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1 Introduction

A remarkable feature of the Bekenstein-Hawking entropy formula is its universality: the

leading contribution to the black hole entropy is controlled by the area of the event horizon,

regardless of the details of the solutions or the matter content of the theory. It is therefore

interesting to investigate if there is any notion of universality and/or robustness in the

quantum corrections to the entropy of a black hole.

Generically there is no expectation that the quantum corrections to the Bekenstein-

Hawking area law are universal: according to effective quantum field theory they are sensi-

tive to the details of the UV completion of the low energy theory in consideration. However,

there is a special class of quantum corrections that are entirely determined by the low en-

ergy theory [1–9]: the leading logarithmic correction is governed by the one-loop effective

action of the low energy modes in the gravitational theory. These corrections, therefore,

provide a powerful infrared window into the microstates.

The claim that logarithmic corrections computed from the IR theory agree with results

for the UV completion has been successfully tested in many cases where string theory

provides a microscopic counting formula for black hole microstates. We refer to [10, 11] for

a broad overview and [12–15] for more recent developments in AdS4/CFT3. Logarithmic

corrections have also been evaluated for a plethora of other black holes [16, 17] where a

microscopic account still awaits.1

The coefficients multiplying these logarithms follow some interesting patterns. The

black hole entropy has the schematic structure

SBH =
AH

4G
+

1

2
(Clocal + Czm) log

AH

G
+ · · · , (1.1)

where we highlight the two terms (area law+logarithm) controlled by low energy gravity

and use dots to denote subleading corrections that generally depend on the UV completion.

Czm is an integer that accounts for zero modes in the path integral. Clocal refers to the

constant term in the heat kernel that captures the non-zero eigenvalues of the one-loop

determinant [19]. It is expressed as a density [20, 21]

Clocal =

∫
d4x

√
g a4(x) , (1.2)

where the integrand takes the form

a4(x) =
c

16π2
WµνρσW

µνρσ − a

16π2
E4 , (1.3)

for the backgrounds we will consider. In this expression, E4 is the Gauss-Bonnet term and

Wµνρσ is the Weyl tensor. The constants c and a are familiar from related computations

of the trace anomaly of the stress tensor. Their values depend on the content of matter

fields and their couplings to the background black hole solution.2

1In certain cases the logarithm can be accounted for very simply by using thermodynamics [16, 18]: the

measure that controls the change from, for example, the microcanonical to the canonical ensemble correctly

reproduces the gravitational result without leading to new insight in the microscopic theory.
2It is important to note that the couplings are not necessarily minimal, so the values of c and a may be

nonstandard functions of the matter content.
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Clocal contains non-trivial information about the background so this function generally

depends greatly on the matter content of the theory and the parameters of the black

hole [16]. However, under certain conditions Clocal has a universal structure [17, 22]: for

Kerr-Newman black holes embedded in N ≥ 2 supergravity, the c-anomaly vanishes. This

leads to a remarkable simplification since then the integral in (1.2) is just a topological

invariant. The logarithmic correction is therefore universal in the sense that its does not

depend on details of the black hole background; it is determined entirely by the content of

massless fields.

The class of backgrounds considered in [17] was constructed such that, in the extremal

limit, they continuously connect to BPS solutions. For this reason we denote this class as

the BPS branch. The black holes on the BPS branch are not generally supersymmetric,

but their couplings to matter are arranged such that supersymmetry is attained in the

limit. One of the motivations for the present article is to study universality of logarithmic

corrections outside of the BPS branch in D = 4 supergravity.

Supergravity (with N ≥ 2) also allows for black holes that do not approach BPS

solutions in the extremal limit. We refer to such solutions as the non-BPS branch. In

their minimal incarnation, they correspond to solutions of the D = 4 theory obtained by a

Kaluza-Klein reduction of five dimensional Einstein gravity [23]. In a string theory setup

it is natural to identify the compact Kaluza-Klein dimension with the M-theory circle, and

then these solutions are charged with respect to electric D0-brane charge and magnetic

D6-brane charge. Such configurations break supersymmetry even in the extremal limit.

Therefore, they offer an interesting arena for studying logarithmic corrections and their

possible universality.

The minimal Kaluza-Klein theory needed to describe the non-BPS branch is a four

dimensional Einstein-Maxwell-dilaton theory where the couplings are dictated by the re-

duction from five dimensions. We will refer to the black hole solutions of this theory as

“Kaluza-Klein black holes.” These solutions can be embedded in supergravity, as we will

discuss in detail. In particular, we will consider the embedding of the Kaluza-Klein theory

in N = 4, 6, 8 supergravity and for N = 2 we consider ST (n) models,3 which include the

well-known STU -model as a special case.

Our technical goal is to evaluate the Seeley-DeWitt coefficient a4(x) for the Kaluza-

Klein black hole when it is embedded in one of the supergravities. This involves the study

of quadratic fluctuations around the background, potentially a formidable task since there

are many fields and generally they have non-minimal couplings to the background and

to each other. Fortunately we find that, in the cases we consider, global symmetries of

supergravity organize the quadratic fluctuations into manageable groups of fields that are

decoupled from one another. We refer to such groups of fields as “blocks”. There are only

five distinct types of blocks, summarized in table 1. The KK block comprises the quadratic

fluctuations in the seed theory, i.e. the Kaluza Klein theory with no additional matter

fields. The scalar block is a single minimally coupled spectator scalar field. The remaining

3We work out the bosonic fluctuations for N = 2 with any prepotential. It is only for fermionic

fluctuations that we restrict our attention to the ST (n) models.
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Multiplet Block content

KK block 1 graviton, 1 vector, 1 scalar

Vector block 1 vector and 1 (pseudo)scalar

Scalar block 1 real scalar

Gravitino block 2 gravitini and 2 gaugini

Gaugino block 2 gaugini

Table 1. Decomposition of quadratic fluctuations.

matter blocks have unfamiliar field content and their couplings to the background are non-

standard. The great simplification is that the spectrum of quadratic fluctuations of each

supergravity theory we consider can be characterized by the number of times each type of

block appears. We record those degeneracies in tables 4 and 8.

Once the relevant quadratic fluctuations are identified it is a straightforward (albeit

cumbersome) task to evaluate the Seeley-DeWitt coefficient a4(x). We do this for every

block listed above and so determine their contribution to Clocal in (1.1). Having already

computed the degeneracies of the blocks, it is elementary algebra to find the values of c

and a for each supergravity theory. Our results for individual blocks are given in table 7

and those for theories are given in table 8.

One of our main motivation is to identify theories where c = 0 since for those the

coefficient of the logarithm is universal. We find that the non-trivial cancellations on the

BPS branch reported in [17] are much rarer on the non-BPS branch. For example, on the

non-BPS branch the c coefficient does not vanish for any N = 2, 4 supergravity we consider,

whatever their matter content. Therefore, as we discuss in section 7, this implies that the

logarithmic correction to the entropy depends on black hole parameters in a combination

different from the horizon area.

In contrast, for N = 6, 8 we find that c = 0. The vanishing of c on the non-BPS

branch is rather surprising, since it is apparently due to a different balance among the

field content and couplings than the analogous cancellation on the BPS-branch. It would

be very interesting to understand the origin of this cancellation from a more fundamental

principle. In our closing remarks we discuss some directions to pursue.

The outline of this paper is as follows. In section 2, we discuss Kaluza-Klein theory

and its Kaluza-Klein black hole solution. This gives the “seed solution”, the minimal

incarnation of the non-BPS branch. In section 3, we embed this theory into N = 8

supergravity, and in section 4, we derive the quadratic fluctuations around the black hole

in theN = 8 environment. In section 5, we discuss the embedding of the Kaluza-Klein black

hole into theories with less supersymmetry by truncating our previous results forN = 8 and

then exploiting global symmetries of supergravity. In section 6, we discuss the embedding

of the non-BPS branch directly into N = 2 supergravity, without making reference to

N = 8. This generalizes some N = 2 results to a general prepotential. In section 7, we

evaluate the c and a coefficients for the Kaluza-Klein black hole in its various embeddings

– 4 –
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and discuss the resulting quantum corrections to the black hole entropy. Finally, section 8

summarizes our results and discusses future directions. Appendix A contains the technical

details behind the Seeley-DeWitt coefficients presented in section 7.

2 The Kaluza-Klein black hole

Our starting point is a black hole solution to Kaluza-Klein theory. It is sufficient for our

purposes to consider the original version of Kaluza-Klein theory: the compactification to

four spacetime dimensions of Einstein gravity in five dimensions. In this section, we briefly

present the theory and its black hole solutions. In the following sections we embed the

theory and its solutions into supergravity and study perturbations around the Kaluza-

Klein black holes in the framework of supergravity.

The Lagrangian of Kaluza-Klein theory is given by4

e−1LKK =
1

16πG

(
R− 2DµΦD

µΦ− 1

4
e−2

√
3ΦFµνF

µν

)
. (2.1)

The scalar field Φ parametrizes the size of the compact fifth dimension and the field strength

Fµν is the 4D remnant of the metric with one index along the fifth dimension. The La-

grangian (2.1) gives the equations of motion

D2Φ+

√
3

8
e−2

√
3ΦFµνF

µν = 0 , (2.2)

Dµ

(
e−2

√
3ΦFµν

)
= 0 , (2.3)

Rµν −
1

2
gµνR = (2DµΦDνΦ− gµνD

ρΦDρΦ) (2.4)

+
1

2
e−2

√
3Φ

(
FµρF

ρ
ν − 1

4
gµνFρσF

ρσ

)
.

Some of our considerations will apply to any solution of the Kaluza-Klein theory (2.1)

but our primary interest is in asymptotically flat black holes. We therefore focus on the

general Kaluza-Klein black hole [23–25]. It is characterized by the black hole mass M

and angular momentum J , along with the electric/magnetic charges (Q,P ) of the Maxwell

field. Its 4D metric is given by

ds24 = g(KK)
µν dxµdxν = − H3√

H1H2
(dt−B)2 +

√
H1H2

(
dr2

∆
+ dθ2 +

∆

H3
sin2θ dφ2

)
, (2.5)

4We use e and
√−g interchangeably, to denote the square root of the determinant of the metric.
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where

H1 = r2 + a2cos2θ + r(p− 2m) +
p

p+ q

(p− 2m)(q − 2m)

2

− p

2m(p+ q)

√
(q2 − 4m2)(p2 − 4m2)a cos θ , (2.6)

H2 = r2 + a2cos2θ + r(q − 2m) +
q

p+ q

(p− 2m)(q − 2m)

2

+
q

2m(p+ q)

√
(q2 − 4m2)(p2 − 4m2)a cos θ , (2.7)

H3 = r2 − 2mr + a2cos2θ , (2.8)

∆ = r2 − 2mr + a2 , (2.9)

and the 1-form B is given by

B =
√
pq

(pq + 4m2)r −m(p− 2m)(q − 2m)

2m(p+ q)H3
a sin2θ dφ . (2.10)

The matter fields are the gauge field

A(KK) = −
[
2Q

(
r +

p− 2m

2

)
+

√
q3(p2 − 4m2)

4m2(p+ q)
a cos θ

]
H−1

2 dt

−
[
2P

(
H2 + a2 sin2 θ

)
cos θ +

√
p(q2 − 4m2)

4m2(p+ q)3

×
[
(p+ q)(pr −m(p− 2m)) + q(p2 − 4m2)

]
a sin2θ

]
H−1

2 dφ , (2.11)

and the dilaton

e−4Φ(KK)/
√
3 =

√
H2

H1
. (2.12)

The superscript “KK” on g
(KK)
µν , A(KK) , and Φ(KK) refers to the Kaluza-Klein black hole.

These background fields should be distinguished from the exact fields in (2.1)–(2.4) which

generally include fluctuations around the background.

The four parameters m, a, p, q appearing in the solution determine the four physical

parameters M,J,Q, P as

2GM =
p+ q

2
, (2.13)

GJ =

√
pq(pq + 4m2)

4(p+ q)

a

m
, (2.14)

Q2 =
q(q2 − 4m2)

4(p+ q)
, (2.15)

P 2 =
p(p2 − 4m2)

4(p+ q)
. (2.16)

– 6 –
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Note that q, p ≥ 2m, with equality corresponding to the absence of electric or magnetic

charge, respectively.

The spectrum of quadratic fluctuations around the general black hole solution to

Kaluza-Klein theory is complicated. In section 6 we start with a general solution to the

equations of motion (2.2)–(2.4) such as the Kaluza-Klein black hole g
(KK)
µν , A

(KK)
µ , and

Φ(KK) presented above. We construct an embedding into N = 2 SUGRA with arbitrary

cubic prepotential and study fluctuations around the background. Although we make some

progress in this general setting it proves notable that the analysis simplifies greatly when

the background dilaton is constant Φ(KK) = 0.

In the predominant part of the paper we therefore focus on the simpler case from the

outset and assume Φ(KK) = 0. We arrange this by considering the non-rotating black hole

J = 0 with P 2 = Q2. In this special case the metric g
(KK)
µν is (2.5) with

H1 = H2 =

(
r +

q − 2m

2

)2

,

H3 = ∆ = r2 − 2mr , (2.17)

and the gauge field (2.11) becomes

A(KK) = −2Q

(
r +

q − 2m

2

)−1

dt− 2P cos θdφ . (2.18)

In the simplified setting it is easy to eliminate the parameters m, q in favor of the physical

mass 2GM = q and charges P 2 = Q2 = 1
8(q

2 − 4m2) but we do not need to do so.

