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Quadratic transformations for orthogonal polynomials

in one and two variables

Tom H. Koornwinder

Dedicated to Masatoshi Noumi on the occasion of his sixtieth birthday

Abstract

We discuss quadratic transformations for orthogonal polynomials in one and two vari-
ables. In the one-variable case we list many (or all) quadratic transformations between
families in the Askey scheme or q-Askey scheme. In the two-variable case we focus, after
some generalities, on the polynomials associated with root system BC2, i.e., BC2-type Jacobi
polynomials if q = 1 and Koornwinder polynomials in two variables in the q-case.

1 Introduction

Whenever we have a system of orthogonal polynomials {pn} in one variable with respect to an
even orthogonality measure µ on R, then we can write p2n(x) = qn(x

2), p2n+1(x) = x rn(x
2) with

{qn} and {rn} systems of orthogonal polynomials on R≥0 with respect to orthogonality measures
which are immediately obtained from µ. These mappings from {pn} to {qn} and {rn} are called
quadratic transformations. For quite some multi-parameter families of orthogonal polynomials
in the Askey scheme and the q-Askey scheme such quadratic transformations can be given
explicitly. Very well-known are the quadratic transformations for Jacobi polynomials connecting
{
P

(α,α)
n

}
with

{
P

(α,± 1

2
)

n

}
. Since all such polynomials can be expressed as (q-)hypergeomnetric

functions, their quadratic transformations are equivalent to certain quadratic transformations
for terminating (q-)hypergeometric functions.

The first aim of this paper, in Section 2, is to survey many (maybe all) instances of quadratic
transformations in the (q-)Askey scheme, and how they are related by the limit arrows in those
schemes. While the quadratic transformations for Askey-Wilson polynomials were already given
in the Memoir [1] by Askey & Wilson, some of the other quadratic transformations given below
may occur here for the first time, in particular the ones on the discrete side of the (q-)Askey
scheme.

Quadratic transformations occur also for orthogonal polynomials in several variables as soon
as the orthogonality measure is invariant under the transformation x1 7→ −x1 of the first vari-
able x1. This sounds like a trivial generalization of the one-variable case, but this reflection
map already takes some unexpected form when we look for quadratic transformations within
multi-parameter families of special orthogonal polynomials in two variables. For the systems
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associated with root system BC2 the deeper explanation for the existence of the quadratic trans-
formations is the isomorphism between the root systems B2 and C2, both of which are contained
in BC2.

These quadratic transformations in the two-variable case will be discussed in Section 3. For
BC2-type Jacobi polynomials they go back to Sprinkhuizen-Kuyper [18], while they may be new
for Koornwinder polynomials. We will also argue that quadratic transformations for orthogonal
polynomials associated with BCn cannot occur if n > 2, at least not in the simple form as for
n = 1 and 2.

The paper concludes in Section 4 with a discussion how quadratic transformations can be
helpful as heuristics for extending results to a larger realm of parameters, and with mentioning
some possible work which would be a natural follow-up of this paper.

Conventions For definition and notation of hypergeometric and q-hypergeometric series see [4].
Throughout we will assume that 0 < q < 1.

2 The one-variable case

2.1 Ordinary polynomials

Let {pn(x)} be a system of monic orthogonal polynomials on R which are orthogonal with respect
to an even (nonnegative) weight function w(x) = w(−x) = v(x2). Then pn(−x) = (−1)npn(x).
Put

qn(x
2) := p2n(x), rn(x

2) := x−1p2n+1(x). (2.1)

Then (see [3, Ch. 1, §8]) {qn(x)} and {rn(x)} are systems of monic orthogonal polynomials on
[0,∞):

• the qn with respect to weight function x−
1

2 v(x),

• the rn with respect to weight function x
1

2 v(x).

Note that from (2.1) we have, for any x0 ∈ R on which the pn do not vanish, that

qn(x
2)

qn(x20)
=

p2n(x)

p2n(x0)
,

rn(x
2)

rn(x20)
=
x0 p2n+1(x)

x p2n+1(x0)
. (2.2)

The identities (2.2) remain valid for arbitrary normalizations of the pn, qn, rn.
As a slight variant of the above, let {pn(x)} be a system of orthogonal polynomials on [−1, 1]

which are orthogonal with respect to an even weight function w(x) = w(−x) = v(2x2 − 1). Let
x0 ∈ R such that pn(x0) 6= 0 for all n. Let qn(x) and rn(x) be polynomials of degree n such that

qn(2x
2 − 1)

qn(2x
2
0 − 1)

=
p2n(x)

p2n(x0)
,

rn(2x
2 − 1)

rn(2x
2
0 − 1)

=
x0 p2n+1(x)

x p2n+1(x0)
.

Then {qn(x)} and {rn(x)} are systems of orthogonal polynomials on [−1, 1]:

• the qn with respect to weight function (1 + x)−
1

2 v(x),

• the rn with respect to weight function (1 + x)
1

2 v(x).
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Example 2.1. Jacobi polynomials

P (α,β)
n (x) = (−1)nP (β,α)

n (−x) := (α+ 1)n
n!

2F1

(−n, n+ α+ β + 1

α+ 1
; 12(1− x)

)

are orthogonal on [−1, 1] with weight funnction (1 − x)α(1 + x)β (α, β > −1). So we have
quadratic transformations (see [20, Theorem 4.1])

P
(α,α)
2n (x)

P
(α,α)
2n (1)

=
P

(α,− 1

2
)

n (2x2 − 1)

P
(α,− 1

2
)

n (1)
,

P
(α,α)
2n+1 (x)

P
(α,α)
2n+1 (1)

=
xP

(α, 1
2
)

n (2x2 − 1)

P
(α, 1

2
)

n (1)
. (2.3)

Example 2.2. Laguerre polynomials

Lα
n(x) :=

(α + 1)n
n!

1F1

( −n
α+ 1

;x

)

are orthogonal on [0,∞) with weight function xαe−x (α > −1), while Hermite polynomials

Hn(x) := (2x)n 2F0

(−1
2n,−1

2(n− 1)

− ;−x−2

)

are orthogonal on (−∞,∞) with weight function e−x2

. So we have quadratic trnansformations
(see [20, (5.6.1)])

H2n(x)

H2n(0)
=
L
− 1

2

n (x2)

L
− 1

2

n (0)
,

H2n+1(x)

H ′
2n+1(0)

=
xL

1

2

n (x2)

L
1

2

n (0)
. (2.4)

These are limit cases of (2.3) by the limits [6, (9.8.16), (9.8.18)].

Remark 2.3. In connection with (2.1) and (2.2) we had weight functions w(x) = w(−x) =

v(x2). Then dµ(x) := w(x) dx is an even measure on R and dν(x) := 2x−
1

2 v(x) dx is the
pushforward measure ν = φ∗µ on R≥0 with φ : x 7→ x2 : R → R≥0. In general, the quadratic
transformations (2.1), (2.2) remain true if the pn are orthogonal polynomials with respect to a
(positive) even measure on R, the qn are orthogonal with respect to the measure ν = φ∗µ on
R≥0, i.e., ∫

R≥0

p(y) dν(y) =

∫

R

p(x2) dµ(x) for all polynomials p,

and the rn are orthogonal with respect to the measure x dν(x) on R≥0. Similar remarks will
apply to other quadratic transformations. This becomes in particular relevant in examples
involving discrete mass points or q-integrals.

2.2 Symmetric Laurent polynomials

As a further variant of the above, with w(x) a weight function on [−1, 1], we substitute x =
1
2(z + z−1) so that z runs from −1 to 1 on the upper half unit circle if x runs from −1 to 1 on

3



the interval [−1, 1]. Let ∆(z) be a real-valued weight function on the upper half unit circle such
that

w(x) = w
(
1
2(z + z−1)

)
=

2i∆(z)

z − z−1
.

