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We initiate a nonperturbative study of anisotropic, nonconformal, and confining gauge theories that are
holographically realized in gravity by generic Einstein-axion-dilaton systems. In the vacuum, our solutions
describe renormalization group flows from a conformal field theory in the UV to generic scaling solutions
in the IR with generic hyperscaling violation and dynamical exponents θ and z. We formulate a
generalization of the holographic c theorem to the anisotropic case. At finite temperature, we discover that
the anisotropic deformation reduces the confinement-deconfinement phase transition temperature
suggesting a possible alternative explanation of inverse magnetic catalysis solely based on anisotropy.
We also study transport and diffusion properties in anisotropic theories and observe, in particular, that the
butterfly velocity that characterizes both diffusion and growth of chaos transverse to the anisotropic
direction saturates a constant value in the IR which can exceed the bound given by the conformal value.
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Introduction.—Quantum many body systems in three
spatial dimensions with reduced rotational symmetry have
important realizations in nature such as the quark-gluon
plasma produced in noncentral heavy ion collisions, or
condensed matter systems described by anisotropic spin
models, e.g., the anisotropic 3D Ising model. The rotational
symmetry in such systems can be broken by application of
an external source such as an electric or magnetic field in
one direction as in the various condensed matter experi-
ments, by the geometry of the setting as in noncentral heavy
ion collisions, or by intrinsic properties of the interaction
as in the case of the anisotropic spin models or the Weyl
semimetals [1].
Gauge-gravity duality [2] provides a natural avenue

to study anisotropic quantum field theories (QFTs) in
the presence of strong interactions. Most of the early
gauge-gravity literature on anisotropic systems focuses
either on scale-invariant systems or nonconformal but
charged plasmas. Only the following three special cases
have been studied. (i) Initially conformal invariant systems
where the isotropy and conformal symmetry is broken by
the same mechanism, for example, by a source that depends
on a spatial direction as in [3–11]. (ii) Lifshitz invariant

systems with anisotropy as in [12]. (iii) Nonconformal
charged plasmas where the anisotropy is introduced by an
external magnetic field in one spatial direction as in [13–15].
In this Letter, we initiate a study of uncharged, non-

conformal and anisotropic systems with strong interactions
by means of the gauge-gravity duality. In particular, we
consider a nonconformal, gapped and confining 4D SUðNÞ
gauge theory in the large-N limit, obtained by deforming a
strongly interacting fixed point in the UV by means of a
scalar operator O with scaling dimension Δ. We introduce
the anisotropy by means of another operator Õ that we
choose to be marginal, with a coupling that depends on one
of the spatial coordinates. Then, we study the influence
of anisotropy on the renormalization group (RG) flow at
zero temperature and on the thermodynamic observables
and transport coefficients at finite temperature. The gauge
theory is realized in holography by the Einstein-axion-
dilaton theory in five dimensions with a nontrivial potential
for the dilaton. This potential can be chosen such that
the vacuum state confines color, and there exists a phase
transition at finite Tc above which a deconfined plasma
state arises. We study this class of nonconformal, confining,
anisotropic, and strongly interacting theories holographi-
cally for a specific choice of the potentials; however, our
qualitative results—which we discuss below—are indepen-
dent of these choices and hold for the entire class.
The vacuum state of the theory is studied in the section

titled “Scaling solutions in the IR” and exhibits interesting
qualitative features. In particular, we find that, for marginal
O, that is Δ ¼ 4, we find a nontrivial RG flow from the
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conformal fixed point in the UV to a Lifshitz-like hyper-
scaling violating theory in the IR with a range of possible
dynamical and hyperscaling violating exponents z and θ
whose values are determined by the choice of potentials in
the dual gravitational theory [16]. These models, therefore,
open new ground for phenomenological applications in
strongly interacting plasma physics.
An especially interesting question concerns how the

confinement-deconfinement phase transition is affected
by anisotropy. We study the phase diagram in the
“Thermodynamics” section and discover that the anisotropic
deformation decreases the confinement-deconfinement tran-
sition temperature. This is in accord with the recent lattice
QCD studies [17–20] that show both chiral symmetry
restoration and deconfinement occur at lower temperatures
in the presence of an external magnetic field, a phenomenon
coined “inverse magnetic catalysis” (IMC). Note that mag-
netic field also breaks isotropy in a similar way as we do in
our uncharged plasma. Yet, our finding brings a new twist in
this story indicating that IMC may occur even in uncharged
plasmas.
Transport properties also exhibit surprising qualitative

features. In particular, as we show in the “Transport and
diffusion” section, the butterfly velocity violates the
“universal bound” conjectured in [21,22].
Holographic setup.—The gravitational theory dual to our

anisotropic field theory is defined by the Einstein-axion-
dilaton action with generic functions V and Z that deter-
mine the potential energy for the dilaton field ϕ and its
coupling to the axion field χ

