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Abstract: We derive the partition function of 5d N = 1 gauge theories on the manifold

S3
b × Σg with a partial topological twist along the Riemann surface, Σg. This setup is a

higher dimensional uplift of the two-dimensional A-twist, and the result can be expressed

as a sum over solutions of Bethe-Ansatz-type equations, with the computation receiving

nontrivial non-perturbative contributions. We study this partition function in the large

N limit, where it is related to holographic RG flows between asymptotically locally AdS6

and AdS4 spacetimes, reproducing known holographic relations between the corresponding

free energies on S5 and S3 and predicting new ones. We also consider cases where the

5d theory admits a UV completion as a 6d SCFT, such as the maximally supersymmetric

N = 2 Yang-Mills theory, in which case the partition function computes the 4d index of

general class S theories, which we verify in certain simplifying limits. Finally, we comment

on the generalization to M3 × Σg with more general three-manifolds M3 and focus in

particular on M3 = Σg′ × S1, in which case the partition function relates to the entropy

of black holes in AdS6.
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1 Introduction and summary

There has been tremendous progress in obtaining exact results for supersymmetric gauge

theories in various numbers of spacetime dimensions. These computations typically involve

protected observables, which may be studied using non-renormalization theorems or, in the

case of partition functions on compact manifolds, the localization technique [1, 2]. These

results have opened new windows on quantum field theories and dualities between them.
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Moreover, they have shown how theories in different dimensions are intricately interrelated.

Often, subtle properties of a theory, such as its dual descriptions or space of marginal

parameters, can become obvious when we embed this theory into a higher-dimensional

framework.

In this paper, we extend the list of exact observables by computing the partition

function of arbitrary 5d N = 1 gauge theories on manifolds of the form M3 × Σg, i.e.,

a product of a three-manifold and a genus-g Riemann surface. We will focus mainly on

the case M3 = S3
b , the “squashed sphere,” but we also discuss other cases. This is an

interesting observable for a variety of reasons. First, five-dimensional quantum field theories

are a fascinating arena with many counter-intuitive properties, and thus exact results can

lead to valuable new insights. Although 5d gauge theories are infrared trivial, in many

cases they are believed to arise as a relevant deformation of nontrivial UV SCFTs, which

we may probe by computing suitable quantities protected under RG flows. In particular,

there have been many such exact results for partition functions of these theories on closed

manifolds; see [3, 4] for recent reviews and many examples and references. These results can

be used to study interesting and subtle properties of these theories, such as the appearance

of enhanced global symmetries at the SCFT point [5]; see, e.g., [6]. Then we expect the

exact partition function on S3
b × Σg to lead to further probes into these 5d theories.

However, the observable ZS3
b×Σg

in particular is interesting because of its various con-

nections to quantum field theories in other spacetime dimensions. In the remainder of this

Introduction, we briefly review some of these features and summarize our main results.

The higher dimensional A-model and 2d TQFT. The first important connection

is to two-dimensional QFT, and it is this connection which makes the computation of

the partition function possible. Specifically, the background we consider involves a topo-

logical twist along Σg. Higher-dimensional theories compactified on Σg with a partial

topological twist have been well-studied in recent years [7–13]. These computations can be

expressed as observables in a certain 2d topological quantum field theory (TQFT), namely

the topological A-twist [14] of the effective theory obtained by compactification of the

higher dimensional parent theory.

Here we take a similar approach, and study the effective 2d N = (2, 2) theory obtained

by compactifying a 5d N = 1 theory onM3×R2. As described in section 2, the result for

M3 = S3
b takes the form of a sum over supersymmetric “Bethe vacua” of this 2d theory,1

ZS3
b×Σg

(ν)n =
∑
û∈SBE

Πi(û, ν)niH(û, ν)g−1 , (1.1)

where the objects

Πi(u, ν) = exp

(
2πi

∂WS3
b×R2

∂νi

)
, H(u, ν) = e

2πiΩ
S3
b
×R2 det

a,b

∂2WS3
b×R2

∂ua∂ub
, (1.2)

are refered to as the “flux operator” and “handle-gluing operator,” respectively, and are

built in terms of the effective twisted superpotential, WS3
b×R2 , and the effective dilaton,

1Here ν and n are, respectively, supersymmetric mass parameters and gauge fluxes for background

symmetries through Σg, as we describe in more detail in section 2 below.
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ΩS3
b×R2 , controlling the low energy effective theory on the 2d Coulomb branch. Finally,

the set of supersymmetric Bethe vacua of the theory, SBE, is defined as the solutions to

certain Bethe-Ansatz-type equations, which may be written as

SBE =

{
û
∣∣ Πa(û) ≡ exp

(
2πi

∂WS3
b×R2

∂ua
(û)

)
= 1, a = 1, . . . , rG

}
/WG . (1.3)

One novel feature of the five-dimensional computation, relative to lower-dimensional

setups, is that the effective action controlling the 2d TQFT includes nontrivial non-

perturbative corrections. That is, we may write the effective twisted superpotential as

WS3
b×R2(u, ν, γ) =Wpert

S3
b×R2(u, ν, γ) +W inst

S3
b×R2(u, ν, γ) , (1.4)

and similarly for the effective dilaton ΩS3
b×R2 . In particular, these depend on the gauge

coupling, g5, through a parameter γ = −π(b+b−1)
g25

, with the perturbative piece dominating

for small g5.

Let us first state our result for the perturbative contribution, for definiteness. Consider

a 5d N = 1 gauge theory with gauge group G, hypermultiplets in a representation R =⊕
iRi, and with a 5d CS term corresponding to the gauge-invariant functional TrCS(·)

on the Lie algebra of G. Then we may write the various operators above to perturbative

accuracy as:(
Πpert
a

)ma(Πpert
i

)ni
e2πi(g−1)Ωpert

= e−πiTrCS(mu2)+2πiγTr(mu)
∏

α∈Ad(G)
α 6=0

sb(α(u)− iQ)−α(m)+1−g

×
∏
i

∏
ρ∈Ri

sb(ρ(u) + νi)
ρ(m)+ni+(ri−1)(g−1) , (1.5)

which are expressed in terms of the double sine function [15, 16], and we define

Q = 1
2(b+ b−1).2 The above result is very reminiscent of the integrand of the S3

b partition

function of a 3d N = 2 theory [16], and we comment on this relation below.

However, as mentioned above, there are also non-perturbative contributions from in-

stantons. To compute these, we take a detour into equivariant localization on the space

S3
b × S2

ε . This is an uplift of the S2
ε1 × S

2
ε2 partition function of [17], which receives contri-

butions from point-like instantons. This allows us to extract the non-perturbative contri-

butions to the effective action. We find that the full twisted superpotential and dilaton can

be written in terms of the Nekrasov-Shatashvili (NS) limit of the 5d instanton partition

function [18]. Namely, the latter has the following asymptotic behavior as we take one of

the equivariant parameters to zero [19]:

ZR2

q1=e
2πiε1

×R2

q2=e
2πiε2

×S1

(
x = e2πiũ, y = e2πiν̃ , z = e2πiγ̃

)
−→
ε2→0

exp

{
2πi

(
1

ε2
W(5d)
NS (ũ, ν̃, γ̃; ε1)− Ω

(5d)
NS (ũ, ν̃, γ̃; ε1) +O(ε2)

)}
.

(1.6)

2To be precise, this result is expressed in the variables familiar from the S3
b partition function, while the

variables more natural for the A-model on S3
b ×R2 turn out to be ũ = iQ−1u , ν̃ = iQ−1ν , and γ̃ = iQ−1γ ,

as we explain below.

– 3 –



J
H
E
P
1
1
(
2
0
1
8
)
0
5
8

Then we may write the full, non-perturbative twisted superpotential and dilaton of the

theory on S3
b × R2 as:

WS3
b×R2(ũ, ν̃, γ̃) =

1

Qb
W(5d)
NS (ũ, ν̃, γ̃;−b2) +

1

Qb−1
W(5d)
NS (ũ, ν̃, γ̃;−b−2) , (1.7)

ΩS3
b×R2(ũ, ν̃, γ̃) = Ω

(5d)
NS (ũ, ν̃, γ̃;−b2) + Ω

(5d)
NS (ũ, ν̃, γ̃;−b−2) . (1.8)

Although in principle this gives the complete answer, in practice it is difficult to compute

the non-perturbative corrections in a useful form, and so we will mainly focus on various

simplifying limits where the instanton contributions can be explicitly characterized.

Finally, we comment that the form of (1.7) as a sum of two contributions is closely

related to the factorization of the S3
b partition function of 3d N = 2 theories into two

holomorphic blocks [20], which are associated to the solid tori in the Heegard decomposition

of S3. Our result then naturally generalizes to the case of M3 × Σg for arbitrary lens

spaces, M3 = L(p, q). In section 5 we briefly comment on this generalization in the case

of M3 = S2 × S1, with a topological twist on S2, and point out an interesting relation to

the 5d prepotential.

Large N limit and universal RG flows to 3d. As we discuss in detail in section 3,

the large N analysis of the matrix model computing the S3
b ×Σg partition function reveals

an interesting structure. In particular, we will show that to leading order in N the twisted

superpotential W described above as well as the free energy, F = −Re logZ, are specified

by the S5 partition function of the same theory. In particular, we find the large N relation

FS3×Σg
= −8

9
(g− 1)Q2 Fκ(n)FS5 , (1.9)

where the function Fκ(n) is given explicitly in (3.45) and generically depends on the theory

under consideration. The case of the universal twist, however, is special [21]. This corre-

sponds to a topological twist along the exact superconformal R-symmetry in the UV, in

this case the Cartan of SU(2)R, which amounts to setting n = 0. In this case, and setting

κ = −1, the relation above becomes universal:

F univ
S3×Σg

= −8

9
(g− 1)Q2FS5 . (1.10)

These large N results have an interesting interplay with holography. Indeed, the relation

above was predicted in [21] (for the round sphere, Q = 1) to hold for any 5d N = 1

theory with an AdS6 dual using properties of 6d supergravity. Our result is a field theory

derivation of this relation.

For nonzero flavor fluxes, the relation is no longer universal and one must consider

specific theories. The holographic description of the twisted compactification of the Seiberg

theory with flavor flux was recently constructed in [22]. Specifying the above formula to

this case we recover the results of this reference as well.

Similar universal relations hold for the case Σg1 × Σg2 × S1, which is described holo-

graphically by black holes in asymptotically locally AdS6. We discuss this case in section 5.
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The interplay with holography goes both ways. While the twisted partition functions

can be computed exactly by the localization methods we describe, these are not always well

suited to answering dynamical questions, such as the existence of interacting fixed points

in the IR. The explicit construction of holographic RG flows such as the ones described

above then indicate the existence of interacting IR fixed points, at least at large N .

5d −→ 6d −→ 4d. One of the surprising features of QFTs in five dimensions is that

there are examples of 5d effective theories whose ultraviolet completion is not itself a 5d

QFT, but rather a 6d theory where one of the dimensions has been compactified on a circle,

S1
β , with radius β. Here one identifies, roughly,

β ∼ g2
5 . (1.11)

In particular, the KK excitations of this compactified theory, with action proportional to

β−1, can be naturally identified with instanton configurations in the low energy 5d gauge

theory. The prototypical example of this phenomenon is the maximally supersymmetric

N = 2 super Yang-Mills theory in 5d for a gauge group of ADE type, which is believed

to be equivalent to the S1 compactification of the N = (2, 0) SCFT associated to the

corresponding Lie algebra.

Given the above discussion, we expect that the 5d partition function on S3
b × Σg

computes the partition function of the corresponding 6d UV theory on S3
b × Σg × S1

β .

Then, compactifying the 6d theory on Σg with flavor fluxes n, we may obtain a 4d theory,

T (4d)
Σg,n

, and then we may also interpret this partition function as computing its S3
b × S1

β

partition function, better known as the “supersymmetric index”,3 of this theory,

ZS3
b×Σg

(ν, γ)n[T (5d)] = ZS3
b×S

1
β
(p, q, µ)[T (4d)

Σg,n
] . (1.12)

Here the precise mapping of parameters is given in (4.7) below.

There has been much work on understanding the compactification of 6d SCFTs on

a compact Riemann surface, and the 4d N = 1 and N = 2 SQFTs that one obtains

as a result. This began with the work of Gaiotto on the compactification of the A-type

N = (2, 0) theory on a punctured Riemann surface, with a twist preserving N = 2 su-

persymmetry in 4d, leading to the celebrated theories of class S [23]. Subsequently this

has been generalized in many directions, including compactifications of D and E-type

N = (2, 0) SCFTs, compactifications preserving only 4d N = 1 SUSY [24, 25], and, more

recently, compactifications of 6d N = (1, 0) theories, leading to new classes of 4d N = 1

theories and dualities [26, 27]. Many of these 4d theories have the property that they do

not have known Lagrangian descriptions, and so more indirect methods are required for

studying their properties and computing observables, such as their supersymmetric index.

However, these 5d QFTs, which are believed to be low energy descriptions of the 6d

SCFTs on a circle, typically do have Lagrangian descriptions, and so we may, in principle,

directly compute their S3
b × Σg partition function by the methods outlined above. In

3More precisely, the partition function and index differ by an overall factor which can be identified with

the Casimir energy of the vacuum state of the theory on S3
b × R.

– 5 –
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practice, we will perform these computations in certain simplifying limits, namely, large

N , and large gauge coupling. By (1.11), the latter limit corresponds to large radius β. In

the 4d index, the large β limit is dominated by the “Casimir energy” of the vacuum state

of the 4d theory quantized on S3
b . In these limits the instanton contributions are under

better control, and so analytic evaluation of the index is possible. In addition, in the case

of the maximal N = 2 SYM theory, there is a special limit of parameters with additional

supersymmetry, and where the instanton contributions are greatly simplified, and we will

also be able to evaluate the index analytically in this limit. This turns out to be closely

related to the “Schur” [28] and “mixed Schur” [29] limit of the superconformal index.

In all of these cases, we will find strong consistency checks of our computations by

comparing to expected properties of the 4d index of the above theories. We stress that

our computation in principle gives a new approach to computing the index of 4d theories

without a known Lagrangian description. The form of the computation is in terms of the

2d TQFT dual to the 4d index of these theories, and so manifestly exhibits various 4d

dualities, such as S-duality.

Outline. The paper is organized as follows. In section 2 we provide the derivation of

the exact partition function by localization methods, as described above. In section 3 we

study the large N limit of the S3
b × Σg partition function, its relation to the partition

function on S5 in this limit, and discuss universal RG flows and holography. In section 4

we consider theories with a 6d UV completion and compute the 4d superconformal index

of theories obtained by reduction on the Riemann surface. Finally, in section 5 we discuss

the partition function on more general manifolds, including S2 × S1 ×Σg, and discuss the

counting of black hole microstates in AdS6.

Note added. In the final stages of this work we learned about the work [30], which has

some overlap with our discussion in section 5.

2 Derivation of partition function on S3
b × Σg

In this section, we derive the exact partition function of 5d N = 1 gauge theories on

S3
b × Σg, with a partial topological twist on Σg. We discuss different ways of carrying out

the computation, which are complementary to each other and offer different points of view

on this observable.

2.1 5d N = 1 theories on curved backgrounds

Let us first review some basic properties of 5d N = 1 supersymmetric gauge theories in

flat, Euclidean space, in preparation for studying them on curved backgrounds. The 5d

N = 1 Yang-Mills action can be obtained by dimensional reduction from 6d N = 1 on

R5,1, and is given by [3]

S =
1

g2
5

Tr

∫
d5x

(
1

2
FµνFµν + iΛID/ ΛI −DµσDµσ − ΛI [σ,Λ

I ]− 1

2
DIJDIJ

)
. (2.1)

– 6 –
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Here F = dA + i[A,A] is the gauge field strength, σ is a real scalar, ΛI is the symplectic

Majorana gaugino, and DIJ is an auxiliary scalar field. The indices I, J = 1, 2 correspond

to the SU(2)R symmetry, and we impose the symplectic Majorana condition,(
ΛIα
)∗

= εIJω
αβΛJβ , (2.2)

where α = 1, . . . , 4 is the spinor index, which corresponds to the fundamental representation

of USp(4) ∼= Spin(5).

As will be important below, these theories are closely related to 4d N = 2 theories,

which are obtained upon dimensional reduction, and as for 4d N = 2 theories their actions

can be written in terms of a holomorphic prepotential, F(A). In a notation adapted to

reduction to 4d, this can be written as

S =
1

4π
Im

(
1

2

∫
d2θd5x

∂2F
∂Ai∂Aj

W iW j +

∫
d4θd5xĀi ∂F

∂Ai

)
, (2.3)

where W i and Ai are the usual 4d N = 1 chiral superfields making up the 4d N = 2 vector

multiplet, and the complex scalar in the 4d vector multiplet can be identified with

a = A5 + iσ , (2.4)

where A5 is the fifth component of the 5d gauge field. Then the most general action in 5d

can be written in terms of a cubic prepotential [5, 31],

F(A) =
1

2g5
2

TrA2 +
1

6
cTrA3 , (2.5)

where g5 is the 5d gauge coupling, and the cubic term defines a 5d Chern-Simons term,

which may be included for certain choices of gauge group G.

In addition to the vector multiplet, we may include hypermultiplets. Their field content

consists of complex scalars qAI and spinors ψA, where I is the SU(2)R index, as above, and A

is a gauge or flavor index, for which we assume the matter is in a psueudoreal representation,

R =
⊕

iRi. These are taken to satisfy reality conditions,(
qAI
)∗

= ΩABε
IJqBJ ,

(
ψAα
)∗

= ΩABω
αβψBβ . (2.6)

These give rise to 4d N = 2 hypermultiplets upon dimensional reduction. We may also turn

on background vector multiplets coupled to flavor symmetries, and including a background

value, mi, for the real scalar in these multiplets gives a supersymmetric real mass for hy-

permultiplets charged under this symmetry. Integrating out these massive hypermultiplets

gives rise to a simple correction to the prepotential (2.5) [5, 31],

Feff =
1

2g5
2

TrA2 +
1

6
cTrA3 − 1

12

∑
i

∑
ρ∈Ro

|ρ(A) +mi|3 +
1

12

∑
α∈Ad(G)

|α(A)|3

≈ 1

2
tabAaAb +

1

6
cabcAaAbAc + · · ·

(2.7)

where the latter expansion may be made for different asymptotic directions on the Coulomb

branch, and defines the effective gauge coupling and Chern-Simons terms which are gener-

ated there.

– 7 –
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5d N = 1 supersymmetry on curved spacetimes. There has been much work on

placing 5d supersymmetric theories on curved spacetimes and computing their partition

functions by localization. Some examples include S5 [32–34], CP2 × S1 [35], Y p,q [36], and

S4×S1 [6]; see [3, 4] for recent reviews, and many additional references. In addition, max-

imally supersymmetric 5d Yang-Mills theory was studied on S3 × Σg in [37–39], although

our result appears to differ from theirs.4

To write supersymmetric actions on such manifolds, we can employ the philosophy

of [40] and consider a rigid limit of 5d N = 1 supergravity. Such an approach was studied

in [41–43]. In particular, in [43] it was shown that we may define a supersymmetric back-

ground for a 5d N = 1 theory on any manifold, M5, admitting a transversally Hermitian

structure. This means we may write a metric on M5 of the form

ds2
M5

= S2(dψ + ρ)2 + ds2
4 . (2.8)

Here ψ is a coordinate generating an isometry of the metric, i.e., K = ∂ψ is a Killing vector.

The transverse directions admit a complex structure, and ds2
4 is a Hermitian metric. With

this structure, we may find solutions to the Killing spinor equations, which allow us to

write actions on M5 preserving some supersymmetry.

Let us note that the above classification is very similar to that of [44] for coupling 3d

N = 2 supersymmetric theories to three-manifolds. Namely, in that case the necessary

structure is a transversally holomorphic foliation. Then it is straightforward to check that,

given a three-manifoldM3 with background gravity fields, we may define a supersymmetric

background on M3 × R2 with

ζ(5d) = ζ(3d) ⊗ ε , (2.9)

for any constant ε. In particular, in the case where M3 is a Seifert manifold [44], we may

preserve one supercharge, ζ(3d), of R-charge 1 and another, ζ̃(3d), of R-charge −1, and so

on M3 × R2 we may preserve four supercharges.

Let us consider the algebra satisfied by the supercharges. First, in 3d, we have [44]

{δζ , δζ} = {δζ̃ , δζ̃} = 0 ,

{δζ , δζ̃} = −2iL′K + ζζ̃(z −∆H) , (2.10)

where z is the central charge of the field being acted on, ∆ is its R-charge, H is a scalar

in the background supergravity multiplet, and L′K is the modified Lie derivative, which is

covariant under R- and central-charge symmetry gauge transformations, acting along the

Killing vector,

Kµ = ζγµζ̃ . (2.11)

Returning to the 5d superalgebra, let us define δ± and δ̃± as the transformations associated

to ζ ⊗ ε± and ζ̃ ⊗ ε±, respectively, where we define ε± as the ±1 eigenvectors of σ3. Then,

4Specifically, we find additional contributions from instantons and fermionic zero modes relative to their

computation.
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for example, we may compute

{δ+, δ−}= (ε+ε−)(−2iL′K+ζζ̃(z−∆H))+(ζζ)(ε+σiε−) = 0 , (2.12)

{δ+, δ̃+}= (ζζ̃)(ε+σiε+) = 2i∂z , (2.13)

{δ+, δ̃−}= (ε+ε−)(−2iL′K+ζζ̃(z−∆H))+(ζζ̃)(ε+σiε+) =−2iL′K+(z−∆H) . (2.14)

We can repeat this for the remaining supercharges. Then, if we identify Q+ = δ+, Q− = δ̃−,

Q̃+ = δ̃+, and Q̃− = δ−, one can check that Qα and Q̃α generate the N = (2, 2) superal-

gebra, with a central charge given by the operator

Z̃ = −2iL′K + (z −∆H) . (2.15)

In other words, the 5d N = 1 theory compactified on M3 gives rise to an effective 2d

N = (2, 2) theory, whose central charge is determined by the operator Z̃ above, which

depends on the KK momentum along M3, R-charge, and real mass parameters, which

contribute to the central charge, z.

Finally, to construct a background on the compact manifold,M3×Σg, we may perform

a partial topological twist along Σg. From the 5d point of view, this amounts to turning

on a flux, g − 1, on Σg for the background gauge field coupled to the U(1)R ⊂ SU(2)R
symmetry. From the point of view of the effective 2d N = (2, 2) theory, this is simply the

topological A-twist [14]. We then expect the partition function to be an observable in an

appropriate 2d topological quantum field theory (TQFT), which constrains the form of the

answer. We review this structure in the next subsection.

In the rest of the paper, we will mostly focus on the case M3 = S3
b .5 Specifically, we

will take the supersymmetric background of [45], which exhibits S3
b as an S1 fiber bundle

over the round metric on S2, i.e.,

ds2
3 = β̃2(dψ + a)2 + dΩ2

S2 . (2.16)

This preserves an SU(2)×U(1) isometry, and the Killing vector appearing in the superal-

gebra is K = ∂ψ. Then, in this background we have H = i
2(b+ b−1) ≡ iQ [44], and so the

central charge in the N = (2, 2) algebra (2.15) is

Z̃ = −2iL∂ψ + (z +Aψ − i∆Q)

≡ −2iL∂ψ + iσ ,
(2.17)

which defines a variable, σ, valued in the complexification of the Cartan subalgebra of the

flavor symmetry, which is a holomorphic combination of the background real scalar, z, and

component, Aψ, of the background gauge field along the direction K, as discussed in more

detail in [11].

2.2 The 2d A-twist and Bethe Ansatz equations

As observed above, the supersymmetric background on S3
b ×Σg, when considered along the

Σg directions, takes the form of a 2d topological twist. Such setups, where a d-dimensional

5We will return to consider more general lens spaces in section 5.
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gauge theory is placed on a manifold of the formMd−2×Σg, and subjected to a topological

twist along the Riemann surface, have been studied in many examples recently — see,

e.g., [7–13]. These works are related to the gauge-Bethe correspondence of [46], and can

be described as a “higher dimensional A-twist” [11].

On general grounds, we expect such an observable to be computed by an appropriate

2d TQFT, which tightly constrains the form the result may take. In fact, by studying

the effective action of the low energy theory compactified to 2d, we may express the full

answer in terms of two functions, the “effective twisted superpotential,” W(σ) and the

“effective dilaton,” Ω(σ), which are functions of the twisted chiral field strength multiplet,

Σ, associated to the 2d vector multiplet, V,

Σ = −iD−D̃+V = σ + i
√

2(θ+Λ̃+ − θ̃−Λ−) +
√

2θ+θ̃−(D − iF12) + · · · . (2.18)

Then the effective action can be written in terms of these objects as [7]

S =

∫
d2x
√
g

(
− 2F a12

∂W(σ)

∂σa
+ Λ̃aΛb

∂2W(σ)

∂σa∂σb
+
i

2
Ω(σ)R

)
+Q(· · · ) . (2.19)

Here, σ may denote both dynamical and background vector multiplets associated to the

gauge group, G, and flavor group, GF , respectively, expanded in a Cartan basis. For the

rest of the paper, we set the notation

σ → {ua, a = 1, . . . , rG, νi, i = 1, . . . , rGF } , (2.20)

defining the gauge and flavor symmetry parameters, u and ν, respectively.

Using this low energy action, we may construct the partition function of this effective

theory on a Riemann surface Σg with the topological A-twist background, where we include

twisted masses ν and background magnetic fluxes n for the flavor symmetry. We find [7, 11]

ZMd−2×Σg(ν)n =
∑
û∈SBE

Πi(û, ν)niH(û, ν)g−1 , (2.21)

where

Πi(u, ν) = exp

(
2πi

∂W
∂νi

(u, ν)

)
, H(u, ν) = e2πiΩ(u,ν) det

a,b

∂2W(u, ν)

∂ua∂ub
, (2.22)

which we refer to as the “flux operator” and “handle-gluing operator,” respectively, and

SBE is the set of supersymmetric “Bethe vacua” of the theory, defined by

SBE =

{
û
∣∣ Πa(û, ν) ≡ exp

(
2πi

∂W
∂ua

(û, ν)

)
= 1, a = 1, . . . , rG

}
/WG , (2.23)

where we quotient by the action of the Weyl group, WG, of G and discard any solutions

on which it does not act freely.

This result may often be alternatively derived by direct UV localization. There, one

arrives at an expression of the form

ZMd−2×Σg(ν)n =
1

|WG|
∑

m∈ΛG

∮
CJK

du Πi(u, ν)niΠa(u, ν)maH(u, ν)ge−2πiΩ(u,ν) , (2.24)
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where we sum over gauge fluxes, m, in the lattice, ΛG, of coweights of G, and CJK is the

so-called “Jeffrey-Kirwan contour” [47, 48]. Roughly speaking, we may define this contour

by removing a small neighborhood of any singularities or boundaries at infinity in the

integrand, leaving a non-singular region, M̂, of the complexified Cartan of G, and then the

contour runs over those portions of ∂M̂ with

sgn Im(∂aW(u, ν)) = − sgn(ηa) , (2.25)

where ηa is an auxiliary parameter valued in the Cartan of the gauge group. In addition,

we discard contributions from the neighborhood of points with enhanced Weyl symmetry.

Then, if we choose ηa ∝ ma with a positive constant, one can check the sum over ma is a

convergent geometric series on the JK contour, and after performing it we find

ZMd−2×Σg(ν)n =
1

|WG|

∮
∂M̂

du Πi(u, ν)ni
∏
a

1

1−Πa(u, ν)
H(u, ν)ge−2πiΩ(u,ν) . (2.26)

The poles in this integrand are precisely at the solutions to (2.23) (appearing with mul-

tiplicity |WG|, which cancels the prefactor), and taking their residues we recover the for-

mula (2.21), demonstrating the equivalence of these two approaches. We refer to [11] for

more details on this argument and the JK contour.

Thus, to derive the partition function on Md−2×Σg for general Σg, it suffices to com-

pute the effective objects, W(u, ν) and Ω(u, ν), describing the low energy theory obtained

after compactifying on Md−2, which in the case of present interest is S3
b . In the next

subsection we attempt to carry out this procedure directly by expanding the 5d fields in

KK modes on S3
b . However, the result we obtain in this way turns out to encode only the

perturbative contribution to ZS3
b×Σg

. We then describe, in section 2.4, another approach

which captures the full non-perturbative twisted superpotential and dilaton.

2.3 Reduction on S3
b and the perturbative partition function

Let us consider a 5d N = 1 theory on S3
b ×R2. As discussed above, this may be described

by an effective 2d N = (2, 2) theory with infinitely many fields, arising from the KK modes

on S3
b . We begin by describing this in the case of a free 5d N = 1 hypermultiplet.

