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1 Introduction

In this paper we discuss 3d gravity with negative cosmological constant. This is a topo-

logical theory with no local degrees of freedom. This fact can be made manifest by

rewriting 3d gravity as a Chern-Simons theory with gauge group SO(2, 2) = SL(2,R) ×
SL(2,R) [1, 2]. The Chern-Simons formulation has many advantages: BTZ black holes

appear very naturally as topological defects around which the sl(2,R) gauge fields have

non-trivial holonomies. Boundary gravitons can be understood as the usual edge excitations

that appear when Chern-Simons theories are formulated on manifolds with boundary [3].

Diffeomorphisms may be easily understood on-shell as gauge transformations [2]. Finally,

the Chern-Simons formulation is also very convenient for the extension to theories of higher

spin gravity [4–8].

While the Chern-Simons formulation makes manifest the topological character of 3d

gravity, it does so at a cost, by greatly obscuring geometric aspects. Simple geometric

concepts such as proper distances or volumes are not at all transparent in the Chern-

Simons formulation. The problem becomes even more acute if we consider coupling matter

— e.g. a simple scalar field — to 3d gravity: this is very difficult to do in the Chern-Simons

formulation, presumably because the theory is no longer purely topological (see however [9]

for some previous work in this direction). These facts make it very difficult to probe local

bulk physics in the Chern-Simons formulation. This appears to be related to the fact that

typical bulk observables such as (e.g.) the bulk-to-bulk propagator of a probe scalar field

are not actually invariant under diffeomorphisms, and thus are difficult to formulate in a

suitably gauge-invariant manner in Chern-Simons theory.

Nevertheless, in AdS3 the presence of a boundary allows the formulation of suitably

diffeomorphism invariant observables — the correlation functions of the dual CFT2 — and

thus one would expect that it would be possible to compute such objects in the Chern-

Simons formulation. Some progress in this direction was made in [10–14], motivated largely

by the computation of entanglement entropy of field theories dual to 3d bulk higher spin

gravity. In this work we will develop further the approach initiated by [10], where it

was argued that a Wilson line in an infinite-dimensional highest-weight representation R
under the bulk SL(2,R)×SL(2,R) gauge group could be used to compute boundary theory

correlators, i.e.:

WR(xi, xf ) =
r→∞

〈Ψ|O(yi)O(yf )|Ψ〉 , (1.1)

where we have picked coordinates xµ = (r, yi) with r an AdS holographic coordinate and

yi a CFT coordinate. Here the Wilson line WR ends on the boundary at r → ∞, and Ψ

denotes the CFT2 state dual to a particular configuration of Chern-Simons gauge fields

that constitute the gravitational background in the interior.

The representation space R was generated from the Hilbert space of an auxiliary

SL(2,R)-valued quantum mechanical degree of freedom U(s) that lives on the Wilson line.

The quadratic Casimirs of the representation R mapped in the usual manner to the confor-

mal dimensions (h, h̄) of the dual CFT operator. While this represented progress towards
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extracting geometric observables from the Chern-Simons formulation of 3d gravity, several

issues remained obscure:

1. The relation (1.1) was understood to hold only if a particular boundary condition was

used for the auxiliary field U , demanding that it approached the identity element of

SL(2,R) at the two endpoints of the Wilson line. While this is perhaps a somewhat

natural choice, its precise interpretation in the CFT was not made clear.

2. All previous treatment of the U(s) path integral was performed in a semi-classical

limit, i.e. one in which h ≫ 1. At a calculational level this allowed the path integral

to be evaluated using its saddle-point; nevertheless this restriction seems somewhat

artificial from the point of view of the dual CFT. Is it possible to go away from this

limit?

3. How can one obtain other bulk observables from the Chern-Simons formulation, e.g.

bulk-to-bulk propagators or one-loop determinants for scalar fields on the gravita-

tional background?

In this work we answer these questions by providing a careful and fully quantum

mechanical treatment of the Wilson line described above. In particular, we will show that

the U(s) worldline degree of freedom originally introduced in [10] can be understood as a

particular SL(2,R) rotation of the global part of an Ishibashi state (familiar from boundary

CFT). We use this technology to develop a purely algebraic method for computing open-

ended Wilson lines, and demonstrate equivalence (in the semi-classical limit) with the

path-integral techniques used in [10].

The outline of this paper is as follows. In section 2 we review the path integral repre-

sentation of WR(xi, xf ) proposed in [10], which will serve as a comparison to our quantum

mechanical analysis. In section 3 we turn to a detailed analysis of the quantum mechanics

responsible of the geometrical features in WR(xi, xf ). This motivates the introduction of

coherent states which we denote as rotated Ishibashi states. Using these states, we relate

WR(xi, xf ) to their inner product; we rederive the path integral formulation by discretiz-

ing this inner product; and we show that WR(xi, xf ) is a Green’s function on the group

manifold SO(2, 2). In section 4 we tie the quantum mechanical aspects of WR(xi, xf ) to its

geometrical features. We show that WR(xi, xf ) is a Green’s function on spacetime created

by the Chern-Simons connections (which is a distinct statement from the properties on the

group manifold). For global AdS3 and the BTZ black hole, we show how to build local

bulk fields by a suitable decomposition of WR(xi, xf ). This provides a new local probe

of AdS3 in the Chern-Simons formulation of 3d gravity. In section 5 we discuss the CFT

interpretation of our results. And in section 6 we discuss future directions and related

results in AdS/CFT that make use of Ishibashi states.

2 Path integral representation

In this section we will consider the path integral representation of a Wilson line operator

in the Chern-Simons theory. As we review below, this object should be thought of as

– 3 –
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the Chern-Simons description of the worldline of a massive particle moving in the bulk.

This section is a brief summary of the results in [10]. The gauge group of the Chern-

Simons theory is SO(2, 2) ≃ SL(2,R) × SL(2,R), and the bulk sl(2,R) gauge connections

are A, Ā.1 The natural observables in Chern-Simons theory are Wilson loops in a certain

representation R of the bulk gauge group; in this work we will always take R to be a

product of two infinite-dimensional highest-weight representations in sl(2,R)⊕ sl(2,R).

We may now consider the following Wilson loop operator:

WR(C) = TrR

(

P exp

(

−
∮

C
A

)

P exp

(

−
∮

C
Ā

))

, (2.1)

and C is a closed loop in the bulk of AdS3. This observable is fully gauge-invariant, and

will typically be an interesting observable if the bulk loop wraps some non-trivial object in

the bulk (e.g. the horizon of a BTZ black hole). Note that the trace involves a sum over

the infinitely many states of the highest-weight representation.

We may also consider an open-ended Wilson line operator. To define this object we

specify the locations of its endpoints (xi, xf ). We must also specify boundary data in the

form of two specific states |Ui〉, |Uf 〉 ∈ R at these endpoints. We may then define the

following operator:

WR(xi, xf ) = 〈Uf |P exp

(

−
∫

γ
A

)

P exp

(

−
∫

γ
Ā

)

|Ui〉 , (2.2)

where now γ(s) is a curve with bulk endpoints (xi, xf ) parametrized by s. WR(xi, xf ) is no

longer fully gauge-invariant; clearly it depends in a gauge-covariant manner on the choice

of boundary data |Ui〉, |Uf 〉. Nevertheless, for flat connections, WR(xi, xf ) only depends

on the topology of γ, but not on the shape of the curve.

From a geometric point of view, the Wilson line described above describes the physics

of a massive point particle propagating from xi to xf on AdS3. A point particle in the

classical limit is characterized by at least one continuous parameter: the mass m. This

data is stored in the choice of highest-weight representation R that defines the Wilson

line. Further details of this representation are given in full detail in section 3. For now we

require only that the representation is specified by two constants (h, h̄) which determine

the Casimirs of the sl(2) algebra. Their identification with the mass m and orbital spin ŝ

of the particle is given by

m2 = c2 + c̄2 , ŝ = h̄− h , (2.3)

where c2 = 2h(h − 1) and c̄2 = 2h̄(h̄ − 1) are the quadratic Casimirs; note that the AdS

radius is set to unity.

From the point of view of AdS/CFT, the developments in [10–14] show that if the

endpoints xi, xf are taken to infinity, the Wilson line operator defined in (2.2) is a bulk

observable that computes correlation functions of light operators 〈Ψ|O(yi)O(yf )|Ψ〉 in the

dual CFT. Here |Ψ〉 is a “heavy” state whose gravitational dual is given by the bulk

1In appendix B we present our conventions on the Chern-Simons description of AdS3 gravity.
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connections (A, Ā) and O(y) is a “light” operator whose scaling dimensions (h, h̄) are

encoded in the choice of representation2 R.

In what follows we limit the discussion to h = h̄; see [15, 16] for a discussion when ŝ 6= 0.

2.1 Path integral representation of the Wilson line

This particular Wilson line is somewhat more complex than those normally studied in com-

pact gauge theories, simply due to the fact that R has infinitely many states in it. We now

review the work of [10], who constructedR as the Hilbert space of an auxiliary quantum me-

chanical system that lives on the Wilson line, replacing the trace over R by a path integral

over a worldline field U . We pick the dynamics of U so that upon quantization the Hilbert

space of the system is the desired representation R. More concretely, we rewrite (2.1) as

WR(xi, xf ) =

∫

DU e−S(U,A,Ā)γ , (2.4)

where the auxiliary system can be described by the following action:

S(U,A, Ā)γ =
√
c2

∫

γ
ds

√

Tr (U−1DsU)2 (2.5)

The variable s parametrizes the curve γ, and we pick s ∈ [si, sf ]. Here the trace Tr(. . .) is

a short-cut notation for the contraction using the Killing forms, i.e. if P ∈ sl(2,R)

Tr(P 2) = ηabP
aP b , (2.6)

where P = P aLa and La is a generator of sl(2,R). There is also a (classically) equivalent

first-order formulation of this action that is more convenient for certain applications (such

as the generalization to higher spin gravity). In the first order formulation it is manifest

that c2 is the Casimir of the representation, and satisfies c2 = 2h(h − 1). This action

requires that h = h̄. As the entire action is multiplied by a factor of
√
c2, h → ∞ defines

a semi-classical limit of the path integral, and for the remainder of this section we will fol-

low [10] and work only in this limit. In subsequent sections we relax this restriction. This

action is invariant under a local SL(2,R)× SL(2,R) symmetry: in particular the covariant

derivative is defined as

DsU ≡ d

ds
U +AsU − UĀs , As ≡ Aµ

dxµ

ds
, Ās ≡ Āµ

dxµ

ds
, (2.7)

where A(x) and Ā(x) are the connections that determine the background, and in the ac-

tion (2.5) they are pulled back to the worldline xµ(s). Under an SL(2,R)× SL(2,R) gauge

transformation by finite group elements L(x), R(x), the gauge fields transform as

Aµ(x) → L(x)(Aµ(x) + ∂µ)L
−1(x) ,

Āµ(x) → R−1(x)(Āµ(x) + ∂µ)R(x) . (2.8)

2Here light denotes an operator that, as the central charge c goes to infinity, its conformal weight is

fixed, while a heavy operator has a scaling dimension that is linear with c. Equivalently, in gravity we

would say that it is a particle with a small mass in Planck units.

– 5 –
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The worldline action is then invariant under the following transformation of the worldline

field:

U(s) → L(xµ(s))U(s)R(xµ(s)) (2.9)

Now for an open ended Wilson line as in (2.2), we must still specify boundary data on

U(s) at the endpoints of the curve.3 We thus pick two SL(2,R) elements Ui, Uf and require

that U(s = si) = Ui, U(s = sf ) = Uf . For a semi-classical level this is sufficient, and in

later sections we will explain in detail the relationship between this choice of boundary

data and the quantum states |Ui〉 and |Uf 〉 defined in (2.2).

We now consider the evaluation of this Wilson line on a fixed classical background

defined by A and Ā. In the h → ∞ limit, this can be done by evaluating the on-shell

action (2.5) for the field U(s) subject to the boundary conditions described above. This

computation was explained in detail in [10]. Here we write the answer in a way that will

generalize simply to our results in the next section. In particular the answer only depends

on the SL(2,R) evolution of the state from the starting point to the endpoint. If we thus

consider flat connections

A(x) = gL(x)dgL(x)
−1 , Ā(x) = gR(x)

−1dgR(x) , (2.10)

and the following group elements

gL(xf )gL(xi)
−1 = P exp

(

−
∫ xf

xi

A

)

, g−1
R (xf )gR(xi) = P exp

(

−
∫ xf

xi

Ā

)

, (2.11)

then the on-shell action S can be written as

Son-shell =

√

c2
2
α , V exp(−αL0)V

−1 ≡ gL(xf )gL(xi)
−1UigR(xi)

−1gR(xf )U
−1
f ,

(2.12)

where α labels the conjugacy class of the group element

gL(xf )gL(xi)
−1UigR(xi)

−1gR(xf )U
−1
f . The Wilson line (2.4) in this state is then

given by

WR(xi, xf ) = exp

(

−
√

c2
2
α

)

. (2.13)

Note that the role of the boundary data Ui, Uf in (2.12) is to tie together the two sectors,

left and right; we will return to this point in what follows.