S ¼ 1

2κ2

Z
d5x

ffiffiffiffiffiffi
−g

p ½Rþ LM�; ð1Þ

LM ¼ −
1

2
ð∂ϕÞ2 þ VðϕÞ − 1

2
ZðϕÞð∂χÞ2; ð2Þ

where κ2 ∼ 1=N2. Crucially, a linear axion ansatz auto-
matically satisfies the equations of motion and breaks
isotropy while preserving translation invariance

ds2 ¼ e2AðrÞ
�
−fðrÞdt2 þ dx⃗2⊥ þ e2hðrÞdx23 þ

dr2

fðrÞ
�
; ð3Þ

ϕ ¼ ϕðrÞ; χ ¼ ax3: ð4Þ

The solution is asymptotically anti–de Sitter (AdS) near
the boundary r → 0 where A → − log r, f → 1, h → 0, and
ϕ → jr4−Δ [23]. This solution generally corresponds to a
nonconformal gauge theory whose IR dynamics is domi-
nated by the stress tensor Tμν dual to the metric and a scalar
operatorO ∼ TrF2, similar to the scalar glueball operator in
QCD (when it is marginal), here, dual to the field ϕ.
We call the source of this operator j. The theory is,
in turn, deformed by a space-dependent theta term

Õ ∼ θðx3ÞTrF ∧ F dual to the field χ. The 5D Einstein-
axion-dilaton theory can be realized in terms of D3/D7-
branes in IIB string theory when V ¼ 12 and Z ¼ e2ϕ

[3–5]. In this case, the underlying field theory is conformal.
However, we are interested in nonconformal and, in
particular, confining gauge theories that follow from a
more generic choice of the potentials V and Z [24,25]. A
choice of the form [26,27]

VðϕÞ ¼ 12 coshðσϕÞ þ bϕ2; ZðϕÞ ¼ e2γϕ; ð5Þ

with b≡ f½Δð4 − ΔÞ�=2g − 6σ2, corresponds to a gauge
theory with a scalar operator of scaling dimension Δ that
confines color in the vacuum state for σ ≥

ffiffiffiffiffiffiffiffi
2=3

p
[25].

We observe that the holographic version of the c theorem
[28] in QFT (or, rather, the “a theorem” in 4D [29]) has a
natural generalization in the anisotropic holographic
theories. Introducing the domain-wall coordinate du ¼
exp½AðrÞ�dr we find that

d
du

��
dA
du

þ 1

3

dh
du

�
eh=3

�
≤ 0; ð6Þ

which follows from Einstein’s equations. Imposing the bulk
null energy condition recovers (6) but, also, leads to an
additional monotonicity constraint

d
du

�
dh
du

ehþ4A

�
≤ 0; ð7Þ

which can be used to define a second independent central
charge for anisotropic theories (see, also, [30–32]). Both
expressions inside the brackets of (6) and (7) are mono-
tonically decreasing and, while the first one reduces
directly to dA=du in the isotropic limit h → 0, any linear
combination between them may give the holographic
analog of the a function [28].
Scaling solutions in the IR.—The RG energy scale of the

dual QFT in the ground state is determined by the scale
factor A of the metric (3) [33], which exhibits a nontrivial
dependence on the holographic coordinate r when the
potentials V and Z are not constant. The IR region r → ∞
corresponds to small values of expðAÞ where the dilaton
grows [34] monotonically [24]. In this limit, V ∼ 6eσϕ for
σ ≥ 0. We can derive the following scaling solutions in the
IR limit:

ds2 ¼ L̃2ðarÞ2θ=3z
�
−dt2 þ dx⃗2⊥ þ dr2

a2r2
þ c1dx23
ðarÞ2=z

�
; ð8Þ

ϕ ¼ c2 logðarÞ þ ϕ0: ð9Þ

Here, L̃, c1, and c2 are constants depending on z and θ,
which are given in terms of γ and σ as

PHYSICAL REVIEW LETTERS 121, 121601 (2018)