Hypermultiplet. To write the effective twisted superpotential and dilaton generated by

a hypermultiplet, we will first need to describe how its modes on S3
b × R2 decompose into

2d fields on R2. Recall that the dimensional reduction of a 5d hypermultiplet to three

dimensions is a 3d N = 4 hypermultiplet, or equivalently, a pair of 3d N = 2 chiral

multiplets in conjugate representations. Thus, if we restrict to a point, x, on R2, the

field content of the 5d hypermultiplet on the three transverse directions is that of a 3d

N = 4 hypermultiplet. We may then understand the 2d field content by expanding this 3d

hypermultiplet in modes on S3
b .

Round sphere. For simplicity, let us first consider the round sphere, b = 1. Following [49],

we may decompose a chiral multiplet on S3 into modes via

φ=
∑
`,m,n

φ`,m,nY`,m,n, ψ=
∑
`,m′,n

ψ+
`,m′,nχ

+
`,m′,n+

∑
`,m,n′

ψ−`,m,n′χ
−
`,m,n′ , F =

∑
`,m,n

F`,m,nY`,m,n,

(2.27)
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where Y`,m,n run over the spherical harmonics on S3, with ` ∈ Z≥0 and m, n ∈ {− `
2 , . . . ,

`
2}

the angular momenta under the SU(2)L × SU(2)R ∼= SO(4) isometry group, and similarly

for the spinor spherical harmonics, χ±.6 Then these modes organize into the following

short and long 0d N = 1 multiplets of the action of the supercharges δ and δ̃:

short:

{
φ`, `

2
,n, ψ+

`, `+1
2
,n

}
,

{
ψ−
`,− `+1

2
,n
, F`,− `

2
,n

}
, (2.28)

long:

{
φ`,m,n, ψ+

`,m+ 1
2
,n
, ψ−

`,m+ 1
2
,n
, F`,m+1,n

}
, − `

2
≤ m <

`

2
. (2.29)

We expect contribution from long multiplets cancels out of protected observables, and so

we will henceforth focus on the short multiplets.

For a 3d N = 4 hypermultiplet, which consists of two 3d N = 2 multiplets, Φ and Φ̃

in conjugate gauge and flavor representations, we may organize the short N = 1 multiplets

into N = 2 chiral multiplets, for ` ∈ Z≥0 and n ∈ {− `
2 , . . . ,

`
2},

Φ+
`,n ≡

{
φ`, `

2
,n, ψ+

`, `+1
2
,n
, ψ̃−

`,− `+1
2
,n
, F̃`,− `

2
,n

}
, (2.30)

Φ−`,n ≡
{
φ̃`, `

2
,n, ψ̃+

`, `+1
2
,n
, ψ−

`,− `+1
2
,n
, F`,− `

2
,n

}
. (2.31)

Then one can check that, for a hypermultiplet with R-charge 1 coupled to a background

gauge field with scalar σ̃, one has

[δ, δ̃]Φ±`,n = (`+ 1± σ̃) Φ±`,n . (2.32)

The above analysis was carried out at a single point, x ∈ R2. In general, we obtain

2d superfields Φ±`,n(x) which, as discussed above, form multiplets of the 2d N = (2, 2)

superalgebra. Specifically, it is easy to see that each mode gives rise to an independent 2d

chiral multiplet, and from (2.32) and (2.17), we can see that these chiral multiplets have

twisted masses

m̃±`,n = `+ 1± σ̃ . (2.33)

In addition, we have modes which contribute long multiplets in 2d, which have unprotected

masses, and which do not contribute to protected observables.

We may now compute the effective twisted superpotential contributed by integrating

out this compactified 5d hypermultiplet. Recall that the contribution of a single 2d chiral

multiplet of twisted mass m̃ is [50]7

WR2(m̃) = − 1

2πi
m̃(log m̃− 1) . (2.34)

The full twisted superpotential from summing over all the short multiplets appearing

in (2.33) is

Whyp,U(1)

S3
b=1×R2(σ̃) =

∞∑
`=0

∑
±

(`+ 1)WΦ
R2 ((`+ 1)± σ̃) ≡ gb=1(σ̃) . (2.35)

6Specifically, there m′ and n′ take values in {− `+1
2
, . . . , `+1

2
}, representing the decomposition of the

spinors into representations
⊕

`≥0(`, `+ 1
2
)⊕ (`+ 1

2
, `) of SU(2)× SU(2).

7More precisely we should introduce a dynamical scale, µ, and write the logarithm as log
(
m̃
µ

)
, but this

would drop out of the computation below.
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After suitable regularization (see (2.42) below), this infinite sum may be explicitly evaluated

to give

gb=1(σ̃) = −2
1

(2πi)3
Li3(e2πiσ̃) + σ̃

1

(2πi)2
Li2(e2πiσ̃) +

1

24
σ̃(2σ̃2 − 1) . (2.36)

Squashed sphere. The above computation is generalized in a straightforward manner to

S3
b for general b by expanding the fields in spherical harmonics, following [45].8 One finds,

[δ, δ̃]Φ±`,n =

{
`+ 1 +

2(b− b−1)

b+ b−1
n± σ̃

}
Φ±`,n . (2.37)

A more general R-charge, ∆, can be obtained by shifting, in our convention, σ̃ → σ̃+1−∆.

As above, each of these modes corresponds to a 2d chiral multiplet, with twisted masses

m̃±`,n = `+ 1 +
2(b− b−1)

b+ b−1
n± σ̃ . (2.38)

Then, the twisted superpotential obtained by integrating out these chirals reads

Whyp,U(1)

S3
b×R2 (σ̃) =

∞∑
`=0

`−1
2∑

n=− `−1
2

∑
±
WΦ

R2

(
`+ 1 +

2(b− b−1)

b+ b−1
n± σ̃

)
≡ gb(σ̃) , (2.39)

which, after suitable regularization, defines a function gb(σ̃). We regularize this sum as

follows. Note that, using e2πi∂σ̃WR2 (σ̃) = σ̃−1, we may formally write

exp

(
2πi

∂gb(σ̃)

∂σ̃

)
=
∞∏
`=0

`−1
2∏

n=− `−1
2

`+ 1 + 2(b−b−1)
b+b−1 n− σ̃

`+ 1 + 2(b−b−1)
b+b−1 n+ σ̃

=
∏
j,k≥0

(j + 1
2)b+ (k + 1

2)b−1 −Qσ̃
(j + 1

2)b+ (k + 1
2)b−1 +Qσ̃

≡ sb(−iQσ̃) , (2.40)

where we have defined

Q =
1

2
(b+ b−1) , (2.41)

and sb(x) is the double sine function [15, 16], which can be rigorously defined as a mero-

morphic function of σ. We may then set

gb(σ̃) =
1

2πi

∫
dσ̃ log sb(−iQσ̃) . (2.42)

Next consider the effective dilaton. This depends on the choice of R-symmetry used

to twist the theory on the Riemann surface, Σg, and the contribution of a hypermultiplet

will depend on its charge, r, under this R-symmetry. We stress that r, which is in general

8Here we find it convenient to use a slightly non-standard normalization of the scalar σ̃. Our normaliza-

tion is related to the usual scalar, σ, on S3
b by σ = −iQσ̃, where Q is as in (2.41). We will comment more

on this relation below.
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integer-quantized due to the nontrivial flux, g − 1, through Σg for the R-symmetry back-

ground gauge field, is distinct from the R-charge appearing in the coupling to S3
b , which

we denote ∆, and which in general is a real number. Then the contribution of a single 2d

chiral multiplet to the effective dilaton is:

ΩR2(m̃) = −(r − 1) log m̃, (2.43)

and proceeding as above, we find:

Ω
hyp,U(1)

S3
b×R2 (σ̃) = (r − 1)`b(σ̃) , (2.44)

where we have defined

`b(σ̃) ≡ 1

2πi
log sb(−iQσ̃) . (2.45)

Below it will often be natural to take r = 1, as this is the R-charge obtained by twisting

by the U(1)R ⊂ SU(2)R symmetry appearing in the N = 1 superalgebra, and in this case

the hypermultiplet has vanishing contribution to the effective dilaton.

We now have all the elements we need to compactify the R2 factor to Σg using the 2d

A-twist. Namely, from (2.21) above we have, for a flux m on Σg,

Z
hyp,U(1)

S3
b×Σg

(σ̃)m = Π(σ̃)me2πi(g−1)Ω(σ̃) = sb(−iQσ̃)m+(r−1)(g−1) . (2.46)

General gauge theory. It is straightforward to generalize this result to a set of hy-

permultiplets living in a representation R = ⊕iRi of a gauge group G. As above we take

σ̃ → ũ and ν̃ for the gauge and flavor symmetry (real mass) parameters, respectively. Then

we have

Whyp
S3
b×R2(ũ, ν̃) =

∑
i

∑
ρ∈Ri

gb(ρ(ũ) + ν̃i) , (2.47)

Ωhyp
S3
b×R2(ũ, ν̃) =

∑
i

∑
ρ∈Ri

(ri − 1)`b(ρ(ũ) + ν̃i) , (2.48)

where we have introduced masses ν̃i and R-charges ri for the hypermultiplets. In addition to

the hypermultiplets, we expect a contribution to the 2d A-model from the vector multiplets

and the classical action. For the former, we write

Wvec
S3
b×R2(ũ) = −

∑
α∈Ad(G)′

gb(α(ũ) + 1) , (2.49)

Ωvec
S3
b×R2(ũ) = −

∑
α∈Ad(G)′

`b(α(ũ) + 1)

= −
∑
α>0

1

2πi
log
[
2 sin (πbQα(ũ)) 2 sin

(
πb−1Qα(ũ)

)]
. (2.50)

where the sums are over the set, Ad(G), of roots of G, and the primes denote that we

include only the non-zero roots in the sum. This can be motivated as follows. Given a

N = 1 5d vector multiplet and an adjoint hypermultiplet of R-charge zero, we may give
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the latter an expectation value, without breaking R-symmetry, and completely Higgsing

the gauge group. At low energies this leaves no degrees of freedom for either the vector

or hypermultiplet and thus their contributions should cancel out in the partition function.

This leads to the expression above. We will also derive this by an alternate method in

section 2.4 below.

Finally, the classical contribution to W(u) and Ω(u) can in principle be computed

directly, but we can also take a more indirect approach and compute them on the back-

ground S3
b × Σg. The contribution of the Yang-Mills term was computed in [39], and we

may similarly evaluate the CS contribution and find:

ZS3
b×Σg

= eπiQ
2TrCS(mũ2)−2πiQ2γ̃mũ , (2.51)

where we defined9

γ̃ = −2πi

g5
2
. (2.52)

From this and the general form of (2.21), we can read off

Wclassical
S3
b×R2 (ũ) = −1

2
Q2γ̃ũ2 − 1

6
Q2TrCS(ũ3), Ωclassical

S3
b×R2 = 0 . (2.53)

Putting these pieces together, we arrive at the following result for the twisted super-

potential of a 5d N = 1 theory

Wpert
S3
b×R2(ũ, ν̃) =Whyp

S3
b×R2(ũ, ν̃) +Wvec

S3
b×R2(ũ) +Wclassical

S3
b×R2 (ũ) , (2.54)

and similarly for Ωpert
S3
b×R2 , where, with foresight, we have labeled these as the perturbative

contributions, for reasons that will be clear below.

We may nevertheless proceed as in the discussion above in section 2.2 and write the

answer for the (perturbative) partition function on S3
b × Σg. Before doing this, it will be

convenient to define rescaled variables, which are normalized in a way which will look more

natural in the context of S3
b partition function, namely,

u = −iQũ , ν = −iQν̃ , γ = −iQγ̃ . (2.55)

Then we can write the perturbative contribution to the S3
b × Σg partition function as

Zpert
S3
b×Σg

(ν)n =
∑
û∈SBE

Πpert
i (û, ν)niHpert(û, ν)g−1 , (2.56)

where

Πpert
i (u,ν)≡

∏
ρ∈Ri

sb(ρ(u)+νi), Πpert
a (û,ν)≡

∏
i

∏
ρ∈Ri

sb(ρ(û)+νi)
ρa

∏
α∈Ad(G)′

sb(α(û)−iQ)−αa ,

Hpert(u)≡
∏
i

∏
ρ∈Ri

(sb(ρ(u)+νi))
ri−1

∏
α>0

[
2sin(πbα(u))2sin

(
πb−1α(u)

)]−1
det
a,b

−Q
2π

∂ logΠpert
a

∂ub
,

(2.57)

9The 5d Yang-Mills coupling naturally appears in a complex combination with the 5d theta angle, θ5d,

and we may naturally extend the definition of γ̃ as γ̃ = 2πi
g52 + θ5d

2π
. However, we will mostly restrict our

attention to θ5d = 0 in this paper, and do not write the theta angle explicitly below.
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and

Spert
BE = { û

∣∣ Πa(û, ν) = 1, a = 1, . . . , rG }/WG . (2.58)

Alternatively, we may write this in terms of an integral over the JK contour, as in (2.24),

Zpert
S3
b×Σg

(ν)n = (−iQ)−rG
1

|WG|
∑

m∈ΛG

∮
duΠpert

i (u,ν)niΠpert
a (u,ν)maHpert(u,ν)ge−2πiΩpert(u,ν).

(2.59)

Alternative perspective: a direct sum of 3d theories. Before moving on to evaluate

the validity of this formula more closely, let us mention an alternative perspective on the

above result. Let us again return to the case of a single hypermultiplet on S3
b × Σg.

Then, rather than expanding in modes on S3
b , we may expand in modes on Σg. After the

topological twist we expect many of the modes to cancel, with the number that remain

determined by the total flux felt by the chiral multiplet.

The 2d index theorem states that for a Dirac fermion, χ, the difference in the number

of right- and left-moving fermionic zero modes on Σg is given by

nχR − n
χ
L = −tχ ηΣ , ηΣ =

{
2|g− 1| for g 6= 1

1 for g = 1
, (2.60)

where tχ is the charge of the corresponding fermion in the background F = Tdvol(Σg),

T = κ
2 (TR + mI TI), where TR,I are the R-symmetry and other possible background sym-

metry generators, respectively, and κ = {1, 0,−1} for g = 0, 1, and g > 1, respectively.

Applying this to a fermion with R-charge (r − 1) and gauge charge 1, and denoting

m̂ ≡ m + (r − 1)(g− 1), with m an integer-quantized gauge flux, gives the reduction rule

5d hyper of charge 1→

{
|m̂| 3d chirals of charge 1 for m̂ > 0

|m̂| 3d chirals of charge −1 for m̂ < 0
. (2.61)

Thus, since each chiral multiplet contributes a factor of sb(u) to the S3
b partition function,

the latter may be written as (using also sb(−u) = sb(u)−1)

Z
hyp,U(1)

S3
b×Σg

(u) = sb(u)m+(r−1)(g−1) , (2.62)

which is precisely what we found in (2.46).

More generally, given a gauge theory, we may consider the effective 3d field content

obtained for each choice of flux, m ∈ ΛG, on the Riemann surface, Σg. This matter content

describes an effective 3d N = 2 theory, which we may denote T (3d)
Σg,m

. Then we expect that,

schematically, the full 5d theory compactified on Σg × R3 can be written as a direct sum

of 3d theories

T (5d)
Σg

=
⊕
m∈ΛG

T (3d)
Σg,m

. (2.63)

If we take this relation literally, then we may also compute the S3
b ×Σg partition function as

ZS3
b×Σg

=
∑

m∈ΛG

ZS3
b

[
T (3d)

Σg,m

]
. (2.64)
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We claim this is precisely the interpretation of the formula (2.59). Namely, each summand

in that formula takes the form of the integral of a product of double sine functions, and

such an integral describes the S3
b partition function of a particular 3d N = 2 theory, which

we claim is precisely T (3d)
Σg,m

.

2.4 Reduction to 4d and the instanton partition function

While the above two perspectives nicely complement each other, they also suffer from

an important shortcoming. In both approaches we considered the compactification of

the manifold from d = 5 to d′ = 2 (in the first case) or d′ = 3 (in the second). This

compactification can be viewed as studying the theory in a limit where the compactified

manifold is very small, and deriving the effective dynamics on the directions that remain

large. While this is valid for any finite relative size of the S3
b and Σg factors, owing to the

topological invariance along Σg, the strict limit relevant to the compactification may not

commute with the inclusion of non-perturbative effects, since in 5d these are associated to

codimension-4 field configurations, namely, instantons. As we will see below, instantons do

indeed modify the dynamics of the compactified theory, and are important for describing

the full effective twisted superpotential and dilaton which compute the S3
b × Σg partition

function. In this section, we describe an alternative method, based on reduction to 4d,

which captures these non-perturbative contributions. We obtain a perturbative piece which

matches the result above but which is supplemented by an instanton contribution, which

we write below.

To start, let us consider a 5d N = 1 theory on R4 × S1. This gives an effective 4d

N = 2 theory on R4, with towers of KK modes corresponding to the Fourier modes of S1.

For example, a 5d N = 1 hypermultiplet, Φ, with real mass, m, gives rise to a tower of 4d

hypermultiplets, Φn, with complex masses

mn = im+A5 +
n

r
, (2.65)

where r is the radius of S1, and A5 is the holonomy of the background gauge field along

the S1. Below we will mostly work in units with r = 1, but it will sometimes be important

to keep it as a free parameter.

For the purpose of computing the S3
b × Σg partition function, we may realize the S3

b

factor as an S1 fibration over S2. Then the partition function on this five-manifold is

equivalent to a partition function on S2 × Σg, where we insert one unit of flux on S2 for

the U(1)KK symmetry, corresponding to translations along the S1 fiber.

For the rest of this subsection, let us restrict our attention to the case of Σg=0 = S2,

so that the underlying four-manifold is S2×S2. The partition function of 4d N = 2 gauge

theories on this space was considered in [17], and so we may apply their results to gain

another perspective on our computation.

The 4d computation. Let us briefly review the computation of the partition function

on S2 × S2, following [17]. Consider the following vector field on S2 × S2, which generates

an infinitesimal isometry

v = 2ε1(iz1∂z1 − iz̄1∂z̄1) + 2ε2(iz2∂z2 − iz̄2∂z̄2) , (2.66)
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where zi are the complex coordinates on each S2 factor. Then we may consider the equiv-

ariant deformation of the Donaldson-Witten topological twist on S2×S2 [1]. The partition

function can then be computed by equivariant localization, and reduces to a contribution

from the four fixed points of the U(1)1×U(1)2 isometry above, namely, at the products of

the poles of the two S2 factors. More precisely, one finds that the path integral localizes

to the locus

[Φ, Φ̄] = [F,Φ] = [F, Φ̄] = 0, ιvF = idΦ, ιvDΦ̄ = 0 , (2.67)

where Φ and F are the complex scalar and field strength, respectively, in the N = 2

vector multiplet. The first conditions imply we may take Φ, Φ̄, and F in the same Cartan

subalgebra of the gauge group, G, with rank rG. The second and third then imply that we

may write, in this Cartan basis,

Fa
2πi

= m1,aω1 + m2,aω2, Φa = ũa +
1

2
m1,aε1h1 +

1

2
m2,aε2h2, a = 1, . . . , rG , (2.68)

where ũa ∈ C parameterizes the allowed profiles of Φ, mi,a ∈ Z label the GNO fluxes of the

gauge field on the two S2 factors, and ωi and hi are the volume forms and height functions,

respectively, on the two S2 factors, i.e., ωi = 1
4π sin θidθidφi and hi = cos θi in the usual

coordinates on S2. In addition, the path integral receives contributions from point-like

instantons localized at each of the fixed points.

Let us consider a 4d N = 2 theory with gauge group G and hypermultiplets in the

representation R =
⊕s

i=1Ri. Then the partition function is given by an integral over the

BPS locus above

ZS2
ε1
×S2

ε2
(ν̃, τ)n1,n2 =

∑
m1,m2

∮
dũ
∏
`

ZR2

ε
(`)
1

×R2

ε
(`)
2

(ũ(`), ν̃(`), τ) (2.69)

Here τ is the complexified gauge coupling, ũ = (ũa) and ν̃ = (ν̃i) are complex scalar

parameters associated to the gauge and flavor symmetry, respectively, m1,2 and n1,2 are

the corresponding fluxes through the two S2 factors, the index ` runs over the four fixed

points, ` ∈ {nn, ns, sn, ss}, sitting at the north (n) and south (s) poles of the two spheres,

and we have defined

ε
(`)
1 =

{
ε1 , ` = nn or ns

−ε1 , ` = sn or ss
ε
(`)
2 =

{
ε2 , ` = nn or sn

−ε2 , ` = ns or ss

ũ(`)
a = ũa +

1

2

(
m1,aε

(`)
1 + m2,aε

(`)
2

)
ν̃

(`)
i = ν̃i +

1

2

(
n1,iε

(`)
1 + n2,iε

(`)
2

)
.

(2.70)

Finally, ZR2
ε1
×R2

ε2
is the partition function on R4 in the Ω-background [18], which describes

the contribution in the local neighborhood of each fixed point. It can be decomposed as

ZR2
ε1
×R2

ε2
(ũ, ν̃, τ) = Zclassical

R2
ε1
×R2

ε2
(ũ, τ)Z1-loop

R2
ε1
×R2

ε2

(ũ, ν̃)Z inst
R2
ε1
×R2

ε2
(ũ, ν̃, τ) . (2.71)

Let us analyze each of these pieces in turn. First, the classical contribution comes from

the Yang-Mills term, and is given by

Zclassical
R2
ε1
×R2

ε2
(ũ, τ) = exp

(
− πiτTr

ũ2

ε1ε2

)
, (2.72)
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where we define Tr(ũ2) = Kabũaũb, with Kab the Killing form. Taking the contribution

from the four fixed points using (2.70), we find

Zclassical
S2
ε1
×S2

ε2
(ũ, τ)m1,m2 ≡

∏
`

Zclassical
R2

ε
(`)
1

×R2

ε
(`)
2

(ũ(`)) = e−8πiτKabm1,am2,b . (2.73)

For the perturbative and instanton part, it is useful to first write the contribution

to the corresponding equivariant indices [34, 51]. The appropriate index for the vector

multiplet is that for the so-called self-dual complex, and for the hypermultiplet it is the

Dirac complex, where both are twisted by the vector bundle, V , in which the fields take

values. These can both be related to the index of the Dolbeault complex for V , ind(∂̄V ),

namely,

indself-dual =
1 + ei(ε1+ε2)

2
ind(∂̄V ), indDirac = −ei

ε1+ε2
2

eiν̃ + e−iν̃

2
ind(∂̄V ) . (2.74)

Thus, we first consider the Dolbeault index, ind(∂̄V ). This may be decomposed into a

perturbative piece and an instanton contribution,

ind(∂̄V ) ≡ indpert(∂̄V ) + indinst(∂̄V ) . (2.75)

The former can be written for an arbitrary representation R of an arbitrary gauge group

G as

indpert(∂̄V ) =
trR e

iũ

(eiε1 − 1)(eiε2 − 1)
. (2.76)

The form of the instanton contribution is more subtle, and depends in a detailed way on

the representation and gauge group, with explicit expressions typically known only for the

classical gauge groups. For example, for the adjoint representation of G = U(N), and

working in the k instanton sector, we have [34, 52]

indinst(∂̄V ) =−e−i
ε1+ε2

2
(

trN (eiũ)trk̄(e
iφ)+c.c.

)
+(1−e−iε1)(1−e−iε2)tradjk(eiφ) , (2.77)

where φ are the equivariant parameters for the U(k) symmetry acting on the k-instanton

moduli space.

The 1-loop determinant in a given instanton background is given by making the formal

replacement,

ind =
∑
λ

wλe
λ →

∏
λ

λwλ . (2.78)

Let us focus on the perturbative contribution first. Let us choose δi ∈ {±1} so that

|eiεiδi | < 1 (we always assume εi ∈ C\R). Then the natural expansion of the index of the

Dolbeault complex is (taking a charge 1 representation of U(1) for simplicity)

ind
U(1)
pert (∂̄V ) = δ1δ2

∑
k1,k2≥0

e
iũ+iδ1ε1

(
k1+

1−δ1
2

)
+iδ2ε2

(
k2+

1−δ2
2

)
, (2.79)

and so the corresponding 1-loop determinant is, using (2.78),

Z
pert,U(1),∂̄V
R2
ε1
×R2

ε2

=
∏

k1,k2≥0

(
ũ+ δ1ε1

(
k1 +

1− δ1

2

)
+ δ2ε2

(
k2 +

1− δ2

2

))δ1δ2
. (2.80)
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If we consider instead the Dirac complex, corresponding to a hypermultiplet, we find,

using (2.74)

Z
pert,U(1),hyp
R2
ε1
×R2

ε2

=
∏

k1,k2≥0

[(
ũ+ δ1ε1

(
k1 +

1

2

)
+ δ2ε2

(
k2 +

1

2

))

×
(
−ũ+ δ1ε1

(
k1 +

1

2

)
+ δ2ε2

(
k2 +

1

2

))]−δ1δ2/2
(2.81)

Returning to S2
ε1 × S2

ε2 , we may use the above result to compute the contributions

from the four fixed points, identifying parameters as in (2.70). Let us assume now for

concreteness that |eiεi | < 1. Then one finds many of terms in the infinite products above

cancel, and we are left with

Z
pert,U(1),hyp
S2
ε1
×S2

ε2

(ũ)m1,m2 =
(

[ũ; ε1, ε2]m1,m2 [−ũ; ε1, ε2]−m1,−m2

)−1/2
(2.82)

where we defined

[ũ; ε1, ε2]m1,m2 ≡

1
2

(|m1|−1)∏
k1=− 1

2
(|m1|−1)

1
2

(|m2|−1)∏
k2=− 1

2
(|m2|−1)

(ũ+ ε1k1 + ε2k2)sgn(m1) sgn(m2) . (2.83)

We can simplify this using

[ũ; ε1, ε2]m1,m2 = [ũ; ε1, ε2]−m1,−m2 = (−1)m1m2 [−ũ; ε1, ε2]m1,m2 . (2.84)

Then we find10

Z
pert,U(1),hyp
S2
ε1
×S2

ε2

(ũ)m1,m2 = [ũ; ε1, ε2]−1
m1,m2

. (2.85)

We note for later convenience that in the limit of vanishing equivariant parameters,

ε1,2 → 0, we have

[ũ; ε1, ε2]m1,m2 −→
ε2→0

(|m1|−1)/2∏
k1=−(|m1|−1)/2

(ũ+ ε1k1)sgn(m1)m2 −→
ε1→0

ũm1m2 . (2.86)

The perturbative contribution for a more general hypermultiplet is then computed by

Z1-loop,hyp
S2
ε1
×S2

ε2

(ũ, ν̃)m1,n1;m2,n2 =
∏
i

∏
ρ∈Ri

[ρ(ũ) + ν̃i; ε1, ε2]−1
ρ(m1)+n1i,ρ(m2)+n2i

(2.87)

For the vector multiplet, a similar argument, using (2.74), gives

Z1-loop,vec
S2
ε1
×S2

ε2

(ũ)m1,m2 =
∏

α∈Ad(G)′

(
[α(ũ); ε1, ε2]α(m1)−1,α(m2)−1[α(ũ); ε1, ε2]α(m1)+1,α(m2)+1

)1/2

=
∏
α>0

[α(ũ); ε1, ε2]α(m1)−1,α(m2)−1[α(ũ); ε1, ε2]α(m1)+1,α(m2)+1 (2.88)

10Here we have chosen a convenient overall phase, which was ambiguous in the above infinite products.

We similarly fix several such phases below. It would be desirable to fix these phases more rigorously from

first principles, perhaps by careful consideration of the 4d ’t Hooft anomalies and the 5d parity anomaly,

as discussed in [53, 54].
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Then the full perturbative contribution is

Zpert
S2
ε1
×S2

ε2

(ũ, ν̃, τ)m1,n1;m2,n2 = Zclassical
S2
ε1
×S2

ε2
(ũ, τ)m1,m2Z

1-loop,vec
S2
ε1
×S2

ε2

(ũ)m1,m2Z
1-loop,hyp
S2
ε1
×S2

ε2

(ũ, ν̃)m1,n1;m2,n2

(2.89)

The full nonperturbative expression is obtained by including the contribution from the

remaining terms in (2.77), which correspond to the instanton contribution. The detailed

form of the instanton contribution will depend on the gauge group and matter representa-

tion, but has the general form

Z inst
R2
ε1
×R2

ε2
(ũ, ν̃, τ) =

∞∑
k=0

zkZ
(k)
R2
ε1
×R2

ε2

(ũ, ν̃) , (2.90)

where we defined z = e2πiτ , the classical contribution from the instanton action, and

Z
(k)
R2
ε1
×R2

ε2

is the contribution to the 1-loop determinant in the k-instanton background. For

example, in the U(N) case, it is given by integration over the U(k) equivariant parameters

appearing in (2.77), and can be expressed in some cases as a sum over N -colored Young

diagrams [18]. We will discuss an explicit example when we consider the 5d uplift below.

