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Dualities in the q-Askey Scheme and Degenerate DAHA

By Tom H. Koornwinder and Marta Mazzocco

The Askey–Wilson polynomials are a four-parameter family of orthogonal
symmetric Laurent polynomials Rn[z] that are eigenfunctions of a
second-order q-difference operator L , and of a second-order difference
operator in the variable n with eigenvalue z + z−1 = 2x . Then, L and
multiplication by z + z−1 generate the Askey–Wilson (Zhedanov) algebra. A
nice property of the Askey–Wilson polynomials is that the variables z and n
occur in the explicit expression in a similar and to some extent exchangeable
way. This property is called duality. It returns in the nonsymmetric case
and in the underlying algebraic structures: the Askey–Wilson algebra and
the double affine Hecke algebra (DAHA). In this paper, we follow the
degeneration of the Askey–Wilson polynomials until two arrows down and
in four different situations: for the orthogonal polynomials themselves, for
the degenerate Askey–Wilson algebras, for the nonsymmetric polynomials,
and for the (degenerate) DAHA and its representations.

1. Introduction

The Askey–Wilson (briefly AW) polynomials [1] are a four-parameter
family of orthogonal polynomials that are eigenfunctions of a second-order
q-difference operator L , and that are explicitly expressed as (terminating)
basic hypergeometric series [2]. We will write them as symmetric Laurent
polynomials Rn[z] of degree n. As orthogonal polynomials, they satisfy a
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three-term recurrence relation. In other words, Rn[z] is also an eigenfunction
with eigenvalue z + z−1 of a second-order difference operator in the variable
n. The operator L and the operator of multiplication by z + z−1, both
acting on symmetric Laurent polynomials f [z], generate the Zhedanov
or AW algebra [3], which can be presented by generators and simple
relations.

The idea of nonsymmetric special functions, which yield (usually orthog-
onal) symmetric special functions by symmetrization, started with the intro-
duction of the Dunkl operators [4], which are differential-reflection operator
associated with a root system. These were generalized to Dunkl–Cherednik
operators Y , which are q-difference-reflection operators associated with root
systems, and which appear in the basic (or polynomial) representation of
the double affine Hecke algebra (DAHA) [5]. Nonsymmetric Macdonald
polynomials arose as eigenfunctions of these operators Y . A more general
DAHA [6] yielded nonsymmetric Macdonald–Koornwinder polynomials. In
the rank 1 case, this is the DAHA of type (Č1,C1) (the AW DAHA), which
yields the nonsymmetric AW polynomials [7]. Furthermore, the AW algebra
and the AW DAHA are closely connected. A central extension of the AW
algebra can be embedded [8, 9] in the AW DAHA, while, conversely, the
AW algebra is isomorphic [10] to the spherical subalgebra of the AW
DAHA.

A nice property of AW polynomials Rn[z], directly visible in the
q-hypergeometric expression, is that the variables z and n occur in a similar
and to some extent exchangeable way (completely exchangeable in the
corresponding discrete q-Racah case [11, section 14.2] and in the case of
the Askey–Wilson functions [12], see also Remark 8 and Section 8). This
property is called duality. It returns in the nonsymmetric case and in the
underlying algebraic structures of the AW algebra and the AW DAHA.
Therefore, the duality extends to the operators occurring in the basic
representations of these algebraic structures and having the symmetric or
nonsymmetric AW polynomials as eigenfunctions.

The AW polynomials are on top of the q-Askey scheme and (by letting
q → 1) the Askey scheme [11, Ch. 9, 14]. The orthogonal polynomials
in the “lower” families are limits of AW polynomials (or q-Racah
polynomials). There are also [13] corresponding limits of the AW algebra.
The duality property of the AW polynomials then may also have a limit,
but usually as a duality between two different families. In general, two
different families of special functions φλ(x) and ψμ(y), both occurring as
eigenfunctions of a certain operator, are dual when φλ(x) = ψσ (x)(τ (λ)) for
certain functions σ and τ (possibly only for a restricted set of values of λ
and x). When the equality holds for all spectral values of the two operators,
then this property is called bispectrality. It was first emphasized in the
context of differential (rather than q-difference) operators by Duistermaat
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and Grünbaum [14]. In that seminal paper, motivated by the need to analyze
the relation between amounts of data and image quality in limited angle
tomography, the authors classified all possible potentials in the Schrödinger
equation such that the wave functions would be an eigenfunction of a
difference operator in the spectral parameter as well. Since then, the
bispectrality has been key for the determination of special solutions of the
KdV equation and of the KP hierarchy [15–17] and of many other integrable
equations including integrable systems of particles [18–20].

This line of research produced further links with Huygens’ principle of
wave propagation [21], representation of infinite dimensional Lie algebras,
and isomonodromic deformations of differential equations [22, 23]. In
the latter context, the second author of the current paper discovered a
link between the theory of the Painlevé differential equations and some
families in the q-Askey scheme [24]. Let us briefly explain what this link
consists of. The Painlevé differential equations are eight nonlinear ordinary
differential equations whose solutions are encoded by points in the so-called
monodromy manifolds (a different manifold for each Painlevé equation).
Each of these monodromy manifolds carries a natural Poisson structure
that quantizes to a special degeneration of the AW algebra that regulates
a specific family in the q-Askey scheme. Interestingly, dual families (for
example, the continuous dual q-Hahn and the big q-Jacobi polynomials)
correspond to the same monodromy manifold in the classical limit, thus
suggesting an alternative approach to spot dualities. Moreover, the limit
transitions in the q-Askey scheme correspond to the so-called confluence
procedure of the Painlevé equations, which can be viewed geometrically as
a procedure to merge holes on a Riemann sphere by which cusped holes are
created [25]. In this picture, dual families in the q-Askey scheme correspond
to Riemann spheres with the same structure.

This paper studies, for a relatively small but important part of the
q-Askey scheme (see Figure 1), the duality and its limit behavior, first for
the symmetric polynomials and the corresponding (degenerate) AW algebras,
and next, starting in Section 5, for the nonsymmetric polynomials and
the corresponding (degenerate) DAHAs. These degenerate DAHAs were
introduced by the second author [24, 26]. The ones on the lowest level of
Figure 1 can be recognized as nil-DAHAs [27, Remark 8.4].

The nonsymmetric versions of the continuous dual q-Hahn polynomials
and the Al-Salam–Chihara polynomials were earlier studied by the second
author [26]. With regard to the nonsymmetric versions of the big and
little q-Jacobi polynomials, there is the problem that one has to pass
from Laurent polynomials to ordinary polynomials. In a paper [28] by
the first author and Bouzeffour, this was circumvented for the limit from
Askey–Wilson directly to little q-Jacobi by rewriting the nonsymmetric AW
polynomials as 2-vector-valued ordinary polynomials and then taking the
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Askey-Wilson

Continuous Dual q-Hahn Big q-Jacobi

Al-Salam-Chihara Little q-Jacobi

Figure 1. Part of q-Askey scheme treated in this paper. Dashed lines show duality.

limit. As shown in Section 7.3, this works also for the limit from AW to
big q-Jacobi. As for nonsymmetric little q-Jacobi, there turn out to be two
versions, depending on how the limit from big to little q-Jacobi is taken.
One of these versions is dual to Al-Salam–Chihara, but the other is dual
to the Askey–Wilson q-Bessel functions [29, (2.12)], which are no longer
polynomials but transcendental functions. This should not be seen as a
serious obstacle. There are many other examples of nonpolynomial limit
cases of polynomials in the (q-)Askey scheme, the best known probably
being Bessel functions as limit cases of Jacobi polynomials.

This paper is organized as follows. Sections 2–4 deal with symmetric
polynomials, their duals, and the corresponding (degenerate) Zhedanov
algebras. This is done for the AW polynomials in Section 2, for continuous
dual q-Hahn and big q-Jacobi in Section 3, and for Al-Salam–Chihara
and little q-Jacobi in Section 4. Next, Sections 5–7 treat nonsymmetric
polynomials, their duals, and the corresponding (degenerate) DAHAs. The
nonsymmetric AW case is in Section 5, its 2D vector-valued realization
in Section 6, and the degenerate cases in Section 7. Finally, Section 8
gives a summary of other related work and offers perspectives for further
research.

Notation. In this paper, we denote the variable of a Laurent polynomial
by z and the one of a standard polynomial by x . To emphasize the type of
polynomials under consideration, we also use square brackets for Laurent
polynomials and round brackets for ordinary polynomials. Correspondingly,
when dealing with DAHA and its degenerations, we will denote the
generators in “standard presentation” by T0, T1, Z±1 when Z is invertible,
T0, T1, X, X ′ when X is not invertible.

For q-hypergeometric series, we use notation as in [2, section 1.2], but we
will usually relax the conditions on q.
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2. Duality for the Askey–Wilson polynomials and the Zhedanov algebra

2.1. Definition of Askey–Wilson polynomials and eigenvalue equations

In this paper, we will use the following standardization and notation for
Askey–Wilson polynomials (in short AW polynomials)

Rn[z] = Rn[z; a, b, c, d | q] := 4φ3

(
q−n, qn−1abcd, az, az−1

ab, ac, ad
; q, q

)
, (1)

and we will work in the following assumptions:

q �= 0, qm �= 1 (m = 1, 2, . . .);

a, b, c, d �= 0, abcd �= q−m (m = 0, 1, 2, . . .). (2)

The polynomials (1) are related to the AW polynomials pn(x ; a, b, c, d | q)
in usual notation [11, (14.1.1)] by

pn

(
1
2 (z + z−1); a, b, c, d | q

) = a−n(ab, ac, ad; q)n Rn[z; a, b, c, d | q]. (3)

While pn(x ; a, b, c, d | q) is symmetric in its four parameters a, b, c, d,
Rn[z; a, b, c, d | q] is only symmetric in b, c, d. However, the larger
symmetry involving a is lost anyhow with the duality to be discussed later,
see (26).

