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saturate a set of bounds on the spread of quantum information. In this paper we question

whether non-locality can affect such bounds. Specifically, we consider the gravity dual of

a prototypical theory with non-local interactions, namely, N = 4 non-commutative super

Yang Mills. We construct shock waves geometries that correspond to perturbations of the

thermofield double state with definite momentum and study several chaos related properties

of the theory, including the butterfly velocity, the entanglement velocity, the scrambling

time and the maximal Lyapunov exponent. The latter two are unaffected by the non-

commutative parameter θ, however, both the butterfly and entanglement velocities increase

with the strength of the non-commutativity. This implies that non-local interactions can

enhance the effective light-cone for the transfer of quantum information, eluding previously

conjectured bounds encountered in the context of local quantum field theory. We comment

on a possible limitation on the retrieval of quantum information imposed by non-locality.
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1 Introduction

1.1 Probes of quantum chaos

Recent studies of many-body quantum chaos have shed light into the inner-working mech-

anisms of the gauge/gravity duality [1–3]. For example, the characteristic velocity of the

butterfly effect is known to play an important role in determining the bulk causal struc-

ture [4], while the saturation of the maximal Lyapunov exponent might be a necessary

condition for the existence of a gravity dual [5, 6]. There are also some interesting pro-

posals connecting chaos and hydrodynamics [7–13], and chaos and the spread of quantum

entanglement [14, 15].

One way to diagnose chaos in quantum many-body systems is to consider the influence

of an early perturbation V on the later measurement of some other operator W . Such an

effect is encoded in the quantity [16]

C(t) = −〈[W (t), V (0)]2〉 , (1.1)

where 〈· · · 〉 = Z−1tr[eβH · · · ] denotes the thermal expectation value at temperature T =

β−1. For chaotic systems the expected behavior is the following [17, 18]

C(t) ∼


N−2 for t < td ,

N−2 exp (λLt) for td << t << t∗ ,

O(1) for t > t∗ ,

where N2 is the number of degrees of freedom of the system. Here, we have assumed V

and W to be few-body Hermitian operators normalized such that 〈V V 〉 = 〈WW 〉 = 1.

The exponential growth of C(t) is characterized by the Lyapunov exponent λL and takes

place at intermediate time scales bounded by the dissipation time td and the scrambling

time t∗. The dissipation time characterizes the exponential decay of two-point correlators,

e.g., 〈V (0)V (t)〉 ∼ e−t/td , while the scrambling time t∗ ∼ λ−1
L logN2 is defined as the time

at which C(t) becomes of order O(1) [19, 20]. The behavior of C(t) can be understood

in terms of the expansion of V in the space of degrees of freedom. Under time evolution,

the operator V gets scrambled with an increasing number of degrees of freedom and this

causes C(t) to grow. Eventually, V gets scrambled with all degrees of freedom available in

the system and, as consequence, C(t) saturates to a constant O(1) value.

In holographic theories, the dissipation time is controlled by the black hole quasinormal

modes, so one generally expects td ∼ β for low dimension operators. On the other hand,

the scrambling time for black holes is found to be t∗ ∼ β logN2. For general quantum

systems with such a large hierarchy between these two time scales, td << t∗, the Lyapunov

exponent was shown to have a sharp upper bound [5]

λL ≤
2π

β
. (1.2)

Interestingly, this bound is saturated by black holes in Einstein gravity, leading to the

speculation that any large N system that saturates this bound will necessarily have an

– 2 –
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Einstein gravity dual, at least in the near horizon region [5, 6]. Such a claim triggered

an enormous interest in the community, and lead to many works attempting to use the

saturation of the bound as a criterion to discriminate between CFTs with potential Ein-

stein gravity duals [21–27]. However, it was recently proved that this criterion by itself is

insufficient (albeit necessary) to guarantee a dual description with gravitational degrees of

freedom [28].

A further diagnose of quantum chaos comes from considering the response of the system

to arbitrary local perturbations. This effect can be studied by upgrading the commutator

in (1.1) to

C(t, ~x) = −〈[W (t, ~x), V (0)]2〉 . (1.3)

Calculations for holographic systems [29, 30] and the SYK chain suggested that for chaotic

systems, the exponential growth regime in (1.1) generalizes to:

C(t, ~x) ∼ N−2 exp

[
λL

(
t− |~x|

vB

)]
, for |~x| >> 1 . (1.4)

The butterfly velocity vB characterizes the rate of expansion of the operator V in space.

This quantity defines an emergent light cone, defined by t − t∗ = |~x|/vB. Within the

cone, i.e. for t − t∗ > |~x|/vB, one has that C(t, ~x) ∼ O(1), whereas outside the cone,

for t − t∗ < |~x|/vB, one has C(t, ~x) ≈ 0. Interestingly, in [31] it was argued that vB
acts as a low-energy Lieb-Robinson velocity, which sets a bound for the rate of transfer

of quantum information. In [15] it was proved that for asymptotically AdS black holes

in two-derivative (Einstein) gravity, satisfying null energy condition (NEC), the butterfly

velocity is bounded by

vB ≤ vSch
B =

√
d

2(d− 1)
, (1.5)

where vSch
B is the value of the butterfly velocity for a (d+1)-dimensional AdS-Schwarzschild

black brane. It is tempting to conjecture that (1.5) might be a bound for any (local) QFT, in

the same sense as the bound for the Lyapunov exponent (1.2). However, (1.5) was shown

to fail for higher derivative gravities [29], as well as for anisotropic theories in Einstein

gravity [32, 33], which is reminiscent of the well-known violation of the shear viscosity to

entropy density ratio [34–39]. In such cases, however, vB is still bounded from above and

never reaches the speed of light c = 1, provided that the theory respects causality.1 Naively,

one would expect the speed of light to define a region of causal influence in a relativistic

system. However, as clarified in [4], when we only have access to a subset of the Hilbert

space, the propagation velocity of causal influence is generically smaller than the speed of

light. So, we usually have vB < 1 because the butterfly velocity characterizes the velocity

of causal influence in a subset of the Hilbert space defined by the thermal ensemble, i.e.

the states with a fixed energy density. Indeed, the authors of [4] showed that, for any

1The butterfly velocity can exceed the speed of light if causality is violated. For instance, Gauss-

Bonnet gravity in d = 4 dimensions has vB > 1 for λGB < −0.75. However, causality only holds for

λGB > −0.19 [40, 41] (furthermore, it requires an infinite tower of extra higher spin fields [42]).

– 3 –



J
H
E
P
1
1
(
2
0
1
8
)
0
7
2

asymptotically AdS geometry in two-derivative gravity, the butterfly velocity is bounded

by the speed of light, i.e.

vB ≤ 1 , (1.6)

as it should for a theory with a (Lorentz invariant) UV fixed point.

A natural question one can ask is whether non-local interactions can lead to a violation

of either the Lyapunov exponent bound (1.2) or the butterfly velocity bound (1.6). Since

non-local interactions break Lorentz invariance, a priori one does not expect c to play a

role. Furthermore, non-local theories with holographic duals, have bulk metric that are in

fact non-asymptotically AdS, so the bound derived in [4] does not apply. Known examples

of non-local holographic theories are, for instance, i) the near horizon limit of a stack of

D3-branes with a constant Neveu-Schwarz Bµν [43, 44], dual to non-commutative N = 4

super Yang Mills, ii) the near horizon limit of a stack of D3-branes with global R-symmetry

charges [45], dual to a dipole deformation of N = 4 super Yang Mills and iii) the theory

dual to the near horizon limit of a stack of NS5-branes [46], the so-called little string theory.

In this paper we will explore the aforementioned question in a prototypical theory with

non-local interactions, namely, N = 4 non-commutative super Yang Mills.2 Holography

has already been useful to explore several dynamical effects of the non-locality inherent

to non-commutative theories, with some surprising findings. For instance, in [47] it was

shown from a quasinormal mode analysis that non-commutative gauge theories display a

parametrically shorter dissipation time for light probes, i.e. td(θ) << td(0) for T
√
θ >> 1

and k
√
θ >> 1, where θ measures the strength of the non-commutativity. Heavy probes

were further analyzed in [48, 49] showing a qualitative reduction in the viscosity felt by the

probe. Lastly, the holographic complexity was recently studied in [50] which, remarkably,

was shown to violate the so-called Lloyd’s bound at late times.

1.2 Chaos and entanglement spreading

One way to diagnose chaos in holographic theories is by studying the disruption of mutual

information between subregions of the two boundaries in a maximally extended black brane

geometry. This approach is particularly interesting because it makes a clear connection

between chaos and spreading of entanglement, which is another topic that will be relevant

for our discussion.

Holographically, a maximally extended (two-sided) black brane geometry is dual to a

thermofield double state (TFD) of two identical copies of the theory, which we call QFTL

and QFTR, respectively [51]. At t = 0, the TFD state is given by

|TFD〉 =
1

Z1/2

∑
n

e−
β
2
En |n〉L|n〉R . (1.7)

This state displays a very atypical left-right pattern of entanglement at t = 0 and the

chaotic nature of the boundary theories is manifested by the fact that small perturbations

2Needless to say, in the future it would be interesting to consider other examples of non-local theories

and compare with the results of this paper.
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added to the system in the asymptotic past destroy these delicate correlations [17]. This

phenomenon is known as the butterfly effect.

An efficient way to diagnose this pattern of entanglement and how it is destroyed by

small perturbations is to consider the mutual information I(A,B) between subsystems

A ⊂ QFTL and B ⊂ QFTR, defined as

I(A,B) = SA + SB − SA∪B , (1.8)

where SA is the entanglement entropy of the subsystem A, and so on. Importantly, this

quantity is always positive and provides an upper bound for correlations between operators

OL and OR defined on A and B, respectively [52]

I(A,B) ≥ (〈OLOR〉 − 〈OL〉〈OR〉)2

2〈O2
L〉〈O2

R〉
. (1.9)

Let us consider a small perturbation by acting with an operator W at some time

t0 in the past. From the point of view of the gravitational theory the state W |TFD〉 is

represented by an excitation near the boundary of the space time, which then falls into the

black hole. This excitation gets blue shifted as it fall into the black hole and generates a

shock wave geometry, in which the wormhole becomes larger. If this perturbation is early

enough, the operator will scramble the Hilbert space and the state W |TFD〉 will have a zero

mutual information between A and B at t = 0, signaling the destruction of the left-right

correlations. In this setup, then, the disruption of mutual information sets a bound on the

two-sided correlators of the form

〈OLOR〉W = 〈TFD|W †OLORW |TFD〉 , (1.10)

which are related by analytic continuation to the one-sided out-of-time-order correlators

that appear in the chaos commutator (1.1) [30]. Therefore, the disruption of mutual

information effectively provides a concrete realization of the butterfly effect in holographic

theories [17]. This setup has been studied and extended in various directions in [53–61].