Putting these ingredients together, we may write

ZS2
ε1
×S2

ε2
(ν̃, τ)n1,n2 =

1

|WG|
∑
m1,m2

∮
dũZpert

S2
ε1
×S2

ε2

(ũ, ν̃, τ)m1,n1;m2,n2

∏
`

Z inst
R2

ε
(`)
1

×R2

ε
(`)
2

(ũ(`), ν̃(`), τ) .

(2.91)

Uplifting to 5d. We may now uplift this result to our desired background, S3
b × S2, by

applying this computation to the effective 4d N = 2 theory, T̃ (4d), obtained by dimensional

reduction of our chosen 5d theory, T (5d), as outlined above.

More precisely, our strategy will be to exhibit S3
b as an S1 fibration over the topo-

logically twisted S2. Let us first describe the case b = 1. Then it was shown in [11]

that the usual supersymmetric background on the round sphere is an S1 fibration over the

topological A-twist background on the 2-sphere. Here we must include one unit of flux for

the connection fibering the S1. Then this background may be equivalently obtained by

considering the effective 2d theory obtained by dimensional reduction, which has a U(1)KK

global symmetry corresponding to translations along the S1 direction, and inserting a unit

flux on S2 for this global symmetry. We will employ the same strategy here, this time

with an additional S2 factor in the geometry. In other words, we consider the effective 4d

N = 2 theory obtained by dimensional reduction along the S1 fiber. Here we perform an

ordinary topological twist along each S2 factor, which corresponds to the ε1, ε2 → 0 limit

of the equivariant background discussed above. Finally, we must turn on a unit flux for

the U(1)KK symmetry along one of the S2 factors.

In the case of a non-round sphere, b 6= 1, we will argue below that this can also be

exhibited as an S1 fibration over S2, but now with a nonzero Omega-background on the

S2 [55]. This will again fit into the framework described above, but now rather than taking

both ε1 and ε2 to zero, we will keep a nonzero ε1, specifically, we find that the appropriate

value is

ε1 = εb ≡ −
2

r

b− b−1

b+ b−1
, (2.92)
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where r is the S1 radius, which we will often set to 1 below. Note this vanishes when we

set b = 1. Thus, we arrive at the following schematic relation

ZT
(5d)

S3
b×S2(ν̃)n1,n2

∼= lim
ε→0

Z T̃
(4d)

S2
εb
×S2

ε

(
ν̃, ν̃KK =

1

r

)
n1,n1,KK =1;n2,n2,KK =0

, (2.93)

where T̃ (4d) is the effective 4d theory. Here the arguments of the partition functions cor-

respond to the mass and fluxes for flavor symmetries. On the r.h.s. , there is an additional

flavor symmetry, the U(1)KK symmetry corresponding to translations along S1, which we

have assigned a mass 1
r and a unit flux on the first S2 factor, which gives rise to the Hopf

fibration of S3 described above. We will also see in a moment that the flux n1 can be

absorbed into a shift of ν̃, as expected since there is no nontrivial 2-cycle on S3 on which

to support a flux. We will also demonstrate that the partition function can be written in

terms of the 5d Nekrasov partition function, or more precisely, of the Nekrasov-Shatashvili

limit of this partition function.

Let us now make these statements more precise. As above, the integrand of the par-

tition function factorizes into contributions from the perturbative (classical and 1-loop)

piece, and the instanton contribution. First, the classical contributions on S3
b × Σg were

already presented above in (2.51), and we may use that result in the present case, g = 0,

as well.

Next we have the perturbative and instanton contributions. To compute these, let us

return to the contribution to the Dolbeault index in 4d from a single fixed point, given

by (2.75),

ind(∂̄V ) ≡ indpert(∂̄V ) + indinst(∂̄V ) . (2.94)

Then when we add a tower of KK modes with masses n
r , n ∈ Z, the index is modified to

ind(5d)(∂̄V ) ≡
∑
n∈Z

e
in
r ind(∂̄V ) , (2.95)

and similarly for the vector and hypermultiplet indices. Then we expect that when we

construct the 1-loop determinants on R4 × S1, these will be related to those in 4d by,

schematically,

Z1-loop
R2
ε1
×R2

ε2

=
∏
λ

λ ⇒ Z1-loop
R2
ε1
×R2

ε2
×S1 =

∏
n∈Z

∏
λ

(
λ+

n

r

)
∝

∏
λ

2 sinπrλ . (2.96)

This holds for both the perturbative contribution and the 1-loop contribution in an instan-

ton background, as discussed in [34] in the context of the S5 partition function.

To see how this works in more detail, let us consider the perturbative contribution for

a single hypermultiplet. Recall that the perturbative contribution of the hypermultiplet

on R2
ε1 × R2

ε2 is given by (2.81), namely,

Z
pert,U(1),hyp
R2
ε1
×R2

ε2

=
∏

k1,k2≥0

[(
ũ+ δ1ε1

(
k1 +

1

2

)
+ δ2ε2

(
k2 +

1

2

))

×
(
−ũ+ δ1ε1

(
k1 +

1

2

)
+ δ2ε2

(
k2 +

1

2

))]−δ1δ2/2
. (2.97)
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The uplift to R2
ε1 × R2

ε2 × S
1 is then given by11

Z
pert,U(1),hyp
R2
ε1
×R2

ε2
×S1 (ũ) =

∏
n∈Z

∏
k1,k2≥0

[(
ũ+

n

r
+ δ1ε1

(
k1 +

1

2

)
+ δ2ε2

(
k2 +

1

2

))

×
(
−ũ− n

r
+ δ1ε1

(
k1 +

1

2

)
+ δ2ε2

(
k2 +

1

2

))]−δ1δ2/2
=

∏
k1,k2≥0

[
2i sin

[
πr

(
ũ+ δ1ε1

(
k1 +

1

2

)
+ δ2ε2

(
k2 +

1

2

))]

× 2i sin

[
πr

(
−ũ+ δ1ε1

(
k1 +

1

2

)
+ δ2ε2

(
k2 +

1

2

))]]−δ1δ2/2
.

(2.98)

Note this is naturally a function of the parameters

x = e2πirũ, qi = e2πirεi . (2.99)

We will sometimes emphasize this by writing the 5d partition function as

ZR2
q1
×R2

q2
×S1(x) , (2.100)

where the meaning of the subscripts and arguments should be clear from context. Now we

may glue four copies of this function with parameters identified as in (2.70), and one finds

that the infinite product simplifies to

Z
pert,U(1),hyp
S2
ε1
×S2

ε2
×S1 (ũ)m1,m2 = (x; q1, q2)−1

m1,m2
, (2.101)

where the parameters are as in (2.99), and we have defined

(x;q1,q2)m1,m2 =

1
2

(|m1|−1)∏
k1=

− 1
2

(|m1|−1)

1
2

(|m2|−1)∏
k2=

− 1
2

(|m2|−1)

(
x1/2q1

k1/2q2
k2/2−x−1/2q1

−k1/2q2
−k2/2

)sgn(m1)sgn(m2)
.

(2.102)

This result may also be obtained by directly uplifting the perturbative contribution,

Z
pert,U(1),hyp
S2
ε1
×S2

ε2
×S1 (ũ)m1,m2 =

∏
n∈Z

Z
pert,U(1),hyp
S2
ε1
×S2

ε2

(
ũ+

n

r

)
m1,m2

=
∏
n∈Z

[
ũ+

n

r
; ε1, ε2

]−1

m1,m2

= (x; q1, q2)−1
m1,m2

. (2.103)

The above computation represents the 1-loop determinant on the background S2
ε1 ×

S2
ε2 × S

1, where the S1 appears as trivial product. We will return to this case in section 5

below, but our present interest is in the partition function on S3
b×S2. Then we must include

a magnetic flux for fields charged under the U(1)KK symmetry. Recall that the magnetic

11Here we fix the overall normalization arising from regularizing the product over n for later convenience.

As mentioned above, it would be interesting to fix this from first principles.
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flux enters the fixed point contributions on S2
ε1 × S

2
ε2 by shifting the eigenvalues by miεi

2 .

Thus, including a unit U(1)KK flux, the perturbative contribution of the hypermultiplet

in (2.98) is modified to

Z
pert,U(1),hyp
R2
ε1
×R2

ε2
×S1 (ũ) =

∏
n∈Z

∏
k1,k2≥0

[(
ũ+

n

r
+
nε1
2

+ δ1ε1

(
k1 +

1

2

)
+ δ2ε2

(
k2 +

1

2

))

×
(
−ũ− n

r
− nε1

2
+ δ1ε1

(
k1 +

1

2

)
+ δ2ε2

(
k2 +

1

2

))]−δ1δ2/2
=

∏
k1,k2≥0

[
2i sin

[
πr̃

(
ũ+ δ1ε1

(
k1 +

1

2

)
+ δ2ε2

(
k2 +

1

2

))]

× 2i sin

[
πr̃

(
−ũ+ δ1ε1

(
k1 +

1

2

)
+ δ2ε2

(
k2 +

1

2

))]]−δ1δ2/2
,

(2.104)

where we defined

r̃ =
r

1 + rε1
2

. (2.105)

This is the same function we obtained in (2.98) above, but now evaluated at the arguments

x′ = e2πir̃ũ , q′i = e2πir̃εi . (2.106)

Now to construct the full S3
b ×S2 partition function, we must include the contribution

from the four fixed points, that is (writing this now as a function of x and the qi),

Z
pert,U(1),hyp

S3
b×S2 (x)m1,m2 =

∏
`

Z
pert,U(1),hyp

R2

q
(`)
1

×R2

q
(`)
2

×S1(x(`)) , (2.107)

where the parameters at the four fixed points can be read off from (2.70) and (2.106), and

we find, for vanishing fluxes, and renaming ε2 → ε as in (2.93),

x(`) =

 e
2πi rũ

1+1
2 rεb = e2πibQrũ ≡ x , ` = nn or ns

e
2πi rũ

1− 1
2 rεb = e2πib−1Qrũ ≡ x̄ , ` = sn or ss

q
(`)
1 =

 e
2πi

rεb
1+1

2 rεb = e−2πib2 ≡ q , ` = nn or ns

e
−2πi

rεb
1− 1

2 rεb = e−2πib−2 ≡ q̄ , ` = sn or ss

q
(`)
2 =


e

2πi rε

1+1
2 rεb = e2πibQrε , ` = nn

e
−2πi rε

1+1
2 rεb = e−2πibQrε , ` = ns

e
2πi rε

1− 1
2 rεb = e2πib−1Qrε , ` = sn

e
−2πi rε

1− 1
2 rεb = e−2πib−1Qrε , ` = ss

(2.108)

where we introduced the parameters

q = e−2πib2 , q̄ = e−2πib−2
, x = e2πibQrũ , x̄ = e2πib−1Qrũ , (2.109)

and Q = 1
2(b + b−1) as usual. We can then introduce fluxes, as above, by shifting u(`) →

u(`) + 1
2(m1ε

(`)
1 + m2ε

(`)
2 ). We will describe the dependence on fluxes in more detail below.
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Perturbative contribution and holomorphic blocks. We now evaluate this pertur-

bative contribution for the hypermultiplet explicitly using two methods. First, we may

directly uplift the perturbative contribution on S2
ε1 × S

2
ε2 , as in (2.103), but now including

the U(1)KK flux. We find

Z
pert,U(1),hyp

S3
b×S2 (ũ)m1,m2 =

∏
n∈Z

Z
pert,U(1),hyp
S2
εb
×S2

ε

(
ũ+

n

r

)
m1+n,m2

=
∏
n∈Z

[
ũ+

n

r
; εb, ε

]−1

m1+n,m2

−→
ε→0

∏
n∈Z

1
2

(|m1+n|−1)∏
k1=

− 1
2

(|m1+n|−1)

(
ũ+

n

r
+ k1εb

)− sgn(m1+n)m2

, (2.110)

where we used (2.86) to take the ε → 0 limit. Defining ` = |m1 + n|, this may be further

rewritten as

Z
pert,U(1),hyp

S3
b×S2 (ũ)m1,m2 =

∞∏
`=1

1
2

(`−1)∏
k1=− 1

2
(`−1)

(
ũ+ −`−m1

r + k1εb

ũ+ `−m1
r + k1εb

)−m2

. (2.111)

Finally, after substituting the definition of εb and defining j = `− 1 + 2k1, k = `− 1− 2k1,

which take values in Z≥0, and comparing to (2.40), we see that

Z
pert,U(1),hyp

S3
b×S2 (u)m1,m2 = sb (−iQ(rũ−m1))m2 . (2.112)

We may take another approach to this computation which will give another useful

perspective on this partition function. Let us consider the contribution from the fixed

points ` = nn and ` = ns. We also take |q| = |e−2πib2 | < 1 for concreteness. Then one

finds the infinite products over k2 in (2.104) reduce to a finite product, and we can take a

finite ε→ 0 limit,

Z
pert,U(1),hyp
R2
εb
×R2

ε×S1 Z
pert,U(1),hyp

R2
εb
×R2
−ε×S1 =

∏
k1≥0

1
2

(|m2|−1)∏
k2=

− 1
2

(|m2|−1)

(
sin
[
πr̃(ũ+εb(k1+ m1

2 + 1
2)+εk2)

]
sin
[
πr̃(−ũ+εb(k1−m1

2 + 1
2)+εk2)

])−sgn(m2)/2

−→
ε→0

∏
k1≥0

(
sin
[
πr̃
(
ũ+εb(k1+ m1

2 + 1
2)
)]

sin
[
πr̃
(
−ũ+εb(k1−m1

2 + 1
2)
)])−m2/2

∝

(
((−q

1
2 )1+m1x;q)

((−q
1
2 )1−m1x−1;q)

)−m2/2

, (2.113)

where q and x are as in (2.109), and we introduced the q-Pochhammer symbol

(x; q) =
∏
k≥0

(1− xqk) . (2.114)

A similar argument for the contribution from the fixed points ` = sn and ` = ss gives

Z
pert,U(1),hyp
R2
εb
×R2

ε×S1 Z
pert,U(1),hyp

R2
εb
×R2
−ε×S1 →

(
((−q̄

1
2 )−1−m1 x̄−1; q̄−1)

((−q̄
1
2 )−1+m1 x̄; q̄−1)

)−m2/2

. (2.115)
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Then, using the relation [13, 20]

sb(irQũ) = e
πi
2
r2Q2ũ2−πi

24
(b2+b−2)

(
−q1/2x; q

)(
−q̄−1/2x̄; q̄−1

) = sb(−irQũ)−1 , (2.116)

where the parameters are as in (2.109), we again arrive at

Z
pert,U(1),hyp

S3
b×S2 = sb(−iQ(rũ−m1))m2 . (2.117)

This method demonstrates that the partition function of the hypermultiplet naturally

factorizes into a contribution from the fixed points at the north and south poles of the S2

base of S3
b .

Note that the dependence on the flux m1 can be absorbed into a shift of u, as expected

since the S3
b factor cannot support a topologically nontrivial flux. Thus we will henceforth

set m1 = 0, and rename the flux on S2 by m2 → m. Then we see that this agrees with the

result (2.46) derived above by KK reduction, where in the present case we are implicitly

taking R-charge one for the hypermultiplet. We may also define, as in section 2.3, the

rescaled parameters

u = −iQrũ , ν = −iQrν̃ . (2.118)

We will sometimes work in terms of these parameters below.

It is straightforward to extend the argument above to a hypermultiplet in a general

representation, giving

Zpert,hyp
S3
b×S2 (u, ν)m,n =

∏
i

∏
ρ∈Ri

sb (ρ(u) + νi)
ρ(m)+ni . (2.119)

Similarly, for the vector multiplet we find

Zpert,vec
S3
b×S2 (u)m =

∏
α>0

sb (−iQ(rα(ũ)− 1))−α(m)−1 sb (−iQ(rα(ũ) + 1))−α(m)+1

=
∏

α∈Ad(G)′

sb (α(u)− iQ)1−α(m) .
(2.120)

We note this perturbative piece precisely agrees with what we found by the näive KK

reduction of section 2.3. This confirms our claim that the previous computation only

reproduced the perturbative contribution to the S3
b ×Σg partition function, and missed the

instanton corrections. The latter can be seen in the present approach, and we will discuss

them below.

The factorization of the perturbative contribution noted above also holds for the gen-

eral hypermultiplet and vector multiplet in (2.119) and (2.120). This is closely related

to the factorization of the S3
b partition function of 3d N = 2 theories into holomorphic

blocks [20]. It is therefore natural to expect that a similar approach as the one here applies

to the spaces L(p, q)b × S2 for arbitrary (squashed) lens space L(p, q), as such lens spaces

can be constructed by gluing two such holomorphic blocks. Indeed, we have seen this al-

ready in the case of S2 × S2 × S1, and will return to this example in section 5 below. We
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also note that 3d holomorphic blocks have also appeared in 5d partition functions in other

contexts — see, e.g., [56, 57] — and it would be interesting to understand the relation to

their appearance here. As we will see in the next subsection, this factorization continues

to hold at the non-perturbative level.

Instanton contribution and the Nekrasov-Shatashvili limit. The argument above

extends to the 1-loop determinant of a general hypermultiplet or vector multiplet in a

general instanton background. Specifically, we may similarly uplift the contribution in the

background of point-like instantons on R2
ε1 ×R2

ε2 , which are now configurations supported

on loops wrapping the S1 factor. Thus, we may write

ZR2
q1
×R2

q2
×S1 (x, y, z) = Zpert

R2
q1
×R2

q2
×S1 (x, y, z)

∞∑
k=0

zkZ
(k)

R2
q1
×R2

q2
×S1 (x, y) , (2.121)

where Zpert
R2
q1
×R2

q2
×S1 is the perturbative contribution from vector and hypermultiplets, and

Z
(k)

R2
q1
×R2

q2
×S1 is the 1-loop determinant in the k-instanton background. We have also defined

the classical contribution to the instanton action, which is now integrated over S1,

z = e2πirγ̃ , γ̃ = −2πi

g5
2
. (2.122)

This 5d instanton partition function was originally defined in [18], and plays an important

role in many of the 5d partition functions mentioned at the beginning of this section. We

see the same object controls the S3
b × S2 partition function.

To form the integrand of the S3
b × S2 partition function, we take the product of the

contributions from the four fixed points,

limε→0

∏
`

ZR2

q
(`)
1

×R2

q
(`)
2

×S1(x(`), y(`), z(`)) , (2.123)

where the arguments of the instanton partition functions at the four fixed points are x(`)

and q
(`)
i , defined as in (2.108), and y(`) and z(`), defined analagously. Explicitly,

y(`) =

{
e2πibQrν̃ ≡ y , ` = nn or ns

e2πib−1Qrν̃ ≡ ȳ , ` = sn or ss
z(`) =

{
e2πibQrγ̃ ≡ z , ` = nn or ns

e2πib−1Qrγ̃ ≡ z̄ , ` = sn or ss
.

(2.124)

The expression (2.123) involves taking the limit of the instanton partition function

where one of the equivariant parameters is sent to zero. This limit has been widely stud-

ied, beginning with [19], and is known as the Nekrasov-Shatashvili limit of the instanton

partition function. As shown in [19], the leading behavior of the instanton partition func-

tion in this limit can be expanded as (considering the 4d case first)

ZR2
ε1
×R2

ε2
(ũ) −→

ε2→0
exp

{
2πi

(
1

ε2
WNS(ũ, ε1)− 1

2
ΩNS(ũ, ε1) +O(ε2)

)}
, (2.125)
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which implicitly defines functions, WNS(ũ, ε1) and ΩNS(ũ, ε2), which depend on the theory

under consideration.12 We may similarly define, for the 5d instanton partition function,

adapted to the notation above (and setting r = 1 from now on),

ZR2

q1=e
2πiε1

×R2

q2=e
2πiε2

×S1

(
x = e2πiũ, y = e2πiν̃ , z = e2πiγ̃

)
−→
ε2→0

exp

{
2πi

(
1

ε2
W(5d)
NS (ũ, ν̃, γ̃; ε1)− Ω

(5d)
NS (ũ, ν̃, γ̃; ε1) +O(ε2)

)}
.

(2.126)

The notation we have chosen anticipates the role these functions will play as the twisted

superpotential and effective dilaton below.

Let us consider again the expression (2.123) in light of this expansion. If we again

consider the product of the ` = nn and ` = ns terms, we find (suppressing the dependence

on ν̃ and γ̃ from the notation)

ZR2

q=e−2πib2
×R2

e2πiQbε
×S1

(
e2πibQ(ũ+ 1

2
mε)
)
ZR2

q=e−2πib2
×R2

e−2πiQbε×S1

(
e2πibQ(ũ+ 1

2
mε)
)

−→
ε→0

exp

{
2πi

(
1

Qbε
W(5d)
NS

(
Qb

(
ũ+

1

2
mε

)
,−b2

)
− 1

2
Ω

(5d)
NS

(
Qb

(
ũ+

1

2
mε

)
,−b2

)
− 1

Qbε
W(5d)
NS

(
Qb

(
ũ− 1

2
mε

)
,−b2

)
− 1

2
Ω

(5d)
NS

(
Qb

(
ũ− 1

2
mε

)
,−b2

)
+O(ε)

)}
−→ exp

{
2πi

(
m∂ũ

1

Qb
W(5d)
NS (Qbũ,−b2)− Ω

(5d)
NS (Qbũ,−b2)

)}
. (2.127)

Similarly, the other two fixed points contribute

ZR2

q=e−2πib−2×R2

e2πiQb
−1ε
×S1

(
e2πib−1Q(ũ+ 1

2
mε)
)
ZR2

q=e−2πib−2×R2

e−2πiQb−1ε
×S1

(
e2πib−1Q(ũ+ 1

2
mε)
)

−→
ε→0

exp

{
2πi

(
m∂ũ

1

Qb−1
W(5d)
NS (Qb−1ũ,−b−2)−Ω

(5d)
NS (Qb−1ũ,−b−2)

)}
. (2.128)

Putting this together, we see these objects behave in precisely the same way as we expect

the twisted superpotential and effective dilaton to behave in the context of the S2 × S3
b

partition function. Thus it is natural to define

WS3
b×R2(ũ, ν̃, γ̃) =

1

Qb
W(5d)
NS (ũ, ν̃, γ̃;−b2) +

1

Qb−1
W(5d)
NS (ũ, ν̃, γ̃;−b−2) , (2.129)

ΩS3
b×R2(ũ, ν̃, γ̃) = Ω

(5d)
NS (ũ, ν̃, γ̃;−b2) + Ω

(5d)
NS (ũ, ν̃, γ̃;−b−2) . (2.130)

Thus, we see the factorization of the perturbative contribution continues to hold at the

non-perturbative level. We can now write, e.g.,

WS3
b×R2(ũ, ν̃, γ̃) =Wpert

S3
b×R2(ũ, ν̃, γ̃) +W inst

S3
b×R2(ũ, ν̃, γ̃) . (2.131)

Then we have seen the perturbative piece is given by (2.54), and can in principle be

further factorized into W(5d),pert
NS (ũ, ν̃, γ̃;−b2) and W(5d),pert

NS (ũ, ν̃, γ̃;−b−2), although we do

not write those expressions here. The instanton contribution is thus determined implicitly

by studying the Nekrasov-Shatashvili limit of the instanton partition function.

12The notation here should not be confused with that of the fixed points at the north and south poles of

the S2 factors, which we denote with lower case letters.
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Integration contour and Bethe sum. Having finally written an expression for the

integrand of the S3
b × S2 partition function, we can now write the partition function itself

as an integral over a suitable contour and sum over gauge fluxes on S2, i.e.,

ZS3
b×S2(ν̃, γ̃)n =

1

|WG|
∑

ma∈ΛG

∮
CJK

dũ Πa(ũ, ν̃, γ̃)maΠi(ũ, ν̃, γ̃)nie
−2πiΩ

S3
b
×R2 (ũ,ν̃,γ̃)

, (2.132)

where

Πa(ũ, ν̃, γ̃) = e
2πi∂ũaWS3

b
×R2 (ũ,ν̃,γ̃)

, Πi(ũ, ν̃, γ̃) = e
2πi∂ν̃iWS3

b
×R2 (ũ,ν̃,γ̃)

. (2.133)

We have so far not been careful to specify the precise contour of integration in the above

integral. However, it is natural to conjecture that this contour is such that, by a similar

manipulation as described above and in [11], we may evaluate this contour integral and

perform the resulting geometric series over ma, and obtain a “Bethe sum” formula,

ZS3
b×S2(ν̃, γ̃)n =

∑
ˆ̃u∈SBE

Πi(ˆ̃u, ν̃, γ̃)niH(ˆ̃u, ν̃, γ̃)−1 , (2.134)

where SBE is defined as in (2.23), and we have defined

H(ũ, ν̃, γ̃) = e
2πiΩ

S3
b
×R2 (ũ,ν̃,γ̃)

det
a,b

∂2WS3
b×R2(ũ, ν̃, γ̃)

∂ũa∂ũb
. (2.135)

Finally, although the above formula has only been motivated for genus zero, it is very

natural to conjecture the generalization to arbitrary genus, g, using the general A-twist

formalism described above, namely,

ZS3
b×Σg

(ν̃, γ̃)n =
∑

ˆ̃u∈SBE

Πi(ˆ̃u, ν̃, γ̃)niH(ˆ̃u, ν̃, γ̃)g−1 . (2.136)

In fact, this form is essentially determined by topological invariance on Σg, which means

this observable must be computed by a 2d TQFT. This represents our result for the full,

non-perturbative partition function on S3
b × Σg.

Summary. We have computed the S3
b × Σg partition function by two methods. First,

we performed a näive reduction to 2d, leading to the perturbative result for the twisted

superpotential in (2.54). However, this missed the contribution of instantons, and we then

recovered the full non-perturbative result by a reduction to 4d, where we conjectured the

answer is expressed in terms of the Nekrasov-Shatashvili limit of the instanton partition

function, as in (2.129). From the twisted superpotential (and effective dilaton), we may

then construct the full S3
b ×Σg partition function as in the general discussion of section 2.2,

leading to the formulae (2.56) for the perturbative partition function, and (2.136) for the

non-perturbative result.

While the latter method in principle gives the complete answer, in practice the instan-

ton contributions may be difficult or impossible to compute analytically. For the remainder

of this paper, we will therefore consider various simplifying limits in which their contri-

bution is suppressed, or otherwise under control. Specifically, it is well-known that their

– 29 –



J
H
E
P
1
1
(
2
0
1
8
)
0
5
8

contribution is subleading in N when we take a large N limit, and in the next section we

consider this limit in several examples, utilizing only the perturbative contribution to the

partition function. In the following section, we will specialize to theories which we expect

to have a 6d UV completion. For such theories we will argue that in the limit of large

gauge coupling, corresponding to large radius of the emergent S1 direction, the instantons

contribute a simple factor to the partition function, which can be interpreted as computing

the Casimir energy in this limit. Finally, in the special case of the maximal 5d N = 2 SYM

theory, we will see there exists a limit with enhanced supersymmetry, where the instanton

contribution is very simple.

3 Large N limit and holography

In this section, we study the large N limit of the S3
b ×Σg partition function for a large class

of 5d quiver gauge theories. We distinguish two classes of quivers; those leading to an N5/2

scaling of the free energy and those leading to an N3 scaling. The latter class of theories

(which are expected to have UV completions as 6d theories on a circle) are discussed

in detail at finite N in section 4. For the former class, we find that the matrix model

determining the partition function exhibits an interesting structure at large N , becoming

closely related to the matrix model determining the S5 partition function [32, 33, 58–60].

Precisely, we will establish the large N relations

FS3
b×Σg

= −6π(g− 1)

(∑
α∈G cα −

∑
ρ∈Rcρn̂ρν̃ρ∑

ρ∈Rcρ
(
1− ν̃2

ρ

) )
WS3

b×R2 ,

WS3
b×R2 =

4Q2

27π

(∑
ρ∈Rcρ(1− ν̃2

ρ)∑
ρ∈Rcρ

)3/2

FS5 ,

(3.1)

where the sum
∑

α is over the vector multiplets and
∑

ρ is over various hypermultiplets

and F is the free energy of the theory on the corresponding manifold.13 Thus, although

the matrix models computing the partition functions on S5 and on S3
b ×Σg are distinct at

finite N , they are closely related at large N .