The polynomials Rn[z] are eigenfunctions of the operator Lz acting on
the space of symmetric Laurent polynomials f [z] = f [z−1]:

(L f )[z] = Lz( f [z]) := (
1 + q−1abcd

)
f [z]

+ (1 − az)(1 − bz)(1 − cz)(1 − dz)

(1 − z2)(1 − qz2)
( f [qz] − f [z])

+ (a − z)(b − z)(c − z)(d − z)

(1 − z2)(q − z2)
( f [q−1z] − f [z]). (4)

The eigenvalue equation is

Lz(Rn[z]) = λn Rn[z], λn := q−n + abcdqn−1. (5)

Under condition (2) all eigenvalues in (5) are distinct.
The three-term recurrence relation [11, (14.1.4)] for the AW polynomials

can be interpreted as an eigenvalue equation if we consider Rn[z] for fixed z
in its dependence on n. Then, Rn[z] is an eigenfunction of the operator Mn ,
acting on functions g(n) of n (n = 0, 1, 2, . . .), defined by

Mn(g(n)) := Ang(n + 1) + (a + a−1 − An − Cn)g(n) + Cng(n − 1), (6)

An := (1 − abqn)(1 − acqn)(1 − adqn)(1 − abcdqn−1)

a(1 − abcdq2n−1)(1 − abcdq2n)
,
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Cn := a(1 − qn)(1 − bcqn−1)(1 − bdqn−1)(1 − cdqn−1)

(1 − abcdq2n−2)(1 − abcdq2n−1)
, C0 = 0.

The eigenvalue equation is

Mn(Rn[z]) = (z + z−1) Rn[z]. (7)

Under stricter conditions than (2), namely, 0 < q < 1 and
|a|, |b|, |c|, |d| ≤ 1 such that pairwise products of a, b, c, d are not
equal to 1 and such that nonreal parameters occur in complex conjugate
pairs, the AW polynomials are orthogonal with respect to a nonnegative
weight function on x = 1

2 (z + z−1) ∈ [−1, 1]. For convenience, we give this
orthogonality in the variable z on the unit circle, where the integrand is
invariant under z → z−1:

(q, ab, ac, ad, bc, bd, cd; q)∞
4π (abcd; q)∞

∫
|z|=1

Rm[z] Rn[z]

∣∣∣∣ (z2; q)∞
(az, bz, cz, dz; q)∞

∣∣∣∣2 dz

i z
= hn δm,n, (8)

where h0 = 1 and where the explicit expression for hn (omitted here) can be
obtained from [11, (14.1.2)] together with (3).

2.2. Zhedanov algebra

The Zhedanov algebra or AW algebra AW(3) (see [3]) is the algebra with
two generators K0 and K1 and with two relations

(q + q−1)K1 K0 K1 − K 2
1 K0 − K0K 2

1 = B K1 + C0 K0 + D0,

(q + q−1)K0 K1 K0 − K 2
0 K1 − K1K 2

0 = B K0 + C1 K1 + D1. (9)

Here, the structure constants B, C0, C1, D0, and D1 are fixed complex
constants.

Remark 1. The relations for AW(3) were originally given in [3] in terms
of three generators (which explains the notation AW(3)): K0, K1, and, in
addition, K2 that is given in terms of K1 and K2 by the q-commutator

K2 := [K0, K1]q := q
1
2 K0K1 − q− 1

2 K1K0.

This presentation is in particular suitable for computations in computer
algebra, because the three relations can be written in PBW (Poincaré-
Birkhoff-Witt) form. In this paper, we prefer the two generators version
because it makes the duality we plan to discuss more transparent.

There is a Casimir element Q commuting with K0 and K1:

Q := K1K0K1 K0 − (
q2 + 1 + q−2

)
K0K1 K0K1 + (q + q−1)K 2

0 K 2
1

+ (q + q−1)
(
C0 K 2

0 + C1 K 2
1

)+ B
(
(q + 1 + q−1)K0K1 + K1K0

)
+ (q + 1 + q−1)(D0 K0 + D1 K1). (10)
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Remark 2. As observed in [10, remark 2.3], for the five structure con-
stants B, C0, C1, D0, D1 in the relations (9), two degrees of freedom are
caused by scale transformations K0 → c0K0 and K1 → c1K1 of the genera-
tors. These induce the following transformations on the structure constants:

B → c0c1 B, C0 → c2
1C0, C1 → c2

0C1, D0 → c0c2
1 D0, D1 → c2

0c1 D1.

These also result into a transformation Q → c2
0c2

1 Q of the Casimir element
(10). So, there are essentially only three degrees of freedom for the structure
constants (and one more freedom to fix the value of Q in the basic
representation, see Remark 4). A nice way of presenting this symmetrically
was emphasized by Terwilliger [30, (1.1)]. In slightly different notation, this
is done as follows. Put

A0 := (q − q−1)C
− 1

2
1 K0,

A1 := (q − q−1)C
− 1

2
0 K1,

A2 := (q − q−1)(C0C1)−
1
2

(
−[K0, K1]q + (q

1
2 − q− 1

2 )−1 B
)
. (11)

Then, we can equivalently describe AW(3) as the algebra generated by
A0, A1, A2 with relations

(q − q−1)−1[A1, A2]q + A0 = α0, (q − q−1)−1[A2, A0]q + A1 = α1,

(q − q−1)−1[A0, A1]q + A2 = α2, (12)

where α0, α1, α2 are structure constants that can be expressed in terms of
B,C0,C1, D0, D1 by

α0 = − (q − q−1)D0

C0C
1
2
1

, α1 = − (q − q−1)D1

C
1
2
0 C1

, α2 = (q
1
2 + q− 1

2 )B

(C0C1)
1
2

. (13)

Terwilliger [30] considers α0, α1, α2 as central elements. He calls the
resulting algebra the universal Askey–Wilson algebra. He also identifies a
Casimir element ω, which is closely related to Q in (10):

ω := q
1
2 A0 A1 A2 + q A2

0 + q−1 A2
1 + q A2

2 − (1 + q)α0 A0

− (1 + q−1)α1 A1 − (1 + q)α2 A2 = (q − q−1)2(C0C1)−1 Q − α2. (14)

Then, he proves in [30, corollary 8.3] that the four central elements
α0, α1, α2, ω generate the center of the universal Askey–Wilson algebra.
Therefore, in our presentation, Q generates the center of AW(3).

To go back from relations (12) to (9), we need two arbitrary rescaling
constants c0, c1 �= 0, and then put:

K0 = c−1
0 A0, K1 = c−1

1 A1, C0 = (q − q−1)2c−1
1 , C1 = (q − q−1)2c−1

0 ,
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B = (q − q−1)2α2

(q
1
2 + q− 1

2 )c0c1

, D0 = − (q − q−1)2α0

c0c2
1

, D1 = − (q − q−1)2α1

c2
0c1

.

Then Q = (q − q−1)−2(c0c1)2(ω + α2).

Remark 3. In connection with the relations (9) defining AW(3), let
〈K1, K2〉 denote the free algebra generated by K1 and K2. Note that
the algebra isomorphism τ : 〈K1, K2〉 → 〈K1, K2〉op, which reverses the
order of the factors in the terms of the elements of 〈K1, K2〉, leaves
invariant the ideal generated by the relations (9) (each of the two relations
separately is even left invariant). Thus, τ induces an algebra isomorphism
τ : AW(3) → AW(3)op. It can be shown that the Casimir element Q,
given by (10), is invariant under τ . However, in the setup with generators
A0, A1, A2 and relations (12), there is no invariance of the relations after
reversion of the order of the factors.

Let e1, e2, e3, e4 be the elementary symmetric polynomials in a, b, c, d:

e1 := a + b + c + d, e2 := ab + ac + bc + ad + bd + cd,

e3 := abc + abd + acd + bcd, e4 := abcd. (15)

Then express the structure constants in (9) in terms of a, b, c, d by means
of (15):

B := (1 − q−1)2(e3 + qe1),

C0 := (q − q−1)2, C1 := q−1(q − q−1)2e4,

D0 := −q−3(1 − q)2(1 + q)(e4 + qe2 + q2),

D1 := −q−3(1 − q)2(1 + q)(e1e4 + qe3). (16)

Note that, for given C0 = (q − q−1)2 and for given values of B,C1, D0, D1,
we can solve (2.11) as a system of equations in e1, e2, e3, e4. This system is
uniquely solvable. Next, e1, e2, e3, e4 determine a, b, c, d up to permutations.

There is a representation (the basic representation or polynomial
representation) of the algebra AW(3) with structure constants (16) on the
space of symmetric Laurent polynomials as follows:

(K0 f )[z] := Lz( f [z]), (K1 f )[z] := (Z + Z−1)( f )[z] = (z + z−1) f [z],
(17)

where Lz is the operator (4) having the AW polynomials as eigenfunctions
and Z±1 is the operator of multiplication by z±1. The Casimir element Q
becomes constant in this representation:

(Q f )(z) = Q0 f (z), (18)
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where

Q0 := q−4(1 − q)2
(
q4(e4 − e2) + q3

(
e2

1 − e1e3 − 2e2
)

−q2(e2e4 + 2e4 + e2) + q
(
e2

3 − 2e2e4 − e1e3
)+ e4(1 − e2)

)
. (19)

Remark 4. The basic representation (17) gives rise to a one-parameter
family of representations of AW(3) by using a scale transformation
K0 → λK0, K1 → K1 in (9). Compare with the beginning of Remark 2:
we now take c0 = λ, c1 = 1. Now we have to solve e1, e2, e3, e4 from the
system of equations

λB = (1 − q−1)2(e3 + qe1), λ2C1 = q−1(q − q−1)2e4,

λD0 = − (1 − q)2(1 + q)

q3

(
e4 + qe2 + q2

)
,

λ2 D1 = − (1 − q)2(1 + q)

q3
(e1e4 + qe3),

and we get a, b, c, d (depending on λ) from e1, e2, e3, e4. Then, for each
value of λ, we have a representation

(K0 f )[z] := λ−1Lz( f [z]), (K1 f )[z] := (Z + Z−1)( f )[z].