The disruption of the two-sided mutual information in the TFD state takes place at

time scales of the order of the scrambling time t∗ ∼ β logN2, and is controlled by the

so-called entanglement velocity vE . Upon inspection one finds that the non-trivial part of

the computation comes from the last term in (1.8) which, for large enough subsystems and

times in the range td << t << t∗, is found to vary linearly with the shock wave time,

dSA∪B
dt0

= vE sth AΣ , (1.11)

where sth is the thermal entropy and AΣ is the area of Σ = ∂(A ∪ B). This behavior

can be explained in terms of the so-called ‘entanglement tsunami’ that appears in the

study of entanglement entropy following a quantum quench, both in field theory [62] and

holographic calculations [63–67]. In [66, 67], the authors conjectured the entanglement

velocity should be bounded by

vE ≤ vSch
E =

√
d(d− 1)

1
2
− 1
d

[2(d− 1)]1−
1
d

, (1.12)
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where vSch
E is the entanglement velocity for a (d+1)-dimensional Schwarzschild black brane.

Later in [15], this bound was proven to be valid for quite generic holographic theories in

Einstein gravity satisfying the NEC. However, once again, the bound was shown to be

violated once the assumption of isotropy is relaxed [33]. In this case, though, vE is still

bounded and never exceeds the speed of light.

More generally, [14] conjectured that in any quantum system vE ≤ vB. So, if the

bound (1.6) holds true, then, the entanglement velocity must also be bounded

vE ≤ 1 . (1.13)

The authors of [68] proved this using the positivity of mutual information, while [69] used

inequalities of relative entropy.3 However, both [68, 69] assumed that the theory is Lorentz

invariant. If the theory is Lorentz invariant the entanglement entropy depends not on the

particular Cauchy slice, but on the causal development of the subregion. This means that

one can split the Hilbert space in various ways (basically we can pick any space-like slice)

and the entanglement entropy of boosted regions is trivially related. Various consequences

follows from it, such as the entropic proof of the c-theorem [72, 73], monotonicity properties

of various entanglement related quantities, e.g. [74–76], and so on. Since we are studying a

system that does not have Lorentz invariance, these proofs do not apply and, in particular,

we do not expect the speed of light to play a role. See for instance [77] for a discussion of

entanglement entropy on generic time slices for theories that are not Lorentz invariant.

1.3 Plan of the paper

The paper is organized as follows. In section 2 we give a brief overview of the background

material needed to set up the problem. We introduce and explain the basic properties

of the N = 4 non-commutative super Yang Mills theory and its gravity dual, and then

we discuss some subtleties in the definition of the gauge invariant observables of interest,

namely, correlation functions and entanglement entropies. In section 3 we explain how to

construct shock wave solutions with definite momentum for a very general two-sided black

hole geometry, including geometries which are not asymptotically AdS. Then, we show how

to extract from the shock wave profiles several chaotic quantities of interest: the maximal

Lyapunov exponent, the scrambling time and the butterfly velocity. We specialize our

formulas to the gravity dual of N = 4 non-commutative super Yang Mills. In section 4 we

compute the two-sided mutual information for strip-like regions both in the unperturbed

geometry and in the prepense of homogeneous shock waves. We also discuss the role of the

spread of entanglement in the disruption of the two-sided mutual information in the shock

wave geometries. In section 5 we discuss an alternative derivation of the butterfly velocity,

based on entanglement wedge subregion duality, and we show that the final result agrees

with the shock wave calculations. Finally, we close in section 6 with a discussion of our

results and open questions. We relegate some technical details to the appendices.

3Strictly speaking, the bound (1.13) holds true for large enough subsystems. For small subsystems, the

‘entanglement tsunami’ picture breaks down and (1.13) can be violated instantaneously [70, 71]. However,

causality still implies that in average, vavg
E < 1 throughout a unitary evolution.

– 6 –
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2 Preliminaries

2.1 Gravity dual of non-commutative SYM

Non-commutative quantum field theory has been an important theoretical arena and a topic

of great research interest in the past few decades. The basic postulate of non-commutativity

is that space-time coordinates do not commute. Instead, they satisfy the following com-

mutation relation

[xµ, xν ] = iθµν , (2.1)

where θµν is a real and antisymmetric rank-2 tensor. The algebra of functions in a non-

commutative theory can be viewed as an algebra of ordinary functions with the product

deformed to the so-called Moyal product,

(φ1 ? φ2) (x) ≡ e
i
2
θµν∂yµ∂

z
νφ1(y)φ2(z)

∣∣
y=z=x

. (2.2)

Non-commutative theories arise naturally in string theory, as the worldvolume theory

of D-branes with non-zero NS-NS B-field, provided that one takes a special limit to decouple

the open and closed string sectors [78–81]. In the context of gauge/gravity duality, this

implies that the dynamics of certain strongly-coupled, large N , non-commutative field

theories can be described in terms of a classical gravity dual. The first example of this

kind of dualities was presented in [43, 44], which studied a specific decoupling limit of a

stack of D3-branes with non-zero B23. The decoupling limit consists of scaling the string

tension to infinity, and the closed string metric to zero, while keeping the B-field fixed. This

limit provided a gravity dual for finite temperature SU(N) non-commutative super Yang

Mills theory at large N and large ’t Hooft coupling λ, with non-commutative parameter

non-zero only in the (x2, x3)-plane, i.e., [x2, x3] ∼ iθ. The gravity dual of this theory is

type IIB supergravity, with

ds2
E =

R2

ĝ1/2h(r)1/4

[
r2
(
−f(r)dt2 + dx2

1 + h(r)
(
dx2

2 + dx2
3

))
+

dr2

r2f(r)
+ dΩ2

5

]
,

e2Φ = ĝ2h(r) ,

B23 = R2a2r4h(r) , (2.3)

C01 =
R2a2

ĝ
r4 ,

F0123r =
4R4

ĝ
r3h(r) ,

where R4 = 4πĝNα′2, ĝ denotes the string coupling and α′ is the string tension. The ’t

Hooft coupling is related to the curvature of the background and the string tension through

the standard relation
√
λ = R2/α′. Notice that for future convenience, we have given the

metric above in the Einstein frame.4 Moreover,

f(r) = 1− r4
H

r4
(2.4)

4In the string frame ds2
str = eΦ/2ds2

E.
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is the standard blackening factor, with rH = πT , while

h(r) =
1

1 + a4r4
(2.5)

is a function that encodes the effects of the non-commutativity.5 The parameter a is related

to the non-commutative parameter θ through a = λ1/4
√
θ. This parameter can be thought

of as a “renormalized” non-commutative length scale at strong coupling, since this is the

parameter that will enter in every holographic computation.

As usual in holography, the radial direction r is mapped into an energy scale in the

field theory, in such a way that r → ∞ and r → rH correspond to the UV and IR limits,

respectively. The directions xµ ≡ (t, ~x) are parallel to the boundary and are directly

identified with the field theory directions. Finally, the five-sphere coordinates are associated

with the global SU(4) internal symmetry group, but they will play no role in our discussion.

For r − rH << a−1, the background (2.3) goes over to the AdS5-Schwarzschild × S5

solution, which is dual to a thermal state of the standard SU(N) super Yang Mills theory.

Indeed, it can be shown that all the thermodynamic quantities derived from (2.3) are the

same as the ones obtained from the AdS5-Schwarzschild solution [43, 44]. This observation

just reflects the fact that the non-commutative boundary theory goes over to ordinary

super Yang Mills at length scales much greater than λ1/4
√
θ. On the other hand, for

r >> a−1 the background (2.3) exhibits significant differences with respect to AdS5 × S5

and, in particular, is no longer asymptotically AdS. From the boundary perspective, this

just means that the effect of the non-commutativity becomes pronounced for length scales

of order or smaller than λ1/4
√
θ.

2.2 Gauge invariant operators in non-commutative theories

In non-commutative gauge theories, the non-commutativity of the spacetime mixes with

the gauge transformations and, therefore, there are no gauge invariant operators in position

space. However, one can construct gauge invariant operators in momentum space, Õ(kµ),

by smearing the gauge covariant operators O(xµ) transforming in the adjoint representation

of the gauge group over an open Wilson line W (x,C) according to [82–84]

Õ(k) =

∫
d4xO(x) ? W (x,C) ? eik·x , (2.6)

where ? denotes the Moyal product. A few comments are in order:

• For k
√
θ << 1, the length of the Wilson line `W goes to zero and (2.6) reduces to the

standard operators in commutative field theory,

Õ(k)→ O(k) =

∫
d4xO(x)eik·x . (2.7)

• For k
√
θ >> 1, the length of the Wilson line `W becomes large as dictated by the non-

commutativity. In this limit, the operator is dominated by the Wilson line regardless

5A simple way to understand why this background is dual to a non-commutative theory is to consider

an open string in the corresponding background, which yields the commutation relation (2.1) [80].
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of what operator is attached at the end. Therefore, the correlation functions of these

operators are expected to exhibit a universal behavior at large k
√
θ. One concrete

example of this fact is the universal dissipation time at large momentum found in the

quasinormal mode analysis of [47].

• Finally, the fact that Õ(k) contains a Wilson line whose length `W ' θk depends on

k implies that one should not think of these operators as the “same” operator O(x)

with different momentum as we usually do in standard field theory. In particular,

one should not expect to obtain a local operator by Fourier transforming to position

space. Instead, one should think of Õ(k) as genuinely different operators at different

k.