As we discuss in detail below, the universal twist n̂ρ = ν̃ρ = 0 is special [21]. This cor-

responds to a topological twist purely along U(1)R ⊂ SU(2)R. Combining the expressions

above it follows that14

Wuniv
S3
b×R2 =

4Q2

27π
FS5 , F univ

S3
b×Σg

= −8

9
(g− 1)Q2 FS5 , (3.2)

for any 5d N = 1 theory with a universal twist on Σg at large N . The second relation

above for Q = 1 is in agreement with the supergravity prediction of [21], valid for the

compactification of any 5d N = 1 theory with a universal twist. We will discuss holography

in section 3.4.

13See sections 3.1 and 3.3 for notation and details.
14As shown in section 3.3, for this class of quivers

∑
α cα =

∑
ρ cρ and the universal relations follow.
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Useful formulas. Before we proceed to the computation, let us collect the relevant results

of section 2 for ease of reference. For a general theory with gauge group G and hyper-

multiplets in gauge representations RI , and collecting the terms from (2.56), (2.57), the

perturbative partition function is given by

Zpert
S3
b×Σg

=
∑
û∈SBE

Hg−1
∏

α∈Ad(G)′

sb (α(û)− iQ)1−g ∏
I

∏
ρ∈RI

sb (ρ(û) + νI)
(g−1)n̂I , (3.3)

where H denotes the Hessian contribution to the handle-gluing operator in the second line

of (2.57) and we have written the flavor flux as nI = n̂I(g− 1), with n̂I integer-quantized.

The Bethe equations are given by

SBE =

û ∣∣ Πa(û) ≡ exp

2πi
∂Wpert

S3
b×R2

∂ua
(û)

 = 1, a = 1, . . . , rG

 /WG , (3.4)

with the twisted superpotential (2.54), given by

Wpert
S3
b×R2(ũ) =Wclassical

S3
b×R2 (ũ, ν̃) +

∑
I

∑
ρ∈RI

gb
(
ρ(ũ) + ν̃I

)
−
∑
α

gb
(
α(ũ) + 1

)
, (3.5)

where the classical contribution is given in (2.53), and for the theories considered in this

section the Hessian contribution, H, given in (3.3) is subleading in the large N limit. Since

instanton corrections are suppressed at large N , and to avoid clutter, in the remainder of

this section we shall always omit the label “pert.”

To study the large N limit, we will need the following asymptotic behaviors:

gb(ũ+ ν̃)→ ±
(
− 1

12
Q2ũ3 +

1

4
Q2ν̃ũ2 − 1

4

[
1 + 4Q2

6
−Q2(1− ν̃2)

]
ũ

)
, (3.6)

`b(ũ+ ν̃)→ ±Q
2

2

(
1

2
ũ2 + ν̃ũ

)
, for Im(ũ)→ ±∞ , (3.7)

where we have assumed that ν̃ ∈ R and |ν̃| ≤ 1, and took the principal branch. We note

also the expansion

sb(x)→ e±
iπ
2 (x2+ 1

3
Q2− 1

6) , for Re(x)→ ±∞ . (3.8)

3.1 Seiberg theory and its orbifolds

The Seiberg theory [5] (see also [31]) consists of a single 5d N = 1 vector multiplet in

the adjoint of the gauge group Sp(N) ' USp(2N),15 Nf < 8 hypermultiplets in the fun-

damental representation of the gauge group, and one hypermultiplet in the antisymmetric

representation (see figure 1). The global symmetry of the theory is SO(5) × SU(2)R ×
15Since the terminology regarding symplectic groups differs in the literature, let us clarify the one followed

here. The group of real 2N × 2N matrices U such that UTΩU = Ω, with Ω2 = −1, is denoted Sp(2N,R).

The group of such complex matrices is denoted Sp(2N,C). If one adds to the later the condition that U is

unitary, one obtains the group USp(2N) ≡ Sp(2N,C) ∩ U(2N), also denoted Sp(N). It is useful to know

that SU(N)×U(1) ⊂ USp(2N) ⊂ SU(2N).

– 31 –



J
H
E
P
1
1
(
2
0
1
8
)
0
5
8

Nf

Figure 1. The 5d Seiberg theory. The node represents a USp(2N) gauge group, the solid

line Nf hypermultiplets in the fundamental representation and the dashed line an antisymmet-

ric hypermultiplet.

SU(2)M × SO(2Nf ) × U(1)top.16 The antisymmetric hypermultiplet transforms as a dou-

blet of SU(2)M and as a singlet of SO(2Nf ). We turn general flavor fluxes along the Cartan

of SU(2)M and SO(2Nf ), denoted n̂M and n̂I , I = 1, . . . , Nf , respectively.

The fundamental representation of USp(2N) has weights ±ei, where ei are unit vectors

of RN . The antisymmetric representation has weights ±(ei− ej) and ±(ei+ ej) with i < j.

The adjoint has the same weights as the antisymmetric and also ±2ei. Then, the twisted

superpotential (3.5) reads

WS3
b×R2 = −

∑
±

∑
i<j

[
gb
(
1± (ũi − ũj)

)
+ gb

(
1± (ũi + ũj)

)]
−
∑
i

gb
(
1± 2ũi

)
+
∑
±

∑
i<j

[
gb
(
ν̃AS ± (ũi − ũj)

)
+ gb

(
ν̃AS ± (ũi + ũj)

)]
+

Nf∑
I=1

∑
±

∑
i

gb
(
ν̃I ± ũi

)
, (3.9)

where we have omitted the classical pieceWclassical
S3
b×R2 since one can check that it is subleading

in N . To analyze the large N behavior of this quantity we follow the approach introduced

in [61], replacing

ũi → iNαx ,
∑
i

→ N

∫
dx ρ(x) , (3.10)

where α > 0, x is a continuous variable of order O(N0), and ρ(x) is the eigenvalue density,

normalized as
∫
dx ρ(x) = 1. Using the large ũ expansion (3.6) and then going to the

continuum variables, we have17

WS3
b×R2 ≈

(8−Nf )

6
Q2N1+3α

∫
dx ρ(x) |x|3

− 1

2
Q2
(
1− ν̃2

AS

)
N2+α

∫
y<x

dx dy ρ(x)ρ(y) (|x+ y|+ |x− y|) . (3.11)

For this function to have a nontrivial saddle at large N requires both terms to be of the

same order in N and hence α = 1
2 , which we set in what follows. We note that, to this

order in N , only the mixing parameter for the antisymmetric hypermultiplet, ν̃AS , is visible

while the parameters for the fundamental fields, ν̃I , are not. We also note there has been

16The U(1)top is a topological symmetry which together with the SO(2Nf ) is expected to combine into

an enhanced ENf+1 at the conformal fixed point [5].
17Due to the structure of roots and weights for USp(2N) and SU(2N), only the real part of gb(z) con-

tributes from the expansion (3.6) andWS3
b
×R2 is real. The same holds for `b(z) appearing in the free energy.
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a cancellation of the nonlocal cubic terms |x ± y|3 among the vector multiplet and the

antisymmetric hypermultiplet. The same cancellation occurs for the free energy of this

theory on S5 [62]. In fact, by a simple rescaling of the coordinates

x→ 2

3

√
1− ν̃2

AS x , (3.12)

and a corresponding inverse rescaling of ρ to preserve its normalization, we have18

WS3
b×R2 ≈

4Q2

27π

(
1− ν̃2

AS

)3/2 [π(8−Nf )

3
N5/2

∫
dx ρ(x) |x|3

− 9π

8
N5/2

∫
dx dy ρ(x)ρ(y) (|x+ y|+ |x− y|)

]
. (3.13)

We note the quantity inside the brackets is precisely the free energy functional of this

theory on S5 (see eq. (3.4) in [62]). Thus, we find the simple relation

WS3
b×R2 =

4Q2

27π

(
1− ν̃2

AS

)3/2
FS5 . (3.14)

Since this is a functional relation in the eigenvalue density ρ(x), extremization of the

Bethe potential is equivalent to the extremization of FS5 . As shown in [62] the saddle

configuration is given by

ρ(x) =
2|x|
x2
∗
, x∗ =

3√
2(8−Nf )

, (3.15)

with x ∈ [0, x∗] and at the extremum

FS5 = −9
√

2πN5/2

5
√

8−Nf

. (3.16)

Now let us evaluate the free energy on S3
b × Σg in this Bethe vacuum. Taking the loga-

rithm of (3.3) for this theory it is easy to see that the Hessian is subleading in this vacuum

and only the flux operators contribute, which using the expansion (3.7) and vacuum (3.15)

becomes

FS3
b×Σg

= −8

9
(g− 1)Q2(1− n̂M ν̃AS )

√
1− ν̃2

AS FS5 . (3.17)

As we will show in section 3.3 the relations (3.14) and (3.17) are not particular to the

Seiberg theory but can be generalized to a large class of quiver gauge theories. This is

rather nontrivial as it requires a number of special cancellations in the Bethe potential.

We note that relations analogous to these hold for 3d N = 2 theories on S1 × Σg; in that

case the relations are among the topological twisted index, corresponding Bethe potential,

and the free energy on the round S3 [63, 64].

Before discussing the general case we prove these relations for orbifolds of the Seiberg

theory.

18We have used the symmetry of the integrand to replace
∫
y<x

dxdy → 1
2

∫
dxdy, where now both

integration variables x, y are integrated over their full domain.
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(A)
0 1 k−1 k

(B)
0 1 k−1 k

(C)
1 2 k−1 k

Figure 2. The 5d quiver gauge theories of discussed in [65]. Black nodes represent SU(2N) gauge

groups and white ones USp(2N) gauge groups. Solid lines denote bifundamental hypermultiplets

and dashed lines hypermultiplets in the antisymmetric representation. In addition, at any given

node, a, one may have Na
f number of fundamental hypermultiplets, which we have not depicted.

Orbifolds. These theories are obtained as Zn orbifolds of the Seiberg theory discussed

above and consist of linear quivers with SU(2N) nodes, in addition to USp(2N) nodes [65].

There are three classes of quivers: class (A) for n = 2k+ 1 odd and; (B), (C) when n = 2k

is even, shown in figure 2. The Seiberg theory corresponds to class (A) with k = 0.

Analyzing each class separately one finds that the Bethe equations for each quiver can

be obtained from the following Bethe potentials:19

W(A) =W◦W0
+

k∑
a=1

W•Wa
+

k−1∑
a=0

WBF(a,a+1)
+WASk +

k∑
a=0

Na
f WFa , (3.18)

W(B) =W◦W0
+

k−1∑
a=1

W•Wa
+W◦Wk

+
k−1∑
a=0

WBF(a,a+1)
+

k∑
a=0

Na
f WFa , (3.19)

W(C) =

k∑
a=1

V•Wa
+

k−1∑
a=1

WBF(a,a+1)
+WAS1 +WASk +

k∑
a=1

Na
f WFa , (3.20)

where each term is given by

W◦W = −
∑
±,i,j<i

[
gb(1± (ũi − ũj)) + gb(1± (ũi + ũj))

]
−
∑
±,i

gb(1± 2ũi) ,

W•W = −2
∑
±,i,j<i

[
gb(1± (ũi − ũj)) + gb(1± (ũi + ũj))

]
−
∑
±,i

gb(1± 2ũi) ,

WBF(a,b)
= 2

∑
±,i,j<i

[
gb(ν̃(a,b) ± (ũi − ũj)) + gb(ν̃(a,b) ± (ũi + ũj))

]
+
∑
±,i

gb(ν̃(a,b) ± 2ũi) ,

WAS =
∑
±,i,j<i

[
gb(ν̃AS ± (ũi − ũj)) + gb(ν̃AS ± (ũi + ũj))

]
,

WF =
∑
±,i

gb(ν̃F ± ũi) . (3.21)

To write the above expressions, we start with fundamental weights in the R2N basis subject

to the constraint
∑2N

A=1 ũ
A = 0 for SU(2N) group and ũi = −ũN+i with i = 1, . . . , N for

19To avoid clutter we denote WS3
b
×R2 =W in what follows.
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USp(2N) group, as explained in [62]. To extremize the Bethe potentials, we chose the

same Ansatz for ũ’s corresponding to different nodes, i.e., ũia ≡ ũi. The final result in

terms of ũi then follows for all representations straightforwardly. The continuum limit now

follows as before with ũi → iN1/2x and using the large ũ expansion (3.6). Let us work

out the coefficients of different terms at various orders of N inW(A) (ignoring overall signs

and factors):

O(N7/2) with |x±y|3 : 1+2k−2k−1+0 = 0 ,

O(N5/2) with |x|3 : 8+8k−8k+0−
∑

aN
a
f = 8−Nf ,

O(N5/2) with |x±y| :
(

1+4Q2

6

)
+2k

(
1+4Q2

6

)
−2
∑k−1

a=0

(
1+4Q2

6
−Q2(1−ν̃2

(a,a+1))

)
−
(

1+4Q2

6
−Q2(1−ν̃2

ASk
)

)
+0 =Q2

(∑k−1
a=0

(
2(1−ν̃2

(a,a+1))
)

+(1−ν̃2
ASk

)
)
, (3.22)

where we defined Nf =
∑

aN
a
f . Note that the field content is such that the terms at

O(N7/2) cancel leaving the expected terms at O(N5/2) to be dominant. This happens for

classes (B) and (C) as well as can be easily checked. In fact, for all the three classes, the

cubic term has the same coefficient as the Seiberg theory and only the coefficient of the

nonlocal linear term changes depending on the precise matter field content. Repeating the

same extremization procedure done for the Seiberg theory for each class, we obtain the

following Bethe potentials:

W(A) =
4Q2

27π

∑k−1
a=0

(
2(1− ν̃2

(a,a+1))
)

+ (1− ν̃2
ASk

)

2k + 1

3/2

F
(A)
S5 , (3.23)

W(B) =
4Q2

27π

∑k−1
a=0

(
2(1− ν̃2

(a,a+1))
)

2k

3/2

F
(B)
S5 , (3.24)

W(C) =
4Q2

27π

∑k−1
a=1

(
2(1− ν̃2

(a,a+1))
)

+ (1− ν̃2
AS1

) + (1− ν̃2
ASk

)

2k

3/2

F
(C)
S5 , (3.25)

where F
(A,B,C)
S5 = n3/2F Seiberg

S5 [62]. The free energy calculation is similar to what was done

for the Seiberg theory. We turn on flavor fluxes for all the U(1)(a,a+1) and U(1)AS global

symmetries of the quiver theories. This leads to the following free energies

F
(A)

S3
b×Σg

=−6π(g−1)
2k+1−

∑k−1
a=0 2n̂(a,a+1)ν̃(a,a+1)−n̂ASk ν̃ASk(∑k−1

a=0

(
2(1−ν̃2

(a,a+1))
)

+(1−ν̃2
ASk

)
) W(A) , (3.26)

F
(B)

S3
b×Σg

=−6π(g−1)
2k−

∑k−1
a=0 2n̂(a,a+1)ν̃(a,a+1)∑k−1

a=0

(
2(1−ν̃2

(a,a+1))
) W(B) , (3.27)

F
(C)

S3
b×Σg

=−6π(g−1)
2k−

∑k−1
a=1 2n̂(a,a+1)ν̃(a,a+1)−n̂AS1 ν̃AS1−n̂ASk ν̃ASk(∑k−1

a=1

(
2(1−ν̃2

(a,a+1))
)

+(1−ν̃2
AS1

)+(1−ν̃2
ASk

)
) W(C) . (3.28)
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We note that for the universal twist, n̂ = ν̃ = 0, the formulas above reduce to W = 4Q2

27π FS5

and FS3
b×Σg

= −6π(g − 1)W for all classes of orbifolds. We will see this observation

generalizes to a large class of quivers with an N5/2 scaling in section 3.3.

3.2 Extremization

We recall that when ZS3
b×Σg

is viewed as direct sum of 3d theories, the fugacity parameters

ν̃ are associated to the 3d R-charge, ∆ = 1 − ν̃, of the 3d N = 2 chiral fields obtained

by reduction of the hypermultiplets on Σg. Since the theory is topological on Σg we can

shrink it to zero size and FS3
b×Σg

= FS3
b

coincides with the free energy of the 3d effective

theory on S3
b . In view of F -maximization [66, 67] it is thus natural to propose that in order

to obtain information about the 3d IR fixed point (assuming such fixed point exists), the

fugacities must be set to those values extremizing the free energy:20

∂FS3
b×Σg

∂ν̃ρ
= 0 . (3.29)

Carrying this out for each class of quivers leads to a coupled set of quadratic equations

with two sets of solutions:

ν̃
(A,B,C)
I =

n̂
(A,B,C)
I

4n̂2
(A,B,C)

(
1±

√
1 + 8n̂2

(A,B,C)

)
, (3.30)

where we defined

n̂2
(A) =

1

2k + 1

(
k−1∑
a=0

2n̂2
(a,a+1) + n̂2

ASk

)
, (3.31)

n̂2
(B) =

1

2k

(
k−1∑
a=0

2n̂2
(a,a+1)

)
, (3.32)

n̂2
(C) =

1

2k

(
k−1∑
a=1

2n̂2
(a,a+1) + n̂2

AS1
+ n̂2

ASk

)
. (3.33)

We emphasize the index I in (3.30) runs over all antisymmetric and bifundamental hyper-

multiplets in the corresponding quiver, and not fundamental ones.21 Plugging the solutions

back into F
(A,B,C)

S3
b×Σg

gives the common formula

F
(A,B,C)

S3
b×Σg

= −8

9
(g−1)Q2

±
√

2
∣∣∣n̂2

(A,B,C) − 1
∣∣∣3/2 (√1 + 8n̂2

(A,B,C) ± 1
)

∣∣∣4n̂2
(A,B,C) − 1∓

√
1 + 8n̂2

(A,B,C)

∣∣∣3/2
F

(A,B,C)
S5 . (3.34)

Depending on the values of the flavor fluxes, one of the roots in (3.30) may be discarded

by the requirement |ν̃I | ≤ 1 (i.e., 0 ≤ ∆I ≤ 2), which we have assumed.

20We are assuming there are no accidental flavor symmetries in the IR.
21Just as in the Seiberg theory, the fugacities for all fundamental fields are not visible at this order in N

and thus are not fixed by extremization.
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Note that for the universal twist n̂ = ν̃ = 0 this reduces to (3.2) for all classes.

For non-universal twists the relation among free energies depends on the theory under

consideration. Specifying (3.34) for the case of the Seiberg theory with a nonzero flux for

its SU(2)M flavor symmetry matches the supergravity result recently found in [22] where

the relevant supergravity solution was constructed.

3.3 General quivers

Consider a 5d quiver gauge theory with a number N◦V and N•V of symplectic and uni-

tary gauge groups, respectively, and matter fields in the fundamental, bifundamental,

antisymmetric, or adjoint representations of the gauge groups. The perturbative Bethe

potential (3.5) receives contributions from all these fields, but the scaling with N of each

contribution depends on the particular weights of the representations. We recall that for

USp(2N) gauge group, the fundamental representation has weights ±ei, where ei are unit

vectors of RN . The antisymmetric representation has weights ±(ei − ej) and ±(ei + ej)

with i < j. The adjoint has the same weights as the antisymmetric and also ±2ei. For

U(N) gauge group the fundamental has weights ei, the antisymmetric ±(ei + ej) and the

adjoint ±(ei − ej) with i < j. We refer to weights with two nonzero entries as “nonlocal

weights” as in the continuum limit they lead to nonlocal terms in the Bethe potential.

Since a given representation may have both kinds of weights we introduce the continuum

notation ρ(u) → ρ(x, y) for the nonlocal terms and ρ(u) → ρ(x) for the local ones,22 and

similarly for the roots α(u). With this notation, using the expansion (3.6) and rearranging

the various terms that appear, the Bethe potential reads

W =−1

2
Q2γ̃ N1+2α

∑
α

Nα

∫
dxρ(x)x2

+
1

2

∑
α

(
N2

∫
dxdyρ(x)ρ(y)

[
Q2

3
N3α|α(x,y)|3− 1+4Q2

6
Nα|α(x,y)|

]
+N

∫
dxρ(x)

[
Q2

3
N3α|α(x)|3− 1+4Q2

6
Nα|α(x)|

])
− 1

2

∑
ρ

(
N2

∫
dxdyρ(x)ρ(y)

[
Q2

3
N3α|ρ(x,y)|3−

(
1+4Q2

6
−Q2(1−ν̃2

ρ)

)
Nα|ρ(x,y)|

]

+N

∫
dxρ(x)

[
Q2

3
N3α|ρ(x)|3−

(
1+4Q2

6
−Q2(1−ν̃2

ρ)

)
Nα|ρ(x)|

])
. (3.35)

We see that the various terms have different scalings in N : 1+2α, 2+3α, 2+α, 1+3α, 1+α.

In order to have a nontrivial saddle at large N both a quadratic and linear term in the

eigenvalue density must appear at a given order in N . Although in principle there seem to

be six cases, demanding α > 0 there are in fact only two scalings that provide a nontrivial

saddle point:

(I) 2 + α = 1 + 3α⇒ α = 1
2 ⇒ N5/2 Higher order to cancel: N2+3α=7/2

(II) 2 + α = 1 + 2α⇒ α = 1⇒ N3 Higher orders to cancel: N2+3α=5 and N1+3α=4

22We denote the weights by boldface in order not to be confused with the eigenvalue density ρ. We will

switch to normal font in expressions we get after the integration is done.
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In each case the cancellation of higher orders is required to avoid a trivial saddle point,

which would otherwise render the large N method used here inapplicable. We consider

each case in turn.

(I) Theories with N5/2 scaling. We assume the generic quivers have USp(2N) and

SU(2N) gauge groups,23 with N◦V , N
•
V number of vector multiplets corresponding to respec-

tive gauge groups and NAd , NAS , NBF , Nf number of hypermultiplets in the adjoint, anti-

symmetric, bifundamental and fundamental representations of given gauge groups, respec-

tively. Setting α = 1
2 in (3.35) the cancellation of nonlocal cubic terms at O(N7/2) requires(∑

α

cα −
∑
ρ

cρ

)∫
dxdyρ(x)ρ(y)

(
|x+ y|3 + |x− y|3

)
= 0

⇒
∑
α

cα −
∑
ρ

cρ = 0 , (3.36)

where cα and cρ are numerical constants for each vector and hypermultiplet that appear

when collecting all the contributions to the integral shown above. For instance, c◦V = 1,

c•V = 2 for each vector multiplet in the quiver and cAd = 1, cAS = 1, cBF = 2, cf = 0 for

each hypermultiplet. Thus, a constraint is imposed on the number of various fields present

in the theory. We have already seen an example of such a relation for type (A) quiver theory

in (3.22), where
∑

ρ cρ = 1+2k = NAS+2NBF , which is also equal to
∑

α cα = N◦V +2N•V for

this quiver. Thus, the Bethe potential for these theories with an N5/2 scaling is given by24

W = N5/2Q2

[
1

6

∫
dxρ(x)

(∑
α

|α(x)|3 −
∑
ρ

|ρ(x)|3
)

− 1

2

∫
dxdy ρ(x)ρ(y)

∑
ρ

(
1− ν̃2

ρ

)
|ρ(x, y)|

]

= N5/2Q2

[
1

6

(∑
α

c′α −
∑
ρ

c′ρ

)∫
dxρ(x)|x|3

− 1

2

∑
ρ

cρ
(
1− ν̃2

ρ

) ∫
dxdy ρ(x)ρ(y) (|x+ y|+ |x− y|)

]
. (3.37)

Here c′α and c′ρ are another set of numerical constants appearing when collecting all the

contributions to the local |x|3 term. These are in general different from the c’s, for exam-

ple, c′◦V = c′•V = 8, c′Ad = 8, c′AS = 0, c′BF = 8, c′f = 1, assuming the same set of gauge

groups as before. After the rescaling x→ 2
3

√∑
ρ cρ

(
1− ν̃2

ρ

)
x (and corresponding inverse

rescaling of ρ), we have

W =
4Q2

27π

(∑
ρ

cρ
(
1− ν̃2

ρ

))3/2

N5/2

[
π(8Nv −Nf )

3

∫ x∗

0
dx ρ(x)|x|3

− 9π

8

∫ x∗

0
dxdyρ(x)ρ(y) (|x+ y|+ |x− y|)

]
, (3.38)

23It should be possible to study quivers with different ranks but we do not consider this here.
24We note that due to (3.36), the − 1

6
(1 + 4Q2) part in the terms of order N2+α in (3.35) also cancels.
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where we defined Nv = N◦V + N•V − NAd − NBF . By comparison with the free energy

functional on S5 for the same theory, it follows that

W =
4Q2

27π

(∑
ρ cρ

(
1− ν̃2

ρ

)∑
ρ cρ

)3/2

FS5 , (3.39)

with FS5 =
(∑

ρ cρ
)3/2

FSeiberg
S5 , which is extremized for

ρ(x) =
2|x|
x2
∗
, x∗ =

3√
2(8Nv −Nf )

. (3.40)

We now evaluate the on-shell free energy. Taking the logarithm of (3.3) one can see

that the Hessian part of the handle-gluing operator does not contribute to leading order in

N and one finds25

FS3
b×Σg

= −6π(g− 1)

(∑
α cα −

∑
ρ cρn̂ρν̃ρ∑

ρ cρ
(
1− ν̃2

ρ

) )
W , (3.41)

which using (3.39) can also be written as

FS3
b×Σg

= −8

9
Q2(g− 1)

(∑
α

cα −
∑
ρ

cρn̂ρν̃ρ

)(∑
ρ

cρ(1− ν̃2
ρ)

)1/2(∑
ρ

cρ

)−3/2

FS5 .

(3.42)

Finally, extremizing with respect to the fugacities gives

ν̃±ρ =
n̂ρ
4n̂2

(
1±

√
1 + 8n̂2

)
, (3.43)

where n̂2 ≡
(∑

ρ cρ
)−1(∑

ρ cρn̂
2
ρ

)
and evaluating at the extremum,

FS3
b×Σg

= −8

9
(g− 1)Q2

±
√

2
∣∣n̂2 − 1

∣∣3/2 (√1 + 8n̂2 ± 1
)

∣∣∣4n̂2 − 1∓
√

1 + 8n̂2
∣∣∣3/2

FS5 . (3.44)

Since FS5 is negative and FS3 should be positive, we see that for g > 1, the solution with

+ sign should be chosen above and for g = 0, the solution with − sign. This sign then

suggests the introduction of κ, the normalized curvature of Σg defined below (2.60), by

rescaling n̂ρ → n̂ρ
κ , giving

FS3
b×Σg

=
8

9
(g− 1)Q2


√

2
∣∣n̂2 − κ2

∣∣3/2 (√κ2 + 8n̂2 − κ
)

κ
∣∣∣4n̂2 − κ2 + κ

√
κ2 + 8n̂2

∣∣∣3/2
FS5 . (3.45)

One can also make sense of the above expression for κ = 0 (as in [22] for the Seiberg

theory) by considering the limit g−1
κ → −4π, n̂ρ → n̂ρ

2π , resulting in the relation FS3
b×Σg=1

=

−8
9Q

2
√
n̂2FS5 .

25Although in principle one may worry that exponentially subleading/diverging terms in H of the form

exp (∓Nαx) may contribute, to leading order in N these are of the form H ≈ exp
(∑

i ∂uiW
)

and thus

H ≈ 1 when evaluated in the Bethe vacua of the theory.
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1 2 k−1 k

Figure 3. A simple class of 5d quiver gauge theories with free energy scaling as N3. Black nodes

represent SU(2N) gauge groups, a line connecting two nodes denotes a bifundamental hypermul-

tiplet, and the line ending on the same node denotes an adjoint hypermultiplet. No fundamental

hypermultiplets are allowed in this case.

(II) Theories with N3 scaling. Setting α = 1 in (3.35) and requiring the cancellation

of nonlocal cubic terms at O(N5) gives the same constraint as before, i.e., (3.36). The

cancellation of local cubic terms at O(N4) leads to the additional condition∑
α

c′α −
∑
ρ

c′ρ = 0 . (3.46)

The constraints (3.36) and (3.46) together mean no cubic terms (either nonlocal and local)

survive in the expansion of the function gb. For pure U(N) or SU(N) theories, this con-

straint simply becomes Nf = 0. The maximal 5d N = 2 SU(N) SYM is such an example.

Another known example is class Sk; circular quivers consisting of k SU(N) gauge groups

and k bifundamental hypermultiplets. The maximal theory is obtained for k = 1 when the

bifundamental multiplet turns into an adjoint one. We also note a linear quiver with k

SU(N) gauge groups and k − 1 bifundamentals, and an additional adjoint matter on one

node (see figure 3) satisfies (3.36) and (3.46). An example with USp(2N) group is the

Seiberg theory with Nf = 8 or E-string theory. In addition, all the three classes of orbifold

theories studied above with Nf = 8 also give rise to N3 scaling of the free energy.