When Φ(KK) = 0 the geometry of the Kaluza-Klein black hole is in fact the same as the

Reissner-Nordström black hole. Indeed, they both satisfy the standard Einstein-Maxwell

equations

R(KK)
µν =

1

2

(
F (KK)
µρ F (KK)ρ

ν − 1

4
gµνF

(KK)
ρσ F (KK)ρσ

)
, (2.19)

DµF
(KK)µν = 0 . (2.20)

However, whereas the Reissner-Nordström solution can be supported by any combination

of electric and magnetic charges (Q,P ) with the appropriate value of Qeff =
√

P 2 +Q2,

for the Kaluza-Klein black hole we must set P 2 = Q2 so

F (KK)
µν F (KK)µν = 0 , (2.21)

or else the dilaton equation of motion (2.2) is inconsistent with a constant dilaton Φ(KK).

This difference between the two cases is closely related to the fact that, after embedding in

supergravity, the Kaluza-Klein black hole does not preserve supersymmetry in the extremal

limit.

3 The KK black hole in N = 8 SUGRA

In this section, we review N = 8 SUGRA and show how to embed a solution of D = 4

Kaluza-Klein theory with constant dilaton into N = 8 SUGRA.

– 7 –



J
H
E
P
0
5
(
2
0
1
8
)
0
7
9

3.1 N = 8 supergravity in four dimensions

The matter content of N = 8 SUGRA is a spin-2 graviton gµν , 8 spin-3/2 gravitini ψAµ

(with A = 1, . . . , 8), 28 spin-1 vectors BMN
µ (antisymmetric in M,N = 1, . . . , 8), 56 spin-

1/2 gaugini λABC (antisymmetric in A,B,C = 1, . . . , 8), and 70 spin-0 scalars. The La-

grangian can be presented as [26]5

e−1L(N=8) =
1

4
R− 1

2
ψ̄Aµγ

µνρDνψAρ −
i

8
GMN

µν H̃
(F)µν
MN − 1

12
λ̄ABCγ

µDµλABC

− 1

24
PµABCDP̄

µABCD − 1

6
√
2
ψ̄Aµγ

νγµ
(
P̄ABCD
ν + ˆ̄PABCD

ν

)
λBCD (3.1)

+
1

8
√
2

(
ψ̄Aµγ

νF̂ABγ
µψνB − 1√

2
ψ̄CµF̂ABγ

µλABC +
1

72
ǫABCDEFGH λ̄ABCF̂DEλFGH

)
,

in conventions where all fermions are in Majorana form, the metric is “mostly plus”, and

Hodge duality is defined by

H̃
(F)µν
MN = − i

2
ǫµνρσH

(F)
MNρσ , ǫ0123 = e . (3.2)

Below we also use (R/L) superscripts on fermions, to denote their right- and left-handed

components.

We include all the glorious details of N = 8 SUGRA to facilitate comparison with other

references. The symmetry structure is the most important aspect for our applications so

we focus on that in the following. The starting point is the 56-bein

V =

(
U MN
AB VABMN

V̄ ABMN ŪAB
MN

)
, (3.3)

that is acted on from the left by a local SU(8) symmetry (with indices A,B, . . .) and from

the right by a global E7(7) duality symmetry (with indices M,N). The connection

∂µVV−1 =


2Q

[C
µ[A δ

D]
B] PµABCD

P̄ABCD
µ 2Q̄

[A
µ [Cδ

B]
D]


 , (3.4)

defines an SU(8) gauge fieldQ B
µA that renders the SU(8) redundant. We therefore interpret

PµABCD as covariant derivatives of scalar fields that belong to the coset E7(7)/SU(8) with

dimension 133 − 63 = 70. The term in (3.1) that is quadratic in PµABCD is therefore a

standard kinetic term for the physical scalars. The terms linear in PµABCD, including

P̂µABCD = PµABCD + 2
√
2

(
ψ̄
(L)
µ[Aλ

(R)
BCD] +

1

24
ǫABCDEFGH ψ̄(R)E

µ λ(L)FGH

)
, (3.5)

do not contribute to quadratic fluctuations around a background with constant scalars.

The covariant derivatives Dµ that act on fermions are SU(8) covariant so at this point the

Lagrangian is manifestly invariant under the local SU(8).

5To match with the conventions of many authors, when discussing N = 8 supergravity, we set Newton

constant to κ2 = 8πG = 2. In section 6, we will restore the explicit κ dependence.
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The gauge fields and their duals are

GMN
µν = ∂µB

MN
ν − ∂νB

MN
µ , (3.6)

H̃
(F)µν
MN =

4i

e

∂L
∂GMN

µν

. (3.7)

They enter the Lagrangian (3.1) explicitly. Their Pauli couplings are written in terms of

F̂AB = γµνFABµν , (3.8)

where

FABµν=F (F)
ABµν +

√
2

(
ψ̄
(R)
[A[µψ

(L)
[B[ν −

1√
2
ψ̄
(L)C
[µ γν]λ

(L)
ABC − 1

288
ǫABCDEFGH λ̄CDE

(L) γµνλ
FGH
(R)

)
,

(3.9)

with (
F (F)
ABµν

F̄ (F)AB
µν

)
=

1√
2
V
(
GMN

µν + iH
(F)
MNµν

GMN
µν − iH

(F)
MNµν

)
. (3.10)

These relatives of the gauge fields encode couplings and E7(7) duality symmetries. They

satisfy the self-duality constraint

FµνAB = F̃µνAB . (3.11)

This self-duality constraint is a complex equation that relates the real fields GMN
µν , H

(F)
MNµν

and their duals linearly, with coefficients that depend nonlinearly on scalar fields. It has a

solution of the form

H̃
(F)
MNµν = −i

(
NMNPQG

−PQ
µν + h.c.

)
+ (terms quadratic in fermions) , (3.12)

where the self-dual (anti-self-dual) parts of the field strengths are defined as

G±MN
µν =

1

2

(
GMN

µν ± G̃MN
µν

)
, (3.13)

and the gauge coupling function is

NMNPQ =
(
U MN
AB − VABMN

)−1 (
U MN
AB + VABPQ

)
. (3.14)

Using (3.12) for H̃
(F)
MNµν and (3.8)–(3.10) for F̂AB we can eliminate these fields from the

Lagrangian (3.1) in favor of the dynamical gauge field GMN
µν , embellished by scalar fields

and fermion bilinears.

The relatively complicated classical dynamics of N = 8 SUGRA is due to the interplay

between fermion bilinears, duality, and the scalar coset. These disparate features are all

important in our considerations but they largely decouple. For example, although we need

the Pauli couplings of fermions, we need them only for trivial scalars.

In our explicit computations it is convenient to remove the SU(8) gauge redundancy

by writing the 56-bein (3.3) in a symmetric gauge

V = exp

(
0 WABCD

W̄ABCD 0

)
, (3.15)
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where the 70 complex scalars WABCD are subject to the constraint

W̄ABCD =
1

24
ǫABCDEFGHWEFGH . (3.16)

After fixing the local SU(8) symmetry, the theory still enjoys a global SU(8) symmetry.

Moreover, it is linearly realized when compensated by SU(8) ⊂ E7(7). We identify this

residual global SU(8) as the R-symmetry SU(8)R. This identification proves useful repeat-

edly. For example, it is according to this residual symmetry that WABCD transforms as an

antisymmetric four-tensor.

3.2 The embedding into N = 8 SUGRA

The embedding of the Kaluza-Klein black hole (2.5), (2.17), (2.18) in N = 8 SUGRA is

implemented by

g̊(SUGRA)
µν = g(KK)

µν ,

G̊MN
µν =

1

4
ΩMNF (KK)

µν ,

W̊ABCD = 0 ,

(All background fermionic fields) = 0 , (3.17)

where

ΩMN = diag(ǫ, ǫ, ǫ, ǫ) , ǫ =

(
0 1

−1 0

)
. (3.18)

In this section (and beyond) we shall often declutter formulae by omitting the superscript

“KK” when referring to fields of the seed solution.

To establish the consistency of our embedding, in the following we explicitly check

that the N = 8 SUGRA equations of motion are satisfied by the background (3.17).

Vanishing fermions satisfy trivially their equations of motion, because they appear at least

quadratically in the action. The equations of motion for the scalars WABCD take the form

(Terms at least linear in W̊ABCD or quadratic in fermions)

= 3 G̊+[AB
µν G̊+CD]µν +

1

8
ǫABCDEFGHG̊−EF

µν G̊−GHµν . (3.19)

The scalars W̊ABCD and the fermions vanish so the right-hand side of the equation must also

vanish. Inserting G̊MN
µν from our embedding (3.17), we find the condition F

(KK)
µν F (KK)µν =

0. This condition is satisfied by the seed solution (2.21) because the electric and magnetic

charges are equal P = Q. Therefore it is consistent to take all scalars W̊ABCD = 0 in

N = 8 SUGRA.

The N = 8 Einstein equation is given by

Rµν −
1

2
gµνR =

1

6
PABCD{µP̄

ABCD
ν} − 1

12
gµνPρABCDP̄

ρABCD

+Re(NMNPQ)

(
GMN

µρ G ρPQ
ν − 1

4
gµνG

MN
ρσ GρσPQ

)
. (3.20)
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The vanishing of the scalars W̊ABCD = 0 implies

V̊ =


δ

[M
[A δ

N ]
B] 0

0 δ
[A
[Mδ

B]
N ]


 , N̊MNPQ = 1MNPQ , (3.21)

so the Einstein equation simplifies to

R̊µν −
1

2
g̊µνR̊ = G̊MN

µρ G̊ ρ
νMN − 1

4
g̊µνG̊

MN
ρσ G̊ρσ

MN . (3.22)

The embedding (3.17) reduces the right-hand side so that these equations coincide with

the Einstein equation (2.19) satisfied by the seed solution.

Finally, the equations of motion for the vector fields in N = 8 SUGRA are

Dµ

(
NMNPQG

−µνPQ + N̄MNPQG
+µνPQ

)
= 0 . (3.23)

The embedding (3.17) and the simplifications (3.21) reduce these equations to the Maxwell

equation DµF
(KK)µν = 0, consistent with the seed equation of motion (2.20).

In summary, the equations of motion in N = 8 SUGRA are satisfied by the em-

bedding (3.17). Therefore, for any seed solution that satisfies (2.19)–(2.21), the embed-

ding (3.17) gives a solution to N = 8 SUGRA. Our primary example is the Kaluza-Klein

black hole with dilaton Φ(KK) = 0.

4 Quadratic fluctuations in N = 8 SUGRA

In this section we expand the Lagrangian (3.1) forN = 8 SUGRA to quadratic order around

the background (3.17). We reparametrize the fluctuation fields so that they all transform

in representations of the global USp(8) symmetry group preserved by the background. We

then partially decouple the quadratic fluctuations into different blocks corresponding to

different representations of USp(8).

4.1 Global symmetry of fluctuations

The N = 8 SUGRA theory has a global SU(8) symmetry, as discussed at the end of

section 3. The graviton, gravitini, vectors, gaugini, and scalars transform in the repre-

sentations 1, 8, 28, 56 and 70 of this SU(8) group. The 28, 56, and 70, are realized as

antisymmetric combinations of the fundamental representation 8.

A generic background solution does not respect all the symmetries of the theory, so

the global SU(8) symmetry is not generally helpful for analyzing fluctuations around the

background. Our embedding (3.17) into N = 8 SUGRA indeed breaks the SU(8) symmetry

since G̊MN
µν = 1

4Ω
MNF

(KK)
µν is not invariant under the SU(8) group. However, the matrix

ΩMN (3.18) can be interpreted as a canonical symplectic form so our embedding respects

most of the global SU(8), it preserves a USp(8) subgroup. Therefore, different USp(8)

representations cannot couple at quadratic order and it greatly simplifies the analysis to

organize fluctuations around the background as representations of USp(8). In the following

we analyze one USp(8) representation at a time.
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• Graviton.

The graviton hµν = δgµν = gµν − g̊µν is a singlet of SU(8) and remains a singlet of

USp(8).

• Vectors.

The fluctuations of the gauge fields δGMN
µν = GMN

µν − G̊MN
µν transform in the 28

of SU(8) which has the branching rule to USp(8) 28 → 1 ⊕ 27. We realize this

decomposition directly on the fluctuations by defining

fµν = ΩMNδGMN
µν , fMN

µν = δGMN
µν − 1

8
ΩMNfµν . (4.1)

The fMN
µν are Ω-traceless fMN

µν ΩMN = 0 by construction so they have only 2×(28−1)

degrees of freedom which transform in the 27 of USp(8). The remaining 2 degrees of

freedom are in fµν , which transforms in the 1 of USp(8). This decomposition under

the global symmetry shows that the graviton can only mix with the “overall” gauge

field fµν and not with fMN
µν .

• Scalars.