2.2 Geometric interpretation: proper distances

So far, our review has been very abstract, with no physical interpretation given to A and

Ā. However we know that for appropriate choices of these gauge connections, this system

should represent the physics of a particle moving on AdS3; we now explain how the result

above is related to geometry. In particular, α defined in (2.12) turns out to be related to

the proper distance from xi to xf .

3For a closed Wilson loop as in (2.1), we simply require that the field U(s) be single-valued.
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To understand this, note that the action (2.5) can be suggestively written as

S =
√
c2

∫

γ
ds

√

Tr

(

(

Aµ − ˜̄Aµ

)(

Aν − ˜̄Aν

) dxµ

ds

dxν

ds

)

, (2.14)

where the dependence on U(s) in (2.18) has been hidden in the definition of ˜̄Aν :

˜̄As ≡ UĀsU
−1 − d

ds
U U−1 . (2.15)

Note that if we now define a generalized vielbein4 along the trajectory as

eµ =
1

2

(

Aµ − ˜̄Aµ

)

(2.16)

then we may write the action very simply in terms of the metric associated to this vielbein

as gµν = 2 Trfeµeν , i.e.

S =
√
2c2

∫

γ
ds

√

gµν(x)
dxµ

ds

dxν

ds
, (2.17)

which is manifestly the proper distance associated to the metric gµν . Thus the Wilson

line is probing a geometry that is assembled in a particular manner from the connections

A, Ā, where the dynamics of the auxiliary field U is playing a role in tying together the

two connections into a vielbein. Note that the prefactor
√
c2 indicates that the value of

the Casimir controls the bulk mass of the probe, as we alluded to previously.

We also consider the equations of motion obtained from varying (2.5) with respect to U :

d

ds

(

(A− ˜̄A)µ
dxµ

ds

)

+ [ ˜̄Aµ, Aν ]
dxµ

ds

dxν

ds
= 0 . (2.18)

Normally one considers these as equations for U(s): nevertheless, if one fixes U(s) and

thinks of the variable as being the choice of path xµ(s), then this is precisely the geodesic

equation for the metric gµν . From here it is clear that the value of the Wilson line between

any two bulk points is

WR(xi, xf ) ∼ exp (−2hD(xi, xf )) , (2.19)

where D(xi, xf ) = 2α is the length of the bulk geodesic connecting these two points. Here

‘∼’ denotes the limit of large c2, where c2 = 2h(h − 1) ∼ 2h2, and hence the classical

saddle point approximation is valid.

In what follows we will provide a proper quantum-mechanical treatment of this Wilson

line.

3 Hilbert space representation

The path integral approach to evaluate (2.2) provides insight into the transformation prop-

erties for the field U : this choice is in great part responsible of the geometric interpretation

4Technically we can only define the components of the vielbein along the trajectory; in the considerations

of this section this does not matter.
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of WR(xi, xf ) in AdS3 gravity. Based on this, in this section we will carefully explain the

relationship between the field U(x) and quantum mechanical states in the highest-weight

representation. This will allow us to evaluate WR(xi, xf ) without the need of taking a

classical limit — in contrast to (2.19) — and, in later sections, have a refined geometric

and holographic interpretation of our Wilson line.

3.1 Highest weight representations

We first review some facts associated with highest-weight representations. Some words on

notation are appropriate: when we are discussing an abstract realization of the sl(2,R)

algebra with no particular representation in mind, we will denote the generators with

capital La. We denote the generators of sl(2,R) acting on the highest weight state by ℓa.

A highest-weight representation is defined with respect to a reference state |h〉 that is an

eigenstate of ℓ0 and is annihilated by ℓ1:

ℓ0|h〉 = h|h〉 , ℓ1|h〉 = 0 . (3.1)

We may now define excited states by acting on |h〉 with ℓ−1, and the correctly normalized

states are defined by

ℓ−1|h, k〉 =
√

(k + 1)(k + 2h)|h, k + 1〉 , ℓ1|h, k〉 =
√

k(k + 2h− 1)|h, k − 1〉 , (3.2)

where the state |h, k〉 has L0 eigenvalue (k+ h): i.e. k counts the energy above the ground

state, and |h, 0〉 = |h〉. The Casimir of this representation is 2h(h− 1):

ηabℓaℓb|h, k〉 = 2h(h− 1)|h, k〉 , (3.3)

where ηab is the Killing form.

We will be interested in states that transform in a highest-weight representation under

a tensor product of two independent copies of sl(2,R)× sl(2,R) with h = h̄, and so we will

label them as |h, k〉 ⊗ |h, k̄〉 ≡ |h; k, k̄〉, where the ground state is |h, 0, 0〉. We denote the

sl(2,R) generators acting on the first k index (the “left”) by ℓa and those acting on the k̄

index (the “right”) as ℓa. These form two independent sl(2,R) algebras, and we have

[ℓa, ℓa] = 0 . (3.4)

The group action of each copy of SL(2,R) on these states is the usual one: in particular,

we have

G(M−1)ℓaG(M) = D a′

a (M)ℓa′ , G(M−1)ℓaG(M) = D a′

a (M)ℓa′ , (3.5)

with the D’s the representation matrices for the adjoint representation of sl(2,R). Note

that we have

G(M1)G(M2) = G(M1M2) , D b
a (M1)D

c
b (M2) = D c

a (M1M2) . (3.6)

– 8 –
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3.2 Rotated Ishibashi states

We will now define a family of quantum states that have the same transformation as the

classical field U(x) in (2.9). To do so it is convenient to consider the following triplet of

sl(2,R) operators, labeled by an element U ∈ SL(2,R):

Qa(U) ≡ ℓa +D a′

a (U)ℓa′ . (3.7)

This is a linear combination of the generators on the two sides, with one side rotated by

U . We will denote a state that is annihilated by Qa(U) for all a as |U〉, i.e.

Qa(U)|U〉 = 0 . (3.8)

This defines a rotated state, each labeled by an element U of SL(2,R). We now explore some

of the properties of these states. First consider commuting G(L)G(R) through Qm(U). We

find

G(L)G(R−1)Qa(U) = D a′

a (L−1)Qa′(LUR)G(L)G(R−1) . (3.9)

Acting with this relation on the state |U〉, we find that the state G(L)G(R−1)|U〉 is anni-
hilated by Qa(LUR). But by the definition of the U states, this means that

G(L)G(R−1)|U〉 = |LUR〉 . (3.10)

Thus we see that acting on a U state with an element of SL(2,R) × SL(2,R) causes it to

transform inhomogenously precisely as the classical U field did in (2.9). We also note that

every U state is left invariant under some diagonal subgroup of SL(2,R) × SL(2,R), that

with L = UR−1U−1.

It will be useful to have some explicit examples of |U〉 in terms of the highest weight

representation discussed above. As a start let us consider the state |U〉 = |ΣIsh〉 whose

action on the generators is

D a′

a (ΣIsh) ℓa′ = ΣIsh ℓaΣ
−1
Ish = −ℓ−a , (3.11)

and as a group element is

ΣIsh ≡ exp
(

−i
π

2
(L1 − L−1)

)

. (3.12)

Using (3.11), (3.8) becomes
(

ℓa − ℓ−a

)

|ΣIsh〉 = 0 . (3.13)

This equation has the following unique solution,

|ΣIsh〉 =
∞
∑

k=0

|h; k, k〉 , (3.14)

which is (in its Virasoso incarnation [17]) called the “Ishibashi state.” Another choice for

our states is setting |U〉 = |Σcross〉 whose action is

D a′

a (Σcross) ℓa′ = Σcross ℓaΣ
−1
cross = −(−1)aℓ−a , (3.15)
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and as a group element it reads

Σcross ≡ exp
(π

2
(L1 + L−1)

)

. (3.16)

For this choice (3.8) becomes

(

ℓa − (−1)aℓ−a

)

|Σcross〉 = 0 , (3.17)

and the unique solution to this equation is

|Σcross〉 =
∞
∑

k=0

(−1)k|h; k, k〉 , (3.18)

which is usually referred to as the “crosscap (or twisted) Ishibashi state” [17]. The state

|Σcross〉 (rather than |ΣIsh〉) will play an important role in section 4, for reasons that we

will elaborate on there.

If we can construct any reference state in this family, then we can find any other state

by acting on it with an appropriately chosen G(L) and/or Ḡ(R−1).5 And for this reason

we will call the states |U〉 (in a slight abuse of notation) rotated Ishibashi states. Our

rotated Ishibashi states are coherent states that live in the product of two highest weight

representations and only involve the global part of the conformal group, unlike the states

used for boundary CFT [17, 18].

3.3 Inner product

An important object in our analysis is the inner product of a rotated Ishibashi state. These

states are not orthogonal — they form an overcomplete basis — which leads to a non-trivial

expression. The relevant matrix element to evaluate any such inner product is

〈Σ|G(L)G(R−1)|Σ〉 , (3.19)

where |Σ〉 is a reference state from our family of rotated Ishibashi states. For concreteness

we will take |Σ〉 to be either

|ΣIsh〉 or |Σcross〉 , (3.20)

as defined in (3.14) and (3.18).

Evaluating (3.19) leads to

〈Σ|G(L)G(R−1)|Σ〉 = 〈Σ|G(LΣRΣ−1)|Σ〉

=
∞
∑

k=0

|ak|2〈h, k|G(LΣRΣ−1)|h, k〉

5Note that we are allowed to rotate a |U〉 state if G(L) has a well defined action on the representation.

This implies that not any rotation is allowed. For example, we cannot rotate |Σcross〉 to the state |U = 1〉,

which is ill defined since setting U = 1 in (3.8) has no solution in the highest weight representation. The

reason is that Σcross is an outer automorphism: it has a well defined action on the group elements as

signalled by (3.15), but not on the states of representation (it would flip the sign of L0 eigenvalue). Similar

statements hold for ΣIsh.
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=

∞
∑

k=0

〈h, k|G(LΣRΣ−1)|h, k〉

=
∞
∑

k=0

exp(−α(k + h)) =
e−αh

1− e−α
. (3.21)

In the first equality we used (3.10). In the second line we used (3.14) and (3.18); the

coefficient ak is equal to 1 and (−1)k, respectively. In the third line we used that |ak|2 = 1,

which reduces the computation to a trace of the group element inside the bracket. In the

last line we decomposed the group element as

LΣRΣ−1 ≡ V exp(−αL0)V
−1 , (3.22)

where α controls the conjugacy class of the group element in question. The last equality

is our final result, which is just a sl(2,R) character of G(LΣRΣ−1). From here the role

of |Σ〉 is becoming more evident: it controls how the right element R would act as left

element relative to L and vice versa.

The result (3.21) immediately generalizes to the inner product between any two of the

U -states as defined in (3.8): any rotated state continuously connected to Σ will satisfy

〈U1|U2〉 =
e−αh

1− e−α
, U−1

1 U2 ≡ V exp(−αL0)V
−1 . (3.23)

In other words, the inner product between any two U -states U1 and U2 is a function only

the “magnitude” α of the conjugacy class of the group element that relates U1 to U2. α

can be thought of as an invariant distance between the two elements on the group manifold

(and indeed we will develop its geometric interpretation in the next subsection). Note

that as U1 approaches U2, α → 0 and thus the norm of any U state itself is infinite: this

divergence can be seen immediately from noting that the norm of |Σ〉 diverges.
Finally, the U states satisfy a completeness relation. It is shown in appendix A.2

through explicit computation that for 2h > 1 we have

∫

dU |U〉〈U | = (2π)2

2(2h− 1)
1 , (3.24)

where dU is the Haar measure on SL(2,R). In pedestrian terms, this simply means that we

treat SL(2,R) as being locally AdS3 and integrate over it using the usual volume measure,

taking care to integrate over SL(2,R) and not over its universal cover.

3.4 The Green’s function on the group manifold

Here we discuss a few further properties of the inner product 〈U1|U2〉 computed above.

In particular, the inner product (3.23) is actually a Green’s function with respect to the

invariant Laplacian on the SL(2,R) group manifold.

We begin by placing coordinates σα on the group manifold SL(2,R). Let us denote

the usual generators of sl(2,R) in the fundamental representation by La. As SL(2,R) is

– 11 –
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a group manifold, there exist vector fields ξαa and ξ̄αa that generate the group action on a

point in the manifold from the left and from the right, i.e.