121601-2



z ¼ 4γ2 − 3σ2 þ 2

2γð2γ − 3σÞ ; θ ¼ 3σ

2γ
: ð10Þ

These constants also depend on the free parameter ϕ0

which is set by the value of the source j. For θ ¼ 0, the
solution exhibits a Lifshitz-like scaling

t→ λt; x⃗⊥→ λx⃗⊥; r→ λr; x3→ λ1=zx3: ð11Þ

For θ ≠ 0, the metric (8) has the hyperscaling violation
property and transforms covariantly under (11) as

ds → λθ=3zds: ð12Þ

When the IR theory is connected to a heat bath, one obtains
the finite temperature version of the scaling metric, which is
now a black brane with blackening factor

fðrÞ ¼ 1 −
�

r
rH

�
3þð1−θÞ=z

; ð13Þ

where rH is the location of the horizon. The black brane
metric is obtained by multiplying the dt2 term by f and the
dr2 term by 1=f in (8). The entropy density of the plasma in
the IR is obtained from the area of the horizon

s ¼ cIRa−2−½ð1−θÞ=z�T2þ½ð1−θÞ=z�=κ2; ð14Þ

where cIR is a constant, and T is the Hawking temperature

T ¼ j3þ ð1 − θÞ=zj
4πrH

: ð15Þ

Notice that the values z and θ are constrained by the bulk
null energy condition and the positivity of the specific heat
CV ¼ d log s=d logT as follows:

ðz − 1Þð1þ 3z − θÞ ≥ 0; ð16Þ

θ2 þ 3zð1 − θÞ − 3 ≥ 0; ð17Þ

2zþ 1 − θ ≥ 0. ð18Þ

Combining these inequalities, we observe that, for z ≥ 1,

the value of θ is bounded from above θ ≤ θð−Þbound, while for

z ≤ 0, it is bounded from below θ ≥ θðþÞ
bound, with

θð�Þ
bound ¼

1

2

	
3z�

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 4zþ 3z2

p 

: ð19Þ

The range 0 < z < 1 is forbidden altogether. Thus, one
derives interesting universal bounds on the IR scaling
behavior of strongly interacting anisotropic plasmas from
holography.

Thermodynamics.—Questions pertaining to thermal
equilibrium are answered by working out the free energy
in the canonical ensemble, which, in the holographic
description equals the Euclidean gravitational action (1)
appended by the Gibbons-Hawking and counterterm
actions, evaluated on shell. The counterterms in a generic
Einstein-axion-dilaton theory were worked out in detail in
[36] whose results we use but do not show here.
Alternatively, one can calculate the background subtracted
free energy directly by integrating the first law of thermo-
dynamics dF ¼ −sdT for j and a held fixed [37].
In Fig. 1, we plot numerical results for the free energy as

a function of T for a particular confining theory. We will
divide the analysis in two cases, small a=j and large a=j.
For small a up to a=j ≈ 2.08, there are three competing
phases. First, there is the confining ground state heated up
to temperature T. The corresponding gravitational back-
ground is obtained from the black brane solution (3) by
sending the mass to zero. This is the so-called thermal gas
solution and is our reference background for the free energy
computation. More specifically, the free energy of this
phase is OðN0Þ, therefore, it corresponds to the horizontal
axis F ¼ 0. Second, we observe two phases of free energy
OðN2Þ. These are the deconfined, plasma phases corre-
sponding to black brane solutions (3) with a nontrivial
blackening factor. One of these solutions, the “small black
brane” (upper branches in Fig. 1 for a=j ¼ 0, 1) is always
subdominant in the ensemble and can be ignored.
Moreover, this phase is thermodynamically unstable since
CV ∝ −d2F=dT2 < 0, as can be read from the figure. The
“big black brane” solution (lower branches in Fig. 1 for
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FIG. 1. Free energy as a function of T for different values of the
anisotropy parameter a=j ¼ 0, 1, 3 (black, blue, and red curves,
respectively). The parameters σ ¼ ffiffiffiffiffiffiffiffi