Here, Lz depends on a, b, c, d, and hence on λ. Then, Q takes the value
λ−2 Q0 with Q0 given by (19), where e1, e2, e3, e4 depend on λ.

If, conversely, we do not pick λ but fix Q0, then a very complicated
system of five equations in e1, e2, e3, e4, λ has to be solved.

For the relations (12), a one-parameter family of representations can be
obtained by first passing to the relations (9) as we specified in Remark 2,
obtaining the representations there, and rewriting everything again in terms
of the relations (12).

Definition 1. The center-free Zhedanov or Askey–Wilson algebra
AW(3, Q0) is the algebra generated by K0, K1 with three relations, namely,
the two relations (9), where the structure constants are expressed in terms of
a, b, c, d, q by (16) and (15), and the relation

Q = Q0, (20)

where Q and Q0 are given by (10) and (19).

To emphasize the dependence on the structure constants and the choice
of generators, we will also use notation AW(3, Q0) = AWa,b,c,d;q(3, Q0) =
AWa,b,c,d;q(3, Q0; K0, K1). By Remark 4, for q fixed, AWa,b,c,d;q(3, Q0) is
in bijective correspondence with a, b, c, d up to permutations. By what we
observed at the end of Remark 2, the algebra AW(3, Q0) has center {0}. It
was proved in [8, theorem 2.2] that (17) generates a faithful representation
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of AWa,b,c,d;q(3, Q0). By Remark 3, the map τ : 〈K1, K2〉 → 〈K1, K2〉op

induces an algebra isomorphism τ : AW(3, Q0) → AW(3, Q0)op.
A representation of AWa,b,c,d;q(3, Q0) that is essentially equivalent to the

representation generated by (17) can be realized on the space of functions
g(n) (n = 0, 1, 2, . . .) as follows:

(K0g)(n) := �n(g(n)) := λn g(n), (K1g)(n) := Mn(g(n)). (21)

This follows because the AW polynomials are the overlap coefficients
connecting the two representations:

Lz(Rn[z]) = �n(Rn[z]), (Z + Z−1)(Rn[z]) = Mn(Rn[z])

in the following sense: the AW polynomials form a complete system of
orthogonal polynomials with respect to a suitable orthogonality measure μ.
Then, the Fourier–Askey–Wilson transform f → f̂ ,

f̂ (n) :=
∫

f [z] Rn[z] dμ(z) (22)

intertwines between the two representations. In fact,

�n( f̂ (n)) = λn

∫
f [z] Rn[z] dμ(z) =

∫
f [z] (L Rn)[z] dμ(z)

=
∫

(L f )[z] Rn[z] dμ(z) = L̂ f (n), (23)

where in the last step, we have used the fact that L is a self-adjoint operator
on the real Hilbert space L2(dμ). Similarly,

Mn( f̂ (n)) =
∫

f [z] Mn(Rn[z]) dμ(z) =
∫ (

z + z−1
)

f [z] Rn[z] dμ(z)

= ((Z + Z−1)( f ))̂ (n).

More generally, if p(K0, K1) ∈ 〈K0, K1〉, then

p(�n,Mn)( f̂ (n)) = (p(L , Z + Z−1)( f ))̂ (n).

Hence, �,M satisfy the same relations (9) and (20) as L , Z + Z−1. Thus,
(21) generates a representation of AWa,b,c,d;q(3, Q0). This was already
observed in [3] and [13], more concretely for the q-Racah case, where the
representations are finite-dimensional.

By faithfulness, we have

AWa,b,c,d;q(3, Q0; K0, K1) � AWa,b,c,d;q(3, Q0; L , Z + Z−1)

� AWa,b,c,d;q(3, Q0;�,M).
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2.3. Duality for AW polynomials

Define dual parameters ã, b̃, c̃, d̃ in terms of a, b, c, d by

ã = (q−1abcd)
1
2 , b̃ = ab/ã, c̃ = ac/ã, d̃ = ad/ã. (24)

Jumping from one branch to the other branch in the square root in the for-
mula for ã implies that ã, b̃, c̃, d̃ move to −ã,−b̃,−c̃,−d̃. This corresponds
to the following trivial symmetry that follows immediately from (1):

Rn[z; a, b, c, d | q] = Rn[−z; −a,−b,−c,−d | q]. (25)

Repetition of the parameter transformation recovers the original parameters
up to a possible common multiplication of a, b, c, d by −1, while the
branch choice for ã is irrelevant:

a = (q−1ãb̃c̃d̃)
1
2 , b = ãb̃/a, c = ãc̃/a, d = ãd̃/a. (26)

From (1), we have the duality relation

Rn

[
a−1q−m ; a, b, c, d | q

] = Rm

[
ã−1q−n; ã, b̃, c̃, d̃ | q

]
(m, n ∈ Z≥0).

(27)
By (25), the two sides of (27) are invariant under common multiplication by
−1 of a, b, c, d, respectively, ã, b̃, c̃, d̃.

There is a duality corresponding to (27) for the operators Lz and Mn

defined by (4) and (6), respectively:

Lz( f [z])|z=a−1q−m = ã M̃m( f [a−1q−m]), (28)

where M̃m is the difference operator Mm with respect to dual parameters.
For f [z] := Rn[z], both sides of (28) yield (q−n + abcdqn−1)Rn[a−1q−m].
Similarly to (28), there is a duality between the multiplication operators
Z + Z−1 given by (17) and �n given by (21):

(Z + Z−1)( f [z])|z=a−1q−m = a−1 �̃m( f (a−1q−m)), (29)

where �̃m is the multiplication operator �m with respect to dual parameters.
Formulas (21) and (29) are instances of operators Ǎ acting on functions

on Z≥0 that are induced by restriction of operators A acting on functions
f [z] = f [z−1] depending on z ∈ C\{0}. Suppose that such an operator A
has the property that (A f )[a−1q−m] = 0 for all m ∈ Z≥0 if f [a−1q−m] = 0
for all m ∈ Z≥0. Then, put

( Ǎg)(m) := (A f )[a−1q−m] if g(m) = f [a−1q−m].

Clearly, (AB )̌ = Ǎ B̌. By (21) and (29), if A = L , then Ǎ = ã M̃ , and if
A = Z + Z−1, then Ǎ = a−1�̃.

Corresponding to the trivial symmetry

Rn[z; a, b, c, d | q] = Rn

[
z; a−1, b−1, c−1, d−1 | q−1

]
, (30)
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we see that, by (4), Lz becomes q
abcd Lz if a, b, c, d, q → a−1, b−1,

c−1, d−1, q−1.

Remark 5. By [7, §5.7,§8.5], our dual parameters (24) match with the
dual parameters in [7]: just interchange k0 and u1 in [7, §5.7].

2.4. Duality for AW(3, Q0)

There are several symmetries of AWa,b,c,d;q(3, Q0; K0, K1). We already
observed that it is invariant under permutations of a, b, c, d.

There is an isomorphism [3, §2], [10, (2.11)]1 (both an algebra and an
anti-algebra isomorphism):

AWa,b,c,d;q(3, Q0; K0, K1) � AWã,b̃,c̃,d̃;q(3, Q̃0; aK1, ã−1K0), (31)

where ã, b̃, c̃, d̃ are given in (24), and Q̃0 denotes Q0 in terms of the
dual parameters. Indeed, if B̃, C̃0, . . . denote B,C0, . . . in terms of the dual
parameters, then

B̃ = aã−2 B, C̃0 = ã−2 C1, C̃1 = a2 C0,

D̃0 = aã−2 D1, D̃1 = a2ã−1 D0, Q̃0 = a2ã−2 Q0. (32)

Hence, relations (9) with dual parameters and with K0, K1 replaced by
aK1, ã−1K0 are equivalent to the original relations (9). Furthermore,
replacement of K0, K1, a, b, c, d in the right-hand side of (10) by
aK1, ã−1K0, ã, b̃, c̃, d̃, respectively, yields the old expression multiplied by
a2ã−2, and, by (32), the same is true if we replace a, b, c, d by ã, b̃, c̃, d̃ in
the right-hand side of (19). Thus, the algebras on the left and right of (31)
satisfy equivalent relations.

Remark 6. Let us consider the effect of the duality (31) on the
representation (17). This being a representation means that the relations (9)
and (10) hold for K0 = L , K1 = Z + Z−1. By (31), these relations with
a, b, c, d replaced by ã, b̃, c̃, d̃ hold for K0 = a(Z + Z−1), K1 = ã−1L .
Then, by (28) and (29), the same relations also hold for K0 = �̃, K1 = M̃ .
Thus, we have arrived via the duality isomorphism (31) at the representation
(21) with a, b, c, d replaced by ã, b̃, c̃, d̃.