ξαa
∂U(σ)

∂σα
= LaU(σ) , ξ̄αa

∂U(σ)

∂σα
= U(σ)La . (3.25)

As the U -states (3.10) transform in the same way, they satisfy:

ξαa ∂α|U(σ)〉 = |LaU(σ)〉 = ℓa|U(σ)〉 , (3.26)

as well as a similar relation for the barred sector. Now we act with this relation twice on

the σ2 coordinates parametrizing the inner product 〈U(σ1)|U(σ2)〉 with U(σ1) 6= U(σ2). In

particular, denote the Killing form on sl(2,R) by ηab and compute

ηab〈U(σ1)|ξαa ∂α
(

ξβb ∂β |U(σ2)
)

〉 = ηab〈U(σ1)|ℓbℓa|U(σ2)〉 = 2h(h− 1)〈U(σ1)|U(σ2)〉 ,
(3.27)

where in the last equality we have used the Casimir relation (3.3). It is straightforward to

verify that the second-order differential operator on the left-hand side of (3.27) is (up to a

factor of 1
2) the invariant Laplacian on SL(2,R), which we denote by �U . As our analysis

holds only for non-coincident U1, U2, we conclude that

(

1

2
�U2

− 2h(h− 1)

)

〈U1|U2〉 =
1

8π
δ(U1, U2) . (3.28)

Here δ(U1, U2) is a delta function on the group manifold that is nonzero only if U1 = U2, and

which is normalized to satisfy
∫

dUδ(U0, U) = 1 with dU the Haar measure on SL(2,R) and

U0 a reference group element. This can of course also be checked by explicitly verifying

that (3.23) satisfies the appropriate Laplacian; this is also the fastest way to verify the

existence of the delta function on the right-hand side.

3.5 Relationship to path integral

In this section we will demonstrate that the in the large-h limit, the inner product defined

above can be computed from a path integral over a classical field U(s), as used in [10] and

reviewed in section 2. Essentially we will perform the analogue of the usual construction of

the path integral for quantum mechanical systems, where the non-compact nature of the

representation, and therefore of the U states, provide some extra wrinkles.

Consider computing an inner product of the form

〈Uf |G(L)Ḡ(R−1)|Ui〉 . (3.29)

To give this a quantum-mechanical interpretation, we will represent the group elements

L and R as path-ordered exponentials of gauge fields A(s) and Ā(s), where s should be

thought of as “time”, i.e.

L = P exp

(

−
∫ sf

si

Asds

)

, R−1 = P exp

(

−
∫ sf

si

Āsds

)

. (3.30)
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To make contact with conventional quantum mechanics, one can imagine that A and Ā

define a Hamiltonian for the system defining time-evolution along s. We will now derive a

path integral expression for the inner product (3.29). We follow the normal algorithm of

dividing the path from si to sf into many small intervals of size ǫ, discretizing the path as

si, si+1, si+2 · · · sf−1, sf , where the time step is sj − sj−1 = ǫ.

We may then break up each path-ordered exponential:

P exp

(

−
∫ sf

si

Asds

)

= e−ǫAs(sf )e−ǫAs(sf−1) · · · e−ǫAs(si) =
∏

j

e−ǫAs(sj) , (3.31)

and similarly for the right sector. The inner product takes the form

〈Uf |G(L)Ḡ(R−1)|Ui〉 = 〈Uf |
∏

j

[

G
(

e−ǫAs(sj)
)

G
(

e−ǫĀs(sj)
)]

|Ui〉 . (3.32)

We now use (3.24) to insert a complete set of U states at each time step. We find

〈Uf |G(L)Ḡ(R−1)|Ui〉 = N〈Uf |
∏

j

[

G
(

e−ǫAs(sj)
)

G
(

e−ǫĀs(sj)
)

∫

dU |U(sj)〉〈U(sj)|
]

|Ui〉 ,

(3.33)

where we have introduced an overall prefactor N to absorb factors of the form (2h− 1)∞

into the usual ambiguities in the measure of the path integral. We see that we must evaluate

many inner products of the form

〈U(sj+1)|G
(

e−ǫAs(sj)
)

G
(

e−ǫĀs(sj)
)

|U(sj)〉 . (3.34)

To evaluate this inner product, we make the usual assumption that most contributions to

the path integral come from reasonably smoothly varying U(s), so that we may assume

that U(sj+1) = U(sj) + ǫ
dU(sj)

ds +O(ǫ2). Thus to lowest order in ǫ we are evaluating

〈

U(sj)

(

1+ U(sj)
−1ǫ

dU(sj)

ds

) ∣

∣

∣

∣

G
(

e−ǫAs(sj)
)

G
(

e−ǫĀs(sj)
)

∣

∣

∣

∣

U(sj)

〉

. (3.35)

We use the transformation property of the U states (3.10) to move all of the group elements

to the ket on the right to obtain

〈

U(sj)

∣

∣

∣

∣

e−ǫAs(sj)U(sj)e
−ǫĀs(sj)

(

1− U(sj)
−1ǫ

dU

ds
(sj)

)〉

. (3.36)

Next, we use the general form for the inner product (3.23) to conclude that

〈U(sj+1)|G
(

e−ǫAs(sj)
)

G
(

e−ǫĀs(sj)
)

|U(sj)〉 =
e−α(sj)h

1− e−α(sj)
, (3.37)

where α(sj) is given by the conjugacy class of the SL(2,R) element

M(sj) ≡ exp

(

−ǫ

(

U−1dU

ds
+ U−1AsU − Ās

)) ∣

∣

∣

∣

s=sj

M(sj) = V −1 exp(−α(sj)L0)V ,

(3.38)
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where to obtain this expression we expanded all terms up to order ǫ, and then re-

exponentiated the resulting expression. It should be understood that this expression is

correct only up to order ǫ. We have encountered a version of (3.38) in (3.22) and (3.23),

and we will encounter again in subsequent sections. The a simple way to read off α(sj) is

by noticing that (3.38) — and its counsins (3.22) and (3.23) — are independent of the sl(2)

representation. With these freedom, we choose to solve this equation in the fundamental

representation of sl(2), described by the 2×2 traceless matrices, where α is given by a trace:

α(sj) = 2ǫ

√

Trf (U−1DsU)2
∣

∣

∣

∣

s=sj

. (3.39)

Here the gauge-covariant derivative DsU is that defined in (2.7), and our conventions for

the fundamental representation are given in appendix A.

We have thus computed the contribution of one infinitesimal piece of the path. As-

sembling all of these pieces by taking the product, we see that the full inner product (3.29)

is given by

〈Uf |G(L)Ḡ(R−1)|Ui〉 = N
∏

j

(

∫

dU(sj)
e−α(sj)h

1− e−α(sj)

)

∣

∣

∣

∣

U(si)=Ui,U(sf )=Uf

. (3.40)

We now consider taking the continuum limit ǫ → 0; the product of integrals dU(sj) over

each group element at each point on the path becomes a path integral [DU ] over a contin-

uous worldline field U(s). We first consider the numerator of the above expression: this

naturally becomes an integral over a smooth action:

∏

j

exp (−hα(sj)) → exp

(

−2h

∫ sf

si

ds

√

Trf (U−1DsU)2
)

, (3.41)

i.e. precisely the exponential of the action S[U ] postulated on physics grounds in [10].

We now turn to the denominator 1 − e−α(sj). In the limit ǫ → 0, each α(sj) is

infinitesimal, and thus we may write:

∏

j

(1− e−α(sj))−1 ≈
∏

j

(α(sj))
−1 =

∏

j

√

ǫ

2π

∫

dσ(sj) exp
(

− ǫ

2
σ(sj)

2α(sj)
2
)

, (3.42)

where we have introduced a new auxiliary field σ(sj) at each point on the worldline; inte-

grating out this field generates the denominator (up to an overall ill-defined prefactor that

depends on the discretization). The full path integral is thus

∫ U(sf )=Uf

U(si)=Ui

[DU ] exp (−S[U, σ]) . (3.43)

where the full continuum action is

S[U, σ] =

∫ sf

si

ds

(

2h

√

Trf (U−1DsU)2 +
1

2
σ(s)2 Trf

(

U−1DsU
)2
)

. (3.44)
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In the h → ∞ limit, we may ignore the second term in the action: this is then precisely

the path integral (2.4)–(2.5) which was proposed on symmetry grounds in [10]. We can

now see that at finite h, the path integral proposed in [10] must be corrected by additional

“quantum” terms arising from the measure of the path integral when integrating over U

states. This additional term — the wrinkle we alluded to at the start of this subsection

— arises from the fact that the inner product of two nearby U states is divergent, which

is itself a direct consequence of the non-compactness of SL(2,R) and the resulting infinite

tower of highest weight states. It would be interesting to understand better the physical

significance of this term; however in this paper we will not attempt to treat the path

integral (2.4) at finite h, and will instead simply directly compute matrix elements from

the algebraic approach developed above.

4 Wilson lines: local fields and geometry

Our goal in this section is to give a geometric interpretation to the algebraic construction

in section 3. We will start in section 4.1, by going through the simple exercise of casting

our gravitational Wilson line in (2.2) along the lines of the discussion in section 3.3. In

section 4.2 we will argue that for invertible connections (A, Ā), we can interpret the trans-

formation properties of the group elements in the Wilson line as moving the endpoints of

the operator in AdS3. This justifies the geometric interpretation of the algebraic object.

And finally, in section 4.3 we will show how to build a local bulk field from our rotated

Ishibashi states; these constructions will be explicitly done for global AdS and the static

BTZ black hole.

4.1 Gravitational Wilson line as an overlap of two states

The results in section 3 gives a prescription to evaluate overlap of states in the highest

weight representation. In this section we would like to implement those results to a gravi-

tational Wilson line. More concretely, we would like to analyse

WR(xf , xi) = 〈Σ|G
(

Pe−
∫ xf
xi

A
)

Ḡ
(

Pe−
∫ xf
xi

Ā
)

|Σ〉 , (4.1)

as an overlap of a suitable initial and final |U〉 state. We keep the reference state |Σ〉
generic so far, and we will discuss the different choices ΣIsh, and Σcross in section 4.3.

As in section 2, γ(s) is a curve with bulk endpoints (xi, xf ); we use the affine parameter

s ∈ [si, sf ] where x(s = si) = xi and x(s = sf ) = xf .

To recast (4.1) as an inner product, it is useful to rewrite the flat connections as

A(x) = gL(x)dgL(x)
−1 , Ā(x) = gR(x)

−1dgR(x) , (4.2)

Using the transformation of the path ordered exponential under (4.2):

P e−
∫
γ
A = gL(xf )gL(xi)

−1 , P e−
∫
γ
Ā = g−1

R (xf )gR(xi) , (4.3)

and therefore

〈Σ|G
(

P e−
∫
γ
A
)

Ḡ
(

P e−
∫
γ
Ā
)

|Σ〉 = 〈Σ|G
(

gL(xf )gL(xi)
−1

)

Ḡ
(

g−1
R (xf )gR(xi)

)

|Σ〉 ,
(4.4)
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To write this expression as an overlap between to states, we define

|U(x)〉 ≡ G
(

gL(x)
−1

)

Ḡ (gR(x)) |Σ〉 . (4.5)

and with this, we can rewrite the previous amplitude as

〈Σ|G
(

P e−
∫
γ
A
)

Ḡ
(

P e−
∫
γ
Ā
)

|Σ〉 = 〈U(xf )|U(xi)〉 . (4.6)

It is important to note that in this expression we have implicitly assumed that the group

element gL obeys

g−1
L = g†L ,

and similarly for gR. All of our manipulations will use group elements that are unitary. And

we should stress that |U(x)〉 is not gauge invariant. In its definition in (4.5) we implicitly

made a choice: we are splitting the path from xi to xf to a mid point where gL = gR = 1,

and without any further specification of the connections, we have not motivated nor justified

this choice. This bug does not affect (4.6), and we will ignore it for now. We will return

to this point in section 4.3 when we directly analyse |U(x)〉.
Having casted the gravitational Wilson line as an inner product in (4.6), we can now

use the same logic that leads to (3.21) and (3.22). In particular we find that

〈Σ|G
(

P e−
∫
γ
A
)

Ḡ
(

P e−
∫
γ
Ā
)

|Σ〉 = e−α(xi,xf )h

1− e−α(xi,xf )
(4.7)

where, following (3.22) for this case, α(xi, xf ) is given by the solution to

gL(xf )gL(xi)
−1g̃R(xi)

−1g̃R(xf ) = V exp(−α(xi, xf )L0)V
−1 . (4.8)

and we define

g̃R ≡ Σ−1gRΣ , ˜̄A ≡ Σ−1ĀΣ . (4.9)

Note that while, by definition, A and Ā act on different spaces, the role of Σ is to tie together

these two sectors; ˜̄A can be thought of as the ‘left’ version of the ‘right’ connection.

To solve for α(xi, xf ) in (4.8), it is useful to note that this equation is independent of the

sl(2,R) representation, and hence we can simply use a finite dimensional representation.6

Using the fundamental representation of sl(2,R) (see appendix A), and after taking the

trace both sides of (4.8), gives

cosh

(

α(xi, xf )

2

)

=

(

1

2
Trf

(

gL(xf )gL(xi)
−1g̃R(xi)

−1g̃R(xf )
)

)

. (4.10)

where Trf is the trace in the fundamental representation. Using (4.2) together with (B.7)

and (B.8), we find that α(si, sf ) = 2D(si, sf ) is the geodesic length of an effective metric

given by

gµν =
1

2
Tr(Aµ − ˜̄Aµ)(Aν − ˜̄Aν) . (4.11)

6There is an ambiguity in the sign in front of α when (4.8) is considered in a finite dimensional repre-

sentation. However, α > 0 as required by the convergence of (3.21).
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The relevant metric for global AdS and BTZ is given in (B.9). Therefore, the inner product

is

〈Σ|G
(

P e−
∫
γ
A
)

Ḡ
(

P e−
∫
γ
Ā
)

|Σ〉 = e−2hD(xi,xf )

1− e−2D(xi,xf )
. (4.12)

This is the familiar bulk-to-bulk propagator of a minimally coupled scalar field in a locally

AdS3 background [19, 20]. In the semi-classical limit, where the numerator is negligible

and h is large, the saddle point approximation of the path integral in (4.12) precisely

agrees with (2.19). The background metric (4.11) is in agreement with (2.17), and (4.8) is

equivalent to (2.12).