2=3
p þ 1=10, γ ¼ 1=5, Δ ¼

3 were chosen such that the undeformed theory is confining. The
horizontal axis corresponds to the confined state while all other
branches correspond to deconfined phases. The insets show
details of an additional phase transition for large a, as discussed
in the text.
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a=j ¼ 0, 1) dominates the ensemble for T > Tc. Here, Tc is
given by the point where the curves cross F ¼ 0. Therefore,
the system is in the deconfined phase above the critical
temperature Tc. This plasma phase is denoted as “plasma I”
in Fig. 2. Below Tc the system is in the confined phase.
This phase transition is of confinement-deconfinement
type, and it is of first order. All of this is in accordance
with improved holographic QCD [38,39].
For a=j > 2.08 the phase structure becomes more com-

plicated. As shown in Fig. 1 for the choice a=j ¼ 3, now,
there exist four different black brane branches with free
energy OðN2Þ, instead of the aforementioned two solutions,
the small and the big black branes for a=j < 2.08. It is
apparent from Fig. 1 that two of them have positive specific
heat, analog of the big black brane solution in the small a
case. These two solutions are denoted as plasma I and
plasma II in Fig. 2. There are two more black brane solutions
analog of the small black brane solution in the small a case.
However, these are always subdominant and thermodynami-
cally unstable; hence, we can ignore them. As shown in
Fig. 2, there are now two phase transitions. There is the
confinement-deconfinement type first order transition, analo-
gous to the small a case, and there is a new first order
transition between the two plasma phases at a higher critical
temperature. Moreover, all of these dominant phases meet at
a triple point at a ≈ 2.08, T=j ≈ 0.36.
We observe that the confinement-deconfinement tran-

sition temperature Tc decreases with increasing anisotropy
a as shown in Fig. 2. This is interesting in the context of
inverse magnetic catalysis [17–20]. It has been observed
that the chiral symmetry breaking temperature decreases
with an increasing degree of anisotropy, induced by an
external magnetic field B. Our finding suggests an alter-
native mechanism based only on anisotropy, as explained in
the Discussion.
Transport and Diffusion.—Holography is instrumental

in the study of dissipative properties of the quark-gluon

plasma as exemplified by the agreement between the
holographic value of the shear viscosity η=s ¼ 1=4π
[40,41] and experiment [42]. This universal value is
violated in anisotropic systems [43–47] for the shear
component parallel to the anisotropic direction, ηk, while
the component transverse to the anisotropic direction η⊥
remains universal. A calculation shows that ηk can be
obtained from the near-horizon form of the metric (3)

ηk
s
¼ 1

4π

g⊥⊥
g33

����
r¼rh

: ð20Þ

In Fig. 3, we show the behavior of this quantity for the case
Δ ¼ 4 and j ¼ 0. The curves are parametrized according to
the properties of the IR geometry, i.e., the scaling expo-
nents z and θ. We observe that the shear viscosity in the
anisotropic direction is generally below the universal value
η=s ¼ 1=4π, which is attained only in the UV. In the IR
limit, one obtains

ηk
s
¼ χIR

�
a
T

�2
z−2

: ð21Þ

The constant χIR depends generically on z, θ, and ϕ0 (or
equivalently j). The power of a=T is independent of the
hyperscaling violation exponent θ. However, θ determines
the allowed range of z through Eqs. (16)–(18); e.g., for
θ ¼ 0 the exponent is in the range ð−2; 0�. More generally,
the bounds imply that the power is always negative (for
z ≠ 1) so ηk typically vanishes in the deep IR.
Another interesting phenomenon is momentum diffu-

sion, which is related to dissipation through shear via an
Einstein relation. In holographic theories, diffusion is
characterized by the time scale τL ∼ 1=T and the butterfly
velocity vB [48], both entering in the diffusion constant
as D ∼ ℏv2B=kBT. These quantities can be computed

Plasma I

Plasma II

Confined

1 2 3 4

0.1

0.2

0.3

0.4

0.5

FIG. 2. Phase diagram of the system in the a-T plane. We
observe two phases, confined and “plasma I,” for a=j < 2.08. For
larger a=j, there exist three phases, confined, “plasma I,” and
“plasma II.” The blue and red curves indicate lines of first order
transitions.

