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1 Introduction

The AdS/CFT correspondence imposes strong requirements on holographic CFTs. One

central requirement is that they capture the entropy of black holes through microstate

counting. Modular invariance has from the very beginning been a crucial ingredient for this.

It provided the first pivotal insight into black hole microstates [1], which lead to an universal

holographic explanation of the Bekenstein-Hawking entropy [2]. More generally, in AdS3

quantum gravity it restricts rather dramatically a Euclidean gravitational path integral [3–

7]. In conformal field theory, the exploitation of modular properties, among other features,

gives stringent conditions on the spectrum of the theory via the modular bootstrap [8–11],

and general constraints on their holographic fitness has been investigated in [12–14].

For holographic CFTs there are constraints not just on black hole states, but also on

perturbative ones, that is light states. The growth of the light spectrum can serve as an

important diagnostic tool for finding possible holographic duals: on the one hand, it is

closely linked to how far the Cardy regime extends [15], namely if we can expect the usual

Bekenstein-Hawking entropy also for black holes at temperatures of order one. On the other

hand, it allows us to identify the low energy theory. The growth of light states encodes

important properties of the gravity dual, for example whether the theory is local on AdS

scales or not [16]. If the growth is Hagedorn, that is the entropy is linear in the energy h,

log ρ(h) ∼ h , (1.1)

this indicates that the theory is in a stringy-like regime. Moreover, if the coefficient mul-

tiplying h in (1.1) is not bigger than 2π, then the theory still has the same Hawking-Page

transition, which is why [15] called this a sparse spectrum. If the number of states grows

even slower, namely if the entropy goes like a smaller power of the weight,

log ρ(h) ∼ hα , α < 1 , (1.2)

then we will call such a spectrum very sparse. In particular such a spectrum indicates that

the dual theory is in a supergravity-like regime: for a local field theory in d dimensions we

would indeed expect α = (d− 1)/d. We are interested in such very sparse spectra, and our

goal is to find new examples of them.

Note that also from a modular point of view the light spectrum is more interesting

than the heavy spectrum. The Cardy formula that captures the entropy of black holes is

completely universal in the sense that it is fixed by modular invariance: any CFT will have

Cardy growth for sufficiently high energies. The light spectrum on the other hand is not

fixed by modular invariance. It is therefore not universal, and there are potentially a great

many different possibilities allowed.

Our aim is to identify and quantify CFTs with slow growing perturbative spectra. We

will propose new examples of counting formulas where the growth of light states is very

sparse. To this end we consider a family of generalized partition functions χm(τ, z), which

by their nature have good modular transformation properties — mathematically they are

a type of Jacobi forms. Here m parametrizes the central charge. We assemble them into a

– 2 –
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generating function,

Z(ρ, τ, z) =
∑
m≥0

χm(τ, z) e2πiρm . (1.3)

We want to consider special families of χm for which (1.3) becomes essentially a Siegel

paramodular form: that is, after multiplying the generating function by some prefactor, it

becomes symmetric under the exchange of ρ and τ .1 Together with the modular transfor-

mation properties of χm(τ, z), the resulting form is invariant under a so-called paramodular

group Γ+
t . This enhanced symmetry allows us to efficiently extract the degeneracies: in

particular it implies that all zeros and poles are arranged in so-called Humbert surfaces,

which are images under the paramodular group. This in turns allows us to use the methods

of [17] to extract the coefficients of the form.

The generating function (1.3) of course only has this enhanced symmetry for very

special families of χm. To construct such objects, we will use a so-called exponential

lift [18–20], which, starting from a seed partition function χ(τ, z), produces such a Siegel

paramodular form. From the CFT point of view, this exponential lift is essentially the

generating functional of symmetric orbifold theories. Once we know the seed, we know the

paramodular transformations and divisors of the Siegel modular form.

In previous work [21] we investigated the growth behavior of the Fourier coefficients

of such Siegel paramodular forms for heavy states: that is, when writing the coefficients of

the reciprocal of the Siegel paramodular form Φ as

1

Φ(ρ, τ, z)
=
∑
m,n,l

c(m,n, l) e2πiρm+2πiτn+2πizl , (1.4)

we define the discriminant of a state as ∆ = 4nm − l2. For heavy states with ∆ � 1, we

showed that

c(m,n, l) ≈ eπ
√

∆/t . (1.5)

This growth corresponds to Cardy growth in CFTs [22]. In holography, the regime of large

positive discriminant is naturally associated to a black hole regime. We found that among

the paramodular forms those having poles only at a certain Humbert surface H1(1) stood

out: in that case (1.5) is valid in an even larger regime than [15].

Motivated by this extended Cardy regime, we will focus on such Siegel paramodular

forms here. This will give us five examples to investigate. One example is well known in

string theory: in that case Z(ρ, τ, z) is the generating function for BPS states in the D1-D5

CFT with target space K3 [23, 24] and the associated Siegel modular is the reciprocal of

the Igusa Cusp form [25]. The other four examples are new. Our focus is to understand

the density of states for ∆ < 0: this is the relevant regime for light operators that can be

compared with a perturbative supergravity regime. To count these states, we apply the

ideas in [17], which focused on counting negative discriminant states for the Igusa cusp

form (and related counting formulas for CHL compactifications), to our new examples.

1There are known cases where this symmetry can be physically realized in the gravitational system, for

example in the context of dyonic black holes [25] where it corresponds to electric-magnetic duality.
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Let us briefly comment on the connection of exponentially lifted Siegel paramodular

forms to symmetric orbifolds. A symmetric product orbifold is constructed by taking N

copies of a CFT C and orbifolding by the symmetric group SN :

CN ≡
C⊗N

SN
. (1.6)

By orbifolding, we are left with a finite number of low dimensions operators in the large

N limit. Counting all these operators, that is taking the standard partition function, we

find Hagedorn growth [12, 15]

ρ(h) ≈ e2πh . (1.7)

Here h stands for the conformal dimension of the operator, N plays the role of m in (1.3),

and (1.7) holds for light states, that is states with h � N . Note that this result is

completely independent of the seed theory C.
What we have said so far would seem to indicate that symmetric orbifolds are not

a good place to look for very sparse spectra. Neither are more general permutation orb-

ifolds [26, 27], which do not give a growth like (1.2) [28] either. Indeed, the correct in-

terpretation is probably that they describe holographic duals far from the supergravity

regime. In fact, their correlators also behave very differently than a theory described by

supergravity [29]. A way around this is to not consider symmetric orbifolds as such, but

rather to deform them. This corresponds to moving around on the moduli space of the

theory. To actually compute the spectrum of such a deformed theory is difficult, which is

why we will not pursue this route. Instead we will concentrate on counting operators that

are protected under deformations.

In a CFT with say N = (2, 2) supersymmetry, such operators are for instance BPS

operators. The generalized partition function or index that captures them is the elliptic

genus, defined as [23, 24, 30]

χ(τ, z) = TrRR

(
(−1)F qL0− c

24 yJ0 q̄L̄0− c̄
24

)
. (1.8)

Here L0 and L̄0 are the left and right Virasoro generators, the fermion number is defined as

F = J0− J̄0 and J0, J̄0 are respectively a left and right moving R-symmetry generator. The

trace (1.8) is defined in the Ramond sector where fermions have periodic boundary condi-

tions. To reach perturbative states, we will therefore have to perform a spectral flow trans-

formation. The elliptic genus is holomorphic and has nice modular properties: it is what

is called a weak Jacobi form. For fixed central charge, the space of weak Jacobi forms that

can serve as elliptic genera is finite dimensional, which will allow us to organize our search.

Physically, the advantage of studying the elliptic genus is that it is protected under

deformations, which implies we can count operators at the symmetric orbifold point and

still obtain a result that is valid at the supergravity point, even though it is far away on

the moduli space. It turns out that the growth for the elliptic genus can be much slower

than (1.7): in some cases, the minus sign in (1.8) leads to enough cancellations that we

get a growth of the form (1.2) instead. This is in fact what happens in the D1-D5 system,

which is what allows the matching to the supergravity spectrum in [31]. However, for
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higher central charges we generically get Hagedorn growth [32]. Only for some special

choices of seed theories do we get similar cancellations.2

Our goal is to find counting formulas that are special enough such that the BPS states

are very sparse. Our main result is that we find five of these functionals that meet this

criteria. One of those examples is the D1-D5 system mentioned above, whereas our other

four examples are genuinely new in this context. We take them as novel candidates for

AdS3/CFT2.

The paper is organized as follows. In section 2, we review Siegel paramodular forms.

In section 3 we construct our five examples. Section 4 describes how to extract negative

discriminant states from our examples. Section 5 discusses spectral flow and the relation

to symmetric orbifolds. In section 6 we discuss to what extent we can interpret our results

from a supergravity perspective. We conclude and discuss future directions in section 7.

2 Paramodular forms

In this section we will summarise the key features of the paramodular forms that arise from

an exponential lift. The presentation here is mostly based on [20, 33, 34].

2.1 Basic definitions

Our starting point is to consider generating functions which are of the form

Φ(ρ, τ, z) =
∑
m,n,l

cm(n, l)pmqnyl =
∑
m

ϕk,m(τ, z)pm , (2.1)

where

p = e2πiρ , q = e2πiτ , y = e2πiz , (2.2)

with (τ, z, ρ) complex variables, and

ϕk,m(τ, z) =
∑

n≥0,l∈Z
cm(n, l)qnyl . (2.3)

We leave the range of (m,n, l) in (2.1) and (2.3) unspecified and it will be narrowed as

needed.

In our discussion, ϕk,m(τ, z) transforms like a Jacobi form [33], where k is the weight

and m is the index. This means ϕk,m(τ, z) is a holomorphic function on H × C → C that

has the following transformation properties: first, under modular transformations

ϕk,m

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)k exp

(
2πimcz2

cτ + d

)
ϕk,m(τ, z) , ∀

(
a b

c d

)
∈ SL(2,Z) ,

(2.4)

and second, under elliptic translations

ϕk,m (τ, z + λτ + µ) = exp
(
−2πim(λ2τ + 2λz + µ)

)
ϕk,m(τ, z) , λ, µ ∈ Z . (2.5)

2In [32] a class of weak Jacobi forms leading to supergravity growth were called very special. We discuss

their relation to our examples in appendix B.
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Φ then of course inherits similar transformations properties from those characteristic of

ϕk,m.

Returning to (2.1), we are interested in Siegel paramodular forms, whose defining

feature is that in addition to transformation properties (2.4)–(2.5) they have an exchange

symmetry:

Φ(ρ, τ, z) = Φ(t−1 τ, tρ, z) . (2.6)

where t ∈ Z+. This symmetry, together with the transformation properties of ϕk,m(τ, z),

define the paramodular group. Let us be more precise. We define

Ω =

(
τ z

z ρ

)
. (2.7)

The Siegel upper half plane H2 is given by

det(Im(Ω)) > 0 , Tr(Im(Ω)) > 0 , (2.8)

and Φ(Ω) is holomorphic on this domain. The paramodular group Γt of level t is defined

as [35]

Γt :=


Z tZ Z Z
Z Z Z t−1Z
Z tZ Z Z
tZ tZ tZ Z

 ∩ Sp(4,Q) . (2.9)

It has an extension

Γ+
t = Γt ∪ ΓtVt , Vt =

1√
t


0 t 0 0

1 0 0 0

0 0 0 1

0 0 t 0

 . (2.10)

Given a matrix γ ∈ Γ+
t , which we decompose into 2× 2 matrices as

γ =

(
A B

C D

)
, (2.11)

the action of γ on Ω is given by

γ(Ω) = (AΩ + B)(CΩ + D)−1 . (2.12)

A paramodular form Φ(Ω) of weight k is a holomorphic function on the Siegel upper half

plane that satisfies

Φ((AΩ + B)(CΩ + D)−1) = det(CΩ + D)kΦ(Ω) . (2.13)

We denote by Mk(Γ
+
t ) the space of Siegel paramodular forms of weight k under Γ+

t . Note

that t = 1 corresponds to Γ+
1 = Sp(4,Z), which is the more familiar Siegel modular group.

– 6 –
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It is useful to characterize some elements γ explicitly. First we note that

γ =


0
√
t 0 0

1√
t

0 0 0

0 0 0 1√
t

0 0
√
t 0

 , (2.14)

exchanges τ and tρ as in (2.6). Γ+
t contains also SL(2,Z) as a subgroup; the element is

given by

γ =


a 0 b 0

0 1 0 0

c 0 d 0

0 0 0 1

 , with ad− bc = 1 , (2.15)

which gives the coordinate transformation

τ 7→ aτ + b

cτ + d
, z 7→ z

cτ + d
, ρ 7→ ρ− cz2

cτ + d
. (2.16)

This gives the correct transformation behavior for ϕk,m in (2.4). Moreover the transforma-

tion

γ =


1 0 0 µ

λ 1 µ 0

0 0 1 −λ
0 0 0 1

 , (2.17)

leads to the other transformation property for Jacobi forms in (2.5). The ϕk,m are then

indeed Jacobi forms. Finally note that Φ ∈Mk(Γ
+
t ) has to be invariant under

1 0 0 0

0 1 0 t−1

0 0 1 0

0 0 0 1

 , (2.18)

which means that all non-vanishing powers of p are multiples of t. It follows from (2.1)

that Φ gives a family of Jacobi forms with index tZ+.

Before moving on, it is worth mentioning a few properties and nomenclature that

expand the notion of Jacobi forms in (2.4)–(2.5) to modular objects that are not neccessarly

holomorphic. First, we define the discriminant ∆ := 4nm − l2. The coefficients c(n, l)

in (2.3) only depend on ∆ and l (mod 2m), and in fact only on ∆ if m is prime. A polar

state in ϕk,m(τ, z) is one with ∆ < 0.