Then ∫ 1

−1
f(x)w(x) dx = i−1

∫

C

f
(
1
2 (z + z−1)

)
∆(z)

dz

z
,

where the contour C is the upper half unit circle starting at 1 and ending at −1. Now suppose
that ∆(z) = ∆(−z−1) and put

∆̃(z2) := ∆(z) = ∆(−z−1) (|z| = 1, 0 ≤ arg z ≤ π/2). (2.5)

Equivalently, w(x) = w(−x). As before, put

v(2x2 − 1) := w(x) = w(−x).

Then

w
(
1
2 (z + z−1)

)
= v
(
1
2(z

2 + z−2)
)
=

2i

z − z−1
∆̃(z2).

Hence

(
1 + 1

2(z
2 + z−2)

)− 1

2 v
(
1
2 (z

2 + z−2)
)
= 2

1

2

2i

z2 − z−2
∆̃(z2),

(
1 + 1

2(z
2 + z−2)

) 1

2 v
(
1
2 (z

2 + z−2)
)
= 2−

1

2 (1 + z2)(1 + z−2)
2i

z2 − z−2
∆̃(z2).

Thus, with x = 1
2(z + z−1),

(1 + x)−
1

2 v(x) = 2
1

2

2i

z − z−1
∆̃(z),

(1 + x)
1

2 v(x) = 2−
1

2 (1 + z)(1 + z−1)
2i

z − z−1
∆̃(z).

We arrive at the following result. Let {p̃n(z)} be a system of symmetric (i.e., invariant under z →
z−1) Laurent polynomials which are orthogonal on C with respect to the measure ∆(z)z−1dz,
where ∆ satisfies (2.5). Let z0 ∈ C such that pn(z0) 6= 0 for all n. Let q̃n(z) and r̃n(z) be
symmetric Laurent polynomials of degree n such that

q̃n(z
2)

q̃n(z
2
0)

=
p̃2n(z)

p̃2n(z0)
,

r̃n(z
2)

r̃n(z
2
0)

=
(z0 + z−1

0 )p̃2n+1(z)

(z + z−1)p̃2n+1(z0)
.

Then {q̃n(z)} and {r̃n(z)} are systems of symmetric orthogonal Laurent polynomials on C:
• the q̃n with orthogonality measure ∆̃(z)z−1dz,
• the r̃n with orthogonality measure (1 + z)(1 + z−1)∆̃(z)z−1dz.

If we go back to Example 2.1 then, with the above notation and up to constant factors,

p̃n(z) = P (α,α)
n

(
1
2(z + z−1)

)
, q̃n(z) = P

(α,− 1

2
)

n

(
1
2(z + z−1)

)
, r̃n(z) = P

(α, 1
2
)

n

(
1
2 (z + z−1)

)
,

∆(z) = (2− z2 − z−2)α+
1

2 , ∆̃(z) = (2− z − z−1)α+
1

2 .
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Example 2.4. Recall Askey-Wilson polynomials [1], [6, §14.1], which we write as monic sym-
metric Laurent polynomials:

Pn(z) = Pn(z; a, b, c, d | q) :=
1

(abcdqn−1; q)n
pn
(
1
2 (z + z−1); a, b, c, d | q

)

=
(ab, ac, ad; q)n
an(abcdqn−1; q)n

4φ3

(
q−n, qn−1abcd, az, az−1

ab, ac, ad
; q, q

)
. (2.6)

Here Pn(z) is invariant under permutations of the parameters a, b, c, d. Observe that

Pn(a; a, b, c, d | q) =
(ab, ac, ad; q)n
an(abcdqn−1; q)n

, pn(
1
2(a+ a−1); a, b, c, d | q) = 1

(abcdqn−1; q)n
,

pn(
1
2(z + z−1))

pn(
1
2 (a+ a−1))

= 4φ3

(
q−n, qn−1abcd, az, az−1

ab, ac, ad
; q, q

)
. (2.7)

Assume that a, b, c, d have absolute value ≤ 1 but do not have pairwise products equal to 1,
and that non-real parameters occur in complex conjugate pairs. The polynomials Pn(z) are
orthogonal on the upper half unit circle C with respect to the orthogonality measure ∆(z) z−1 dz,
where

∆(z) = ∆+(z)∆+(z
−1), ∆+(z) = ∆+(z; a, b, c, d | q) :=

(z2; q)∞
(az, bz, cz, dz | q)∞

.

Since

∆(z; a, b,−a,−b | q) = ∆(z2; a2, b2,−1,−q | q2) = ∆(z; a2, b2,−q,−q2 | q2)
(1 + z2)(1 + z−2)

,

we have:

P2n(z; a, b,−a,−b | q) = Pn(z
2; a2, b2,−1,−q | q2), (2.8)

P2n+1(z; a, b,−a,−b; q) = (z + z−1)Pn(z
2; a2, b2,−q,−q2 | q2), (2.9)

or, in the normalization (2.7),

p2n(x; a, b,−a,−b | q)
p2n(

1
2(a+ a−1); a, b,−a,−b | q)

=
pn(2x

2 − 1; a2, b2,−1,−q | q2)
pn(

1
2 (a

2 + a−2); a2, b2,−1,−q | q2)
, (2.10)

p2n+1(x; a, b,−a,−b; q)
p2n+1(

1
2 (a+ a−1); a, b,−a,−b; q)

=
2x pn(2x

2 − 1; a2, b2,−q,−q2 | q2)
(a+ a−1) pn(

1
2(a

2 + a−2); a2, b2,−q,−q2 | q2)
. (2.11)

Formula (2.10) is given by Askey & Wilson [1, Section 3.1] in terms of q-hypergeometric
functions, but similarly derived as above (a, b below different from a, b above):

4φ3

(
a2, qb2, c,−d
qab,−qab, cd ; q, q

)
= 4φ3

(
a2, qb2, c2, d2

q2a2b2, cd, qcd
; q2, q2

)
(2.12)

5



when both sides terminate. The identity (2.12) can also be obtained from Singh [17, (22)] (see
also [4, (3.10.11)]) by applying Sears’ transformation [4, (2.10.4)].

While we arrived at (2.12) in the terminating case a = q−n, the identity holds also in the
terminating case c = q−n. Then a resulting identity for Askey-Wilson polynomials is

Pn(z; a, b, q
1

2 ,−q 1

2 | q) = Pn(z; a, qa, b, qb | q2). (2.13)

This relates two different ways of writing continuous q-Jacobi polynomials as Askey-Wilson
polynomials, see [1, (4.20)] or [4, (7.5.26)]. Formula (2.13) also follows by observing that

∆(z; a, b, q
1

2 ,−q 1

2 | q) = ∆(z; a, qa, b, qb | q2).

The quadratic transformation (2.11) can be written in terms of q-hypergeometric functions
as

4φ3

(
a2, qb2, c,−d
qab,−qab, cd ; q, q

)
=

c− d

1− cd
4φ3

(
qa2, q2b2, c2, d2

q2a2b2, q2cd, qcd
; q2, q2

)
(2.14)

when both series terminate. For c = q−n the resulting identity for Askey-Wilson polynomials is
again (2.13), with a and qa interchanged in the parameter list on the right-hand side. Hence,
if c = q−n then (2.14) follows from (2.12) by applying Sears’ transformation to the right-hand
side of (2.12).

With ab = qα+1 formulas (2.10), (2.11) give a two-parameter q-analogue of (2.3). Indeed if
a = aq, b = bq in (2.10), (2.11) such that aqbq = qα+1 and aq → 1 as q ↑ 1 then the quadratic
transformations (2.10), (2.11) have the quadratic transformations (2.3) as limits for q ↑ 1.