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1.0

FIG. 3. The viscosity over entropy density ratio for several
values of θ and z. Increase of the scaling parameter z leads to
lower values of the ratio (solid lines), as well as a decrease of the
value of θ (dashed lines).
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holographically through the near horizon dynamics. They
also control the chaotic growth of the commutator
h½Wðt; xÞ; Vð0; 0Þ�2i ∼ exp½ðt − x=vBÞ=τL� for arbitrary
hermitian operators W and V, whose properties have been
studied extensively recently in [48–53]. Interestingly, the
butterfly velocity provides a natural notion of a “light cone”
even for nonrelativistic systems; e.g., in [52], it was argued
that vB acts as a low-energy Lieb-Robinson velocity.
In anisotropic theories, there are two notions of butterfly

velocities, vBk and vB⊥ [48], corresponding to the parallel
and transverse directions, respectively [54]. These can be
obtained by studying the backreaction of an excitation
at x⃗ ¼ 0 sent from the asymptotic boundary into the bulk.
The excitation solves the Poisson equation on the curved
geometry with a delta-function source δðx⃗Þ and with an
effective mass that corresponds to the screening length μk
or μ⊥ in the corresponding plasma. On the background (3),
one finds

μ2⊥ ¼ f0ð3A0 þ h0Þ
2

����
r¼rh

; μ2k ¼ μ2⊥e2hðrhÞ: ð22Þ

The corresponding butterfly velocities v2Bi ¼ ð2πTÞ2=μ2i
approach the conformal value v2B ¼ 2=3 in the UV, while in
the IR one obtains

v2B⊥ ¼ 1 − θ þ 3z
2ð1 − θ þ 2zÞ ; v2Bk ¼ ζIR

�
a
T

�2
z−2

; ð23Þ

where ζIR ¼ 4πv2B⊥χIR. Remarkably, v2B⊥ saturates to a
universal value independent of j. These expressions are to
be contrasted with the butterfly velocities for isotropic
theories with hyperscaling violation [48,52]. In these
works, it was found that they scale generically as
v2B ∼ ðT0=TÞð2=zÞ−2, where T0 is a UV scale, so v2B → 0

in the deep IR. In contrast, we find that v2B⊥ saturates to a
constant for a ≫ T. In the allowed range of θ and z,
both v2B⊥ and v2Bk are positive and smaller than one, but,

surprisingly, the value of v2B⊥ in the IR can exceed the
conformal value v2B ¼ 2=3. For example, for θ ¼ 0 and
z > 1, it always exceeds 2=3 and saturates another bound
v2B⊥ → 3=4 as z → ∞. In Fig. 4, we plot v2B⊥ and v2Bk as a
function of a=T for some generic examples.
Discussion.—In this Letter, we found several qualitative

features of strongly coupled anisotropic systems both in the
ground state and at finite temperature. Studying confining
plasmas, we found that the confinement-deconfinement
phase transition temperature decreases with anisotropy. The
decrease in TcðaÞ with a resembles the phenomenon of
inverse magnetic catalysis where both the confinement-
deconfinement and the chiral phase transition temperatures
decrease with the magnetic field B. The main difference is
that there are no charged fermionic degrees of freedom
in our case; our plasma is neutral. This suggests an

explanation for IMC, alternative to, e.g., [57,58]: that,
anisotropy—which is caused by B, instead of a in those
examples—could be responsible for the phenomenon,
instead of charge dynamics. It is tempting to conjecture
this as a generic property in a large class of confining
anisotropic theories at strong coupling. In fact, studies with
different holographic constructions [59] showing a destruc-
tive effect of anisotropy on the chiral condensate strongly
support our claim. Whether there is a direct field theory
argument in support of this conjecture remains to be seen.
Nonetheless, it is interesting to note that the fact that
anisotropy itself may be responsible for inverse magnetic
catalysis could, in principle, be checked by (anisotropic)
lattice calculations.
The ground states in our theories are generically charac-

terized in the IR, by the dynamical and hyperscaling
violating exponents z and θ. Theories are thermodynami-
cally stable for a wide range of these exponents. We also
obtained a generalization of the holographic c theorem valid
for anisotropic theories in Eq. (6). It would be interesting to
work out the implications of this for RG flows, and to
provide a proof directly in quantum field theory.
Finally, as expected from previous works, we found ηk=s

to be generically smaller than the so-called universal result
1=4π. We also found that v2B⊥ can exceed the bound
conjectured in [21,22]. There is no contradiction, since
these papers assumed isotropy. However, this result is
surprising: it implies a new upper bound for the transfer of
quantum information, enhanced, here, by the effects of
anisotropy. It will be interesting to figure out the field
theoretic reason behind these observations. It will also be
interesting to find realization of our findings in physical
systems. In connection to this, we refer to [60,61] as a way
to measure the anisotropic shear viscosity of a strongly
interacting, ultracold, unitary Fermi gas confined in a
harmonic trap.