3.4 Holography

On general grounds, we expect the gravity dual of a 5d SCFT on S3 × Σg with a partial

topological twist on Σg to be given by a supersymmetric solution interpolating between

asymptotically locally AdS6 at infinity (with an S3 × Σg boundary) and an AdS4 × Σg

geometry for small values of the radial coordinate.26 In the case of a universal topological

twist (n = 0) it was argued in [21] that such a solution, originally found in [68, 69], is given

by an extremal 2-brane solution in minimal 6d F (4) gauged supergravity, with metric of

the form

ds2 = e2f(r)(−dt2 + dz2
1 + dz2

2 + dr2) + e2g(r)ds2
Σg
, (3.47)

which is supported by a nontrivial magnetic flux for a U(1) ⊂ SU(2) graviphoton on Σg

and a nontrivial scalar ϕ(r).27 The interpolating solution, which exists only for g > 1,

preserves four real supercharges and can be found numerically. As the radial coordinate

goes to r → ∞ the metric is locally asymptotic to AdS6 with unit radius and as r → 0 it

26The holographic solutions described here correspond to the case of a round 3-sphere S3
b=1.

27This supergravity theory [70] has 16 real supercharges and bosonic field content: the graviton gµν , an

SU(2) gauge potential AIµ, an Abelian one-form potential Aµ, a massive two-index tensor gauge field Bµν ,

and a scalar field ϕ.
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is of the form AdS4 × Σg, with sizes e2f(r) = 1
r2

23/23−3/2 and e2g(r) = 21/23−3/2, and the

free energy given by [21]

F sugra
S3×Σg

= −8

9
(g− 1)FS5 , (3.48)

where FS5 is the free energy of the 5d field theory on S5. The crucial point, emphasized

in [21], is that upon uplift to massive IIA on topologically S4, the solution (3.47) describes

the twisted compactification of any 5d N = 1 theory with a gravity dual and thus (3.48)

holds for any such compactification.28 Indeed, this is corroborated by our field theory

results; setting Q = 1 for the round S3, κ = −1, and nρ = 0 in (3.45) we see this exactly

matches (3.48). The existence of this holographic flow is thus strong evidence for the

existence of a large class of 3d SCFTs arising from compactification of 5d N = 1 theories,

at least at large N , for the universal twist. We emphasize that the free energy of these 3d

theories scales as N5/2 rather than the more standard N3/2 or N5/3 scaling of 3d theories

with gravity duals.

The general result (3.45) suggests that a larger class of such holographic flows should

exist, whose endpoint is described by a discrete family of 3d SCFTs labeled by the integers

nρ for each 5d parent theory. The simplest example is the Seiberg theory with a nonzero flux

for the Cartan of SU(2)M . The explicit holographic RG flow in this case was constructed for

Q = 1 in [22]. Indeed, specifying (3.45) for this case exactly matches the supergravity result

(see eq. (1.1) in [22]). It would be interesting to construct the analogous holographic RG

flows for the orbifold theories considered in detail in section 3.1, which now have a number

of flavor symmetries visible at large N and whose free energy is given by (3.34). In general,

one should be able to do this for arbitrary values of Q, which would be interesting.

These holographic checks give strong support for the existence a novel class of 3d

SCFTs. The results of this paper provide a method for computing the exact partition

function of such theories, in principle at finite N .

4 5d theories, 6d SCFTs, and the 4d index

As reviewed in the Introduction, some 5d gauge theories are believed to be low energy

descriptions of certain 6d SCFTs compactified on a circle, S1
β . The radius of the 6d circle

is related to the 5d gauge coupling constant by

β =
g2

5

2πλ
, (4.1)

where λ is a numerical factor which depends on the specific theory under consideration. The

prototypical example of this phenomenon, which we will discuss in detail in section 4.1,

is that of the maximally supersymmetric Yang-Mills theory in 5d with an ADE gauge

group, which is expected to have a UV completion as the circle compactification of the

corresponding N = (2, 0) SCFT. There are also other examples of this phenomenon with

N = (1, 0) supersymmetry, including theories obtained by orbifolding the maximal theory,

and the E-string, which uplifts to the 6d E-string theory.

28See also [71] and [72] for similar discussions in other dimensions.
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6d N = (1, 0) on S3
b × Σg × S1

β

4d N = 1
ZS3

b
×S1

β
[T (4d)

Σg
]

5d N = 1
ZS3

b
×Σg

[T (5d)]

Figure 4. The partition function of 4d N = 1 class S theories on S3
b × S1

β from the partition

function of N = 1 gauge theories on S3
b × Σg. The precise relation is given in (4.3) with the

mapping of parameters in (4.7).

When one computes protected observables in these 5d theories on a compact manifold,

M5, one generally expects that these may be interpreted as observables in the “parent”

6d theory on M5 × S1
β . Indeed, this philosophy was applied in the case of M5 being

the squashed five-sphere to study the superconformal index, or S5 × S1
β partition func-

tion [34, 35], as well as other examples; see [4] for a review. In the case of the S3
b × Σg

partition function, we expect this to compute the partition function of the 6d SCFT on

S3
b × Σg × S1

β . (4.2)

This leads to another perspective on this object, as follows. By compactifying the

parent 6d N = (1, 0) theory on the Riemann surface instead leads to a class of 4d offspring

theories labeled by the compactification manifold, Σg,
29 and flavor fluxes, n, which we

denote here by T (4d)
Σg,n

. Then our computation can be interpreted as giving the partition

function of these 4d theories on S3
b × S1

β (see figure 4), i.e.,

ZS3
b×Σg

(ν, γ)n

[
T (5d)

]
= ZS3

b×S
1
β
(p, q, µ)

[
T (4d)

Σg,n

]
. (4.3)

The latter is closely related to the 4d supersymmetric index as [73]

ZS3
b×S

1
β
(p, q, µ) = e−βECasimirI4d(p, q, µ) , (4.4)

where the 4d index may be defined as a trace in radial quantization [74, 75],

I4d(p, q, µ) = Tr(−1)F e−β
′{Q,Q†}pj1+j2−R2 qj1−j2−

R
2

∏
i

µi
Fi , (4.5)

where j1 and j2 are Cartan generators for the SO(4) ∼= SU(2)1×SU(2)2 rotation symmetry,

and Fi run over a basis of the flavor symmetries. The quantity ECasimir, to which we will

return to more detail in section 4.2.1, is the Casimir energy of the 4d theory quantized

on S3
b [73].

29In the general case the Riemann surface may contain nontrivial punctures, which we do not consider

in this work. These should appear as local defect operators in the TQFT on Σg.
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The identification of parameters to those appearing naturally in the S3
b × S1

β partition

function is [45, 76]

p = e−2πbQ−1β , q = e−2πb−1Q−1β , µi = e2πQ−1β(νi+iQ) , (4.6)

where νi are the effective real mass parameters on S3
b . Using (4.1) we find these are related

to the parameters of the S3
b × Σg partition function by

p = e2πbλ−1γ−1
, q = e2πb−1λ−1γ−1

, µ = e2πiλ−1γ−1(νi+iQ) , (4.7)

where γ = −2πQ
g52

. To summarize, this chain of reasoning leads us to identify

ZS3
b×Σg

(ν, γ)n

[
T (5d)

]
= ZS3

b×S
1
β
(p, q, µ)

[
T (4d)

Σg,n

]
= e−βECasimirI4d(p, q, µ)

[
T (4d)

Σg,n

]
. (4.8)

In this section, we study this relation in more detail. Although in principle this is

an exact result, valid for any choice of parameters appearing in (4.8), in practice we are

only able to compute the l.h.s. in certain simplifying limits, where the contributions from

instantons are under control. We first consider in detail the case of the maximal, N = 2

SYM theory. Due to the extra supersymmetry, this admits a limit where the instanton

contribution is very simple, and the partition function can be computed exactly. Then

we study the partition function in the “Casimir limit,” β ∼ g5
2 → ∞. Although näively

the instantons are important in this limit, we find their contribution can be explicitly

characterized.

4.1 The 5d N = 2 Yang-Mills theory

Let us start by considering the S3
b×Σg partition function for the maximally supersymmetric

5d N = 2 Yang-Mills theory with simply laced gauge group G.30 We will often specialize to

the case G = SU(N) for concreteness, but will keep the discussion general when possible.

This theory contains an adjoint hypermultiplet, acted on by an SU(2)F flavor symmetry,31

for which we include a mass ν and flux n. Then the S3
b × Σg partition function of this

theory can be written as a sum over Bethe vacua as

ZS3
b×Σg

(ν, γ)n =
∑
û∈SBE

H(û, ν, γ)g−1Πν(û, ν, γ)n . (4.9)

These operators can be constructed out of the twisted superpotential

WN=2
S3
b×R2(ũ, ν̃, γ̃) =

1

Qb
WN=2
NS (ũ, ν̃, γ̃;−b2) +

1

Qb−1
WN=2
NS (ũ, ν̃, γ̃;−b−2) , (4.10)

in the notation of section 2.4, and similarly for the effective dilaton. We may alternatively

decompose this into a perturbative and instanton contribution,

WN=2
S3
b×R2(ũ, ν̃, γ̃) =WN=2,pert

S3
b×R2 (ũ, ν̃, γ̃) +WN=2,inst

S3
b×R2 (ũ, ν̃, γ̃) , (4.11)

30As mentioned in section 2.1, this computation was also considered in [37–39], where they also observed

a relation to the Schur limit of the 4d index. Below we clarify the precise relation of this observable to the

4d index of certain 4d N = 1 SCFTs.
31Specifically, we have SU(2)R × SU(2)F ⊂ USp(4), where the latter is the full R-symmetry group for

this theory, and SU(2)R is the 5d N = 1 R-symmetry.
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and we may write an explicit expression for the first term, as in section 2.3:

WN=2,pert
S3
b×R2 (ũ, ν̃, γ̃) =

1

2
γ̃Kabũaũb +

∑
α∈Ad(G)

gb(α(ũ) + ν̃)−
∑

α∈Ad(G)′

gb(α(ũ) + 1) , (4.12)

where γ̃ = −2πi
g52

. In general it is difficult to evaluate the non-perturbative contribution

analytically. However, we will describe some simplifying limits below.

To see what the S3
b × Σg partition function of this theory corresponds to in 4d, we

recall that the 6d UV completion of this 5d theory is the N = (2, 0) theory compactified

on a circle of radius

β =
g5

2

2π
. (4.13)

In other words, (4.1) holds with λ = 1 in this case. The compactification of the 6d SCFT

on a Riemann surface with a topological twist gives rise, in general, to a class of 4d N = 1

SCFTs, which were described as the AN−1 case in [25]. The specific theory depends on the

choice of R-symmetry used to perform the twist. If we mix the U(1)R ⊂ SU(2)R symmetry

used to perform the topological twist on Σg with the maximal torus of the SU(2)F flavor

symmetry with a coefficient n̂, this is equivalent to inserting a flux,32

n = n̂(g− 1) , (4.14)

on Σg. In the special case

n̂ = ±1 , (4.15)

the twist preserves N = 2 supersymmetry in 4d, and gives rise to the theories of class

S [23]. Let us denote the theory for general choices of flux, n, by T (4d)
Σg,n

.

As a special case of the 4d-2d correspondence, we may relate the index of this 4d

theory to the partition function of a suitable 2d TQFT [77, 78]. Then it is clear from

the logic above that this TQFT is precisely the A-twist of the effective 5d N = 2 theory

compactified on S3
b . In other words, we have

ZS3
b×S

1
β

[
T (4d)

Σg,n

]
= ZS3

b×Σg
(ν)n

[
T (5d)

]
, (4.16)

where the r.h.s. may be interpreted as a TQFT living on Σg. In particular, in writing the

r.h.s. as a sum over Bethe vacua, as in (4.9), we exhibit this TQFT structure explicitly.

While we expect the relation (4.16) to hold for general parameters, it is in general

difficult to evaluate the S3
b ×Σg partition function explicitly due to the nontrivial instanton

contributions. Thus we first consider a special limit, where their contribution simplifies

significantly. We will see this limit turns out to be related to the “Schur limit” of the 4d

N = 2 superconformal index [28]. We then briefly comment on the general case.

32In [25] the parameter we call n̂ was denoted by z.
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The Schur limit. Let us first consider the perturbative contribution to the (ungauged)

partition function in more detail. Using (4.12), and working in terms of the untilded

variables, we have33

ZN=2,pert
S3
b×Σg

(u, ν, γ)m,n = e2πiγKabuamb
∏

α∈Ad(G)

sb (α(u) + ν)α(m)+n

×
∏

α∈Ad(G)′

sb (α(u)− iQ)−α(m)+1−g . (4.17)

Now let us consider the limit34

ν =
i

2
(b− b−1) . (4.18)

Then, using the following identities of the double sine function,

sb(x) = sb(−x)−1 , (4.19)

sb

(
x+

i

2
b±
)

=
1

2 cosh(πb±x)
sb

(
x− i

2
b±
)
, (4.20)

we find the perturbative contribution simplifies to

ZN=2,pert
S3
b×Σg

(u, ν, γ)m,n

= e2πiγKabuambb−nrG
∏
α>0

[2 sinh (πbα(u))]1−g−n
[
2 sinh

(
πb−1α(u)

)]1−g+n
. (4.21)

where we simplified the Cartan contribution of the adjoint hypermultiplet using sb(ν) =

sb(
i
2(b− b−1)) = b−1. In particular, we see the dependence on the gauge flux m, and hence

also the perturbative Bethe equations, are very simple.

Next, we consider the instanton contribution, which can be written as

ZN=2,inst
S3
b×Σg

(u, ν, γ)m,n =
∏
`

ZN=2,inst
R2

q
(`)
1

×R2

q
(`)
2

×S1

(
x(`), y(`), z(`)

)
. (4.22)

Here the parameter, y(`), for the flavor symmetry is given by, using (2.108),

y(`) =

 e2πbνq
(`)
2

n/2
= −q(`)

1

1/2
q

(`)
2

n/2
` = nn or ns

e2πb−1νq
(`)
2

n/2
= −q(`)

1

−1/2
q

(`)
2

n/2
` = sn or ss

(4.23)

Let us now specialize to the case G = SU(N). Then we note the following simplification

of the instanton contribution to the Nekrasov partition function of the N = 2 theory:

ZN=2,inst
R2
q1
×R2

q2
×S1

(
x, y = −(q1q2)±1/2, z

)
=

1

η(z)N−1
, (4.24)

ZN=2,inst
R2
q1
×R2

q2
×S1

(
x, y = −(q1q

−1
2 )±1/2, z

)
= 1 . (4.25)

33Here we recall the product with the prime includes only the non-zero roots, while the unprimed product

includes all roots.
34In [79] this limit of the S3

b partition function was shown to correspond to the dimensional reduction of

the Schur limit of the supersymmetric index.

– 45 –



J
H
E
P
1
1
(
2
0
1
8
)
0
5
8

This is derived in appendix B, and was also noted in the context of the S5 [34] and

CP2 × S1 [35], partition functions. Then we see that if we set n = 1 we have

ZN=2,inst
S3
b×S2

(
u, ν =

i

2
(b− b−1), γ

)
m,n=1

=
∏

`=nn,ns

ZN=2,inst
R2

q
(`)
1

×R2

q
(`)
2

×S1

(
x(`), y(`) = −q(`)

1

1/2
q

(`)
2

1/2
, z(`)

)

×
∏

`=sn,ss

ZN=2,inst
R2

q
(`)
1

×R2

q
(`)
2

×S1

(
x(`), y(`) = −q(`)

1

−1/2
q

(`)
2

1/2
, z(`)

)
=

1

η(z)2(N−1)
, (4.26)

where we recall from (2.124) that

z(nn,ns) = z = e−2πbγ , z(sn,ss) = z̄ = e−2πb−1γ . (4.27)

Similarly, for n = −1, we have

ZN=2,inst
S3
b×S2

(
u, ν =

i

2
(b− b−1), γ

)
m,n=−1

=
1

η(z̄)2(N−1)
. (4.28)

On the other hand, we expect the instanton contribution to the integrand of the S3
b × S2

partition function to be equal to

e−2πiΩinst
(
Πinst
ν

)n (
Πinst
a

)ma
. (4.29)

Equating these expressions for n = ±1, we deduce that (up to a sign)

e2πiΩinst = η(z)N−1η(z̄)N−1 , Πinst
ν =

η(z̄)N−1

η(z)N−1
, Πinst

a = 1 . (4.30)

The last relation also implies that there is no instanton contribution to the Hessian deter-

minant appearing in the handle-gluing operator.

It will be convenient to rewrite the η functions appearing in the handle-gluing and flux

operators to relate them to the index parameters in (4.7),

p = e2πγ−1b , q = e2πγ−1b−1
. (4.31)

Namely, using the modular properties of the η functions, we have

η(z) = η(e−2πbγ) = (bγ)−1/2η(e2πγ−1b−1
) = (bγ)−1/2η(q) ,

η(z̄) = η(e−2πb−1γ) = (b−1γ)−1/2η(e2πγ−1b) = (b−1γ)−1/2η(p) . (4.32)

We may now write the full, non-perturbatively complete operators for the S3
b ×Σg partition

function in the limit (4.18). We have

Πa = e2πiγKabub , Πν =
η(p)N−1

η(q)N−1

∏
α>0

2 sinh
(
πb−1α(u)

)
2 sinh (πbα(u))

, (4.33)

H = η(p)N−1η(q)N−1
∏
α>0

[
2 sinh (πbα(u)) 2 sinh

(
πb−1α(u)

)]−1
. (4.34)
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Note that the Hessian determinant contributes a factor of γN−1, which precisely cancels

against the factors of γ from (4.32), and similarly the factor of b−(N−1) from the Cartan

component of the adjoint hypermultiplet precisely cancels the factors of b from (4.32).

It is now trivial to write the solutions to the Bethe equations, Πa = 1, which are

given by

ûa = γ−1K−1
ab n

b ≡ γ−1λa , nb ∈ Z ⇔ λ ∈ Λcr , (4.35)

where λa ≡ K−1
ab n

b runs over the coroot lattice of G as we vary over nb ∈ Z. Without loss

of generality, we may restrict to coroots in the interior of the fundamental Weyl chamber,35

or equivalently, those which can be written as δ + λ, for λ a dominant coroot, and δ the

Weyl vector of G. Then the set of Bethe vacua is

SBE =
{
û(λ)
a ≡ γ−1(λa + δa)

∣∣ λ ∈ Λ+
cr

}
. (4.36)

It remains to compute the partition function by evaluating the flux and handle-gluing

operators at the above Bethe vacua. First we observe∏
α>0

2 sinh
(
πbα(û(λ))

)
=
∏
α>0

(pα(λ+δ)/2 − p−α(λ+δ)/2) = V (p) dimpRλ , (4.37)

and similarly ∏
α>0

2 sinh
(
πb−1α(û(λ))

)
= V (q) dimq Rλ , (4.38)

where Rλ is the representation with highest weight λ, where we have identified the coroot

and weight lattices using the Killing metric, and dimpR is the “quantum dimension” of a

representation R of G. Here we have made the identification to the parameters of the 4d

index in (4.31). Finally, V (p) is the polynomial (here we specialize again to SU(N), but

the generalization is straightforward)

V (p) ≡ det
1≤a,b≤N

p(
N+1

2
−a)(N−b) = (−1)N(N−1)p−

1
12
N(N2−1)

N−1∏
i=1

(1− pi)N−i . (4.39)

Putting this together, we see that the S3
b ×Σg partition function for the N = 2 SU(N)

theory, in the limit (4.18), is given by

ZN=2
S3
b×Σg

(
ν =

i

2
(b− b−1)

)
n

=
∑
û∈SBE

Πν(û)nH(û)g−1

=
∑
λ∈Λ+

cr

(
V (p) dimp(Rλ)

η(p)N−1

)−n+1−g(V (q) dimq(Rλ)

η(q)N−1

)n+1−g
.

(4.40)

35Those on the boundary of the Weyl chamber will lead to Bethe vacua with enhanced Weyl symmetry,

which we are instructed to discard.
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4d interpretation. As described above, we expect this observable to compute the 4d su-

perconformal index of the theory T (4d)
Σg,n

. Specifically, using the map (4.7), we can see that

the limit (4.18) corresponds to setting the fugacity µ corresponding to this flavor symmetry

in 4d as

µ = p . (4.41)

In the case of N = 2 class S theories, µ is usually referred to as t, and is the fugacity for

the U(1)r symmetry in the 4d N = 2 algebra. This limit of the index was first studied

for the N = 2 class S theories in [28], where it was referred to as the “Schur limit” of the

index. It was later generalized to the 4d N = 1 theories corresponding to a more general

choice of flux, n, in [29], where it was referred to as the “mixed Schur index.” The general

result they found for the 4d index can be written in our notation as

I4d(p,q)[T
(4d)

Σg,n
]=

(
p

1
12
N(N2−1)V (p)

(p;p)N−1

)−`1(q 1
12
N(N2−1)V (q)

(q;q)N−1

)−`2 ∑
λ∈Λ+

w

dimp(Rλ)−`1dimq(Rλ)−`2 ,

(4.42)

where the sum is over representations, Rλ, of SU(N), labeled by weights λ, p and q are the

parameters of the index, and

`1 = g− 1 + n , `2 = g− 1− n . (4.43)

Comparing to (4.40), we see these agree for general choices of genus g and flux n, up to an

overall factor of36

p
−`1

(
N(N2−1)

12
+N−1

24

)
q
−`2

(
N(N2−1)

12
+N−1

24

)
. (4.44)

Using (4.6), we may rewrite the powers of p and q appearing here as

p
−`1

(
N(N2−1)

12
+N−1

24

)
q
−`2

(
N(N2−1)

12
+N−1

24

)
= e−βÊCasimir ;

ÊCasimir = 2πQ−1

(
N(N2 − 1)

12
+
N − 1

24

)
(`1b+ `2b

−1) . (4.45)

As we show in appendix A this prefactor precisely matches the Casimir energy of the 4d

theory (see (A.20)) and thus we precisely recover the expected relation (4.4) between the

S3
b × Σg partition function and the 4d index of these 4d N = 1 theories. This serves as

a strong consistency check of our calculation. We discuss the Casimir energy for general

parameters and more general theories in section 4.2.1.

General parameters. Above we considered the partition function in a very special limit

of parameters, where it drastically simplified, leading to an explicit evaluation formula. A

natural and (as far as the authors are aware) open question is to compute the 4d index of

class S theories for more general choices of the parameters, and in particular, find the dual

TQFT that describes it.

36The terms proportional to N−1
24

in the exponents arise due to the relation between the Dedekind eta

function and the q-Pochhammer symbol, i.e., η(q) = q
1
24 (q; q).
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In principle the results derived above imply that the answer to this question is con-

trolled by the Nekrasov-Shatashvili limit of the 5d instanton partition function of the

maximal N = 2 SYM theory. That is, the TQFT in question is governed by the twisted

superpotential

WN=2
S3
b×R2(ũ, ν̃, γ̃) =WN=2,pert

S3
b×R2 (ũ, ν̃, γ̃) +WN=2,inst

S3
b×R2 (ũ, ν̃, γ̃) . (4.46)

Then the equations determining the supersymmetric vacua of the effective 2d theory, and

hence the states of the 2d TQFT, are given by solving the Bethe equations,

e
2πi∂ũaWN=2

S3
b
×R2

(ũ,ν̃,γ̃)
= 1 , a = 1, . . . , rG . (4.47)

By the gauge-Bethe correspondence, it is known [19] that the vacuum equations associated

to the NS-limit of the instanton partition function are equivalent to the Bethe equations

of a certain integrable system. In the case of the 5d N = 2 theory, this system is a

quantization of the relativistic Calogero-Moser system, also known as the Ruijsenaars-

Schneider (RS) model [80]. The relation between the 4d index and this integrable system

was already pointed out in [81], where they observed that the indices of class S theories

are naturally eigenfunctions of certain difference operators associated to the RS model.

We expect this relation can be naturally understood in the above framework. Moreover,

it would be interesting to explore whether the perspective above allows one to practically

compute the 4d index of non-Lagrangian class S theories, which is a long-standing open

problem.37 We hope to return to this in future work.

4.2 5d N = 1 theories

We now consider the case of N = 1 theories with a 6d N = (1, 0) UV completion. We

consider two known examples in detail. The first example is a set of 5d circular quiver

gauge theories whose UV completion is a Zk orbifold of the 6d AN−1 theory, and which

give rise, upon compactification of the 6d theory, to the 4d theories of class Sk [84]. The

second example is the Seiberg theory in the special case Nf = 8, whose UV completion

is the so-called E-string theory [5, 85]. The twisted compactifications of these two classes

of theories were considered in [26] and [27], respectively. Then, as for the maximal theory

above, we expect that the S3
b ×Σg partition function of these 5d theories computes the 4d

index of the corresponding 4d theories.

We also expect the S3
b × Σg partition function of these 5d theories, and therefore the

supersymmetric indices of the corresponding 4d theories, to be related to an appropriate

integrable system, through the gauge-Bethe correspondence for the Nekrasov-Shatashvili

limit of the 5d instanton partition function [19]. Indeed, a connection of the corresponding

4d models to integrable systems was observed in these two examples, namely, to a gener-

alization of the RS model discussed in [84, 86–88] for the class Sk case, and to the van

Diejen model in the E-string case [89]. It would be interesting to use the computation

37There has been some partial progress via various indirect methods, such as constructing Lagrangians

with reduced supersymmetry which flow to these non-Lagrangian class S fixed points; see, e.g., [82, 83].
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above to shed more light on the connection between these gauge theories and integrable

systems. As in the N = 2 case discussed above, this requires a detailed understanding of

the instanton corrections to the partition function.

In the present work, we will limit ourselves to a simplifying limit where we may evaluate

the S3
b × Σg partition function analytically. Specifically, we will consider the partition

function in the strong coupling limit, g5 → ∞. Although näively in this limit we expect

the contributions from instantons to be large, we will see that in fact their contribution in

this limit can be simply characterized, and so we may compute the leading behavior of the

partition function analytically.

We first study the general behavior of 5d theories with 6d completions in the strong

coupling limit in section 4.2.1. We then describe the instanton corrections arising in this

limit, and in the process conjecture a general condition for 5d theories to admit such 6d

completions in section 4.2.2. Finally, we compute the S3
b ×Σg partition function this limit

for the N = 2 theory, as well as two examples mentioned above, and compare to the

corresponding 4d computations, in section 4.2.3.

4.2.1 Casimir energy

We begin by showing that for generic theories with a 6d UV completion, the strong-coupling

limit g5 →∞ of the partition function exhibits the behavior

lim
g5→∞

ZS3
b×Σg

≈ e−βÊCasimir , (4.48)

where β is the radius of the 6d circle, related to g5 via (4.1). The quantity ÊCasimir

appearing here has the following interpretation. In theories with a 6d UV completion, the

limit g5 →∞ corresponds to the β →∞ limit of the 6d partition function on S3
b ×Σg×S1

β .

Since in this limit the partition function is dominated by the vacuum state, ÊCasimir denotes

the vacuum energy of the 6d theory quantized on S3
b × Σg. Equivalently, by shrinking Σg

to zero size, it also corresponds to the Casimir energy of the 4d theory thus obtained,

quantized on S3
b .

On the other hand, this Casimir energy can be independently computed from the

anomaly polynomial, I8, of the parent 6d theory (see appendix A for details) by performing

the topological twist, integrating over the Riemann surface, and applying the method of

equivariant integration of [90], i.e.,

ECasimir =

∫
ε

∫
Σg

Itwisted
8 . (4.49)

For consistency, the two quantities obtained from (4.48) and (4.49) should coincide:

ÊCasimir = ECasimir. We have already seen an example of this in (4.45) for the Schur limit.

In the case of N = 1, however, to make the computation feasible we limit ourselves to

the perturbative partition function in (4.48). Thus, we expect the Casimir energy extracted

from there to differ from the exact result (4.49). Nonetheless, the difference can be easily

characterized. Namely, decomposing I8 = I8,free + I8,int, where I8,free is the contribution
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from all the free multiplets in the tensor branch of the theory, and I8,int is the remaining

part, each term gives a corresponding contribution to (4.49).

Then, we will find that the perturbative result matches exactly the latter and thus, for

consistency, the instanton contribution must be given by the former:

Êpert
Casimir =

∫
ε

∫
Σg

Itwisted
8,int , Êinst

Casimir =

∫
ε

∫
Σg

Itwisted
8,free . (4.50)

The analogous observation for the case of S5 was already made in [90], suggesting a deeper

understanding of this fact. We now proceed with the explicit computation.