The scalars transform in 70 of SU(8) and the branching rule to USp(8) is 70 →
1⊕ 27⊕ 42. We realize this decomposition by defining

W ′ = WABCDΩ
ABΩCD , W ′

AB = WABCDΩ
CD − 1

8
W ′ΩAB ,

W ′
ABCD = WABCD − 3

2
W ′

[ABΩCD] −
1

16
W ′Ω[ABΩCD] . (4.2)

W ′
ABCD is antisymmetric in all indices and Ω-traceless on any pair or pairs, so it

is in the 42 of USp(8). W ′
AB is antisymmetric, Ω-traceless, and hence in the 27 of

USp(8). The remainder W ′ has no index and is in the 1 of USp(8). The obvious

construction of an antisymmetric four-tensor representation of SU(8) has 70 complex

degrees of freedom, but the scalars WABCD in N = 8 SUGRA have 70 real degrees

of freedom that realize an irreducible representation, as implemented by the reality

constraint (3.16). The decomposition of this reality constraint under SU(8) → USp(8)

shows that the scalar W ′ that couples to gravity is real W
′
= W ′, as expected from

Kaluza-Klein theory. It also implies the reality condition on the four-tensor

W
′ABCD

=
1

24
ǫABCDEFGHW ′

EFGH , (4.3)

and an analogous condition on the two-tensor W ′AB. An interesting aspect of these

reality conditions is that, just like the KK block must couple to a scalar (as opposed

to a pseudoscalar), the condition on the USp(8) four-tensor demonstrates that the

scalar moduli must comprise exactly 22 scalars and 20 pseudoscalars. The vector

multiplet couples vectors and scalars/pseudoscalars precisely so that it restores the

overall balance between scalars and pseudoscalars required by N = 8 SUGRA, with

12 scalars and 15 pseudoscalars.

– 12 –



J
H
E
P
0
5
(
2
0
1
8
)
0
7
9

The distinctions between scalars and pseudoscalars are interesting because these de-

tails must be reproduced by viable microscopic models of black holes. Extrapolations

far off extremality of phenomenological models that are motivated by the BPS limit

lead to entropy formulae [27–29] with moduli dependence that is very similar but not

identical to the result found here. It would be interesting to construct a model for non-

extremal black holes that combines the features of the BPS and the non-BPS branch.

• Gravitini.

The gravitini ψAµ transform in the fundamental 8 of SU(8). The gravitini only

carry one SU(8) index which cannot be contracted with the symplectic form ΩAB.

Therefore, the gravitini also transform in the 8 of USp(8).

• Gaugini.

The gaugini λABC of N = 8 SUGRA transform in the 56 of the global SU(8). The

branching rule to USp(8) is 56 → 8 ⊕ 48. We can realize this decomposition by

introducing

λ′
A =

1√
12

λABCΩ
BC , (4.4)

and

λ′
ABC = λABC − 1

8
(λADEΩ

DE)ΩBC . (4.5)

The gaugini λ′
A transform in the 8 of USp(8). We will find that these gaugini are

coupled to the gravitini. This is allowed because they have the same quantum num-

bers under the global USp(8). The normalization 1/
√
12 introduced in (4.4) ensures

that the gaugini retain a canonical kinetic term after the field redefinition.

The gaugini λ′
ABC introduced in (4.5) satisfy the constraint λ′

ABCΩ
BC = 0. This

ensures that they transform in the 48 of USp(8). No other fields transform in the

same way under the global symmetry so these gaugini decouple from other fields.

They can of course mix among themselves and we will find that they do in fact have

nontrivial Pauli couplings. However, the normalization of the fields is inconsequential

and we have retained the normalization inherited from the full N = 8 SUGRA.

Table 2 summarizes the decomposition of quadratic fluctuations according to their

representations under the global USp(8) that is preserved by the background.

4.2 The decoupled fluctuations

The quadratic fluctuations around any bosonic background decouple into a bosonic part

δ2Lbosons and a fermionic part δ2Lfermions because fermions always appear quadratically

in the Lagrangian. As we expand the Lagrangian (3.1) around the background (3.17) to

quadratic order, these parts further decouple into representations of the preserved USp(8)

global symmetry.

The bosonic fluctuations therefore decouple into three blocks

δ2L(N=8)
bosons = δ2L(N=8)

KK + δ2L(N=8)
vector + δ2L(N=8)

scalar . (4.6)
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Representations Fields

1 hµν , fµν , W ′

8 ψAµ, λ′
A

27 fµν
AB, W ′

AB

42 W ′
ABCD

48 λ′
ABC

Table 2. The USp(8) representation content of the quadratic fluctuations.

• KK block.

The first block δ2L(N=8)
KK , which we call the “KK block”, consists of all fields that are

singlets of USp(8): the graviton hµν , 1 vector with field strength fµν , and 1 scalar

W ′. The Lagrangian for this block is given by

e−1δ2L(N=8)
KK = h̄µν�h̄µν −

1

4
h�h+ 2h̄µν h̄ρσRµρνσ − 2h̄µν h̄µρR

ρ
ν − hh̄µνRµν

−FµνFρσh̄
µρh̄νσ + aµ (�gµν −Rµν) a

ν + 2
√
2F ρ

ν fµρh̄
µν

−4∂µφ∂
µφ+ 2

√
3Fµνfµνφ− 4

√
6Rµν h̄

µνφ , (4.7)

after the fields were redefined as hµν →
√
2hµν , fµν → 4fµν , and φ = − 1

8
√
3
W ′.

We also decomposed the graviton into its trace h = gρσhρσ and its traceless part

h̄µν = hµν − 1
4gµνg

ρσhρσ, and further included the gauge-fixing term

e−1Lg.f. = −
(
Dµh̄µρ −

1

2
Dρh

)(
Dν h̄ ρ

ν − 1

2
Dρh

)
− (Dµaµ)

2 . (4.8)

The rather complicated Lagrangian (4.7) represents the theory of fluctuations around

any solution of Kaluza-Klein theory (2.1) with constant dilaton. The fields fµν and φ

correspond to the fluctuations of the field strength and the dilaton. The gauge-fixed

theory (4.7) must be completed with additional ghost terms. We discuss those in

appendix A.

• Vector blocks.

The second block δ2L(N=8)
vector consists of all fields that transform in the 27 of USp(8):

fµν
AB and W ′

AB. We use fµν
a and W ′

a to denote the 27 independent vectors and scalars

respectively. It includes two slightly different parts. One part has 12 copies of a

vector coupled to a scalar W
′(R)
a with the Lagrangian

e−1δ2L(N=8)(R)
vector = −1

2
∂µW ′(R)

a ∂µW
′(R)
a − fµν

a faµν −W ′(R)
a faµνF

µν , a = 1, . . . , 12 ,

(4.9)
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and the other has 15 copies of a vector coupled to a pseudoscalar W
′(P)
a given by

e−1δ2L(N=8)(P)
vector = −1

2
∂µW ′(P)

a ∂µW
′(P)
a − fµν

a faµν − iW ′(P)
a faµνF̃

µν , a = 13, . . . , 27.

(4.10)

Although these two Lagrangians are distinct, they give equations of motion that are

equivalent under a duality transformation. This is consistent with the fact that SU(8)

duality symmetry is the diagonal combination of local SU(8) and global E7(7) duality

symmetry, where the latter is not realized at the level of the Lagrangian.

• Scalar blocks.

The last bosonic block δ2L(N=8)
scalar consists of the remaining 42 scalars, transforming in

the 42 of USp(8). There are no other bosonic fields with the same quantum numbers

so, these fields can only couple to themselves. The explicit expansion around the

background (2.19)–(2.21) shows that all these scalars are in fact minimally coupled

e−1δ2L(N=8)
scalar = − 1

24
∂µW ′

ABCD∂µW
′ABCD

. (4.11)

We now turn to the quadratic fluctuations for the fermions. Since they appear at least

quadratically in the Lagrangian the bosonic fields can be fixed to their background values.

In this case, the N = 8 SUGRA Lagrangian (3.1) simplifies to

e−1δ2L(N=8)
fermions = −1

2
ψ̄Aµγ

µνρDνψAρ −
1

12
λ̄ABCγ

µDµλABC +
1

4
√
2
ψ̄Aµγ

νF̊ABγ
µψνB

−1

8
ψ̄CµF̊ABγ

µλABC +
1

288
√
2
ǫABCDEFGH λ̄ABCF̊DEλFGH , (4.12)

where all fermions are in Majorana form and

F̊AB =
1√
2

(
G̊ABµν + γ5

˚̃
GABµν

)
γµν =

1

2
√
2
ΩABFµνγ

µν . (4.13)

The field redefinitions introduced in section 4.1 decouple this Lagrangian as

δ2L(N=8)
fermions = δ2L(N=8)

gravitino + δ2L(N=8)
gaugino . (4.14)

• Gravitino blocks.

The first block δ2L(N=8)
gravitino consists of the 8 gravitini ψAµ and the 8 gaugini λ′

A singled

out by the projection (4.4). The gravitini and the gaugini both transform in 8 of

USp(8) and couple through the Lagrangian

e−1δ2L(N=8)
gravitino = −ψ̄Aµγ

µνρDνψAρ − λ̄′
Aγ

µDµλ
′
A +

1

4
ΩABψ̄Aµ

(
Fµν + γ5F̃

µν
)
ψBν

−
√
6

8
ψ̄AµFρσγ

ρσγµλ′
A +

1

4
ΩABλ̄′

AFρσγ
ρσλ′

B . (4.15)

The indices take values A,B = 1, . . . 8. However, this block actually decouples into

4 identical pairs, with a single pair comprising two gravitini and two gaugini. The

canonical pair is identified by restricting the indices to A,B = 1, 2 and so ΩAB → ǫAB.

The other pairs correspond to A,B = 3, 4, A,B = 5, 6, and A,B = 7, 8.
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Degeneracy Multiplet Block content USp(8) Lagrangian

1 KK block 1 graviton, 1 vector, 1 scalar 1 (4.7)

27 Vector block 1 vector and 1 (pseudo)scalar 27 (4.9)

42 Scalar block 1 real scalar 42 (4.11)

4 Gravitino block 2 gravitini and 2 gaugini 8 (4.15)

24 Gaugino block 2 gaugini 48 (4.16)

Table 3. Decoupled quadratic fluctuations in N = 8 supergravity around the KK black hole.

• Gaugino blocks.

The second block δ2L(N=8)
gaugino consists of the 48 gaugini (4.5) that transform in the 48

of USp(8). These 48 gaugini decompose into 24 identical groups that decouple from

one another. Each group has 2 gaugini and a Lagrangian given by

e−1δ2L(N=8)
gaugino = −λ̄aγ

µDµλa −
1

8
ǫabλ̄aFµνγ

µνλb , (4.16)

where a, b = 1, 2 denote the 2 different gaugini in one group. It is interesting that

no fermions in the theory are minimally coupled. Moreover, the numerical strength

of the Pauli couplings to black holes on the non-BPS branch are different from the

corresponding Pauli couplings for fermions on the BPS branch [17].

4.3 Summary of quadratic fluctuations

In the previous sections we defined a seed solution (2.19)–(2.21) of Kaluza-Klein theory

with vanishing dilaton and embedded it into N = 8 SUGRA through (3.17). In this sec-

tion, we have studied fluctuations around the background by expanding the N = 8 SUGRA

Lagrangian (3.1) to quadratic order. In section 4.1, we decomposed the fluctuations in rep-

resentations of the USp(8) symmetry preserved by the background. In section 4.2, we have

decoupled the quadratic fluctuations into blocks corresponding to distinct representations

of USp(8). They are summarized in table 3.

5 Consistent truncations of N = 8 SUGRA

In this section we present consistent truncations from N = 8 SUGRA to N = 6, N = 4,

N = 2 and N = 0. These truncations are well adapted to the KK black hole in that all its

nontrivial fields are retained. In other words, the truncations amount to removal of fields

that are trivial in the background solution.

It is easy to analyse the spectrum of quadratic fluctuations around the KK black hole

in the truncated theories. In each case some of the fluctuating fields are removed, but

always consistently so that blocks of fields that couple to each other are either all retained

or all removed. Therefore, the fluctuation spectrum in all these theories can be described in
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Multiplet \ Theory N = 8 N = 6 N = 4 N = 2 N = 0

KK block 1 1 1 1 1

Gravitino block 4 3 2 1 0

Vector block 27 15 n+ 5 nV 0

Gaugino block 24 10 2n nV − 1 0

Scalar block 42 14 5n− 4 nV − 1 0

Table 4. The degeneracy of multiplets in the spectrum of quadratic fluctuations around the KK

black hole embedded in various theories. For N = 4, the integer n is the number of N = 4 matter

multiplets. For N = 2, the integer nV refers to the ST (nV − 1) model.

terms of the same simple blocks that appear in N = 8 supergravity. For these truncations

the entire dependence on the theory is encoded in the degeneracy of each type of block.

They are summarized in table 4.

All the truncations in this section heavily utilize the SU(8)R global symmetry of N = 8

supergravity. We therefore recall from the outset that the gravitons, gravitini, vectors,

gaugini, and scalars transform in the irreducible representations 1, 8, 28, 56, 70 of SU(8)R.

5.1 The N = 6 truncation

The N = 6 truncation restricts N = 8 SUGRA to fields that are even under the SU(8)R
element diag(I6,−I2). This projection preserves N = 6 local supersymmetry since the

8 gravitini of N = 8 SUGRA are in the fundamental 8 of SU(8)R and so exactly two

gravitini are odd under diag(I6,−I2) and projected out. The branching rules of the matter

multiplets under SU(8)R → SU(6)R × SU(2)matter are

70 → (15,1)⊕ (15,1)⊕ (20,2) ,

56 → (20,1)⊕ (15,2)⊕ (6,1) ,

28 → (15,1)⊕ (6,2)⊕ (1,1) . (5.1)

These branching rules follow from decomposition of the SU(8)R four-tensor TABCD (70),

the three-tensor TABC (56), and the two-tensor TAB (28), by splitting the SU(8)R indices

as A,B, . . . → (α, a), (β, b), . . . where the lower case indices refer to SU(2)matter (greek) and

SU(6)R (latin). The truncation to N = 6 SUGRA retains only the fields that are invariant

under SU(2)matter so fields in the 2 are removed. Therefore the truncated theory has 30

scalar fields, 26 gaugini, and 16 vector fields. Taking the 6 gravitini and the graviton into

account as well, the total field content comprises 64 bosonic and 64 fermionic degrees of

freedom.