In the holographic context, there is a one-to-one map between gauge invariant operators

O(x) in the boundary theory and local bulk fields ϕ(r, x). According to the standard

dictionary, the non-normalizable mode of ϕ(r → ∞, x) in a near-boundary expansion

corresponds to the source of the dual operator O(x) while the normalizable mode gives

its expectation value. The above map is subtle when the boundary gauge theory is non-

commutative because, as explained above, there are no gauge invariant local operators in

position space. This issue is solved by working in momentum space. More specifically, one

can assume that the bulk field ϕ(r, k) is dual to a gauge invariant operator Õ(k) of the

form (2.6) in the sense that in the boundary theory there is a coupling of the form

S = S0 +

∫
d4k ϕ0(−k)Õ(k) . (2.8)

As usual, the source ϕ0(k) is determined from the non-normalizable mode of ϕ(r, k) given

some appropriate boundary condition in the IR.

2.3 Out-of-time-ordered correlators in momentum space

In order to diagnose chaos we need to compute the norm of the commutator C(t, ~x), defined

in (1.4), for two Hermitian gauge-invariant operators W (t, ~x) and V (0, 0). As expected,

such definition is problematic for non-commutative gauge theories, because in these theories

there are no gauge invariant operators in position space. Instead, we will quantify chaos

in non-commutative theories by defining an equivalent quantity in momentum space, i.e.,

C(t,~k) = −〈[W (t,~k), V (0, 0)]2〉 . (2.9)

There is no need to go to frequency space, since the non-commutativity only acts on

the spatial coordinates. In the next section we show that C(t,~k) has a pole precisely

at |~k| = iλL/vB, from which we can extract the Lyapunov exponent λL and the butterfly

velocity vB. The fact that the pole of C(t,~k) gives the Lyapunov exponent and the butterfly

velocity is implicit in other holographic calculations. See for instance the appendix C of [85].

2.4 Entanglement entropy in non-commutative theories

In standard quantum field theory the entanglement entropy associated to a subsystem A

can be calculated by the von Neumann formula, SA = −tr (ρA log ρA), where ρA is the
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reduced density matrix associated to A. In holographic theories SA can be computed in

the bulk by the HRRT prescription [86, 87]

SA =
Area(γA)

4GN

, (2.10)

where γA is an extremal area surface whose boundary coincides with the boundary of the

region A, i.e., ∂γA = ∂A. Entanglement entropy in local theories follows the so-called

area law, which means that the leading UV divergence of SA has a coefficient which is

proportional to the area of the boundary of the region Σ = ∂A,

SA ∼
AΣ

εd−2
+ · · · . (2.11)

The area law basically means that the entanglement between A and its complement Ā is

dominated by contributions coming from short-ranged interactions between points close to

the boundary between A and Ā.

In non-commutative theories it is not always possible to precisely define the curve (or

surface) delimiting the region A. One possible way to define a subsystem in these theories

was proposed in [88]. The prescription is the following: first, one defines a region A for the

commutative case as

A = {(x1, x2, x3) such that Φ(x1, x2, x3) ≤ 0} , (2.12)

where the surface Φ(x1, x2, x3) = 0 defines the boundary of the region A. Then, one

promotes Φ to an operator,

Φ(x1, x2, x3)→ Φ̂(x̂1, x̂2, x̂3) . (2.13)

Let |Φ〉 denote the eingenvector of Φ̂, with eigenvalue Φ, i.e.,

Φ̂|Φ〉 = Φ|Φ〉 . (2.14)

The subsystem A can then be uniquely defined as

A = {|Φ〉 such that Φ ≤ 0} . (2.15)

For holographic theories SA can still be computed by using the standard HRRT pre-

scription (2.10), where the boundary of A is given be the classical entangling surface at a

particular cut-off scale [88, 89]. With this holographic definition, it has been shown that

for small enough regions the entanglement entropy follows instead a volume law,

SA ∼
VA
εd−1

+ · · · , (2.16)

while for large regions the standard area law (2.11) is recovered [88, 89]. This transition

from a volume law to an area law behaviour has also been observed in quantum field theory

calculations [90–92] and has been understood as a result of the non-locality inherent of non-

commutative theories [93, 94]. Very recently, the full cutoff dependence was studied in [95]
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which found an exact match with respect to the results previously obtained in the strong

coupling regime through holography.

Finally, we point out that the time dependence of entanglement entropy for a free

scalar field on a non-commutative sphere following a quantum quench was studied in [96].

In this paper it was found that the entanglement velocity vE is generically larger that the

commutative counterpart, even exceeding the speed of light in the limit of very strong non-

commutativity. As explained in the introduction, this is not an issue for non-commutative

theories since Lorentz invariance is explicitly broken and the standard notions of causality

do not apply. However, this raises a number of questions. Does this behavior hold in the

strong coupling regime? And more importantly, does the conjecture that vE ≤ vB [14]

holds for general non-local theories? If so, what are the implications for the transfer of

quantum information?

3 Perturbations of the TFD state

3.1 Eternal black brane geometry

Let us consider a two-sided black brane geometry of the form

ds2 = GMN (r)dxMdxN = −Gtt(r)dt2 +Grr(r)dr
2 +Gij(r)dx

idxj , (3.1)

where i, j = 1, 2, 3. Here (t, xi) are the coordinates of the boundary theory, while r is

the holographic radial coordinate. We take the boundary to be located at r = ∞ and

the horizon at r = rH. We assume the following near-horizon expressions for the metric

functions

Gtt = c0(r − rH) , Grr =
c1

r − rH

, Gij(rH) = constant. (3.2)

The inverse Hawking temperature associated to the above metric is

β ≡ 1

T
= 4π

√
c1

c0
. (3.3)

In the study of shock waves is convenient to work in Kruskal coordinates, since these coordi-

nates cover smoothly the two sides of the geometry. We first define the Tortoise coordinate

dr∗ =

√
Grr
Gtt

dr , (3.4)

and then we introduce the Kruskal coordinates U, V as follows,

UV = e
4π
β
r∗ , U/V = −e−

4π
β
t
. (3.5)

In terms of these coordinates the metric reads

ds2 = 2A(U, V )dUdV +Gij(U, V )dxidxj , (3.6)

where

A(U, V ) =
β2

8π2

Gtt(U, V )

UV
. (3.7)
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The region U > 0 and V < 0 (U < 0 and V > 0) covers the left (right) exterior region,

while the region U > 0 and V > 0 (U < 0 and V < 0) covers the black hole (white hole)

interior region. The horizon is located at UV = 0. The boundary (left or right) is located

at UV = −1 and the singularity at UV = 1. We assume that the unperturbed metric is a

solution of Einstein’s equations6

RMN −
1

2
GMNR = 8πGNT

matter
0MN , (3.8)

where the stress-energy tensor is assumed to be of the form

Tmatter
0 = TMNdx

MdxN = 2TUV dUdV + TUUdU
2 + TV V dV

2 + Tijdx
idxj . (3.9)

TMN = TMN (U, V, xi) is the most general stress-energy tensor which is consistent with the

Ricci tensor of the unperturbed geometry.

3.2 Shock wave geometries

In this section we study how the metric (3.1) changes when we add to the system a null pulse

of energy located at U = 0 and moving in the V -direction. The motivation to consider such

a perturbation is the following. In the context of gauge/gravity duality the two-sided black

brane geometry is dual to a thermofield double state of two copies of the boundary theory.

This thermofield double state has a very particular pattern of entanglement between the

two boundaries theories at t = 0. We want to know how this pattern of entanglement

changes when we perturb one of the boundary theories far in the past. We can do that

by inserting an operator in one of the boundary theories at some time t0 in the past and

studying the evolution of the system. In the gravitational description, this corresponds

to the creation of a perturbation close to the boundary, which then falls into the black

brane. From the point of view of the t = 0 frame, the energy of this perturbation increases

exponentially with t0, while its distance from the past horizon decreases exponentially

with t0. As a results, an early enough perturbation will follow an almost null trajectory

very close to the past horizon, which can then replaced by a null pulse of energy, located

at U = 0 and moving in the V -direction. This pulse of energy will give rise to a shock

wave geometry.

3.2.1 Shocks with definite momentum

In non-commutative theories is not possible to define local gauge invariant operators in

position space. However, as explained in section 2.2, one can define gauge invariant op-

erators that are local in momentum space. This is done by smearing a gauge covariant

operator O(x) over a Wilson line. Despite being non-local, this type of perturbation can

also give rise to a shock wave geometry, specifically, a shock wave geometry with definite

momentum k. The only requirement is that the perturbation is local in time and is applied

in the asymptotic past. This is perfectly possible in non-commutative SYM theory, since

the non-commutativity affects only two spatial coordinates, i.e. [x2, x3] = iθ.

6A possible cosmological constant term is absorbed into the definition of the stress-energy tensor.
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Based on this observation, we will consider the following form for the stress-energy

tensor of the shock wave,

T shock
UU = E e

2π
β
t
δ(U)ei

~k·~x . (3.10)

This corresponds to a pulse of energy of definite momentum ~k and amplitude E. The pulse

world line divides the bulk into two regions, the causal future of the pulse (region U > 0),

and its causal past (region U < 0), but only the metric in the causal future of the pulse

gets modified by its presence. The metric in the causal past, on the other hand, is the

same as the unperturbed metric.

It turns out that the backreaction of this pulse of energy is very simple. It can be

described by a shift V → V+α in the V -coordinate [97, 98], where α can be determined from

Einstein’s equations, as we explain below. Given the form of the stress-energy tensor (3.10),

α should take the following form,

α = α̃(t,~k)ei
~k·~x . (3.11)

We will now use Einstein’s equations to determine α̃(t,~k).

We start by replacing V by V +Θ(U)α in the unperturbed metric (3.1). Note that the

Heaviside step function Θ(U) guarantees that only the causal future of the pulse (U > 0)

is affected by its presence. The shock wave geometry can then be written as

ds2 = 2A(U, V + Θα)dU(dV + iΘkiαdx
i) +Gij(U, V + Θα)dxidxj , (3.12)

while the stress-energy tensor reads

Tmatter = 2TUV (U, V + Θα)dU(dV + iΘ kiαdx
i) + TUU (U, V + Θα)dU2

+ TV V (U, V + Θα)(dV + iΘ kiαdx
i)2 + Tij(U, V + Θα)dxidxj ,

(3.13)

For simplicity, we define the new coordinates

Û = U , V̂ = V + Θα , x̂i = xi , (3.14)

in which terms the metric and the stress-energy tensor take the form

ds2 = 2Â dÛdV̂ + Ĝij dx̂
idx̂j − 2Â α̂ δ(Û) dÛ2 , (3.15)

and

Tmatter = 2
[
T̂Û V̂ − TV̂ V̂ α̂ δ(Û)

]
dÛdV̂ + T̂V̂ V̂ dV̂

2 + T̂ijdx̂
idx̂j

+
[
T̂ÛÛ + T̂V̂ V̂ α̂

2δ(Û)2 − 2T̂Û V̂ α̂ δ(Û)
]
dÛ2 ,

(3.16)

respectively. The hats in these expressions indicate that the corresponding quantities are

evaluated at (Û , V̂ , x̂i). Finally, we determine α by requiring (3.15) to satisfy the Einstein’s

equations

RMN −
1

2
GMNR = 8πGN

(
Tmatter
MN + T shock

MN

)
, (3.17)
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with T shock and Tmatter given by (3.10) and (3.16), respectively. In order to simplify the

notation, in the following we will drop the hat over the symbols, but keeping in mind that

we are really dealing with the coordinates defined in (3.14).