Remark 7. The duality (31) takes a particularly simple and elegant form
for the algebra generated by A0, A1, A2 with relations (12) together with
ω = ω0, where ω is given by (14) and ω0 is a constant. By (11), (13), and
(32), we see that the duality for that algebra amounts to an anti-isomorphism
that interchanges A0 and A1 and keeps A2 fixed, while α0 and α1 are
interchanged and α2 and ω0 are kept fixed. It follows from [30, Lemma

1In [10, (2.11)], the fourth argument of AW on the right-hand side should be (q−1abcd)
1
2 .
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6.1] that ω then does not change. As the parameters a, b, c, d are no
longer involved in this formulation of the duality, the symmetry breaking
in (31) seems to be absent now. The price to be paid for this is that there
is less immediate contact with the AW polynomials. It is also clear that
the duality in this setting is part of an S3 symmetry acting simultaneously
on A0, A1, A2 and α0, α1, α2. The reparameterization of the Askey–Wilson
parameters in Huang [31, §3.2] seems to behave nicely under this action of
S3. It is not clear what would be the effect on the basic representation by the
action of the full S3 symmetry group.

There is also an algebra isomorphism

AWa,b,c,d;q(3, Q0; K0, K1) � AWa−1,b−1,c−1,d−1;q−1

(
3, Q0;

q

abcd
K0, K1

)
.

(33)

3. Duality for continuous dual q-Hahn and big q-Jacobi polynomials

3.1. Limits to continuous dual q-Hahn and Big q-Jacobi

3.1.1. Limit from AW to continuous dual q-Hahn. The continuous dual
q-Hahn polynomials are the limit case d → 0 of the AW polynomials (1):

Rn[z; a, b, c | q] := 3φ2

(
q−n, az, az−1

ab, ac
; q, q

)
= lim

d→0
Rn[z; a, b, c, d | q].

(34)
The polynomials (34) are related to the continuous dual q-Hahn polynomials
pn(x ; a, b, c | q) in usual notation [11, (14.3.1)] by

pn

(
1
2 (z + z−1); a, b, c | q

) = a−n(ab, ac; q)n Rn[z; a, b, c | q].

The corresponding limits of (4)–(7) for the operators L and M and its
eigenvalue equations are:

(L f )[z] = Lz( f [z]) = (1 − az)(1 − bz)(1 − cz)

(1 − z2)(1 − qz2)
( f [qz] − f [z])

− z(a − z)(b − z)(c − z)

(1 − z2)(q − z2)
( f [q−1z] − f [z]) + f [z], (35)

Lz(Rn[z]) = q−n Rn[z], (36)

Mn(g(n)) = a−1(1 − abqn)(1 − acqn)(g(n + 1) − g(n))

+ a(1 − qn)(1 − bcqn−1)(g(n − 1) − g(n)) + (a + a−1)g(n), (37)

Mn(Rn[z]) = (z + z−1) Rn[z]. (38)
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The obtained q-difference equation and recurrence relation agree with [11,
(14.3.7), (14.3.4)].

3.1.2. Limit from AW to big q-Jacobi. The big q-Jacobi polynomials [11,
(14.5.1)] are obtained as a more tricky limit case [11, (14.1.18)] of AW
polynomials (1):

Pn(x ; a, b, c; q) := 3φ2

(
q−n, qn+1ab, x

aq, cq
; q, q

)
= lim

λ→0
Rn[λ−1x ; λ, qaλ−1, qcλ−1, bc−1λ | q]. (39)

The corresponding limits of (4)–(7) for the operators L and M and its
eigenvalue equations are:

(L f )(x) = Lx ( f (x)) = qacx−2(1 − x)(1 − bc−1x)( f (qx) − f (x))

+ x−2(qa − x)(qc − x) ( f (q−1x) − f (x)) + (1 + qab) f (x), (40)

Lx (Pn(x)) = (q−n + qn+1ab)Pn(x), (41)

Mn(g(n)) = (1 − abqn+1)(1 − aqn+1)(1 − cqn+1)(g(n + 1) − g(n))

(1 − abq2n+1)(1 − abq2n+2)

− qn+1ac(1 − qn)(1 − bqn)(1 − abc−1qn)(g(n − 1) − g(n))

(1 − abq2n)(1 − abq2n+1)
+ g(n), (42)

Mn(Pn(x)) = x Pn(x). (43)

When taking the limit in (6) and (7), we have to substitute

z, a, b, c, d,Mn → λ−1x, λ, qaλ−1, qcλ−1, bc−1λ, λMn.

The obtained q-difference equation and recurrence relation agree with [11,
(14.5.5), (14.5.3)].

3.2. Duality between continuous dual q-Hahn and big q-Jacobi

From the q-hypergeometric expressions (34) and (39), we see that

Rn

[
a−1q−m ; a, b, c | q

] = Pm(q−n; q−1ab, ab−1, q−1ac; q) (m, n ∈ Z≥0).
(44)

This duality turns out to be a limit case of the Askey–Wilson duality (27).
Indeed, by (24), we have

(a, b, c, d) =
(

a, b, c,
qλ2

abc

)
⇔ (ã, b̃, c̃, d̃) = ±

(
λ,

ab

λ
,

ac

λ
,

qλ

bc

)
.

(45)
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So, by (27),

Rn

[
a−1q−m ; a, b, c,

qλ2

abc
| q

]
= Rm

[
λ−1q−n; λ,

ab

λ
,

ac

λ
,

qλ

bc
| q

]
. (46)

Now let λ → 0 in the above equality. By the limits (34) and (39), we obtain
the duality (44).

Similarly to, and as a limit case of (28), there is a duality corresponding
to (44) for the operators Lz and Mn defined by (35) and (42), respectively:

La,b,c
z ( f [z])|z=a−1q−m = ã Mã,b̃,c̃

m ( f [a−1q−m]), (47)

where La,b,c
z is the operator Lz given by (35), Ma,b,c

n is the operator Mn

given by (42), and

(ã, b̃, c̃) =
(

(qab)
1
2 , (qab−1)

1
2 , (qa−1b−1)

1
2 c
)
. (48)

Note that the map (a, b, c) �→ (ã, b̃, c̃) is inverse to the map
(a, b, c) �→ (q−1ab, ab−1, q−1ac).

There is also a duality corresponding to (44) for the operators Lx and Mn

defined by (40) and (37), respectively:

La,b,c
x ( f (x))|x=q−m = ã Mã,b̃,c̃

m ( f (q−m)), (49)

where La,b,c
x is the operator Lx given by (40), Ma,b,c

n is the operator Mn

given by (37), and ã, b̃, c̃ are as in (48).

3.3. Corresponding degenerations of AW(3, Q0) and their duality

As d → 0, the Zhedanov algebra AW(3, Q0) = AWa,b,c,d;q(3, Q0; K0, K1)
tends to the algebra with two generators K0 and K1 with relations (9) and
(18), where C1 = 0 and B,C0, D0, D1, Q0 depend on a, b, c and on d = 0
as in (16) and (19) and e1, e2, e3 are the elementary symmetric polynomials
in a, b, c:

B = (1 − q−1)2(ab + ac + bc + q(a + b + c)), C0 := (q − q−1)2,

D0 = − (1 − q)2(1 + q)

q2
(ab + ac + bc + q), D1 = − (1 − q)2(1 + q)

q2
abc,

Q0 = q−3(1 − q)2
(−q3e2 + q2

(
e2

1 − e1e3 − 2e2
)− qe2 + e2

3 − e1e3
)
. (50)

In the expression (10) for Q, also put C1 = 0 and substitute (50). We denote
the resulting algebra by

AWCDqH
a,b,c;q(3, Q0) = lim

d→0
AWa,b,c,d;q(3, Q0), (51)

where, if needed, the two generators can be added to the notation. The
representations (17) and (21) also hold for AWCDqH

a,b,c;q(3, Q0), but now with
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Lz and Mn given by (35) and (37), and with �n given by

�n(g(n)) := q−ng(n). (52)

The argumentation by (22) and (23) for the equivalence of the two
representations also remains valid if we take (34) for Rn and if we put
λn = q−n and if we use (36) and (38).

Now consider the Zhedanov algebra AWλ,qaλ−1,qcλ−1,bc−1λ;q(3, Q0;
K0, λ

−1K1), rescale Q = Q0 as λ2 Q = λ2 Q0, and take the limit as λ → 0,
where the new Q and Q0 are the limits of λ2 Q and λ2 Q0, respectively. This
produces the algebra with two generators K0 and K1 and with relations (9)
and (18), where C0 = 0 and B,C1, D0, D1 are given as follows:

B = (1 − q)2(c + a + ab + ac), D0 = −(1 − q)2(1 + q)ac,

C1 = q(q − q−1)2ab, D1 = −(1 − q)2(1 + q)a(c + b + ab + bc).(53)

(We omit the quite lengthy explicit expressions of Q and Q0.) Denote the
resulting algebra by

AWBqJ
a,b,c;q(3, Q0; K0, K1) = lim

λ→0
AWλ,qaλ−1,qcλ−1,bc−1λ;q

(
3, λ2 Q0; K0, λ

−1 K1
)
.

(54)
For AWBqJ

a,b,c;q(3, Q0; K0, K1), the representations (17) and (21) take the
form

(K0 f )(x) := Lx ( f (x)), (K1 f )(x) = X ( f )(x) := x f (x) (55)

and

(K0g)(n) := �n(g(n)) := (q−n + qn+1ab)g(n), (K1g)(n) := Mn(g(n))
(56)

with Lx and Mn defined by (40) and (42). The argumentation by (22) and
(23) for the equivalence of the two representations also remains valid after
slight but obvious adaptations.