The quadratic transformations (2.10), (2.11) remain valid for less constrained parameter val-
ues by analytic continuation. In the case of orthogonality involving additionally a finite number
of mass points (see [6, (14.1.3)]) we may still give a proof of (2.10), (2.11) by orthogonality in
view of Remark 2.3.

There are various noteworthy special cases of the quadratic transformations (2.10), (2.11).

For b = q
1

2 a we get continuous q-Jacobi polynomials on the left-hand sides and continuous
q-ultraspherical polynomials on the right-hand sides. For b = 0 we get Al-Salam-Chihara poly-
nomials on the left-hand sides and continuous dual q-Hahn polynomials on the right-hand sides.
For a = b = 0 we get continuous q-Hermite polynomials on the left-hand sides and Al-Salam-
Chihara polynomials (in this context also called continuous q-Laguerre polynomials) on the
right-hand sides. See [6, Ch. 14] for details about the mentioned families of orthogonal polyno-
mials.

2.3 Further examples of quadratic transformations in the q-Askey scheme

First we discuss some limit cases of the quadratic transformations (2.10), (2.11) for Askey-Wilson
polynomials, where we stay in the continuous part of the q-Askey scheme.

Example 2.5. For big q-Jacobi polynomials [6, §14.5]

Pn(x; a, b, c, d; q) = Pn(qac
−1x; a, b,−ac−1d; q) := 3φ2

(
q−n, qn+1ab, qac−1x

qa,−qac−1d
; q, q

)
.
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and little q-Jacobi polynomials [6, §14.12], [12, §2.4]

pn(x; a, b; q) := 2φ1

(
q−n, qn+1ab

qa
; q, qx

)
, pn(q

−1b−1; a, b; q) =
(−1)n(qb; q)n

q
1

2
n(n+1)bn(qa; q)n

(2.15)

there are the quadratic transformations

P2n(x; a, a, 1, 1; q) =
pn(x

2; q−1, a2; q2)

pn((qa)−2; q−1, a2; q2)
, (2.16)

P2n+1(x; a, a, 1, 1; q) =
qa x pn(x

2; q, a2; q2)

pn((qa)−2; q, a2; q2)
. (2.17)

These were earlier given in [12, (2.48), (2.49)]. They are limit cases of (2.10), (2.11) by the limit
formulas [9, (6.2), (6.4)].

The orthogonality relations for big and little q-Jacobi polynomials are given by q-integrals.
In view of Remark 2.3 the quadratic transformations (2.16) and (2.17) can be obtained in a
straightforward way by comparing the q-weights for the polynomials involved. The relevant
observation is that, with w(x) = v(x2) and polynomials p, we have

∫ 1

0
p(x)x−

1

2 v(x) dq2x = (1− q2)

∞∑

k=0

p(q2k) v(q2k) qk

= (1− q2)

∞∑

k=0

p((qk)2)w(qk) qk = (1 + q)

∫ 1

0
p(x2)w(x) dqx.

Example 2.6. For discrete q-Hermite I polynomials [6, §14.28]

hn(x; q) := q
1

2
n(n−1)

2φ1

(
q−n, x−1

0
; q,−qx

)

and the little q-Laguerre polynomials (or Wall polynomials) pn(x; a; q) = pn(x; a, 0; q) [6, §14.20]
((2.15) with b = 0) there are the quadratic transformations

h2n(x; q) = (−1)nqn(n−1)(q; q2)n, pn(x
2; q−1; q2), (2.18)

h2n+1(x; q) = (−1)nqn(n−1)(q3; q2)n x pn(x
2; q; q2). (2.19)

These are limit cases of (2.16), (2.17) by the limit formula [13, §14.5]
lim
a→0

a−n Pn(x; a, a, 1, 1; q) = qn hn(x; q).

The quadratic transformations (2.18), (2.19) immediately imply quadratic transformations
[13, §14.21] connecting discrete q-Hermite II polynomials [6, §14.29] and q-Laguerre polynomi-
als [6, §14.21] because these two orthogonal polynomials can be expressed as i−nhn(ix; q

−1)
and const. pn(−x; q−α; q−1) in terms of discrete q-Hermite I polynomials and little q-Laguerre
polynomials, respectively. Note that both families of orthogonal polynomials have non-unique
orthogonality measures, see for instance [2]. Quite probably these last quadratic transformations
are limit cases of rewritings of (2.16), (2.17) which can be interpreted as quadratic transforma-
tions for pseudo big q-Jacobi polynomials [5, Prop. 2.2].

7



Next we turn to the discrete part of the q-Askey scheme.

Example 2.7. On top there is a quadratic transformation between q-Racah polynomials (see
[6, §14.2])

Rn(q
−x + γδqx+1;α, β, γ, δ | q) := 4φ3

(
q−n, αβqn+1, q−x, γδqx+1

αq, βδq, γq
; q, q

)
(n = 0, 1, . . . , N),

(2.20)
where αq or βδq or γq is equal to q−N . It reads, with N ∈ {1

2 , 1,
3
2 , . . .},

R2n(q
−x−N− 1

2 − qx−N− 1

2 ;α,α, q−2N−2,−1 | q)
= Rn(q

−2x−2N−1 + q2x−2N−1;α2, q−1, q−2N−2, q−2N−2 | q2) (n = 0, 1, . . . , [N + 1
2 ]). (2.21)

Indeed, as a function of q−x−N− 1

2 − qx−N− 1

2 the polynomials on the left-hand side of (2.21) are

orthogonal on the points q−x−N− 1

2 − qx−N− 1

2 (x = −N − 1
2 ,−N + 1

2 , . . . , N + 1
2 ) with respect to

the weights

(qx + q−x)
(α2q2; q2)x+N+ 1

2

(q2; q2)x+N+ 1

2

(α2q2; q2)−x+N+ 1

2

(q2; q2)−x+N+ 1

2

while the polynomials on the right-hand side are orthogonal on the points (q−x−N− 1

2 −qx−N− 1

2 )2

(x running over −N − 1
2 ,−N + 1

2 , . . . ,−1
2 or 0) with respect to the same weights. These weights

are positive if −1 < qα < 1.
In terms of q-hypergeometric functions (2.21) can be written as

4φ3

(
q−2n, α2q2n+1, q−x−N− 1

2 ,−qx−N− 1

2

qα,−qα, q−2N−1
; q, q

)

= 4φ3

(
q−2n, α2q2n+1, q−2x−2N−1, q2x−2N−1

q2α2, q−2N−1, q−2N
; q2, q2

)
,

which is the case a = q−n, b = qnα, c = q−x−N− 1

2 , d = qx−N− 1

2 of (2.12).
Similarly, from (2.14), we have the quadratic transformation

R2n+1(q
−x−N− 1

2 − qx−N− 1

2 ;α,α, q−2N−2,−1 | q)

=
q−x−N− 1

2 − qx−N− 1

2

1− q−2N−1
Rn(q

−2x−2N−1 + q2x−2N−1;α2, q, q−2N−2, q−2N−2 | q2), (2.22)

where N ∈ {1
2 , 1,

3
2 , . . .} and n = 0, 1, . . . , [N ]. Formula (2.22) can also be proved by orthogo-

nality.
The special case α = 0 of (2.21) and (2.22) gives quadratic transformations involving dual

q-Krawtchouk polynomials [6, §14.17] and dual q-Hahn polynomials [6, §14.7].
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Remark 2.8. The quadratic transformations (2.16), (2.17) involving big and little q-Jacobi
polynomials can be obtained as limit cases of (2.21) and (2.22). For this we need the following
special case of the limit formula [11, (2.2)] from q-Racah polynomials to big q-Jacobi polynomials:

lim
N→∞

Rn(q
−2N−1x; a, a, q−2N−2,−1 | q) = Pn(x; a, a, 1, 1; q)

Pn(−1; a, a, 1, 1; q)
.