The claim that the truncation is consistent means that the equations of motion of the

retained fields are sufficient to guarantee that all equations of motion are satisfied, as long

as the removed fields vanish. In general, the primary obstacle to truncation is that the

equations of motion for the omitted fields may fail. This is addressed here because the

– 17 –



J
H
E
P
0
5
(
2
0
1
8
)
0
7
9

equations of motion for fields in the 2 of SU(2)matter only involve terms in the 2. Therefore

their equations of motion are satisfied when all fields in the 2 vanish.

Our interest in the consistent truncation of N = 8 SUGRA to N = 6 SUGRA is the

application to the KK black hole. The embedding (3.17) of the Kaluza-Klein black hole

into N = 8 SUGRA turns on the four field strengths on the skew-diagonal of the 28 (which

is realized by an antisymmetric 8 × 8 matrix of field strengths FAB). The entries on the

skew diagonal are all contained in the SU(6)R × SU(2)matter subgroup of SU(8)R, because

the antisymmetric representation of SU(2) is trivial. The embedding of the KK black hole

in N = 8 SUGRA therefore defines an embedding in N = 6 SUGRA as well. In other

words, the truncation and the embedding are compatible.

We can find the spectrum of quadratic fluctuations in N = 6 SUGRA either by trun-

cating the spectrum determined in the N = 8 SUGRA context, or by directly analyzing

the spectrum of fluctuations around the N = 6 solution. Consistency demands that these

procedures agree.

We begin from the SU(6) content of N = 6 SUGRA: 1 graviton, 6 gravitini, 15 ⊕ 1

vectors, 20 ⊕ 6 gaugini, and 2(15) scalars. The KK black hole in N = 6 SUGRA breaks

the global symmetry SU(6) → USp(6). Therefore, the quadratic fluctuations around the

background need not respect the SU(6) symmetry, but they must respect the USp(6).

Their USp(6) content is: 1 graviton, 6 gravitini, 14 ⊕ 2(1) vectors, 14 ⊕ 2(6) gaugini,

2(14⊕1) scalars. The black hole background breaks Lorentz invariance so the equations of

motion for fluctuations generally mix Lorentz representations, as we have seen explicitly in

section 4, but they always preserve global symmetries. In the present context the mixing

combines the fields into 1 KK block (gravity + 1 vector + 1 scalar), 3 gravitino blocks (1

gravitino + 1 gaugino) (transforming in the 6), 14⊕ 1 vector blocks (1 vector + 1 scalar),

10 gaugino blocks (transforming in the 14⊕ 6), and 14 (minimally coupled) scalars.

To verify these claims and find the specific couplings for each block, we could analyze

the equations of motion for N = 6 SUGRA using the methods of section 4. However, no

new computations are needed because it is clear that the fields in the truncated theory are

a subset of those in N = 8 SUGRA. In that context we established that the fluctuations

decompose into 1 (KK block), 8 (gravitini mixing with gaugini), 27 (vectors mixing with

scalars), 24 (gaugini with Pauli couplings to the background), and 42 (minimal scalars)

of the USp(8) that is preserved by the background. The consistent truncation to N = 6

SUGRA removes some of these fluctuations as it projects the global symmetry USp(8) →
USp(6). This rule not only establishes the mixing claimed in the preceding paragraph but

also shows that all couplings must be the same in the N = 8 and N = 6 theories. It is

only the degeneracy of each type of block that is reduced by the truncation.

5.2 The N = 4 truncation

The N = 4 truncation restricts N = 8 SUGRA to fields that are even under the SU(8)R
element diag(I4,−I4). This projection breaks the global symmetry SU(8)R → SU(4)R ×
SU(4)matter. It preserves N = 4 local supersymmetry since the 8 gravitini of N = 8

SUGRA are in the 4 of SU(4)R. The branching rules of the matter multiplets under the

– 18 –



J
H
E
P
0
5
(
2
0
1
8
)
0
7
9

symmetry breaking are

70 → 2(1,1)⊕ (6,6)⊕ (4, 4̄)⊕ (4̄,4) ,

56 → (4̄,1)⊕ (6,4)⊕ (4,6)⊕ (1, 4̄) ,

28 → (1,6)⊕ (6,1)⊕ (4,4) . (5.2)

The consistent truncation preserving N = 4 supersymmetry is defined by omission of all

fields in the 4 (or 4̄) of SU(4)matter.

There is a unique supergravity with n N = 4 matter multiplets. It has a global

SU(4)R symmetry that acts on its supercharges and also a global SO(n)matter that reflects

the equivalence of all matter multiplets. The consistent truncation of N = 8 by the element

diag(I4,−I4) retains a SU(4)R × SU(4)matter symmetry so, recalling that SO(6) and SU(4)

are equivalent as Lie algebras, the truncated theory must be N = 4 SUGRA with n = 6

matter multiplets.

Several important features of N = 4 SUGRA are succinctly summarized by the scalar

coset
SU(1, 1)

U(1)
× SO(6, n)

SO(6)× SO(n)
. (5.3)

It has dimension 6n + 2 with scalars transforming in 2(1,1) ⊕ (6,n) under SU(4)R ×
SO(n)matter. It also encodes the SU(1, 1) ≃ SL(2) electromagnetic duality of the 6+n vector

fields in the fundamental of SO(6, n). The representation content obtained by removal of

4 (and 4̄) from the branchings (5.2) is consistent with these expectations when n = 6.

The N = 4 truncation has a natural interpretation in perturbative Type II string

theory. There is a simple duality frame where the diagonal element diag(I4,−I4) changes

the sign on the RR sector and interchanges the RNS and NSR sectors; so the consistent

truncation projects on to the common sector of Type IIA and Type IIB supergravity.

The complete string theory orbifold includes twisted sectors as well. It is conveniently

implemented by a flip of the GSO projection and is equivalent to T-duality between Type

IIA and Type IIB string theory.

The embedding of the KK black hole into N = 8 SUGRA is compatible with the

truncation to N = 4 SUGRA: the four field strengths on the skew-diagonal of the 28 are

all contained in the SU(4)R × SU(4)matter subgroup of SU(8)R and therefore retained in

the truncation to N = 4 SUGRA. The embedding of the KK black hole in N = 8 SUGRA

therefore defines an embedding in N = 4 SUGRA as well. The consistent truncation just

removes fields that are not excited by the KK black hole in N = 8 SUGRA.

The quadratic fluctuations around the KK black hole in N = 8 SUGRA similarly

project on to the N = 4 setting. As discussed in section 4, the KK black hole in N = 8

SUGRA breaks the global symmetry SU(8)R → USp(8) and this symmetry breaking pat-

tern greatly constrains the spectrum of fluctuations around the black hole. Moreover, the

symmetry breaking pattern is largely preserved by the consistent truncation: the analogous

breaking pattern in N = 4 SUGRA is SU(4)R × SU(4)matter → USp(4)R × USp(4)matter.

For example, the entire KK block (with a graviton, a vector, and a scalar), identified as

the 1 of USp(8), is unchanged by the consistent truncation.
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The 27 vector blocks (4.9)–(4.10), each with a vector coupled to a scalar, are pertur-

bations of the 8 × 8 matrix of field strengths FAB after its symplectic trace is removed.

The branching (5.2) of the 28 under SU(4)R × SU(4)matter shows that 16 vector blocks

are projected out by the truncation. None of these are affected by the symplectic trace

so 27 − 16 = 11 vector blocks remain in N = 4 SUGRA. Among the 38 scalars from the

coset (5.3) with n = 6 there is 1 coupled to gravity and 11 that couple to the vectors, so

26 minimally coupled scalars remain. They parametrize the coset

SU(1, 1)× SO(5, 5)

USp(4)×USp(4)
. (5.4)

The fermionic sector is simpler because the truncation removes exactly one half of the

fermions. The retained fermions are essentially identical to those that are projected away,

they differ at most in their chirality and the KK black holes is insensitive to this distinction.

The quadratic fluctuations for the fermions in N = 8 SUGRA are 4 gravitino pairs (with

each pair including two gravitini coupled to two Weyl fermions, a total of 32 degrees of

freedom) and 24 gaugino pairs with Pauli couplings to the background field strength. In

N = 4 SUGRA with 6 matter multiplets there are 4 gravitino pairs and 12 gaugino pairs.

There is a simple extension of these results to the case of N = 4 SUGRA with n 6= 6

matter multiplets. For this generalization, we recast the symmetry breaking by the field

strengths that have been designated N = 4 matter as SO(6)matter → SO(5)matter using the

equivalences SU(4) = SO(6) and USp(4) = SO(5) as Lie algebras. In this form the symme-

try breaking just amounts to picking the direction of a vector on an S5. We can equally con-

sider any number n of matter fields and break the symmetry SO(n)matter → SO(n−1)matter

by picking a vector on Sn−1. The only restriction is n ≥ 1 in order to ensure that there is a

direction to pick in the first place. This more general construction gives the scalar manifold

SU(1, 1)× SO(5, n− 1)

SO(5)× SO(n− 1)
. (5.5)

In particular, it has 5n− 4 dimensions, each corresponding to a minimally coupled scalar

field. The duality group read off from the numerator correctly indicates n+5 vector fields,

not counting the one coupling to gravity. Each of these vector fields couples to a scalar

field, as in (4.9)–(4.10).

The black hole attractor mechanism offers a perspective on the scalar coset (5.5). The

attractor mechanism is usually formulated in the context of extremal black holes in N ≥ 2

supergravity where it determines the value of some of the scalars at the horizon in terms of

black hole charges. Importantly, the attractor mechanism generally leaves other scalars un-

determined. Such undetermined scalars can take any value, so they are moduli. The hyper-

scalars inN = 2 BPS black hole backgrounds are well-known examples of black hole moduli.

In the case of extremal (but non-supersymmetric) black holes in N ≥ 2 supergravity

the moduli space is determined by the centralizer remaining after extremization of the black

hole potential over the full moduli space of the theory. The result for non-BPS black holes in

N = 4 supergravity was obtained in [30] and agrees with (5.5). Our considerations general-

ize this result to a moduli space of non-extremal KK black holes. The exact masslessness of

moduli is protected by the breaking of global symmetries so supersymmetry is not needed.
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5.3 The N = 2 truncation

Starting from N = 4 SUGRA with n N = 4 matter multiplets, there is a consistent

truncation to N = 2 SUGRA with n + 1 N = 2 vector multiplets that respects the KK

black hole background. It is defined by keeping only fields that are even under the SU(4)R
element diag(I2,−I2).

All fermions, both gravitini and gaugini are in the fundamental 4 of SU(4)R so the

consistent truncation retains exactly 1/2 of them. In particular, the SUSY is reduced

from N = 4 to N = 2. The bosons are either invariant under SU(4)R or they transform

as an antisymmetric tensor 6. The branching rule 6 → 2(1, 1) ⊕ (2, 2) under SU(4)R →
SU(2)2 determines that its truncation retains only the 2 fields on the skew-diagonal of the

antisymmetric 4× 4 tensor.

The truncated theory has 2(2n+4) fermionic degrees of freedom and the same number

of bosonic ones. We can implement the truncation directly on the N = 4 coset (5.3) and

find that scalars of the truncated theory parametrize

SU(1, 1)

U(1)
× SO(2, n)

SO(2)× SO(n)
. (5.6)

This theory is known as the ST (n) model. In the special case n = 2 the ST (2) model

is the well-known STU model. This model has enhanced symmetry ensuring that its 3

complex scalar fields are equivalent and similarly that its 4 field strengths are equivalent.

The STU model often appears as a subsector of more general N = 2 SUGRA theories,

such as those defined by a cubic prepotential. These in turn arise as the low energy limit

of string theory compactified on a Calabi-Yau manifold, so the STU model may capture

some generic features of such theories.

The consistent truncation to the ST (n) model in N = 2 SUGRA is compatible with

the embedding of the KK black hole in N = 8 SUGRA. The embedding (3.17) in N = 8

excites precisely the field strengths on the skew-diagonal, breaking SU(8)R → USp(8). As

discussed in (5.2), they were retained by the truncation to N = 4 SUGRA. The further

truncation of the antisymmetric representation to N = 2 SUGRA projects 6 → 2(1,1) and

so it specifically retains field strengths on the skew diagonal. Moreover, the gauge fields

that are projected out are in the 2 of an SU(2) so they are not coupled to other fields at

quadratic order.

It can be shown that the N = 4 embedding identifies the “dilaton” of the KK black

hole with the scalar (as opposed to the pseudoscalar) in the coset SU(1, 1)/U(1). This

part of the scalar coset is untouched by the truncation to N = 2 SUGRA. Therefore, the

truncation to N = 2 does not remove any of the fields that are turned on in the background,

nor any of those that couple to them at quadratic order. This shows that the consistent

truncation to N = 2 SUGRA, like other truncations considered in this section, removes

only entire blocks of fluctuations: the fields that remain have the same couplings as they

do in the N = 8 context.
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The breaking pattern determines the moduli space of scalars for the black hole back-

ground as

SU(1, 1)× SO(1, n− 1)

SO(n− 1)
. (5.7)

In particular this confirms that, among the 2n + 2 scalars of the ST (n) model, exactly n

are moduli and so are minimally coupled massless scalars.