The analysis of the equations of motion simplifies when we rescale α and T shock as α→
εα and T shock → εT shock. With this rescaling we can recover the equations of motion (3.8)

for the unperturbed metric by setting ε = 0 in (3.17). Furthermore, by using (3.8) and

analyzing the terms proportional to ε in (3.17) we find that α̃ needs to satisfy the equation7

δ(U)Gij
(
−Akikj +

1

2
Gij,UV

)
α̃ = 8πT shock

UU . (3.18)

Going back to the original coordinates t and r of metric (3.1), the equation for α̃ reads(
Gijkikj +M2

)
α̃(t,~k) = −e2π(t−t∗)/β , (3.19)

where

M2 =

(
2π

β

)2 Gii(rH)G′ii(rH)

G′tt(rH)
, (3.20)

and

t∗ =
β

2π
log

A(rH)

8πGNE
. (3.21)

Assuming Gij to be diagonal, the shock wave profile is then given by

α̃(t,~k) =
e

2π
β

(t−t∗)

Gii(rH)k2
i +M2

. (3.22)

3.2.2 Lyapunov exponent and scrambling time

We can extract the chaotic properties of the boundary theory by identifying α̃(t,~k) with

C(t,~k) = −〈[W (t,~k), V (0, 0)]2〉. By setting ~k = 0 we obtain

α̃ = constant× e
2π
β

(t−t∗) , (3.23)

where the constant of proportionality is of order O(1). This case corresponds to a ho-

mogeneous shock wave geometry. From this profile we can readily extract the Lyapunov

exponent

λL =
2π

β
, (3.24)

and the scrambling time t∗, given in (3.21). Using the expression for the Bekenstein-

Hawking entropy SBH = A(rH)/4GN, we can write the leading order contribution to the

scrambling time as

t∗ =
β

2π
logSBH . (3.25)

Note that, since β and SBH are not affected by the non-commutative parameter, both λL
and t∗ are precisely the same as for the commutative version of the SYM theory.

Later in section 4.2, we will use this type of shock waves to study the disruption of

two-sided mutual information. From this study we will extract another quantity of interest,

the so-called entanglement velocity vE .

7To obtain this equation we use that δ′(U)Gij,V = −δ(U)Gij,UV and U2δ(U)2 = 0.
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3.2.3 Butterfly velocity

At finite ~k, we expect the size of the Wilson line coupled to the operator W (t,~k) to be small

for
√
θk << 1 and large for

√
θk >> 1. Hence, in the limit of low momentum one can expect

to recover an approximate exponential behaviour as in (1.4), for x >>
√
θ and t >> td.

More generally, we can extract vB from the leading pole of C(t,~k). More specifically, it

can be shown that α̃(t,~k) has a pole precisely at8

|~k| =
√
k2

1 + k2
2 + k3

3 = i
λL

vB(φ)
. (3.26)

We refer the reader to appendix A for details. From (3.22), then, this leads to

v2
B(φ) =

G′tt(
2
G′22
G22

+
G′11
G11

) 1

G22 sin2 φ+G11 cos2 φ

∣∣∣
r=rH

. (3.27)

In this formula φ is the angle between the x1−direction and ~x. The dependence of vB on

φ is due to the anisotropy of the system (G11 6= G22), however, it is clear that in the limit

of vanishing non-commutativity (G11 = G22) the φ-dependence disappears.

For later convenience, we write the explicit formulas for the butterfly velocity along

the x1-direction

v2
B,x1
≡ v2

B(φ = 0) =
G′tt

G11

(
2
G′22
G22

+
G′11
G11

)∣∣∣
r=rH

, (3.28)

and for the butterfly velocity along x2- and x3-directions

v2
B,x2
≡ v2

B(φ = π/2) =
G′tt

G22

(
2
G′22
G22

+
G′11
G11

)∣∣∣
r=rH

. (3.29)

Specializing these formulas to the gravity dual of non-commutative SYM, whose metric is

given by (2.3), we get

v2
B(φ = 0) = v2

B,x1
=

4(1 + a4r4
H)

6 + a4r4
H

, (3.30)

and

v2
B(φ = π/2) = v2

B,x2
=

4(1 + a4r4
H)2

6 + a4r4
H

. (3.31)

In figure 1 we plot v2
B,x1

and v2
B,x2

as a function of the non-commutative parameter arH.

Both curves approach the conformal value v2
B = 2/3 in the IR, and grow monotonically as

arH is increased (although v2
B,x1

saturates to a constant value). It is interesting to note that

both v2
B,x1

and v2
B,x2

exceed the speed of light in the regime of strong non-commutativity.

As explained in the introduction, this is not an issue for non-commutative theories since

Lorentz invariance is explicitly broken and the standard notions of causality do not apply.

Nevertheless, this result is remarkable in the context of quantum information theory, since

it represents a novel violation of the known bounds on the rate of transfer of information.

We will comment more on this result in the conclusions.
8This seems to be consistent with the general hydrodynamic theory of quantum chaos proposed in [12].

In that paper the authors propose that the behaviour of OTOCs are controlled by a hydrodynamic chaos

mode σhydro(k), which also has a pole precisely at |~k| = iλL/vB .

– 15 –



J
H
E
P
1
1
(
2
0
1
8
)
0
7
2

0 1 2 3 4 5

1

2

3

4

5

arH

v2
B

v2
B,x1

v2
B,x2

Figure 1. Butterfly velocity squared v2B versus the dimensionless parameter arH. The continuous

curve represents the butterfly velocity along the x1-direction, while the dashed curve represents

the butterfly velocity along the x2- and x3-directions. The horizontal grey line corresponds to the

conformal result v2B = 2/3, while the horizontal black line corresponds to the speed of light.

Finally, it is instructive to discuss the physical meaning of vB in non-commutative

theories. In the commutative case, the butterfly velocity describes the spatial growth of an

operator around a point ~x where the operator is inserted. In the case of non-commutative

theories, the operator is smeared over a Wilson line. Here vB presumably describes the

growth of this operator around the curve C. We will confirm this intuition in section 5.1.1.

4 Entanglement velocity from two-sided perturbations

In this section we compute the two-sided mutual information both in the unperturbed

geometry and in the presence of a shock wave. As explained in the introduction, the

disruption of the mutual information in the second case characterizes the butterfly effect

in holographic theories.

In order to compute the two-sided mutual information we consider a strip-like region

A on the left boundary of the geometry and an identical region B on the right boundary.

The mutual information is defined as

I(A,B) = SA + SB − SA∪B , (4.1)

where SA is the entanglement entropy of region A, and so on. The above entanglement

entropies can be computed holographically using the HRRT prescription (2.10). The first

two terms, SA and SB, are given by the area of the U-shaped extremal surfaces γA,B
whose boundary coincide with the boundary of A and B, respectively. These surfaces lie

outside the event horizon, in the left and right regions, respectively. The last term, SA∪B,

is given by the area of the extremal surface whose boundary coincides with the boundary

of A ∪ B. There are two candidates for this extremal surface. The first one is the surface

γA ∪ γB, while the second one is a surface γwormhole that stretches through the wormhole
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Figure 2. Schematic representation of the t = 0 slice of (a) the unperturbed two-sided black

brane geometry and (b) the two-sided black brane geometry in the presence of a shock wave. We

assume that the shock wave is sent at some time t0 < 0, therefore, it effectively increases the size

of the wormhole at t = 0. In both cases the blue curves represent the U-shaped extremal surfaces

γA (in the left side of the geometry) and γB (in the right side of the geometry). The red curves

represent extremal surfaces γ1 and γ2 connecting the two sides of the geometry. The extremal

surface γwormhole defined in the text is given by the union of these two surfaces, γwormhole = γ1∪γ2.

connecting the two boundaries of the geometry. See figure 2 for a schematic illustration.

If the surface γA ∪ γB has less area than the surface γwormhole, then we have I(A,B) = 0,

because Area(γA ∪ γB) = Area(γA) + Area(γB). On the other hand, if γwormhole has less

area than γA∪γB, then we have that Area(γA∪γB) < Area(γA)+Area(γB), which implies

a positive mutual information I(A,B) > 0.

Before proceeding further, let us explain the general expectations. In the unperturbed

geometry, the mutual information must be zero if the regions A and B are small enough,

and become positive for large regions. The presence of the shock wave should decrease

the amount of mutual information at a given time slice t > t0. Eventually, the mutual

information must drop to zero as we move the shock wave farther into the past t0 → −∞.

As explained in the introduction, the positive mutual information characterizes the special

left-right pattern of entanglement of the TFD state, and the fact that I(A,B) decreases

(and eventually vanishes) in a shock wave geometry shows that this pattern of entanglement

is sensitive to arbitrarily small perturbations sent in the asymptotic past.

4.1 Mutual information in the TFD state

We will discuss two cases, the “commutative strip” and the “non-commutative strip”, as

defined in reference [88].