We will denote the space of Jacobi forms of weight k and index m by Jk,m. There

are several special cases and generalizations of Jacobi forms which have to do with the

summation range in (2.3). Jacobi cusp forms are Jacobi forms for which c(0, l) = 0. In

– 7 –
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particular they vanish at the cusp τ = i∞. Weak Jacobi forms are holomorphic functions

that satisfy (2.4) and (2.5), and we have c(n, l) = 0 if ∆ < −m2. Nearly holomorphic Jacobi

forms are allowed to have a pole at the cusp q = 0. In total we thus have the inclusions

Jcusp
k,m ⊂ Jk,m ⊂ J

weak
k,m ⊂ Jnhk,m . (2.19)

So far we have defined Siegel paramodular forms to be holomorphic on the Siegel upper

half plane which implies that the associated ϕk,m are Jacobi forms. For our applications

this is too restrictive, as we want exponential growth of the coefficients. For this reason,

we will allow for meromorphic forms. The associated ϕk,m are then no longer Jacobi forms,

but rather weak Jacobi forms or even meromorphic Jacobi forms. We will however only

consider very particular cases of meromorphic paramodular forms, as we will discuss now.

2.2 Exponential lifts

An exponential lift is a simple way to build a paramodular form starting from a Jacobi

form. As we will see later, it has a natural interpretation as a symmetric orbifold of a

CFT2 that can lead to a holographic interpretation.

The exponential lift is described in Theorem 2.1 of [34], which states:

Let ϕ ∈ Jnh0,t be a nearly holomorphic Jacobi form of weight 0 and index t with

integral coefficients

ϕ(τ, z) =
∑
n,l

c(n, l)qnyl . (2.20)

Define

A =
1

24

∑
l

c(0, l) , B =
1

2

∑
l>0

lc(0, l) , C =
1

4

∑
l

l2c(0, l) . (2.21)

and

k =
1

2
c(0, 0) . (2.22)

Then the exponential lift of ϕ is the product

Exp-Lift(ϕ)(Ω) = qAyBpC
∏

n,l,r∈Z
(n,l,r)>0

(1− qnylptr)c(nr,l) , (2.23)

where (n, l, r) > 0 means r > 0 ∨ (r = 0 ∧ n > 0) ∨ (n = r = 0 ∧ l < 0), and

it defines a meromorphic modular form of weight k with respect to Γ+
t . It has

a character (or a multiplier system if the weight is half-integral) induced by

v24A
η × v2B

H . Here vη is a 24th root of unity, and vH = ±1.

Even though we stated the theorem for nearly holomorphic forms, we will only use it for

weak Jacobi forms, in which case we actually have C = tA.

The exponential lift can be naturally split into two factors, namely

Exp-Lift(ϕ)(Ω) = qAyBpC
∏

(n,l)>0

(1− qnyl)c(0,l) ×
∏

n,l,r∈Z
r>0

(1− qnylptr)c(nr,l) . (2.24)

– 8 –
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Here (n, l) > 0 means n > 0 ∨ (n = 0 ∧ l < 0). The first factor is usually denoted as the

Hodge factor, and it is defined as

φk,C(τ, z) = qAyB
∏

(n,l)>0

(1− qnyl)c(0,l) , (2.25)

with weight k as given in (2.22) and index C in (2.21). The inverse of φk,C is Jacobi-like

form with a multiplier system. The second factor can be naturally written in terms of

Hecke operators T−(r), namely as

∏
n,l,r∈Z
r>0

(1− qnylptr)c(nr,l) = exp

−∑
r≥1

r−1ptrϕ|T−(r)

 ≡ 1

ZϕSym
. (2.26)

If ϕ is some elliptic genus or partition function χ of a CFT, then ZχSym is the generating

function for the partition functions of the symmetric orbifolds of that theory:

ZχSym =

∞∑
r=0

ptrχ(τ, z; Symr(M)) =
pCφk,C(τ, z)

Exp-Lift(χ)(Ω)
(2.27)

Note that all powers of p are multiples of t. If χ(τ, z;M) is a weak Jacobi of index t, then

χ(τ, z; Symr(M)) has index tr.

2.3 Zeros and poles

The most important component of our analysis in subsequent sections relies on the divisors

of the paramodular forms constructed via (2.23). This is the second portion of Theorem

2.1 in [34], which we now summarize.

For paramodular forms that have a product expansion, such as (2.23), it is rather

simple to identify some of the divisors: choosing τ, z, ρ such that qnylptr = 1 in one of

the factors will make that factor vanish, so that the product either vanishes or diverges.

Because of the invariance under Γ+
t , divisors will always come as orbits of Γ+

t , and are

known as Humbert surfaces. These surfaces, denoted as HD(b), can always be written as

HD(b) = π+
t ({Ω ∈ H2 : aτ + bz + tρ = 0}) , (2.28)

where π+
t is the set of images of Γ+

t . Here a, b ∈ Z, the discriminant D is given by

D = b2−4ta and b is defined mod 2t. Each such divisor comes with multiplicity (or degree)

mD,b. The total divisor of the exponential lift (2.23) is given by the Humbert surfaces∑
D,b

mD,bHD(b) , (2.29)

where the multiplicities mD,b are given by

mD,b =
∑
n>0

c(n2a, nb) , (2.30)

– 9 –
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where c(n, l) are the Fourier coefficients of the underlying form ϕ. From this we see that the

Humbert surface of maximal discriminant D comes from the term with maximal polarity

of ϕ ∈ Jnh0,t .

Following section 1.3 of [34], it is also useful to note that for ` = (e, a,− b
2t , c, f) with

e, a, b, c, f ∈ Z and (e, a, b, c, f) = 1, and the discriminant

D(`) = 2t(`, `) = b2 − 4tef − 4tac , (2.31)

there is a natural action of Γ+
t on ` that leaves D(`) invariant. ` then defines a divisor in

H2 via the quadratic equation

tf(z2 − τρ) + tcρ+ bz + aτ + e = 0 . (2.32)

These are the most general images in (2.28).

3 Five special examples

Let us now turn to specific examples of paramodular forms. We are interested in forms that

have the potential of providing a novel setup for holography. We will focus on paramodular

forms that are built from exponential lifts: those always have an extended Cardy regime

which we can associate to black hole growth, as they are connected to symmetric product

orbifolds [12]. Within such exponential lifts, there is a class whose poles are parametrized

by the Humbert surface H1(1). This class has two appealing features: the formula for the

degeneracy of black hole states admits a particularly simple and elegant formula, and the

Cardy regime benefits from an even larger extension than a generic symmetric product [21].

In this section we will carefully characterize these forms, with the aim in later sections to

extract properties of these counting formulas that are relevant to make a comparisson with

the putative supergravity regime.

Let us emphasize however that restricting to H1(1) is neither fundamental nor exhaus-

tive. In fact the examples in this section will illustrate that despite their specificity, there

is plenty of room for interesting constructions.

In the following we will present five explicit examples of paramodular forms whose only

divisor is H1(1). Note that they will be exponential lifts of strictly weak Jacobi forms.3

To describe these examples, it is convenient to introduce some notation. We will study the

growth of the Fourier coefficients in

1

Φk(Ω)
= Exp-Lift(−ϕ)(Ω) , (3.1)

where the minus sign (and reciprocal) is mostly conventional: it is common to define the

first few coefficients of ϕ as positive and Φk(Ω) is thought as a cusp form. As before, k

is the weight of the paramodular form Φk(Ω). The coefficients of the seed ϕ ∈ Jweak
0,t are

defined via

ϕ0,t(τ, z) =
∑
n,l

c(n, l)qnyl , (3.2)

3We note that for a nearly holomorphic Jacobi form the negative powers of q will generate poles that

have a 6= 0 in (2.28).
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and as for any weak Jacobi form, we have the ‘Witten index’ identity∑
l

c(n, l) = 0 , ∀n > 0 , (3.3)

which later on will allow us to read off rather easily the residues dictated by H1(1). The

coefficients of the paramodular form will be parametrized as

1

Φk(Ω)
=
∑
m,n,l

c(m,n, l)pmqnyl . (3.4)

From the discussion in section 2.3, the Humbert surface H1(1) is given by

H1(1) = π+
t ({Ω ∈ H2 : z + tρ = 0}) , (3.5)

with

m1,1 =
∑
l<0

c(0, l) . (3.6)

For any H1(1) surface, we will have a divisor at z = 0, since the transformation
1 t 0 0

0 1 0 0

0 0 1 0

0 0 −t 1

 ∈ Γ+
t , (3.7)

maps z 7→ z+tρ. The behavior near z = 0 will be vital as we extract the Fourier coefficients;

the leading behavior around z = 0, up to numerical coefficients, is

Φk(Ω) ∼ qAptA
∏
r>0

(1− ptr)24A
∏
n>0

(1− qn)24A
∏
l<0

(1− yl)c(0,l)

∼ zm1,1qAptA
∏
m>r

(1− ptr)24A
∏
n>0

(1− qn)24A

= zm1,1η(τ)24Aη(tρ)24A (3.8)

where we used the identity (3.3), and η(τ) is the Dedekind-eta function.

The restriction of having only one type of Humbert surface puts tight constraints on

the seed ϕk,m. In particular, its coefficients must satisfy

c(0, l) = 0 , ∀ |l| > 1 , (3.9)

which assures that mb2,b = 0 for b 6= 1. To have a pole rather than a zero at the divisor, we

need c(0, 1) > 0. Together with (3.3), this means that the parameters in (2.21) and (3.6)

simplify to

A =
1

24
(2c(0, 1) + c(0, 0)) , C = B =

1

2
c(0, 1) , m1,1 = c(0, 1) , (3.10)
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where we used c(0, 1) = c(0,−1). Because C = tA, we have

c(0, 0) =

(
12

t
− 2

)
c(0, 1) . (3.11)

For reasons that we will explain in the section 4, we want to further focus on

m1,1 = 2 , (3.12)

which due to (3.10) gives C = B = 1 and A = 1/t. This generates a second order zero in

Φk and hence a double pole around z = 0 in the reciprocal (3.1). In addition, the weight

of Φk(Ω) is given by

k =
12

t
− 2 , (3.13)

where we used (2.22). Provided we want only positive and integral weights, we have a tight

range for the index:

t = 1, 2, 3, 4, 6 .

These are our five special examples, which we describe individually in the following.

All the mathematical properties of these examples where collected from [20], and below

we display the main highlights adjusted to our discussion. The usual interpretation of these

forms is as the elliptic genus of a non-linear sigma model with target space a Calabi-Yau

manifold in d-complex-dimensions (CYd). Without the restriction in (3.13), the elliptic

genus of CYd is a linear combination of the finite dimensional space of weak Jacobi form

of weight zero and fixed index. The linear combination is dictated by the topological data

of CYd; our condition (3.13) can be interpreted as a restrictions on the hodge numbers of

the CYd.

t=1, k=10. The most well known example that we will study is the exponential lift of

φ0,1 = 4

(
θ2(τ, z)2

θ2(τ)2
+
θ3(τ, z)2

θ3(τ)2
+
θ4(τ, z)2

θ4(τ)2

)
= y−1 + 10 + y + (10y−2 − 64y−1 + 108− 64y + 10y2)q + . . . , (3.14)

which is the unique weak Jacobi form of weight zero and index one. Here θi(τ, z) are the

usual theta functions, and θi(τ) ≡ θi(τ, 0). The resulting paramodular form is

1

Φ10
= Exp-Lift(−2φ0,1)(Ω) , (3.15)

where Φ10 is the famous Igusa cusp form. (We recall that for t = 1 the paramodular group

is simply Sp(4,Z).) The seed, 2φ0,1, is the elliptic genus of a K3 surface. The left hand side

of (3.15) is known as the DVV formula [25], which counts 1/4 BPS states in N = 4 string

theory in four dimensions. Generalizations of this formula to CHL models are discussed

in [36–38], which corresponds to orbifolds of K3.
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t=2, k=4. The next example comes from studying the exponential lift of

φ0,2 =
1

2
η(τ)−4

∑
m,n∈Z

(3m− n)

(
−4

m

)(
12

n

)
q(3m2+n2)/24y(m+n)/2

= y−1 + 4 + y + (y−3 − 8y−2 − y−1 + 16− y + 8y2 + y3)q + . . . , (3.16)

whose paramodular form is

1

Φ4
= Exp-Lift(−2φ0,2)(Ω) . (3.17)

The weak Jacobi form φ0,2 appears in the construction of the elliptic genus of CY4,

and it is interesting to display some properties of this lift. For an arbitrary CY4, the second

quantized elliptic genus is

Exp-Lift(−χ0(M)ψ0,2)× Exp-Lift(χ1(M)φ0,2) , (3.18)

where, for a Kähler manifold M , we have introduced the topological character

χr(M) ≡
∑
s

(−1)shr,s(M) , (3.19)

which is a combination of the Hodge numbers hr,s of M . The second weak Jacobi form

in (3.18) is given by

ψ0,2 = φ2
0,1 − 20φ0,2 . (3.20)

The divisor of (3.18) is equal to

(χ1(M)− χ0(M))H1(1)− χ0(M)H4(2) . (3.21)

The interesting aspect of this divisor, is that it is rather simple to generalize our conditions

to design an example that has poles described by H1(1), and zeroes dictated by H4(2): it

would simply require that χ0(M) < 0 and χ0(M) − χ1(M) > 0. Our focus here will be

limited to m1,1 = 2 and k > 0, which restricts χ0(M) = 0 and χ1(M) = −2. Note that we

could generalize our analysis by keeping the pole given by H1(1), but allowing zeroes as well.