5.4 More comments on consistent truncations

The natural endpoint of the consistent truncations is N = 0 SUGRA, i.e. the pure Kaluza-

Klein theory (2.1). We constructed our embedding (3.17) into N = 8 SUGRA so that

the Kaluza-Klein black hole would remain a solution also to the full N = 8 SUGRA.

Thus we arranged that all the additional fields required by N = 8 supersymmetry would

be “unimportant”, in the sense that they can be taken to vanish on the Kaluza-Klein

black hole. It is therefore consistent to remove them again, and that is the content of the

“truncation to N = 0 SUGRA”.

From this perspective, the truncations considered in this section are intermediate stages

between N = 8 and N = 0 in that only some of the “unimportant” fields are included. For

each value of N = 6, 4, 2, the requirement that the Kaluza-Klein black hole is a solution

largely determines the truncation. The resulting embedding of the STU model into N = 8

SUGRA is very simple, and possibly simpler than others that appear in the literature, in

that symmetries between fields in the STU model are manifest even without performing

any electromagnetic duality.

Having analyzed the spectrum of fluctuations around Kaluza-Klein black holes in the

context of SUGRA with N = 8, 6, 4, 2 (and even N = 0), it is natural to inquire about

the situation for SUGRA with odd N . Our embeddings in N = 6, 4, 2 rely on the skew-

diagonal nature of the embedding in N = 8 so they do not have any generalizations to odd

N . This fact is vacuous for N = 7 SUGRA which automatically implies N = 8. Moreover,

it is interesting that N = 3, 5 SUGRA do not have any non-BPS branch at all: all extremal

black holes in these theories must be BPS (they preserve supersymmetry) [30]. This may

indicate that our examples exhaust a large class of non-BPS embeddings.

6 The general KK black hole in N = 2 SUGRA

In this section, we start afresh with an arbitrary solution to the D = 4 Kaluza-Klein

theory (2.1), such as the general Kaluza-Klein black hole (2.2)–(2.4). We embed this

solution into N = 2 SUGRA with a general cubic prepotential and analyze the quadratic

fluctuations around the background in this setting. Along the way we make additional

assumptions that further decouple the fluctuations, and ultimately specialize to a constant

background dilaton and ST (n) prepotential. In this case the final results of the direct

computations will be consistent with those found in section 5.3, by truncation from N = 8

SUGRA, and summarized in section 4.3.
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The setup in this section complements our discussion of the Kaluza-Klein black hole

in N = 8 SUGRA and its truncations to N < 8 SUGRA. Here we do not assume vanishing

background dilaton Φ(KK) = 0 from the outset and we consider more general theories.

6.1 N = 2 SUGRA with cubic prepotential

We first introduce N = 2 SUGRA. We allow for matter in the form of nV N = 2 vector

multiplets with couplings encoded in a cubic prepotential

F =
1

κ2
dijkX

iXjXk

X0
, (6.1)

where dijk is totally symmetric. We also include nH N = 2 hypermultiplets. The theory

is described by the N = 2 SUGRA Lagrangian

e−1L(N=2) = κ−2

(
R

2
− ψ̄iµγ

µνρDνψ
i
ρ

)
− gαβ̄∂

µzα∂µz
β̄ − 1

2
huv∂µq

u∂µqv

+

(
−1

4
iNIJF

+I
µν F

+µνJ + F−I
µν ImNIJQ

µν−J

−1

4
gαβ̄χ̄

α
i /Dχiβ̄ − ζ̄A /DζA +

1

2
gαβ̄ψ̄iµ/∂z

αγµχiβ̄ + h.c.

)
, (6.2)

where

F±
µν =

1

2

(
Fµν ± F̃µν

)
, with F̃µν = − i

2
ǫµνρσF

ρσ , (6.3)

Qµν−J ≡ ∇ᾱX̄
J

(
1

8
gβᾱCβγδχ̄

γ
i γ

µνχδ
jǫ

ij + χ̄ᾱiγµψνjǫij
)

(6.4)

+XJ

(
ψ̄µ
i ψ

ν
j ǫ

ij +
1

2
κ2ζ̄AγµνζBCAB

)
.

We follow the notations and conventions from [31]. In particular, the χα
i = PLχ

α
i , α =

1, . . . , nV denote the physical gaugini and ζA = PLζ
A, A = 1, . . . , 2nH denote the hyper-

fermions. The Kähler covariant derivatives are

∇αX
I =

(
∂α +

1

2
κ2∂αK

)
XI , (6.5)

∇ᾱX
I =

(
∂ᾱ − 1

2
κ2∂ᾱK

)
XI , (6.6)

where the Kähler potential K

e−κ2K = −i(XI F̄I − FIX̄
I) , (6.7)

with FI = ∂IF = ∂F
∂XI .

The projective coordinates XI (with I = 0, . . . , nV ) are related to physical coordinates

as zi = Xi/X0 (with i = 1, . . . , nV ). We split the complex scalars zi into real and imaginary

parts

zi = xi − iyi . (6.8)
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With cubic prepotential (6.1) we have

gij̄ = ∂I∂J̄K = κ−2

(
−3dij

2d
+

9didj
4d2

)
, (6.9)

where we define

dij ≡ dijky
k , di ≡ dijky

jyk , d ≡ dijky
iyjyk . (6.10)

Finally, the scalar-vector coupling are encoded in

NIJ = µIJ + iνIJ , (6.11)

with

µIJ = κ−2



2dijkx

ixjxk −3dijkx
jxk

−3dijkx
jxk 6dijkx

k


 , (6.12)

and

νIJ = κ−2



−d+ 6dℓmxℓxm − 9

d(dℓx
ℓ)2 9

d(dℓx
ℓ)di − 6diℓx

ℓ

9
d(dℓx

ℓ)di − 6diℓx
ℓ 6dij − 9

d(didj)


 . (6.13)

6.2 The embedding into N = 2 SUGRA

We want to embed our seed solution into N = 2 SUGRA. The starting point is a solution to

the equations of motion (2.2), (2.3), (2.4) of the Kaluza-Klein theory. We denote the corre-

sponding fields g
(KK)
µν , F

(KK)
µν and Φ(KK). The fields of N = 2 SUGRA are then defined to be

g(SUGRA)
µν = g(KK)

µν ,

F 0
µν =

1√
2
F (KK)
µν , F i

µν = 0, for 1 ≤ i ≤ nV

xi = 0, for 1 ≤ i ≤ nV ,

yi = ciy0, with y0 =
exp

(
−2Φ(KK)/

√
3
)

(dijkcicjck)1/3
,

(All other bosonic fields in N = 2 SUGRA) = 0 ,

(All fermionic fields in N = 2 SUGRA) = 0 . (6.14)

This field configuration solves the equations of motion of N = 2 SUGRA for any seed

solution to the Kaluza-Klein theory. In the following, we will often declutter formulae by

omitting the superscript “KK” when referring to fields in the seed solution.

The embedding (6.14) is really a family of embeddings parameterized by the nV con-

stants ci (with i = 1, . . . , nV ). They are projective coordinates on the moduli space

parametrized by the nV scalar fields yi with the constraint

d = dijky
iyjyk = exp

(
−2

√
3Φ(KK)

)
. (6.15)

In the special case of the non-rotating Kaluza-Klein black hole with P = Q, we have

Φ(KK) = 0 and so the constraint is d = 1. More generally, d is the composite field defined

through the constraints (6.10) and related to the Kaluza-Klein dilaton by (6.15).
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6.3 Decoupled fluctuations: general case

The Lagrangian for quadratic fluctuations around a bosonic background always decouples

into a bosonic sector and fermionic sector,

δ2L(N=2) = δ2L(N=2)
bosons + δ2L(N=2)

fermions . (6.16)

With the above embedding into N = 2, each sector further decouples into several blocks.

The bosonic sector decomposes as the sum of three blocks

δ2L(N=2)
bosons = δ2L(N=2)

gravity + δ2L(N=2)
vectors + δ2L(N=2)

scalars . (6.17)

The “gravity block” δ2L(N=2)
gravity consists of the graviton δgµν , the gauge field δA0

µ, and the

nV real scalars δyi:

e−1δ2L(N=2)
gravity =

1√−g
δ2

[√−g

(
R

2κ2
− gij∂µy

i∂µyj +
d

4κ2
F 0
µνF

µν0

)]
. (6.18)

Generically, the fields δgµν , δA
0
µ and δyi all mix together. This block can nonetheless be

further decoupled with simplifying assumptions, as we will discuss later.

The block δ2L(N=2)
vectors consists of the nV vector fields δAi

µ and the nV real pseudoscalars

δxi:

e−1δ2L(N=2)
vectors=gij

(
−∂µδx

i∂µδxj − 1

2
dFµνF

µνδxiδxj +
√
2dFµνδx

iδFµνj − dδF i
µνδF

µνj

)
.

The Kähler metric gij can be diagonalized and we obtain nV identical decoupled copies,

that we call “vector block”, each consisting in one vector field and one real scalar. Denoting

the fluctuating field fµν , one such copy has the Lagrangian

e−1δ2L(N=2)
vector = −1

2
∂µx∂

µx− d

4
FµνF

µνx2 +
d

2
Fµνf

µνx− d

4
fµνf

µν , (6.19)

using conventional normalizations for the scalar fields.

The last bosonic block contains the hyperbosons:

e−1δ2L(N=2)
scalars = −1

2
huv∂µδq

u∂µδqv . (6.20)

The quaternionic Kähler metric huv is trivial on the background. Hence, this block decou-

ples at quadratic order into 4nH independent minimally coupled massless scalars.

We next turn to the fermions. The Lagrangian (6.2) is the sum of the decoupled

Lagrangians

δ2L(N=2)
fermions = δ2L(N=2)

hyperfermions + δ2L(N=2)
gravitino-gaugino . (6.21)

The hyperfermions consist of nH identical copies, that we call “hyperfermion block”, each

containing two hyperfermions. For any two such fermions we can take CAB = ǫAB with

A,B = 1, 2. The resulting Lagrangian is

e−1δ2L(N=2)
hyperfermion = −2ζ̄A /DζA +

(
κ2

2
F−I
µν νIJX

J ζ̄AγµνζBǫAB + h.c.

)
. (6.22)
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Degeneracy Multiplet Block content Lagrangian

1 Gravity block 1 graviton, 1 vector, nV scalars (6.18)

nV Vector block 1 vector and 1 (pseudo)scalar (6.19)

4nH Scalar block 1 real scalar (6.20)

1 Gravitino-gaugino block 2 gravitini and 2nV gaugini (6.24)

nH Hyperfermion block 2 hyperfermions (6.23)

Table 5. Decoupled quadratic fluctuations in N = 2 SUGRA around a general KK black hole.

In our background, we use (6.14), (6.13) to find

e−1δ2L(N=2)
hyperfermion = −2ζ̄A /DζA −

(
d

1
2

8
F−
µν ζ̄

AγµνζBǫAB + h.c.

)
. (6.23)

We used the T -gauge [31] to fix the projective coordinates XI resulting in X0 = (8d)−1/2.

The “gravitino-gaugino block” contains two gravitini and nV gaugini and has La-

grangian

e−1δ2L(N=2)
gravitino-gaugino = − 1

κ2
ψ̄iµγ

µνρDνψ
i
ρ +

(
− d

1
2

4κ2
F−
µνψ̄

µ
i ψ

ν
j ǫ

ij

+
9

256κ2d
3
2

F−
µνdᾱg

βᾱdβγδχ̄
γ
i γ

µνχδ
jǫ

ij − 3i

8κ2d
1
2

F−
µνdᾱχ̄

ᾱiγµψνjǫij

−1

4
gαβ̄χ̄

α
i /Dχiβ̄ +

1

2
gαβ̄ψ̄ia/∂z

αγaχiβ̄ + h.c.

)
. (6.24)

Generally, all the gravitini and gaugini couple nontrivially but they can be further decou-

pled in simpler cases, as we will discuss later.

Summarizing so far: given any Kaluza-Klein solution, the embedding (6.14) provides

solutions of N = 2 SUGRA. We have expanded the N = 2 Lagrangian around this back-

ground to quadratic order and observed that the fluctuations can be decoupled as shown

in table 5. These results are reminiscent of the analogous structure for N = 8 SUGRA,

summarized in (3.17). However, with the more general assumptions made here, there are

more scalars in the N = 2 gravity block than in the analogous N = 8 KK block and these

additional scalars do not generally decouple from gravity. Similarly, the N = 2 gravitino-

gaugino block here includes more gaugini than the analogous N = 8 gravitino block.

6.4 Decoupled fluctuations: constant dilaton

So far, we have been completely general about the underlying Kaluza-Klein solution. In

this section, we further decouple the quadratic fluctuations by assuming that the scalar

fields of N = 2 SUGRA are constant

yi = constant, i = 1, . . . , nV . (6.25)
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From the embedding (6.14), this is equivalent to taking the Kaluza-Klein dilaton to vanish

Φ(KK) = 0 , (6.26)

since we can always rescale the field strengths to arrange for d = dijky
iyjyk = 1. As noted

previously, this is satisfied by the non-rotating Kaluza-Klein black hole with P = Q. This

is the simplified background that we already studied in N = 8 SUGRA, but it is embedded

here in N = 2 SUGRA with arbitrary prepotential. As in the N = 8 case, we will use that

the background satisfies

R = 0 , FµνF
µν = 0 (6.27)

to decouple further the quadratic fluctuations.