Commutative strip: the region dubbed as the “commutative strip” are the set of points

with 0 ≤ x1 ≤ ` and −L/2 ≤ x2,3 ≤ L/2, with L → ∞. In this case the appropriate

embedding is Xm = (0, x(r), x2, x3, r, θi), where θi are the angles of the five-sphere. The
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components of the induced metric are the following:

g22 = g33 = G22 , (4.2)

gθiθi = Gθθ ×metric on S5 , (4.3)

grr = Grr +G11 x
′(r)2 . (4.4)

The area functional to be extremized is given by

Area(γA) =

∫
d8σ
√

det gab , (4.5)

= Ω5

∫
dx2 dx3 dr G22G

5/2
θθ

(
Grr +G11 x

′(r)2
)1/2

, (4.6)

= Ω5L
2R8

∫
drr3

(
1

r4f
+ x′(r)2

)1/2

, (4.7)

= Ω5L
2R8

∫
drL(x, x′; r) , (4.8)

where L2 =
∫
dx2 dx3, and Ω5 is the volume of a unit S5. The above functional does not

depend on x, and so there is a conserved quantity associated to translations in x

p =
∂L
∂x′

=
r3x′√
1
r4f

+ x′2
= r3

m , (4.9)

where in the last equality we computed p at the point r = rm at which x′ →∞. By solving

the equation (4.9) for x′ we get

x′2 =
1

r4f

1(
r6

r6
m
− 1
) . (4.10)

Using equation (4.10) we can write the on-shell area of the surface as

Area(γA) = 2Ω5L
2R8

∫ ∞
rm

dr
r√
f

1√
1− r6

m/r
6
, (4.11)

so, the entanglement entropies of the subregions A and B are

SA = SB =
Area(γA)

4GN

=
Ω5L

2R8

2GN

∫ ∞
rm

dr
r√
f

1√
1− r6

m/r
6
. (4.12)

The entanglement entropy SA∪B is computed from the area of the extremal surface γwormhole

connecting the two sides of the geometry

Area(γwormhole) = 4Ω5L
2R8

∫ ∞
rH

dr
r√
f
, (4.13)

where the factor of 4 comes from the fact that we have two sides in the geometry and two

disconnected surfaces, at x1 = 0 and x1 = `, respectively. The entanglement entropy of

A ∪B is then given by

SA∪B =
Area(γwormhole)

4GN

=
Ω5L

2R8

GN

∫ ∞
rH

dr
r√
f
. (4.14)
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From the above expressions we can compute the mutual information,

I(A,B) =
Ω5L

2R8

GN

[∫ ∞
rm

dr
r√
f

1√
1− r6

m/r
6
−
∫ ∞
rH

dr
r√
f

]
, (4.15)

which is a function of the turning point rm. We can plot the mutual information as a

function of the strip’s width ` by writing the later quantity as a function of rm,

` =

∫
dx =

∫
x′dr = 2

∫ ∞
rm

dr

r2

1
√
f
√
r6/r6

m − 1
, (4.16)

and then making a parametric plot of I(A,B) versus `. Note, however, that both quantities

I(A,B) and ` are independent of the non-commutative parameter “a”. This means that

the results for the commutative strip are the same as for a strip in a 5-dimensional AdS-

Schwarzschild geometry. The plot of I(A,B) for the commutative strip is shown in figure 3,

and corresponds to the curve labeled by a = 0 (black curve).

Non-commutative strip: the “non-commutative strip” is given by the set of points

with 0 ≤ x2 ≤ ` and −L/2 ≤ x1,3 ≤ L/2, with L → ∞. In this case the appropriate

embedding is Xm = (0, x1, x(r), x3, r, θi) and the components of the induced metric are

g11 = G11 , (4.17)

g33 = G22 , (4.18)

gθiθi = Gθθ ×metric on S5 , (4.19)

grr = Grr +G22 x
′(r)2 . (4.20)

The area functional to be extremized is given by

Area(γA) =

∫
d8σ
√

det gab , (4.21)

= Ω5

∫
dx1 dx3 dr G

1/2
11 G

1/2
22 G

5/2
θθ

(
Grr +G22 x

′(r)2
)1/2

, (4.22)

= Ω5L
2R8

∫
drr3

(
1

r4hf
+ x′(r)2

)1/2

, (4.23)

= Ω5L
2R8

∫
drL(x, x′; r) , (4.24)

where L2 =
∫
dx1 dx3, and Ω5 is the volume of a unit S5. The above functional does not

depend on x, and so there is a conserved quantity associated to translations in x

p =
∂L
∂x′

=
r3x′√
1

r4hf
+ x′2

= r3
m , (4.25)

where in the last equality we computed p at the point r = rm at which x′ →∞. By solving

the equation (4.25) for x′ we get

x′2 =
1

r4hf

1(
r6

r6
m
− 1
) . (4.26)
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Using equation (4.26) we can write the on-shell area of the surface as

Area(γA) = 2Ω5L
2R8

∫ ∞
rm

dr
r√
hf

1√
1− r6

m/r
6
, (4.27)

so, the entanglement entropies of the subregions A and B are

SA = SB =
Area(γA)

4GN

=
Ω5L

2R8

2GN

∫ ∞
rm

dr
r√
hf

1√
1− r6

m/r
6
. (4.28)

The entanglement entropy SA∪B is computed from the area of the extremal surface γwormhole

connecting the two sides of the geometry

Area(γwormhole) = 4Ω5L
2R8

∫ ∞
rH

dr
r√
hf

, (4.29)

where the factor of 4 comes from the fact that we have two sides in the geometry and two

disconnected surfaces, at x2 = 0 and x2 = `, respectively. The entanglement entropy of

A ∪B is then given by

SA∪B =
Area(γwormhole)

4GN

=
Ω5L

2R8

GN

∫ ∞
rH

dr
r√
hf

. (4.30)

From the above expressions we can compute the mutual information,

I(A,B) =
Ω5L

2R8

GN

[∫ ∞
rm

dr
r√
hf

1√
1− r6

m/r
6
−
∫ ∞
rH

dr
r√
hf

]
, (4.31)

which is a function of the turning point rm. We can plot the mutual information as a

function of the strip’s width ` by writing the later quantity as a function of rm,

` =

∫
dx =

∫
x′dr = 2

∫ ∞
rm

dr

r2

1
√
hf
√
r6/r6

m − 1
, (4.32)

and then making a parametric plot of I(A,B) versus `. Both quantities I(A,B) and

` depend on the non-commutative parameter “a”, because they have factors of h(r) =

(1 + a4r4)−1. Also, note that we can recover the expressions for the commutative strip

by setting a = 0 (or equivalently h = 1). In figure 3 we plot I(A,B) as a function of the

strip’s width ` for several values of the non-commutative parameter at a fixed temperature.

As expected from the results of mutual information for the one-sided black brane [88],

increasing in the non-commutative parameter a reduces the critical length ` = `crit and

hence lowers the threshold for the phase transition of mutual information. This implies that

non-commutativity introduces more correlations between two sub-systems as compared to

the commutative case.

4.2 Disruption of mutual information by shock waves

Let us now study how the two-sided mutual information changes in the presence of a shock

wave geometry. In the following, we will specialize to the case of a homogeneous shock
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Figure 3. Mutual Information (in units of L2R3/G
(5)
N ) as a function of the strip’s width ` for

non-commutative SYM theory. The curves correspond from the right to the left to a = 0 (black

curve), a = 0.8 (blue curve), a = 1.2 (purple curve) and a = 1.2 (red curve) . In all cases we have

fixed rH = 1.

wave, in which the shock wave parameter has the form α = constant ×e2πt0/β . The mutual

information in a shock wave geometry will be denoted as

I(A,B;α) = SA + SB − SA∪B(α) , (4.33)

where we have indicated that SA∪B generically depends on the shock wave parameter α,

while SA and SB do not. This can be easily understood, since the corresponding extremal

surfaces γA and γB remain outside the horizon, while the shock wave only affects quantities

that probe the black hole interior.

As expected on general grounds, the entanglement entropy SA∪B(α) has various α-

independent divergences. In practice we find it convenient to define a regularized entan-

glement entropy

Sreg
A∪B(α) = SA∪B(α)− SA∪B(α = 0) , (4.34)

and rewrite the mutual information as

I(A,B;α) = SA + SB − SA∪B(α) = I(A,B;α = 0)− Sreg
A∪B(α) . (4.35)

In the following, we will consider cases where ` > `crit so that the mutual information

is positive in the unperturbed geometry, i.e., I(A,B;α = 0) > 0. That means that the

extremal surface stretching between the two sides of the geometry γwormhole has smaller
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area than the two extremal surfaces lying outside the black brane γA and γB. When

α > 0, the wormhole becomes longer and the area of the extremal surface probing the

interior also increases, resulting in a decrease of the mutual information. As α increases

the mutual information eventually drops to zero, signaling the total disruption of two-

sided correlations.

Commutative strip: the appropriate embedding in this case is Xm =

(t, 0, x2, x3, r(t), θi). The components of the induced metric are

g22 = g33 = G22 , (4.36)

gθiθi = Gθθ ×metric on S5 , (4.37)

gtt = Gtt +Grr ṙ
2 , (4.38)

and the functional to be extremized is

Area(γwormhole) = 2Ω5

∫
dtdx2dx3G22G

5/2
θθ

(
Gtt +Grrṙ

2
)1/2

, (4.39)

= 2Ω5L
2R8

∫
dt r3

(
−f +

ṙ2

fr4

)1/2

, (4.40)

= 2Ω5L
2R8

∫
dtL(r, ṙ; t) . (4.41)

Since the above functional is invariant under t-translations, there is an associated conserved

quantity,

E =
∂L
∂ṙ
ṙ − L =

r3f√
−f + ṙ2

fr4

= −r3
0

√
−f(r0) , (4.42)

where in the last equality we computed E at the point r0 at which ṙ = 0. By solving (4.42)

for ṙ we obtain

ṙ2 =
(
r2f
)2 (

1 + E−2fr6
)
. (4.43)

Using the above result we can write the on-shell area as

Area(γwormhole) = 2Ω5L
2R8

∫
dr

r2√
E2r−4 + r2f

, (4.44)

and the time coordinate t along the extremal surface as

t(r) =

∫
dt =

∫
dr

ṙ
=

∫
dr

r2f
√

1 + E−2fr6
. (4.45)

Since these expressions do not depend on the non-comutative parameter a, we can expect

the disruption of mutual information to be the same as for the commutative SYM theory.

However, we will proceed with the analysis for illustrative purposes. The entanglement

entropy SA∪B is given by

SA∪B =
2Ω5L

2R8

4GN

∫
dr

r2√
E2r−4 + r2f

. (4.46)
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Figure 4. Extremal surface (horizontal, red) in the shock wave geometry. We divide the left half

of the surface into three parts, I, II and III. The segments II and III have the same area and

they are separated by the point r0 at which the constant-r surface (blue, dashed curve, defined by

r = r0) intersects the extremal surface.