At the level of evaluating (4.12), the detailed nature of |Σ〉 can be overlooked: provided

the endpoint states satisfies

G(L)G(R−1)|Σ〉 = |LΣR〉 , (4.13)

we will obtain (4.12), and interpret it as the bulk-to-bulk propagator of a scalar field with

background metric (4.11). With this perspective, if the input is gµν , we could just infer the

values of (A, ˜̄A) and use them in (4.12), without making explicit reference to the difference

between Ā and ˜̄A, and hence neglect the role of |Σ〉. However, |U(x)〉 is an object sensitive

to |Σ〉, and as we will discuss in section 4.3, this will disentangle the different features that

|Σ〉 captures as we build local probes in AdS3.

4.2 Algebra meets geometry

An expression such as (4.12) makes rather evident that the Wilson line is a propagator, and

hence its ties to geometry. The drawback however is the brut aspect of the observation: it

relied on evaluating explicitly the observable on AdS3 and the BTZ background. In this

section we will do better. We will show that the object

WR(xf , xi) = 〈Σ|G
(

Pe−
∫ xf
xi

A
)

G
(

Pe−
∫ xf
xi

Ā
)

|Σ〉 (4.14)

can be understood as a bulk-to-bulk propagator with respect to the bulk spacetime metric

associated with the flat connections A, Ā. The important improvement here relative to our

prior observations is that here we treat the Wilson line quantum mechanically, and as such

it will capture the geometry as perceived by a bulk field of an arbitrary mass.

We begin by assuming that the bulk spacetime is simply connected (e.g. for pure AdS3).

In this case all paths from xi to xf are topologically equivalent, and (4.14) is a well-defined

function of the two endpoints.

We first recall that in (3.28) it was shown that the object 〈U1|U2〉 was a Green’s

function on the group manifold SL(2,R). This is logically distinct from showing that the

matrix element (4.14) is a Green’s function on the bulk metric defined by A, Ā.

To make a connection between these two objects, we first need to establish how the

matrix elements in (4.14) change if we move, for instance, the point xf . The dependence on

endpoints xi and xf enters in (4.14) as follows: using (4.2)–(4.3), the matrix element reads

WR(xf , xi) = 〈Σ|G(gL(xf )gL(xi)
−1)Ḡ(gR(xf )

−1gR(xi))|Σ〉
= 〈Σ|G(gL(xf )gL(xi)

−1g̃R(xi)
−1g̃R(xf ))|Σ〉 . (4.15)
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In the second line we made use of the transformation properties of our reference

states (3.10), and used the definition g̃R ≡ Σ−1gRΣ . We note that this is where the choice

of |U〉 to be rotated states is crucial: the state combines both sectors, which will lead to

a geometric interpretation of WR(xf , xi) in the subsequent steps. From (4.15), the full

dependence on xi and xf enters through the following group element

G(xf , xi) ≡ gL(xf )gL(xi)
−1g̃R(xf )

−1g̃R(xi) . (4.16)

Taking an xf derivative of this group element, we have

∂

∂xµf
G(xf , xi) = −Aµ(xf )G(xi, xf ) + G(xi, xf ) ˜̄Aµ(xf ) . (4.17)

Recall now that (3.28) was shown by exploiting the fact that the left and right action of

the group generated a set of vector fields on the group manifold (3.25). We would now like

to extend this idea to the geometric bulk, i.e. we seek a set of vector fields ζµa , ζ̄
µ
a defined

on AdS3 such that

ζµa
∂

∂xµf
G(xf , xi) = LaG(xf , xi) , ζ̄µa

∂

∂xµf
G(xf , xi) = G(xf , xi)La . (4.18)

Multiplying both sides of these equations by Lb and taking a trace, we see that the

defining relations become

ζµa trf

((

−Aµ + G ˜̄AµG−1
)

Lb

)

= ηab , ζ̄µa trf

((

−G−1AµG + ˜̄Aµ

)

Lb

)

= ηab . (4.19)

These equations will have solutions for ζ, ζ̄ if the 3 × 3 matrices (with rows labaled by µ

and columns by b) multiplying them from the right are invertible. However from (B.3), we

see that these matrices are closely related to the usual vielbein e ∼ A − ˜̄A in the metric

formulation of 3d gravity, with one side rotated by the SL(2,R) transformation defined by

G(xf , xi). The condition that the generalized vielbeins above be invertible appears to be

required for a simple geometric interpretation of the bulk spacetime.

If the generalized vielbeins shown above are invertible, then the ζ, ζ̄ exist, and we have

shown that movement in bulk spacetime is equivalent to movement on the group manifold.

Furthermore the condition (4.18) guarantees that they satisfy the sl(2,R)×sl(2,R) algebra

as Killing vectors on the bulk spacetime. Thus following through the same steps as in (3.28),

we conclude that
(

1

2
�xf

− 2h(h− 1)

)

WR(xf , xi) =
1

8π

δ(xf , xi)√−g
(4.20)

where now �xf
is the Laplacian on the bulk AdS3 spacetime. The construction of ζ, ζ̄ will

be carried out explicitly in section 4.3.

We now consider the case where the bulk spacetime is not simply connected, e.g. the

BTZ black hole. For a black hole the bulk connections have a nontrivial holonomy around

the black hole horizon. In this case the definition of the open-ended Wilson line WR(xf , xi)
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in (4.14) is incomplete: as there are multiple inequivalent bulk paths that connect xi and

xf , we must specify a path, and different choices of path will result in different answers.

In this case, if we would like to obtain an unambiguous answer that depends only

on the endpoints, one prescription is to sum over all inequivalent paths, i.e., we define a

path-summed Wilson line as

WR(xf , xi) =
∑

C(xf ,xi)

WR(C(xf , xi)) (4.21)

where the sum is over all topologically inequivalent paths C(xf , xi) that connect xf to

xi. An example of such situation is nicely capture by the BTZ black hole. In this case

the inequivalent paths correspond to geodesics winding around the horizon multiple times,

and the resulting propagator is a sum over these windings. For the static black hole, the

resulting propagator is

WR(xf , xi)BTZ =
∑

n∈Z

e−2hDn(xi,xf )

1− e−2Dn(xi,xf )
, (4.22)

with

Dn(xi, xf ) =
1

r2+

(

rfri cosh(r+∆φ+ 2πr+n)−
√

(r2f − r2+)(r
2
i − r2+) cosh(r+∆t)

)

. (4.23)

Here we are using the geodesic length in (B.14), and n controls the number of times the

path encloses the horizon. In the metric formulation this sum can be understood as the

sum over images that gives the propagator the correct periodicity condition (see e.g. [21]),

which in complete agreement with our expression.

4.3 Local fields

In the last portion of this section we will evaluate and interpret |U(x)〉 as defined in (4.5). As

mentioned there, this definition is gauge dependent. A definition of |U(x)〉 that reinstates
this dependence is

|U(x)〉 = G
(

gL(x0)gL(x)
−1

)

Ḡ
(

g−1
R (x0)gR(x)

)

|Σ〉 . (4.24)

where xµ0 is a bulk reference point where |U(x0)〉 = |Σ〉. In other words, the point xµ0
defines where in the bulk we should locate the state |Σ〉. Once this choice is made, |U(x)〉
is a prescription on how to move through the bulk the state |Σ〉 from xµ0 to a point xµ.

We will decompose the state (4.24) as a sum over local functions in the infinite-

dimensional representation

|U(x)〉 =
∞
∑

k,k̄=0

Φ∗
k,k̄(x)|h, k, k̄〉 , (4.25)

and evaluate Φk,k̄(x). Alternatively, the function Φk,k̄(x) is

Φk,k̄(x) = 〈U(x)|h, k, k̄〉 = 〈h, k, k̄|U(x)〉† . (4.26)
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This function is the object that will provide local bulk information in the Chern-Simons

formulation of 3D gravity.

The explicit calculation of this Φk,k̄(x) can be a complicated task. A way to proceed

is by using the technique in appendix A of [22]. The aim there is to find a differential

operators La(x) whose action in the inner product (4.26) is

〈U(x)|ℓa|h, k, k̄〉 = La(x) 〈U(x)|h, k, k̄〉 . (4.27)

where ℓa is the infinite-dimensional generator that acts as in (3.2), and La(x) is a differ-

ential operator acting on the x variables, whose explicit form depends on the state |U(x)〉.
Analogous formulas can be found for the barred sector. These operators are precisely the

vector fields introduced in (4.18), i.e. we have

La(x) = ζµa
∂

∂xµ
, L̄a(x) = ζ̄µa

∂

∂xµ
. (4.28)

Equation (4.27), together with (3.2), implies that

L−1Φk,k̄(x) =
√

(k + 1)(k + 2h)Φk+1,k̄(x) ,

L̄−1Φk,k̄(x) =
√

(k̄ + 1)(k̄ + 2h)Φk,k̄+1(x) . (4.29)

Φ0,0(x) can be fully determined by solving following differential equations

L0(x)Φ0,0(x) = hΦ0,0(x) , L1(x)Φ0,0(x) = 0 , (4.30)

together with its barred version. Therefore, we will be able to infer the form of Φk,k̄(x), by

successively applying L−1(x), and L̄−1(x) to the seed Φ0,0(x). From here it follows that

Φk,k̄(x) obeys the Casimir equation

(

L2(x) + L̄2(x)
)

Φk,k̄(x) = 4h(h− 1)Φk,k̄(x) , (4.31)

where L2 = −(L−1L1 + L1L−1) + 2L2
0. In other words, Φk,k̄(x) is a local bulk field of

mass m2 = 4h(h − 1) and whose boundary conditions are given by the highest weight

conditions (4.29)–(4.30).

Finally, once we have the explicit expression of the functions Φk,k̄(x), we will compute

the inner products of two states (4.25) as

〈U(xf )|U(xi)〉 =
∞
∑

k,k̄

Φk,k̄(xf )Φ
∗
k,k̄(xi) . (4.32)

Note that when we evaluate (4.32) we will not make use of (3.21), and hence the derivations

in this portion give an alternative and more direct derivation of (4.12). In the following,

we will carry out this procedure for two explicit backgrounds. Section 4.3.1 is devoted to

global AdS3, which agrees completely with the results in [22], and section 4.3.2 focuses on

the static BTZ black hole.
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4.3.1 Global AdS3

Let us consider the state |U〉 for global AdS3 and build explicitly Φk,k̄(x) for this back-

ground. To start we will first infer the group elements from the standard metric for AdS3,

i.e.

ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ dφ2 . (4.33)

Using (4.11), it is straight forward to read from (4.33) unitary group elements gL and g̃R.

Details are presented in appendix B.1, and the resulting elements are

gL(x) = e(ℓ1−ℓ−1)ρ/2e−iℓ0x+

, g̃R(x) = e−iℓ0x−

e(ℓ1−ℓ−1)ρ/2 , (4.34)

where x± = t± φ. We will use the definition (4.24) with gL(x0) = 1 = gR(x0); this places

|Σ〉 at the origin of AdS in accordance with the results in [22–24]. This gives

|U(x)〉AdS = G
(

gL(x)
−1

)

Ḡ (gR(x)) |Σ〉
= G

(

gL(x)
−1g̃R(x)

−1
)

|Σ〉
= eix

+ℓ0e−ρ(ℓ1−ℓ−1)eix
−ℓ0 |Σ〉 , (4.35)

where we used (3.10) and (4.34). For most of the following derivations we will drop the

subscript “AdS” and restore it when needed.