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 4. Butterfly velocities vB⊥ (solid lines) and vBk (dashed
lines). In the longitudinal direction, the information diffuses
slower with increasing anisotropy, with vanishing velocity in the
IR. Perturbations in the transverse plane can propagate at a faster
rate, with a new upper bound attained in the IR.

PHYSICAL REVIEW LETTERS 121, 121601 (2018)

121601-5



The authors acknowledge useful conversations with
Mariano Chernicoff, Chong-Sun Chu, Viktor Jahnke,
David Mateos, and Phil Szepietowski. This work is
partially supported by the Ministry of Science and
Technology of Taiwan under Grants No. 101-2112-M-
007-021-MY3 and No. 104-2112-M-007 -001 -MY3, the
Netherlands Organisation for Scientific Research (NWO)
under the VIDI Grant No. 680-47-518 and the VENI Grant
No. 680-47-456/1486, and the Delta-Institute for
Theoretical Physics (Δ-ITP), which is funded by the
Dutch Ministry of Education, Culture and Science (OCW).

[1] In this latter case, isotropy is broken by separating the left-
handed and right-handed Dirac cones along an axis in the
momentum space.

[2] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).
[3] T. Azeyanagi, W. Li, and T. Takayanagi, J. High Energy

Phys. 06 (2009) 084.
[4] D. Mateos and D. Trancanelli, J. High Energy Phys. 07

(2011) 054.
[5] D. Mateos and D. Trancanelli, Phys. Rev. Lett. 107, 101601

(2011).
[6] D. Giataganas, J. High Energy Phys. 07 (2012) 031.
[7] M. Chernicoff, D. Fernandez, D. Mateos, and D. Trancanelli,

J. High Energy Phys. 08 (2012) 100.
[8] D. Giataganas and H. Soltanpanahi, Phys. Rev. D 89,

026011 (2014).
[9] R. Rougemont, R. Critelli, and J. Noronha, Phys. Rev. D 91,

066001 (2015).
[10] J. F. Fuini and L. G. Yaffe, J. High Energy Phys. 07 (2015)

116.
[11] I. Ya. Aref’eva, A. A. Golubtsova, and E. Gourgoulhon,

J. High Energy Phys. 09 (2016) 142.
[12] U. Gursoy, A. Jansen, W. Sybesma, and S. Vandoren, Phys.

Rev. Lett. 117, 051601 (2016).
[13] R. Rougemont, R. Critelli, and J. Noronha, Phys. Rev. D 93,

045013 (2016).
[14] T. Drwenski, U. Gursoy, and I. Iatrakis, J. High Energy

Phys. 12 (2016) 049.
[15] U. Gursoy, I. Iatrakis, M. Jrvinen, and G. Nijs, J. High

Energy Phys. 03 (2017) 053.
[16] Generalizing examples in IIB supergravity [3,4] which only

allows a fixed dynamical exponent z ¼ 3=2.
[17] G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz,

S. Krieg, A. Schafer, and K. K. Szabo, J. High Energy Phys.
02 (2012) 044.

[18] G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz,
S. Krieg, A. Schafer, and K. K. Szabo, Proc. Sci.,
LATTICE2011 (2011) 192.

[19] G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz,
and A. Schafer, Phys. Rev. D 86, 071502 (2012).

[20] M. D’Elia, Lect. Notes Phys. 871, 181 (2013).
[21] M. Mezei and D. Stanford, J. High Energy Phys. 05 (2017)

065.
[22] M. Mezei, J. High Energy Phys. 05 (2017) 064.
[23] The asymptotic expansions for Δ ¼ 4 are more subtle. For

Δ ¼ 4, we impose ϕ → 0 in order to have an asymptotically
AdS background.

[24] U. Gursoy and E. Kiritsis, J. High Energy Phys. 02 (2008)
032.

[25] U. Gursoy, E. Kiritsis, and F. Nitti, J. High Energy Phys. 02
(2008) 019.

[26] S. S. Gubser and A. Nellore, Phys. Rev. D 78, 086007
(2008).

[27] S. S. Gubser, A. Nellore, S. S. Pufu, and F. D. Rocha, Phys.
Rev. Lett. 101, 131601 (2008).

[28] D. Z. Freedman, S. S. Gubser, K. Pilch, and N. P. Warner,
Adv. Theor. Math. Phys. 3, 363 (1999).

[29] Z. Komargodski and A. Schwimmer, J. High Energy Phys.
12 (2011) 099.

[30] C. Hoyos and P. Koroteev, Phys. Rev. D 82, 084002 (2010);
82, 109905(E) (2010).