It is convenient to divide the region of integration of the above integral into three regions,

I, II and III, as shown in figure 4. Since the regions II and III have the same area, we

can write
∫
I∪II∪III =

∫∞
rH

+2
∫ rH
r0

. The entanglement entropy SA∪B can then be written

more explicitly as

SA∪B(r0) =
Ω5L

2R8

GN

[∫ ∞
rH

dr
r2√

E2r−4 + r2f
+ 2

∫ rH

r0

dr
r2√

E2r−4 + r2f

]
, (4.47)

where the extra factor of 2 accounts for the two sides of the geometry. The effect of the

shock wave on SA∪B is controlled by the turning point r0 ≤ rH. The shock wave is absent

when r0 = rH (or, equivalently, E = 0), and its effects become stronger as one decreases r0.

In terms of this parameter, the regularized entanglement entropy Sreg

A∪B can be written as

Sreg

A∪B(r0) = SA∪B(α)− SA∪B(α = 0) = SA∪B(r0)− SA∪B(rH) (4.48)

=
Ω5L

2R8

GN

[∫ ∞
rH

dr

(
r2√

E2r−4 + r2f
− r2√

r2f

)
+ 2

∫ rH

r0

dr
r2√

E2r−4 + r2f

]
.

Finally, the shock wave parameter α can also be written as a function of the turning point

r0 (see appendix B for details). The final result reads

α(r0) = 2 eK1(r0)+K2(r0)+K3(r0) , (4.49)

where

K1 =
4π

β

∫ r0

r̄
dr

1

r2f
, (4.50)

K2 =
2π

β

∫ ∞
rH

dr
1

r2f

(
1− 1√

1 + E−2fr6

)
, (4.51)

K3 =
4π

β

∫ rH

r0

dr
1

r2f

(
1− 1√

1 + E−2fr6

)
. (4.52)
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As expected, the shock wave parameter α = α(r0) increases monotonically as one decreases

r0 (with α(rH) = 0) and it diverges at some critical radius rc = rH
31/4 (see appendix C for

details). Indeed, both K3 and t(r0) ∝ t0 diverge at r0 = rc. This means that the region

r < rc and, in particular, the singularity cannot be probed by I(A,B;α), even in the limit

t0 →∞. The results for the commutative strip can be found by setting a = 0 in the results

for the non-commutative strip (which will be presented below). The plots for α(r0), as

well as for Sreg

A∪B(α) and I(A,B, α) for the commutative strip are shown in figures 5 and 6,

respectively, and correspond to the curves labeled by a = 0 (black curves).

Non-commutative strip: the appropriate embedding in this case is Xm =

(t, x1, 0, x3, r(t), θi). The components of the induced metric are

g11 = G11 , (4.53)

g33 = G22 , (4.54)

gθiθi = Gθθ ×metric on S5 , (4.55)

gtt = Gtt +Grr ṙ
2 , (4.56)

and the functional to be extremized is

Area(γwormhole) = 2Ω5

∫
dt dx1 dx3G

1/2
11 G

1/2
22 G

5/2
θθ

(
Gtt +Grr ṙ

2
)1/2

, (4.57)

= 2Ω5L
2R8

∫
dt

r3

h1/2

(
−f +

ṙ2

fr4

)1/2

, (4.58)

= 2Ω5L
2R8

∫
dtL(r, ṙ; t) . (4.59)

Since the above functional is invariant under t-translations, there is an associated conserved

quantity,

E =
∂L
∂ṙ
ṙ − L =

r3fh−1/2√
−f + ṙ2

fr4

= −r3
0

√
−f(r0)

h(r0)
, (4.60)

where in the last equality we computed E at the point r0 at which ṙ = 0. By solving (4.60)

for ṙ we obtain

ṙ2 =
(
r2f
)2(

1 + E−2r6 f

h

)
. (4.61)

Using the above result we can write the on-shell area as

Area(γwormhole) = 2Ω5L
2R8

∫
dr

r2

h1/2
√
E2r−4h+ r2f

, (4.62)

and the time coordinate t along the extremal surface as

t(r) =

∫
dt =

∫
dr

ṙ
=

∫
dr

r2f
√

1 + E−2r6 f
h

. (4.63)

The entanglement entropy SA∪B is then given by

SA∪B =
2Ω5L

2R8

4GN

∫
dr

r2

h1/2
√
E2r−4h+ r2f

. (4.64)
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Again, we divide the region of integration of the above integral into three regions, I, II

and III, as shown in figure 4. Since the regions II and III have the same area, we can

write
∫
I∪II∪III =

∫∞
rH

+2
∫ rH
r0

. The entanglement entropy SA∪B can then be written more

explicitly as

SA∪B(r0) =
Ω5L

2R8

GN

[∫ ∞
rH

dr
r2

h1/2
√
E2hr−4 + r2f

+ 2

∫ rH

r0

dr
r2

h1/2
√
E2hr−4 + r2f

]
.

(4.65)

where the extra factor of 2 accounts for the two sides of the geometry. The effect of the

shock wave on SA∪B is controlled by the turning point r0 ≤ rH. The shock wave is absent

when r0 = rH (or, equivalently, E = 0), and its effects become stronger as one decreases r0.

In terms of this parameter, the regularized entanglement entropy Sreg

A∪B can be written as

Sreg

A∪B(r0) = SA∪B(α)− SA∪B(α = 0) = SA∪B(r0)− SA∪B(rH) , (4.66)

=
Ω5L

2R8

GN

[∫ ∞
rH

dr

(
r2

h1/2
√
E2hr−4 + r2f

− r2

h1/2
√
r2f

)

+2

∫ rH

r0

dr
r2

h1/2
√
E2hr−4 + r2f

]
.

Finally, the shock wave parameter α can be written as a function of the turning point r0

(see appendix B for details). The final result reads

α(r0) = 2 eK1(r0)+K2(r0)+K3(r0) , (4.67)

where

K1 =
4π

β

∫ r0

r̄
dr

1

r2f
, (4.68)

K2 =
2π

β

∫ ∞
rH

dr
1

r2f

(
1− 1√

1 + E−2fh−1r6

)
, (4.69)

K3 =
4π

β

∫ rH

r0

dr
1

r2f

(
1− 1√

1 + E−2fh−1r6

)
. (4.70)

The shock wave parameter α = α(r0) increases monotonically as one decreases r0 (with

α(rH) = 0) and it diverges at some critical radius

rc =
rH

101/4

(
− 3

a4r4
H

+ 3 +

√
9 + 2a4r4

H + 9a8r8
H

a4r4
H

)1/4

. (4.71)

Indeed both K3 and t(r0) ∝ t0 diverge at r0 = rc. In figure 5 we plot the shock wave

parameter α versus the ‘turning point’ r0 for several values of the non-commutative pa-

rameter. In general, we observe that r0 gets repealed from the singularity as we increase

the strength of the non-commutativity, meaning that the extremal surface probe less of the

interior. This might be a consequence of the fuzzy nature of the non-commutative geom-

etry. In figure 6 we show the behavior of the regularized entanglement entropy Sreg

A∪B(α)
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Figure 5. Shock wave parameter α versus the ‘turning point’ r0 divided by rH for non-commutative

SYM theory. The curves correspond to a = 0 (black curve), a = 0.8 (blue curve), a = 1 (purple

curve) and a = 2 (red curve). In all cases we have fixed rH = 1.
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Figure 6. (a) Regularized entanglement entropy Sreg

A∪B and (b) mutual information I(A,B) as a

function of logα. Both in (a) and (b) the curves correspond to a = 0 (black curves), a = 0.8 (blue

curves), a = 1.2 (purple curves) and a = 1.5 (red curves). In all cases we have fixed rH = 1.

in a shock wave geometry and how this results in the disruption of the two-sided mu-

tual information I(A,B;α). As we can see from these plots, the disruption of the mutual

information occurs faster as we increase the non-commutative parameter a. In the next

section we will quantify this statement more clearly by the calculation of the so-called

entanglement velocity.

4.2.1 Entanglement velocity

Before saturation, the entanglement entropy SA∪B(α) grows linearly with logα, and this

implies that it grows linearly with the time t0 at which the system was perturbed (α =
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const×e
2π
β
t0). From this linear behaviour we can define the so-called entanglement velocity,

which is a quantity that characterizes the spread of entanglement in chaotic system. In the

following, we will specialize to the case of the non-commutative strip. The results for the

commutative strip can be obtained simply by setting a = 0 in all the formulas below.

As shown in the previous section, the function α(r0) increases monotonically as we

decrease r0 ≤ rH and diverges at a critical radius r0 = rc given by (4.71). In the vicinity

of rc, one can show that

Sreg

A∪B
∼=

2Ω5L
2R8

GN

r3
c

√
−f(rc)

h(rc)

β

4π
logα , for r0 ≈ rc . (4.72)

Since the shift α grows exponentially with time, α = constant × e2πt0/β , the above result

implies that SA∪B grows linearly with t0. The rate of change of Sreg

A∪B with the shock wave

time is
dSreg

A∪B
dt0

=
L2R3

G
(5)
N

r3
c

√
−f(rc)√
h(rc)

, (4.73)

where G
(5)
N = GN

Ω5R5 is the five-dimensional Newton constant. Using the formula for the

thermal entropy density,

sth =
R3r3

H

4G
(5)
N

, (4.74)

we can rewrite the above equation as

dSreg

A∪B
dt0

= sthAΣ

(
r3
c

r3
H

√
−f(rc)

h(rc)

)
, (4.75)

where AΣ = 4L2 is the area of the 4 hyperplanes defining Σ = ∂(A ∪ B). Finally, com-

paring with the formula (1.11) we can then extract the entanglement velocity for the

non-commutative strip, which we denote as

vE,x2 =
r3
c

r3
H

√
−f(rc)

h(rc)
. (4.76)

One can check that by setting a = 0 in this formula we obtain the standard entanglement

velocity for a strip in ordinary SYM theory,

vE,x1 = vE,x2(a = 0) =

√
2

33/4
, (4.77)

which also applies for the commutative strip in non-commutative SYM. More generally,

expanding in powers of arH we obtain,

vE,x2 =
r3
c

r3
H

√
−f(rc)

h(rc)
=

√
2

33/4
+

a4r4
H

3
√

233/4
+

5a8r8
H

108
√

233/4
+O(a12r12

H ) , (4.78)

which shows that vE,x2 increases as we increase the non-comutative parameter! In figure 7

we plot both vE,x1 and vE,x2 as a function of arH. We observe that vE,x2 exceeds the speed
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Figure 7. Entanglement velocity vE versus the dimensionless parameter arH. The blue curve

represent the entanglement velocity for a non-commutative strip, while the horizontal black line

represent the entanglement velocity for a commutative strip, which is equal to the conformal result

vE =
√

2/33/4. The horizontal grey line represents the speed of light.

of light already at some value of arH of order arH ∼ O(1) and grows without bound in

the limit of strong non-commutativity. This behavior is in qualitative agreement with the

results obtained for the entanglement entropy for a free scalar field on the fuzzy sphere

following a quantum quench [96]. Finally, we note that vE,xi ≤ vB,xi generically, for any

value of the non-commutative parameter. This implies that the conjecture made in [14]

holds for our non-commutative setup, and suggests that it might indeed be true for any

(possibly non-local) quantum system.