Computation of the S3
b × Σg partition function in the g5 →∞ limit. To study

this limit, it will be useful to go to the Bethe sum formulation of the partition function. Let

us consider a general 5d theory, with gauge group G and hypermultiplets in a representation

R =
⊕

iRi of G.38 Then recall the Bethe equations are given by

Πa = e2πiγKabub
∏
ρ∈Ri

sb(ρ(u) + νi)
ρa

∏
α∈Ad(G)′

sb(α(u)− iQ)−αaΠinst
a (u, ν, γ) = 1 . (4.51)

where Πinst
a is the contribution from instantons, and we recall

γ = −2πQ

g2
5

, (4.52)

Then the limit (4.48) corresponds to taking γ → 0, so we consider the solutions to (4.51)

in this limit. More precisely, we expect the partition function to be divergent in this limit,

so we are interested in the solutions which contribute to the leading divergence.

Let us first ignore the contribution of the instantons. Then we see that, for any

solutions at finite u, the exponent in the first factor of (4.51) becomes negligible as γ → 0.

Then we expect these solutions to have a finite contribution to the partition function as

γ → 0. Since we are interested in extracting the leading divergence in the limit (4.48), we

instead look for solutions at large u, scaling with γ−1. These can arise due to competition

between this exponential factor and the double sine functions in (4.51).

Since we are working at large u, it will be useful to recall the expansion of the double

sine function, as in (3.8),

sb(x)→ e±
πi
2 (x2+ 1

3
Q2− 1

6) for Re(x)→ ±∞ , (4.53)

where Q = 1
2(b + b−1). At this point we must determine the sign of ρ(u) for each weight

ρ. Without loss of generality we may take u to lie in the fundamental Weyl chamber.

For certain representations, such as the adjoint, this fixes the sign of ρ(u) for all weights

ρ. In this case we will call a weight “positive,” and write ρ > 0, if ρ(u) > 0 for u

in the chosen fundamental Weyl chamber, generalizing the notation for weights of the

adjoint representation. For general representations, we may need to say more about the

38Here we do not include a bare 5d Chern-Simons term, as one does not generally appear in 5d theories

with 6d UV completions.
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region where u lies before making this split into positive and negative weights, but we will

not consider such representations here.39 We also restrict to representations that are self

conjugate, and then we may group the weights into pairs, (ρ,−ρ), where ρ > 0. Then let

us define, for a general such representation R of G,

CabcR =
1

2

∑
ρ>0

ρaρbρc , CaR =
1

2

∑
ρ>0

ρa . (4.54)

For example, for R = Ad, the adjoint representation, CaAd = δa, where δ = 1
2

∑
α>0 α is the

Weyl vector of the group.

With this background, and using (4.53), we may approximate the l.h.s. of the Bethe

equations by

Πa −→
u→∞

exp

{
2πi

(
γKabub +

∑
i

(
CabcRi ubuc + CaRi

(
νi

2 +
1

3
Q2 − 1

6

))
− CabcAd ubuc − CaAd

(
−2

3
Q2 − 1

6

))}
. (4.55)

Generically, the term quadratic in u will dominate the first term at large u, and then the

solutions will not scale with γ−1 as γ → 0. However, suppose we consider a theory with

field content such that40

CabcAd −
∑
i

CabcRi = 0 , (4.56)

then (4.55) simplifies to (after using ν = −iQν̃)

Πa −→
u→∞

exp

{
2πi

(
γKabub +

∑
i

CaRi

(
Q2(1− ν̃2

i )− 1 + 4Q2

6

)
+ CaAd

(
1 + 4Q2

6

))}
.

(4.57)

The solutions in this limit are then found by setting the exponent equal to −2πina, na ∈ Z,

and we have

û(n)
a ≈ −γ−1Kab

(∑
i

CbRi

(
Q2(1− ν̃2

i )− 1 + 4Q2

6

)
+ CbAd

(
1 + 4Q2

6

)
+ na

)
, (4.58)

and we indeed find the expected scaling with γ−1. Here we must choose the na such that u

lies in the interior of the fundamental Weyl chamber, as in the Schur limit discussed above.

So far we have ignored the contribution of instantons to the Bethe equations. As we will

argue in section 4.2.2 below, we expect these to have a subleading contribution at large u,

and so we assume now that we may ignore their contribution in the Bethe equations above.

39For example, for the fundamental representation of SU(N), specifying we are in the fundamental Weyl

chamber, with u1 > . . . > uN does not specify the sign of all ui; there are still N−1 regions in this chamber

where the separation into positive and negative weights are distinct.
40We note the same relation can be derived from the conditions (3.36) and (3.46) discussed in section 3

as the condition to obtain N3 scaling of the free energy.
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It now remains to evaluate

ZS3
b×Σg

=
∑
û∈SBE

H(û, ν, γ)g−1Πi(û, ν, γ)ni (4.59)

at the Bethe vacua (4.58). Since we are interested in extracting the leading divergence as

γ → 0, we will look for the vacuum which has the dominant contribution in this limit. As

before, we first consider the perturbative contribution

Hpert(û, ν, γ)g−1Πpert
i (û, ν, γ)ni = (Hpert)g−1

∏
i

∏
ρ∈Ri

sb(ρ(û) + νi)
ni
∏

α∈Ad(G)′

sb(α(û)− iQ)1−g,

(4.60)

where

Hpert = det
a,b

1

2πi

∂ log Πpert
a

∂ub
. (4.61)

Expanding these at large u using (4.53), we find (defining n̂i = ni
g−1 as in the previous

subsection)

Hpert(u, ν)g−1Πpert
i (u, ν)ni ≈ (γrGK)g−1 exp

{
4πi(g− 1)

(
−
∑
i

iQCaRi n̂iν̃i + iQCaAd
)
ua

}
,

(4.62)

where we have used

Hpert ≈ det
a,b

γKab = Kγrg , K ≡ detKab . (4.63)

For γ → 0, the contribution from the Hessian factor is subleading, and we may approximate

the contribution from the Bethe vacuum, (4.58), as

Hpert(û(n),ν,γ)g−1Πpert
i (û(n),ν,γ)ni ≈ exp

{
−4πi(g−1)γ−1Kab(

−
∑
i

iQCaRi n̂iν̃i+iQC
a
Ad

)(∑
i

CbRi

(
Q2(1−ν̃2

i )− 1+4Q2

6

)
+CbAd

(
1+4Q2

6

)
+nb

)}
.

(4.64)

The final step is to determine the vacuum, û(n), which has the leading contribution to the

Bethe sum. Recall that we assume u lies in a fundamental Weyl chamber, and so we may

choose the nb to take u arbitrarily large within this chamber. For concreteness, let us take

the basis, ea, of the Cartan to be dual to the fundamental weights, so that caea spans the

interior of the fundamental Weyl chamber as we take ca > 0. Then we see that, in this

basis we must impose

Im

[
(g− 1)γ−1Kab

(
−
∑
i

iQCbRi n̂iν̃i + iQCbAd
)]

> 0 , a = 1, . . . , rG ; (4.65)

otherwise, by taking an appropriate na large we can arrange the r.h.s. of (4.64) to be

arbitrarily large, and we do not find a well-defined γ → 0 limit.
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With this assumption, we can see the dominant contribution comes from taking the

na as small as possible, while keeping u in the fundamental Weyl chamber. In the basis

above, this is achieved by setting na = 0, and so we finally arrive at the leading behavior

of the partition function,

Zpert
Σg×S3

b
≈
γ→0

exp

{
4π(g− 1)γ−1Kab

(
−
∑
i

QCaRi n̂iν̃i +QCaAd
)

×
(∑

i

CbRi

(
Q2(1− ν̃2

i )− 1 + 4Q2

6

)
+ CbAd

(
1 + 4Q2

6

))}
. (4.66)

Given the relation (4.52) and identification (4.1) we see this has the expected behav-

ior (4.48). Specifically, we find

Êpert
Casimir = 4πλ(g− 1)Kab

(
−
∑
i

CaRi n̂iν̃i + CaAd
)

×
(∑

i

CbRi

(
Q2(1− ν̃2

i )− 1 + 4Q2

6

)
+ CbAd

(
1 + 4Q2

6

))
, (4.67)

where the label “pert” denotes that this has been computed using the perturbative ap-

proximation to the S3
b × Σg partition function. We turn to consider the instanton contri-

butions next.

4.2.2 Instantons, the 5d prepotential, and a 6d uplift condition

So far we have ignored the contribution of instantons in the above analysis, and only used

the perturbative approximation to the partition function. We argue that these have a

subleading contribution to the twisted superpotential in the regions of large u. Therefore

we expect they will not modify the analysis of the Bethe solutions obtained using the

perturbative twisted superpotential above.

To motivate this claim, note that taking large u is equivalent to exploring the asymp-

totic region of the Coulomb branch, where we expect the theory to be weakly coupled,

and dominated by the perturbative calculation. In fact, we claim that the large u be-

havior of the twisted superpotential, which controls the flux operator Πa appearing in the

Bethe equations, is related to the effective 5d prepotential, Feff , which is known to be

perturbatively exact. Namely, using (4.53) we may write

gb(ũ) −→
Re(ũ)→±∞

∓ 1

12
Q2ũ3 +O(ũ) . (4.68)

This means the behavior of the perturbative twisted superpotential of the theory at large

ũ is given by41

Wpert
S3
b×R2(ũ, ν̃, γ̃) =−1

2
Q2γ̃ũ2+

∑
i

∑
ρ∈Ri

gb(ρ(ũ)+ν̃i)−
∑

α∈Ad(G)′

gb(α(ũ)+1)

−→
|ũ|→∞

Q2

(
πi

g5
2
ũ2− 1

12

∑
i

∑
ρ∈Ri

|ρ(ũ)+ν̃i|3+
1

12

∑
α∈Ad(G)

|α(ũ)|3
)

+O(|ũ|) .

(4.69)

41Here we assume Im(ũ)� Re(ũ), so that we may approximate ±ũ in (4.68) as |ũ|.
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But the quantity in parentheses is precisely the effective prepotential of the 5d theory [5], as

in (2.7). A similar relation was noted for the integrand of the S5 partition function in [62].

Given that the prepotential of a 5d theory does not receive non-perturbative corrections,

it is then natural to make a similar assumption for the large |ũ| behavior of the twisted

superpotential, and hence for the Bethe equations.

In light of the relation above, the condition (4.56) can be equivalently phrased by

saying that, in the notation of (2.7),

cabc = 0 , (4.70)

i.e., the effective CS term vanishes for every direction in the Coulomb branch of the 5d

theory. As we saw above, when this condition is satisfied, we find the partition function has

a leading divergence with logZ ∼ γ−1 as γ → 0, which is the expected Casimir behavior

of a theory with an emergent circle of radius β ∼ γ−1. Thus we may conjecture that the

condition (4.56) (or equivalently (4.70)) is the relevant condition for the 5d theory to admit

a 6d UV completion. We will see in examples below that this is indeed satisfied in several

examples where a 6d UV completion is expected to exist. It would be interesting to explore

this conjecture further.

In addition to the Bethe equations, we did not include instanton contributions when

substituting the Bethe solutions into the sum over vacua in (4.59). In fact, we will see

below that these do have a nontrivial contribution, but they can be explicitly characterized

in terms of free fields of the 6d theory as already mentioned above (4.50).

4.2.3 Examples

Let us now consider some examples of the Casimir energy computation in 5d theories that

are believed to admit a 6d UV completion.

Maximal theory. We begin with maximal 5d N = 2 super Yang-Mills with gauge

group G, consisting of an N = 1 vector and an adjoint hypermultiplet, with mass ν̃. In

this case (4.66) gives

ZΣg×S3
b
≈
γ→0

exp

{
π

3
(g− 1)γ−1hGdG(1− n̂ν̃)(1− ν̃2)Q3

}
, (4.71)

where we used

KabCaAdCbAd = Kabδ
aδb =

1

12
hGdG , (4.72)

where dG and hG are the dimension and dual Coxeter number of G, respectively. For

example, for G = SU(N), we have

Kabδ
aδb =

1

12
N(N2 − 1) . (4.73)

Using (4.52) and (2.41) we thus have

logZΣg×S3
b
≈ − g

2
5

2π

π

3
(g− 1)N(N2 − 1)(ν̃2 − 1)(n̂ν̃ − 1)Q2 . (4.74)
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Now, with the identification β =
g25
2π (i.e., λ = 1) we see that the partition function has the

expected behavior (4.48), with

Êpert
Casimir =

π

3
(g− 1)N(N2 − 1)(ν̃2 − 1)(n̂ν̃ − 1)Q2 . (4.75)

This may be compared to the exact Casimir energy, computed from the anomaly polynomial

of the 6d theory in appendix A.1. As discussed there, separating the contribution from

free fields to the anomaly polynomial and the remaining part one can write ECasimir =

Epert + Enon-pert, with

Epert ≡
∫
ε

∫
Σg

Itwisted
8,int =

π

3
(g− 1)N(N2 − 1)

(
ε2 − 1

)
(n̂ε− 1)Q2 , (4.76)

Enon-pert ≡
∫
ε

∫
Σg

Itwisted
8,free =

π

6
(g− 1)(N − 1)

(
1 + n̂ε+ 2n̂ε (ε2 − 1)Q2

)
, (4.77)

where ε is the parameter controlling the mixing of R-symmetry with the flavor symmetry

acting on the (adjoint) hypermultiplet; see (A.3). We see that identifying ν̃ = ε, the

perturbative localization calculation (4.75) coincides with (4.76). Thus, for consistency,

the instanton contribution to the partition function should match the remaining free field

contribution (4.77), as claimed at the beginning of section 4.2.1. Next, we provide more

examples of the same phenomenon.

Class Sk Theories. These theories have k SU(N) vector multiplets and k bifundamental

hypermultiplets, forming a circular quiver [84]. Let us assume that all the ua’s have the

same solution. In this case each bifundamental contribution to the BAE is essentially that

of an adjoint in which case we simply obtain k times the contribution of maximal theory

in the Casimir limit,

logZΣg×S3
b
≈ − g2

5

2πk

πk2

3
(g− 1)N(N2 − 1)(1− ν̃2)(1− n̂ν̃)Q2 . (4.78)

Again, identifying ν̃ = ε and the 6d radius with λ = k, i.e.,

β =
g2

5

2πk
, (4.79)

we see that the perturbative Casimir energy reads

Êpert
Casimir =

πk2

3
(g− 1)N(N2 − 1)(1− ε2)(1− n̂ε)Q2 , (4.80)

which precisely matches (A.30). Thus, we see that the missing instanton part (A.31) is

again identified with the contribution of free fields to the anomaly polynomial (A.32).
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E-string. Next, we consider the 5d E-string theory, a 5d N = 1 USp(2N) theory with

Nf = 8 fundamental hypermultiplets and an antisymmetric hyper. First we will need to

compute the quantities CabcR and CaR for the various representations. We find, working with

u = (ua), a = 1, . . . , N , in the fundamental representation

CabcR uaubuc =



1

2

N∑
a=1

(ua)
3, R = F

1

2

∑
a<b

(
(ua + ub)

3 + (ua − ub)3
)
, R = AS

1

2

∑
a<b

(
(ua + ub)

3 + (ua − ub)3
)

+
1

2

N∑
a=1

(2ua)
3, R = Ad

(4.81)

CaRua =



1

2

N∑
a=1

ua, R = F

1

2

∑
a<b

(
(ua + ub) + (ua − ub)

)
=

N∑
a=1

(N − a)ua, R = AS

N∑
a=1

(N − a+ 1)ua, R = Ad

(4.82)

Then note that

CabcAd = CabcAS + 8 CabcF , (4.83)

and thus (4.56) is satisfied precisely for Nf = 8 fundamental hypers. In this case, plugging

these into (4.66), we have

ZΣg×S3
b
≈
γ→0

exp

{
4π(g−1)γ−1Kab

(
−

8∑
i=1

CaF n̂iν̃i−CaAS n̂ν̃+CaAd

)
Q

×

(
8∑
i=1

CbF
(
Q2(1−ν̃2

i )− 1+4Q2

6

)
+CbAS

(
Q2(1−ν̃2)− 1+4Q2

6

)
+CbAd

(
1+4Q2

6

))}
.

(4.84)

We may simplify this using

CaAd = CaAS + 2CaF , (4.85)

which gives

ZΣg×S3
b
≈
γ→0

exp

{
4π(g− 1)γ−1Kab

(
8∑
i=1

CaF
(

1

4
− n̂iν̃i

)
+ CaAS (1− n̂ν̃)

)
Q

×

(
8∑
i=1

CbF
(
Q2(1− ν̃2

i )− 1

8
(1 + 4Q2)

)
+ CbASQ2(1− ν̃2)

)}
. (4.86)

We may further expand this, using

KabCaFCbF =
1

8
N , KabCaASCbAS =

1

12
N(N − 1)(2N − 1) , KabCaFCbAS =

1

8
N(N − 1) ,

(4.87)

– 57 –



J
H
E
P
1
1
(
2
0
1
8
)
0
5
8

which yields

ZΣg×S3
b
≈
γ→0

exp

4π(g−1)γ−1Q

1

8
N

8∑
i,j=1

(
1

4
−n̂iν̃i

)(
Q2

(
1

2
−ν̃2

j

)
− 1

8

)

+
1

8
N(N−1)

8∑
i=1

((
1

4
−n̂iν̃i

)
Q2
(
1−ν̃2

)
+(1−n̂ν̃)

(
Q2

(
1

2
−ν̃2

j

)
− 1

8

))

+
1

12
N(N−1)(2N−1)(1−n̂ν̃)Q2

(
1−ν̃2

)) .

(4.88)

The result of the anomaly polynomial calculation for the case of two flavor fluxes is given

in (A.37) and (A.38). To compare with that calculation, we set ν̃ = ε, ν̃1 = εE , n̂1 = n̂E
with all other n̂i=2,...,8 = ν̃i=2,...,8 = 0 in (4.88) to get

Êpert
Casimir = π(g− 1)λ

[
1

2
N(N − 1)Q2

(
1− ε2

)(2

3
(2N − 1) (1− n̂ε) + (2− n̂EεE)

)
+

1

2
N
(
Q2
(
4− ε2

E

)
− 1
) (

(N − 1) (1− n̂ε) + (2− n̂EεE)
)]
, (4.89)

which matches (A.37) provided λ = 2. This means the 6d radius is identified, as in [90],

to be

β =
g2

5

4π
. (4.90)

Thus, once again, the instanton part (A.38) missing from the above calculation is identified

with the contribution of free fields to the anomaly polynomial (A.39).

Summary. We have argued that computing the S3
b × Σg partition function for theories

with a UV completion as 6d N = (1, 0) theories is equivalent to computing the S3
b × S1

partition function (or index, up to the Casimir energy), of the corresponding 4d N = 1

theories obtained by compactification of the 6d theory on Σg. We have checked this explic-

itly for the case of 5d maximal SYM and the corresponding 4d N = 1 and N = 2 class S
theories of [23–25] in the mixed Schur limit, finding perfect agreement with [29]. We then

considered examples of 5d N = 1 theories. In this case we do not have an explicit handle

on instanton contributions and we limited ourselves to computing the partition function

asymptotically on the Coulomb branch, where instanton contributions are suppressed and

the partition function is expected to be dominated by the Casimir energy, which we ex-

tracted. We find an exact match with an independent calculation of the Casimir energy

from anomaly polynomials, up to the expected instanton corrections which, for consistency,

should be identified with the contribution of free fields to the corresponding 6d anomaly

polynomials, as noted in the case of S5 in [90].
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5 Twisted partition function on S2 × S1 × Σg and AdS6 black holes

Although the main focus of this paper has so far been the partition function on S3
b × Σg,

we observed in section 2.4 that there is a natural generalization of the above computation

to M3 × Σg for M3 a general lens space, L(p, q), using the factorization of the twisted

superpotential into “holomorphic block”-like contributions, as in (2.129). In this section

we briefly consider the simplest example, that of the space M3 = S2 × S1, corresponding

to the topological index in 3d [8].

After writing the result for the partition function on S2 × S1 × Σg according to the

above framework in section 5.1, we conjecture a natural generalization for the partition

function on Σg1 ×Σg2 ×S1, which we claim is valid perturbatively, and so also in the large

N limit. Based on this conjecture, we reproduce in section 5.2 the microscopic entropy of

an infinite class of black holes in AdS6.

5.1 Partition function on S2 × S1 × Σg

Let us first consider the case where M3 corresponds to the “refined” topological index,

S2
q1×S

1, with a fugacity q1 for the angular momentum.42 Then we may build the integrand

of the full S2
q1×S

2×S1 partition function by including the contribution of the 5d Nekrasov

partition function at the four fixed points, as in (2.123), namely,

lim
ε→0

∏
`

ZR2

q
(`)
1

×R2

q
(`)
2

×S1(x(`), y(`), z(`)) , (5.1)

where now the parameters can be identified by a straightforward modification of the argu-

ment leading to (2.108), giving

x(`) = e2πiũq
(`)
1

m1/2
q

(`)
2

m2/2
,

q
(`)
1 =

{
q1 , ` = nn or ns

q1
−1 , ` = sn or ss

q
(`)
2 =

{
e2πiε , ` = nn or sn

e−2πiε , ` = ns or ss

(5.2)

Then, using (2.126) and arguing as before, we find that the twisted superpotential control-

ling the partition function on S2
q1 × S

1 × Σg is given by

WS2
q1
×S1×R2(ũ, ν̃, γ̃)m1,n1 =W(5d)

NS

(
ũ+

1

2
m1ε1, ν̃ +

1

2
n1ε1, γ̃; ε1

)
+W(5d)

NS

(
ũ− 1

2
m1ε1, ν̃ −

1

2
n1ε1, γ̃;−ε1

)
,

(5.3)

and similarly for the effective dilaton, ΩS2
q1
×S1×R2(ũ, ν̃, γ̃)m1,n1 . An important difference

from the S3
b case is that the dependence on the fluxes, m1, n1, on S2

q1 cannot be absorbed

42The subscript “1” denotes this S2 sits as the first factor in the manifold, to avoid confusion below.
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into a shift of ũ and ν̃. As a result, we obtain a direct sum of 2d theories indexed by the

gauge flux, m1 ∈ ΛG. Then we may write the full partition function as43

ZS2
q1
×S1×Σg

(ν̃, γ̃)n1,n2 =
∑

m1∈ΛG

∑
ˆ̃u∈SBEm1,n1

Πi(ˆ̃u, ν̃, γ̃)
n2,i
m1,n1H(ˆ̃u, ν̃, γ̃)g−1

m1,n1 , (5.4)

where we must sum over the 2d theories labeled by the gauge fluxes, m1 (as well as the

flavor fluxes, n1), whose vacua are given by

SBEm1,n1 = {ˆ̃u
∣∣ Πa(ˆ̃u, ν̃, γ̃)m1,n1 = 1}/WG , (5.5)

and, e.g.,

Πa(ũ, ν̃, γ̃)m1,n1 = e
2πi∂ũaWS2q1

×S1×R2 (ũ,ν̃,γ̃)m1,n1 , (5.6)

and similarly for the other operators.

Let us now focus on the unrefined limit, q1 → 1, corresponding to the ordinary A-twist

background on S2. We first discuss the perturbative contribution to the partition function

in this limit. For a single hypermultiplet, we have, by taking the ε1,2 → 0 limit of (2.101)

using (2.86),

Z
pert,U(1),hyp
S2×S2×S1 (ũ)m1,m2 = lim

ε1,2→0
(x; q1, q2)−1

m1,m2
= em1m2s(ũ), (5.7)

where we introduced a function

s(ũ) ≡ πiũ+ Li1(e2πiũ) +
iπ

2
⇒ es(ũ) =

ieπiũ

1− e2πiũ
. (5.8)

The perturbative contribution for a general hyper and vector multiplet can be obtained

similarly. Equivalently, these can be obtained as in section 2.3 by reduction on Σg to a 3d

theory on S2×S1. In either case, we find the perturbative approximation to the integrand

of the S2 × S1 × Σg partition function is given by

Zpert
S2×S1×Σg

(ũ, ν̃, γ̃)m1,n1;m2,n2 = ztr(m1m2)
∏

α∈Ad(G)′

(
e−s(α(ũ))

)[α(m1)+1−g][α(m2)+1]

×
∏
I

∏
ρ∈RI

(
es(ρ(ũ)+ν̃)

)[ρ(m1)+n1][ρ(m2)+n2]
,

(5.9)

where the index I runs over the hypermultiplets in the theory, in gauge representations

RI . Then the perturbative partition function is given by the integral formula

Zpert
S2×S1×Σg

(ν̃, γ̃)n1;n2 =
∑

m1,m2∈ΛG

1

|WG|

∮
CJK

dũ Zpert
S2×Σg×S1(ũ, ν̃, γ̃)m1,n1;m2,n2 . (5.10)

43Here we denote the fluxes on Σg with a subscript “2” to distinguish them from those on S2
q1 .
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Equivalently, we may write this as a Bethe sum associated to the 2d theory obtained by

compactification on S2 × S1 as in (5.4), where now, to perturbative accuracy,

Πpert
a (ũ, ν̃, γ̃)m1,n1 = zm1

a
∏

α∈Ad(G)′

(
e−s(α(ũ))

)[α(m1)]αa∏
I

∏
ρ∈RI

(
es(ρ(ũ)+ν̃)

)[ρ(m1)+n1]ρa

,

Πpert
I (ũ, ν̃, γ̃)m1,n1 =

∏
ρ∈RI

(
es(ρ(ũ)+ν̃)

)[ρ(m1)+n1]
, (5.11)

H(ũ, ν̃, γ̃) =
∏

α∈Ad(G)′

(
e−s(α(ũ))

)−α(m2)
Hpert(ũ, ν̃, γ̃)m1,n1 ,

where Hpert
m1,n1 = deta,b

1
2πi

∂
∂ũb

log Πpert
a (ũ, ν̃, γ̃)m1,n1 is the Hessian factor.

5d prepotential and the Bethe equations. We can gain another perspective on this

calculation, and characterize the instanton contributions, by observing the leading behavior

of the Nekrasov-Shatashvili limit of the twisted superpotential in the ε→ 0 limit [19],

W(5d)
NS (ũ, ν̃, γ̃; ε) ∼=

ε→0

1

ε
FR4×S1(ũ, ν̃, γ̃) + · · · , (5.12)

where FR4×S1(ũ, ν̃, γ̃) is the effective prepotential of the 5d theory compactified on a cir-

cle [91]. Then we have, from (5.3), that the flux dependence of the twisted superpotential

on S2 × S1 × R2 is governed by the 5d prepotential, via

WS2×S1×R2(ũ, ν̃, γ̃)m1,n1 = lim
ε1→0

WS2
q1
×S1×R2(ũ, ν̃, γ̃)m1,n1

= m1,a
∂FR4×S1(ũ, ν̃, γ̃)

∂ũa
+ n1,I

∂FR4×S1(ũ, ν̃, γ̃)

∂ν̃I
+ · · ·

(5.13)

We can see this dependence on the fluxes explicitly at the perturbative level. For

example, for a hypermultiplet, we have

Z
pert,U(1),hyp
S2×S2×S1 (ũ)m1,m2 = e2πim1m2∂2ũw(ũ), w(ũ) =

1

(2πi)3
Li3(e2πiũ) +

1

24
ũ(ũ+ 1)(2ũ+ 1) ,

(5.14)

where w(ũ) is the perturbative contribution to the effective prepotential of a 5d N =

1 hypermultiplet. Then we indeed observe that the dependence on fluxes for the full

perturbative contribution is governed by the perturbative prepotential

Fpert
R4×S1(ũ, ν̃, γ̃) = γ̃ũ2 +

∑
I

∑
ρ∈RI

w(ρ(ũ) + ν̃I)−
∑

α∈Ad(G)′

w(α(ũ)) . (5.15)

Namely, one can check that the gauge flux operator in (5.11) is given by

Πpert
a (ũ, ν̃, γ̃)m1,n1 = exp

{
2πi

(
m1,b∂ũa∂ũbF

pert
R4×S1(ũ, ν̃, γ̃) + n1,I∂ν̃I∂ũbF

pert
R4×S1(ũ, ν̃, γ̃)

)}
,

(5.16)

and similarly for the flavor flux operator.
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We expect that the instanton corrections to the S2 × S1 × Σg partition function are

given by replacing the perturbative expression for the prepotential above by the full, non-

perturbative result, as discussed, e.g., in [91]. However, we will not require these instanton

corrections when we consider the large N limit below, and leave a detailed discussion of

them to future work.