For example, one could consider χ0(M) = −1 and χ1(M) = −3. We expect the presence

of zeroes to change some aspects of our results and we will comment on it in section 7.

t=3, k=2. For our next example, the unique weak Jacobi form is

φ0,3 = φ2
0, 3

2

(τ, z)

= y−1 + 2 + y − (2y−3 + 2y−2 − 2y−1 + 4− 2y + 2y2 + 2y3)q + . . . , (3.22)

where

φ0, 3
2
(τ, z) =

θ(τ, 2z)

θ(τ, z)

= y−1/2
∞∏
n=1

(1 + qn−1y)(1 + qny−1)(1− q2n−1y2)(1− q2n−1y−2) , (3.23)
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and

θ(τ, z) = −q1/8y−1/2
∞∏
n=1

(1− qn−1y)(1− qny−1)(1− qn) . (3.24)

The resulting lift is
1

Φ2
= Exp-Lift(−2φ0,3)(Ω) . (3.25)

We emphasize that the only divisor of this paramodular form is H1(1).

The index t = 3 form φ0,3 is closely related to the elliptic genus of CY6. More explicitly,

it is a combination of three weak Jacobi forms, which are

φ0,3 ,

ψ
(2)
0,3 = φ0,1φ0,2 − 15φ0,3 ,

ψ
(3)
0,3 = φ3

0,1 − 30φ0,1φ0,2 + 117φ0,3 , (3.26)

and the second quantized elliptic genus of CY6 reads

Exp-Lift(−χ0(M)ψ
(3)
0,3)× Exp-Lift(χ1(M)ψ

(2)
0,3)× Exp-Lift((χ1(M)− χ2(M))φ0,1) . (3.27)

The characters χr(M) are defined as in (3.19). The divisor characterizing this exponential

lift is

(χ1(M)− χ2(M)− χ0(M))H1(1) + χ1(M)H4(2)− χ0(M)H9(3) . (3.28)

Our case of interest, sets χ1(M) = χ0(M) = 0 and χ2(M) = 2. However, as we advocated

before, generalizations that accommodate for χ0,1(M) 6= 0 while keeping H1(1) as the only

source of poles would be interesting in future studies.

t=4, k=1. There is one odd example in our construction, which is given by the expo-

nential lift of the weak Jacobi form

φ0,4 =
θ(τ, 3z)

θ(τ, z)

= y−1 + 1 + y − (y−4 + y−3 − y−1 − 2− y + y3 + y4)q + . . . , (3.29)

with θ(τ, z) as defined in (3.24). The resulting paramodular form is

1

Φ1
= Exp-Lift(−2φ0,4)(Ω) , (3.30)

the only paramodular form of odd weight in our list.4 It is interesting to note that Φ1, in

addition to the product expansion in (2.23), has a simple expansion as

Exp-Lift(φ0,4) =
1

2

∑
n,m∈Z

(
−4

n

)(
−4

m

)
qn

2/8ynm/4sm
2/8 . (3.31)

φ0,4 is one of four basic weak Jacobi forms of index 4 that characterizes the elliptic

genus of CY8. The most general second quantized elliptic genus is rather involved (but

straightforward), and we refer to [20] for explicit expressions.

4Note that the multiplier system of Φ1 is non-trivial according to the theorem in section 2.2.
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Seed (ϕ) Weight (k) Group A B C

Φ10 2φ0,1 10 SP (4,Z) 1 1 1

Φ4 2φ0,2 4 Γ+
2 1/2 1 1

Φ2 2φ0,3 2 Γ+
3 1/3 1 1

Φ1 2φ0,4 1 Γ+
4 1/4 1 1

Φ0 2φ0,6 0 Γ+
6 1/6 1 1

Table 1. The five exponential lifts whose only divisor is H1(1), and integral weight that is non-

negative. The coefficients A,B,C and k are those define in (2.21) and (2.22).

t=6, k=0. Our last example is given characterized by the weak Jacobi form

φ0,6 = φ0,2φ0,4 − φ2
0,3

= y−1 + y + (−y−5 + y−1 + y − y5)q + . . . (3.32)

We note that φ0,6(τ, z) = φ0, 3
2
(τ, 2z) as defined in (3.23). We denote the exponential lift as

1

Φ0
= Exp-Lift(−2φ0,6)(Ω) . (3.33)

It is interesting to note that for t = 6 we cannot impose that the only divisor is H1(1): the

lift of φ0,6 has

H1(1)−H1(5) , (3.34)

and hence 1/Φ0 has non-trivial zeroes in addition to the poles dictated by H1(1).

The most naive interpretation of this form is of course as coming from the elliptic genus

of a CY12. We can however also interpret it as coming from a CY3: the elliptic genus of

CY3 is given by
1

2
e(CY3)φ0, 3

2
(τ, z) , (3.35)

where e(CY3) is the Euler number of the manifold. By rescaling z 7→ 2z this then becomes

φ0,6. In contrast to (3.14)–(3.15), note that Φ0 does not count BPS states in the MSW

string [39] that are relevant to 4D BPS black holes in N = 2 supergravity, nor M-theory

backgrounds of the form AdS3 × S2 × CY3.5

It is interesting that our restriction to exponential lifts with a double pole at H1(1) as

the only divisor gives finite number of examples. These are the forms which we will study

in the subsequent sections, and in table 1 we list their basic data.

4 Methodology

In this section we present our methodology to extract the Fourier coefficients for the five

special examples listed in table 1. Following the notation in section 3, we are interested in

5There are at least two pieces of evidence to claim we are not describing such black holes: the logarithmic

corrections in [40] do not match those predicted by (3.33) as we showed in [21]; the form (3.33) does not

seem to capture the attractor flows in [41]. We will elaborate more about this in section 6.
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obtaining the Fourier coefficents c(m,n, l) defined via6

1

Φk(Ω)
=
∑
m,n,l

c(m,n, l)pmqnyl . (4.1)

It is useful to define the discriminant ∆ of a state,

∆ ≡ 4nm− l2 , (4.2)

which is invariant under the action of (2.17). We then have states with

∆ ≥ 0 : positive or zero discriminant state . (4.3)

Extracting c(m,n, l) for states with ∆� 1 is the focus of [21]. Here instead we will focus

on states with

∆ < 0 : negative discriminant state . (4.4)

The techniques and features used to evaluate c(m,n, l) are sharply different for positive

versus negative states.7 In the following we review the method that was used in [17] to

obtain the degeneracy of negative discriminant states for t = 1, and generalize it to higher

values of t that are relevant for our five examples.

4.1 Tessellation of H2 by Γ+
t

Fundamentally we want to obtain c(m,n, l) from a contour integral such as

c(m,n, l) =

∮
p=0

dp

2πip

∮
q=0

dq

2πiq

∮
y=0

dy

2πiy

1

Φk(Ω)
p−mq−ny−l . (4.5)

However, we need to be careful about our choice of contour here. Since 1/Φk(Ω) is mero-

morphic, c(m,n, l) defined in this way depends on the precise choice of the contour [42]. A

very simple illustration of this ambiguity can be described as follows. For our five examples

there is a pole at z = 0. To get the Fourier coefficient, we have to expand

(1− yl)−c(0,l) , c(0, l) > 0 . (4.6)

If l Imz > 0, then the correct expansion of (4.6) is some geometric series in powers of y. If

however l Imz < 0 then we need to write (4.6) as

(−1)−c(0,l)y−lc(0,l)(1− y−l)−c(0,l) , c(0, l) > 0 , (4.7)

which gives an expansion in powers of y−1 instead. This ambiguity is what forces us to

define chambers, within which the expansion is convergent and the coefficients do not suffer

from ambiguities do to the crossing of a pole in the function.

To start, Φk is defined on the Siegel upper half plane H2, defined in (2.8), which implies

Imτ > 0 , Imρ > 0 , Imτ Imρ− (Imz)2 > 0 . (4.8)

6Note that following (2.23), the powers of p are given by tk − 1, k ∈ N.
7Appendix A has a brief review of the contour used for states with ∆� 1.
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We can deform our contours on this domain without changing (4.5) as long as we do not

cross any poles when doing so. We therefore want to tessellate H2 into chambers whose

boundaries are given by the poles of 1/Φk. This will define regions (chambers) where we

can accurately evaluate (4.5).

To define the chamber which will be useful for us, first note that we want our contour

to enclose p = q = y = 0. For this choice we can take the real parts to be restricted to

0 ≤ Reτ,Reρ,Rez < 1 , (4.9)

while for the imaginary parts we choose

Imρ , Imτ , Imz � 0 . (4.10)

Let us denote by R the chamber which contains the point p = q = y = 0 and hence

compatible with (4.8)–(4.10). The boundaries of this region are defined as follows. As

pointed out above, we need to pick an expansion around y which is affected by the choice

of sign of l; without loss of generality, we will choose

l < 0 , Imz > 0 . (4.11)

However we can still have some conflicts due to the images of z = 0 under the paramodular

group Γ+
t ; this will bound R from below on the Siegel upper half plane. The most general

image of our pole is given by (2.32), and reads

t f(z2 − τρ) + t cρ+ bz + aτ + e = 0 , e, a, b, c, f ∈ Z . (4.12)

Since we are interested in large imaginary values of the parameters as in (4.10), we see that

the only poles that we can encounter have f = 0. This means we only have to consider

linear poles. Therefore, our task is to characterize how the linear equation

t c ρ+ b z + a τ + e = 0 , (4.13)

tessellates H2. More precisely, we can concentrate purely on the imaginary component of

this equation,

t c Imρ+ b Imz + a Imτ = 0 , (4.14)

as the real component comes along for the ride.

The lower boundary of R will be dictated by the lines defined in (4.13). To visualize

the chambers in H2 it is useful to plot the Siegel upper half plane as a two-dimensional half

plane in the ratios Imρ/Imτ and Imz/Imτ . Figure 1 illustrates the shape of R for t = 1

and the tessellation below it; figure 2 displays the analogous region R for t = 2 and t = 3.

It is instructive to consider first the simplest example. For t = 1 the poles that bound

R are

Imz = 0 , Imz = Imρ , Imz = Imτ . (4.15)

As plotted in figure 1, the area enclosed by these three lines defines R for t = 1. For higher

values of t, R is always bounded by the two poles

Imz = 0 , Imz = Imτ . (4.16)
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0.5

Im(z)

Im(τ)

Im
(ρ
)

Im
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)

Figure 1. The plot to the left shows the chamber R (shaded grey region) for 1/Φ10, i.e. t = 1. The

dashed line corresponds to the boundary of the Siegel upper half plane; the solid lines correspond

to (4.15) . The plot to the right shows the tessellation of H2, which is produced by considering

further lines in H1(1); each colored region represents a new chamber which is surrounded by the

appropriate divisor in (4.14).

The main difference for t 6= 1 is however the number of segments that connect the origin

(Imz = Imρ = 0) with the point Imz = Imτ = Imρ (which is the intersection of the parabola

in (4.8) with the second vertical line). For example, for t = 2 we have the two poles

Imz − 2Imρ = 0 ,

3Imz − 2Imρ− Imτ = 0 , (4.17)

while for t = 3, there are four poles

Imz − 3Imρ = 0 ,

5Imz − 6Imρ− Imτ = 0 ,

7Imz − 6Imρ− 2Imτ = 0 ,

5Imz − 3Imρ− 2Imτ = 0 . (4.18)

Higher values of t work in a similar fashion. It is interesting to note that the chambers

for the paramodular groups with t 6= 1 are the union of chambers for t = 1, i.e. SP (4,Z),

since the poles in (4.14) are a subset of those for that group. This means we will no longer

have a tessellation of the Siegel upper half plane made of triangles, but rather of polygons

with additional faces. Figure 3 contrasts the chamber for t = 1 versus t = 2.

Note that linear poles in (4.14) can be obtained from a subgroup of Γ+
t , namely trans-

formations of the form

γ̂t :=

(
A 0

0 D

)
, ADT = 12×2 , det(A) = ±1 . (4.19)

Given the restrictions in (2.9), we can parametrize the matrix A as

A =

(
a1 tb1

c1 d1

)
, a1d1 − tb1c1 = ±1 , (4.20)
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Figure 2. These plots show the chamber R for t = 2 (left) and t = 3 (right). The dashed

line corresponds to the boundary of the Siegel upper half plane; the region R is always enclosed

between the lines Imz = 0 and Imz = Imτ for any t. But the number of lines bounding R from

below depends on t: the relevant lines shown here are those in (4.17) and (4.18).

R

0 0.5 1

0

0.5

1

Im(z)

Im(τ)

Im
(ρ
)

Im
(τ
)

Figure 3. Here we show the chamber R for the paramodular group Γ+
2 in contrast to the analogous

chamber for SP (4,Z). The blue dashed line is the boundary of the Siegel upper half plane. The

black dashed line shows a linear pole for t = 1 that is not a linear pole of the paramodular group

Γ+
2 . The chamber R is the union of two chambers of SP (4,Z), lying to the left and right of the

black dashed line.
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with a1, b1, c1, d1 ∈ Z. Note that A ∈ GL(2,Z), and is allowed to have determinant -1.

The linear pole (4.14) corresponds in this notation to a γ̂t transformation of z = 0 where

a = a1c1 , b = a1d1 + tb1c1 , c = d1b1 . (4.21)

In addition, the extension in (2.10) allows for matrices A of the form( √
tb1
√
ta1

d1/
√
t
√
tc1

)
, a1d1 − tb1c1 = ±1 . (4.22)

Relative to (4.20), these elements swap the role of ρ→ t−1τ and τ → tρ as in (2.14), and

hence just gives redundant information in relation to (4.20). For this reason, we do not

need to consider them in subsequent derivations.