• Gravity.

The gravity block decouples as

δ2L(N=2)
gravity = δ2L(N=2)

KK + δ2L(N=2)
relative , (6.28)

where δ2L(N=2)
KK is the “KK block”, consisting of the graviton δgµν , the graviphoton

δA0
µ and the center-of-mass scalar δy′1. δ2L(N=2)

relative denotes nV −1 free massless scalars

δy′i, i = 2, . . . nV . This decoupling is obtained by center-of-mass diagonalization: the

δy′i are linear combinations of δyi such that δy′1 is precisely the combination that

couples to the graviton and graviphoton at quadratic order. Then, the “relative

scalars” δy′i, i = 2, . . . , nV are minimally coupled to the background

e−1δ2L(N=2)
relative = − 2

κ2
∂µδy

′i∂µδy′i (for i = 2, . . . , nV ) , (6.29)

The center-of-mass Lagrangian turns out to be exactly the same as the N = 8 KK

block (4.7)

δ2L(N=2)
KK = δ2L(N=8)

KK , (6.30)

with the identifications

h̄µν =
1√
2

(
δgµν −

1

4
gµνg

ρσδgρσ

)
, h =

1√
2
gρσδgρσ , (6.31)

aµ =
√
2δA0

µ , fµν = ∂µaν − ∂νaµ , (6.32)

φ = δy′1 = −
√
3di
2d

δyi = δΦ . (6.33)

The equality between δ2L(N=2)
KK and δ2L(N=8)

KK is expected because the KK block is

the same for any N = 2 SUGRA and in particular for the N = 2 truncations of

N = 8 SUGRA.

The nV − 1 minimally coupled massless scalars δy′i, i = 2, . . . , nV parameterize flat

directions in the moduli space, at least at quadratic order. In important situations

with higher symmetry, including homogeneous spaces constructed as coset manifolds,

it can be shown that these nV −1 directions are exactly flat at all orders. This implies

that, in particular, these models are stable [32, 33]. In such situations the “relative”

coordinates δy′i are Goldstone bosons parameterizing symmetries of the theories.
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• Vector block.

Using the fact that FµνF
µν = 0, the vector block becomes

e−1δ2L(N=2)
vector = −1

2
∂µx∂

µx+
1

2
Fµνf

µνx− 1

4
fµνf

µν . (6.34)

Again, we find that δ2L(N=2)
vector = δ2L(N=8)

vector after proper normalization of the field

strength.

• Scalar block.

The Lagrangian for hyperbosons δ2L(N=2)
scalars consists of 4nH minimally coupled scalars.

In addition, the center-of-mass diagonalization has brought nV −1 minimally coupled

“relative” scalars δ2L(N=2)
relative. This gives a total of nV + 4nH − 1 minimally coupled

scalars.

We now turn to fermions. The interactions between gravitini and gaugini simplify

greatly when scalars are constant. However, they still depend on the prepotential through

the structure constants dαβγ . The fermionic fluctuations in N = 2 SUGRA are therefore

qualitatively different from the bosonic fluctuations which, as we just saw, reduce to the

form found in N = 8 SUGRA.

For fermions we need to further specialize and study the ST (n) model. This model

already appeared in section 5.3, as a truncation of N = 8 SUGRA to N = 2. Presently,

we introduce it as the model with nV = n+ 1 vector multiplets and prepotential

F =
1

κ2
X1(X2X2 −XαXα)

2X0
(α = 3, . . . , nV ) . (6.35)

We take the background scalars

y1 = 1, y2 =
√
2, yα = 0 (α = 3, . . . , nV ) , (6.36)

such that the normalization is d = 1 and therefore Φ(KK) = 0. As mentioned already in

section 5.3, this model generalizes the STU model which is equivalent to ST (2).

• Gravitino-gaugino block.

The Lagrangian for the gravitino-gaugino block decouples as

δ2L(N=2)
gravitino-gaugino = δ2L(N=2)

gravitino + δ2L(N=2)
gaugino , (6.37)

after using center-of-mass diagonalization. We call χ′i1 the center-of-mass gaugini,

i.e. the gaugini that couples to the gravitini. More precisely, we define

χ′i1 =
1

4

(√
3

3
χi1 +

√
6

3
χi2

)
, χ′i2 =

1

4

(√
6

3
χi1 −

√
3

3
χi2

)
,

χ′iα =
1

4
χiα for α = 3, . . . , nV . (6.38)
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We find a center-of-mass multiplet that we call “gravitino block”

e−1δ2L(N=2)
gravitino = − 1

κ2
ψ̄iµγ

µνρDνψ
i
ρ +

1

κ2

(
−χ̄′1

i /Dχ′i1 − 1

4
ψ̄µ
i F

−
µνψ

ν
j ǫ

ij

+
1

4
χ̄′1
i F

−
µνγ

µνχ′1
j ǫ

ij −
√
3i

2
χ̄′i1γµF−

µνψ
νjǫij + h.c.

)
, (6.39)

This Lagrangian couples the two gravitini to two center-of-mass gaugini. The “rela-

tive” multiplets are nV − 1 identical copies of a “gaugino block”

e−1δ2L(N=2)
gaugino = − 2

κ2
χ̄′α
i /Dχ′i

α −
(

1

8κ2
χ̄′α
i F−

µνγ
µνχ′

jαǫ
ij + h.c.

)
, (6.40)

where α = 2, . . . , nV .

• Hyperfermion block.

The hyperfermion Lagrangian is given in (6.23). We notice that

δ2L(N=2)
hyperfermion = δ2L(N=2)

gaugino , (6.41)

The fluctuations of “relative” gaugini are therefore the same as the fluctuations of

hyperfermions. Therefore, we call both of them “gaugino block”.

The Lagrangians (6.39) and (6.40) are written in terms of Weyl fermions. If we rewrite

them with Majorana fermions, we find that

δ2L(N=2)
gravitino = δ2L(N=8)

gravitino , (6.42)

δ2L(N=2)
gaugino = δ2L(N=8)

gaugino , (6.43)

where the right-hand sides were defined in (4.15) and (4.16). The agreement between our

explicit computations of the fermionic blocks for the ST (n) model in N = 2 SUGRA and

the analogous results in N = 8 SUGRA is an important consistency check on the trunca-

tions discussed in section 5.3. This also explains the agreement (6.41) between fermionic

fluctuations that are in different N = 2 multiplets. N = 2 gaugini and hyperfermions

becomes equivalent when embedded into some larger structure, ultimately furnished by

N = 8 SUGRA.

In summary, taking the dilaton to be constant has further decoupled the fluctuations

in N = 2 SUGRA around the KK background, as shown in table 6. For bosons, we recover

the results of N = 8 SUGRA as expected, although we are more general here since we

allow for an arbitrary prepotential. For fermions, we have to specialize to the ST (n) model

to be able to further decouple the fluctuations. The resulting fermionic fluctuations also

reproduce the fluctuations of N = 8 SUGRA.

7 Logarithmic corrections to black hole entropy

The logarithmic correction controlled by the size of the horizon in Planck units is com-

puted by the functional determinant of the quadratic fluctuations of light fields around the
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Degeneracy Multiplet Block content Lagrangian

1 KK block 1 graviton, 1 vector, 1 scalar (6.30)

nV Vector block 1 vector and 1 (pseudo)scalar (6.34)

nV + 4nH − 1 Scalar block 1 real scalar (6.20), (6.29)

1 Gravitino block 2 gravitini and 2 gaugini (6.39)

nV + nH − 1 Gaugino block 2 spin 1/2 fermions (6.23), (6.40)

Table 6. Decoupled fluctuations in N = 2 SUGRA around the KK black hole with constant

dilaton. The decoupling in the bosonic sector holds for an arbitrary prepotential. The fermionic

sector has been further decoupled by specializing to the ST (n) model.

background solution. The arguments establishing this claim for non-extremal black holes

are made carefully in [16]. In this section we give a brief summary of the steps needed to

extract the logarithm using the heat kernel approach. It follows the discussion in [17] and

we refer to [21] for background literature on technical aspects.

Naturally, we apply the procedure to the Kaluza-Klein black holes on the non-BPS

branch. This gives our final results for the coefficients of the logarithmic corrections,

summarized in table 8.

7.1 General framework: heat kernel expansion

In Euclidean signature, the effective action W for the quadratic fluctuations takes the

schematic form

e−W =

∫
Dφ exp

(
−
∫

d4x
√
g φnΛ

n
mφm

)
= det∓1/2Λ , (7.1)

where Λ is a second order differential operator that characterizes the background solution,

and φn embodies the entire field content of the theory. The sign ∓ is − for bosons and +

for fermions. The formal determinant of Λ diverges and a canonical way to regulate it is

by introducing a heat kernel: if {λi} is the set of eigenvalues of Λ, then the heat kernel

D(s) is defined by

D(s) = Tr e−sΛ =
∑

i

e−sλi , (7.2)

and the effective action becomes

W = ∓1

2

∫ ∞

ǫ

ds

s
D(s) . (7.3)

Here ǫ is an ultraviolet cutoff, which is typically controlled by the Planck length, i.e.

ǫ ∼ ℓ2P ∼ G.

In our setting it is sufficient to focus on the contribution of massless fields in the

two derivative theory. For this part of the spectrum, the scale of the eigenvalues λi is

set by the background size which in our case is identified with the size of the black hole

– 30 –



J
H
E
P
0
5
(
2
0
1
8
)
0
7
9

horizon, denoted by AH . The integral (7.3) is therefore dominated by the integration range

ǫ ≪ s ≪ AH , and there is a logarithmic contribution

∫ ∞

ǫ

ds

s
D(s) = · · ·+ Clocal log(AH/G) + · · · . (7.4)

with coefficient denoted by Clocal. This term comes from the constant term in the Laurent

expansion of the heat kernel D(s). Introducing the heat kernel density K(x, x; s) which

satisfies

D(s) =

∫
d4x

√
g K(x, x; s) , (7.5)

it is customary to cast the perturbative expansion in s as

K(x, x; s) =

∞∑

n=0

sn−2a2n(x) , (7.6)

and we identify

Clocal =

∫
d4x

√
g a4(x) . (7.7)

The functions {a2n(x)} are known as the Seeley-DeWitt coefficients. The logarithmic term

that we need is controlled by a4(x). The omitted terms denoted by ellipses in (7.4) are

captured by the other Seeley-DeWitt coefficients. For example, the term a0(x) induces a

cosmological constant at one-loop and the term a2(x) renormalizes Newton constant.

There is a systematic way to evaluate the Seeley-DeWitt coefficients in terms of the

background fields and covariant derivatives appearing in the operator Λ [21]. The procedure

assumes that the quadratic fluctuations can be cast in the form

−Λn
m = (�)Inm + 2(ωµDµ)

n
m + Pn

m . (7.8)

Here, Inm is the identity matrix in the space of fields, ωµ and P are matrices constructed

from the background fields, and � = DµD
µ. From this data, the Seeley-DeWitt coefficient

a4(x) is given by the expression

(4π)2a4(x) = Tr

[
1

2
E2 +

1

6
RE +

1

12
ΩµνΩ

µν +
1

360
(5R2 + 2RµνρσR

µνρσ − 2RµνR
µν)

]
,

(7.9)

where

E = P − ωµωµ − (Dµωµ) , Ωµν = [Dµ + ωµ, Dν + ων ] . (7.10)

This is the advantage of the heat kernel approach: after explicitly expanding the action

around the background to second order, we have a straightforward formula to compute the

Seeley-DeWitt coefficients from Λ (7.8).

The preceding discussion is based on the operator Λ (7.8) that is second order in

derivatives. For fermions, the quadratic fluctuations are described by a first order operator

H so the discussion must be modified slightly. We express the quadratic Lagrangian as

δ2L = Ψ̄HΨ . (7.11)
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Following the conventions in [17], we always cast the quadratic fluctuations for the fermions

in terms of Majorana spinors. The one-loop action is obtained by applying heat kernel

techniques to the operator H†H and using

log detH =
1

2
log detH†H . (7.12)

Fermi-Dirac statistics also gives an additional minus sign. Thus, the fermionic contribution

is obtained by multiplying (7.9) with an additional factor of −1/2.

7.2 Local contributions

It is conceptually straightforward to compute a4(x) via (7.9). However, it can be cumber-

some to decompose the differential operators, write them in the form (7.8) and compute

their traces. The main complication is that our matter content is not always minimally

coupled, as emphasized in sections 4 and 6.

To overcome these technical challenges we automated the computations using Mathe-

matica with the symbolic tensor manipulation package xAct.6 In particular, we used the

subpackage xPert [34] to expand the bosonic Lagrangian to second order. We created our

own package for treatment of Euclidean spinors. The computation proceeds as follows:

1. Expand the Lagrangian to second order.

2. Gauge-fix and identify the appropriate ghosts.

3. Reorganize the fluctuation operator Λn
m and extract the operators ωµ and P

from (7.8).

4. Compute the Seeley-DeWitt coefficient a4(x) using formula (7.9).

5. Simplify a4(x) using the background equations of motion, tensor and gamma matrix

identities.

The results of the expansion to second order with xPert match with the bosonic La-

grangians summarized in table 3. In appendix A we elaborate on the intermediate steps

and record the traces of E and Ωµν for each of the blocks encountered in our discussion.