We need also a limit formula from q-Racah polynomials to little q-Jacobi polynomials, not yet
observed in [11]:

lim
N→∞

Rn(q
−2Nx; a, b, q−N−1, δq−N | q) = pn(δ

−1x; b, a; q)

pn(1; b, a; q)
. (2.23)

This is obtained from the limit formula (straightforward from (2.20))

lim
N→∞

Rn(q
−2Nx; a, b, q−N−1, δq−N | q) = 3φ1

(
q−n, abqn+1, δx−1

qa
; q, b−1δ−1x

)

combined with [4, (III.8)] and (2.15).
Furthermore, the quadratic transformations (2.18), (2.19) can be obtained as limits of the

cases α = 0 of (2.21) and (2.22).

Example 2.9. Rather non-standard quadratic transformations for q-Racah polynomials can be
obtained by another specialization of (2.12) and (2.14):

4φ3

(
q−2n, q−2(N−n)−1, q−x,−γqx+1

q−N ,−q−N , γq
; q, q

)
= 4φ3

(
q−2n, q2n−2N−1, q−2x, γ2q2x+2

q−2N , γq, γq2
; q2, q2

)
,

(2.24)

4φ3

(
q−2n−1, q−2(N−n), q−x,−γqx+1

q−N ,−q−N , γq
; q, q

)
=
q−x − γqx+1

1− γq

× 4φ3

(
q−2n, q2n−2N+1, q−2x, γ2q2x+2

q−2N , γq2, γq3
; q2, q2

)
. (2.25)

Here N is a positive integer and n = 0, 1, . . . , N . For 2n ≤ N (2.24) is valid for all x ∈ C.
However, by the subtlety of passing to a lower parameter q−N in (2.12) or (2.14), formula (2.24)
is only valid for x = 0, 1, . . . , N if 2n > N . Similarly, (2.25) is valid for all x ∈ C if 2n+ 1 ≤ N ,
but only valid for x = 0, 1, . . . , N if 2n + 1 > N .

By substitution of (2.20) in (2.24) and (2.25) we obtain quadratic transformations for q-
Racah polynomials:

Rn(q
−2x + γ2q2x+2; q−2N−2, q−1, γ, γ | q2)

=

{
R2n(q

−x − γqx+1; q−N−1, q−N−1, γ,−1 | q) (2n ≤ N),

R2N−2n+1(q
−x − γqx+1; q−N−1, q−N−1, γ,−1 | q) (2n > N),

(2.26)
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q−x − γqx+1

1− γq
Rn(q

−2x + γ2q2x+2; q−2N−2, q, γ, γ | q2)

=

{
R2n+1(q

−x − γqx+1; q−N−1, q−N−1, γ,−1 | q) (2n+ 1 ≤ N),

R2N−2n(q
−x − γqx+1; q−N−1, q−N−1, γ,−1 | q) (2n+ 1 > N).

(2.27)

Both in (2.26) and (2.27) the identities corresponding to the first case of the right-hand side are
valid for all complex y := q−x − γqx+1 (then q−2x + γ2q2x+2 = y2 + 2γq). But the identities
corresponding to the second case of the right-hand side are only valid for x = 0, 1, . . . , N .

By [6, (14.2.2)] the q-Racah polynomials on the left-hand side of (2.26) are orthogonal on
the set of points q−2x + γ2q2x+2 (x = 0, 1, . . . , N) with respect to the weights

wx = q(2N+1)x 1 + q2x+1γ

1 + qγ

(q−2N , q2γ2; q2)x
(q2, q2N+4γ2; q2)x

. (2.28)

These weights are positive if q−N < γ < q−N−2. Inspection of the positivity of the coefficient of
pn−1(x) in [6, (14.2.4)] for n = 1, . . . , N gives the same constraint on γ. Again by [6, (14.2.2)],
the q-Racah polynomials on the right-hand side of (2.26) are orthogonal on the set of points
q−x−γqx+1 (x = 0, 1, . . . , N) with respect to the weights wx given by (2.28). This is compatible
with (2.26), but on the other hand (2.26) can be proved from this equality of weights only if
2n ≤ N . Similar remarks can be made about (2.27).

If we put for n = 0, 1, . . . , 2N + 1

pn(y) :=

{
R 1

2
n(y

2 + 2qγ; q−2N−2, q−1, γ, γ | q2) (n even),

(1− γq)−1y−1R 1

2
(n−1)(y

2 + 2qγ; q−2N−2, q, γ, γ | q2) (n odd)

then pn(−y) = (−1)npn(y) and the pn are orthogonal on the set of points ±(q−x − γqx+1)
(for x = 0, 1, . . . , N) with respect to the weights wx given by (2.28). For n ≤ N the explicit
expressions for the pn as polynomials of general argument are given by the first cases of the
right-hand sides of (2.26), (2.27), but the expressions for n > N will be more complicated.

2.4 Further examples of quadratic transformations in the Askey scheme

First we discuss limit cases for q ↑ 1 of the quadratic transformations in the continuous part of
the Askey scheme.

Example 2.10. Between Wilson polynomials [6, §9.1]

Wn(x
2; a, b, c, d)

Wn(−a2; a, b, c, d)
=

Wn(x
2; a, b, c, d)

(a+ b)n(a+ c)n(a+ d)n
:= 4F3

(−n, a+ b+ c+ d− 1, a+ ix, a− ix

a+ b, a+ c, a+ d
; 1

)

and continuous Hahn polynomials [6, §9.4]

pn(x; a, b, a, b)

pn(ia; a, b, a, b)
=

n! pn(x; a, b, a, b)

in(a+ a)n(a+ b)n
:= 3F2

(−n, n+ 2Re(a+ b)− 1, a+ ix

a+ a, a+ b
; 1

)
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there are the quadratic transformations

p2n(x; a, b, a, b)

p2n(ia; a, b, a, b)
=

Wn(x
2; a, b, 12 , 0)

Wn(−a2; a, b, 12 , 0)
, (2.29)

p2n+1(x; a, b, a, b)

p2n+1(ia; a, b, a, b)
=

xWn(x
2; a, b, 12 , 1)

iaWn(−a2; a, b, 12 , 1)
, (2.30)

where a, b ∈ R or b = a. This follows by comparing the orthogonality relations [6, (9,1,2),
(9.4.2)] with each other.

In fact, (2.29) and (2.30) are limit cases of the quadratic transformations (2.10), (2.11) for
Askey-Wilson polynomials by the limits

lim
q↑1

pn(1− 1
2x(1− q)2; qa, qb, qc, qd | q)

(1− q)3n
=Wn(x; a, b, c, d)

and

lim
q↑1

pn
(
cosφ− x(1− q) sinφ; qaeiφ, qbeiφ, qae−iφ, qbe−iφ | q

)

(1− q)2n

= (−2 sinφ)n n! pn(x; a, b, a, b) (0 < φ < π).

There are corresponding limit cases of (2.12) and (2.14):

3F2

(
2a, 2b + 1, c

a+ b+ 1, c+ d
; 1

)
= 4F3

(
a, b+ 1

2 , c, d

a+ b+ 1, 12(c+ d), 12(c+ d+ 1)
; 1

)
, (2.31)

3F2

(
2a, 2b + 1, c

a+ b+ 1, c+ d
; 1

)
=
d− c

d+ c
4F3

(
a+ 1

2 , b+ 1, c, d

a+ b+ 1, 12(c+ d) + 1, 12(c+ d+ 1)
; 1

)
, (2.32)

which are valid whenever both sides terminate.
Also note that (2.29) and (2.30) have the quadratic transformations (2.3) as limit cases. This

follows by [6, (9.4.15)] and the limit (extension of [6, (9.1.18)])

lim
t→∞

Wn(
1
2(1− x)t2; a, α+ 1− a, c+ it, β + 1− c− it)

t2nn!
= P (α,β)

n (x).