PROPOSITION 1. There is an isomorphism (both an algebra and an
anti-algebra isomorphism)

AWCDqH
a,b,c;q(3, Q0; K0, K1) � AWBqJ

q−1ab,ab−1,q−1ac;q(3, Q0; aK1, K0). (57)

Proof. By substitution of (45) in (31), we obtain

AW
a,b,c, qλ2

abc ,q
(3, Q0; K0, K1) � AWλ, ab

λ
, ac
λ
,

qλ
bc ;q(3, Q0; aK1, λ

−1K0). (58)

Here, at each of the two sides, Q0 is in terms of the parameters given at
that side. Then, Q = Q0 on the right means a2λ−2 Q = a2λ−2 Q0 or, after
rescaling, a2 Q = a2 Q0 in terms of Q and Q0 on the left. Now apply the
limits (51) and (54) to the left and right sides of (58), respectively. �
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The representation (17) of AWCDqH
a,b,c;q(3, Q0; K0, K1) with Lz given

by (35) corresponds under the isomorphism (57) to the representation
(56) of AWBqJ

a,b,c;q(3, Q0; K0, K1). Similarly, the representation (21) of

AWCDqH
a,b,c;q(3, Q0; K0, K1) with Mn and �n given by (37) and (52),

respectively, corresponds under the isomorphism (57) to the representation
(55) of AWBqJ

a,b,c;q(3, Q0; K0, K1). Both results follow either by taking
suitable limits from the Askey–Wilson case or by imitating the reasoning in
Remark 6, now using (47) or (49), respectively.

4. Duality for Al-Salam–Chihara and little q-Jacobi polynomials

4.1. Limits to Al-Salam–Chihara and little q-Jacobi

4.1.1. Limit from continuous dual q-Hahn to Al-Salam–Chihara. The
Al-Salam–Chihara polynomials are the limit case c → 0 of the continuous
dual q-Hahn polynomials (34):

Rn[z; a, b | q] := 3φ2

(
q−n, az, az−1

ab, 0
; q, q

)
= lim

c→0
Rn[z; a, b, c | q]. (59)

The polynomials (59) are related to the Al-Salam–Chihara polynomials
Qn(x ; a, b | q) in usual notation [11, (14.8.1)] by

Qn(x ; a, b | q) = a−n(ab; q)n Rn[z; a, b | q].

The corresponding limits of (35)–(38) for the operators L and M and its
eigenvalue equations are:

(L f )[z] = Lz( f [z]) = (1 − az)(1 − bz)

(1 − z2)(1 − qz2)
( f [qz] − f [z])

+ z2(a − z)(b − z)

(1 − z2)(q − z2)

(
f [q−1z] − f [z]

)+ f [z], (60)

Lz(Rn[z]) = q−n Rn[z], (61)

Mn(g(n)) = a−1(1 − abqn)(g(n + 1) − g(n))

+ a(1 − qn)(g(n − 1) − g(n)) + (a + a−1)g(n), (62)

Mn(Rn[z]) = (z + z−1) Rn[z]. (63)

The obtained q-difference equation and recurrence relation agree with [11,
(14.8.7), (14.8.4)].
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4.1.2. Limit from continuous dual q-Hahn to Askey–Wilson q-Bessel. The
Askey–Wilson q-Bessel functions are defined as follows (see [29, (2.12)]):

Jγ [z; a, b | q] := 2φ1

(
az, az−1

ab
; −qγ a−1

)
.

By (34), they can be obtained as a limit case of continuous dual q-Hahn
polynomials:

Jqnγ [z; a, b | q] = lim
N→∞

RN−n

[
z; a, b,−q−Nγ−1 | q

]
(n ∈ Z). (64)

Then, the orthogonality relations [29, (2.14)] for the functions Jqnγ follow,
under suitable constraints on the parameters, from the orthogonality relations
[11, (14.3.2)] for continuous dual q-Hahn polynomials. If we rescale La,b,c;q

in (37) and next take a limit for N → ∞ of (38) in the form

q N La,b,−q−Nγ−1

z RN−n

[
z−1; a, b,−q Nγ−1 | q

]
= qn RN−n

[
z−1; a, b,−q Nγ−1 | q

]
(−∞ < n ≤ N ),

then L := limN→∞ q N La,b,−q−Nγ−1

z exists and

Lz Jqnγ [z; a, b | q] = qn Jqnγ [z; a, b | q] (n ∈ Z). (65)

4.1.3. Limits from big q-Jacobi to little q-Jacobi. The little q-Jacobi
polynomials are defined as follows (see [11, (14.12.1)]):

pn(x ; a, b; q) := 2φ1

(
q−n, abqn+1

aq
; q, qx

)
, (66)

or, equivalently (by [32, (3.38)]):

pn(x ; a, b; q) := (−qb)−nq− 1
2 n(n−1) (qb; q)n

(qa; q)n
3φ2

(
q−n, qn+1ab, qbx

qb, 0
; q, q

)
.

(67)
Little q-Jacobi polynomials appear as limits of big q-Jacobi polynomials

in two ways:

pn(x ; a, b; q) = lim
c→∞ Pn(cqx ; a, b, c; q) (68)

and

pn(x ; a, b; q) = (−qb)−nq− 1
2 n(n−1) (qb; q)n

(qa; q)n
Pn(qbx ; b, a; q), (69)

where

Pn(x ; a, b; q) = lim
c→0

Pn(x ; a, b, c; q) = 3φ2

(
q−n, qn+1ab, x

aq, 0
; q, q

)
. (70)
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The limits of the operators L and M and its eigenvalue equations in
(40)–(43) that correspond to the limit (70) are as follows:

(L f )(x) = Lx ( f (x)) = −qabx−1(1 − x)( f (qx) − f (x))

− x−1(qa − x) ( f (q−1x) − f (x)) + (1 + qab) f (x), (71)

Lx (Pn(x)) = (q−n + qn+1ab)Pn(x), (72)

Mn(g(n)) = (1 − abqn+1)(1 − aqn+1)

(1 − abq2n+1)(1 − abq2n+2)
(g(n + 1) − g(n))

+ q2n+1a2b(1 − qn)(1 − bqn)

(1 − abq2n)(1 − abq2n+1)
(g(n − 1) − g(n)) + g(n), (73)

Mn(Pn(x)) = x Pn(x). (74)

The obtained q-difference equation and recurrence relation agree with [11,
(14.12.5), (14.12.3)] if we take into account (69).

4.2. Duality between Al-Salam–Chihara and little q-Jacobi

By taking the limit as c → 0 in (44), and by using (59) and (70), we obtain
the following duality:

Rn

[
a−1q−m ; a, b | q

] = Pm(q−n; q−1ab, ab−1; q) (m, n ∈ Z≥0). (75)

This also follows by comparing the q-hypergeometric expression in (59) and
(70).

Remark 8. Formula (75) should be compared with [33, Remark 3.1],
where Al-Salam–Chihara polynomials for base q−1 are identified with
dual little q-Jacobi polynomials. This identification is less immediate
from the q-hypergeometric expressions than (75) (it uses an additional
q-hypergeometric transformation formula), but it has the nice property that
it also encodes a duality of infinite discrete orthogonality relations. It is
also a limit case of a similar identification (to be compared with our
duality (44)) between dual big q-Jacobi polynomials and continuous dual
q−1-Hahn polynomials, see [34, section 4.3]. Again, it needs an additional
transformation formula for its derivation and again it encodes a duality of
orthogonality relations. In fact, as pointed out in [34], this identification is
a limit case for N → ∞ of the duality for q-Racah polynomials on a set of
N + 1 points. On the level of the AW algebra and its limit cases, one should
also use, beside (31), (33) in connection with the formulas just discussed.
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To take the limit for c → ∞ in (44), first substitute n → N − n and
c → q−Nγ−1. Then,

RN−n

[
a−1q−m ; a, b,−q−Nγ−1 | q

]
= Pm

(
qn−N ; q−1ab, ab−1,−q−N−1γ−1a; q

)
.

Here, m, N , n are integers with m, N ≥ 0 and n ≤ N . Now apply (68) to
the right-hand side with c = −q−N−1γ−1a and N → ∞ and apply (64)
to the left-hand side. We obtain a duality between Askey–Wilson q-Bessel
functions and little q-Jacobi polynomials:

Jqnγ

[
a−1q−m ; a, b | q

] = pm

(−qnγ a−1; q−1ab, ab−1; q
)
.

Remark 9. In (46) replace λ by c
1
2λ:

Rn

[
a−1q−m ; a, b, c, qa−1b−1λ2 | q

]
= Rm

[
λ−1q−n; c

1
2λ, abc− 1

2λ−1, ac
1
2λ−1, qb−1c− 1

2λ | q
]
,

and let (c, λ) → (0, 0). Then, we arrive directly from the AW duality at the
duality (75), as is seen from (1), (59), and (70). However, if we fix one of
c, λ at a nonzero value and let the other one go to 0, then we arrive at the
duality (44).

Similarly to, and as a limit case of (47), there is a duality corresponding
to (75) for the operators Lz and Mn defined by (60) and (73), respectively:

La,b
z ( f [z])|z=a−1q−m = ã Mã,b̃

m ( f [a−1q−m]), (76)

where La,b
z is the operator Lz given by (60), Ma,b

n is the operator Mn given
by (73), and

(ã, b̃) =
(

(qab)
1
2 , (qab−1)

1
2

)
. (77)

Note that the map (a, b) �→ (ã, b̃) is inverse to the map
(a, b) �→ (q−1ab, ab−1).

There is also a duality corresponding to (44) for the operators Lx and Mn

defined by (71) and (62), respectively:

La,b
x ( f (x))|x=q−m = ã Mã,b̃

m ( f (q−m)), (78)

where La,b
x is the operator Lx given by (71), Ma,b

n is the operator Mn given
by (62), and ã, b̃ are as in (77).