[31] J. T. Liu and Z. Zhao, arXiv:1206.1047.
[32] S. Cremonini and X. Dong, Phys. Rev. D 89, 065041 (2014).
[33] A.W. Peet and J. Polchinski, Phys. Rev. D 59, 065011

(1999).
[34] The monotonicity is subject to a certain upper bound on σ

[35] which we assume throughout the Letter.
[35] U. Gursoy, A. Jansen, and W. van der Schee, Phys. Rev. D

94, 061901 (2016).
[36] I. Papadimitriou, J. High Energy Phys. 08 (2011) 119.
[37] The physical coupling on the boundary ax3 is kept fixed.
[38] U. Gursoy, E. Kiritsis, L. Mazzanti, and F. Nitti, Phys. Rev.

Lett. 101, 181601 (2008).
[39] U. Gursoy, E. Kiritsis, L. Mazzanti, and F. Nitti, J. High

Energy Phys. 05 (2009) 033.
[40] G. Policastro, D. T. Son, and A. O. Starinets, Phys. Rev.

Lett. 87, 081601 (2001).
[41] P. Kovtun, D. T. Son, and A. O. Starinets, J. High Energy

Phys. 10 (2003) 064.
[42] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal,

and U. A. Wiedemann, arXiv:1101.0618, DOI: 10.1017/
CBO9781139136747.

[43] A. Rebhan and D. Steineder, Phys. Rev. Lett. 108, 021601
(2012).

[44] K. A. Mamo, J. High Energy Phys. 10 (2012) 070.
[45] S. Jain, R. Samanta, and S. P. Trivedi, J. High Energy Phys.

10 (2015) 028.
[46] S. Jain, N. Kundu, K. Sen, A. Sinha, and S. P. Trivedi,

J. High Energy Phys. 01 (2015) 005.
[47] J. Erdmenger, P. Kerner, and H. Zeller, Phys. Lett. B 699,

301 (2011).
[48] M. Blake, Phys. Rev. Lett. 117, 091601 (2016).
[49] S. A. Hartnoll, Nat. Phys. 11, 54 (2015).
[50] D. A. Roberts, D. Stanford, and L. Susskind, J. High Energy

Phys. 03 (2015) 051.
[51] S. H. Shenker and D. Stanford, J. High Energy Phys. 05

(2015) 132.
[52] D. A. Roberts and B. Swingle, Phys. Rev. Lett. 117, 091602

(2016).
[53] T. Hartman, S. A. Hartnoll, and R. Mahajan, Phys. Rev. Lett.

119, 141601 (2017).
[54] See [55,56] for related works.
[55] S.-F. Wu, B. Wang, X.-H. Ge, and Y. Tian, Phys. Rev. D 97,

066029 (2018).
[56] V. Jahnke, J. High Energy Phys. 01 (2018) 102.
[57] F. Bruckmann, G. Endrodi, and T. G. Kovacs, J. High

Energy Phys. 04 (2013) 112.

PHYSICAL REVIEW LETTERS 121, 121601 (2018)