Example 2.11. Between continuous dual Hahn polynomials [6, §9.3]

Sn(x
2; a, b, c)

Sn(−a2; a, b, c)
:= 3F2

(−n, a+ ix, a− ix

a+ b, a+ c
; 1

)
, Sn(−a2; a, b, c) = (a+ b)n(a+ c)n,

and Meixner-Pollaczek polynomials [6, §9.7]

P
(λ)
n (x;φ)

P
(λ)
n (iλ;φ)

:= 2F1

(−n, λ+ ix

2λ
; 1− e−2iφ

)
, P (λ)

n (iλ;φ) =
(2λ)n
n!

einφ,
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there are the quadratic transformations

P
(a)
2n (x; 12π)

P
(a)
2n (ia; 12π)

=
Sn(x

2; a, 12 , 0)

Sn(−a2; a, 12 , 0)
, (2.33)

P
(a)
2n+1(x;

1
2π)

P
(a)
2n+1(ia;

1
2π)

=
xSn(x

2; a, 12 , 1)

iaSn(−a2; a, 12 , 1)
. (2.34)

These are limit cases of (2.29) and (2.30) by the limits [6, (9.1.16), (9.4.14)] Furthermore, (2.33)
and (2.34) have the quadratic transformations (2.4) as limit cases by [6, (9.7.15)] and the limit

lim
a→∞

Sn(ax; a, b, c)

ann!
= Lb+c−1

n (x). (2.35)

For the proof of (2.35) compare the recurrence relations [6, (9.3.5), (9.12.4)] with each other.

Next we turn to the discrete part of the Askey scheme.

Example 2.12. On top there is a quadratic transformation between Racah polynomials [6,
§9.2]

Rn

(
x(x+ γ + δ + 1);α, β, γ, δ

)
:= 4F3

(−n, n+ α+ β + 1,−x, x+ γ + δ + 1

α+ 1, β + δ + 1, γ + 1
; 1

)

(α+ 1 or β + δ + 1 or γ + 1 = −N ; n = 0, 1, . . . , N)

and Hahn polynomials [6, §9.5]

Qn(x;α, β,N) := 3F2

(−n, n+ α+ β + 1,−x
α+ 1,−N ; 1

)
(n = 0, 1, . . . , N).

It reads

Q2n

(
x+N + 1

2 ;α,α, 2N + 1
)
= Rn

(
x2 − (N + 1

2)
2;α,−1

2 ,−N − 1,−N − 1
)

(N ∈ {1
2 , 1,

3
2 , . . .}, n = 0, 1, . . . , [N + 1

2 ]). (2.36)

Indeed, as a function of x the polynomials on the left-hand side of (2.36) are orthogonal on the
points x = −N − 1

2 ,−N + 1
2 , . . . , N + 1

2 with respect to the weights

(α+ 1)N+ 1

2
+x(α+ 1)N+ 1

2
−x

(N + 1
2 + x)! (N + 1

2 − x)!
,

while the polynomials on the right-hand side are orthogonal on the points x2 (x running over
−N − 1

2 ,−N + 1
2 , . . . ,−1

2 or 0) with respect to the same weights.
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The quadratic transformation (2.36) is the case a = −n, b = n + α, c = −x − N − 1
2 ,

d = x − N − 1
2 of formula (2.31). By specialization of (2.32), also as a limit case for q ↑ 1 of

(2.22), we have the quadratic transformation

Q2n+1(x+N + 1
2 ;α,α, 2N + 1) =

2N + 1− 2x

2N + 1
Rn(x

2 − (N + 1
2)

2;α+ 1, 12 ,−N − 1,−N − 1)

(N ∈ {1
2 , 1,

3
2 , . . .}, n = 0, 1, . . . , [N ]). (2.37)

The quadratic transformations (2.3) for Jacobi polynomials can be obtained as limit cases
of (2.36) and (2.37).

Example 2.13. Quadratic transformations involving Krawtchouk polynomials [6, §9.11]

Kn(x; p,N) := 2F1

(−n,−x
−N ; p−1

)

and dual Hahn polynomials [6, §9.6]

Rn(x(x+ γ + δ + 1); γ, δ,N) := 3F2

(−n,−x, x+ γ + δ + 1

γ + 1,−N ; 1

)

are given by

K2m(x+N ; 12 , 2N) =
(12 )m

(−N + 1
2)m

Rm(x2;−1
2 ,−1

2 , N), (2.38)

K2m+1(x+N ; 12 , 2N) = − (32 )m

N (−N + 1
2)m

xRm(x2 − 1; 12 ,
1
2 , N − 1), (2.39)

K2m(x+N + 1; 12 , 2N + 1) =
(12 )m

(−N − 1
2)m

Rm(x(x+ 1);−1
2 ,

1
2 , N), (2.40)

K2m+1(x+N + 1; 12 , 2N + 1) =
(32 )m

(−N − 1
2)m+1

(x+ 1
2)Rm(x(x+ 1); 12 ,−1

2 , N). (2.41)

They can be proved by orthogonality, they are limit cases of (2.36) and (2.37), and they have
the quadratic transformations (2.4) involving Hermite and Laguerre polynomials as limit cases.

2.5 The (q-)Askey scheme of quadratic transformations

Let us summarize the quadratic transformations for families in the (q-)Askey scheme. In the
q-case we have:

1a Askey-Wilson (2.10), (2.11)

1b q-Racah (2.21), (2.22)

2 big q-Jacobi to little q-Jacobi (2.16), (2.17)
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3a Askey-Wilson (2.10), (2.11) for b = 0

3b q-Racah (2.21), (2.22) for α = 0

4 discrete q-Hermite to Wall (2.18), (2.19)

5 Askey-Wilson (2.10), (2.11) for a = b = 0

The transformations 1a and 1b in q-hypergeometric form are related by analytic continuation,
similarly for 3a and 3b. The limit arrows between the various cases are as follows.

1a 1b
↓ ց ւ ↓
3a 2 3b
↓ ց ↓ ւ
5 4

In the case q = 1 we have:

1a continuous Hahn to Wilson (2.29), (2.30)

1b Hahn to Racah (2.36), (2.37)

2 Jacobi (2.3)

3a Meixner-Pollaczek to continuous dual Hahn (2.33), (2.34)

3b Krawtchouk to dual Hahn (2.38)–(2.41)

4 Hermite to Laguerre (2.4)

The transformations 1a and 1b in hypergeometric form are related by analytic continuation,
similarly for 3a and 3b. The limit arrows between the various cases are as above, except that
the case 5 is missing. There are limits for q ↑ 1 from the q-cases to the corresponding q = 1
cases. The q-case 5 also has a limit to the q = 1 case 4.

3 The two-variable case

3.1 General polynomials

For an analogue of (2.1) in two variables we generalize the proof of Theorem 10.1 in Sprinkhuizen [18].
We will work with monomials xm−lyl (m, l ∈ Z, m ≥ l ≥ 0) with a dominance partial ordering

(m, l) ≤ (n, k) iff m ≤ n and m+ l ≤ n+ k.

Let w(x, y) be a (nonnegative) weight function on a domain Ω ⊂ R
2 such that

∫

Ω
|x|m−l|y|lw(x, y) dx dy <∞ for all m, l.
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Let pn,k(x, y) be polynomials of the form

pn,k(x, y) =
∑

(m,l)≤(n,k)

cm,lx
m−lyl, cn,k 6= 0, (3.1)

such that ∫

Ω
pn,k(x, y)x

m−lyl w(x, y) dx dy = 0 if (m, l) < (n, k). (3.2)

We call the polynomials pn,k(x, y) dominance orthogonal polynomials. For convenience we as-
sume that they are monic, i.e., cn,k = 1 in (3.1). Thus pn,k(x, y) and pm,l(x, y) with (n, k) 6= (m, l)
are orthogonal on Ω with weight function w(x, y) if (n, k) and (m, l) are related in the partial
ordering ≤, but the orthogonality will usually fail if (n, k) and (m, l) are not related in this
partial ordering, except for very special Ω and w(x, y), as will occur for cases related to root
systems.