The next step is to find the differential operators La(x) in (4.27) for global AdS3. For

that we use the inner product as

Φk,k̄(x) = 〈U(x)|h, k, k̄〉 = 〈Σ|e−ix−ℓ0eρ(ℓ1−ℓ−1)e−ix+ℓ0 |h, k, k̄〉 , (4.36)

Taking derivatives with respect to the global coordinates gives

∂x+〈U(x)|h, k, k̄〉 = −i〈Σ|e−ix−ℓ0eρ(ℓ1−ℓ−1)e−ix+ℓ0ℓ0|h, k, k̄〉 ,
∂ρ〈U(x)|h, k, k̄〉 = 〈Σ|e−ix−ℓ0eρ(ℓ1−ℓ−1)(ℓ1 − ℓ−1)e

−ix+ℓ0 |h, k, k̄〉 ,
∂x−〈U(x)|h, k, k̄〉 = −i〈Σ|e−ix−ℓ0ℓ0e

ρ(ℓ1−ℓ−1)e−ix+ℓ0 |h, k, k̄〉 , (4.37)

and using commutation relations, we can move the generators that are not in the exponents

to the right, to get

∂x+〈U(x)|h, k, k̄〉 = −i〈U(x)|ℓ0|h, k, k̄〉 ,
∂ρ〈U(x)|h, k, k̄〉 = 〈U(x)|(e−ix+

ℓ1 − eix
+

ℓ−1)|h, k, k̄〉 ,

∂x−〈U(x)|h, k, k̄〉 = −i〈U(x)| cosh 2ρ ℓ0 +
sinh 2ρ

2
(e−ix+

ℓ1 + eix
+

ℓ−1)|h, k, k̄〉 . (4.38)

Now, it is straight forward to obtain the differential operators that follow (4.27) for global

AdS3; these read

L0 = i∂x+ ,

L±1 = ie±ix+

[

cosh 2ρ

sinh 2ρ
∂x+ − 1

sinh 2ρ
∂x− ∓ i

2
∂ρ

]

. (4.39)

– 21 –



J
H
E
P
0
9
(
2
0
1
8
)
0
6
6

It is important to remark that these differential operators were built without making direct

reference to |Σ〉.
To find the barred differential operators we follow a procedure analogous to what we

did in (4.37)–(4.38), but using the following inner product:

Φk,k̄(x) = 〈U(x)|h, k, k̄〉 = 〈Σ|Σ−1eix
+ℓ0e−ρ(ℓ1−ℓ−1)eix

−ℓ0Σ|h, k, k̄〉 , (4.40)

where we are rewriting the action of the left group elements as an action via the right, i.e.

|U(x)〉AdS = G
(

gL(x)
−1

)

Ḡ (gR(x)) |Σ〉
= Ḡ

(

Σ−1g̃R(x)gL(x)Σ
)

|Σ〉 . (4.41)

While in (4.36) we could ignore Σ, we are now forced to understand how Σ acts on the

states to infer the differential operators L̄a. A sensible choice is to require that L̄a are

related to La by replacing x+ ↔ x−, i.e.

L̄0 = i∂x− , (4.42)

L̄±1 = ie±ix−

[

cosh 2ρ

sinh 2ρ̃
∂x− − 1

sinh 2ρ
∂x+ ∓ i

2
∂ρ

]

.

This is the familiar assignment of Killing vectors in AdS3; the interesting twist here is that

not any choice of probe Σ will achieve this assignment. A choice of |Σ〉 that delivers (4.42)
for the group element (4.40) is the crosscap state in (3.18):

|Σ〉 = |Σcross〉 .

The Ishisbashi state |ΣIsh〉 has a different effect. Using (3.11) in (4.40) would lead to

operators L̄a that are related to La through x+ ↔ −x−, and ρ → −ρ. It is not clear if this

choice has a natural interpretation in the geometrical description of fields in AdS3, and it

might be interesting to investigate this in the future.

Our starting point in this subsection was the metric for AdS3 in (4.33), and from there

we read off gL and g̃R . Another starting point is to use the fact that global AdS3 is

maximally symmetric, and the group elements that label rotations and translations in this

space are

|U(x)〉AdS = G
(

gL(x)
−1

)

Ḡ (gR(x)) |Σ〉
= eiℓ0x

+

eiℓ0x
−

e−
ρ
2
(ℓ1−ℓ−1+ℓ1−ℓ−1)|Σ〉 , (4.43)

as it was done in [22, 24]. For the crosscap state, |Σ〉 = |Σcross〉, (4.43) would imply that

the relevant group elements are (4.34) and leads to usual features of Killing vectors and

fields in AdS3. The choice |Σ〉 = |ΣIsh〉 in (4.43) would not lead to the usual notion of a

local field in AdS3; in particular, the radial dependence of the state would disappear after

imposing (3.13).

The differential operators (4.39), and (4.42) are Killing vectors of global AdS3, as

advocated in section 4.2. Moreover,
(

L2(x) + L̄2(x)
)

in (4.31) is the usual d’Alembertian
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for AdS3. Therefore, Φk,k̄(s) is a scalar field with mass m2 = 4h(h − 1) in a global AdS

background. Now, we can solve (4.30) using the previous differential operators, as done

in [25]; the highest weight state is

Φ0,0(x) = 〈U(x)|h, 0, 0〉 = e−2iht

(cosh ρ)2h
. (4.44)

To find Φk,k̄(x) we simply need to identify the solutions to (4.31) and organize them as

L−1(x), and L̄−1(x) acting on (4.44). This leads to

Φk,k̄(x) = Ck,k̄ e
−ih(x++x−)e−i(kx++k̄x−)(tanh ρ)k̄−k(cosh ρ)−2hP

(k̄−k, 2h−1)
k (1− 2 tanh2 ρ) ,

(4.45)

where P
(a, b)
n are Jacobi polynomials, and Ck,k̄ = (−1)k

√

k!(2h+k̄−1)!

k̄!(2h+k−1)!
is a constant that has

been chosen to match the normalizations in (4.29). Therefore, we found the state (4.25)

in a global AdS background. This is in complete agreement with the known results of

normalizable wavefunction in AdS3 as in, e.g., [26].

We are ready to compute the overlap of two states at different positions in the bulk.

Using (4.32) with (4.45) gives

〈U(xf )|U(xi)〉 =
∞
∑

k,k̄=0

e−ih(∆x++∆x−)e−i(k∆x++k̄∆x−)k!(2h+ k̄ − 1)!

k̄!(2h+ k − 1)!

× (tanh ρf tanh ρi)
k̄−k(cosh ρf cosh ρi)

−2h

× P
(k̄−k, 2h−1)
k (1− 2 tanh2 ρf )P

(k̄−k, 2h−1)
k (1− 2 tanh2 ρi) . (4.46)

The previous sum is performed in the appendix C. If we choose x = tanh2 ρi, y = tanh2 ρf ,

r = e−i∆x−
, and s = e−i∆x+

, the left hand side of (C.3) is equal to (4.46). Applying (C.3),

we find

〈U(xf )|U(xi)〉 =
(

σ(xi, xf ) +
√

σ2(xi, xf )− 1
)−(2h−1)

2
√

σ2(xi, xf )− 1
=

e−2hD(xi,xf )

1− e−2D(xi,xf )
. (4.47)

where D(xi, xf ) is the geodesic length of global AdS, given in (B.13) with C = −1/4. This

in complete agreement with the result in (4.12).

4.3.2 BTZ

As we did for global AdS3, we will now find the local functions Φk,k̄(x) for the static BTZ

background. Our starting point is to build the group elements (gL, g̃R) from the metric,

which for the black hole reads

ds2 = −(r2 − r2+)dt
2 +

dr2

r2 − r2+
+ r2dφ2 . (4.48)

In appendix B.1 we build the appropriate connections for the black hole are (B.8) that

are compatible with (4.48) and unitary in the highest weight representation. The resulting
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BTZ state is7

|U(x)〉BTZ = G
(

gL(x)
−1g̃R(x)

−1
)

|Σ〉 (4.49)

= e−
i
4
((8C−2)ℓ0−(4C+1)(ℓ1+ℓ−1))x+

e−ρ(ℓ1−ℓ−1)e−
i
4
((8C−2)ℓ0+(4C+1)(ℓ1+ℓ−1))x− |Σ〉 ,

where we casted all the elements as acting on the left, and we introduced

r = r+ cosh2(ρ− ρ∗) , 4C = e2ρ∗ = r2+ , x± = t± φ . (4.50)

Following the same procedure as in section 4.3.1, we can find differential operators defined

as (4.27) for the BTZ state. Using8

Φk,k̄(x) = 〈U(x)|h, k, k̄〉 (4.51)

= 〈Σ|e i
4
((8C−2)ℓ0+(4C+1)(ℓ1+ℓ−1))x−

eρ(ℓ1−ℓ−1)e
i
4
((8C−2)ℓ0−(4C+1)(ℓ1+ℓ−1))x+ |h, k, k̄〉 ,

we find the non-barred differential operators

L0 = −2α+

√
C sinh

(

2
√
Cx+

)

∂ρ +

(

α− +
1 + f(ρ)2

2f(ρ)
α+ cosh

(

2
√
Cx+

)

)

∂x+

+
1− f(ρ)2

2f(ρ)
α+ cosh

(

2
√
Cx+

)

∂x− ,

L±1 =

(

±1

2
cosh

(

2
√
Cx+

)

− 2α−

√
C sinh

(

2
√
Cx+

)

)

∂ρ

+

(

α+ +
1 + f(ρ)2

8
√
Cf(ρ)

(

α−4
√
C cosh

(

2
√
Cx+

)

∓ sinh
(

2
√
Cx+

))

)

∂x+

+

(

α+ +
1− f(ρ)2

8
√
Cf(ρ)

(

α−4
√
C cosh

(

2
√
Cx+

)

∓ sinh
(

2
√
Cx+

))

)

∂x− . (4.52)

with

f(ρ) ≡ e2ρ − 4C

4C + e2ρ
, α± ≡ i(4C ± 1)

16C
. (4.53)

In order to obtain the barred generators, we proceed as done for global AdS3 in (4.40)–

(4.41), i.e. we rewrite the state |U(x)〉BTZ as having an action only via right group elements.

This gives

Φk,k̄(x) = 〈U(x)|h, k, k̄〉 (4.54)

= 〈Σ|Σ−1e
i
4(−(8C−2)ℓ0+(4C+1)(ℓ1+ℓ−1))x+

eρ(ℓ1−ℓ−1)e
i
4(−(8C−2)ℓ0−(4C+1)(ℓ1+ℓ−1))x−

Σ|h, k, k̄〉 .

As before, we will fix Σ such that the barred differential operators, L̄a, are equal to the

non-barred operators with x+ ↔ x−, as it is natural in the metric formulation. A quick

7Following the discussion around (4.24) and (4.34), we have chosen here gL(x0) = 1 = g̃R(x0). In

contrast to global AdS3, there is no physical motivation to make this choice for BTZ: it simply makes some

of the subsequent manipulations easier. It would be interesting to investigate what is a physically sound

choice of xµ
0 in future work.

8For simplicity, we will omit the subscript ‘BTZ’ in most of this section, and restore it when needed.
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inspection singles out |Σcross〉 as the appropriate choice rather than |ΣIsh〉. Using |Σ〉 =

|Σcross〉 in (4.54) we find

L̄0 = −2α+

√
C sinh

(

2
√
Cx−

)

∂ρ +

(

α− +
1 + f(ρ)2

2f(ρ)
α+ cosh

(

2
√
Cx−

)

)

∂x−

+
1− f(ρ)2

2f(ρ)
α+ cosh

(

2
√
Cx−

)

∂x+ ,

L̄±1 =

(

±1

2
cosh

(

2
√
Cx−

)

− 2α−

√
C sinh

(

2
√
Cx−

)

)

∂ρ

+

(

α+ +
1 + f(ρ)2

8
√
Cf(ρ)

(

α−4
√
C cosh

(

2
√
Cx−

)

∓ sinh
(

2
√
Cx−

))

)

∂x−

+

(

α+ +
1− f(ρ)2

8
√
Cf(ρ)

(

α−4
√
C cosh

(

2
√
Cx−

)

∓ sinh
(

2
√
Cx−

))

)

∂x+ . (4.55)

The differential operators (4.52) and (4.55) might not look like the standard basis for

the local Killing vectors on BTZ. Nevertheless, they locally satisfy the Killing equation

for (4.48) and the expected sl(2,R)L × sl(2,R)R algebra.

Having evidence that the state |Σcross〉 is a natural probe (with usual geometric prop-

erties we associate to BTZ), we can infer from (4.49) that

|U(x)〉BTZ = (4.56)

= e−
i
4
((8C−2)ℓ0−(1+4C)(ℓ1+ℓ−1))x+

e−
i
4((8C−2)ℓ0−(1+4C)(ℓ1+ℓ−1))x−

e−
ρ
2
(ℓ1−ℓ−1+ℓ1−ℓ−1)|Σcross〉 .

One can obtain |U(x)〉BTZ from the gauge transformation that relates global AdS3 and

BTZ, and using (4.43). We found, however, instructive to take a perspective where the

metric is the first input and from there build (4.56).

It is very satisfactory that the same state, |Σcross〉, leads to a geometrical interpretation

of (La, L̄a) for both BTZ and global AdS3. In contrast, the Ishibashi state |ΣIsh〉 acting

on (4.54) leads to some tension: La and L̄a for BTZ are not related via x+ ↔ −x−, and

ρ → −ρ, as we found for global AdS3.

We now return to building Φk,k̄(x). To start consider (4.30): given (4.52), it is clear that

Φ0,0(x) is non-separable in any of its variables, which makes (4.30) very difficult to solve.

In order to simplify (4.30), we will make a change of variables; using (B.15) we now have

L0=− i
(

r2++1
)

Z2∂X+ +Z
(

r2+(X
−+1)+X−−1

)

∂Z+
(

r2+(X
−+1)2+(X−−1)2

)

∂X−

4r+
,

L1=− i(r+− i)2Z2∂X+ +((r+− i)X−+r++ i)(((r+− i)X−+r++ i)∂X− +(r+− i)Z∂Z)

4r+
,

L−1=− i(r++ i)2Z2∂X+ +((r++ i)X−+r+− i)(((r++ i)X−+r+− i)∂X− +(r++ i)Z∂Z)

4r+
.