Before moving on to discuss the large N limit, let us conjecture a generalization to

the perturbative result above where S2 is replaced by Σg1 (and correspondingly we rename

Σg → Σg2). This can be motivated as in section 2.3, by reducing the theory on Σg2 and

considering the Σg1×S1 partition function of the resulting theory. This leads us to propose

Zpert
Σg1×Σg2×S1(ũ, ν̃, γ̃)m1,n1;m2,n2 = ztr(m1m2)

∏
α∈Ad(G)′

(
e−s(α(ũ))

)[α(m1)+1−g1][α(m2)+1−g2]

×
∏
I

∏
ρ∈RI

(
es(ρ(ũ)+ν̃)

)[ρ(m1)+n1][ρ(m2)+n2]
. (5.17)

Since the reduction to 3d gave us the correct perturbative contribution to the 1-loop de-

terminant in the genus zero case, it is natural to conjecture the same holds here. However,

we do not have a direct localization derivation of this claim, nor do we make any claims

about the non-perturbative contribution.

5.2 A large N conjecture and AdS6 black holes

In this final section, we propose a conjecture on the large N behavior of the partition

function (5.17), motivated by holography and the entropy of black holes in AdS6.

AdS6 black holes. On general grounds, we expect the gravity dual of a 5d N = 1

SCFT on M4×S1 with a topological twist on M4 to be given by a supersymmetric solution

interpolating between asymptotically locally AdS6 (with an M4 × S1 boundary) and an

AdS2×M4 geometry for small values of the radial coordinate, i.e., an extremal black hole in

locally AdS6. Such a background was considered in 6d F (4) minimal gauged supergravity

in [69], with metric of the form

ds2
BH = e2f(r)(−dt2 + dr2) + e2g(r)ds2(M4) , (5.18)

and a nonzero flux for the graviphoton through 2-cycles in M4, which is Kähler. Since the

graviphoton is the only nontrivial 1-form potential, and is dual to the R-symmetry of the

field theory, it was argued in [21] that such a background should describe the IR behavior

of generic 5d N = 1 theories with AdS6 gravity duals, with a universal topological twist

on M4. Taking M4 = Σg1 ×Σg2 , a product of two negatively curved Riemann surfaces, i.e.,

g1 > 1, g2 > 1, the Bekenstein-Hawking entropy of the black hole reported in [69] can be

written as44

SBH = −4

9
(g1 − 1)(g2 − 1)FS5 , (5.19)

where FS5 is the free energy on S5 of the UV 5d SCFT.

44However, see the comment at the end of this section, which was added in v2 of this paper.
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A large N conjecture. In light of the recent success in accounting for the microscopic

entropy of AdS4 black holes from 3d twisted partition functions, initiated in [92] and

followed up in [63, 64, 72, 93–96], it is natural to ask whether the entropy of AdS6 black

holes is similarly captured by the 5d partition function, i.e., SBH = logZM4×S1 , which can

be addressed with the results presented here for the case M4 = Σg1 × Σg2 .

The basic observation we make is the following. Recall that in section 3, we argued

the dominant vacuum contributing to the S3
b × Σg partition function was determined by

extremizing the Bethe potential, WS3
b×R2 . In the present case (and specializing first to

g1 = 0), we can also attempt to extremize WS2×S1×R2 , however, in this case we have seen

the twisted superpotential and vacuum equations depend on the flux, m1, through S2.

Then we must also extremize over this choice of flux. Given the form of (5.16), which

implies this flux dependence is controlled by the prepotential, we will conjecture that at

large N the dominant vacuum is found by extremizing the prepotential, FR4×S1 , itself. As

we discuss below, this leads to the expected behavior of the partition function at large N .

To fully justify this would require a detailed analysis of the matrix model (5.17) and the

corresponding vacua arising from performing the double sum over magnetic fluxes m1,m2

and the contour integral over the Coulomb branch. This is an interesting problem, which

lies beyond the scope of this paper.

Let us evaluate the prepotential in the large N limit, where it is dominated by its

perturbative contribution. Then we simply need the expansion

w(iz + ν̃) ≈ −1

8
(1 + 2ν̃) z|z|+ i

(
− 1

12
|z|3 +

1

4
Cν̃ |z|

)
for Re|z| � 1 , (5.20)

where we defined Cν̃ ≡ 1
6 + ν̃(1 + ν̃).

Let us consider the Seiberg theory (the extension to the orbifold theories is straightfor-

ward). The manipulations are very similar to those of section 3 and thus here we are more

concise. Adding the contributions to the prepotential (5.15) from the vector, antisymmetric

and fundamental hypers (with corresponding real masses, which we denote by ν̃I = −∆I),

and using the Ansatz ũi → iNαx for the eigenvalue distribution we see that α = 1
2 is

required to have a nontrivial extremum, hence an N5/2 scaling of the prepotential, and

the classical term in (5.15) is subleading. After a convenient rescaling of the coordinate,

x→ 2
3

√
∆AS (1−∆AS )x, and corresponding inverse rescaling of the density ρ, we find

Fpert
R4×S1 =

4i

27π
N5/2 (∆AS (1−∆AS ))3/2

[
π(8−Nf )

3

∫
dx ρ(x) |x|3

− 9π

8

∫
dx dy ρ(x)ρ(y) (|x+ y|+ |x− y|)

]
, (5.21)

where all integrals run from 0 to x∗. Note that to this order in N this depends only on

the real mass ∆AS for the antisymmetric field, but not on the one for the fundamental

fields and that the quantity inside the brackets is precisely the free energy functional on

S5 for the theory, with saddle point configuration (3.15). An analogous calculation can be

done for the (A,B,C) orbifolds of the Seiberg theory, with the same conclusion. Given the

similarity of the discussion in section 3 for S3
b ×Σg this leads us to conjecture, as mentioned
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above, that at large N the partition function is dominated by the eigenvalue distribution

that extremizes the 5d prepotential.

Next, to determine the value of the partition function on the eigenvalue distribution

above, one should determine the dominant contribution in different gauge flux sectors,

m1,m2. Let us now observe that the zero gauge sector, m1 = m2 = 0, reproduces the

r.h.s. of (5.19). Indeed, setting n1 = n2 = 0 in (5.17) for the universal twist, performing

the rescaling of the coordinate mentioned above (5.21), and evaluating the zero gauge flux

partition function on the configuration (3.15), we obtain45

logZm=0
Σg1×Σg2×S1

∣∣∣
∂F=0

=
π

3
(g1 − 1)(g2 − 1)

√
∆AS (1−∆AS )

×N5/2

∫
dxdy ρ(x)ρ(y) (|x+ y|+ |x− y|)

= −8

9
(g1 − 1)(g2 − 1)

√
∆AS (1−∆AS )FS5 . (5.22)

Then, extremizing this expression with respect to the real mass parameter (or fugacity,

∆AS ), as in [92], sets ∆AS = 1
2 , with value at the extremum

logZm=0
Σg1×Σg2×S1

∣∣∣
∂F=0

= −4

9
(g1 − 1)(g2 − 1)FS5 , (5.23)

which coincides with the r.h.s. of (5.19).

Comment added in version 2. In light of the new paper [97], noting that the black

hole reported in [69] needs to be corrected,46 and, correspondingly, its entropy (5.19), we

discuss how the results above relate to this observation. To summarize, the main points

emphasized in v1 (and which are unchanged in v2) are as follows:

a) We have proposed that the eigenvalue configuration dominating the large N behavior

of the partition function is obtained by extremizing the 5d prepotential, and showed

(after appropriate rescalings) that this coincides with the configuration extremizing the

free energy of the same theory on S5.

b) Evaluating the partition function on this extremum, and keeping only the zero gauge

flux sector, reproduces the entropy of the AdS6 black hole described in [69].

Due to the exact match of (5.23) with (5.19), this suggests that the zero gauge flux sector

completely accounts for the entropy of the black hole described in [69], as noted in v1 of this

paper on the arXiv. However, as mentioned above it was recently pointed out in [97] that

the background of [69] may not be valid, as it assumed the vanishing of the two-form gauge

field, Bµν = 0, which is inconsistent with the equations of motion. Instead, it was shown

45Here we used the expansion s(z) ≈ −π|z| for z real and large, |z| � 1. Additionally, as in the case of

the S3
b ×Σg partition function, we expect the contribution from the Hessian determinant to be subleading

at large N , which we assume.
46We thank Minwoo Suh for sharing this result with us prior to publication.
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that by solving for Bµν from the equations of motion, that the corrected supersymmetric

solution has twice the entropy [97]:

S′BH = −8

9
(g1 − 1)(g2 − 1)FS5 . (5.24)

Indeed, we note that this new result is consistent with first reducing from 5d to 3d via the

universal relation FS3×Σg1
= −8

9(g1 − 1)FS5 of section 3 and then reducing from 3d to 1d

via the universal relation FΣg2×S1 = −(g2−1)FS3 discussed in [72]. Then, composing these

two relations leads to FΣg1×Σg2×S1 = 8
9(g1 − 1)(g2 − 1)FS5 , consistent with (5.24) and the

expected identification SBH = logZΣg1×Σg2×S1 .

Assuming this new solution to be correct, the zero gauge flux sector (5.23) then ac-

counts for only half the entropy of the corrected solution. Thus, it seems that to account

for the full entropy one must also include contributions from non-zero gauge flux sectors.

An interesting proposal on how to do so is discussed in [30] and, indeed, following the pro-

cedure described there one obtains the remaining half of the entropy, matching (5.24) and

clarifying an initial numerical mismatch. It would be interesting to have a first-principles

understanding of this proposal purely in field theory.

6 Outlook

In this work, we have considered five dimensional N = 1 gauge theories and computed

their exact partition function on various manifolds with partial topological twists using

localization. As discussed, this is a fruitful vantage point from which we can also access

the physics of field theories of various dimensions, from 1d up to 6d, arising at either the

IR or UV end of RG flow. There are a number of possible directions for future work.

As discussed in section 2, one can consider partition functions on M3 ×Σg with more

general M3. Our formalism already suggests the result for M3 a lens space, and we

discussed the example of S2 × S1 in section 5, but in principle one can consider arbitrary

Seifert manifolds [13]. It would also be interesting to better understand the relation of

our computation to partition functions on more general five-manifolds considered in the

literature, such as S5, CP2 × S1, S4 × S1, and Y p,q, as well as studying new geometries.

For example, Y p,q is topologically an S1 fibration over S2 × S2, and may be related to our

results by introducing a suitable “fibering operator,” as in [11–13].

For a givenM3, the partition function of the 3d theory obtained by reduction on Σg is

computed by an appropriate 2d TQFT, in what may be called a “3d-2d correspondence.”

We described these 3d theories as a direct sum of ordinary 3d theories in section 2.3, however

the full, non-perturbative computation suggests they are something more exotic. The

results of section 3, in particular (3.34), suggest that a large class of novel 3d N = 2 SCFTs

exist, arising as the IR fixed point of the orbifolded Seiberg theories in 5d, compactified on

a Riemann surface. These are labeled by the discrete flavor fluxes n and their free energy

scales as N5/2. It would be worth investigating whether some of these theories can be

understood purely in terms of simpler building block three-dimensional theories, analogous

to TN theories for four-dimensional class S.
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The results of section 4 provide a new method for computing the superconformal in-

dices of non-Lagrangian theories in 4d, by Lagrangian methods in 5d. Our results coincide

with those which have been previously computed and in principle provide a powerful tool

to compute superconformal indices of these theories, for which very few methods are cur-

rently available. In practice, the feasibility of this calculation will depend on whether the

instanton contribution is explicitly computable. Conversely, in cases where the 4d theory

is Lagrangian, the exact 4d index is computable, and so gives a prediction for the S3
b ×Σg

partition function, which we may use to help characterize the instanton contributions. We

may similarly compute the generalized indices of these 4d theories [12, 98] by studying

theM3×Σg partition function for more generalM3. Another obvious generalization is to

include punctures on the Riemann surface, which correspond to insertions of local defect op-

erators in the TQFT, and give access to more general 4d theories. Finally, this computation

gives a new entry in the gauge-Bethe correspondence dictionary [19], and it would be very

interesting to understand in more detail and generality the relation between 4d compacti-

fications of 6d theories and integrable systems, as discussed in some examples in section 4.

The results of section 5 and their relation to entropy of black holes in AdS6 deserve

a better understanding. On the field theory side, one should rigorously extend the exact

computation of the S2 × Σg × S1 partition function to the case Σg1 × Σg2 × S1, including

instanton corrections. It would also be interesting to have a first-principles understanding

on the proposed conjecture that the dominant eigenvalue distribution at large N is given

by that extremizing the 5d prepotential. On the supergravity side, it would be interesting

to construct extremal black hole solutions with an AdS2×Σg1×Σg2 near-horizon geometry,

for generic g1,2 and flavor fluxes. In particular, nonzero flavor fluxes may allow for solutions

with g2 = 0, in which case we have provided an expression for the full non-perturbative

partition function, determined implicitly by studying the Nekrasov-Shatashvili limit of the

twisted superpotential. This could allow for precision tests of the ideas presented here,

including subleading corrections to the black hole entropy.

We plan to return to some of these questions in future work.
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A Casimir energy on S3
b × Σg × S1

β

Here we provide some general formulas for the Casimir energy for the 4d theories obtained

by twisted compactification of 6d N = (1, 0) theories. The expression is obtained by

twisting the 6d anomaly polynomial, I8, integrating over the Riemann surface to obtain

the anomaly polynomial of the 4d theory, and then using the results of [90, 99], i.e.,

ECasimir =

∫
ε

∫
Σg

Itwisted
8 , (A.1)

where
∫

Σg
is a regular integral over the Riemann surface,

∫
ε is an equivariant integral. We

give an explicit expression below (namely (A.8)) for a rather general 6d N = (1, 0) theories

and consider in detail the examples of the 6d N = (2, 0) theory, its orbifolds, and the

E-string theory. As discussed in section 4.2.1 this quantity matches with the one extracted

from the corresponding S3
b × Σg partition function.

We begin by assuming the untwisted 6d anomaly polynomial is of the form47

I8 =
1

2
kAABBC2(A)C2(B) + kAAC2(A)p1(TM) + k1p1(TM)2 + k2p2(TM) . (A.2)

Here A,B run over all global symmetries of the theory (both R-symmetry and flavor

symmetries), C2 are their corresponding second Chern classes, and kAABB = kBBAA the

anomaly coefficients. p1,2(TM) are Pontryagin classes for the tangent bundle TM , and

k1,2 are the corresponding gravitational anomaly coefficients.

Performing a topological twist on Σg by U(1)R ⊂ SU(2)R and a generic U(1)F subgroup

of the flavor symmetry amounts to the replacements

C2(R)→ −
(
C1(R)− κ

2
tg

)2
,

C2(F )→ −
(
n̂F
2
tg + εF C1(R) + C1(F )

)2

+
∑
j

C2(Gj) ,
(A.3)

where the sum over j is over all simple commutants of U(1)F in the full flavor group, and εF
controls the amount of mixing of the R-symmetry with the flavor symmetry along the flow

to the IR. We now implement the twist (A.3) in I8 and integrate over the Riemann surface,

normalized as
∫

Σg
tg = 1

2πVol(Σg) = ηΣ, with ηΣ = 2|g− 1| for g 6= 1 and ηΣ = 1 for g = 1,

to obtain a six-form anomaly polynomial. Comparing this to the anomaly polynomial for

a 4d theory,

I6 =
kRRR

6
C1(R)2 − kR

24
C1(R)p1(TM) + · · · , (A.4)

where ellipses denote contributions involving the flavor symmetries, we read off the 4d

R-symmetry anomaly coefficients:

kRRR = 12(g− 1) kAABB n̂AεAε
2
B , kR = 48(g− 1) kAAn̂AεA , (A.5)

where we have defined εR = n̂R = 1 to write the expressions in a compact form.

47This is a rather generic 6d anomaly polynomial which contains all the cases we consider below. If any

of the flavor symmetries is Abelian, as will be the case for Sk theories, one may use C2(F ) = −C1(F )2.
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We may now use these to compute the Casimir energy of the 4d theory on S3
b . Recall

this is generally given in terms of the R-symmetry anomaly coefficients by [90, 99, 100]

ECasimir =
1

24
kR (ω1 + ω2) +

1

48
(kRRR − kR)

(ω1 + ω2)3

ω1ω2
, (A.6)

where ω1,2 are the squashing parameters of the S3
b , which in our conventions are given by

ω1 =
2πb

Q
, ω2 =

2πb−1

Q
; Q =

1

2
(b+ b−1) . (A.7)

Plugging the anomaly coefficients (A.5) into (A.6) then gives the desired expression

ECasimir = 8π(g− 1) kAAn̂AεA + 16π(g− 1)

(
1

4
kAABB n̂AεAε

2
B − kAAn̂AεA

)
Q2 . (A.8)

This represents the full Casimir energy for the theories at hand. It can be viewed as the

Casimir energy of the 6d N = (1, 0) theory, quantized on S3
b ×Σg or as the Casimir energy

of the 4d theory obtained by reduction on Σg, quantized on S3
b .

As we discuss in the main text, this should coincide exactly with the expression derived

from the non-perturbative partition function on S3
b ×Σg. However, since in practice we can

often only evaluate the perturbative part explicitly, it is convenient to decompose this as

ECasimir =Epert + Enon-pert , (A.9)

where Epert is, by definition, the quantity extracted from the perturbative S3
b×Σg partition

function and Enon-pert is the remaining part. As we shall show below, in all the examples we

study the remaining part is due to the contribution to the 6d anomaly polynomial from free

multiplets. That is, decomposing I8 = I8,int +I8,free where I8,free is the contribution from all

the free multiplets in the tensor branch of the theory and I8,int is the remaining part, we find

Epert =

∫
ε

∫
Σg

Itwisted
8,int , Enon-pert =

∫
ε

∫
Σg

Itwisted
8,free . (A.10)

The analogous observation for the case of S5 was already made in [90].48 The new examples

we provide suggest there should be a deeper understanding of this fact, which we do not

address here.

A.1 5d maximal theory and class S

The simplest example is 5d N = 2 SYM theory, consisting of an N = 1 vector and a hyper-

multiplet in the adjoint representation of the gauge group G. This theory is believed [101]

to correspond to the 6d N = (2, 0) theory on a circle S1
β , with radius

β =
g2

5

2π
, (A.11)

48To avoid possible confusions, we emphasize that the computations in [90] lead to the Casimir energy of

the 6d theory on S1 × S5 instead of the 4d Casimir energy computed here.
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with g5 the gauge coupling constant of the 5d gauge theory. The anomaly polynomial of

the 6d (2, 0) theory is given by

I8 = rGA8(1) + dGhG
p2(NM)

24
, (A.12)

where A8(1) is the anomaly polynomial of one free tensor multiplet,

A8(1) =
1

48

(
p2(NM)− p2(TM) +

1

4
(p1(NM)− p1(TM))2

)
, (A.13)

and dG, rG, and hG are the dimension, rank, and dual Coxeter number of the group G,

respectively, and TM and NM refer to the tangent and normal SO(5)R bundles, respec-

tively. To evalute the full Casimir energy we first write (A.12) in (1, 0) language we take

SO(5)R ⊃ SU(2)R × SU(2)L and use the relations

p1(NM) = −2(C2(L) + C2(R)) , p2(NM) = (C2(L)− C2(R))2 . (A.14)

Then, comparing the anomaly polynomial to (A.2) we read off the corresponding anomaly

coefficients, and using these in (A.8) gives

ECasimir =
π

6
(g− 1)(N − 1)(1 + n̂ε)

+
π

3
(g− 1)

(
ε2 − 1

)
(N − 1)[N(N + 1)(n̂ε− 1) + n̂ε]Q2 ,

(A.15)

where we have specified G = SU(N) and used dG = N2−1 , rG = N−1 , hG = N . We wish

to compare this to the quantity extracted from the 5d localization computation. With this

in mind, let us split the quantity above into the two pieces:

Epert =
π

3
(g− 1)N(N2 − 1)

(
ε2 − 1

)
(n̂ε− 1)Q2 , (A.16)

Enon-pert =
π

6
(g− 1)(N − 1)

(
1 + n̂ε+ 2n̂ε (ε2 − 1)Q2

)
. (A.17)

As discussed in the main text one can easily check that the perturbative Casimir en-

ergy matches the contribution from the last term in (A.12), while the remaining non-

perturbative part is entirely due to the free part,

Enon-pert = (N − 1)

∫
ε

∫
Σg

Atwisted
8 (1) . (A.18)

In general, we expect instantons in the 5d computation to contribute rG
∫
ε

∫
Σg
Atwisted

8 (1).

Mixed Schur limit. As we discuss in the main text, a special value for the fugacity is

given by the mixed Schur limit:

ε =
b− b−1

b+ b−1
. (A.19)

In this limit, the perturbative and non-perturbative contributions to the Casimir en-

ergy (A.16) and (A.17) simplify to

Epert =
π

Q

N(N2 − 1)

6

(
(g− 1− n)b+ (g− 1 + n)b−1

)
,

Enon-pert =
π

Q

(N − 1)

12

(
(g− 1− n)b+ (g− 1 + n)b−1

)
,

(A.20)
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where we have used the definition n = n̂(g−1). Note the values n = ±(g−1), for which 4d

supersymmetry is enhanced to N = 2, are special. In this case, as we discuss below, the

full Casimir energy is proportional to the central charge of the associated 2d chiral algebra,

in the sense of [102].

Chiral algebra (or Schur) limit. We consider for concreteness n = g− 1. Recall for a

generic 4d N = 2 theory the Casimir energy is given by (see (4.36) in [90]):

ECasimir =
1

2
(c4d − 2a4d)

σ(σ + ω1 + ω2)2

ω1ω2
+ (c4d − a4d)

σ(σ2 − ω2
1 − ω2

2)

ω1ω2
, (A.21)

where σ ≡ γ − ω1 − ω2, with γ, σ fugacities for SU(2)R ×U(1)r, respectively, and we have

set all flavor fugacities to zero. The “chiral algebra limit” corresponds to setting γ = ω2

and hence σ = −ω1, which gives the simple expression

ECasimir =
ω2

2
c4d = −ω2

24
c2d , (A.22)

where in the second equality we used the chiral algebra relation c2d ≡ −12c4d [102]. Thus,

in this limit the Casimir energy of the 4d N = 2 theory is proportional to the central

charge of its corresponding 2d chiral algebra.49 To write this explicitly for the maximal

theory on Σg with no punctures, recall50

c4d =
1

6
(g− 1)rG(1 + 2hG(1 + hG)) ,

a4d =
1

24
(g− 1)rG(5 + 8hG(1 + hG)) ,

(A.23)

and thus

Epert =
π

3Q
(g− 1)rGhG(1 + hG)b−1 , Enon-pert =

π

6Q
(g− 1)rGb

−1 . (A.24)

For G = SU(N) these are a special case of (A.20) with n = g− 1. For n = 1− g the roles

of b and b−1 are exchanged.

A.2 Class Sk theories

These are a class of 4d N = 1 theories which arise from the twisted compactification of Zk
orbifolds of the maximal 6d AN−1 theory [26]. For general values of k and N the theory

has an SU(k)b × SU(k)c × u(1)s flavor symmetry. Before twisting the anomaly polynomial

49We note a similar relation was found in eq. (3.21) in [90] for the Casimir energy of the 6d theory on

the squashed S5.
50See, e.g., [25], where their parameter z is identified with n̂ here.
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of the 6d theory is given by51

I8 =
k2N3

24
C2(R)2 − N(k2 − 1)

48
C2(R) (4C2(R) + p1(TM))

+N

(
C2(R)p1(TM)

48
− p2(TM)

48
+
p1(TM)2

192

)
+ (k2 − 1)

(
1

24
C2(R)2 +

1

48
C2(R)p1(TM) +

7p1(TM)2 − 4p2(TM)

5760

)
−
(

1

24
C2(R)2 +

1

48
C2(R)p1(TM) +

23

5760
p1(TM)2 − 29

1440
p2(TM)

)
− Nk2

48
p1(TM)C1(s)2 +

k2N(N2 − 1)

12
C2(R)C1(s)2 +

k2N3

24
C1(s)4

− k2I(1,0)hyper + I8(Fb,c) ,

(A.25)

where I8(Fb,c) denotes contributions involving at least one of the SU(k)b or SU(k)c sym-

metries. Since we do not turn background fields for these symmetries, we may ignore

these terms in what follows. To identify the parts encoding the perturbative and non-

perturbative terms in the Casimir energy it is convenient to recall the anomaly polynomial

for a (1, 0) tensor multiplet (see, e.g., eq. (2.3) in [26]):

I(1,0) tensor =
1

24
C2(R)2 +

1

48
C2(R)p1(TM) +

23

5760
p1(TM)2 − 29

1440
p2(TM) , (A.26)

and for a free half-hypermultiplet charged under U(1)s as52

I(1,0)hyper =
1

24
C1(s)4 − 1

48
C1(s)2p1(TM) +

7p1(TM)2 − 4p2(TM)

5760
, (A.27)

and finally

I(1,0)vector = − 1

24
C2(R)2 − 1

48
C2(R)p1(TM)− 7p1(TM)2 − 4p2(TM)

5760
. (A.28)

In terms of these combinations (A.25) takes the following form

I8 = (N − 1)
[
I(1,0)tensor + (k2 − 1)I(1,0)vector + k2I(1,0)hyper

]
+ k2N(N2 − 1)

(
C2(R) + C1(s)2

)2
24

.
(A.29)

We note this has a very similar form to (A.12).53 Indeed, from the 5d localization calcula-

tion we find the perturbative part of the Casimir energy arises entirely from the terms in

the second line of (A.29), and is given by

Epert =
πk2

3
(g− 1)

(
ε2 − 1

)
[N(N2 − 1)(n̂ε− 1)]Q2 , (A.30)

51Note that compared to eq. (2.1) in [26] we have a sign difference in the C2(R)C1(s)2 term. Also, we

have subtracted the contribution from k2 hypermultiplets so that for k = 1 this matches the expression

used in (A.12) for the maximal theory.
52Here we have taken the anomaly polynomial for a free half-hypermultiplet in the doublet of SU(2)L

(see, e.g., (1.5) in [103]) and set C2(L) = −C1(s)2.
53Indeed, in the special case k = 1, U(1)s is enhanced to SU(2)L with C1(s)2 = −C2(L) and the

contribution from the (1, 0) tensor combines with that of the hyper into that of a (2, 0) tensor to form the

combination A8(1) = I(1,0)tensor + I(1,0)hyper.
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while the remaining part,

Enon-pert =
π

6
(g− 1)(N − 1)

(
2− k2 + k2n̂ε+ 2k2n̂ε (ε2 − 1)Q2

)
, (A.31)

arises from

Enon-pert = (N − 1)

∫
ε

∫
Σg

(
Itwisted

(1,0)tensor + (k2 − 1)Itwisted
(1,0)vector + k2Itwisted

(1,0)hyper

)
. (A.32)

We thus see once again that the instanton correction to the Casimir energy is encoded

in the 6d anomaly polynomial of free fields.

A.3 E-string theory

This is the 5d Seiberg theory in the special case Nf = 8. The twisted compactification of

this theory on a Riemann surface was considered in [27]. The anomaly polynomial before

twisting reads [103]54

IE =
N3

6
p2(NM) +

N2

2
e(NM)A4 +N

(
A2

4 −
p2(NM)

24

)
+ (N − 1)A8(1) ,

I(1,0)hyper =
1

24
C2(L)2 +

1

48
C2(L)p1(TM) +

7p1(TM)2 − 4p2(TM)

5760
,

A4 =
1

4

(
p1(NM) + p1(TM) +

1

15
C2(E8)

)
. (A.33)

To write the anomaly polynomial in the form (A.2) we use the relations (A.14) and

e(NM) = C2(L)− C2(R), which gives

IE =
N(4N2 + 6N + 3)

24
C2

2 (R) +
(N − 1)(4N2 − 2N + 1)

24
C2

2 (L)

− N(N2 − 1)

3
C2(R)C2(L) +

(N − 1)(6N + 1)

48
C2(L)p1(TM)

− N(6N + 5)

48
C2(R)p1(TM) +

N(N − 1)

120
C2(L)C2(E8)248

− N(N + 1)

120
C2(R)C2(E8)248 +

N

240
p1(TM)C2(E8)248 +

N

7200
C2

2 (E8)248

+ (30N − 1)
7p1(TM)2 − 4p2(TM)

5760
− I(1,0)tensor . (A.34)

This anomaly polynomial coincides with the one in [27], apart from the contribution

I(1,0)tensor from a free tensor which we have included. We now perform the twisted re-

duction on the Riemann surface following this reference. In addition to the R-symmetry

flux there are nine possible Abelian flavor fluxes; eight along the Cartan of E8 and one for

the Cartan of SU(2)L. For simplicity we consider only two flavor fluxes, picking a generic

54Here we follow the conventions in [90] and we have included an additional contribution from a (1, 0)

tensor in the O(1) part to complete A8(1). This is done so that for k = 1 this anomaly polynomial

matches (A.12) for the maximal theory.
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U(1)F ⊂ E8 and one along U(1)L ⊂ SU(2)L. Twisting amounts to

C2(R)→ −
(
C1(R)− κ

2
tg

)2
,

C2(E8)248 → −ξ′
(
ñE
2
tg + ε̃E C1(R) + C1(F )

)2

+ dE8

∑
j

C2(Gj) ,

C2(L)→ −
(
n̂

2
tg + εC1(R) + C1(L)

)2

,

(A.35)

where ξ′ ≡ 2ξdE8 , with dE8 = 30 the Dynkin index for the fundamental of E8 and ξ is

numerical constant that depends on the choice of U(1)F inside E8. The sum over j is over

all simple commutants of U(1)F in E8. See [27] for details.