Now suppose that Ω is invariant under (x, y) → (−x, y), and also w(x, y) = w(−x, y). Then,
by (3.2), pn,k(−x, y) = (−1)n−kpn,k(x, y), and in (3.1) cm,l = 0 if n − k and m− l do not have
the same parity.

Put
Ω′ := {(y, x2) | (x, y) ∈ Ω} and v(x, y) := w(y

1

2 , x) ((x, y ∈ Ω′). (3.3)

Proposition 3.1. Let qn,k(x, y) and rn,k(x, y) be dominance orthogonal polynomials on Ω′ with

respect to weight functions y−
1

2 v(x, y) and y
1

2 v(x, y), respectively. Then

qn,k(y, x
2) = pn+k,n−k(x, y), x rn,k(y, x

2) = pn+k+1,n−k(x, y). (3.4)

Proof We have
pn+k,n−k(x, y) =

∑

(i,j)≤(n+k,n−k)

ci,jx
i−jyj,

where only terms with i − j even occur. So we can substitute i − j = 2l and i + j = 2m,
ci,j = c′m,l. Then (i, j) ≤ (n+ k, n− k) iff (m, l) ≤ (n, k). Hence

pn+k,n−k(x, y) =
∑

(m,l)≤(n,k)

c′m,ly
m−lx2l,

while from (3.2) we have

∫

Ω′

pn+k,n−k(y
1

2 , x)xm−lyl v(x, y)y−
1

2 dx dy = 0 if (m, l) < (n, k).

This settles (3.4) for qn,k. A similar proof can be given for rn,k .

In particular, let Ω be the region

Ω := {(x, y) ∈ R
2 | 1− x+ y, 1 + x+ y, x2 − 4y > 0}. (3.5)
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Then (3.3) and (3.5) yield that

Ω′ = {(x, y) ∈ R
2 | y, y − 4x, (1 + x)2 − y > 0} = {(12x, 1 + x+ y) | (x, y) ∈ Ω}. (3.6)

So if Ω is given by (3.5) then, by (3.6), an affine transformation respecting the dominance partial
order of monomials maps Ω′ onto Ω. Thus we can formulate a variant of Proposition 3.1 which
again generalizes the proof of Theorem 10.1 in Sprinkhuizen [18]:

Proposition 3.2. Let Ω be given by (3.5). Let the pn,k(x, y) be monic dominance orthogonal

polynomials on Ω with respect to a weight function w(x, y) = w(−x, y). Define v(x, y) on Ω by

v(2y, x2 − 2y − 1) = w(x, y).

Let qn,k(x, y) and rn,k(x, y) be dominance orthogonal polynomials on Ω with respect to weight

functions (1 + x+ y)−
1

2 v(x, y) and (1 + x+ y)
1

2 v(x, y), respectively. Then

2−n+kqn,k(2y, x
2 − 2y − 1) = pn+k,n−k(x, y), (3.7)

2−n+kxrn,k(2y, x
2 − 2y − 1) = pn+k+1,n−k(x, y). (3.8)

If the pn,k(x, y) in the above Proposition are not monic but satisfy pn,k(2, 1) 6= 0 (which
probably is implied by the dominance orthogonality) then we can replace (3.7), (3.8) by

qn,k(2y, x
2 − 2y − 1)

qn,k(2, 1)
=
pn+k,n−k(x, y)

pn+k,n−k(2, 1)
, (3.9)

xrn,k(2y, x
2 − 2y − 1)

2rn,k(2, 1)
=
pn+k+1,n−k(x, y)

pn+k+1,n−k(2, 1)
. (3.10)

In further variants of these results, to be discussed below, we will formulate results in a
normalization as in (3.9), (3.10). If the assumption corresponding to pn,k(2, 1) 6= 0 would fail
then formulations in terms of monic polynomials would still be true.

3.2 Symmetric polynomials

In Proposition 3.2 replace x, y by ξ, η, and next put ξ = x+ y, η = xy. Then we can rephrase
this proposition in terms of symmetric polynomials in x, y. For this purpose make the following
observations.

• The map (x, y) → (ξ, η) is a diffeomorphism from

Λ := {(x, y) | −1 < y < x < 1} (3.11)

onto Ω given by (3.5). Furthermore dξ dη = (x− y) dx dy.

• Let n > k. Then, for certain ai, bi with a0 = b0 = 1 we have

(x+ y)n−k(xy)k =

[ 1
2
(n−k)]∑

i=0

ai(x
n−iyk+i + xk+iyn−i),

xnyk + xkyn =

[ 1
2
(n−k)]∑

i=0

bi(x+ y)n−k−2i(xy)k+i.
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• If
p(ξ, η) =

∑

(m,l)≤(n,k)

am,lξ
m−lηl (3.12)

for certain am,l with an,k 6= 0 then

p(x+ y, xy) =
∑

(m,l)≤(n,k)

bm,l(x
myl + xlym) (3.13)

for certain bm,l with bn,k 6= 0. Conversely, any symmetric polynomial given by the right-
hand side of (3.13) can be written as p(x+ y, xy) for some polynomial p(ξ, η) of the form
(3.12).

Now let W (x, y) be a weight function on Λ and let Pn,k(x, y) be symmetric polynomials of
the form of the right-hand side of (3.13) with bn,k 6= 0 such that

∫

Λ
Pn,k(x, y)(x

myl + xlym)W (x, y)(x− y) dx dy = 0 if (m, l) < (n, k).

We call the polynomials Pn,k(x, y) dominance orthogonal symmetric polynomials. Observe that
the polynomials pn,k(ξ, η) are dominance orthogonal on Ω with weight function w(ξ, η) iff the
polynomials Pn,k(x, y) := pn,k(x + y, xy) are dominance orthogonal on Λ with orthogonality
measure W (x, y)(x− y) dx dy, where W (x, y) := w(x+ y, xy).

Now we can rephrase Proposition 3.2 as follows.

Proposition 3.3. Let the Pn,k(x, y) be dominance orthogonal symmetric polynomials on Λ with

respect to a measure W (x, y)(x−y) dx dy, whereW (x, y) =W (−y,−x). Define a weight function

V on Λ by

V (xy + (1− x2)
1

2 (1− y2)
1

2 , xy − (1− x2)
1

2 (1− y2)
1

2 ) =W (x, y). (3.14)

Let Qn,k(x, y) and Rn,k(x, y) be dominance orthogonal symmetric polynomials on Λ with respect

to measures (1 + x)−
1

2 (1 + y)−
1

2V (x, y)(x − y) dx dy and (1 + x)
1

2 (1 + y)
1

2V (x, y)(x − y) dx dy,
respectively. Then

Qn,k(xy + (1− x2)
1

2 (1− y2)
1

2 , xy − (1− x2)
1

2 (1− y2)
1

2 )

Qn,k(1, 1)
=
Pn+k,n−k(x, y)

Pn+k,n−k(1, 1)
, (3.15)

(x+ y)Rn,k(xy + (1− x2)
1

2 (1− y2)
1

2 , xy − (1− x2)
1

2 (1− y2)
1

2 )

2Rn,k(1, 1)
=
Pn+k+1,n−k(x, y)

Pn+k+1,n−k(1, 1)
. (3.16)

if Pn,k(1, 1) 6= 0 for all n, k, or the same identities without denominators for monic polynomials.