4.3. Corresponding degenerations of the Zhedanov algebra and duality

As c → 0, the Zhedanov algebra AWCqDH
a,b,c;q(3, Q0; K0, K1), see (51), tends to

the algebra with two generators K0 and K1 and with relations (9) and (18)
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where C1 = D1 = 0 and B,C0, D0, Q0 are defined as in (50) with c = 0:

B = (1 − q−1)2(ab + q(a + b)), C0 = (q − q−1)2,

D0 = −q−2(1 − q)2(1 + q)(ab + q),

Q0 = q−2(1 − q)2(q(a2 + b2) − (q2 + 1)ab). (79)

In the expression (10) for Q, also put C1 = 0 and substitute (79). We denote
this algebra by AWASC

a,b;q(3, Q0; K0, K1).

Similarly, as c → 0, the Zhedanov algebra AWBqJ
a,b,c;q(3, Q0; K0, K1), see

(54), tends to the algebra with two generators K0 and K1 and with relations
(9) and (18) where C0 = D0 = 0 and B,C1, D1 are given by formula (53)
with c = 0, and also Q0 with c = 0 has a simple expression:

B = (1 − q)2a(b + 1), C1 = q(q − q−1)2ab,

D1 = −(1 − q)2(1 + q)ab(a + 1), Q0 = (1 − q)2a2(b − q)(qb − 1). (80)

Furthermore, Q is now obtained by following the procedure described for
big q-Jacobi just before (53) and then putting c = 0. We denote this algebra
by AWLqJ

a,b;q(3, Q0; K0, K1).

The representations of the algebras AWASC
a,b;q(3, Q0; K0, K1) and AWLqJ

a,b;q

(3, Q0; K0, K1) can be obtained from the representations of AWCDqH
a,b,c;q(3, Q0)

and AWBqJ
a,b,c;q(3, Q0), respectively, by putting c = 0 in all formulae. Simi-

larly, the duality formula is then simply obtained by putting c = 0 in (57):

PROPOSITION 2. There is an isomorphism (both an algebra isomorphism
and an algebra anti-isomorphism)

AWASC
a,b;q(3, Q0; K0, K1) � AWLqJ

q−1ab,ab−1;q(3, Q0; aK1, K0). (81)

Just as in Remark 9, we may replace λ by c
1
2λ in (58), and then take the

limit as (c, λ) → (0, 0). Then, we will arrive at the duality (57) directly from
the duality of AW(3).

The representation (17) of AWASC
a,b;q(3, Q0; K0, K1) with Lz given by

(60) corresponds under the map (81) to the representation (56) of
AWLqJ

a,b;q(3, Q0; K0, K1) with Mn given by (73). This follows by (76).

Similarly, the representation (21) of AWASC
a,b;q(3, Q0; K0, K1) with Mn and

�n given by (62) and (52), respectively, corresponds under the map (81)
to the representation (55) of AWLqJ

a,b;q(3, Q0; K0, K1) wilt Lx defined by (71).
This follows by (78).

Remark 10. Corresponding to the limit (64), we can consider
AWCDqH

a,b,c;q(3, Q0) with structure constants (50) and there replace K0 by
cK0. Then, by (50), the relations (9) have a limit for c → ∞. Similarly,



Dualities in the q-Askey Scheme and Degenerate DAHA 445

corresponding to the limit (68), we can consider AWBqJ
a,b,c;q(3, Q0; K0, K1)

with structure constants (53) and there replace K1 by cK1. Then, by (53),
the relations (9) have a limit for c → ∞. Representations of the algebras
and duality could be considered. We omit the details.

5. Askey–Wilson DAHA and nonsymmetric AW polynomials

5.1. Definition of the Askey–Wilson DAHA

The DAHA of type (C∨
1 ,C1), also called the Askey–Wilson DAHA, occurs

as the rank 1 case of Sahi’s more general construction [6]. It was studied in
much detail by Noumi and Stokman [7].

Keep the assumptions (2) on a, b, c, d. We will notate the Askey–Wilson
DAHA as HH = HHa,b,c,d;q(T1, T0, Ť1, Ť0), and we define it as the algebra
with generators T1, T0, Ť1, Ť0 and with relations

(T1 + ab)(T1 + 1) = 0, (T0 + q−1cd)(T0 + 1) = 0,

(aŤ1 + 1)(bŤ1 + 1) = 0, (cŤ0 + q)(dŤ0 + q) = 0, Ť1T1T0Ť0 = 1. (82)

The relations (82) imply that T1, T0, Ť1, Ť0 are invertible and that their
inverses have simple expressions as linear combinations of their original and
a constant, in particular,

T −1
1 = −(ab)−1T1 − ((ab)−1 + 1), T −1

0 = −q(cd)−1T0 − (q(cd)−1 + 1).
(83)

Remark 11. In [35, definition 2.1] and [24, Lemma 1.2], the Askey–
Wilson DAHA is an algebra with generators V1, V0, V̌1, V̌0 and relations
equivalent to (82) by the substitutions (a, b, c, d) = (−k1u−1

1 , k1u1, q
1
2 k0u−1

0 ,

−q
1
2 k0u0), T1 = k1V1, Ť1 = k−1

1 V̌1, T0 = k0V0, Ť0 = q
1
2 k−1

0 V̌0.

Put

Z = T0Ť0, and thus Z−1 = Ť1T1.

This means conversely that

Ť0 = T −1
0 Z , Ť1 = Z−1T −1

1 .

With these substitutions in relations (82), HH can be written equivalently as
the algebra with generators T1, T0, Z , Z−1 and relations

(T1 + ab)(T1 + 1) = 0, (T0 + q−1cd)(T0 + 1) = 0,

(aZ−1T −1
1 + 1)(bZ−1T −1

1 + 1) = 0, (cT −1
0 Z + q)(dT −1

0 Z + q) = 0,

Z Z−1 = Z−1 Z = 1. (84)
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We denote HH in this presentation by HHa,b,c,d;q[T1, T0, Z ].

Remark 12. If the third and fourth relations in (84) are equivalently
written as (T1z + a)(T1 Z + b) = 0 and (qT0 Z−1 + c)(qT0 Z−1 + d) = 0,
respectively, and if we put X := Z and W := Z−1, then we recover the
relations (1.1)–(1.5) in [24].

Replace in the relations (82) the generators T0, Ť1, Ť0 by Z , Z−1, Y by
putting

Ť0 = T −1
0 Z , Ť1 = Z−1T −1

1 , T0 = T −1
1 Y (85)

(or equivalently replace in the relations (84) the generator T0 by Y by
putting T0 = T −1

1 Y ). The substitutions (85) can be written conversely as

Z = T0Ť0, Z−1 = Ť1T1, Y = T1T0. (86)

The resulting relations are

(T1 + ab)(T1 + 1) = 0, (T −1
1 Y + q−1cd)(T −1

1 Y + 1) = 0,

(aZ−1T −1
1 + 1)(bZ−1T −1

1 + 1) = 0,

(c + q Z−1T −1
1 Y )(d + q Z−1T −1

1 Y ) = 0, Z Z−1 = 1 = Z−1 Z . (87)

We denote HH in this presentation by HHa,b,c,d;q〈T1, Y, Z−1〉.

5.2. Duality for the Askey–Wilson DAHA

Note in (82) the trivial algebra isomorphism

HHa,b,c,d;q(T1, T0, Ť1, Ť0) � HH−a,−b,−c,−d;q(T1, T0,−Ť1,−Ť0).

In terms of the generators in (84), this algebra isomorphism is generated
by (T1, T0, Z , Z−1) �→ (T1, T0,−Z ,−Z−1), and in terms of the generators in
(87) by T1, Y, Z−1 �→ T1, Y,−Z−1. In (82), we also recognize the following
straightforward algebra isomorphism:

HHa,b,c,d;q(T1, T0, Ť1, Ť0) � HHa−1,b−1,c−1,d−1;q−1 (T −1
1 , T −1

0 , Ť −1
1 , Ť −1

0 ). (88)

For the main duality property, we need the dual parameters (24). Observe
that

ab = ãb̃, a + b = (
qãb̃c̃−1d̃−1

) 1
2 (q−1c̃d̃ + 1),

cd = qãb̃−1, c + d = (
qãb̃−1c̃−1d̃−1

) 1
2 (c̃ + d̃).

As a consequence, there is an anti-isomorphism


 : HHa,b,c,d;q(T1, T0, Ť1, Ť0) � HHã,b̃,c̃,d̃;q(T1, ãŤ1, a−1T0, aã−1Ť0). (89)
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Indeed, substitution in relations (82) of generators and parameters according
to (89) and reversion of the order of multiplication (only needed in the last
relation) interchanges the second and third relations, while it preserves the
other relations. This also implies that the anti-isomorphism 
 is involutive.

