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1 Motivation, Problem Statement, and Related Work

We present an anytime [1] adaptive sampling technique that generates paths to
efficiently measure and then mathematically model a scalar field by performing
non-uniform measurements in a given region of interest. In particular, the class
of scalar field we are interested is some physical or virtual parameter that varies
with location, such as depth of the sea floor or the probability of finding a lost
object. As the measurements are collected at each sampling location, we can
compute an estimate of the large-scale variation of the phenomenon of interest.
We compute a sampling path that minimizes the expected time to accurately
model the phenomenon of interest by visiting high information regions using
non-myopic path generation based on reinforcement learning.

As an example application, we consider monitoring the health of coral reefs
by sampling visual data from the surface using an autonomous surface vehicle
(ASV) shown in Fig. 1a. Increase in the sea surface temperatures has resulted
in widespread coral bleaching at an ever-increasing rate [2] (Fig. 1b). Improved
monitoring would enhance the currently poor understanding of the spatial and
temporal dynamics of coral bleaching. Since we are sampling from the surface,
higher information gain is provided in shallower regions where visibility is better.

(a) (b) (c)

Fig. 1: (a) Custom made differential drive ASV used for coral reef surveys. (b)
A coral with bleached spots [2]. (c) Aerial image of the reef surveyed in our

field experiments.
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Novel contributions of this work include (1) the computation of a sampling
technique based on policy search, (2) a non-uniform (multi-resolution) represen-
tation of the state space to aid better spatial sampling and (3) a statistically
significant evaluation through rigorous experiments with real satellite image data
and real robots in the field.

Active sampling refers to the act of strategically planning paths based on
the observations made until the current time-step. Exhaustively sampling each
point of an unknown survey region [3, 4] can be tedious and impractical if the
survey space is large and/or the phenomenon of interest has only a few regions
with important information (hotspots) [5, 6]. Also it has been observed that for
low-pass multi-band signals, uniform sampling can be inefficient and sampling
rates far below the Nyquist rate can still be information preserving [7]. This is
the key guiding principle behind active and non-uniform sampling [6, 8, 9].

In our approach, a continuous two-dimensional sampling region is discretized
into uniform grid-cells, such that the robot’s position x can be represented by a
pair of integers x ∈ Z2. Each grid-cell (i, j) is assigned a score q(i, j) indicating
the expected goodness of the visual data in that cell. The goal is to maximize the
total accumulated score J over a trajectory τ within a fixed amount of time T .
To specify the robot’s behavior we use a parametrized policy πθ(s,a) = p(a|s;θ)
that maps the current state s of sampling to a distribution over possible actions
a. Our aim will be to automatically find good parameters θ, after which the
policy can be deployed without additional training on new problems.

2 Technical Approach

Our algorithm gets trained with a generic score-map (q) generated by the satel-
lite data from areas that exemplify the target environments, for example images
of coral reefs. The system is trained to achieve paths that preferentially cover
hotspots at the earlier stages of exploration. These learned parameters then de-
fine a policy π (in the sense of reinforcement learning) that is then used on the
satellite image or any other sensor map of the target coral reef (Fig. 1c) to gen-
erate an explicit action plan. During the test phase, an action with maximum
probability is chosen at a given state. Thus, the policy does not need to be
re-trained for each new reef map. This property is a key feature of our approach.

In our approach, we formalize the sampling problem as a Markov Decision
Process (MDP). We take the state s to include the position of the robot x as well
as the map q containing the per-location score for the visual data, s = (x, q).
The action space A consists of four actions (move North, East, South, or West).
Transitions deterministically move the agent in the desired direction. Once the
visual data at the current cell (i, j) is sampled, the score q(i, j) is reduced to 0.
The discounted reward function is defined as γtq(x), with the discount factor
0 ≤ γ ≤ 1 encouraging the robot to sample cells with high scores in early time
steps t.

2.1 Policy Gradient Method

Policy gradient methods use gradient ascent for maximizing the expected return

Jθ = Eτθ [
∑|τθ|
t=1 q(xt)γ

t]. The gradient of the expected return (∇θJθ) guides the
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direction of the parameter update (θk+1 = θk + η∇θJθ, where η is the learning
rate). The likelihood ratio policy gradient [10] is given by,

∇θJθ =

∫
τ

∇θpθ(τ)R(τ)dτ (1)

This expression depends on the correlation between actions and previous re-
wards, which are 0 in expectation and cause additional variance. We use the
Policy Gradient Theorem (PGT) algorithm and the GPOMDP algorithm [11–
14] for computing the policy gradient as it yields relatively low-variance updates.
Accordingly, the policy gradient is given by,

∇θJθ =
1

m

m∑
i=1

H−1∑
t=0

∇θ log πθ(a
(i)
t |s

(i)
t )

H−1∑
j=t

r(s
(i)
j , a

(i)
j )− b(s(i)t )

 . (2)

In this equation, the gradient is based onm sampled trajectories from the system,

with s
(i)
j the state at the jth time-step of the ith sampled roll-outs. Furthermore,

b is a variance-reducing baseline. In our experiments, we set the baseline to the
observed average reward.