5 Butterfly velocity from one-sided perturbations

In this section we present an alternative derivation of vB that does not rely on the shock

wave results. This alternative way of computing vB is based on entanglement wedge sub-

region duality [99], and it was first proposed in [14]. Here we extend their results for the

kind of anisotropic metrics that we consider in this paper.

5.1 Infalling particle and entanglement wedge

The derivation goes as follows. Consider the application of a localized bulk operator V in a

black brane geometry. This operator creates a one particle state in the bulk theory which

eventually falls into the black hole and thermalizes. As the particle falls into the black hole,
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V gets scrambled with an increasing number of degrees of freedom and, as a result, the

operator effectively grows in space. This is consistent with the standard intuition from the

holographic UV/IR connection [100–102], which implies that the information of the particle

gets delocalized over a larger region as it falls deeper into the bulk. The proposal of [14] is

that, at late times, the rate of growth of this region is controlled by the butterfly velocity.

In this context, the butterfly velocity can be calculated using the entanglement wedge

subregion duality. According to this duality a certain subregion A of the boundary theory

can be completely described by a subregion in the bulk geometry, which is called the

entanglement wedge of A. In the following, we compute the butterfly velocity by requiring

that the entanglement wedge of a certain region A contains the particle created by V .

Let us assume a generic black hole metric of the form

ds2 = −Gttdt2 +Grrdr
2 +Gijdx

idxj , (5.1)

where (t, xi) are the boundary theory coordinates, r is the holographic radial coordinate

and i, j = 1, . . . , d − 1. We assume the boundary is located at r = ∞ and the horizon

at r = rH. We now consider a fixed time slice of the geometry, at a long time after the

application of V , such that this operator is delocalized in a very large region A. This

limit simplifies the analysis for two reasons. First, the equations of motion defining the

entanglement wedge linearise, because the corresponding RT surface lies very close to the

black hole horizon. Second, the particle created by V also lies very close to the horizon,

having a simple description in terms of Rindler coordinates.

We assume the following near-horizon expressions

Gtt = c0(r − rH) , Grr =
c1

r − rH

, Gij = Gij(rH) +G′ij(rH)(r − rH) . (5.2)

In terms of c0 and c1, the inverse Hawking temperature reads

β = 4π

√
c1

c0
. (5.3)

It is convenient to go to Rindler coordinates, ρ2 = (r − rH)
(

2π
β

)2
1

G′tt(rH)
, in which terms

the above metric becomes

ds2 = −
(

2π

β

)2

ρ2dt2 + dρ2 +

[
Gij(rH) +

G′ij(rH)

G′tt(rH)

(
2π

β

)2

ρ2

]
dxidxj . (5.4)

The infalling particle gets blue shifted as it falls into the black hole and, at late times, it

approaches the horizon exponentially

ρ(t) = ρ0e
− 2π
β
t
. (5.5)

Now we proceed to calculate the position of the RT surface defining the entanglement

wedge of A. Considering the embedding Xm = (0, xi, ρ(xi)), the area functional can be

written as

Area =
√

detGij(rH)

∫
dd−1x

[
1 +

(
2π

β

)2 ρ2

G′tt(rH)
Gii(rH)G′ii(rH) +Gii(rH)(∂iρ)2

]
,

(5.6)
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where we have assumed Gij to be diagonal. The equations of motion that follows from the

above functional are

Gii(rH)∂2
i ρ(xi) = M2ρ(xi) , (5.7)

where

M2 =

(
2π

β

)2 Gii(rH)G′ii(rH)

G′tt(rH)
. (5.8)

In order to solve this equation we define the new coordinates σi = xi/
√
Gii(rH), in which

terms the equation of motion becomes(
∂

∂σi

)2

ρ = M2ρ . (5.9)

The solution of the above equation is [14]

ρ(σi) = ρmin
Γ(a+ 1)

2−2Ma

Ia(M |σ|)
|σ|a

with a = (d− 3)/2 . (5.10)

In this formula, ρmin is interpreted as the radius of closest approach to the horizon and Ia
is a modified Bessel function of the second kind. As explained in [14], when ρ exceeds β,

the surface exits the near horizon region and reaches the boundary very quickly. It is then

possible to determine the size of the region A in terms of ρmin by solving the equation

β = ρmin
Γ(a+ 1)

2−2µa
Ia(MRσ)

|Rσ|a
, (5.11)

where Rσ is the size of the region A in the σ-coordinates. The approximate solution for

this equation at large Rσ is

ρmin ≈ e−MRσ . (5.12)

5.1.1 Butterfly velocity

For an anisotropic system, vB is different along the different directions and so is the size of

the region A. Let us say that Ri is the size of the region A along the xi direction. This

is related to its size in σ-coordinates by the equation Rσi =
√
Gii(rH)Ri. Requiring the

infalling particle created by V to be contained in the entanglement wedge implies

ρmin ≤ ρ(t) ⇒ M
√
Gii(rH)Ri ≥

2π

β
t , (5.13)

or, equivalently

Ri ≥ vB,xit , (5.14)

where the butterfly velocity vB,xi along the xi-direction is calculated as

vB,xi =
2π

β

1√
Gii(rH)M

=

√
G′tt(rH)√

Gii(rH)
√
Gkk(rH)G′kk(rH)

. (5.15)

This formula is in complete agreement with the ones obtained from shock wave calcula-

tions (3.28)–(3.29).
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Before closing this section we would like to offer some intuition about the bound-

ary picture of the bulk operator V and the corresponding one particle state, in our non-

commutative setup. Without loss of generality, we can imagine inserting V directly at the

boundary, and follow the evolution of the created particle as it falls into the black brane.

In ordinary AdS/CFT this would mean that we are turning on an operator localized in

space, which can in turn be interpreted as a local quench, see e.g. [103]. However, in non-

commutative gauge theories there are no local operators in position space, so it is necessary

to explain how the above prescription works in the present case.

As explained in section 2.2, there is a natural set of gauge invariant operators that

can be defined in non-commutative gauge theories, which can be obtained by smearing the

ordinary gauge covariant operators O(x) over a Wilson line W , according to (2.6). The

size of this Wilson line `W scales with the momentum k, roughly as `W ' θk. Let us now

imagine having a very large Wilson line along one of the directions, say the x1-direction.

This can be achieved by taking either θ or k1 to be very large, such that `W → ∞. In

this approximation the information about the perturbation is initially localized along the

x1-axis. As the system evolves in time, the information will get delocalized in a cylindrical

region around this axis. In the bulk, the information about this perturbation will be

contained inside the entanglement wedge, which will also display a cylindrical symmetry.

The derivation of vB goes as before, except that now the entanglement surface will not

depend on x1. In particular, the butterfly velocity will be the same as before and will

describe how fast the information about the smeared operator gets delocalized inside a

‘cylinder’ whose radius along the ~x-direction is vB(φ) t, where φ is the angle between ~x and

the x1-direction. In more general cases, when the Wilson line is not very large, we expect

vB(φ) to describe the expansion of the operator in a region around the Wilson line that

defines it.

6 Conclusions and outlook

In this paper we have studied shock waves in the gravity dual to N = 4 non-commutative

SYM theory. From the shock wave profiles, we extracted several chaos-related properties of

this system, namely, the butterfly velocity, the scrambling time, and the Lyapunov expo-

nent. As expected on general grounds, we find that the Lyapunov exponent saturates the

chaos bound, λL = 2π/β, while the scrambling time scales logarithmically with the entropy

of the system, t∗ = β
2π logS. Since neither the temperature nor the entropy are affected by

the non-commutativity, both λL and t∗ are exactly the same as the corresponding values

in ordinary SYM theory.

In contrast, the butterfly velocity is largely affected by the non-commutative parameter

θ, specially in the UV. The results for vB as a function of a rH = πλ1/4
√
θT are shown in

figure 1. Since the non-commutativity is introduced along the x2− x3 plane, i.e. [x2, x3] ∼
iθ, the gravity dual is hence anisotropic, G11 6= G22 = G33. This causes vB to depend on

the direction of the perturbation. For simplicity, we only computed the components vB,x1

and vB,x2 , where the first one is the butterfly velocity along the x1-direction, and the latter

one corresponds to the butterfly velocity along the x2- and x3- directions. We observe that,
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for a rH ∼ 1, both vB,x1 and vB,x2 become larger than the speed of light. For large values

of the non-commutative parameter, vB,x1 saturates a constant value, while vB,x2 increases

indefinitely.

The fact that the butterfly velocity exceeds the speed of light in the regime of strong

non-locality is not surprising. Indeed, Lorentz invariance is explicitly broken by the non-

commutative parameter θ so the standard notions of causality do not apply. Nevertheless,

this result is remarkable in the context of quantum information theory, since it represents

a novel violation of the known bounds on the rate of transfer of information. We comment,

though, that in this limit the information is highly delocalized due to the UV/IR mixing,9

so the implementation of a local protocol to retrieve the information might require an

exponentially longer time than the commutative case. As a result, an increase on vB due

to the non-commutativity is necessarily compensated by an increase in the “computational

cost” or a decrease on the amount of “useful information” at fixed time. It would be

interesting to understand this phenomenon better.