(4.57)

The barred operators are defined analogously with X+ ↔ X−. The advantage of (4.57),

relative to (4.52), is that the differential operators just involve powers on the coordinates,
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and hence we can find a suitable polynomial solution to (4.30). The unique solution

to (4.30) reads

Φ0,0(x) = Z−2h



−1 +

(

X− + r++i
r+−i

)(

X+ + r++i
r+−i

)

Z2





−2h

(4.58)

=

(

2r
(

r2+ + 1
)

cosh(r+φ) +
√

r2 − r2+
(

(r+ − i)2e−r+t + (r+ + i)2er+t
)

)−2h

where in the second line we have changed to BTZ coordinates in (B.11). And as expected

the solution (4.58) not separable in this coordinate system. Acting with L−1(x), and

L̄−1(x) in (4.58), and inspired by the Jacobi polynomial form of the global case (4.45),

the general expression for a descendant of (4.58) reads

Φk,k̄(x) = Ck,k̄

(

Z

(X− + a)(X+ + a)− Z2

)2h
(

a
(X− + a)(X+ + 1

a)− Z2

(X− + a)(X+ + a)− Z2

)k̄

×
(

a
(X− + 1

a)(X
+ + 1

a)− Z2

(X− + a)(X+ + 1
a)− Z2

)k

(4.59)

×
(

a2 − 1
)2h

P
(k̄−k, 2h−1)
k

(

1− 2
(X− + a)(X+ + 1

a)− Z2

(X− + a)(X+ + a)− Z2
· (X

− + 1
a))(X

+ + a)− Z2

(X− + 1
a)(X

+ + 1
a)− Z2

)

,

where a ≡ i+r+
−i+r+

, and Ck,k̄ is same factor as in (4.45). It is straight forward to verify that

Φk,k̄(x) in (4.59) satisfies the d’Alembertian equation on the static BTZ background.

Having an explicit expression for Φk,k̄(x), we can compute the overlap of two

states (4.25) for the BTZ black hole. Using (4.59), we see that he sum we need to perform

in (4.32) is exactly equal to (C.3), where

X =
|τi|
|γi|

, Y =
|τf |
|γf |

, r = |a|2
√

τfγ
∗
f

τ∗f γf

τ∗i γi
τiγ∗i

, s = |a|2
√

τ∗f γ
∗
f

τfγf

τiγi
τ∗i γ

∗
i

, (4.60)

and

γi,f ≡ (X−
f,i + a)(X+

f,i + a)− Z2
f,i , τi,f ≡

(

X−
f,i +

1

a

)

(X+
f,i + a)− Z2

f,i . (4.61)

Using the result for the sum (C.3), with the previous definition for X,Y, r, and s, we find

the overlap of the two states in the BTZ black hole:

〈U(xf )|U(xi)〉 =
(

σ(xi, xf ) +
√

σ2(xi, xf )− 1
)−(2h−1)

2
√

σ2(xi, xf )− 1
, (4.62)

where σ(xi, xf ) is the geodesic distance for Poincare (B.17), which can be rewritten as

the geodesic length in BTZ (B.14) using (B.18). With no surprises, this is in complete

agreement with (4.12).
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It is interesting to analyse the behaviour of the field (4.59) in the BTZ coordinates.

Looking at (B.18), we see that the BTZ boundary r → ∞ is located at Z → 0, and in this

limit we have Φk,k̄ → 0. The horizon r = r+ is at the Poincare boundary (X+, X−, Z) →
∞, where Φk,k̄ as well vanishes. This behaviour, together with the fact that solves the BTZ

wave equation, shows that (4.59) behaves as a quasi-normal mode for the black hole. How-

ever, it is not a traditional BTZ quasi-normal mode as those built in, e.g., [27–30]. There are

a few discrepancies, and a few similarities, with this literature that are worth highlighting.

1. Highest weight condition. As it was observed in [31, 32], imposing the highest weight

conditions (4.29)–(4.30) leads to eigenfunctions that obey the quasinormal modes

conditions. This is a first indication that Φk,k̄(x) should have been regular through-

out, as they certainly are.

2. Separability of eigenfunctions. The most canonical way to find solutions to the

Casimir equation (4.31) is by casting the basis of solutions in a Fourier decompo-

sition in (t, φ), which are the natural directions for the Killing symmetries of the

black hole. This leads a eigenfunctions that are separable functions in the coordinate

system (r, t, φ), in strike contrast to (4.59). The construction of the operators La

in [31], which is used to build a basis for quasinormal modes, is as well compatible

with the separability ansatz. From a technical point of view, our lack of separability

could be attributed to the unitary condition we enforce in (4.56): this leads to a

group elements that are simply different to those used in prior work.9

3. Periodicity conditions. By design, the connections (A, Ā) that characterize BTZ in

the Chern-Simons formulation have the following feature [33, 34]: they are single

valued along the thermal cycle in Euclidean signature (smoothness of the Euclidean

cigar geometry), and carry a non-trivial holonomy around the spatial cycle (an indi-

cation that the connection has a finite size horizon). This is reflected in (4.59) by the

fact that our eigenfunctions are not periodic as we take φ ∼ φ+2π, but are periodic

under t ∼ t + i2π/r+. This is clearly not a feature of the modes built in [27–30],

which are decomposed in periodic Fourier modes along the φ direction.

4. Inner Product. Despite the two differences above, it is interesting to note that if

we evaluated the overlap (4.32) using the quasinormal modes in [28], it would lead

to (4.62). The derivations are shown in appendix D. This indicates that the bulk-to-

bulk correlation functions are not sensitive to how we represent Φk,k̄(x).

5 CFT interpretation

Here we discuss the CFT interpretation of the results above. In particular, consider com-

puting a Wilson line in AdS3, ending at the AdS boundary at the two boundary points

z1, z2 at radial coordinate ρ1, ρ2 with generic boundary conditions U1, U2 at each endpoint.

What, precisely, is this object in the CFT?

9We could have parametrized the group elements in (4.56) so that we obtain the same basis for La in [31]

that leads to separability. However, with this choice the state is not unitary and hence 〈U | 6= (|U〉)†.
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The considerations of the previous section should make it clear that the resulting object

is a suitably smeared two-point function, and here we simply provide a purely boundary in-

terpretation of this smearing procedure. The kinematics of these procedure are very familiar

from the language of the HKLL construction [35, 36] and this section may be understood

as a translation of some of those results into the language of Chern-Simons gravity.

Let us first consider what data we have; at each endpoint zi in the CFT we are

supplied with a length scale e−ρi arising from the cutoff and an SL(2,R) element arising

from the boundary conditions on the Wilson line. There is a natural way to associate this

data with the global descendants of a boundary operator O: first, act on the Ishibashi

crosscap state |Σcross〉 with the SL(2,R) elements Ui as explained in detail in section 3 to

construct a state |Ui〉, where the states in the highest weight representation are understood

as conformal descendants of O. Next, remove two discs from the CFT, each centered at zi
with radius e−ρi ; on each of these discs place the boundary data appropriate to |Ui〉. This
is the CFT dual to the open-ended Wilson line with boundary condition Ui.

Mathematically this is essentially the same construction as [22–24]. There are two main

differences: in all of these works the specification of the SL(2,R) element was interpreted

to specify a point in AdS3 rather than a boundary condition on a Wilson line. Furthermore

in [23, 37, 38] the full Virasoro group was considered rather than just its global subgroup.

The former is just a matter of interpretation, and we will touch briefly on the latter in the

conclusion.

5.1 Example: CFT on the plane

We now present some elementary computations to explain how this works in the basic case

of Poincaré AdS3 in coordinates:

ds2 = dρ2 + e2ρdzdz̄ , (5.1)

dual to the CFT on the plane with complex coordinates z, z̄. Rather than working with

boundary data on the edge of an excised disc at each endpoint, it is more convenient to

perform the state-operator correspondence to map each descendant on the edge to a local

operator at the center of the disc. As there are an infinite number of states in the sum,

this is a very non-local operator which we denote by OUi
(zi, z̄i). We will use a variant of

the HKLL construction to compute the two-point function

〈OU1
(z1, z̄1)OU2

(z2, z̄2)〉 , (5.2)

and then reproduce this answer from a Wilson line computation.

Focus on the first endpoint at (z1, z̄1). We first consider the case where the boundary

state U1 is the crosscap Ishibashi state |Σcross〉 itself. Consider the disc centered at z1 in

the CFT, with radius e−ρ; we would like to place the boundary data corresponding to the

crosscap Ishibashi state:

|Σcross〉 =
∑

m

(−1)m|m,m〉 =
∑

m

(−1)mc2mℓm−1ℓ̄
m
−1|h, h〉 , (5.3)
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where the normalization constant in each sector is cm =
√

Γ(2h)
Γ(m+1)Γ(m+2h) . We now use

the state-operator correspondence to replace each state on the disc ℓm−1ℓ̄
m
−1|0〉 with the

operator ∂m∂̄mO(z1) at the center. However, we should note that the evolution from the

center of the disc to the edge will cause each state’s amplitude to be multiplied by a factor

of e+ρ(2h+2m). Compensating for this, the operator that creates the crosscap state on a

disc of radius e−ρ1 is

|Σcross〉 → O(ρ1)
Σ (z1, z̄1) =

∑

m

c2m(−1)me−ρ1(2h+2m)∂m∂̄mO(z1, z̄1) . (5.4)

The sum over derivatives of the local operator O can be written as an integral over the

following kernel [39, 40]

O(ρ1)
Σ (z1, z̄1) =

2h− 1

π

∫

dzdz̄

(

e−2ρ1 − (z − z1)(z̄ − z̄1)

e−ρ1

)2h−2

O(iz, iz̄)

≡ K(ρ1, z1, z̄1)[O] , (5.5)

where in the last line we have introduced some new notation. We note that this is nothing

but the usual HKLL smearing kernel in Euclidean signature, though our interpretation is

somewhat different.

We now consider deforming away from the crosscap state to a more general U -state.

The SL(2,R) generators have a simple geometric action on the plane, and this geometric

action results in a transformation of the parameters in kernel K. In particular, if we

parametrize the SL(2,R) element U1 in a convenient way as

U1 = e−w1
i
2
(−2L0−L1−L−1)eµ1(L−1−L1)ew̄1

i
2
(−2L0+(L1+L−1)) , (5.6)

then it is shown in appendix E that the appropriate smeared operator is

O(ρ1)
U1

(z1, z̄1) = K(ρ1 + µ1, z1 + e−ρ1w, z̄1 + e−ρ1w̄1)[O] . (5.7)

We now pause to interpret this result from the point of view of HKLL. Recall that the

smearing function (5.7) corresponds to the HKLL representation of a bulk field in Poincaré

coordinates (5.1), where the precise coordinate values of the bulk reconstructed field are

(ρa, za, z̄a) = (ρ1 + µ1, z1 + eρ1w1, z̄1 + e−ρ1w̄1) , (5.8)

In particular, the proper distanceD within AdS3 between two points with coordinate values

(ρa, za, z̄a) and (ρb, zb, z̄b) satisfies coshD = σ where

σ =
e−2ρa + e−2ρb + (za − zb)(z̄a − z̄b)

2e−ρa−ρb
. (5.9)

Let us now consider computing the two-point function (5.2) of two U states inserted at

distinct points on the boundary z1, z2. This is a well-posed CFT computation involving

integrals over two K kernels. Rather than repeat it here, we simply note that it is a

standard HKLL computation, and by construction the result is the usual bulk-to-bulk
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AdS3 propagator between points with Poincare coordinate values given by (5.8) (and a

corresponding relation relating (ρa, za, z̄a) to (ρ2, z2, z̄2)), i.e.

〈O(ρ1)
U1

(z1, z̄1)O(ρ2)
U2

(z1, z̄1)〉 =
e−2hD

1− e−2D
. (5.10)

Such expressions are by now very familiar.

We will now reproduce this CFT result from a Chern-Simons computation. In particu-

lar, we consider the following gauge connections for Poincaré AdS3 in Euclidean signature:

a = − i

2
(−2L0 − L1 − L−1)) dz , ā = − i

2
(−2L0 + L1 + L−1) dz̄ , b = e(L−1−L1)

ρ
2 .

(5.11)

As usual the full connections are related to the objects recorded here by A = b−1 (a+ d) b,

Ā = b(ā + d)b−1. Full conventions are in appendix B; in particular these connections are

equivalent to those in (B.8) with C → 0, together with the usual Euclidean continuation

x+ → z, x− → −z̄ and a rescaling of the field-theory directions by a factor of 2; the last

step is convenient so that the resulting coordinate system is precisely equivalent to (5.1).