2.2 Feature Aggregation

A popular method to define stochastic policies over a set of deterministic actions
is the use of the Gibbs distribution as policy (also referred to as Boltzman explo-
ration of softmax policy). We consider a commonly used linear Gibbs softmax
policy parameterization [12, 15] given by,

π(s,a) =
eθ
Tφs,a∑

b e
θTφs,b

, ∀s ∈ S;a,b ∈ A, (3)

where φs,a is an l-dimensional feature vector characterizing state-action pair
(s,a) and θ is an l-dimensional parameter vector.

The final feature vector φs,a is formed by concatenating a vector φ′sδaa′ for
every action a′ ∈ {North,East, South,West}, where φ′s ⊂ Rk is a feature rep-
resentation of the state space, and δaa′ is the Kronecker delta. Thus, the final
feature vector has 4×k entries, 75% of which corresponding to non-chosen actions
will be 0 at any one time step. We consider five different types of robot-centric
feature designs (φ′s). The first one is to consider a vector with all the scores in the
score-map q as presented in Fig. 2a. This feature vector grows in length as the
size of the sampling region increases resulting in higher computation times for
bigger regions. The four other kinds of feature aggregations are illustrated in Fig.
2b - 2e. These aggregations have a fixed number of features, corresponding to
the average scores in the feature map in each of the indicated areas, irrespective
of the size of the sampling region.

Fig. 2e depicts a multi-resolution aggregation where the feature cells grow
in size along with the distance from the robot. This results in high resolution
features close to the robot and lower resolution features further from the robot’s
current position. The aggregated feature design is only used to achieve better
policy search [16], but the robot action is still defined at the grid-cell level.
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(a) (b) (c)

(d) (e)

Fig. 2: Robot-centric feature space aggregations. (a) Uniform-grid feature
aggregation. (b) 4-feature aggregation. (c) 8-feature aggregation. (d) 24-feature

aggregation. (e) Multi-resolution feature aggregation.

3 Experiments

We use a custom-made (Fig. 1a) ASV to survey the coral reefs from the surface
to collect visual data. We train our policy based sampling algorithm with the
scoremap (Fig. 3b) computed as a multispectral function of the satellite image of
a reef (Fig. 3a). The ASV uses the trained parameters to generate sampling paths
over the map of interest. We present two test scenarios: 1) A densely populated
reef shown in Fig. 4a, and 2) A reef with scattered coral heads shown in Fig.
4c. In the examples in this paper we use aerial images of the reef in Holetown,
Barbados.

(a) (b)

Fig. 3: Experimental setup and scenarios. (a) Satellite image of a reef used for
training. (b) Scoremap used for training. The colorbar indicates the

interestingness or a score for the presence of corals.
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We compare our sampling algorithm with a traditional exhaustive sampling
technique using boustrophedonic path [4].

(a) (b) (c) (d)

Fig. 4: Experimental scenarios. (a) and (c) Reef images for test scenarios 1 and
2 respectively. (b) and (d) Scoremaps of the test scenarios 1 and 2 respectively.

Colorbars of the scoremaps indicate a score for the presence of corals.

4 Results

Comparing different feature aggregations presented in Section 2.2 shows that
multi-resolution aggregated features achieve the highest discounted total re-
wards (Fig. 5a). Also for the uniform grid aggregation, the computation increases
quadratically with the size of the area map (Fig. 5b). These results further
strengthen our observation (which follows from the nature of reward discount-
ing under gentle assumptions) that immediate actions are influenced by nearby
rewards and the farther low-resolution features enhance non-myopic planning
of the complete trajectory. Hence, we used multi-resolution representation for
further experiments.

(a) Discounted total rewards (b) CPU-time vs. world size

Fig. 5: Results from evaluation of different feature aggregations. Shaded region
indicates the standard deviation over five trials on three different sized maps.

Fig. 6a-6d present the paths generated by our sampling technique and the
boustrophedonic sampler on both the test scenarios for 800 time-steps. The
path generated by our technique clearly minimizes the sampling over sand and
maximizes the visual sampling of corals. The total score collected by both the
approaches is comparable (Fig. 6e); however, the discounted reward achieved
by our method is significantly higher when running on the scattered coral-head
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(a) (b) (c) (d)

(e) (f)

Fig. 6: Results comparing the policy search based sampling algorithm with
boustrophedonic sampler. (a) and (c) Policy based sampling path for scenario1
and scenario2 respectively. (b) and (d) Boustrophedonic path for scenario1 and

scenario2 respectively. (e) and (f) present the plots for total accumulated
rewards and discounted rewards against the length of different sampling paths

as indicated in the legends. We used γ = 0.9 for discounting over time.

scenario (Fig. 6f). This indicates that the proposed approach tends to gather
most score early on in the trajectory, resulting in better anytime performance.