Finally, we also computed the entanglement velocity vE by studying the disruption

of the two-sided mutual information in the presence of homogeneous shock waves. In

figure 6 we show the results for SA∪B and I(A,B) for various values of the non-commutative

parameter. In general, we find that the mutual information is reduced in the presence of

the shock wave, and eventually vanishes as one let t0 → ∞. Right before the transition,

the entanglement entropy of the two sub-systems SA∪B grows linearly, with a slope given

by vE . In figure 7 we show the behavior of the entanglement velocity as a function of the

non-commutative parameter. We considered two geometries. For a “commutative strip”

(strip with finite width along the x1-direction), the results are the same as for an AdS

black brane, while for a “non-commutative” strip (strip with finite width along the x2-

or x3-direction) the entanglement velocity increases with the non-commutative parameter.

Eventually, vE,x2 exceeds the speed of light in the limit of strong non-locality. This behavior

is in qualitative agreement with the results obtained for the entanglement entropy for a

free scalar field on the fuzzy sphere following a quantum quench [96].

We also confirmed the expectation based on the conjecture proposed in [14], namely

that vE,xi ≤ vB,xi in general quantum systems. Indeed, we find that this is valid in our

setup for any value of the non-commutative parameter suggesting that the conjecture might

indeed be true for any (possibly non-local) quantum system. It would be interesting to

test further this conjecture in other non-local theories, for example, in the gravity dual

of the dipole deformation of N = 4 super Yang Mills [45] or in the gravity dual of the

so-called little string theory [46]. It will also interesting to compute vB directly in a non-

commutative field theory (using perturbation theory) and compare with the strong coupling

results obtained in this paper.
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A Momentum space correlator and the butterfly velocity

In this appendix we study shock wave geometries and present a detailed derivation of the

formula (3.27). We start from the solution of the shock wave profile α̃ at finite momentum,

α̃(t,~k) =
e2π(t−t∗)/β

Giik2
i +M2

. (A.1)

The above function has a pole at Giik2
i +M2 = 0. By writing the momentum components

in spherical coordinates

k1 =
√
G11(rH)k cosφ , (A.2)

k2 =
√
G22(rH)k sinφ sinφ2 , (A.3)

k3 =
√
G33(rH)k sinφ cosφ2 , (A.4)

the position of the pole can be specified as k = iM . Interestingly, at the pole, the modulus

of ~k gives us the ratio of the Lyapunov exponent and the butterfly velocity

k2 = k2
1 + k2

2 + k2
3 = −λ2

L µ
2
(
G11 cos2 φ+G22 sin2 φ sin2 φ2 +G33 sin2 φ cos2 φ2

)
,

= −
λ2
L

v2
B(φ, φ2)

, (A.5)

where λL = 2π/β is the Lyapunov exponent and

vB(φ, φ2) =
1

µ
√
G11 cos2 φ+G22 sin2 φ sin2 φ2 +G33 sin2 φ cos2 φ2

, (A.6)

is the butterfly velocity along an arbitrary direction. Note that, in the most general case,

G11 6= G22 6= G33, the butterfly velocity is completely anisotropic and depends on the two

spherical angles φ and φ2. If we assume isotropy in the x2 − x3 plane, i.e. G33 = G22, the

above formula simplifies to

vB(φ) =
1

µ
√
G11 cos2 φ+G22 sin2 φ

, (A.7)

which leads to (3.27). Note that vB still depends on φ. This is a consequence of the

anisotropy in the x1-direction, i.e. G11 6= G22.

The fact that the pole of C(t,~k) gives the Lyapunov exponent and the butterfly velocity

is implicit in other holographic calculations (see for instance the appendix C of [85]). In

our setup, we can confirm that the quantity appearing in the pole of α̃(t,~k) can indeed

be identified with the butterfly velocity. We do so by looking at the limit k → 0 (or

|~x| >>
√
θ), in which the size of the Wilson line is vanishingly small `W → 0 and the shock
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wave becomes approximately local. In this limit we can write the shock wave profile in

position space as the Fourier transform of α̃,

α(t, ~x) =

∫
d3~k

(2π)3

e
2π
β

(t−t∗)ei
~k·~x

Giik2
i +M2

. (A.8)

By changing variables as ki →
√
Giiqi, the above integral can be written as10

α(t, ~σ) =
√
G11G22G33

∫
d3~q

(2π)3

e
2π
β

(t−t∗)ei~q·~σ

|~q |2 +M2
=

√
G11G22G33

4π

e
2π
β

(t−t∗)e−M |~σ|

|~σ|
, (A.9)

where all the metric functions are evaluated at the horizon. To further simplify this ex-

pression, we write

M2 =

(
2π

β

)2 Gii(rH)G′ii(rH)

G′tt(rH)
≡
(

2π

β

)2

µ2 . (A.10)

With the above definitions we can write

M |~σ| = 2π

β

√∑
i

µ2(xi)2Gii ≡
2π

β

|~x|
vB(φ, φ2)

, (A.11)

where the angles (φ, φ2) are defined such that

x1 = |~x| cosφ , (A.12)

x2 = |~x| sinφ sinφ2 , (A.13)

x3 = |~x| sinφ cosφ2 . (A.14)

Substituting (A.11) in (A.9) we obtain

α(t, ~x) = e
2π
β

(
t−t∗− |~x|

vB(φ,φ2)

)
, (A.15)

which is the well known shock wave profile for the case of localized perturbations. This

confirms that that the quantity vB(φ, φ2) appearing at the pole of α̃(t,~k) it is indeed the

butterfly velocity.

B Shock wave parameter α as a function of r0

In the case of homogeneous shocks, the strength of the shock wave can be either measured

by the parameter α or by the ‘turning point’ r0. In this appendix determine the relation

between these two parameters. In the following we will specialize to the case of the non-

commutative strip. The case of a commutative strip can be recovered from our results by

setting a = 0 in all the formulas below.

By symmetry considerations we know that the extremal surface whose area gives SA∪B
divides the bulk into two halves, as shown in figure 4. The parameter r0 defines a constant-

r surface inside the black horizon which intersect the extremal surface exactly at the point

10In the last equality we use that
∫

d3q
(2π)3

ei~σ·~q 4π
q2+M2 = e−M|~σ|

|~σ| .
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at which ṙ = 0. We split the left part of the surface into three segments I, II and III.

The first segment goes from the boundary (U, V ) = (1,−1) to the horizon (U, V ) = (U1, 0).

The second segment goes from the horizon (U, V ) = (U1, 0) to the point (U, V ) = (U2, V2)

where the extremal surface intersects with the constant-r surface at r = r0. The third

segment connects the point (U, V ) = (U2, V2) to the horizon at (U, V ) = (0, α/2). In what

follows we compute the unknown quantities U1, U2 and V2 in terms of r0 and obtain an

expression for α(r0).

In the left exterior region, the Kruskal coordinates are defined as

U = e
2π
β

(r∗−t) , V = −e
2π
β

(r∗+t) , r∗ = −
∫ ∞
r

dr′
1

r′2f(r′)
, (B.1)

while, inside the black hole and in the right side of the geometry, these coordinates are

defined as

U = e
2π
β

(r∗−t) , V = e
2π
β

(r∗+t) , r∗ =

∫ r

r̄
dr′

1

r′2f(r′)
, (B.2)

where r̄ is a point behind the horizon at which r∗ = 0. On the other hand, the time t(r)

along the extremal surface can be written as

t(r) =

∫
dr

r2f
√

1 + E−2r6h−1f
. (B.3)

Using the above equations we can express variation in the coordinates U and V as

∆ logU2 =
4π

β
(∆r∗ −∆t) =

4π

β

∫
dr

1

r2f

(
1√

1 + E−2r6h−1f
− 1

)
,

∆ log V 2 =
4π

β
(∆r∗ + ∆t) =

4π

β

∫
dr

1

r2f

(
1√

1 + E−2r6h−1f
+ 1

)
. (B.4)

The coordinate U1 can be calculated considering the variation of U from the boundary to

the horizon

U2
1 = exp

[
4π

β

∫ ∞
rH

dr
1

r2f

(
1√

1 + E−2r6h−1f
− 1

)]
. (B.5)

To compute U2 we consider the variation of U from r = rH to r = r0

U2
2

U1
1

= exp

[
4π

β

∫ rH

r0

du
1

r2f

(
1√

1 + E−2r6h−1f
− 1

)]
. (B.6)

The coordinate V2 can be written as

V2 =
1

U2
exp

[
4π

β

∫ r0

r̄
dr

1

r2f

]
. (B.7)

The shift α can then be computed by considering the variation in the V -coordinate along

the segment III

α2

4V 2
2

= exp

[
4π

β

∫ r0

rH

du
1

r2f

(
1√

1 + E−2r6h−1f
− 1

)]
=
U2

1

U2
2

. (B.8)

Finally, after some simplifications we find that the parameter α can be expressed as

α(r0) = 2 eK1(r0)+K2(r0)+K3(r0) , (B.9)

where the Ki’s are given by equations (4.68)–(4.70).
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C Divergence of K3(r0)

In this appendix we determine the critical radius r0 = rc at which K3(r0) diverges. Ac-

cording to (4.70), K3(r0) is given by

K3 =
4π

β

∫ rH

r0

dr
1

r2f

(
1− 1√

1 + E−2fh−1r6

)
. (C.1)

The critical radius rc can be obtained by considering the integrand of the above equation

in the limit r → r0. Notice that in this limit

E−2fh−1r6 = − fh−1r6

f(r0)h(r0)−1r6
0

=
f(r0)h(r0)−1r6

0 +
(
fh−1r6

)′∣∣
r=r0

(r − r0)

f(r0)h(r0)−1r6
0

+O(r − r0)2

= 1 +

(
fh−1r6

)′
fh−1r6

∣∣∣
r=r0

(r − r0) +O(r − r0)2 . (C.2)

Using the above result in equation (C.1) one finds

K3 ≈ −
4π

β

∫ rH

r0

dr
1

r2
0f(r0)

1− 1√
−
(
fh−1r6

)′
fh−1r6

∣∣∣
r=r0

(r − r0)

 . (C.3)

Indeed, the above expression diverges when r0 → rc such that(
fh−1r6

)′
fh−1r6

∣∣∣
r=rc

= 0 . (C.4)

The solution to this equation is given by equation (4.71) and approaches the standard value

rc → rH
31/4 in the limit a→ 0.
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