The prescription above states that the two point-function (5.2) is calculated in the

Chern-Simosn representation by the following matrix element:

〈O(ρ1)
U1

(z1, z̄1)O(ρ2)
U2

(z1, z̄1)〉 = 〈U2|G
(

P e−
∫
γ
A
)

Ḡ
(

P e−
∫
γ
Ā
)

|U1〉 . (5.12)

We may easily verify this relation. (3.23) now tells us that the right-hand side of this

expression is equal to this matrix element is equal to

〈U2|G
(

P e−
∫
γ
A
)

Ḡ
(

P e−
∫
γ
Ā
)

|U1〉 =
e−hα

1− e−α
, (5.13)

where as usual α is defined as the L0 conjugacy class of the following group element:

V e−αL0V −1 = g̃R(x2)U
−1
2 gL(x2)gL(x1)

−1U1g̃R(x1)
−1 , (5.14)

with

g̃R(x) = eρ
L1−L−1

2 e−azz gL(x) = eāz z̄eρ
L1−L−1

2 . (5.15)

Computing α from here and the explicit representation of U1,2 as in (5.6), we find that it

is equal to 2D as defined above (5.9); thus we find that the Chern-Simons computation

agrees with the CFT result, confirming (5.12).

Note that everything in this computation is fixed by kinematics, and we have simply

shown how the SL(2,R) parameters characterizing the boundary conditions combines with

the geometric data to give the familiar HKLL result.

6 Discussion

We provided a full quantum mechanical description treatment of worldline degree of free-

dom of a Wilson line in SO(2, 2) Chern-Simons theory. This degree of freedom allowed us

to build a local probe in the Chern-Simons description of AdS3 gravity. There are a few

striking features of this probe which we highlight.
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1. We designed states in the worldline quantum mechanics such that they would couple

to both (A, Ā). This condition naturally introduced the notion of rotated Ishibashi

states, which we denote as |U〉, and their coupling to the connections creates a back-

ground spacetime metric

gµν =
1

2
Tr(Aµ − ˜̄Aµ)(Aν − ˜̄Aν) , (6.1)

where ˜̄A = U−1ĀU . These rotated Ishibashi states are at the core of giving a geo-

metric, and hence local, interpretation to WR(xf , xi). In particular, we showed that

WR(xf , xi) is the bulk-to-bulk propagator of a scalar field propagating on (6.1). The

most natural choice of rotated state that leads to regular background metrics is the

crosscap state (3.18), i.e. |U〉 = |Σcross〉.10

2. Using purely the Chern-Simons formulation, we can build local bulk fields that probe

the background geometry (6.1). These local probes are defined in (4.26) and we

investigated some their properties for global AdS3 and the static BTZ black hole.

It is very satisfactory that our choice |U〉 = |Σcross〉 is compatible with the proposals

in [22–24], and we also reproduce the smearing functions of the HKKL [35, 36] proposal

for vacuum solutions. This is expected since the symmetries of AdS3 constrain heavily

the resulting bulk field, leaving little room for disagreement at this level of discussion.

Perhaps the interesting difference of our approach is that our construction leaves room to

consider other probes |U〉, and highlights some of the gauge dependence in the construction

of the local field Φk,k̄(x), which we emphasised around (4.24). For black holes the situation

is more delicate: for instance, it would be interesting to compare and complement the

proposals in [39, 41–44] with our derivations in section 4.3.2. Along these lines it would

be interesting to carry out our derivations for the rotating BTZ black holes, and other

backgrounds in 3D gravity we have not explored.

We comment very briefly on one other aspect; as we have been able to reproduce bulk-

to-bulk propagators from the Chern-Simons description of 3d gravity, it is worth wondering

whether all of the aspects of the quantum field theory of a scalar field on a gravitational

background can be obtained from the Chern-Simons computation, e.g. can we obtain a

one-loop scalar field determinant on a BTZ black hole background? As this is essentially

the same information as the bulk-to-bulk propagator, we might think so. Indeed we expect

the logarithm of the one-loop determinant W to be the sum over connected Feynman

diagrams, which in our context is the sum of Wilson lines that each wrap the horizon n

times on topologically distinct paths Cn. We find:

W = 2

∞
∑

n=1

1

n
TrR

[

P exp

(

−
∮

Cn

A

)

P exp

(

−
∮

Cn

Ā

)]

= 2
∑

n

1

n

(

e−hnα

1− e−nα

)2

, (6.2)

10The boundary conditions in [10] set U = 1, and this choice respects Lorentz invariance [12]. The

point overlooked there is that all manipulations involve (A, ˜̄A), and hence a map that ties both sectors was

implicitly selected. As reflected in our derivations in section 4, here we need to provide such map, and

|U〉 = |Σcross〉 is the choice of state that leads to Lorentz invariance of WR(xf , xi).
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Here we have assumed that the topologically trivial path does not contribute; the factor of

2 arises from positive and negative n. The combinatoric factor 1
n is a symmetry factor11

and as usual α is the conjugacy class of the holonomy of A (or Ā) around the black hole;

on the BTZ background it evaluates to α = 2πr+. The result above is then precisely the

logarithm of the usual one-loop scalar determinant on a black-hole background; see e.g. [45]

for details and a repackaging of this result in CFT language.

An important issue that we have not addressed is quantum corrections due to fluctu-

ations of the background connections. This would capture 1/c corrections, i.e. corrections

controlled by the AdS radius in Planck units, or equivalently subleading terms controlled by

the level of the Chern-Simons theory. Work in this direction has been done for SL(2) Chern-

Simons theory, where Virasoro conformal blocks are known to be tied to appropriate Wilson

line in Chern-Simons [46–48]. Recent developments for this holomorphic theory include [49–

54]. It would be interesting to evaluate 1/c corrections of our worldline quantum mechanics;

in this case we expect that the intertwining of the two copies of sl(2) will produce interest-

ing features. For example, we should be able to probe if the global conditions in (3.17) are

enhanced to the Virasoro conditions on the Ishibashi state [37, 38], or something completely

different, such as the conditions proposed in [40]. We leave these questions for future work.

Another natural direction forward is to use our construction to build probes in SL(N)×
SL(N) Chern-Simons theory. This would provide a unique way to build local probes in

higher spin gravity. A discussion of Ishibashi states for W3 algebra was done in [55], which

is a natural starting point for future investigations. Finally, it would be interesting to

explore the unfolding equations for massive higher spins in AdS3, as in [56], to characterize

suitable representations relevant to evaluate the Wilson line operator in higher spin theory.
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A Properties of so(2, 2) representations

In this appendix we collect a set of definitions, conventions and identities that are relevant

for our manipulations in the highest weight representation, and the rotated Ishibashi states.

A.1 sl(2,R) conventions

The Lie algebra for sl(2,R) is given by

[L0, L±] = ∓L± , [L1, L−1] = 2L0 , (A.1)

Our conventions for the fundamental representation of sl(2,R) is

L0 =

(

1/2 0

0 −1/2

)

, L1 =

(

0 0

−1 0

)

, L−1 =

(

0 1

0 0

)

. (A.2)

In our conventions, the Lie algebra metric reads

η00 =
1

2
, η+− = η−+ = −1 . (A.3)

For the highest weight representation of sl(2,R) × sl(2,R), we denote the generators

as (ℓa, ℓ̄a). Some of the basic relations we use in the main text are

ℓ0|h, k, k̄〉 = (h+ k) |h, k, k̄〉 ,
ℓ−1|h, k, k̄〉 =

√

(k + 1)(k + 2h)|h, k + 1, k̄〉 , (A.4)

ℓ1|h, k, k̄〉 =
√

k(k + 2h− 1)|h, k − 1, k̄〉 ,

where k = 0, . . . ,∞. The barred operators ℓa act analogously as (A.4), but in the states

labeled by k̄.

A.2 Completeness of rotated Ishibashi states

Here we establish a completeness relation for the |U〉 states:
∫

dU |U〉〈U | = (2π)2

2(2h− 1)
1 . (A.5)

We note that if the right-hand side exists, it must be equal to a multiple of the identity by

SL(2,R) invariance; thus the only question is whether or not the integral converges, and

what the normalization factor is if it does. As the group is non-compact the convergence is

not (to our knowledge) actually guaranteed. Thus we perform an explicit computation in

coordinates. In particular we view the SL(2,R) group manifold as global AdS3 and place

on it the usual global coordinates (ρ, t, φ). It is important to note that we work here not

SL(2,R) and not with its universal cover, and thus both coordinates t and φ are periodic

with period 2π.

The explicit matrix elements between the |U(ρ, t, φ)〉 states and the discrete highest-

weight states |h, k, k̄〉 can be constructed via the usual methods of finding the highest-weight
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state and systematically acting with the raising operators. The result is precisely that given

in a (slightly) different context in the bulk of the paper (4.45):

〈U(ρ, t, φ)|h; k, k̄〉 = Ck,k̄ e
−2ihte−it(k+k̄)−iφ(k−k̄)(tanh ρ)k̄−k

× (cosh ρ)−2hP
(k̄−k, 2h−1)
k (1− 2 tanh2 ρ) , (A.6)

where P
(a, b)
n are Jacobi polynomials, and Ck,k̄ ≡ (−1)k

√

k!(2h+k̄−1)!

k̄!(2h+k−1)!
. Note also that in these

coordinates on the group manifold the Haar measure is just the usual volume element on

AdS3, i.e.
∫

dU =

∫

dρdtdφ sinh ρ cosh ρ . (A.7)

With this in hand, we simply directly compute the following matrix elements:

Im,m̄;k,k̄ ≡
∫

dU〈h;m, m̄|U〉〈U |h; k, k̄〉 . (A.8)

From the matrix elements above, we see that this integral is proportional to

e−it(k+k̄−m−m̄)e−iφ(k−k̄−m+m̄); thus the integrals over t and φ result in a vanishing ma-

trix element unless k = m and m̄ = k̄. We conclude then that

Im,m̄;k,k̄ = δm,kδm̄,k̄Nk,k̄ . (A.9)

The normalization factor is given by

Nk,k̄ = (2π)2
∫

dρ sinh ρ cosh ρ
(

(tanh ρ)k̄−k(cosh ρ)−2hP
(k̄−k, 2h−1)
k (1− 2 tanh2 ρ)

)2
,

(A.10)

This is difficult to evaluate for generic k. However by SL(2,R) invariance it must be

independent of k, k̄ (a fact we have also checked directly by numerical evaluation of the

integral), allowing the integral to be performed for k = k̄ = 0, resulting in

Nk,k̄ = N0,0 =
(2π)2

2(2h− 1)
. (A.11)

Assembling the pieces we find

Im,m̄;k,k̄ =
(2π)2

2(2h− 1)
δm,kδm̄,k̄ , (A.12)

which is precisely the completeness relation (A.5) that we set out to show.

B Chern-Simons formulation of AdS3 gravity

With the purpose of setting up conventions, in this appendix we give a very short review

of the Chern-Simons formulation of AdS3 gravity. We refer the reader to the original

articles [1, 2] and more recently in, e.g., [57, 58] for further details.
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The relevant Chern-Simons gauge group for AdS3 gravity is G = SO(2, 2). The

Einstein-Hilbert action can be written as

SEH[e, ω] = SCS [A]

=
k

4π

∫

M

Tr

(

A ∧ dA+
2

3
A ∧A ∧A

)

, (B.1)

with A ∈ so(2, 2). Here k is the level of the Chern-Simons theory. The relation to the

conventional gravitational vielbein and spin connection is

Ai = eai Pa + ωa
i Ma , (B.2)

where Ma are Lorentz generators and Pa are translations in so(2, 2).

It will be convenient to write the gauge group SO(2, 2) as SL(2,R) × SL(2,R). The

flat connection A can then be decomposed as two pairs of connections

A =

(

ωa +
1

ℓ
ea
)

La , Ā =

(

ωa − 1

ℓ
ea
)

L̄a , (B.3)

with La = 1
2(Ma+ℓPa), and L̄a = 1

2(Ma−ℓPa). Here ℓ is the AdS radius, which for most of

our work we will set ℓ = 1, and Newton’s constant is related to the Chern-Simons level via

k =
ℓ

4G3
. (B.4)

We will denote the generators of sl(2,R) simply as La. After performing this decomposition

the action can be written

SEH = SCS [A]− SCS [Ā] , (B.5)

where the trace operation used in defining the Chern-Simons form is now the usual bilinear

form on the sl(2,R) Lie algebra.

B.1 Metrics, connections, and geodesic distances

In this appendix we gather various properties used for global AdS and the BTZ back-

ground. We present the relevant information in Chern-Simons formulation, and the metric

formulation. For the later, we gather the different coordinate systems used and the relevant

geodesic distances.