In terms of the presentation (84), we can write the duality as


 : HHa,b,c,d;q[T1, T0, Z ] � HHã,b̃,c̃,d̃;q[T1, aZ−1T −1
1 , ãT −1

0 T −1
1 ], (90)

and in terms of the presentation (87) as


 : HHa,b,c,d;q〈T1, Y, Z−1〉 � HHã,b̃,c̃,d̃;q〈T1, aZ−1, ã−1Y 〉. (91)

Note also the following anti-isomorphism in terms of the presentation
(87):

HHa,b,c,d;q〈T1, Y, Z−1〉 � HHa,b,c,d;q〈T1, Y, T −1
1 Z−1T1〉. (92)

5.3. DAHA representation on the Laurent polynomials and nonsymmetric
Askey–Wilson polynomials

The algebra HH in presentation (87) has a faithful representation, the
so-called basic representation, on the space A of Laurent polynomials f [z]
as follows (see [8, §3] and (83) and use that Y −1 = T −1

0 T −1
1 ):

(Z f )[z] := z f [z], (93)

(T1 f )[z] := (a + b)z − (1 + ab)

1 − z2
f [z] + (1 − az)(1 − bz)

1 − z2
f [z−1], (94)

(T0 f )[z] := q−1z((cd + q)z − (c + d)q)

q − z2
f [z] − (c − z)(d − z)

q − z2
f [qz−1],

(T −1
1 f )[z] = z((1 + ab)z − (a + b))

ab(1 − z2)
f [z] − (1 − az)(1 − bz)

ab(1 − z2)
f [z−1],

(T −1
0 f )[z] = q((c + d)z − (cd + q))

cd(q − z2)
f [z] + q(c − z)(d − z)

cd(q − z2)
f [qz−1],

(Y f )[z] = z(1 + ab − (a + b)z)((c + d)q − (cd + q)z)

q(1 − z2)(q − z2)
f [z]

+ (1 − az)(1 − bz)(1 − cz)(1 − dz)

(1 − z2)(1 − qz2)
f [qz]

+ (1 − az)(1 − bz)((c + d)qz − (cd + q))

q(1 − z2)(1 − qz2)
f [z−1]

+ (c − z)(d − z)(1 + ab − (a + b)z)

(1 − z2)(q − z2)
f [qz−1], (95)
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(Y −1 f )[z] = qz(a + b − (1 + ab)z)(cd + q − (c + d)z)

abcd(1 − z2)(q − z2)
f [z]

+ q(aq − z)(bq − z)(c − z)(d − z)

abcd(q − z2)(q2 − z2)
f [q−1z]

+ q(1 − az)(1 − bz)(cd + q − (c + d)z)

abcd(1 − z2)(q − z2)
f [z−1]

+ q2(c − z)(d − z)((a + b)z − q(1 + ab))

abcd(q − z2)(q2 − z2)
f [qz−1]. (96)

Put

D := Y + q−1abcdY −1.

D commutes with T1, T0, and Y . If we compare its explicit expression [8,
(3.14)] with (4), then we see that

(D f )[z] = (L f )[z] if f [z] = f [z−1].

In particular, if we apply D to the AW polynomial Rn[z] given by (1), then
we obtain that

DRn = λn Rn

with λn given by (5).
More generally, see [8, §§3,4], the eigenspace An of D in A for

eigenvalue λn has dimension 2 if n > 0 and dimension 1 if n = 0.
A basis of An is given by eigenfunctions E±n of Y . These are the
nonsymmetric Askey–Wilson polynomialsE±n[z; a, b, c, d | q], which we
define by multiplying the ones given in [8, (4.9), (4.10)] or (with different
normalization) in [28, (4.2), (4.3)] by suitable factors such that their first
term becomes Rn[z; a, b, c, d | q]. Then, in view of [8, (2.10), (2.11), (3.17)]
or [28, (3.1)], we get

En[z; a, b, c, d | q] := Rn[z; a, b, c, d | q]

− q1−n(1 − qn)(1 − qn−1cd)

(1 − qab)(1 − ab)(1 − ac)(1 − ad)

×az−1(1 − az)(1 − bz)Rn−1[z; qa, qb, c, d | q] (n ≥ 0),

E−n[z; a, b, c, d | q] := Rn[z; a, b, c, d | q]

− q1−n(1 − qnab)(1 − qn−1abcd)

(1 − qab)(1 − ab)(1 − ac)(1 − ad)

×b−1z−1(1 − az)(1 − bz)Rn−1[z; qa, qb, c, d | q] (n ≥ 1), (97)
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where (1 − qn)En−1 := 0 for n = 0. Then, by [8, (4.4), (4.5)],

Y En = qn−1abcd En (n = 0, 1, 2, . . .),

Y E−n = q−n E−n (n = 1, 2, . . .). (98)

Remark 13. The notations P+
m (x) and Pm(x) in [7, theorem 5.9,

proposition 5.10(i),(ii)] correspond to the notations in [8] by

P+
m (x) = Pm[x] (m ∈ Z≥0), Pm(x) = Em[x] (m ∈ Z; Em as in [8]).

Indeed, compare [8, theorem 4.1] with [7, proposition 5.10(i),(ii)] while
taking into account [8, (3.19)]. Now see from [7, §§3.3, 5.7, 10.6] that x0 as
defined in [7] equals our a and observe from (15) that, for our En in (97),
En[a−1; a, b, c, d | q] = 1. We conclude that the renormalized nonsymmetric
AW polynomials in [7, definition 10.6(i)] have the same normalization as in
(97). More explicitly:

Eγm (x ; t ; q) = Em[x ; a, b, c, d, q],

where the notation from [7] is on the left, where γm is defined in [7, §3.4],
and where t is related to a, b, c, d by [7, §5.7].

5.4. Duality of nonsymmetric AW polynomials

First, observe that the trivial symmetry (30) for AW polynomials extends to
a symmetry

En[z; a, b, c, d | q] = En[z−1; a−1, b−1, c−1, d−1 | q−1] (n ∈ Z) (99)

for nonsymmetric AW polynomials. This is clear from (97) and (30).
Compare also with the DAHA algebra isomorphism (88). Next, we pass to
the main duality result.

THEOREM 1. [7, theorem 10.7(i)] Let

za,q(n) := aqn (n ∈ Z≥0), za,q(−n) := a−1q−n (n ∈ Z>0). (100)

Then,

En

[
za,q(m)−1; a, b, c, d | q

] = Em

[
zã,q(n)−1; ã, b̃, c̃, d̃ | q

]
(m, n ∈ Z). (101)

Proof. For the case that n or m = 0, use that En[a−1; a, b, c, d | q] = 1.
For the other cases, we have to show that

E−n

[
a−1q−m ; a, b, c, d | q

] = Em

[
ãqn; ã, b̃, c̃, d̃ | q

]
, (102)

E−n [aqm ; a, b, c, d | q] = E−m

[
ãqn; ã, b̃, c̃, d̃ | q

]
, (103)

En

[
a−1q−m ; a, b, c, d | q

] = Em

[
ã−1q−n; ã, b̃, c̃, d̃ | q

]
. (104)
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for m, n ∈ Z>0. From (27), we see that

Rn−1[a−1q−m ; qa, qb, c, d | q] = Rm−1
[
ã−1q−n; qã, qb̃, c̃, d̃ | q

]
. (105)

By (97), (27), and (105) and by the identities ab = ãb̃, ac = ãc̃, and
ad = ãd̃, we see that (102), (103), and (104) will, respectively, follow from
the identities

q−n(1 − qnab)(1 − qn−1abcd)q−m(1 − qm)(1 − qmab−1)

= q−m(1 − qm)(1 − qm−1c̃d̃)q−n(1 − qnã2)(1 − qnãb̃),

q−n(1 − qnab)(1 − qn−1abcd)a−1b−1q−m(1 − a2qm)(1 − abqm)

= q−m(1 − qmãb̃)(1 − qm−1ãb̃c̃d̃)ã−1b̃−1q−n(1 − ã2qn)(1 − ãb̃qn),

q−n(1 − qn)(1 − qn−1cd)a2qm(1 − q−m)(1 − a−1b−1q−m)

= q−m(1 − qm)(1 − qm−1c̃d̃)ã2qn(1 − q−n)(1 − ã−1b̃−1q−n).

These, indeed, hold by (24). �

Remark 14. In view of Remark 13, our formula (101) matches with the
formula

Eγm (x−1
n ; t ; q) = Exn (γ−1

m ; t̃ ; q)

in [7, theorem 10.7(i)] if we also take into account the formulas for γm

and xm in [7, §§3.4, 10.6]. However, note that the definition of Em in [7]
involving [7, proposition 5.10(i),(ii)], i.e., AW polynomials with parameters
q

1
2 a, q

1
2 b, q

1
2 c, q

1
2 d, does not allow direct explicit verification of the duality

formula (101) because AW polynomials depending on such parameters are
dually related to AW polynomials of parameters qa, b, c, d by (27).