4.2 Crossing walls

How can we now compute the degeneracy c(n,m, l) of a charge vector (n,m, l) in the

chamber R? There is one simple special case where we can read off the result immediately: if

n < −A or m < −C , (4.23)

then c(n,m, l) = 0, as can be seen directly from expanding (2.24). For our five examples

in section 3, we have A = 1/t and C = 1, and hence

c(n,m, l) = 0 , for n < −1

t
or m < −1 . (4.24)

We will call a vector (n,m, l) which satisfies (4.23) to be of standard form. This imme-

diately suggests a strategy to compute the degeneracy for an arbitrary charge vector as

originally proposed in [17]: we can try to find an element γ̂ ∈ Γ+
t which transforms our

charge vector to standard form. The price we pay for this is that γ̂ permutes the chambers,

so that we are no longer in R. We can then however deform the contour back to R, picking

up contributions from all the poles we cross in the process. Since the charge vector is now

in standard form, its contribution in R vanishes, so that the degeneracy of the original

charge vector is simply given by the sum of the residues of all the poles we crossed in going

back to R. To be more explicit, let’s define the matrix

Q ≡

(
n l

2
l
2 m

)
, (4.25)

for which (4.5) takes the form

c(m,n, l) =

∮
p=0

dp

2πip

∮
q=0

dq

2πiq

∮
y=0

dy

2πiy

e2πiTr(ΩQ)

Φk(Ω)
. (4.26)

Acting with γ̂ in (4.20) acts on our integration variable as

γ̂(Ω) = AΩD−1 ≡

(
τγ zγ

zγ ργ

)
, (4.27)
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which leads to a new charge vector in (4.26) of the form

DQA−1 ≡

(
nγ

lγ
2

lγ
2 mγ

)
. (4.28)

In components this reads as

τγ = a2
1τ + 2ta1b1z + t2b21ρ ,

zγ = a1c1τ + (a1d1 + tb1c1)z + tb1d1ρ , (4.29)

ργ = c2
1τ + 2c1d1z + d2

1ρ ,

and

mγ = a2
1m+ t2b21n− ta1b1l ,

nγ = c2
1m+ d2

1n− c1d1l , (4.30)

lγ = −2a1c1m− 2tb1d1n+ (a1d1 + tb1c1)l .

A transformation γ̂ in (4.28) gives a charge vector in standard form if mγ < −1 or

nγ < −1/t. Let us assume that this can be accomplished by some transformation γ̂0

that brings us to a chamber R’ 6= R. It is left for us to trace our way back to the chamber

R, picking up the contribution of the poles pi that we cross along the way. The degeneracies

will therefore take the form

c(m,n, l) =
∑
pi

1

2πi
Res

(
qnpmyl

Φk
,pi

)
. (4.31)

Here “Res” stands for the residue integral around pi and the two integrals for the remaining

variables (for which we give a closed expression below).

To extract the residues at the poles, we will use the simple form of our paramodular

forms near the pole z = 0 as given in (3.8). Any linear pole pi can be mapped to the pole

z = 0 by an appropriate transformation γi ∈ γt. From (4.30), and using (3.8), the residue

at the pole zγi = 0 is given by

1

2πi
Res

(
qnpmyl

Φk
,pi

)
= −lγidt(nγi)d̃t(mγi) , (4.32)

where dt(n) and d̃t(n) are integers, whose relation to Dedekind-eta functions are

η(τ)−24/t =
∑
n

dt(n)qn , η(tτ)−24/t =
∑
n

d̃t(n)qn . (4.33)

From this definition it is automatic that dt(n) and d̃t(n) vanish for n < −1
t and/or m < −1.

A few comments are in order concerning our expression (4.32).

1. First, note that the factor of lγi in (4.32) comes from the fact that we picked m1,1 = 2.

This gives a second order pole for which we can easily and explicitly cast the answer as

in (4.32). Higher values of m1,1 are conceptually equivalent, and our discussion could

be extended to those cases, with the caveat that the residue formula is more involved.

– 21 –



J
H
E
P
1
1
(
2
0
1
8
)
0
3
7

2. Second, it is important to note that the contribution of a pole is conditional and only

gives a non-vanishing result if

Imzγi lγi > 0 . (4.34)

This condition makes sure that we are crossing the pole from the right side. The

element γi must map us to the side of the pole away from R.

3. Third, note that the contribution of a pole can vanish even if R’ 6= R if at pi we

have nγi < −1/t or mγi < 1. This is not surprising because there are arbitrarily

many chambers in which the charge vector is in standard form: the procedure is not

unique since we can map a given (m,n, l) state to an arbitrarily negative mγ or nγ
state via (4.30), taking us as deep as we want in the tessellation. The implication

is that there are many paths back to R. However the Fourier coefficient c(m,n, l) is

of course unique, and this is compatible with the fact that a longer path will have

several trivial contributions to the residue.

4. Finally, one may wonder why this technique was not used to compute the Fourier

coefficients of positive a discriminant states (∆ > 0) that are relevant for counting

black hole microstates. The reason is simply because a charge vector with positive

discriminant can never be put in standard form via an element of Γ+
t . This can be

seen directly from the expression for mγ and nγ in (4.30). Our limitation by using

this elegant technique is to states with ∆ < 0.

To be very concrete about the implementation of the above ideas, let us study an

example. We will consider t = 1 and determine the Fourier coefficient c(6, 0,−3). From a

direct expansion of 1
Φ10

, we have

c(6, 0,−3) = 1848528 . (4.35)

Now consider the transformation γ0 of the form (4.19) where we select

A0 =

(
1 −3

0 1

)
. (4.36)

This gives

n = 0 → nγ0 = 0 , m = 6 → mγ0 = −3 (4.37)

The charge vector is now in standard form. Under this transformation, we have been sent

from R to the green region of figure 1, and hence we need to cross the three poles to get

back to R:

p1 : z − 3ρ = 0 , (4.38)

p2 : z − 2ρ = 0 , (4.39)

p3 : z − ρ = 0 . (4.40)

The contribution at the pole p1 vanishes: the transformation γ1 that maps the residue at

p1 to z = 0 vanishes since γ1 = γ0 for which we would have mγ1 = −3 in (4.32). This is an
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illustration of our third point made above. The contributions at the other two poles are

non-trivial and read

1

2πi
Res

(
q0p6y−3

Φk
,p2

)
= 1728 , (4.41)

1

2πi
Res

(
q0p6y−3

Φk
,p3

)
= 1846800 . (4.42)

Adding them up, we find

c(6, 0,−3) = 1848528 , (4.43)

in perfect agreement with (4.35).

4.3 The single pole regime

The prescription described in the previous subsection gives a constructive algorithm to

compute the exact degeneracy for arbitrary charge vectors with negative discriminant. In

this section, we will focus on a particular set of charge vectors, namely those whose Fourier

coefficients are given by the contribution of a single pole. It will become clear in the follow-

ing section that this restriction is relevant when trying to give a holographic interpretation

to our results and describe supergravity spectra. We will first work out the two examples

t = 1, 2 in complete details to illustrate this, and then say a few words about the case t > 2.

4.3.1 Example: t = 1

For t = 1, the only pole bordering R from below is

p : z − ρ = 0 . (4.44)

The contribution at that pole can be obtained from the element

A =

(
1 −1

0 1

)
, (4.45)

which gives

c(m,n, l) = −(l + 2n)d1(n)d1(m+ n+ l) . (4.46)

We are looking for charge vectors for which c(m,n, l) comes from (4.46) only. The most

natural guess is of course to take a (m,n, l) which is in standard form after the map A.

Note however that in that case, (4.46) immediately tells us that c(m,n, l) vanishes, since

by definition of the standard form either d1(nγ) or d1(mγ) vanishes.

To get a non-vanishing answer, we therefore want a charge vector which is put in

standard form by a transformation that maps R either into the red or yellow chamber in

figure 1, that is one chamber beyond the blue chamber. The elements γ̂1,2 that map to the

red/yellow chambers respectively are

A1 =

(
1 −2

0 1

)
, A2 =

(
1 −2

−1 1

)
. (4.47)
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Crossing into the blue chamber, the contribution of the pole then vanishes for the reasons

given above. The total contribution that we pick up by deforming the contour back into

R is thus simply (4.46), as desired.

The question is then of course for which regime of n,m and l this happens. Using (4.30)

gives

nγ1 = n , mγ1 = m+ 4n+ 2l ,

nγ2 = m+ n+ l , mγ2 = m+ 4n+ 2l . (4.48)

For the charge vector to be in standard form in either of the chambers, we need one

(or more) of these values to be less than minus one. Since we also want the Fourier

coefficient (4.46) to be non-zero, the only possibility is

m+ 4n+ 2l < −1 . (4.49)

This defines the full one pole regime and the value of the coefficient is (4.46).8

A formula for the degeneracy of negative discriminant in CHL compactifications was

derived in [43] by exploring the black hole residue formula and the Rademacher expan-

sion [3]. We can check that equation (4.46) agrees with the result derived in [43] after

the appropriate change of variables. The method exploited here may provide a possible

derivation of the contour choice made in [43].

4.3.2 Example: t = 2

Let us now look at the case t = 2. This case is slightly more complicated since there are

two poles bordering R from below. We have

pL : z − 2ρ = 0 (4.50)

pR : 3z − 2ρ− τ = 0 . (4.51)

The elements that map R to the chambers delimiting these poles from above are

γ̂L : AL =

(
1 −2

0 1

)
, γ̂R : AR =

(
1 −2

−1 1

)
, (4.52)

which give

cL(m,n, l) = −(l + 4n)d2(n)d̃2(m+ 4n+ 2l) , (4.53)

cR(m,n, l) = −(3l + 2m+ 4n)d2(l +m+ n)d̃2(m+ 4n+ 2l) . (4.54)

Let us denote by CL,R the two image chambers of R under the maps (4.52), whose upper

boundaries are of course given by pL,R. By the same reasoning as for t = 1, to obtain

8There is actually another pole that we could have crossed, the pole z − τ = 0. The reason we omitted

this pole is because it is never relevant for charge vectors with m > n. Since we will ultimately be interested

in the large m limit, that other pole is never relevant. Note however that it would have been straight forward

to add and for t = 1, it would simply give equivalent formulas where m and n are exchanged.
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non-vanishing coefficients, we need to consider transformations into chambers adjacent to

CL,R, of which there are three each.

For the pole pL, the transformations correspond to the elements

AL,1 =

(
1 −4

0 1

)
, AL,2 =

(
1 −4

−1 3

)
, AL,3 =

(
1 −2

−1 3

)
, (4.55)

which give

nγL,1 = n , mγL,1 = m+ 16n+ 4l ,

nγL,2 = m+ 9n+ 3l , mγL,2 = m+ 16n+ 4l ,

nγL,3 = m+ 9n+ 3l , mγL,3 = m+ 4n+ 2l . (4.56)

For the pole pR, the transformations correspond to the elements

AR,1 =

(
1 −2

−2 3

)
, AR,2 =

(
3 −4

−2 3

)
, AR,3 =

(
3 −4

−1 1

)
, (4.57)

which give

nγR,1 = 4m+ 9n+ 6l , mγR,1 = m+ 4n+ 2l ,

nγR,2 = 4m+ 9n+ 6l , mγR,2 = 9m+ 16n+ 12l ,

nγR,3 = m+ n+ l , mγR,3 = 9m+ 16n+ 12l . (4.58)

Putting everything together, the degeneracies (4.53) and (4.54) are valid when

Regime L : m+ 16n+ 4l < −1/2 ∪ m+ 9n+ 3l < −1 , (4.59)

Regime R : 4m+ 9n+ 6l < −1/2 ∪ 9m+ 16n+ 12l < −1 , (4.60)

respectively. These regimes exclude as well ranges of (m,n, l) for which the Fourier coeffi-

cients are trivial.

4.3.3 t > 2

Let us now discuss the general case. In principle this is straightforward, but rather cumber-

some to write down explicitly. The reason is that the chamber R is bounded below by 2t−1

poles as can be seen for example in figure 2. This gives 2t−1 chambers below R which are

each bounded below by 2t−1 +1 poles. This gives in principle 2t−1(2t−1 +1) different paths

from a chamber where the charge vector is in standard form back to R, each of which gives a

different regime for the charge vector. We will therefore concentrate on just two such paths.

The leftmost pole closest to Imz = 0 is given by

pL : z − tρ = 0 . (4.61)

We will now only consider the transformation that maps to the leftmost chamber adjacent

to this chamber (This is of course not the only path, as there are another 2t−1 other
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poles that we could cross. This means the regime that we will write down shortly is not

the largest possible regime where the pole pL gives the only contribution). The relevant

element in (4.19) is then

A0 =

(
1 −2t

0 1

)
. (4.62)

The charge vector will be put in standard form provided

m+ 4t2n+ 2tl < −1 , (4.63)

and only the pole pL will contribute. The answer yields

cL(m,n, l) = −(l + 2tn)dt(n)d̃t(m+ t2n+ tl) . (4.64)

This formula is exact provided (4.63) is satisfied.