On passing to trigonometric coordinates (3.15) and (3.16) can be rewritten as

Qn,k(cos(θ1 − θ2), cos(θ1 + θ2))

Qn,k(1, 1)
=
Pn+k,n−k(cos θ1, cos θ2)

Pn+k,n−k(1, 1)
, (3.17)

(cos θ1 + cos θ2)Rn,k(cos(θ1 − θ2), cos(θ1 + θ2))

2Rn,k(1, 1)
=
Pn+k+1,n−k(cos θ1, cos θ2)

Pn+k+1,n−k(1, 1)
. (3.18)
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Example 3.4. In the notation of Proposition 3.2 let

w(ξ, η) = wα,β,γ(ξ, η) := (1− ξ + η)α(1 + ξ + η)β(ξ2 − 4η)γ (α, β, γ > −1, α+ γ, β + γ > −3
2),

and put pn,k(ξ, η) = pα,β,γn,k (ξ, η) for the corresponding dominance orthogonal polynomials on
the region Ω defined by (3.5). These polynomials, nowadays known as Jacobi polynomials for
root system BC2, were first studied in [7] and subsequently in [18]. It follows from [7, (3.14)]
and [18, Theorem 8.1] that these polynomials, even if they are defined as dominance orthogonal
polynomials, still satisfy full orthogonality, and that they are nonzero at (2, 1) by the explicit
value [18, (7.3)].

Since
wγ,0,α(2η, ξ

2 − 2η − 1) = 4αwα,α,γ(ξ, η),

we have

p
γ,− 1

2
,α

n,k (2η, ξ2 − 2η − 1)

p
γ,− 1

2
,α

n,k (2, 1)
=
pα,α,γn+k,n−k(ξ, η)

pα,α,γn+k,n−k(2, 1)
,

ξ p
γ, 1

2
,α

n,k (2η, ξ2 − 2η − 1)

2p
γ, 1

2
,α

n,k (2, 1)
=
pα,α,γn+k+1,n−k(ξ, η)

pα,α,γn+k+1,n−k(2, 1)
.

(3.19)
These quadratic transformations were first given by Sprinkhuizen [18, Theorem 10.1]. They can
be conceptually explained by the fact that B2 and C2, while special cases of BC2, are isomorphic
root systems.

Equivalently, in the notation of Proposition 3.3, let

W (x, y) =Wα,β,γ(x, y) := (1− x)α(1− y)α(1 + x)β(1 + y)β(x− y)2γ

and put Pn,k(x, y) = Pα,β,γ
n,k (x, y) for the corresponding dominance orthogonal symmetric poly-

nomials on the region Λ. Then

P
γ,− 1

2
,α

n,k (cos(θ1 − θ2), cos(θ1 + θ2))

P
γ,− 1

2
,α

n,k (1, 1)
=
Pα,α,γ
n+k,n−k(cos θ1, cos θ2)

Pα,α,γ
n+k,n−k(1, 1)

,

(cos θ1 + cos θ2)P
γ, 1

2
,α

n,k (cos(θ1 − θ2), cos(θ1 + θ2))

2P
γ, 1

2
,α

n,k (1, 1)
=
Pα,α,γ
n+k+1,n−k(cos θ1, cos θ2)

Pα,α,γ
n+k+1,n−k(1, 1)

.

3.3 Symmetric Laurent polynomials

Let S2 be the symmetric group in 2 letters andW2 := S2⋉(Z2)
2 (the Weyl group of BC2). These

groups naturally act on Z
2. For λ = (λ1, λ2) ∈ Z

2 and x = (x1, x2) ∈ C
2 put xλ := xλ1

1 x
λ2

2 . Put

mλ(x) :=
∑

µ∈S2λ

xµ, m̃λ(z) :=
∑

µ∈W2λ

zµ (λ1 ≥ λ2 ≥ 0).

18



For certain aµ, bµ with aλ, bλ 6= 0 we have

mλ

(
1
2(z1 + z−1

1 ), 12 (z2 + z−1
2 )
)
=
∑

µ≤λ

aµm̃µ(z1, z2),

m̃λ(z1, z2) =
∑

µ≤λ

bµmµ

(
1
2(z1 + z−1

1 ), 12(z2 + z−1
2 )
)
.

Let W (x, y) be a weight function on the region Λ given by (3.11). Let

Γ :=
{
(z1, z2) ∈ C

2
∣∣ |z1| = |z2| = 1, 0 < arg z1 < arg z2 < π

}
. (3.20)

Then (z1, z2) 7→
(
1
2(z1 + z−1

1 ), 12(z2 + z−1
2 )
)
is a diffeomorphism from Γ onto Λ. On Γ define a

weight function ∆(z1, z2) such that

W
(
1
2 (z1 + z−1

1 ), 12(z2 + z−1
2 )
)
=

8∆(z1, z2)

(z1 − z−1
1 )(z2 − z−1

2 )(z1 + z−1
1 − z2 − z−1

2 )
.

Then
∫

∆
f(x, y)W (x, y) (x− y) dx dy =

∫

Γ
f
(
1
2(z1 + z−1

1 ), 12(z2 + z−1
2 )
)
∆(z1, z2)

dz1
z1

dz2
z2

.

Hence, if the Pn,k(x, y) are dominance orthogonal symmetric polynomials on Λ with orthogo-
nality measure W (x, y)(x− y) dx dy and if

pn,k(z1, z2) := Pn,k

(
1
2(z1 + z−1

1 ), 12(z2 + z−1
2 )
)

then the pn,k(z1, z2) are dominance orthogonal W2-invariant Laurent polynomials on Γ with
weight function ∆(z1, z2), i.e., we have for certain cm,l with cn,k 6= 0 that

pn,k(z1, z2) =
∑

(m,l)≤(n,k)

cm,l m̃m,l(z1, z2) (3.21)

such that
∫

∆
pn,k(z1, z2) m̃m,l(z1, z2)∆(z1, z2)

dz1
z1

dz2
z2

= 0 if (m, l) < (n, k).

Call the polynomials pn,k(z1, z2) monic if cn,k = 1 in (3.21).
Now we can rephrase Proposition 3.3 as follows.

Proposition 3.5. Let the pn,k(z1, z2) be dominance orthogonal W2-invariant polynomials on Γ
with respect to a weight function ∆(z1, z2), where ∆(z1, z2) = ∆(−z−1

2 ,−z−1
1 ). Define a weight

function ∆̃ on Γ by

∆̃(z1z2, z1z
−1
2 ) = ∆(z1, z2).
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Let qn,k(x, y) and rn,k(x, y) be dominance orthogonal W2-invariant polynomials on Γ with respect

to weight functions ∆̃(z1, z2) and (1+ z1)(1+ z−1
1 )(1 + z2)(1+ z−1

2 )∆̃(z1, z2), respectively. Then

qn,k(z1z2, z1z
−1
2 )

qn,k(1, 1)
=
pn+k,n−k(z1, z2)

pn,k(1, 1)
, (3.22)

(z1 + z−1
1 + z2 + z−1

2 )rn,k(z1z2, z1z
−1
2 )

4rn,k(1, 1)
=
pn+k+1,n−k(z1, z2)

pn+k+1,n−k(1, 1)
. (3.23)

if pn,k(1, 1) 6= 0 for all n, k, or the same identities without denominators for monic polynomials.