121601-6

https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1088/1126-6708/2009/06/084
https://doi.org/10.1088/1126-6708/2009/06/084
https://doi.org/10.1007/JHEP07(2011)054
https://doi.org/10.1007/JHEP07(2011)054
https://doi.org/10.1103/PhysRevLett.107.101601
https://doi.org/10.1103/PhysRevLett.107.101601
https://doi.org/10.1007/JHEP07(2012)031
https://doi.org/10.1007/JHEP08(2012)100
https://doi.org/10.1103/PhysRevD.89.026011
https://doi.org/10.1103/PhysRevD.89.026011
https://doi.org/10.1103/PhysRevD.91.066001
https://doi.org/10.1103/PhysRevD.91.066001
https://doi.org/10.1007/JHEP07(2015)116
https://doi.org/10.1007/JHEP07(2015)116
https://doi.org/10.1007/JHEP09(2016)142
https://doi.org/10.1103/PhysRevLett.117.051601
https://doi.org/10.1103/PhysRevLett.117.051601
https://doi.org/10.1103/PhysRevD.93.045013
https://doi.org/10.1103/PhysRevD.93.045013
https://doi.org/10.1007/JHEP12(2016)049
https://doi.org/10.1007/JHEP12(2016)049
https://doi.org/10.1007/JHEP03(2017)053
https://doi.org/10.1007/JHEP03(2017)053
https://doi.org/10.1007/JHEP02(2012)044
https://doi.org/10.1007/JHEP02(2012)044
https://doi.org/10.1103/PhysRevD.86.071502
https://doi.org/10.1007/978-3-642-37305-3
https://doi.org/10.1007/JHEP05(2017)065
https://doi.org/10.1007/JHEP05(2017)065
https://doi.org/10.1007/JHEP05(2017)064
https://doi.org/10.1088/1126-6708/2008/02/032
https://doi.org/10.1088/1126-6708/2008/02/032
https://doi.org/10.1088/1126-6708/2008/02/019
https://doi.org/10.1088/1126-6708/2008/02/019
https://doi.org/10.1103/PhysRevD.78.086007
https://doi.org/10.1103/PhysRevD.78.086007
https://doi.org/10.1103/PhysRevLett.101.131601
https://doi.org/10.1103/PhysRevLett.101.131601
https://doi.org/10.4310/ATMP.1999.v3.n2.a7
https://doi.org/10.1007/JHEP12(2011)099
https://doi.org/10.1007/JHEP12(2011)099
https://doi.org/10.1103/PhysRevD.82.084002
https://doi.org/10.1103/PhysRevD.82.109905
http://arXiv.org/abs/1206.1047
https://doi.org/10.1103/PhysRevD.89.065041
https://doi.org/10.1103/PhysRevD.59.065011
https://doi.org/10.1103/PhysRevD.59.065011
https://doi.org/10.1103/PhysRevD.94.061901
https://doi.org/10.1103/PhysRevD.94.061901
https://doi.org/10.1007/JHEP08(2011)119
https://doi.org/10.1103/PhysRevLett.101.181601
https://doi.org/10.1103/PhysRevLett.101.181601
https://doi.org/10.1088/1126-6708/2009/05/033
https://doi.org/10.1088/1126-6708/2009/05/033
https://doi.org/10.1103/PhysRevLett.87.081601
https://doi.org/10.1103/PhysRevLett.87.081601
https://doi.org/10.1088/1126-6708/2003/10/064
https://doi.org/10.1088/1126-6708/2003/10/064
https://doi.org/10.1017/CBO9781139136747
http://arXiv.org/abs/1101.0618
https://doi.org/10.1103/PhysRevLett.108.021601
https://doi.org/10.1103/PhysRevLett.108.021601
https://doi.org/10.1007/JHEP10(2012)070
https://doi.org/10.1007/JHEP10(2015)028
https://doi.org/10.1007/JHEP10(2015)028
https://doi.org/10.1007/JHEP01(2015)005
https://doi.org/10.1016/j.physletb.2011.04.009
https://doi.org/10.1016/j.physletb.2011.04.009
https://doi.org/10.1103/PhysRevLett.117.091601
https://doi.org/10.1038/nphys3174
https://doi.org/10.1007/JHEP03(2015)051
https://doi.org/10.1007/JHEP03(2015)051
https://doi.org/10.1007/JHEP05(2015)132
https://doi.org/10.1007/JHEP05(2015)132
https://doi.org/10.1103/PhysRevLett.117.091602
https://doi.org/10.1103/PhysRevLett.117.091602
https://doi.org/10.1103/PhysRevLett.119.141601
https://doi.org/10.1103/PhysRevLett.119.141601
https://doi.org/10.1103/PhysRevD.97.066029
https://doi.org/10.1103/PhysRevD.97.066029
https://doi.org/10.1007/JHEP01(2018)102
https://doi.org/10.1007/JHEP04(2013)112
https://doi.org/10.1007/JHEP04(2013)112


[58] V. A. Miransky and I. A. Shovkovy, Phys. Rep. 576, 1
(2015).

[59] U. Gursoy, M. Jarvinen, G. Nijs, and J. Pedraza (to be
published).

[60] R. Samanta, R. Sharma, and S. P. Trivedi, Phys. Rev. A 96,
053601 (2017).

[61] R. Samanta, R. Sharma, and S. P. Trivedi, arXiv:1611
.02720.

PHYSICAL REVIEW LETTERS 121, 121601 (2018)

121601-7

https://doi.org/10.1016/j.physrep.2015.02.003
https://doi.org/10.1016/j.physrep.2015.02.003
https://doi.org/10.1103/PhysRevA.96.053601
https://doi.org/10.1103/PhysRevA.96.053601
http://arXiv.org/abs/1611.02720
http://arXiv.org/abs/1611.02720