A priori, the Seeley-DeWitt coefficient a4(x) is a functional of both the geometry and

the matter fields. The fact that the dilaton Φ(KK) is constant on our background simplifies

the situation greatly. By using the equations of motion, a4(x) can be recast as a functional

of the geometry alone. We list the equations that we use to simplify a4(x) explicitly in

appendix A.

As a result, for our background, the Seeley-DeWitt coefficient at four derivative order

can be arranged in the canonical form

a4(x) =
c

16π2
WµνρσW

µνρσ − a

16π2
E4 , (7.13)

where a and c are constants governed by the couplings and field content of the theory

and the curvature invariants are defined in (A.3) and (A.4). The values of c and a are

summarized in tables 7 and 8.
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Multiplet \ Properties Content d.o.f. c a c− a

Minimal boson 1 real scalar 1 1
120

1
360

1
180

Gaugino block 2 gaugini 4 13
960 − 17

2880
7

360

Vector block 1 vector and 1 (pseudo)scalar 3 1
40

11
120 − 1

15

Gravitino block 2 gravitini and 2 gaugini 8 −347
480 − 137

1440 −113
180

KK block 1 graviton, 1 vector, 1 scalar 5 37
24

31
72

10
9

Table 7. Contributions to a4(x) decomposed in the multiplets that are natural to the KK black

hole.

Multiplet / Theory N = 8 N = 6 N = 4 N = 2 N = 0

KK block 1 1 1 1 1

Gravitino block 4 3 2 1 0

Vector block 27 15 n+ 5 nV 0

Gaugino block 24 10 2n nV + nH − 1 0

Scalar block 42 14 5n− 4 nV + 4nH − 1 0

a 5
2

3
2

1
32(22 + 3n) 1

192(65 + 17nV + nH) 31
72

c 0 0 3
32(2 + n) 3

64(17 + nV + nH) 37
24

Table 8. The degeneracy of multiplets in the spectrum of quadratic fluctuations around the KK

black hole embedded in to various theories, and their respective values of the c and a coefficients

defined in (7.13). For N = 4, the integer n is the number of N = 4 matter multiplets. For N = 2,

the recorded values of c and a for the gravitino and the gaugino blocks were only established for

ST (nV − 1) models.

It is worth making a few remarks.

1. The value of c−a in each case is independent of the couplings of the theory. In other

words, c − a can be reproduced by an equal number of minimally coupled fields on

the same black hole background. This property is due to the fact that none of the

non-minimal couplings appearing in our blocks involve the Riemann tensor Rµνρσ.

Therefore, the coefficient of RµνρσR
µνρσ is insensitive to the non-trivial couplings.

2. The values of c for blocks recorded in table 7 do not have any obvious regularity,

they are not suggestive of any cancellations. The vanishing of the c-anomaly for the

N = 6 and N = 8 theories, exhibited in table 8, seems therefore rather miraculous.

6http://www.xact.es.
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Somehow these embeddings with large supersymmetry have special properties that

are not shared by those with lower supersymmetry.

7.3 Quantum corrections to black hole entropy

The logarithmic terms in the one-loop effective action of the massless modes correct the

entropy of the black hole as

δSBH =
1

2
(Clocal + Czm) log

AH

G
. (7.14)

In this subsection we gather our results and evaluate the quantum contribution for the

Kaluza-Klein black hole.

The local contribution is given by the integrated form of the Seeley-DeWitt coefficient

a4(x):

Clocal =
c

16π2

∫ √
g d4xWµνρσW

µνρσ − a

16π2

∫ √
g d4xE4 . (7.15)

The second term is essentially the Euler characteristic

χ =
1

32π2

∫
d4x

√
g E4 = 2 , (7.16)

for any non-extremal black hole. It is a topological invariant so it does not depend on black

hole parameters. In contrast, the first integral in (7.15) depends sensitively on the details

of the black hole background. Using the KK black hole presented in section 2 with J = 0

and P = Q we find

1

16π2

∫
d4x

√
gWµνρσW

µνρσ = 4 +
8

5 ξ(1 + ξ)
, (7.17)

where ξ ≥ 0 is a dimensionless parameter related to the black hole parameters as

Q

GM
=

P

GM
=

√
2(1 + ξ)

2 + ξ
. (7.18)

In this parametrization the extremal (zero temperature) limit corresponds to ξ → 0 and

the Schwarzschild (no charge) limit corresponds to ξ → ∞.

We also need to review the computation of Czm, the integer that captures corrections

to the effective action due to zero modes. In our schematic notation zero modes λi = 0

are included in the heat kernel (7.2) and therefore contribute to the local term Clocal.

However, the zero mode contribution to the effective action is not computed correctly by

the Gaussian path integral implied in (7.1) and should instead be replaced by an overall

volume of the symmetry group responsible for the zero mode. It is the combination of

removing the zero-mode from the heat kernel and adding it back in again as a volume

factor that gives the correction Czm.

Additionally, the effective action defined by the Euclidean path integral with thermal

boundary conditions is identified with the free energy in the canonical ensemble whereas

the entropy is computed in the microcanonical ensemble where mass and charges are fixed.
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The Legendre transform relating these ensembles gives a logarithmic contribution to the

entropy that we have absorbed into Czm, for brevity. The various contributions to Czm are

not new, they were analyzed in [16]. The result can be consolidated in the formula [17]

Czm = −(3 +K) + 2NSUSY + 3 δnon-ext . (7.19)

Here K is the number of rotational isometries of the black hole, NSUSY is the number of

preserved real supercharges. δnon-ext is 0 if the black hole is extremal and 1 otherwise.

The non-extremal KK black hole with J = 0 is spherically symmetric and has K = 3,

NSUSY = 0 and δnon-ext = 1. Therefore, Czm = −3 for all the non-extremal black holes we

consider in this paper but Czm = −6 in the extreme limit.

Combining all contributions, our final result for the coefficient of the logarithmic cor-

rection to the non-extreme black hole entropy is

1

2
(Clocal + Czm) = 2(c− a)− 3

2
+

4

5 ξ(1 + ξ)
c , (7.20)

where the values of c and a for the theories discussed in this paper are given in table 8.

The expression manifestly shows that when c 6= 0, which is the case for N = 0, 2, 4, the

quantum correction to the entropy depends on black hole parameters through ξ or, by the

relation (7.18), through the physical ratioQ/GM . The cases with very high supersymmetry

are special since c = 0 when N ≥ 6 and then the coefficient of the logarithm is purely

numerical. For example, we find the quantum corrections

δS
(N=6)
non-ext = −9

2
log

AH

G
, δS

(N=8)
non-ext = −13

2
log

AH

G
, (7.21)

to the non-extremal black holes on the non-BPS branch.

As we have stressed, the KK black hole on the non-BPS branch is not intrinsically

exceptional. In the non-rotating case with P = Q that is our primary focus, the geometry

is the standard Reissner-Nordström black hole. However, Kaluza-Klein theory includes a

scalar field, the dilaton, and this dilaton couples non-minimally to gravity and to the gauge

field. According to table 8 we find c = 37
24 for the KK black hole that is, after all, motivated

by a higher dimensional origin.

An appropriate benchmark for this result is the minimally coupled Einstein-Maxwell

theory, which has Reissner-Nordström as a solution, with an additional minimally coupled

scalar field. The KK theory and the minimal theory both have c − a = 10
9 , because these

theories have the same field content, and the zero-mode content of the black holes in the

two theories is also identical, because the geometries are the same. However, c = 55
24 for the

minimally coupled black hole, a departure from the KK black holes. Thus, as one would

expect, the quantum corrections to the black hole entropy depend not only on the field

content but also on the couplings to low energy matter.

Although the focus in this paper has been on the non-extreme case, and specifically

whether the logarithmic corrections to the black hole entropy depend on the departure

from extremality, it is worth highlighting the extremal limit since in this special case a
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detailed microscopic model is the most realistic. In the extremal case we find the quantum

correction on the non-BPS branch

δSext = −N log
AH

G
, (7.22)

for N = 6, 8. The surprising simplicity of this result is inspiring.

8 Discussion

In summary, we have shown that the spectrum of quadratic fluctuations around static

Kaluza-Klein black holes in four dimensional supergravity partially diagonalizes into blocks

of fields. Tables 7 and 8 give the c and a coefficients that control the Seeley-DeWitt

coefficient a4(x) for each block and, taking into account appropriate degeneracies, for each

supergravity theory. These coefficients directly yield the logarithmic correction to the black

hole entropy via (7.14)–(7.15).

The detailed computations are quite delicate since any improper sign or normalization

can dramatically change our conclusions. We therefore proceeded with extreme care, devot-

ing several sections to explain the embedding of the Kaluza-Klein black hole into a range

of supergravities and carefully record the action for quadratic fluctuations of the fields

around the background. Moreover, we allowed for considerable redundancy, with indirect

symmetry arguments supporting explicit computations and also performing many compu-

tations both analytically and using Mathematica. These steps increase our confidence in

the results we report.

The prospect that interesting patterns in these corrections could lead to novel insights

into black hole microstates is our main motivation for computing these quantum corrections

in supergravity theories. Our discovery that c = 0 for N = 6, 8 on the non-BPS branch

is therefore gratifying. Recall that when c vanishes, the quantum correction is universal,

it depends on the matter content of the theory but not on the parameters of the black

hole. This property therefore holds out promise for a detailed microscopic description of

these corrections. Such progress would be welcome since our current understanding of, for

example, the D0−D6 system leaves much to be desired [35–38] for the non-BPS branch.

Conversely, our analysis shows that on the non-BPS branch c 6= 0 for N ≤ 4. On the

BPS-branch not only has it been found that c = 0 for all N ≥ 2 but this fact has also

been shown to be a consequence of N = 2 supersymmetry [22]. It would be interesting to

similarly understand why c = 0 requires N ≥ 6 on the non-BPS branch.

To date, there is no known microstate counting formula that, when compared to the

black hole entropy, accounts for terms that involve c 6= 0. For example, in all cases con-

sidered in [10, 11, 39], the object of interest is an index, or a closely related avatar, and

the resulting logarithmic terms nicely accommodate quantum corrections when Clocal is

controlled by a alone. The challenge of reproducing the logarithmic correction when c is

non-vanishing comes from the intricate dependence on the black hole parameters that the

Weyl tensor gives to Clocal. It would be interesting to understand which properties a parti-

tion function must possess in order that the logarithmic correction to the thermodynamic

limit leads to c 6= 0.
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An interesting concrete generalization of the present work would be to increase the

scope of theories considered. In section 6 our main obstacle to covering all N = 2 theories

is the complicated structure of fermion couplings for a generic prepotential, and hence we

restrict the discussion in section 6.4 to the ST (n) models. Nevertheless, we suspect that for

a generic prepotential our conclusions would not be significantly different. In particular,

we predict that c 6= 0 on the non-BPS branch for any N = 2 supergravity. It would of

course be desirable to confirm this explicitly.

A more ambitious generalization would be to consider more general black hole solutions,

specifically those where the dilaton Φ(KK) is not constant. Our assumption that Φ(KK) = 0

simplified our computations greatly by sorting quadratic fluctuations into blocks that are

decoupled from one another. By addressing the technical complications due to relaxation of

this assumption and so computing a4(x) for black holes with non-trivial dilaton we could,

in particular, access solutions with non-zero angular momentum J 6= 0. The rotating black

holes on the non-BPS branch are novel since they never have constant dilaton, even in the

extremal limit [40]. Therefore, they offer an interesting contrast to the Kerr-Newman black

hole, their counterparts on the BPS branch [17]. Rotation is quite sensitive to microscopic

details so any differences or similarities between the quantum corrections to rotating black

holes on the BPS and non-BPS branches may well provide valuable clues towards a com-

prehensive microscopic model. A nonconstant dilaton is also the linchpin to connections

with the new developments in AdS2 holography for rotating black holes such as in [41, 42].
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A Computations of Seeley-DeWitt coefficients

In this appendix, we give the details on the computation of the Seeley-DeWitt coefficients

for Kaluza Klein black holes and their embeddings in N ≥ 2 supergravity. Most of the com-

putations were done using the Mathematica package xAct. We present our results according

to the organization of quadratic fluctuations into blocks that was introduced in section 4.

The basic steps of our implementation are:

1. We expand the Lagrangian to second order.7 This was done in sections 4 and 6 for

the supergravity theories of interest. The bosonic Lagrangian can also be expanded

using xPert.

7For fermions we always write the quadratic fluctuations with Majorana spinors, following the conven-

tions of [17].
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2. We gauge-fix and add the corresponding ghosts. The gauge-fixing and the ghosts

were detailed for each block in sections 4 and 6. In this appendix, we highlight and

record their contributions to the heat kernel.

3. We rearrange the fluctuation operator Λn
m so that it takes the canonical form (7.8).

We then read off the operators ωµ and P and compute the operators E and Ωµν . These

are the most cumbersome steps so they are executed primarily using Mathematica.

Since some expressions are rather lengthy for the matrix operators due to the non-

minimal couplings, we mostly present the traces of these operators.

4. We compute the Seeley-DeWitt coefficient a4(x) using formula (7.9). This also in-

cludes the ghosts from the second step.

5. We simplify a4(x) using the equations of motion, tensor and gamma matrix identities.

This brings a4(x) to its minimal form (7.13), where we can read off the coefficients c

and a.