To write things in a compact form, let us write the anomaly polynomial in the form

I =
kRRRR

2
C2

2 (R) +
kLLLL

2
C2

2 (L) + kRRLLC2(R)C2(L)

+ kLLC2(L)p1(TM) + kRR C2(R)p1(TM) +
kLLEE
ξ′

C2(L)C2(E8)248

+
kRREE
ξ′

C2(R)C2(E8)248 +
kEE
ξ′

p1(TM)C2(E8)248 +
kEEEE

2ξ′2
C2

2 (E8)248

+ k1 p1(TM)2 + k2 p2(TM) . (A.36)

The coefficients for the E-string theory are easily read off by comparing this expression

to (A.34). We subtract the contribution of the free fields from the full expression (contin-

uing the pattern from above) to get

Epert = π(g− 1)

[
N(N − 1)Q2(1− ε2)

(2

3
(2N − 1)(1− n̂ε) + (2− n̂EεE)

)
+N

(
Q2(4− ε2E)− 1

)
((N − 1)(1− n̂ε) + (2− n̂EεE))

]
, (A.37)

where we defined ñE = 1√
2ξ
n̂E , ε̃E = 1√

2ξ
εE . This exactly matches the perturbative result

derived in the main text. The remaining piece,

Enon-pert =
π

6
(g− 1)(N − 1)

(
1 + n̂ε+ 2n̂ε(ε2 − 1)Q2

)
, (A.38)

is given by the free fields

Enon-pert = (N − 1)

∫
ε

∫
Σg

(
Itwisted

(1,0)tensor + Itwisted
(1,0)hyper

)
, (A.39)

and must be generated entirely due to instanton corrections in the 5d partition function.

We have thus shown by explicit computation of the perturbative piece that the instan-

ton corrections to the 4d Casimir energy arise from the free anomaly polynomial of the 6d

theory in all the examples we have considered (for class S, class Sk, and the compactifi-

cation of the E-string theory). It would be interesting to have a better understanding of

whether this is always the case and, if so, the reason behind this.
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B Instanton partition function for N = 2 U(N) and SU(N) SYM

Here we consider the instanton partition function for the maximal SYM theory with gauge

group U(N) or SU(N). This consists of an adjoint vector multiplet (as always) and an

adjoint hypermultiplet, which we assign a mass ν̃. Then, taking into account the extra

factors needed to pass between the Dolbeault, self-dual, and Dirac complexes, we may

write the total equivariant index for the fields of this theory as, first in the 4d case,

ind4d N=4(ũ, ν̃) =

(
1 + ei(ε1+ε2)

2
− ei

ε1+ε2
2

eiν̃ + e−iν̃

2

)(
tradj(e

iũ)

(eiε1 − 1)(eiε2 − 1)

− e−i
ε1+ε2

2

(
trN (eiũ) trk̄(e

iφ) + c.c.
)

+ (1− e−iε1)(1− e−iε2) tradj(e
iφ)

)
,

(B.1)

where εi are the equivariant parameters.

We are interested here in the 5d case, and for this we need to incorporate the KK modes,

n, as in section 2.4. One additional subtlety is that, for the Dirac complex determining

the hypermultiplets, the quantization of the KK momenta are shifted by n → n + 1
2 [34].

Then we find55

ind5d N=2(ũ, ν̃) =
∑
n∈Z

e
in
r

(
1 + ei(ε1+ε2)

2
− e

i
2r ei

ε1+ε2
2

eiν̃ + e−iν̃

2

)(
tradj(e

iũ)

(eiε1 − 1)(eiε2 − 1)

− e−i
ε1+ε2

2

(
trN (eiũ) trk̄(e

iφ) + c.c.
)

+ (1− e−iε1)(1− e−iε2) tradj(e
iφ)

)
.

(B.2)

where we write the equivariant parameters as qi = e2πiεi , as in section 2.4.

Let us consider in more detail the instanton contribution, which comes from the second

and third terms inside the second parantheses in (B.2). Using the rule (2.78) to pass

from the equivariant index to the 1-loop determinant, and integrating over the equivariant

parameters for the U(k) instanton symmetry, we may write the contribution to the partition

function from the k instanton sector as

Zk =
1

k!

(
sin
(
πr(ν̃ + 1

2r + ε−)
)

sin
(
πr(ν̃ + 1

2r − ε−)
)

sin
(
πr(ν̃ + 1

2r + ε+)
)

sin
(
πr(ν̃ + 1

2r − ε+)
) sin (2πrε+)

sin (πrε1) sin (πrε2)

)k
×
∫
dkφ

N∏
i=1

k∏
α=1

sin
(
πr(ũi − φα + ν̃ + 1

2r )
)

sin
(
πr(ũi − φα − ν̃ − 1

2r )
)

sin (πr(ũi − φα + ε+)) sin (πr(ũi − φα − ε+))

×
∏
α<β

sin
(
πr(φα − φβ + ν̃ + 1

2r + ε−)
)

sin
(
πr(φα − φβ + ν̃ + 1

2r − ε−)
)

sin
(
πr(φα − φβ + ν̃ + 1

2r + ε+)
)

sin
(
πr(φα − φβ + ν̃ + 1

2r − ε+)
)

×
sin (πr(φα − φβ + 2ε+)) sin (πr(φα − φβ))

sin (πr(φα − φβ + ε1)) sin (πr(φα − φβ + ε2))
,

(B.3)

where we have defined ε± = 1
2(ε1 ± ε2), and the prefactor is the contribution from the

Cartan components of the adjoint representation of U(k). This is integrated over a suitable

55In this appendix we find it convenient to keep the factors of r, the radius of the S1 fiber, explicit. To

compare with the formulas in the main text one may set r = 1.

– 74 –



J
H
E
P
1
1
(
2
0
1
8
)
0
5
8

contour. As mentioned in section 2.4, the result can be expressed as a sum over N -colored

Young diagrams, Yi. Namely, we have [34, 52]

Zk =
∑

~Y , |~Y |=k

Z~Y , (B.4)

with

Z~Y =

N∏
i,j=1

∏
s∈Yi

sin
(
πr(Eij + ν̃ + 1

2r − ε+)
)

sin
(
πr(Eij − ν̃ − 1

2r − ε+)
)

sin (πrEij) sin (πr(Eij − 2ε+))
, (B.5)

where we have defined

Eij = ũi − ũj − ε1hi(s) + ε2(vj(s) + 1) , (B.6)

where hi(s) is the horizontal distance from the box to the right side of the Young diagram,

and vi(s) is the vertical distance to the bottom.

Let us note some simplifying limits of this instanton partition function. First, if we set

ν̃ = ±ε+ −
1

2r
⇔ y ≡ e2πirν̃ = −(q1q2)±1/2 , (B.7)

one can check from (B.5) that Z~Y = 1 for all ~Y , and so the full instanton partition function

is given by

Z inst
R2
q1
×R2

q2
×S1

(
x, y = −(q1q2)±1/2, z

)
∝
∞∑
k=0

zk
∑

~Y , |~Y |=k

1 . (B.8)

This is simply the generating function for the N -colored Young diagrams, which can be

expressed in terms of the q-Pochhammer symbol,

Z inst
R2
q1
×R2

q2
×S1

(
x, y = −(q1q2)±1/2, z

)
∝ (z; z)−N . (B.9)

The precise coefficient depends on the detailed normalization of the instanton measure, and

it is not known how to fix this from first principles. In [34, 35] it was found that the appro-

priate normalization is such that we obtain the Dedekind eta function, η(z) = z1/24(z; z),

and we will make the same assumption here. Then

Z inst
R2
q1
×R2

q2
×S1

(
x, y = −(q1q2)±1/2, z

)
= η(z)−N . (B.10)

Next, consider

ν̃ = − 1

2r
± ε− ⇔ y = −(q1q

−1
2 )±1/2. (B.11)

Then we can see the prefactor in (B.3) vanishes, and so Zk = 0 for k > 0, implying

Z inst
R2
q1
×R2

q2
×S1

(
x, y = −(q1q

−1
2 )±1/2, z

)
= 1 . (B.12)

Both of these identities remain true if we shift ν̃ → ν̃ + `
r , ` ∈ Z, as this is a symmetry of

the partition function.

In the SU(N) case, we expect the above identities to remain true, however we need to

strip off the overall U(1) contribution from above, and find that N → N − 1 in (B.10).

– 75 –



J
H
E
P
1
1
(
2
0
1
8
)
0
5
8

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] E. Witten, Topological Quantum Field Theory, Commun. Math. Phys. 117 (1988) 353

[INSPIRE].

[2] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,

Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

[3] J. Qiu and M. Zabzine, Review of localization for 5d supersymmetric gauge theories,

J. Phys. A 50 (2017) 443014 [arXiv:1608.02966] [INSPIRE].

[4] S. Kim and K. Lee, Indices for 6 dimensional superconformal field theories, J. Phys. A 50

(2017) 443017 [arXiv:1608.02969] [INSPIRE].

[5] N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string

dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].

[6] H.-C. Kim, S.-S. Kim and K. Lee, 5-dim Superconformal Index with Enhanced En Global

Symmetry, JHEP 10 (2012) 142 [arXiv:1206.6781] [INSPIRE].

[7] N.A. Nekrasov and S.L. Shatashvili, Bethe/Gauge correspondence on curved spaces, JHEP

01 (2015) 100 [arXiv:1405.6046] [INSPIRE].

[8] F. Benini and A. Zaffaroni, A topologically twisted index for three-dimensional

supersymmetric theories, JHEP 07 (2015) 127 [arXiv:1504.03698] [INSPIRE].

[9] C. Closset and H. Kim, Comments on twisted indices in 3d supersymmetric gauge theories,

JHEP 08 (2016) 059 [arXiv:1605.06531] [INSPIRE].

[10] F. Benini and A. Zaffaroni, Supersymmetric partition functions on Riemann surfaces, Proc.

Symp. Pure Math. 96 (2017) 13 [arXiv:1605.06120] [INSPIRE].

[11] C. Closset, H. Kim and B. Willett, Supersymmetric partition functions and the

three-dimensional A-twist, JHEP 03 (2017) 074 [arXiv:1701.03171] [INSPIRE].

[12] C. Closset, H. Kim and B. Willett, N = 1 supersymmetric indices and the four-dimensional

A-model, JHEP 08 (2017) 090 [arXiv:1707.05774] [INSPIRE].

[13] C. Closset, H. Kim and B. Willett, Seifert fibering operators in 3d N = 2 theories,

arXiv:1807.02328 [INSPIRE].

[14] E. Witten, Topological sigma models, Commun. Math. Phys. 118 (1988) 411.

[15] N. Kurokawa, Multiple sine functions and selberg zeta functions, Proc. Japan Acad. A 67

(1991) 61.

[16] N. Hama, K. Hosomichi and S. Lee, SUSY Gauge Theories on Squashed Three-Spheres,

JHEP 05 (2011) 014 [arXiv:1102.4716] [INSPIRE].

[17] A. Bawane, G. Bonelli, M. Ronzani and A. Tanzini, N = 2 supersymmetric gauge theories

on S2 × S2 and Liouville Gravity, JHEP 07 (2015) 054 [arXiv:1411.2762] [INSPIRE].

[18] N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math.

Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].

– 76 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/BF01223371
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,117,353%22
https://doi.org/10.1007/s00220-012-1485-0
https://arxiv.org/abs/0712.2824
https://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2824
https://doi.org/10.1088/1751-8121/aa5ef0
https://arxiv.org/abs/1608.02966
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02966
https://doi.org/10.1088/1751-8121/aa5cbf
https://doi.org/10.1088/1751-8121/aa5cbf
https://arxiv.org/abs/1608.02969
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02969
https://doi.org/10.1016/S0370-2693(96)01215-4
https://arxiv.org/abs/hep-th/9608111
https://inspirehep.net/search?p=find+EPRINT+hep-th/9608111
https://doi.org/10.1007/JHEP10(2012)142
https://arxiv.org/abs/1206.6781
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.6781
https://doi.org/10.1007/JHEP01(2015)100
https://doi.org/10.1007/JHEP01(2015)100
https://arxiv.org/abs/1405.6046
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.6046
https://doi.org/10.1007/JHEP07(2015)127
https://arxiv.org/abs/1504.03698
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.03698
https://doi.org/10.1007/JHEP08(2016)059
https://arxiv.org/abs/1605.06531
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.06531
https://arxiv.org/abs/1605.06120
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.06120
https://doi.org/10.1007/JHEP03(2017)074
https://arxiv.org/abs/1701.03171
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.03171
https://doi.org/10.1007/JHEP08(2017)090
https://arxiv.org/abs/1707.05774
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.05774
https://arxiv.org/abs/1807.02328
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.02328
http://dx.doi.org/10.1007/BF01466725
http://dx.doi.org/10.3792/pjaa.67.61
http://dx.doi.org/10.3792/pjaa.67.61
https://doi.org/10.1007/JHEP05(2011)014
https://arxiv.org/abs/1102.4716
https://inspirehep.net/search?p=find+EPRINT+arXiv:1102.4716
https://doi.org/10.1007/JHEP07(2015)054
https://arxiv.org/abs/1411.2762
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.2762
https://doi.org/10.4310/ATMP.2003.v7.n5.a4
https://doi.org/10.4310/ATMP.2003.v7.n5.a4
https://arxiv.org/abs/hep-th/0206161
https://inspirehep.net/search?p=find+EPRINT+hep-th/0206161


J
H
E
P
1
1
(
2
0
1
8
)
0
5
8

[19] N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four

Dimensional Gauge Theories, in Proceedings, 16th International Congress on Mathematical

Physics (ICMP09), Prague, Czech Republic, August 3–8, 2009, pp. 265–289 (2009)

[DOI:10.1142/9789814304634 0015] [arXiv:0908.4052] [INSPIRE].

[20] C. Beem, T. Dimofte and S. Pasquetti, Holomorphic Blocks in Three Dimensions, JHEP 12

(2014) 177 [arXiv:1211.1986] [INSPIRE].

[21] N. Bobev and P.M. Crichigno, Universal RG Flows Across Dimensions and Holography,

JHEP 12 (2017) 065 [arXiv:1708.05052] [INSPIRE].

[22] I. Bah, A. Passias and P. Weck, Holographic duals of five-dimensional SCFTs on a

Riemann surface, arXiv:1807.06031 [INSPIRE].

[23] D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

[24] F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N = 1 dualities, JHEP

01 (2010) 088 [arXiv:0909.1327] [INSPIRE].

[25] I. Bah, C. Beem, N. Bobev and B. Wecht, Four-Dimensional SCFTs from M5-Branes,

JHEP 06 (2012) 005 [arXiv:1203.0303] [INSPIRE].

[26] I. Bah, A. Hanany, K. Maruyoshi, S.S. Razamat, Y. Tachikawa and G. Zafrir, 4d N = 1

from 6d N = (1, 0) on a torus with fluxes, JHEP 06 (2017) 022 [arXiv:1702.04740]

[INSPIRE].

[27] H.-C. Kim, S.S. Razamat, C. Vafa and G. Zafrir, E-String Theory on Riemann Surfaces,

Fortsch. Phys. 66 (2018) 1700074 [arXiv:1709.02496] [INSPIRE].

[28] A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The 4d Superconformal Index from

q-deformed 2d Yang-Mills, Phys. Rev. Lett. 106 (2011) 241602 [arXiv:1104.3850]

[INSPIRE].

[29] C. Beem and A. Gadde, The N = 1 superconformal index for class S fixed points, JHEP 04

(2014) 036 [arXiv:1212.1467] [INSPIRE].

[30] S.M. Hosseini, I. Yaakov and A. Zaffaroni, Topologically twisted indices in five dimensions

and holography, arXiv:1808.06626 [INSPIRE].

[31] K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge

theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56

[hep-th/9702198] [INSPIRE].

[32] J. Källén and M. Zabzine, Twisted supersymmetric 5D Yang-Mills theory and contact

geometry, JHEP 05 (2012) 125 [arXiv:1202.1956] [INSPIRE].

[33] K. Hosomichi, R.-K. Seong and S. Terashima, Supersymmetric Gauge Theories on the

Five-Sphere, Nucl. Phys. B 865 (2012) 376 [arXiv:1203.0371] [INSPIRE].

[34] H.-C. Kim, J. Kim and S. Kim, Instantons on the 5-sphere and M5-branes,

arXiv:1211.0144 [INSPIRE].

[35] H.-C. Kim, S. Kim, S.-S. Kim and K. Lee, The general M5-brane superconformal index,

arXiv:1307.7660 [INSPIRE].

[36] J. Qiu and M. Zabzine, 5D Super Yang-Mills on Y p,q Sasaki-Einstein manifolds, Commun.

Math. Phys. 333 (2015) 861 [arXiv:1307.3149] [INSPIRE].

[37] T. Kawano and N. Matsumiya, 5D SYM on 3D Sphere and 2D YM, Phys. Lett. B 716

(2012) 450 [arXiv:1206.5966] [INSPIRE].

– 77 –

https://doi.org/10.1142/9789814304634_0015
https://arxiv.org/abs/0908.4052
https://inspirehep.net/search?p=find+EPRINT+arXiv:0908.4052
https://doi.org/10.1007/JHEP12(2014)177
https://doi.org/10.1007/JHEP12(2014)177
https://arxiv.org/abs/1211.1986
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.1986
https://doi.org/10.1007/JHEP12(2017)065
https://arxiv.org/abs/1708.05052
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.05052
https://arxiv.org/abs/1807.06031
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.06031
https://doi.org/10.1007/JHEP08(2012)034
https://arxiv.org/abs/0904.2715
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.2715
https://doi.org/10.1007/JHEP01(2010)088
https://doi.org/10.1007/JHEP01(2010)088
https://arxiv.org/abs/0909.1327
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.1327
https://doi.org/10.1007/JHEP06(2012)005
https://arxiv.org/abs/1203.0303
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.0303
https://doi.org/10.1007/JHEP06(2017)022
https://arxiv.org/abs/1702.04740
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.04740
https://doi.org/10.1002/prop.201700074
https://arxiv.org/abs/1709.02496
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.02496
https://doi.org/10.1103/PhysRevLett.106.241602
https://arxiv.org/abs/1104.3850
https://inspirehep.net/search?p=find+EPRINT+arXiv:1104.3850
https://doi.org/10.1007/JHEP04(2014)036
https://doi.org/10.1007/JHEP04(2014)036
https://arxiv.org/abs/1212.1467
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.1467
https://arxiv.org/abs/1808.06626
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.06626
https://doi.org/10.1016/S0550-3213(97)00279-4
https://arxiv.org/abs/hep-th/9702198
https://inspirehep.net/search?p=find+EPRINT+hep-th/9702198
https://doi.org/10.1007/JHEP05(2012)125
https://arxiv.org/abs/1202.1956
https://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1956
https://doi.org/10.1016/j.nuclphysb.2012.08.007
https://arxiv.org/abs/1203.0371
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.0371
https://arxiv.org/abs/1211.0144
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.0144
https://arxiv.org/abs/1307.7660
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.7660
https://doi.org/10.1007/s00220-014-2194-7
https://doi.org/10.1007/s00220-014-2194-7
https://arxiv.org/abs/1307.3149
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.3149
https://doi.org/10.1016/j.physletb.2012.08.055
https://doi.org/10.1016/j.physletb.2012.08.055
https://arxiv.org/abs/1206.5966
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.5966


J
H
E
P
1
1
(
2
0
1
8
)
0
5
8

[38] Y. Fukuda, T. Kawano and N. Matsumiya, 5D SYM and 2D q-Deformed YM, Nucl. Phys.

B 869 (2013) 493 [arXiv:1210.2855] [INSPIRE].

[39] T. Kawano and N. Matsumiya, 5D SYM on 3D Deformed Spheres, Nucl. Phys. B 898

(2015) 456 [arXiv:1505.06565] [INSPIRE].

[40] G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP

06 (2011) 114 [arXiv:1105.0689] [INSPIRE].

[41] Y. Pan, Rigid Supersymmetry on 5-dimensional Riemannian Manifolds and Contact

Geometry, JHEP 05 (2014) 041 [arXiv:1308.1567] [INSPIRE].

[42] Y. Imamura and H. Matsuno, Supersymmetric backgrounds from 5d N = 1 supergravity,

JHEP 07 (2014) 055 [arXiv:1404.0210] [INSPIRE].

[43] L.F. Alday, P. Benetti Genolini, M. Fluder, P. Richmond and J. Sparks, Supersymmetric

gauge theories on five-manifolds, JHEP 08 (2015) 007 [arXiv:1503.09090] [INSPIRE].

[44] C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, Supersymmetric Field

Theories on Three-Manifolds, JHEP 05 (2013) 017 [arXiv:1212.3388] [INSPIRE].

[45] Y. Imamura and D. Yokoyama, N = 2 supersymmetric theories on squashed three-sphere,

Phys. Rev. D 85 (2012) 025015 [arXiv:1109.4734] [INSPIRE].

[46] N.A. Nekrasov and S.L. Shatashvili, Supersymmetric vacua and Bethe ansatz, Nucl. Phys.

Proc. Suppl. 192-193 (2009) 91 [arXiv:0901.4744] [INSPIRE].

[47] L.C. Jeffrey and F.C. Kirwan, Localization for nonabelian group actions, Topology 34

(1995) 291.

[48] F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic Genera of 2d N = 2 Gauge

Theories, Commun. Math. Phys. 333 (2015) 1241 [arXiv:1308.4896] [INSPIRE].

[49] N. Drukker, T. Okuda and F. Passerini, Exact results for vortex loop operators in 3d

supersymmetric theories, JHEP 07 (2014) 137 [arXiv:1211.3409] [INSPIRE].

[50] E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159

[hep-th/9301042] [INSPIRE].

[51] J. Gomis, T. Okuda and V. Pestun, Exact Results for ’t Hooft Loops in Gauge Theories on

S4, JHEP 05 (2012) 141 [arXiv:1105.2568] [INSPIRE].

[52] N. Nekrasov and S. Shadchin, ABCD of instantons, Commun. Math. Phys. 252 (2004) 359

[hep-th/0404225] [INSPIRE].

[53] C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Spheres, Charges, Instantons and

Bootstrap: A Five-Dimensional Odyssey, JHEP 03 (2018) 123 [arXiv:1710.08418]

[INSPIRE].

[54] C. Closset and M. Del Zotto, to appear.

[55] C. Closset, S. Cremonesi and D.S. Park, The equivariant A-twist and gauged linear

σ-models on the two-sphere, JHEP 06 (2015) 076 [arXiv:1504.06308] [INSPIRE].

[56] F. Nieri, S. Pasquetti and F. Passerini, 3d and 5d Gauge Theory Partition Functions as

q-deformed CFT Correlators, Lett. Math. Phys. 105 (2015) 109 [arXiv:1303.2626]

[INSPIRE].

[57] S. Pasquetti, Holomorphic blocks and the 5d AGT correspondence, J. Phys. A 50 (2017)

443016 [arXiv:1608.02968] [INSPIRE].

– 78 –

https://doi.org/10.1016/j.nuclphysb.2012.12.017
https://doi.org/10.1016/j.nuclphysb.2012.12.017
https://arxiv.org/abs/1210.2855
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.2855
https://doi.org/10.1016/j.nuclphysb.2015.07.018
https://doi.org/10.1016/j.nuclphysb.2015.07.018
https://arxiv.org/abs/1505.06565
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.06565
https://doi.org/10.1007/JHEP06(2011)114
https://doi.org/10.1007/JHEP06(2011)114
https://arxiv.org/abs/1105.0689
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0689
https://doi.org/10.1007/JHEP05(2014)041
https://arxiv.org/abs/1308.1567
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.1567
https://doi.org/10.1007/JHEP07(2014)055
https://arxiv.org/abs/1404.0210
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.0210
https://doi.org/10.1007/JHEP08(2015)007
https://arxiv.org/abs/1503.09090
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.09090
https://doi.org/10.1007/JHEP05(2013)017
https://arxiv.org/abs/1212.3388
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.3388
https://doi.org/10.1103/PhysRevD.85.025015
https://arxiv.org/abs/1109.4734
https://inspirehep.net/search?p=find+EPRINT+arXiv:1109.4734
https://doi.org/10.1016/j.nuclphysBPS.2009.07.047
https://doi.org/10.1016/j.nuclphysBPS.2009.07.047
https://arxiv.org/abs/0901.4744
https://inspirehep.net/search?p=find+EPRINT+arXiv:0901.4744
http://dx.doi.org/10.1016/0040-9383(94)00028-J
http://dx.doi.org/10.1016/0040-9383(94)00028-J
https://doi.org/10.1007/s00220-014-2210-y
https://arxiv.org/abs/1308.4896
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4896
https://doi.org/10.1007/JHEP07(2014)137
https://arxiv.org/abs/1211.3409
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.3409
https://doi.org/10.1016/0550-3213(93)90033-L
https://arxiv.org/abs/hep-th/9301042
https://inspirehep.net/search?p=find+EPRINT+hep-th/9301042
https://doi.org/10.1007/JHEP05(2012)141
https://arxiv.org/abs/1105.2568
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.2568
https://doi.org/10.1007/s00220-004-1189-1
https://arxiv.org/abs/hep-th/0404225
https://inspirehep.net/search?p=find+EPRINT+hep-th/0404225
https://doi.org/10.1007/JHEP03(2018)123
https://arxiv.org/abs/1710.08418
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.08418
https://doi.org/10.1007/JHEP06(2015)076
https://arxiv.org/abs/1504.06308
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.06308
https://doi.org/10.1007/s11005-014-0727-9
https://arxiv.org/abs/1303.2626
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.2626
https://doi.org/10.1088/1751-8121/aa60fe
https://doi.org/10.1088/1751-8121/aa60fe
https://arxiv.org/abs/1608.02968
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02968


J
H
E
P
1
1
(
2
0
1
8
)
0
5
8

[58] J. Källén, J. Qiu and M. Zabzine, The perturbative partition function of supersymmetric 5D

Yang-Mills theory with matter on the five-sphere, JHEP 08 (2012) 157 [arXiv:1206.6008]

[INSPIRE].

[59] H.-C. Kim and S. Kim, M5-branes from gauge theories on the 5-sphere, JHEP 05 (2013)

144 [arXiv:1206.6339] [INSPIRE].

[60] G. Lockhart and C. Vafa, Superconformal Partition Functions and Non-perturbative

Topological Strings, JHEP 10 (2018) 051 [arXiv:1210.5909] [INSPIRE].

[61] C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-Matrix Models and

Tri-Sasaki Einstein Spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].

[62] D.L. Jafferis and S.S. Pufu, Exact results for five-dimensional superconformal field theories

with gravity duals, JHEP 05 (2014) 032 [arXiv:1207.4359] [INSPIRE].

[63] S.M. Hosseini and A. Zaffaroni, Large N matrix models for 3d N = 2 theories: twisted

index, free energy and black holes, JHEP 08 (2016) 064 [arXiv:1604.03122] [INSPIRE].

[64] S.M. Hosseini and N. Mekareeya, Large N topologically twisted index: necklace quivers,

dualities and Sasaki-Einstein spaces, JHEP 08 (2016) 089 [arXiv:1604.03397] [INSPIRE].

[65] O. Bergman and D. Rodriguez-Gomez, 5d quivers and their AdS6 duals, JHEP 07 (2012)

171 [arXiv:1206.3503] [INSPIRE].

[66] D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159

[arXiv:1012.3210] [INSPIRE].

[67] C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact Terms,

Unitarity and F-Maximization in Three-Dimensional Superconformal Theories, JHEP 10

(2012) 053 [arXiv:1205.4142] [INSPIRE].
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