The rightmost pole is given by

pR : (2t− 1)− tρ− (t− 1)τ = 0 . (4.65)

Note that for t = 1 this gives the same pole, which is consistent since R is bounded below

only by one pole in that case. To put the vector in standard form, we use the element

A0 =

(
2t− 1 −2t

−1 1

)
, (4.66)

which maps to the rightmost adjacent chamber. The charge vector will be put in standard

form if

(4t2 − 4t− 1)m+ 4n+ 2t(2t− 1)l < −1 , (4.67)

and only the pole pR will contribute. The answer reads

cR(m,n, l) = −(2(t− 1)m+ (2t− 1)l+ 2tn)dt(l+m+n)d̃t((1− 2t+ t2)m+ t2n+ t(t− 1)l) .

(4.68)

This expression is again exact provided (4.67) is satisfied. It is important to note that both

regimes (4.63) and (4.67) are necessary but not sufficient: there are additional negative

discriminant states whose Fourier coefficient is equal to the non-trivial residue at one pole.

These additional states are those brought to standard form by considering the other 2t−1

paths that we ignored here as we cross the first pole and then there are also 2t−1−2 middle

poles to reach back to R.

We will now apply the method we developed to extract the Fourier coefficients of

symmetric product orbifold theories. We will see that the contribution of a single pole

contributing has a nice interpretation from a holographic perspective.

5 Symmetric orbifolds & Siegel paramodular forms

In this section we discuss our main application of Siegel paramodular forms: quantifying

the growth of BPS operators for supersymmetric CFTs coming from symmetric orbifolds.
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Given a seed theory C, we construct a symmetric product orbifold by tensoring r copies of

the seed and then orbifolding by the symmetric group Sr, giving

Cr ≡
C⊗r

Sr
. (5.1)

Assuming that the seed theory has an elliptic genus of index t whose coefficients are given by

c(n, l), the generating function for the elliptic genus of the r-th orbifolded theory is [44–46]

Z(ρ, τ, z) =
∑
m∈tN

pmχm(τ, z) =
∏

n,l,r∈Z
r>0

1

(1− qnylptr)c(nr,l)
. (5.2)

Here χtr(τ, z) is the elliptic genera that captures BPS states of Cr with Fourier coefficients

defined by

χm(τ, z) =
∑

n≥0,l∈Z
cCFT(m,n, l)qnyl . (5.3)

The generating function Z is closely related to a Siegel paramodular form. Focusing

on our five examples in section 3, from (2.27) we have

Z(ρ, τ, z) =
p φk,1(τ, z)

Φk(ρ, τ, z)
, (5.4)

where the Hodge factor is

φk,1(τ, z) = q1/ty
∏

(n,l)>0

(1− qnyl)c(0,l) , (5.5)

and Φk is a Siegel paramodular form given by an exponential lift of the form (2.24); in (5.4)

we used (3.10)–(3.12). It is therefore clear how to extract the Fourier coefficients of the

symmetric product once those of the Siegel paramodular form are known. In the following

we will discuss the interpretation of the negative discriminant states in 1/Φk we quantified

in section 4 in relation to states in Z.

Despite their close relation, it is worth highlighting some differences in the states con-

tained in Z relative to 1/Φk. In the expansion of Z, the coefficient of pm is a weak Jacobi

form of index m, which has polar states, i.e. states with ∆ = 4mn− l2 < 0. For fixed index

m, the polar states are bounded from below by ∆ ≥ −m2 as expected. In contrast, the ex-

pansion of 1/Φk in powers of p are not weak Jacobi forms, and this leads to having in its ex-

pansion negative discriminant states that are not bounded by m.9 The Hodge factor (5.5) is

what reconciles the expansion on both sides of (5.4), and the discriminants of states on both

sides. Moreover, φk,1 only contains positive discriminant states: this means that to under-

stand the polar states in (5.4) it is enough to know the negative discriminant states of Φk.
10

9This is a simple consequence of the expansion of 1/Φk around the pole y = 1: this allows for arbitrarily

large positive powers of l.
10The tensor product of two states of positive discriminant always results in a state with positive dis-

criminant. This follows from the ‘Lorentzian’ triangle inequality ||x + y|| > ||x|| + ||y|| where || . . . || is

the SO(1, 2,R) invariant norm and x, y denote states (m,n, l) with m > 0. Hence a ∆ > 0 in 1/Φk is a

non-polar state in Z.
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In the remainder of this section we will study the degeneracies of polar states in Z. Our

emphasis will be on identifying those polar states which we can interpret holographically as

perturbative states of a putative theory of gravity on AdS3. This will require a definition

of vacuum state (and performing a suitable spectral flow to identify it), in addition to a

notion of lightness in the CFT which we discuss in the following subsection.

5.1 Light operators

In the following we will discuss the physical interpretation of χm in (5.2), and its operator

content, with particular emphasis on ‘light’ operators which we define below. Our five

examples of Siegel paramodular forms involve as a seed a weak Jacobi form of weight zero.

The most natural interpretation of a weak Jacobi form is as the elliptic genus of a theory

with N = (2, 2) supersymmetry,11 and hence we would identify

χm(τ, z) = TrRR

(
(−1)F qL0− c

24 yJ0 q̄L̄0− c̄
24

)
. (5.6)

As denoted by the subscript, this index is defined in the Ramond sector where fermions

have periodic boundary conditions. L0 and L̄0 are the zero modes of the left and right

Virasoro generators; there are also two U(1) R-charge operators with zero modes J0 and

J̄0.12 With the fermion number given by F = J0 − J̄0, the insertion of (−1)F turns the

resulting object into a holomorphic function. Following the notation in (5.3), (n, l) are the

eigenvalues of L0 − c/24 and J0 respectively.

Since the elliptic genus is defined in the Ramond sector, it does not count perturbative

low-energy states in AdS: in particular we do not expect the vacuum state to be in this

sector. To address this issue let us first discuss some features of the CFT associated to

χm, and in particular the vacuum state. Consider the left moving sector of a N = (2, 2)

SCFT2. We will focus on the Virasoro algebra of that sector and the U(1) Kac-Moody

algebra due to the R-symmetry. The relevant commutators are

[Ln, Ln′ ] = (n− n′)Ln+n′ +
c

12
n(n2 − 1)δn,−n′ ,

[Ln, Jn′ ] = −n′Jn′+n ,

[Jn, Jn′ ] = 2mnδn,−n′ . (5.7)

In a superconformal theory, the level (index) m is related to the central charge c via c = 6m;

but for now we will keep them unrelated. The additional generators and properties of a

superconformal algebra can be found in, for example, [47]. For our purposes, an important

feature is the invariance of the algebra under a continuous family of deformations, known

as a spectral flow automorphism [48]:

Ln → L(sf)
n = Ln + η Jn + η2mδn,0 ,

Jn → J (sf)
n = Jn + 2ηmδn,0 . (5.8)

11It is important to highlight that our interpretation of χm is not limited to N = (2, 2) theories. Our

requirements are that the theory has some amount of supersymmetry, an R-symmetry and that a weak

Jacobi form is the relevant mathematical object that counts BPS states. We use the N = (2, 2) SCFT

jargon for concreteness.
12The R-symmetry of the SCFT2 can be larger than U(1); it could be for instance SU(2) or larger. For

the purpose of our argument we need to just focus on the U(1) subgroup of the appropriate group.
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Under this deformation the elliptic genus transforms as

χm(τ, z) → χsf
m(τ, z) = qη

2my2ηmχm(τ, z + ητ) . (5.9)

Here η is a continuous parameter. In particular, for η ∈ Z+1/2 the deformation interpolates

between the R sector (periodic fermions) and the NS sector (anti-periodic). The case η ∈ Z,

corresponds to the translation in (2.5). Note that the discriminant, ∆ = 4nm − l2, is

invariant under (5.8).

The vacuum state is defined as a highest weight state whose zero modes are

L0|0〉 = 0 , J0|0〉 = 0 , (5.10)

and it is annihilated by L−1 and (Ln, Jn) with n > 0. Equivalently, the vacuum is a

state invariant under the sl(2) × u(1) subgroup in (5.7), and has the lowest value of the

discriminant: ∆vac = − cm
6 . It is important to note that (5.10) is not spectral flow invariant.

This is the reason why the weak Jacobi form χm(τ, z) does not count the vacuum: there

are no negative powers of q in (5.3).

Our task now is to find a suitable spectral transformation such that χsf
m contains a state

of the form (5.10). However, how we flow to the sector containing the vacuum depends

on how we relate the index m of the elliptic genus to the central charge. One natural

interpretation is to simply take the seed weak Jacobi form to be the elliptic genus of a

SCFT with central charge

cseed = 6t , (5.11)

as would be the case for the elliptic genus of a Calabi-Yau sigma model, i.e. the interpre-

tation given in [20].13 The vacuum is then in the NS sector, that is in the sector that is

obtained by spectral flow by a half unit η = 1
2 . For this choice of central charge the seed

theory has

∆vac = −t2 , (5.12)

which is the most polar term allowed by the index of the seed. However, for our five

examples in section 3 the minimal polarity of the seed is ∆min = −1. If t = 1, that is

the K3 sigma model SCFT, there is no tension and as we will see in the following section

the analysis is rather straight forward. However, for t > 1 there are various issues. The

mismatch, ∆vac 6= ∆min, means that the vacuum does not appear in χsf
m. As we review

in appendix C, this can indeed happen for certain types of Calabi-Yau sigma models. In

addition there are no light states –as defined below in (5.15)– in the NS sector, since the

vacuum and its neighbors do not appear. We will show this in section 5.3.

A different approach is to set

∆vac = ∆min = −1 (5.13)

which sets

cseed =
6

t
. (5.14)

13To be more precise the central charge of a Calabi-Yau (CYd) sigma model is given by c = 3d with d

the compex dimension. In addition, we also have that the index of the elliptic genus is given by d/2. When

d is even we have t = d/2.
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The idea is to declare that the most polar term in the elliptic genus should be interpreted

as the vacuum. For this term to produce an uncharged state, as in (5.10), we see from (5.8)

that we need to flow by η = 1
2t units of spectral flow. We will call this choice the fractional

spectral flow, and we will study the spectrum of this sector in section 5.4.

We can summarize our two choices as:

Vacuum maps to central charge η

Half-Integer SF Most polar term allowed by index cseed = 6t 1/2

Fractional SF Most polar term that is non-zero cseed = 6/t 1/(2t)

Having these two choices, we can now properly define a light operator. A light state,

or equivalently a perturbative state, is a state whose weight is sufficiently small relative

to the vacuum state. If we take h to be the weight of the state above the vacuum, our

definition of light states is to require

Lightness:
h

c
→ 0 , c→∞ . (5.15)

That is, our definition of lightness comes intrinsically with a large central charge limit; this

naturally takes us to the corner of holography where the states in AdS are perturbative

fields in the supergravity description. For our five examples, we have c = mcseed, and

hence (5.15) is a large m limit.

Since h is the useful variable to quantify energy, we will write

qc/24χsf
m(τ, z) =:

∑
h,lsf

csf(m,h, lsf)q
hylsf , (5.16)

where

h = n+ ηl , lsf = l + 2mη . (5.17)

and the shift by the vacuum energy (−c/24) is taken into account.

In the remainder of this section we will evaluate generating functions for csf(m,h, lsf)

for polar states that satisfy the single pole regime introduced in section 4.3. A priori there

is no evident reason why one should focus on those states. However, as our computations

will reveal, these states are exactly those relevant to discuss the light regime in (5.15).

Of course one could build the generating function for all polar states in χsf
m(τ, z), but

our primary task in this portion is to establish that our five examples have a very sparse

spectrum as defined by (1.2).

5.2 Example: t = 1

The simplest case is t = 1, where χm is interpreted as the elliptic genus of K3. The seed

of this theory is given in (3.14) and the paramodular form in (3.15). The light states are

in the NS sector, which we reach by a 1/2 unit spectral flow. The parameters as defined

in (5.17) read in this case

n = h− 1

2
lNS l = lNS −m. (5.18)
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To start we will implement the spectral form on the Siegel form 1/Φ10, and later on in-

troduce the hodge factor to obtain Z via (5.4). We define the coefficients in the NS sector as

cNS(m,h, lNS) := c(m,n, l) = c

(
m,h− lNS

2
, lNS −m

)
. (5.19)

We can now define 1/Φ10 in the NS sector as

1

ΦNS
10

=
∑

m,h,lNS

cNS(m,h, lNS)pmqhylNS . (5.20)

We could like to characterise cNS(m,h, lNS) based on our findings in section 4. In

particular, we will build a generating function in the NS sector for all polar states that lie

in the single pole regime; these are the states quantified in section 4.3.1. The condition of

the single pole regime for t = 1 is given by (4.46), which in NS variables reads

4h−m ≤ −2 . (5.21)

Provided this conditions is satisfied we have (4.46), which in NS variables maps to

cNS(m,h, lNS) = (m− 2h)d

(
h− lNS

2

)
d

(
h+

lNS

2

)
. (5.22)

Let us define csNS to be equal to (5.22), regardless of condition (5.21), and define a generating

function for them:

ZsNS(τ, ρ, z) ≡
∑
h≥−1

∑
|lNS|≤2h+2

∑
m≥2h+1

(m− 2h)d

(
h+

lNS

2

)
d

(
h− lNS

2

)
qhylNSpm . (5.23)

We have chosen the summation range so that (5.22) is compatible with (4.34) and the

entries of d(n) are non-zero in (5.22), i.e.

m− 2h ≥ 1

h− lNS

2
≥ −1 (5.24)

h+
lNS

2
≥ −1 .

We are guaranteed that ZsNS agrees with the actual NS generating function 1/ΦNS
10 for terms

which satisfy (5.21).

