics studied in this paper. We

discuss their asymptotics, their behavior close to the GH centers, and compute their phys-

ical properties (mass, electric charges, and magnetic fluxes) for solutions with an arbitrary

number of centers. We also provide some details of the regularity constraints.

B.1 Asymptotics

Setting Γ∞ to (A.7), and m = 1, and reducing along the u-direction leads to a five-

dimensional solution asymptotic to R × R4 while setting Γ∞ to (A.10) (for m 6= 0) leads

to R× R3 × S1 asymptotics.

Other interesting boundary conditions that one may consider in five dimensions are

AdS2 × S3 or AdS3 × S2, obtained by setting

AdS2 × S3 : Γ∞ = 0, mT = 1 , (B.1)

AdS3 × S2 : Γ∞ = 0 , mT = 0 . (B.2)

B.2 Near a center

Close to a center ~xa the metric functions behave like:

H = Ha +
Q̃a

4
√

2mara
+O(ra) , F = Fa +

Qa
4mara

+O(ra) , (B.3)

ωψ = ωaψ +
Jψa

8m2
ara

+O(ra) , ωi = O(ra) , (B.4)

where Q̃a, Qa, J
ψ
a are given in (2.26) and Ha,Fa, ωaψ are constants which depend on the

charges of all the centers, as well as their locations. The fact that ω vanishes to leading

order is a consequence of the bubble equations (see e.g. A.3). For a generic Γa the r−1a
terms above are dominant. However, if the coefficients of these terms vanish, the leading

behavior is controlled by the constant parts; the metric behaves quite differently in these

two cases. As we discuss now, in the former case the near-center metric coincides with

(near-horizon) metric of a black hole with a finite-size horizon of topology S3/Z|ma|. In

the latter case there is no horizon and the near-center metric is R1,4/Z|ma|.

Centers with S3 horizons. Assuming (Q̃a, Qa, J
ψ
a ) 6= 0 the 1/ra parts in (B.4) are

dominant and by a simple change of coordinates the metric near the center reads

ds25 '−
r2adv

2

αamaλa
± 2αadvdra√

α2
aλa

+ λa

(
dψ′ + χ

(0)
φ dφ− ra

√
αa −maλa

λaαa
√
ma

dv

)2

+ αama (dθ2 + sin2 θdφ2) , (B.5)

where

αa =
1

4ma

(
Q̃2
aQa
2

)1/3

, λa ≡
αa
ma
− (Jψa )2

64m4
aα

2
a

. (B.6)
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The metric (B.5) can be shown to correspond to the near horizon of a BMPV black hole [1],

the two signs corresponding to a future or past horizon (see [13] for a discussion). In

particular the entropy associated to the center at ra = 0 is

Sa =
Aa
4G5

=
1

|ma|
2π

√
Q̃2
aQa
2
− J2

a . (B.7)

In case of the single GH center with ma = 1, qa = pa = 0, ja = j, µa = µ this becomes the

entropy of the BMPV black hole S = 16π
√
µ2n− j2.

For the metric to be regular one must impose

Q̃a > 0 , Qa > 0 ,
Q̃2
aQa
2
− (Jψa )2 > 0 . (B.8)

In the case of a single center BMPV black hole the last condition above is the usual CCB.

Smooth horizonless centers. An interesting class of solutions are those for which

Q̃a = Qa = Jψa = 0 . (B.9)

In this case the functions (B.4) remain finite close to the center. For smooth centers the

constant part ωaψ is given by

ωaψ =
1

ma

∑
b 6=a

〈Γa,Γb〉
rab

− 〈Γ∞,Γa〉

 , (B.10)

which vanishes when the bubble equations are imposed. To avoid orbifold singularities in

the base we set ma = ±1. Thus, close to a GH center satisfying (B.9), the metric is simply

ds25 ' −(H2
aFa)−2/3dt2 + (H2

aFa)1/3ds2±R4 , (B.11)

where ds2±R4 = ±ds2R4 , where the two signs correspond to the sign of ma. One can check

that sign(H2
aFa) = sign(ma), and thus the metric is smooth R1,4. In six dimensions, this

uplifts to smooth R1,5.

Finally, close to a center with ma = 0 the metric looks like the r → 0 limit of the single

black string metric (2.17).
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