5 Field Experiments

The example application considered in this paper is to collect the visual data
of corals from the surface of water. Hence, the shallower the regions visited, the
better is the quality of the coral images. In field experiments, we collect visual
data of the reef with our sampling method and evaluate our technique for this
specific application using the bathymetric data as a measure for shallowness of
the region covered. Fig. 7 presents the images captured at different locations of
the reef region with varying depths. These images strengthen our hypothesis of
covering shallower reefs to achieve high quality visual data of the corals.

We conducted field experiments at Folkestone Marine Reserve in Barbados
(Fig. 8a), over a shallow region known to have several coral outcrops. The size
of the region to interest considered in these experiments is 90m × 90m. The
scoremap (Fig. 8b) is computed as a multispectral function of the satellite image
of the reef in this region. The reef region is discretized into a grid-world to fit
the scoremap of size 30 × 30. We deployed a custom made differential drive
ASV (Fig. 1a and 8c) equipped with a sensor suite consisting of: a downward
facing camera, a sonar pinger (1Hz), a GPS receiver for localization, and a
water-quality sensor-pack.
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(a) (b)

Fig. 7: Quality of the visual data. Column (a) presents two images with no
useful information. The reef is either too deep (> 20 ft) for good visual samples
from the surface or there are no coral-heads. Column (b) presents good quality

visual samples of the coral-heads from shallower regions.

Our policy based sampling system was trained on the same scoremap used in
Section 3 (Fig. 3b). The path generated by our method is presented in Fig. 9a.
The generated path covers most of the high-scoring regions according to the
scoremap used (Fig. 8b). This path is limited to a run of 40 minutes. The path
in Fig. 9b illustrates the actual path executed by the autonomous boat and it
is observed that the sea surface conditions have a considerable impact on the
smoothness of the trajectory executed. It is possible for the policy from our
approach to flexibly adapt to such distortions as it can be re-evaluated at each
time step. Thus visiting spots that it missed now on a later pass, or skip parts
that it accidentally visited too early.

(a) (b) (c)

Fig. 8: Setup for field experiments. (a) Folkestone Marine Reserve area in
Barbados with several coral outcrops. The region of interest is marked with a
rectangular box. (b) Scoremap generated by processing the satellite images of

the region of interest. Colorbar of the scoremap indicates the interestingness or
score for the presence of corals. (c) Aerial image of the ASV performing visual

data sampling.
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(a) (b)

(c) (d)

(e)

Fig. 9: Results from field experiments. (a) Planned path for visual data
sampling using our non-uniform policy based sampling technique. White and

black dots represent the start and end points of the path respectively. (b) The
trajectory of the boat in field. The discrepancy between the planned and

executed path is due to the sea-surface conditions during the trials. (c) and (d)
are the planned and executed boustrophedonic paths. (e) Plot illustrating that
the number of non-informative visual samples collected by a boustrophedonic

sampler is almost three times the ones collected by our method.
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We compare the coverage performed by our policy search method with a
traditional exhaustive coverage technique using boustrophedonic path. It took
75 minutes for boustrophedonic path to completely cover the region of interest.
Fig. 9c illustrates the boustrophedonic path to perform sampling for the first
40 minutes. Fig. 9e presents the total number of visual data points collected
from regions which are deeper than 20 feet (i.e. visual data samples that are
not useful to monitor the health of the corals) plotted against the time spent
surveying the region. The total number of visual data points considered in this
plot is constant for both the techniques. The comparison plot illustrates that
the number of non-informative visual samples collected by a boustrophedonic
sampler is more than twice the ones collected by our non-uniform policy based
sampling method.

6 Conclusions and Experimental Insights

One of the novel contributions of this paper is to explore non-uniform state
aggregation in policy search in the context of robotic path planning. The re-
sults suggest that such aggregation can have a major impact on the efficiency
of state exploration and modeling as demonstrated by exhaustive experiments
using real-but-stored data from real field deployments. We further validated this
expectation in our field deployments. The incremental sampling-and-modeling
paradigm we use, can be applied to many different domains where the bene-
fits of efficient sample acquisition should accrue, but in the marine measurement
domain in particular it is irrefutable that increased sampling efficiency has a ma-
jor impact on the scale and feasibility of modeling efforts. For example, on the
North and South Bellairs reefs where our experiments were conducted, the im-
pact of weather and sea conditions (including tidal variations) place a significant
premium on efficient sampling and have often curtained a measurement session
prematurely. Likewise, this makes the use of anytime algorithms (like ours) espe-
cially important since an experiment may have to be terminated without much
prior notice [1].

The direct application of our approach presupposes ongoing localization. For
the near-shore ocean at moderate scales, this can be reliably achieved using tra-
ditional GPS, differential GPS, and related methods [17]. This need for ongoing
localization applies to most methods, but by using non-uniform spatial sampling,
it may be possible to better account for some types of pose estimation errors.
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