ZsNS is useful because it can be written in very simple form: we can perform the sums

in (5.23) to find

ZsNS(τ, ρ, z) =
∑
h≥−1

∑
|lNS|≤2h+2

d

(
h+

lNS

2

)
d

(
h− lNS

2

)(
qp2
)h
ylNS

∑
m′≥1

m′pm
′

=
p

(1− p)2

∑
h≥−1

∑
|lNS|≤2h+2

d

(
h+

lNS

2

)
d

(
h− lNS

2

)(
qp2
)h
ylNS

=
p

(1− p)2

∑
r,s≥−1

d(r)d(s)q(r+s)/2pr+syr−s

=
p

(1− p)2

1

η(τ/2 + ρ+ z)24

1

η(τ/2 + ρ− z)24
. (5.25)
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We are actually interested in the growth of coefficients in the symmetric orbifold Z, which

is the object we would want to match to the supergravity spectrum. It is easily extracted

from ZNS through (5.4): we simply multiply (5.25) by the spectrally flowed version of

pφ10,1, which is the Hodge factor for the Igusa cusp form. We have

pφ10,1 = pqy(1− y−1)2
∏
n≥1

(1− qn)20(1− qny)2(1− qny−1)2 . (5.26)

We then do a half unit spectral flow transformation

y → yq1/2 , p→ pq1/2y , (5.27)

and obtain

pφNS
10,1 = pq

∏
n≥1

(1− qn)20(1− qn−1/2y)2(1− qn−1/2y−1)2 . (5.28)

The single pole generating function of the symmetric orbifold is thus

ZsNS = ZsNS · pφNS
10,1

=
1

(1− p)2

∏
n≥1

(1− qn)20(1− qn−1/2y)2(1− qn−1/2y−1)2

(1− qn/2pnyn)24(1− qn/2pny−n)24
. (5.29)

To determine the regime of validity of (5.29), note that ZsNS is valid as long as (5.21)

is satisfied. Multiplying by (5.28) then changes this regime only slightly: any term that

satisfies

h ≤ (m+ 1)/4 , (5.30)

necessarily comes from a term for which ZsNS is valid. The difference to (5.21) comes from

the prefactor pq in (5.28). All other factors in (5.28) only contain positive powers of q,

which means that states in ZsNS which violate (5.21) never contribute to states in (5.29)

which satisfy (5.30). It is also clear that all light states, as defined in (5.15), are contained

within (5.30). It is rather interesting that the single pole regime is the natural regime to

describe perturbative states.

As demanded by (5.15), we are interested in studying the large central charge limit.

We can extract the m → ∞ limit of this product by essentially stripping off the p = 1

pole [12, 31] and setting p = 1. We find

Z∞NS(τ, z) =
∏
n≥1

(1− qn)20(1− qn−1/2y)2(1− qn−1/2y−1)2

(1− qn/2yn)24(1− qn/2y−n)24
. (5.31)

Note that this result is exact now, since in this limit all states satisfy the bound (5.30),

and hence Z∞NS counts all light BPS states in this case. To compare this to [32], we can

further specialize to y = 1; from (5.31) we have∏
n≥1

1

(1− qn)28(1− qn−1/2)44
, (5.32)

which agrees with (39) in [32].14

14A derivation of (5.31) can also be found in [49], albeit their expression has a typo.
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5.3 Half-integer spectral flow

We now turn to analyzing the spectrum of χsf
m for the half-integer spectral flow for t > 1:

this is the NS spectrum of the theory. Under ideal conditions, the half-integer spectral

flow takes the term pmq0ym in the Ramond sector, i.e. χm, to the vacuum term in the

NS sector. Unfortunately, for t > 1 the Siegel paramodular forms start with pmq0ym/t,

and hence the most polar term does not appear in the counting formula. Despite this

unappealing feature, it is worth describing the spectrum of χsf
m.

The steps we will take will mimic those for t = 1: we will flow the Siegel paramodular

form to the NS sector, and build a generating function for the states described in the single

pole regime. The spectral flow and the shift of h is identical as in (5.18), giving

h = n+
l

2
+
m

2
, lNS = l +m. (5.33)

Let us start out by considering states which are in the regime (4.63), coming from the pole

pL as described in section 4.3. The single pole condition in the NS sector reads

(1− 2t)m+ 4t2h+ 2t(1− t)lNS ≤ −2 . (5.34)

For such states their Fourier coefficients are

cpLNS(m,h, lNS) = (m−2th−(1− t)lNS)dt

(
h− lNS

2

)
dt

(
m

(
1

t
− 1

)
+ ht+ lNS

(
1− t

2

))
.

(5.35)

The formula (5.35) will be non-zero if the following three conditions are satisfied

m− 2th− (1− t)lNS ≥ 0 ,

h− lNS

2
≥ −1/t , (5.36)

m

(
1

t
− 1

)
+ ht+ lNS

(
1− t

2

)
≥ −1/t .

Let us now write the generating function for the cpLNS(n,m, l), we have

ZpLNS(τ, ρ, z) =
∑

h,lNS,m

cpLNS(n,m, l)qhylNSpm , (5.37)

where the sum is constrained by the three conditions above. To make the conditions more

manifest, we will make a change of variables and set

m′ = −(lNS(1−t)−m+2th) , r = h− lNS/2 , s = m(1/t−1)+ht+ lNS(1−t/2) , (5.38)

which then gives

ZpLNS =
∑

m′≥0,r,s≥−1/t

m′dA(r)dA(s)qts/2+m′(t−1)/2+r(1+t(t−2)/2)yts+m
′(t−1)+rt(t−2)pts+tm

′+t2r .

(5.39)
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We now perform the sum over m′ and obtain

ZpLNS =
ptq(t−1)/2yt−1

(1−ptq(t−1)/2yt−1)2

1

η(tτ/2+ tρ+ tz)24/t

1

η(τ(1+ t/2(t−2))+ t2ρ+ t(t−2)z)24/t
.

(5.40)

As noted around (5.24), ZpLNS will match with the Fourier coefficients of 1/ΦNS
k pro-

vided (5.34) is satisfied. However, (5.40) is a convenient intermediate object for studying

the large m limit.

To obtain the generating function of the symmetric product, we again need to add in

the weighted part. Before spectral flow, we have

p φk,1 = pq1/ty(1− y−1)2
∏
n≥1

(1− qn)24/t−4(1− qny)2(1− qny−1)2 . (5.41)

The spectral flow transformation reads

y → yq1/2 , p→ pq1/2y , (5.42)

which gives

p φNS
k,1 = pq1/t

∏
n≥1

(1− qn)24/t−4(1− qn−1/2y)2(1− qn−1/2y−1)2 . (5.43)

We can now obtain the final expression, which reads

ZpLNS =
1

(1− ptq(t−1)/2yt−1)2

∏
n≥1

(1− qn)24/t−4(1− qn−1/2y)2(1− qn−1/2y−1)2

(1− qtn/2ptnytn)24/t(1− q(1+t(t−2)/2)pt2yt(t−2))24/t
.

(5.44)

Note that this expression only gives the correct multiplicities for states in the regime

(1− 2t)m+ 4t2h+ 2t(1− t)lNS ≤ 2t− 1 , (5.45)

which came from (5.34) after taking into account the shift from the weighted part. As for

t = 1, the difference between (5.34) and (5.45) comes from the prefactor pq1/t in (5.41).

Similarly one can check that the other factors in (5.41) never turn a state which vio-

lates (5.34) into a state that satisfies (5.45).

It is important to note that the formula above mostly involves states with lNS > 0,

which tend to satisfy (5.45) more easily. We know in particular that the full answer for the

symmetric product orbifold needs be invariant under lNS → −lNS. The negative lNS terms

come in fact from the pole pR. For the pole pR, we gave the single residue in (4.67) which

in NS variables reads

(1− 2t)m+ 4t2h− 2t(1− t)lNS ≤ −2 . (5.46)

For such states, the degeneracies in the NS sector are

cpRNS(m,h, lNS) = (m−2th−(t−1)lNS)dt

(
h+

lNS

2

)
dt

(
m

(
1

t
− 1

)
+ ht− lNS

(
1− t

2

))
.

(5.47)
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Figure 4. Non-vanishing states in region (5.34) and (5.46) for t = 2 and m = 1000. The dashed

line is the boundary between polar and non-polar states.

Note that both the regime and the expression for the Fourier coefficients of pR are equal to

that of the pole pL but with lNS → −lNS. The non-vanishing states that are in those two

regions are plotted in figure 4 for t = 2. We may again compute the generating function

for the symmetric product and we find

ZpRNS =
1

(1− ptq(t−1)/2y−(t−1))2

∏
n≥1

(1− qn)24/t−4(1− qn−1/2y)2(1− qn−1/2y−1)2

(1− qtn/2ptny−tn)24/t(1− q(1+t(t−2)/2)pt2y−t(t−2))24/t
,

(5.48)

which is only exact in the regime

(1− 2t)m+ 4t2h− 2t(1− t)lNS ≤ 2t− 1 , (5.49)

This expression captures all states in the single pole regime for t = 2. For t > 2, we expect

there to be 2t−1 − 2 additional regimes, coming from all the poles that lie between pL and

pR. One would obtain similar expression for the generating function and could write a

piecewise single residue generating function with 2t−1 regimes.

An important point to mention is that all the states for which we have given exact

expressions have both a weight and charge that scale with m in the large m limit. This

means they are not light with respect to the lightness condition 1 given in (5.15). Since

their weight scales with m (which is proportional to c), they have Planckian energies and it

is therefore a slight abuse to name them perturbative states. However, they are still polar

states, which means they are below the black-hole threshold in AdS3. One can still think

about them as perturbative in some generalized sense: from (5.44) and (5.48) we infer that

their growth is of the form (1.2) with α = 1/2, which still falls into the very sparse criteria.
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5.4 Fractional spectral flow

We have seen that in the previous section that identifying the vacuum with the most polar

term that could be allowed by the index presents some puzzles. In such a theory, the

vacuum and all states close to it would not contribute to the elliptic genus and the first

non-zero terms are already at Planckian energies. We will now present a different physical

interpretation to χm.

The most polar terms that appear in the symmetric product for our Siegel paramodular

form are those of the form

pmq0y−m/t , (5.50)

and thus with discriminant ∆min = −m2/t2. We want to map these states to the vacuum.

To do this we spectral flow by a fractional amount. That is, we consider a spectral flow

transformation that changes the charge l in the following way

l→ l −m/t , (5.51)

that is, with η = −1/(2t). This ensures that the state with l = m/t is mapped to a state

with l = 0 as expected for the vacuum. Since the polarity is bounded from below we have

the inequality ∆ ≥ ∆min. It follows from this that also h, the power of q, is bounded by

h ≥ l2

4m
+

∆min

4m
. (5.52)

After the fractional spectral flow, the state with l = 0 gives the lowest bound on h as

expected for the vacuum. This allows us to identify the central charge as the lowest value

of 24h, that is,

c =
6m

t2
, (5.53)

where m is the index of the weak Jacobi form. This contrasts the usual c = 6m for the

Calabi-Yau sigma models we discussed in the previous subsection. Because the central

charge has changed from the Calabi-Yau case, the charge vectors we are interested in will

be different. After shifting by this vacuum energy, the spectral flow transformation is

h = n+
l

2t
+

m

2t2
, lsf = l +

m

t
. (5.54)

In terms of these new variables, the condition (4.63) to be in the pL-residue regime becomes

−m+ 4t2h ≤ −2 . (5.55)

This is particularly appealing since it is an exact analogue of the lightness condition of the

t = 1 case in (5.21). Expressing the multiplicities (4.64) in terms of our new NS variables

csf(m,h, lsf) := c(m,n, l) = c

(
m,h− lsf

2t
, lsf −

m

t

)
, (5.56)

gives

cssf(m,h, lNS) =
(m
t
− 2th

)
dt

(
h− lsf

2t

)
d̃t

(
t

(
th+

lsf
2

))
=
(m
t
− 2th

)
dt

(
h− lsf

2t

)
dt

(
th+

lsf
2

)
. (5.57)
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This expression is valid and non-zero provided

m

t
− 2th ≥ 1 ,

h− lsf
2t
≥ −1

t
,

t h+
lsf
2
≥ −1

t
. (5.58)

The generating function of the csNS is

Zssf(τ, ρ, z) =
∑
h

∑
lsf

∑
m≥2ht2+t

(m
t
− 2th

)
dt

(
h− lsf

2t

)
dt

(
th+

lsf
2

)
qhylsfpm . (5.59)

We can perform the sum over m and find

Zssf(τ, ρ, z) =
∑
h≥

∑
lsf

dt

(
h− lsf

2t

)
dt

(
th+

lsf
2

)(
qp2t2

)h
ylsf

∑
m′≥0

m′
(
pt
)m′

=
pt

(1− pt)2

∑
h≥

∑
lsf

dt

(
h− lsf

2t

)
dt

(
th+

lsf
2

)(
qp2t2

)h
ylsf

=
pt

(1− pt)2

∑
r≥−1/t

∑
s≥−1/t

d(r)d(s)
(
qp2t2

) tr+s
2t

ys−tr (5.60)

=
pt

(1− pt)2

1

η(τ/2 + t2ρ− tz)24/tη(τ/2t+ tρ+ z)24/t
. (5.61)

Again, we further multiply the result by the spectrally flowed version of pφk,1 to get the

generating function of the symmetric product. We have

p φk,1 = pq1/ty(1− y−1)2
∏
n≥1

(1− qn)24/t−4(1− qny)2(1− qny−1)2 . (5.62)

We then do the spectral flow transformation

y → yq1/2t , p→ pq1/2t2y1/t (5.63)

and obtain

p φsf
k,1 = pq1/2t+1/2t2y1/t−1(1− yq1/2t)2

∏
n≥1

(1− qn)24/t−4(1− qn+1/2ty)2(1− qn−1/2ty−1)2 .