Example 3.6. In the notation of Proposition 3.2 let

∆(z1, z2) = ∆(z1, z2; q, t; a, b, c, d) = ∆+(z1, z2)∆+(z
−1
1 , z−1

2 ),

where

∆+(z1, z2) :=
(z21 ; q)∞

(az1, bz1, cz1, dz1; q)∞

(z22 ; q)∞
(az2, bz2, cz2, dz2; q)∞

(z1z2, z1z
−1
2 ; q)∞

(tz1z2, tz1z
−1
2 ; q)∞

,

and put pn,k(z1, z2) = pn,k(z1, z2; q, t; a, b, c, d) for the corresponding dominance orthogonal W2-
invariant monic Laurent polynomials on the region Γ defined by (3.20). These polynomials are
the two-variable case of the n-variable Koornwinder polynomials [8], [14], which are associated
with root system BCn. These polynomials are fully orthogonal [8]. Now observe that

∆(z1, z2; q, t; a,−a, q
1

2 ,−q 1

2 ) = ∆(z1z2, z1z
−1
2 ; q2, a2; t, qt,−1,−q).

Hence, by Proposition 3.2, we have for n+ k even that

Pn,k(z1, z2; q, t; a,−a, q
1

2 ,−q 1

2 ) = P 1

2
(n+k), 1

2
(n−k)(z1z2, z1z

−1
2 ; q2, a2; t, qt,−1,−q), (3.24)

Pn+1,k(z1, z2; q, t; a,−a, q
1

2 ,−q 1

2 ) = (z1 + z2 + z−1
1 + z−1

2 )

× P 1

2
(n+k), 1

2
(n−k)(z1z2, z1z

−1
2 ; q2, a2; t, qt,−q,−q2). (3.25)

3.4 Failure of quadratic transformations in the n-variable case if n > 2

There are no straightforward analogues in n > 2 variables of Propositions 3.2 and 3.3. Indeed,
symmetric polynomials in x1, . . . , xn invariant under xi → −xi (i = 1, . . . , n) correspond to poly-
nomials in e1, . . . , en (the elementary symmetric polynomials in x1, . . . , xn) which are invariant
under e2i−1 → −e2i−1 (i = 1, . . . , [12 (n + 1)]). If n > 2 then this last involutive linear transfor-
mation has more than one eigenvalue unequal to 1. Therefore, by Stanley [19, Theorem 4.1] (a
theorem going back to Shephard & Todd [16]), there do not exist n algebraically independent
invariants for this involution if n > 2.
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4 Discussion of results and further perspective

4.1 New results suggested by extrapolation from very few data

In all examples of quadratic transformations within multi-parameter families of special orthog-
onal polynomials in one or two variables we start with a subfamily depending on less than the
full number of parameters, and then there is an even degree case and an odd degree case giving
rise to two systems of orthogonal polynomials for which one of the parameters takes two special
values, say −1

2 in the even case and 1
2 in the odd case. Thus formulas and other results already

known for the system with which we started give results for these parameter values ±1
2 which

can be tentatively extrapolated for more general values of the parameter.

Example 4.1. Consider the quadratic tranformations (2.3) for Jacobi polynomials. They map
from the Gegenbauer case of parameters (α,α) to the Jacobi cases (α,±1

2 ). The Gegenbauer case
is easier than the general Jacobi case, so (2.3) may be helpful as a start to derive from known
results in the Gegenbauer case yet unknown results in the general Jacobi case. For instance, for
a system of orthogonal polynomials {pn} it is remarkable to have a lowering formula of the form

d

dx

(
ψ(x)n pn(φ(x))

)
= λnψ(x)

n−1 pn−1(φ(x)).

For Gegenbauer polynomials such a formula does exist (see [10, (3.3)]):

d

dx

(
(1 + x2)

1

2
n P (α,α)

n

(
x√

1 + x2

))
= (n+ α) (1 + x2)

1

2
(n−1) P

(α,α)
n−1

(
x√

1 + x2

)
, (4.1)

but probably not for general Jacobi polynomials. But let us see what we get for (α,±1
2 ) by

quadratic transformation of (4.1). First we have to iterate (4.1) once. Then apply (2.3). We
obtain

d2

dx2

(
(1 + x2)n P

(α,− 1

2
)

n

(
x2 − 1

x2 + 1

))
= 4(n + α)(n − 1

2) (1 + x2)n−1 P
(α,− 1

2
)

n−1

(
x2 − 1

x2 + 1

)
,

(
d2

dx2
+

2

x

d

dx

)(
(1 + x2)n P

(α, 1
2
)

n

(
x2 − 1

x2 + 1

))
= 4(n + α)(n + 1

2) (1 + x2)n−1 P
(α, 1

2
)

n−1

(
x2 − 1

x2 + 1

)
.

Then the straightforward extrrapolation

(
d2

dx2
+

2β + 1

x

d

dx

)(
(1 + x2)n P (α,β)

n

(
x2 − 1

x2 + 1

))
= 4(n+α)(n+β) (1+x2)n−1 P

(α,β)
n−1

(
x2 − 1

x2 + 1

)

can indeed be proved, see [10, (4.4)].

Example 4.2. In this example we again have a result obtaiend by quadratic transformation,
now valid on a two-dimensional subdomain of a three-dimensional parameter space, but still can
make a meaningful guess how to extrapolate.
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TheBC2-type Jacobi polynomials pα,β,γn,k (ξ, η) given in Example 3.4 have an explicit expansion
[15, (6.11)] (with different notation following [15, (3.3)]) in terms of polynomials

(1− ξ + η)
1

2
(m+l) P

(γ,γ)
m−l

(
1− 1

2ξ

(1− ξ + η)
1

2

)
(0 ≤ l ≤ m ≤ n, l ≤ k). (4.2)

The polynomials (4.2) can be recognized as Jack polynomials in two variables and the mentioned
expansion was seen in [14, Section 11.2] as a limit case of Okounkov’s binomial formula for
Koornwinder polynomials in two variables. Now by (3.19) and parity we have a quadratic
transformation

pα,α,γn+k,n−k(ξ, η) = const. p
− 1

2
,γ,α

n,k (−2η, ξ2 − 2η − 1). (4.3)

We can explicitly expand the right-hand side of (4.3) in terms of polynomials

ξm+lP
(α,α)
m−l

(
1 + η

ξ

)
, (4.4)

and thus this is also an explicit expansion for the left-hand side of (4.3). The other quadratic
transformation in (3.19) gives a similar result for pα,α,γn+k+1,n−k(ξ, η) (with x

m+l in (4.4) replaced

by xm+l+1). This suggests, and is indeed confirmed in [15, Section 7], that pα,β,γn,k (ξ, η) has a nice
expansion in terms of the polynomials

ξmP
(α,β)
l

(
1 + η

ξ

)
(0 ≤ m− l ≤ n− k, m+ l ≤ n+ k), (4.5)

which can be considered as a two-parameter extension of the Jack polynomials in two variables.
In fact, by [15, Theorem 7.7], the polynomials (4.2) and (4.5) are limit cases of pα,β,γn,k (ξ, η)

for β → ∞ and γ → ∞, respectively.

4.2 Further perspective

In the one-variable part of this paper we gave a quite extensive treatment of quadratic transfor-
mations between families in the Askey and q-Askey scheme. Similar treatments should be given
in the two-variable case. On the one hand we have orthogonal polynomials in two variables
which are products of two polynomials from the (q-)Askey scheme and an elementary function,
of which the orthogonal polynomials on the triangle involving products of two Jacobi polynomi-
als are a well-known example. Quadratic transformations for such polynomials can be derived
by suitable substitutions of quadratic transformations for polynomials in one variable. On the
other hand there are the orthogonal polynomials associated with root system BC2. By work of
various authors a large part of the (q-)Askey scheme has now been realized for BC2. It can be
expected that corresponding schemes of quadratic transformations can also be given in the BC2

case.
Finally it would be interesting to do further explicit work for Koornwinder polynomials in

two variables analogous to the q = 1 case treated in (3.2) and extending [14, Section 11.1].
Analogous to Example 4.2 for q = 1, the quadratic transformations (3.24), (3.25) may be helpful
for making a start in such work.
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