A.1 Preliminaries

We use the following formula to compute the Seeley-DeWitt coefficient

(4π)2a4(x) = Tr

[
1

2
E2 +

1

6
RE +

1

12
ΩµνΩ

µν +
1

360
(5R2 + 2RµνρσR

µνρσ − 2RµνR
µν)

]
.

(A.1)

This object further simplifies due to the equations of motion, Bianchi, and Schouten iden-

tities. These simplifications imply that we can cast (A.1) in the form

a4(x) =
c

16π2
WµνρσW

µνρσ − a

16π2
E4 , (A.2)

where the square of the Weyl tensor is

WµνρσW
µνρσ = RµνρσR

µνρσ − 2RµνR
µν +

1

3
R2 , (A.3)

and the Euler density is

E4 = RµνρσR
µνρσ − 4RµνR

µν +R2 . (A.4)

For each block, as summarized in table 3, we will report both (A.1) and (A.2). The

identities used to simplify (A.1) to its minimal form (A.2) are listed below. For fermionic

fluctuations, we also use many gamma matrix identities which are well known and not

repeated here.

On-shell conditions: the equations of motion background with constant dilaton are

FµαF
α

ν = 2Rµν , R = 0 , (A.5)

FµνF
µν = 0 , DµF

µν = 0 .
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Bianchi identities: starting from

∇µF̃
µν = 0 , Rµ[ναβ] = 0 , (A.6)

where F̃µν = − i
2ǫµναβF

αβ we find

RµναβR
µανβ =

1

2
RµναβR

µναβ , (A.7)

(DαFµν)(D
νFµα) =

1

2
(DαFµν)(D

αFµν) ,

Fαν(DαFµν) =
1

2
F να(DµFνα) ,

RµανβF
µνFαβ =

1

2
RµναβF

µνFαβ ,

ǫµναβD
αF ρβ =

1

2
ǫµναβD

ρFαβ .

Schouten identities: the Schouten identity is gµ[νǫρστλ] = 0. From this, we can derive

F̃µαF
α

ν =
1

4
gµνF̃αβF

αβ (A.8)

Derivative relations: the following identity is also useful

(DαFµν)(D
αFµν) = −2RµνF

µαF ν
α +RµναβF

µνFαβ (A.9)

and holds up to a total derivative.

A.2 KK block

The quadratic Lagrangian is given in (4.7). To evaluate the Seeley-DeWitt coefficient, the

kinetic term of hµν is analytically continued to

hnewµν = − i

2
hµν , (A.10)

for the kinetic term to have the right sign. In addition, in order to project onto the traceless

part of a symmetric tensor, we define

Gµν
ρσ =

1

2

(
δµρδ

ν
σ + δµσδ

ν
ρ −

1

2
gµνgρσ

)
. (A.11)

Traces of operators must be taken after contraction with this tensor. For example, for a

four index operator O we use

TrO = Gµν
ρσO

ρσ
µν . (A.12)

The relevant traces that appear in (A.1) for the KK block are

TrE = 3FµνF
µν−7R, (A.13)

TrE2 =
33

16
Fµ

ρF
νρFµσF

σ
ν +

21

16
FµνF

µνFρσF
ρσ−5RµνR

µν− 5

2
RµνF

µ
ρF

νρ− 1

2
RFµνF

µν

+5R2+2RµνρσR
µνρσ+2RµρνσR

µνρσ−2Fµν
;µF

ρ
ν ;ρ+

1

2
Fµρ;νF

µν;ρ+
1

2
Fµν;ρF

µν;ρ ,

TrΩµνΩ
µν = −7

8
Fµ

ρF
νρFµσF

σ
ν − 23

8
FµνF

µνFρσF
ρσ+2RµνF

µ
ρF

νρ+RFµνF
µν

+3RµρνσF
µνF ρσ−7RµνρσR

µνρσ−Fµν
;µF

ρ
ν ;ρ+4Fµρ;νF

µν;ρ−8Fµν;ρF
µν;ρ .
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The gauge-fixing also introduces ghosts with the Lagrangian

e−1Lghosts = 2bµ (�gµν +Rµν) cν + 2b�c− 4bFµνDµcν , (A.14)

where bµ, cµ are vector ghosts associated to the graviton and b, c are scalar ghosts associated

to the graviphoton. The contribution of the ghosts are

TrE = 2R , (A.15)

TrE2 = 2RµνR
µν ,

TrΩµνΩ
µν = −2RµνρσR

µνρσ .

The total ghost contribution is

(4π)2aghost4 (x) =
1

9
RµνρσR

µνρσ − 17

18
RµνR

µν − 17

36
R2 . (A.16)

Combining the contributions (A.13) and (A.16) gives

(4π)2a4(x) =
23

24
Fµ

ρF
νρFµσF

σ
ν +

5

12
FµνF

µνFρσF
ρσ − 127

36
RµνR

µν − 13

12
RµνF

µ
ρF

νρ

+
1

3
RFµνF

µν +
77

72
R2 +

1

4
RµρνσF

µνF ρσ +
11

18
RµνρσR

µνρσ +RµρνσR
µνρσ

−13

12
Fµν

;µF
ρ

ν ;ρ +
7

12
Fµρ;νF

µν;ρ − 5

12
Fµν;ρF

µν;ρ . (A.17)

We use the identities listed in (A.5)–(A.8) to obtain

(4π)2a4(x) =
10

9
RµνρσR

µνρσ − 49

36
RµνR

µν , (A.18)

and from here we find

aKK =
31

72
, cKK =

37

24
. (A.19)

A.3 Vector block

The vector block in its minimal form is described by the quadratic Lagrangian (6.34) and

for the matter content of N = 8 by (4.9). The matrices that appear in the quadratic

fluctuation operator are

E =




1
4F

ρ
µ Fνρ −Rµν

1
2F

ρ
ν ;ρ

1
2F

ρ
µ ;ρ −1

4FρσF
ρσ


 ,

Ωρσ =



Rµνρσ + 1

4FµσFνρ − 1
4FµρFνσ

1
2Fµσ;ρ − 1

2Fµρ;σ

−1
2Fνσ;ρ +

1
2Fνρ;σ 0


 ,
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where the first row/column corresponds to the vector field and the second row/column to

the scalar field. The relevant traces are

TrE = −R , (A.20)

TrE2 =
1

16
Fµ

ρF
νρFµσF

σ
ν +

1

16
FµνF

µνFρσF
ρσ +RµνR

µν (A.21)

−1

2
RµνF

µ
ρF

νρ − 1

2
Fµν

;µF
ρ

ν ;ρ ,

TrΩµνΩ
µν =

1

8
Fµ

ρF
νρFµσF

σ
ν − 1

8
FµνF

µνFρσF
ρσ +RµρνσF

µνF ρσ (A.22)

−RµνρσR
µνρσ + Fµρ;νF

µν;ρ − Fµν;ρF
µν;ρ .

The ghosts for the vector block are two minimally coupled scalars with fermionic

statistics. Their contribution to the Seeley-DeWitt coefficient is

(4π)2aghost4 (x) = − 1

180
(2RµνρσR

µνρσ − 2RµνR
µν + 5R2) . (A.23)

We combine the contributions of the vector block and its associated ghosts and get

(4π)2a4(x) =
1

24
Fµ

ρF
νρFµσF

σ
ν +

1

48
FµνF

µνFρσF
ρσ +

29

60
RµνR

µν (A.24)

−1

4
RµνF

µ
ρF

νρ − 1

8
R2 +

1

12
RµρνσF

µνF ρσ − 1

15
RµνρσR

µνρσ

−1

4
Fµν

;µF
ρ

ν ;ρ +
1

12
Fµρ;νF

µν;ρ − 1

12
Fµν;ρF

µν;ρ

After using the identities (A.5)–(A.8), we obtain

(4π)2a4(x) = − 1

15
RµνρσR

µνρσ +
19

60
RµνR

µν . (A.25)

This leads to

avector =
11

120
, cvector =

1

40
. (A.26)

When the vector block contains a pseudoscalar instead of a scalar, such as in (4.10), the

result remains the same because of simplifications due to our background.
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A.4 Gravitino block

The gravitino block is characterized by the quadratic Lagrangian (4.15). After using gamma

matrix identities, the relevant traces are

TrE =
1

2
FµνF

µν +
1

2
F̃µνF̃

µν − 10R , (A.27)

TrE2 = −105

128
Fµ

ρF
νρFµσF

σ
ν +

81

128
FµνF

µνFρσF
ρσ +

43

64
FµνF ρσF̃µρF̃νσ (A.28)

−13

32
Fµ

ρF
νρF̃ σ

µ F̃νσ +
7

128
F̃µ

ρF̃
νρF̃ σ

µ F̃νσ − 21

64
FµνF

µνF̃ρσF̃
ρσ

+
9

128
F̃µνF̃

µνF̃ρσF̃
ρσ − 1

4
RFµνF

µν − 1

4
RF̃µνF̃

µν +
5

2
R2

−3

2
RµρνσF

µνF ρσ +
3

2
RµρνσF̃

µνF̃ ρσ + 4RµνρσR
µνρσ

−7

2
Fµρ;νF

µν;ρ + 3Fµν;ρF
µν;ρ +

3

2
F̃µρ;νF̃

µν;ρ − 2F̃µν;ρF̃
µν;ρ ,

TrΩµνΩ
µν =

185

64
Fµ

ρF
νρFµσF

σ
ν − 185

64
FµνF

µνFρσF
ρσ − 27

32
FµνF ρσF̃µρF̃νσ (A.29)

− 3

16
Fµ

ρF
νρF̃ σ

µ F̃νσ +
9

64
F̃µ

ρF̃
νρF̃ σ

µ F̃νσ +
33

32
FµνF

µνF̃ρσF̃
ρσ

− 9

64
F̃µνF̃

µνF̃ρσF̃
ρσ + 7RµρνσF

µνF ρσ − 3RµρνσF̃
µνF̃ ρσ − 13RµνρσR

µνρσ

+7Fµρ;νF
µν;ρ − 7Fµν;ρF

µν;ρ − 3F̃µρ;νF̃
µν;ρ + 3F̃µν;ρF̃

µν;ρ .

The gauge-fixing produces fermionic ghosts bA, cA, eA with Lagrangian

e−1Lghost = b̄Aγ
µDµcA + ēAγ

µDµeA , (A.30)

where A = 1, 2 is the flavor index. This simply corresponds to six minimally coupled Majo-

rana fermions which contribute with an opposite sign. Their Seeley-DeWitt contribution is

(4π)2aghost4 (x) = − 1

120

(
7RµνρσR

µνρσ + 8RµνR
µν − 5R2

)
. (A.31)

Combining (A.27) and (A.31) gives

(4π)2a4(x) =
65

768
Fµ

ρF
νρFµσF

σ
ν − 29

768
FµνF

µνFρσF
ρσ − 17

128
FµνF ρσF̃µρF̃νσ (A.32)

+
7

64
Fµ

ρF
νρF̃ σ

µ F̃νσ − 5

256
F̃µ

ρF̃
νρF̃ σ

µ F̃νσ +
5

128
FµνF

µνF̃ρσF̃
ρσ

− 3

256
F̃µνF̃

µνF̃ρσF̃
ρσ +

2

45
RµνR

µν +
1

48
RFµνF

µν +
1

48
RF̃µνF̃

µν

− 1

36
R2 +

1

12
RµρνσF

µνF ρσ − 1

4
RµρνσF̃

µνF̃ ρσ − 113

180
RµνρσR

µνρσ

+
7

12
Fµρ;νF

µν;ρ − 11

24
Fµν;ρF

µν;ρ − 1

4
F̃µρ;νF̃

µν;ρ +
3

8
F̃µν;ρF̃

µν;ρ .

Using the identities (A.5)–(A.8) gives

(4π)2a4(x) = −113

180
RµνρσR

µνρσ +
767

720
RµνR

µν , (A.33)
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and this leads to

agravitino = − 137

1440
, cgravitino = −347

480
. (A.34)

A.5 Gaugino block

The gaugino block is given by the Lagrangian (4.16). In this case, the relevant traces are

TrE =
1

4
FµνF

µν − 2R , (A.35)

TrE2 = − 1

32
Fµ

ρF
νρFµσF

σ
ν +

3

128
FµνF

µνFρσF
ρσ − 1

8
RFµνFµν +

1

2
R2

−1

2
Fµρ;νF

µν;ρ +
1

4
Fµν;ρF

µν;ρ , (A.36)

TrΩµνΩ
µν =

1

8
Fµ

ρF
νρFµσF

σ
ν − 1

8
FµνF

µνFρσF
ρσ +RµρνσF

µνF ρσ −RµνρσR
µνρσ

+Fµρ;νF
µν;ρ − Fµν;ρF

µν;ρ . (A.37)

The Seeley-DeWitt coefficient is

(4π)2a4(x) =
1

384
Fµ

ρF
νρFµσF

σ
ν − 1

1536
FµνF

µνFρσF
ρσ+

1

45
RµνR

µν+
1

96
RFµνFµν (A.38)

− 1

72
R2− 1

24
RµρνσF

µνF ρσ+
7

360
RµνρσR

µνρσ+
1

12
Fµρ;νF

µν;ρ− 1

48
Fµν;ρF

µν;ρ .

and gives after simplification

(4π)2a4(x) =
7

360
RµνρσR

µνρσ − 73

1440
RµνR

µν , (A.39)

which leads to

agaugino = − 17

2880
, cgaugino =

13

960
. (A.40)
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