(5.64)

In total we find

Zssf =
1

(1− pt)2

∏
n≥1

(1− qn)24/t−4(1− qn−1+1/2ty)2(1− qn−1/2ty−1)2

(1− qn/2pt2ny−tn)24/t(1− qn/2tptnyn)24/t
. (5.65)

This expression will give the exact Fourier coefficient provided we are in the regime

h ≤ m+ 2t− 1

4t2
. (5.66)

– 37 –



J
H
E
P
1
1
(
2
0
1
8
)
0
3
7

This time we find that the single pole regime is compatible with the lightness condi-

tion (5.15). We therefore have many states with sub-Planckian energies and the formula

above gives the generating function of the degeneracy of such states. Note that the m→∞
limit of this product can be obtained by extracting the coefficient of the p = 1 pole and

setting p = 1. We find

Z∞sf =
∏
n≥1

(1− qn)24/t−4(1− qn−1+1/2ty)2(1− qn−1/2ty−1)2

(1− qn/2y−tn)24/t(1− qn/2tyn)24/t
. (5.67)

For y = 1 this is simply a product of eta functions. The growth of the coefficients is thus

clearly of supergravity type, i.e. of the form (1.2) with α = 1/2, rather than Hagedorn, i.e.

of the form (1.1).

6 Supergravity interpretation

We finally turn to the supergravity interpretation of the spectrum of light states of the

symmetric product orbifold CFTs for our five examples. Our main findings in section 5

were the generating functionals of negative discriminant states that lie in the single pole

regime. As we observed above, the single pole regime captures the closest states to the

vacuum that contribute to the index, and hence it is our starting point to have a discussion

on the gravitational features.

In the following we will start with a review of the exact agreement among the KK

spectrum of type IIB supergravity on AdS3 × S3 × K3 with the spectrum of light BPS

operators in the elliptic genus of K3. This corresponds to our example with t = 1, and it

serves as a guiding principle to what we expect for our remaining four examples. For t > 1

we discuss the features and challenges to find a suitable supergravity dual to our counting

formulas based on our findings in section 5.3 and 5.4; we cover the half-integer spectral

flow in section 6.2, and the fractional spectral flow in section 6.3.

6.1 Supergravity spectrum of AdS3 × S3 × K3

Let us briefly restate the supergravity results of [31]. That is, we assume that the su-

pergravity spectrum is given by the KK reduced spectrum of type IIB supergravity on

AdS3 × S3 × K3 The spectrum decomposes into representations of the AdS supergroup

SU(1, 1|2)L×SU(1, 1|2)R. In the KK spectrum only short representations of SU(1, 1|2) ap-

pear, which we will denote by (j)S ; the short representation of both left and right movers

is denoted (j, j′)S . The character χj(q, y) = Tr(j)S (−1)F qL0yJ
3
0 of the representation (j)S

is given by [31]

χ0(q, y) = 1 ,

χ1(q, y) =
q1/2

(1− q)(y − y−1)
(y2 − y−2 − 2q1/2(y − y−1)) ,

χj(q, y) =
qj/2

(1− q)(y − y−1)
(yj+1 − y−j−1 − 2q1/2(yj − y−j) + q(yj−1 − y−j+1)) . (6.1)
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Note that χj(1, 1) = 1. Following the prescription of [31], we associate an additional degree

d(j, j′) to representations (j, j′)S of SU(1, 1|2)L×SU(1, 1|2)R, with corresponding fugacity p.

In total we write (j, j′; d)S for such a short multiplet. The spectrum is then given by [31]15

⊕
m̂≥0

⊕
i,j

hi,j(m̂+ i, m̂+ j; m̂+ 1) (6.2)

where hi,j are the Hodge numbers of K3, that is h0,0 = h2,0 = h0,2 = h2,2 = 1 and h1,1 = 20.

We want to count states that correspond to |anything〉L ⊗ |chiral primary〉R, and for

this we set q̄ = ȳ = 1 as we count the short representations (j, j′; d)S . To capture these

states, it is convenient to first introduce a single-particle partition function s(p, q, y) for

the supergravity spectrum, which reads

s(p, q, y) =
∑
m,n,l

csugra(m,n, l)pmqnyl

=
∑
m≥0

∑
i,j

hi,jχm+i(q, y)pm+1 (6.3)

=
1

(1− q)(y − y−1)

∑
i,j

hi,jpi+1qi/2

×

(
(yi+1 − 2q1/2yi + qyi−1)

1− pq1/2y
− (y−i−1 − 2q1/2y−i + qy−i+1)

1− pq1/2y−1

)

From this we can in principle extract the degeneracies of the single particle configurations,

csugra(m,n, l), but we will refrain from doing so for the moment. Instead we want to look

at the multi-particle spectrum, that is the second quantization of this. The generating

function of this is the usual DMVV formula [44],

Zsugra =
∏

m>0,n,l

1

(1− pmqnyl)csugra(m,n,l)
. (6.4)

An important point here is that the csugra(m,n, l) are essentially constant: they are

bounded since the coefficients in χj are of order 1. This means that (6.4) is essentially

a product of Dedekind-eta functions, which means that Zsugra has growth of the form (1.2)

rather than Hagedorn growth.

Let us use our result in (5.29) for ZsNS to recover the central result of [31], that is that

ZNS agrees with Zsugra provided h ≤ (m+1)/4, which is exactly our condition in (5.30). The

proof in [31] involved to observe explicitly that even though the first quantized coefficents

csugra and cNS do not agree, their ‘first moments’ do,∑
m

csugra(m,n, l) =
∑
m

cNS(m,n, l) ,∑
m

mcsugra(m,n, l) =
∑
m

mcNS(m,n, l) , (6.5)

15Note that there is a typo in (2.8) and also (5.9) in [31].
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which is enough to establish agreement of the second quantized partition function for light

states. The advantage of (5.29) is that we can directly read off the single residue version

of cNS,

csNS(2, 0, 0) = 2 , cscft(0, n ≥ 1, 0) = −20 ,

csNS(0, n− 1/2,±1) = −2 , csNS(n, n/2,±n) = 24 . (6.6)

These then immediately agree with the sugra sums in (6.5).

6.2 Compactifications of Calabi-Yau manifolds

We now turn to our expressions (5.44) and (5.48) for t > 1, which are the generating

functionals that represent the lowest states appearing in the NS sector.16 At first sight

they appear quite promising, as they give supergravity type growth just as for the K3

case. However, an important difference is that none of the states are perturbative: they do

not obey the inequality h ≤ (m + 1)/4 (which we used for t = 1) and they do not satisfy

the lightness condition (5.15). Still, the fact that their growth is not Hagedorn suggests

that there may be a supergravity interpretation.

There is of course an obvious generalization of (6.2): we can try to formally replace

K3 by some higher dimensional Calabi-Yau manifold M , and use its Hodge numbers hi,j .

On the CFT side this is not an issue, since in that case we get a well-defined symmetric

orbifold of a higher dimensional Calabi-Yau sigma-model. On the gravitational side it is

far from clear that this replacement will make sense physically. Formally we get the KK

reduced spectrum on AdS3×S3×M , even though we have no right to expect a consistent

supergravity theory on such a background. Still let us pursue this interpretation for the

short time being.

The idea is to take (6.2) and (6.3) with the hodge numbers of M : this will lead to

mathematically well-defined expressions for csugra. One could therefore hope to find Hodge

numbers hi,j which give csugra that match cNS extracted from, e.g. , the t = 2 SMF. Note

that s(p, q, y) = p
∑

j h
0,j + O(p) + O(q). This means that the term p1q0y0 of Zsugra

has coefficient
∑

j h
0,j . On the other hand it is straightforward to check that this state

satisfies (5.45), but that there is no such term in (5.44), which implies that
∑

j h
0,j = 0.

There are however many non-vanishing terms in (5.44) such as (m = 4, h = 1, lNS = 2)

which in Zsugra are proportional to
∑

j h
0,j , which obviously contradicts our attempted

matching. Maybe not surprisingly, this indicates that this interpretation is too naive.

In this argument, we associated the same degree d(j, j′) as in [31] to include p in Zsugra

for any Calabi-Yau manifold. It may be possible to counter our negative result in this

subsection by introducing a different grading in p to the supergravity spectrum. We don’t

have evidence that this will lead to a positive outcome, but we have not explored it in detail.

Another alternative is to consider the KK spectrum of backgrounds of the form

AdS3 × S2 ×M . This approach will also not lead to a successful path for cases where

16As we mentioned round (5.49) there are additional states in this sector that we have omitted for sake

of simplicity. These omitted states behave in a similar fashion as (5.44) and (5.48) for the purpose of the

arguments in this section: their energies are Planckian.
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we have a string/M-theory realisation. For example, the supergravity elliptic genera was

studied in [50, 51], and their results leads to a growth of the perturbative spectrum of the

form (1.2) with α = 2/3. For better or worse, our examples have a significantly slower

growth regardless of the spectral flow sector.

6.3 Fractional spectral flow and orbifolds of AdS3

Let us now turn to the interpretation of the generating functionals built by a fractional

spectral flow: the generating functional (5.65). In this case, the counting formula captures

perturbative states, and we have computed their degeneracy in the infinite central charge

limit in (5.67). We would like to give a supergravity interpretation to these states. There

are several odd features of the formula (5.67) that makes challenging a bulk interpretation

(and as a matter of fact, a CFT interpretation as well). First, the weights are no longer

half-integer but rather fractionally quantized. Second, the formula is not invariant under

lsf → −lsf . We were not able to find a satisfying candidate for a gravity dual based solely

on the formula (5.67), which we leave for future work. However, there are some directions

that could unveil the putative gravity dual.

First, note that fractional spectral flows have been studied before in the context of

orbifolds of AdS3 [52–55]. From the worldsheet point of view the orbifold introduces twisted

sectors that can be identified with the fractional spectral flow sectors [55]. In this context,

is possible that the dual we are looking for is a singular Zt orbifold of AdS, in which case

fractional quantization and asymmetry between lsf and −lsf would be expected.17 At the

moment we do not have a candidate gravitational theory. As we discussed in section 5.4,

the vacuum of the theory is in this fractional sector and we are not aware of theories with

an orbifold of AdS3 where this is the case. We hope that as new developments occur related

to string compactifications of AdS3, we will have more insight if this is a viable route. See

for example [56, 57] and references within.

Second, one could try to change variables such that the weights are no longer fractional.

In some sense, this means we were using the wrong variable and one should simply replace

τ by tτ . Although this takes care of the fractional modding, it cannot be accomplished

without changing the modular properties of the elliptic genus which we would need to

justify. A similar type of scenario occured in [58], where the authors discuss the orbifolds

AdS3×(S3×T 4)/G. In that case, it was the charges that were not appropriately quantized

and so the chemical potential z needed to be unwrapped, that is, rescaled. One could

imagine a situation where something of the sort needs to happen for τ . This would mean

that the elliptic genus would be related to a weak Jacobi form of a subgroup of SL(2,Z)

by an unwrapping procedure. The work of [58] suggests that rescaling τ and orbifolding

AdS3 may be canonically related. It would be interesting to investigate this further.

17It is easy to show that a fractional spectral flow transformation acting on a parity invariant Jacobi form

leads to an asymmetric spectrum.
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7 Discussion

7.1 Results

In this paper, we presented a constructive algorithm to compute negative discriminant

Fourier coefficients of the reciprocal of Siegel paramodular forms, 1/Φk, where Φk is

obtained from an exponential lift of a weak Jacobi form. We focused on cases where

1/Φk had second order poles dictated only by the Humbert surface H1(1). This gave five

cases: the well-known Igusa cusp form Φ10, along with four other examples. We could

then obtain the Fourier coefficients of negative discriminant states by a simple residue

prescription around the poles of 1/Φk; these residues are controlled in an elegant fashion

by Dedekind-eta functions.

This methodology was then used to capture Fourier coefficients of symmetric product

orbifold CFTs, with an emphasis on the limit of large central charge. The expressions were

particularly simple for values of the charges where only a single pole contributed. We were

particularly interested in sparseness or very sparseness of the Fourier coefficients, which

indicates either a stringy dual or a more conventional supergravity dual. In our examples

the growth was always compatible with supergravity. This is a consequence of the form of

the residues that capture the degeneracies: a finite number of Dedekind-eta functions have

a sub-Hagedorn growth for large values of h, which leads to (1.2) with α = 1/2.

To give a proper supergravity interpretation to the Fourier coefficients, we had to

perform a spectral flow transformation. This step is important since the AdS vacuum

as well as the perturbative supergravity states are usually the lightest states in the NS

sector, whereas the Fourier coefficients of 1/Φk and Z come from a Ramond sector elliptic

genus. We suggested two choices for the spectral flow transformation, corresponding to two

different interpretations of the central charge of the CFT. We discussed both possibilities,

finding that each case had peculiarities.

In the standard half-integer spectral flow, we found that the contribution of all per-

turbative states cancelled and we were only left with states who have Planckian energy.

The growth of such states is still compatible with supergravity although it is a slight abuse

to name them perturbative states since their energy is Planckian. We also discussed a

possible fractional spectral flow, finding that in that case there is a well-defined low energy

perturbative spectrum. However, the states found this way were not charge conjugation

invariant and had fractional weights.