In Chern-Simons formulation, we write the pair of sl(2,R)× sl(2,R) as

A(x) = gL(x)dgL(x)
−1 , ˜̄A(x) = g̃R(x)

−1dg̃R(x) , (B.6)

In this section we add the tilde in the right sector, for consistency with the conventions

used in the main text. When the connections are constant in boundary coordinates, we

can cast the group elements as

gL(x) = b(ρ)−1e−aµyµ , g̃R(x) = eāµy
µ

b(ρ)−1 yµ = (t, φ) , (B.7)
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where b(ρ) parametrizes the choice of radial variable, and aµ, and āµ are constant elements

of the sl(2) algebra. We can use the previous reparametrization to express the BTZ and

global AdS metric, with12

a = − i

4
((8C − 2)L0 − (1 + 4C)(L1 + L−1)) dx

+ , b(ρ) = e−(L1−L−1)ρ/2 ,

ā =
i

4
((8C − 2)L0 + (1 + 4C)(L1 + L−1)) dx

− . (B.8)

Here ρ is the radial direction and x± = t ± φ with φ ∼ φ + 2π. Via (4.11), these connec-

tions (B.8) correspond to the metric:

ds2 = dρ2 − 1

4
(eρ − 4Ce−ρ)2dt2 +

1

4
(eρ + 4Ce−ρ)2dφ2 . (B.9)

For C > 0, it is useful to define

r = r+ cosh2(ρ− ρ∗) , 4C = e2ρ∗ = r2+ , (B.10)

which brings (B.9) to the more familiar version of the (non-rotating) BTZ black hole:

ds2 = −(r2 − r2+)dt
2 +

dr2

r2 − r2+
+ r2dφ2 , (B.11)

For C < 0 the background (B.9) corresponds generically to a conical deficit. Setting

C = −1/4, we recover from (B.9) the global AdS3 spacetime:

ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ dφ2 . (B.12)

In the next sections, we will need as well that the geodesic distance between two spacelike

separated points in the bulk (xf , xi). For the metric in (B.9), the geodesic distance is

D(xf , xi) = arcoshσ(xf , xi), with

σ(xf , xi) = cosh(ρf − ρi) cosh
(√

C(∆t+∆φ)
)

cosh
(√

C(∆t−∆φ)
)

(B.13)

− 1

2

(

4C e−(ρf+ρi) +
eρf+ρi

4C

)

sinh
(√

C(∆t+∆φ)
)

sinh
(√

C(∆t−∆φ)
)

.

12We chose these explicit form of the connections because they result into unitary group elements (B.7)

when we consider the highest weight representation with (ℓn)
† = ℓ−n. This is required by the purposes of

the main text. For readers familiar with the previous literature in 3d gravity in CS formalism, it will be

comforting to know that (B.8) is related to the more familiar form of the BTZ connections:

a = (Le
+ − C Le

−) dx
+ , ā = − (Le

− − C Le
+) dx

− , b(ρ) = exp(ρLe
0) .

via the following automorphisms:

L : Le
1 = i(2L0 + L1 + L−1)/4 , Le

−1 = 2iL0 − iL1 − iL−1 , Le
0 = −(L1 − L−1)/2 ,

R : Le
1 = 2iL0 + iL1 + iL−1 , Le

−1 = i(2L0 − L1 − L−1)/4 , Le
0 = −(L1 − L−1)/2 ,

The automorphism labelled by R is performed in the right sector, and analogously for the left sector.
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which in the coordinates in (B.11) is:

σ(xf , xi) =
1

r2+

(

rfri cosh(r+∆φ)−
√

(r2f − r2+)(r
2
i − r2+) cosh(r+∆t)

)

. (B.14)

Moreover, the BTZ metric is locally isomorphic to AdS3 Poincare. Using the following

coordinate change

R2 − T 2 +X2 + Z2

2Z
=

√

r2 − r2+ sinh(r+t)

r+
,

RT

Z
=

r cosh(r+φ)

r+
, (B.15)

R2 + T 2 −X2 − Z2

2Z
=

√

r2 − r2+ cosh(r+t)

r+
,

RX

Z
=

r sinh(r+φ)

r+
,

the metric (B.11) becomes

ds2 =
1

Z2
(−dT 2 + dX2 + dZ2) , (B.16)

Null coordinates in this system are defined as X+ = X+T , and X+ = X−T . The geodesic

distance is

σ(xf , xi) =
(Tf − Ti)

2 + (Xf −Xi)
2 + Z2

f + Z2
i

2ZiZf
. (B.17)

A solution of (B.15), in the quadrant where X,T, Z > 0 , 1 ≥ T 2 − X2 − Z2 > 0 , and

T > X is:

Z =
r+e

−r+t

√

r2 − r2+

, T =
r e−r+t cosh(r+φ)

√

r2 − r2+

, X =
r e−r+t sinh(r+φ)

√

r2 − r2+

. (B.18)

C Generating function of Jacobi polynomials

In this appendix we will perform a double sum of multiplication of two Jacobi polynomials

which is used in the main text. For that, we use the review on generating functions in [59];

formula (62) in section 2.3 of [59] reads

∞
∑

n

n!(−α− β)!

(−α− β + n)!
(x− 1)n(y − 1)ntnP (α−n,β−n)

n

(

x+ 1

x− 1

)

P (β−n,α−n)
n

(

y + 1

y − 1

)

= (1− xt)α(1− yt)β 2F1

(

−α,−β,−α− β,
(x− 1)(y − 1)t

(1− xt)(1− yt)

)

, (C.1)

We need also the identity

∞
∑

n

P (α,β)
n (x)zn =

2α+β

R(1 +R− z)α(1 +R+ z)β
, R ≡

√

−2xz + z2 + 1 . (C.2)
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Combining the previous formulas, with y → 1/y, and other basic identities of hypergeo-

metric functions, we can derive the following sum:

√

(1−x)(1−y)
2h
rhsh

∞
∑

k,k̄=0

k!(2h+ k̄−1)!

k̄!(2h+k−1)!
rksk̄(xy)

k̄−k
2 P

(k̄−k,2h−1)
k (1−2x)P

(k̄−k,2h−1)
k (1−2y)

=

(√
σ2−1+σ

)1−2h

2
√
σ2−1

(C.3)

where σ is defined as

σ ≡ −√
x
√
y(r + s) + rs+ 1

2
√
1− x

√
1− y

√
rs

. (C.4)

For the examples worked out in section 4.3, σ is directly related to the geodesic distance

between two endpoints.

D Inner product with quasi-normal modes eigenfunctions

In this appendix we explore what will happen if in (4.32), given by

〈U(xf )|U(xi)〉 =
∞
∑

k,k̄

Φk,k̄(sf )Φ
∗
k,k̄(xi) . (D.1)

we replaced (without justification) Φk,k̄ the more familiar quasi-normal modes for the BTZ

black hole.

The quasi-normal modes are defined as the fields in black hole geometries that are

purely ingoing at the horizon, and that vanish at infinity. For the BTZ black hole, solutions

to�2Φ = m2Φ with these conditions are found in [28], imposing separability in its variables:

ΦQNM(x)= e−iωteilφ
(r+

r

)2h
(

1− r2+
r2

)− iω
2r+

2F1

(

h+
i

2r+
(l−ω) ,h− i

2r+
(l+ω) ,2h,

r2+
r2

)

(D.2)

where we have considered the non-rotating case (r− = 0), and that the mass of the scalar

field is related to the conformal dimension as h = 1
2(1+

√
1 +m2). The vanishing boundary

condition gives the left and right quasi-normal modes:

ω± = ±l − 2ir+(n+ h) . (D.3)

Using the positive root in (D.3), and defining l = ir+(k − k̄):

ΦQNM

k,k̄
(x) = Ck,k̄e

−r+(2ht+kx++k̄x−)

(

r2

r2+
− 1

)−h(

1− r2+
r2

)

k−k̄
2

P
(k̄−k,2h−1)
k

(

r2+ + r2

r2+ − r2

)

(D.4)

We have named the previous field Φk,k̄ by analogy with the global case, but it does not

follow (4.29) for the BTZ differential operators in (4.52).
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Inspired by the global case, we will compute the overlap of two states (4.25) in the

bulk. Evaluating (D.1) with (D.4) gives

〈U(xf )|U(xi)〉 =
∞
∑

k,k̄

ΦQNM

k,k̄
(sf )Φ

∗QNM

k,k̄
(xi) (D.5)

=
∞
∑

k,k̄=0

e−r+h(∆x++∆x−)e−r+(k∆x++k̄∆x−)k!(2h+ k̄ − 1)!

k̄!(2h+ k − 1)!

(

1− r2+
r2i

)

k−k̄
2

(

1− r2+
r2f

)
k−k̄
2

×
(

r2i
r2+

− 1

)−h
(

r2f
r2+

− 1

)−h

P
(k̄−k, 2h−1)
k

(

r2+ + r2f
r2+ − r2f

)

P
(k̄−k, 2h−1)
k

(

r2+ + r2i
r2+ − r2i

)

.

Using again (C.3), this time with x =
(

1− r2+
r2i

)−1

, y =

(

1− r2+
r2
f

)−1

, r = e−r+∆x−
, and

s = e−r+∆x+

, we see that the result for the results is as well (4.47), with the geodesic length

for the BTZ in (B.14).

E Integral kernels in CFT representation

In this appendix we describe the mapping between a general |U〉 state at the boundary

in Poincaré coordinates and a CFT smearing kernel (5.7) in Euclidean signature. Though

our interpretation is different, the manipulations here are mathematically very similar to

those in e.g. [39].

We parametrize the group element in terms of three parameters (σ,w, w̄) as

U1 = e−w1
i
2
(−2L0−L1−L−1)eσ1(L−1−L1)e+w̄1

i
2
(−2L0+(L1+L−1)) . (E.1)

By acting on the Ishibashi state we can rotate it, where the splitting into G and G is

arbitrary and was picked in this way for later convenience:

G(e−w1
i
2
(−2L0−L1−L−1)eσ1(L−1−L1))G(e−w̄1

i
2
(−2L0+(L1+L−1)))|ΣIsh〉 = |U〉 . (E.2)

We now want to realize the SL(2,R) generators geometrically in terms of differential oper-

ators acting on R
2. We note that this assignment of generators to operators is not fixed by

the algebra alone, as conjugation by any SL(2,R) element (or an outer automorphism such

as ΣIsh) will leave the algebra invariant. The assignment is instead fixed by the boundary

behavior of the gauge connection chosen to be the AdS3 connection; for the choice (5.11)

the assignment is:

∂ =
i

2
(2ℓ0 + ℓ1 + ℓ−1) , z∂ = −1

2
(ℓ1 − ℓ−1) , z2∂ =

i

2
(2ℓ0 − ℓ1 − ℓ−1) , (E.3)

∂̄ =
i

2

(

2ℓ0 − ℓ1 − ℓ−1

)

, z̄∂̄ =
1

2

(

ℓ1 − ℓ−1

)

, z̄2∂̄ =
i

2

(

2ℓ0 + ℓ1 + ℓ−1

)

. (E.4)

Thus the operation we want to realize is

O(0)
U (z1, z̄1) = ew∂z1e2µz1∂z1ew̄∂̄z1K(0, z1, z̄1)[O] . (E.5)
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We will now understand how these operators act on the integral kernel. Clearly two of

them are just translations in z1 and z̄1:

exp (w∂1)K(ρ, z1, z̄1)[O] = K(ρ, z1 + w, z̄1)[O] ,

exp
(

w̄∂̄1
)

K(ρ, z1, z̄1)[O] = K(ρ, z1, z̄1 + w̄)[O] , (E.6)

where we use the notation from (5.5). The more interesting one is the dilatation, which

acts by rescaling z1 (note: actually z1, not the second argument of K) by a factor of e2σ:

exp (2µz1∂1)K(ρ, z1, z̄1) = K(ρ, e2µz1, z̄1)[O] . (E.7)

However, due to the form of the integral kernel, we have the following relation:

K(ρ, e2µz1, z̄1) = K(ρ+ µ, z1, z̄1) . (E.8)

(where this is now a relation that works for the arguments of K). To see this, note that

∫

dzdz̄

(

e−2ρ − (z − e2µz1)(z̄ − z̄1)

e−ρ

)2h−2

O(iz, iz̄)

=

∫

dz′dz̄

(

e−2ρ′ − (z′ − z1)(z̄ − z̄1)

e−ρ′

)2h−2

O(iz′, iz̄) , (E.9)

where ρ′ = ρ + µ, z′ = e−2µz and we used the scaling property of O(λz, z̄) = λ−hO(z, z̄).

Thus we conclude that

exp (2µz1∂1)K(ρ, z1 + w, z̄1) = K(ρ+ µ, z1 + e−2µw, z̄1)[O] . (E.10)

We now construct the desired object:

O(0)
U (z1, z̄1) = ew∂z1e−2µz1∂z1ew̄∂̄z1K(0, z1, z̄1)[O]

= ew∂z1e2µz1∂z1K(0, z1, z̄1 + w̄)[O]

= ew∂z1K(µ, z1, z̄1 + w̄)[O]

= K(µ, z1 + w, z̄1 + w̄)[O] . (E.11)

Now we finally need to act with the overall compensating ρ dilatation:

O(ρ)
U (z1, z̄1) = eρz∂z1eρz̄∂z̄1K(µ, z1 + w, z̄1 + w)[O]

= K(µ, eρz1 + w, eρz̄1 + w)[O]

= K(ρ+ µ, z1 + e−ρw, z̄1 + e−ρw)[O] . (E.12)

The final relation is thus

O(ρ)
U (z1, z̄1) = K(ρ+ µ, z1 + e−ρw, z̄1 + e−ρw)[O] , (E.13)

which is (5.7) in the text.
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