Finally, we discussed possible supergravity interpretations for either scenarios. For the

four new examples, we tried to compare the generating functions we found to a putative

supergravity on AdS3×S3×M , for M a Calabi-Yau manifold, and could not find a proper

matching. We also discussed how the fractional spectral flows could correspond to orbifolds

of AdS3, but left a more precise investigation of this idea for future work. We now discuss

some future directions that would be interesting to explore.
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7.2 Outlook

Supergravity and CFT interpretation

The biggest challenge in giving a physical interpretation to the counting formulas we derived

is that we know neither the CFT nor the gravity theory. We have a family of weak Jacobi

forms that we wish to interpret as the elliptic genera of a family of CFTs CN . We then

want to find a supergravity theory that is dual to CN and weakly coupled in the large

N limit. With only a counting formula in hand, it is quite challenging to proceed since

different theories can have the same elliptic genera.

It is perhaps easier to start with the CFT side, since one can ask which two dimensional

CFTs admit the weak Jacobi forms as their elliptic genera. A natural interpretation we

discussed is to consider the elliptic genus of a higher dimensional Calabi-Yau Sigma model

M . The family of CFTs in that case is simply

CN ≡
M⊗N

SN
. (7.1)

We already saw that the issue with this interpretation is that the contribution of the vacuum

and all light states vanish. We find a supergravity type growth, but it is only applicable

for states with Planckian energy which is usually beyond the strict supergravity regime.

There is another issue with this interpretation. As discussed in the introduction, we

hope to discover a family of CFTs that are given by the symmetric product orbifolds of

a seed theory C, but only at weak coupling. We are hoping that these theories admit

an exactly marginal deformation that lifts all non-protected states and leaves us with a

supergravity theory at strong coupling. The elliptic genus captures only the supergravity

states since it is protected and hence invariant under the marginal deformation. The issue

is that the exactly marginal operator must couple the N copies and is therefore necessarily

in a twisted sector of (7.1). The lightest state of all non-trivial twisted sector is the ground

state of the twist-2 sector with weights

(h, h̄) =
( c

16
,
c̄

16

)
. (7.2)

For a Calabi-Yau d-fold, we have c = c̄ = 3d. For d > 5, this gives weights that are greater

than one and there is therefore no hope of finding any exactly marginal operator. With

this interpretation, there would still be hope to find exactly marginal deformations for

some of our examples but not for all of them (for example not for t = 4). Furthermore,

a gravity dual of the type AdS3 × CYd simply doesn’t make sense in the framework of

supergravity for d > 4.

For the two reasons explained above, it seems appealing to look for a different CFT

interpretation. This is what led us to consider fractional spectral flows. The problem is that

we don’t yet have candidate CFTs with the appropriate central charges. It would be very

interesting to build a candidate CFT, and we hope to return to this question in future work.

One could also try to give a direct supergravity interpretation to the counting formulas.

Perhaps the peculiar form of the counting formulas (in particular the fractional weights and

the unbalance between opposite charges) can help in identifying the relevant gravitational
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theory. We were unfortunately unable to do so for the moment. If it could be achieved, it

would be very interesting to look for black hole solutions of those theories and investigate

whether the black hole entropy is correctly accounted for by the method described in [21].

This would provide a highly non-trivial check for the new duality.

Finally, one interesting feature we noticed is that states satisfying the single pole

regime introduced in section 4.3 are the relevant negative discriminant states to discuss

the lightness condition (5.15) for our examples. These negative discriminant states were

also deduced in [43] by exploring the black hole residue formula and the Rademacher

expansion for CHL models. It would be interesting to complement these two methods.

Towards a complete classification of symmetric products

In this paper, we only considered generating functionals whose poles were described by the

Humbert surface H1(1). It would be very interesting to investigate the growth of Fourier

coefficients for other exponential lifts. A generic weak Jacobi form will have other Humbert

surfaces as well and one could hope to give a complete classification of the growth of

symmetric products using our methodology. In principle, our method should be applicable

to compute Fourier coefficients of other instances of 1/Φk obtained by an exponential lift.

There would be multiple tessellations of the Siegel upper half plane, each corresponding to

a Humbert surface. One would need to carefully track the contribution of the residues as

one crosses each pole but this can in principle be done.

The technical difficulty will be the form of the residues for other Humbert surfaces.

The surface H1(1) always enables the mapping to the pole z = 0 where the residue is

simple, namely a product of two Dedekind-eta functions. For other surfaces, it will be more

complicated. It is important to note that the form of the residues will dictate whether the

growth is supergravity like or Hagedorn like. It would be very interesting to investigate

this further. We would like to emphasize that there is hope for a complete classification

here. At the end of the day, the SMFs are specified by very few elements: the polar terms

of the seed theory. Each of these will give rise to a particular Humbert surface and all that

is left to do is understand the residue at those poles. With this in hand, one can hope to

find the full set of symmetric products whose duals are compatible with a supergravity.

Finally, note that one can also add zeros to the SMFs rather than poles. An example

of this is the weak Jacobi form

φ̃0,2(τ, z) ≡ − 1

24
φ2

0,1(τ, z)− 23

24
φ2
−2,1(τ, z)E4(τ)

= −y−2 + 3y−1 − 10 + 3y − y2 + . . . (7.3)

This weak Jacobi form will lift to a SMF with poles at H1(1) of multiplicity two, but it will

also have zeros along the Humbert surface H4(2). It would be interesting to understand

the effect of the zeros as well.

To conclude, there are a finite number of possibilities (for fixed index) that one needs

to explore and one can then formulate a complete classification of the growth of Fourier

coefficients in symmetric products. It would be very interesting to perform this task and

understand whether the examples considered in this paper are special from that point of
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view. Furthermore, it is important to note that the residues are also important in the

context of logarithmic corrections to black hole entropy [21]. They will also determine how

far the Cardy regime can be extended and are therefore of particular relevance. We hope

to investigate this point further in the future.
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A Review of the black hole contour

In this appendix we briefly discuss the contour used for positive discriminant states, i.e.

∆ > 0, which we loosely associate with black holes in the gravitational side. This is a

succinct overview of the detailed discussion in [59], generalized to our five examples here.

This review is useful to contrast the choices and techniques in this case relative to those

states with negative discriminant studied in the main text.

First, we recall that the Siegel upper half plane is given by

Imτ > 0 , Imρ > 0 , Imτ Imρ− (Imz)2 > 0 . (A.1)

As for ∆ < 0 states, for positive discriminant we also need to pick what expansion we

are doing in y. We will expand around y = 0 and select l < 0. The convergence of the

expansion then implies

Imz > 0 . (A.2)

The basic characteristic of the contour is to set

Imτ � 1 , Imρ� 1 , Imz � 1 , Imτ Imρ− (Imz)2 � 1 , (A.3)

with the range for the real parts being

0 ≤ Reτ,Reρ,Rez < 1 . (A.4)

Note that this is not a closed contour in H2. The strategy explained in [59] is to close the

contour by adding a segment along the same real parts but with

Imτ ∼ 1 , Imρ ∼ 1 , Imz ∼ 1 (A.5)
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This segment will give a small contribution compared to the residue picked up at the poles

inside where the contribution is exponentially big. For example, when the only divisor is

the Humbert surface H1(1), the dominant pole was given by

t(τρ− z2) + z = 0 , (A.6)

which gives a contribution [21]

c(∆) ≈ eπ
√

∆/t , (A.7)

which is much bigger than the contribution from the surface that closes the contour.

B A comment on symmetric products of very special weak Jacobi-Forms

In this section, we review the difference between the weak Jacobi forms that lead to the

generating functions 1/Φk whose only pole is H1(1) and those called very special weak

Jacobi forms in [32].

The NS partition function of a very special weak Jacobi forms at large c is chacterized

by the fact that its “perturbative” states, by which here we mean states below black hole

formation, have Planckian energy. This is what defines them to be special. In other words,

in the NS sector we have

φNS(q, y) = q−
m
4

+a + . . . , (B.1)

where a is O(m/4). Symmetric products of such functions where shown in [32] to give

rise to a sub-Hagedorn growth of Fourier coefficients upon specialization to z = 0, and

therefore amenable to a possible supergravity interpretation. Eventhough our four new

examples have similar properties, we show in this section that the conclusions of [32] do

not apply here since our four examples are not of the very special type.

The weak Jacobi form under study, which has index t, has a most negative discriminant

∆min = −1 , (B.2)

in contrast with the usual weak Jacobi forms which allow for ∆min = −t2. As usual, we

can write the Jacobi form in a theta function expansion as

φw,t(τ, z) =
∑

hµ(τ)θµ,t(τ, z) , (B.3)

where w is the weight which is zero in this case, and

θµ,t(τ, z) =
∑

l=µmod(2t)

q
l2

4t yl , (B.4)

is the Jacobi-theta function. On the other hand,

hµ(τ) = q−
µ2

4t

∞∑
n=0

dµ(n)qn , (B.5)

is a vector-valued modular form. More details about the theta-function decomposition can

be found in [33].
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For each sector µ, the terms in hµ(τ) with negative powers of q define the polar terms,

that is, all the terms for which −µ2/4t+ n is negative. This means that in each sector µ,

the polarities must obey the condition

0 > −µ
2

4t
+ n ≥ − 1

4t
, n ≥ 0 , (B.6)

because of (B.2). Consider the sector with µ = t. By (B.6) we have the following constraint

on n
t

4
> n ≥ t

4
− 1

4t
. (B.7)

We want to show that there is no solution for n provided that t > 1. To do this, write

t = p + 4q with both p, q positive integers and 0 ≤ p < 4. Plugging this in the inequality

above, we find

q +
p

4
> n ≥ q +

p

4
− 1

4t
. (B.8)

For p > 0 we always have 1 > p/4 − 1/4t > 0 and so there is no integer in the interval

[q + p/4− 1/4t, q + p/4[. And similarly for p = 0 because the interval is open on the right

side. Therefore, we conclude that there is no polar term in the sector µ = t.

After a half spectral flow transformation the theta functions mix between themselves,

but the polarities are preserved. In the NS sector we still have the decomposition

φNS0,t (τ, z) =
∑
µ

h̃µ(τ)θµ+t,t(τ, z) (B.9)

but now the sector µ = t is mapped to the sector µ = 2t ∼ 0. Since there was no polar

term in this sector, we see that the NS sector does not contain a vacuum.

We can also show that all terms in (B.9) have non-negative powers of q. Writing h̃µ(τ)

as

h̃µ(τ) = q−
µ2

4t

∞∑
n=0

gµ(n)qn (B.10)

we need to show that

n− µ2

4t
+

(µ− t)2

4t
≥ 0, n ≥ 0 (B.11)

where (µ− t)2/4t comes from the theta function, and µ ≥ 0 and n− µ2/4t < 0. The case

with µ = t was already analysed. Since the polarity always obeys the lower bound −1/4t

we must have

n− µ2

4t
+

(µ− t)2

4t
≥ − 1

4t
+

(µ− t)2

4t
. (B.12)

But (µ− t)2 ≥ 1, and thus the r.h.s. is always non-negative as we wanted to show.

This exercise therefore implies that if we set y = 1 in φNS0,t (q, y) we obtain a modular

form with Fourier expansion of only positive powers of q, that is, it must be a cusp form of

zero weight. But this is not possible because there is no modular invariant cusp form and

so φNS0,t (q, y = 1) must vanish identically. The very special Jacobi forms studied in [32] are

clearly not of this type.
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C The elliptic genus of a Calabi-Yau

Take a non-linear sigma-model of some Calabi-Yau d-fold M . Its elliptic genus is then given

by some weak Jacobi form ϕ(τ, z). What does the condition of its exponential lift only

having divisors at H1(1) mean? For this let us discuss simply the contribution of 1/2-BPS

primary states to the elliptic genus, that is states that are in short representations for both

the left- and rightmovers. Their multiplicities are given by the Hodge numbers hi,j . For a

CY d-fold, the N = 2 superconformal algebra has central charge 3d. In the Ramond sector

it has d+1 short representations of U(1) charge Q = 0, 1, . . . , d, whose characters are given

by χQ(τ, z). Their Witten index is given by χQ(τ, 0) = (−1)Q. In the NS sector these flow

to the chiral primaries. The 1/2-BPS contribution to the RR partition function is given by

Z1/2(τ, τ̄) =

d∑
i,j=0

hi,jχi(τ, z)χj(τ̄ , z̄) . (C.1)

To get the contribution to the elliptic genus, we specialize z̄ = 0 to get

Z1/2(τ, z) =

d∑
i=0

χi(τ, z)

d∑
j=0

hi,j(−1)j . (C.2)

We see that depending on the Hodge numbers, there can indeed be cancellations, such

that not all left-moving short representations contribute to the elliptic genus. Often for a

‘proper’ Calabi-Yau we assume that

h0,0 = h0,d = 1 ,

h0,i = 0 , for i = 1, . . . , d− 1 . (C.3)

This is equivalent to assuming that the theory has no enhanced symmetry, i.e. that its sym-

metry algebra is given by the N = 2 superconformal algebra together with the holomorphic

(0, d)-form, which together form the Odake algebra. In such cases we see that χ0(τ, z) con-

tributes with multiplicity 1 + (−1)d, which in particular means that the vacuum does not

contribute for odd Calabi-Yaus, as we saw already for CY 3-folds.

If h0,j > 0, then that means that there is an additional spin j/2 symmetry in the

theory. This is the case if the holonomy group is not SU(d), but a strict subgroup thereof.

From (C.2) it is clear that if h0,i does not vanish there may be additional cancellations:

a familiar example is T 4, where the contribution of the vacuum and the (0, 2) form is

cancelled by the fermions. (In fact, the entire elliptic genus vanishes in that case.)

This shows that it is indeed possible that the vacuum does not appear in the elliptic

genus. This happens generically for odd Calabi-Yaus, but for even Calabi-Yaus it can only

happen if the theory has an enhanced symmetry.
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