5.5. Recurrence relation for the nonsymmetric AW polynomials

The duality (101) for nonsymmetric AW polynomials En (n ∈ Z) can be
applied to the eigenvalue equation (98) to obtain a recurrence relation for
the En . First, we consider (Y F)[z], given by (95), at z = za,q(m)−1 (m ∈ Z),
with za,q(m) given by (100). Note that

qza,q(m)−1 = za,q(m − 1)−1 (m �= 0),

za,q(m) = za,q(−m)−1 (m �= 0),

qza,q(m) = za,q(−m − 1)−1.
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Note also that the terms in (95) with f [qz] and with f [z−1] vanish if
z = a−1 = za,q(0)−1. Thus, we can specialize (95) as follows:

(Y f )
[
za,q(m)−1

] = A f
[

1
za,q (m)

]
+ B f

[
1

za,q (m−1)

]
+ C f

[
1

za,q (−m)

]
+ D f

[
1

za,q (−m−1)

]
(106)

with

A =
(
1 + ab − (a + b)za,q(m)−1

) (
(c + d)q − (cd + q)za,q(m)−1

)
qza,q(m)(1 − za,q(m)−2)(q − za,q(m)−2)

,

B = (1 − aza,q(m)−1)(1 − bza,q(m)−1)(1 − cza,q(m)−1)(1 − dza,q(m)−1)

(1 − za,q(m)−2)(1 − qza,q(m)−2)
,

C = (1 − aza,q(m)−1)(1 − bza,q(m)−1)
(
(c + d)qza,q(m)−1 − (cd + q)

)
q(1 − za,q(m)−2)(1 − qza,q(m)−2)

,

D = (c − za,q(m)−1)(d − za,q(m)−1)
(
1 + ab − (a + b)za,q(m)−1

)
(1 − za,q(m)−2)(q − za,q(m)−2)

,

where the second and third terms on the right in (106) vanish if m = 0.
Now take f = En and observe that the eigenvalue equation (98) can be
written in a unified way as

(Y En)[z] = ã zã,q(n) En[z] (n ∈ Z). (107)

Thus, by the duality (101), we can rewrite (107) for z = za,q(m)−1 as

ã zã,q(n) Ẽm

[
zã;q(n)−1

] = AẼm

[
zã;q(n)−1

]+ B Em−1
[
zã;q(n)−1

]
+ C Ẽ−m

[
zã;q(n)−1

]+ DẼ−m−1
[
zã;q(n)−1

]
, (108)

where

A =
(
1 + ab − (a + b)za,q(m)−1

) (
(c + d)q − (cd + q)za,q(m)−1

)
qza,q(m)(1 − za,q(m)−2)(q − za,q(m)−2)

,

B = (1 − aza,q(m)−1)(1 − bza,q(m)−1)(1 − cza,q(m)−1)(1 − dza,q(m)−1)

(1 − za,q(m)−2)(1 − qza,q(m)−2)
,

C = (1 − aza,q(m)−1)(1 − bza,q(m)−1)
(
(c + d)qza,q(m)−1 − (cd + q)

)
q(1 − za,q(m)−2)(1 − qza,q(m)−2)

,

D = (c − za,q(m)−1)(d − za,q(m)−1)
(
1 + ab − (a + b)za,q(m)−1

)
(1 − za,q(m)−2)(q − za,q(m)−2)

,

and where Ẽm means Em for dual parameters. Because we are dealing
with Laurent polynomials, the equality (108) will remain valid if we replace
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zã;q(n)−1 by arbitrary complex z. Next, replace in (108) a, b, c, d by
ã, b̃, c̃, d̃, and replace m by n. We obtain:

az−1 En[z]

=
(
1 + ãb̃ − (ã + b̃)zã,q (n)−1

) (
(c̃ + d̃)q − (c̃d̃ + q)zã,q (n)−1

)
qzã,q (n)(1 − zã,q (n)−2)(q − zã,q (n)−2)

En[z]

+ (1 − ãzã,q (n)−1)(1 − b̃zã,q (n)−1)(1 − c̃zã,q (n)−1)(1 − d̃zã,q (n)−1)

(1 − zã,q (n)−2)(1 − qzã,q (n)−2)
En−1[z]

+ (1 − ãzã,q (n)−1)(1 − b̃zã,q (n)−1)
(
(c̃ + d̃)qzã,q (n)−1 − (c̃d̃ + q)

)
q(1 − zã,q (n)−2)(1 − qzã,q (n)−2)

E−n[z]

+ (c̃ − zã,q (n)−1)(d̃ − zã,q (n)−1)
(
1 + ãb̃ − (ã + b̃)zã,q (n)−1

)
(1 − zã,q (n)−2)(q − zã,q (n)−2)

E−n−1[z].

Finally, put

νã,q(n) := ã−1zã,q(n)−1 =
{

(abcd)−1q−n+1, n ≥ 0,
q−n, n < 0.

(109)

Then, we obtain the recurrence relation for the nonsymmetric AW
polynomials:

Mn(En[z]) = z−1 En[z], (110)

where Mn is an operator acting on functions g(n) of n (n ∈ Z) that is given
by

Mn(g(n)) :=
νã,q (n)(1 + ab − ab(q−1cd + 1)νã,q (n))(q(c + d) − cd(a + b)νã,q (n))

(q − abcdνã,q (n)2)(q − q−1abcdνã,q (n)2)
g(n)

+ (1 − q−1abcdνã,q (n))(1 − abνã,q (n))(1 − acνã,q (n))(1 − adνã,q (n))

a(1 − q−1abcdνã,q (n)2)(1 − abcdνã,q (n)2)
g(n − 1)

+ (1 − q−1abcdνã,q (n))(1 − abνã,q (n))(ab(c + d)νã,q (n) − (a + b))

ab(1 − q−1abcdνã,q (n)2)(1 − abcdνã,q (n)2)
g(−n)

+ q2(1 − q−1bcνã,q (n))(1 − q−1bdνã,q (n))(1 + ab − ab(q−1cd + 1)νã,q (n))

b(q − abcdνã,q (n)2)(q − q−1abcdνã,q (n)2)
g(−n − 1).

(111)

Note that by the symmetry (99), there also follows a recurrence formula
that expands zEn[z]. We omit the explicit expression.

Remark 15. In [7, §10.9], it is just observed that a recurrence relation
for nonsymmetric AW polynomials can be derived from the Y -eigenvalue
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equation by duality, but no further derivation or explicit formula is given.
Neither we have found such a formula elsewhere in the literature.

5.6. The dual of the basic representation

It follows from the derivation of (110) and (111) in Section 5.5 that

(Y f )[za,q (m)−1] = ã M̃m

(
f [za,q(m)−1]

)
, (112)

where, as usual, M̃m means the operator Mm with respect to dual
parameters. Define a multiplication operator Nm , acting on functions g(m)
(m ∈ Z), by

Nm(g(m)) := νã,q(m)−1 g(m). (113)

Then, by (109),

(Z−1 f )[za,q(m)−1] = a−1 Ñm

(
f [za,q(m)−1]

)
. (114)

Also, in terms of T1 acting on f [z] by (94), let Tm be the operator acting
on g(m) such that

(T1 f )[za,q(m)−1] = T̃m

(
f [za,q(m)−1]

)
. (115)

Because T1, Y, Z−1 acting on f [z] satisfy the relations (87), the same is
true by (112), (114), and (115) for T̃m , ã M̃m , and a−1 Ñm acting on g(m).
By the duality (91), T̃m, Ñm, M̃m satisfy the relations (87) with respect
to dual parameters and they generate an antirepresentation of HH with
respect to dual parameters. Hence, we have also an antirepresentation of
HHa,b,c,d;q〈T1, Y, Z−1〉 generated by T1 → Tm , Y → Nm , Z−1 → Mm .

6. The basic representation of the Askey–Wilson DAHA in a 2D
realization

6.1. Definitions and explicit formulas

We use results and notation from [28, (4.7) and following] except for a
slight rescaling: in (116) below, we have an additional factor a in the second
term on the right, which will also have impact on formulas further down.
This will facilitate the limit to Big q-Jacobi, which we will consider later in
the paper.

The setup is to associate with a Laurent polynomial f a column vector
−→
f = (

f1

f2
), where f1, f2 are symmetric Laurent polynomials such that

f [z] = f1[z] + az−1(1 − az)(1 − bz) f2[z]. (116)
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Then,

f1[z] = (z − a)(z − b)

(ab − 1)(1 − z2)
f [z] − (1 − az)(1 − bz)

(ab − 1)(1 − z2)
f [z−1],

f2[z] = 1

a(ab − 1)

f [z] − f [z−1]

z − z−1
. (117)

Put

S :=
(

1 a(1−az)(1−bz)
z

1 a(a−z)(b−z)
z

)
,

S−1 = 1

(1 − ab)(z − z−1)

( (1−az)(1−bz)
z − (a−z)(b−z)

z

−a−1 a−1

)
. (118)

Then, (116) and (117) can be written more succinctly as(
f [z]

f [z−1]

)
= S

−→
f [z],

−→
f [z] = S−1

(
f [z]

f [z−1]

)
. (119)

The nonsymmetric AW polynomials E±n[z], as defined in (97), already
have the decomposition (116). Thus, they have vector-valued form (see also
[28, (4.10), (4.11)])

−→
En[z] =

⎛⎜⎝ Rn[z; a, b, c, d | q]

− σ (n)Rn−1[z; qa, qb, c, d | q]

(1 − qab)(1 − ab)(1 − ac)(1 − ad)

⎞⎟⎠ (n = 0, 1, 2, . . .),

−−→
E−n[z] =

⎛⎜⎝ Rn[z; a, b, c, d | q]

− σ (−n)Rn−1[z; qa, qb, c, d | q]

(1 − qab)(1 − ab)(1 − ac)(1 − ad)

⎞⎟⎠ (n = 1, 2, . . .), (120)

where

σ (n) := q1−n(1 − qn)(1 − qn−1cd) (n = 0, 1, 2, . . .),

σ (−n) := (ab)−1q1−n(1 − qnab)(1 − qn−1abcd) (n = 1, 2, . . .), (121)

and where σ (n)Rn−1 = const. (1 − qn)Rn−1 := 0 for n = 0.
Let A be an operator acting on the space of Laurent polynomials. Then,

we can write

(A f )[z] = (A11 f1 + A12 f2)[z] + az−1(1 − az)(1 − bz)(A21 f1 + A22 f2)[z],
(122)

where the Ai j are operators acting on the space of symmetric Laurent
polynomials. Thus, we have the identifications

f ↔
(

f1

f2

)
= −→

f , A ↔
(

A11 A12

A21 A22

)
= A.
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In the identification, A ↔ A composition of operators corresponds to matrix
multiplication together with entrywise composition of operators. Indeed, we

can express (122) as
−→
A f = A

−→
f . Then,

−−−−−→
(AB)( f ) = −−−→

A(B f ) = A
−→
B f = AB

−→
f .

In this way T1, given by (94), acts as a 2 × 2 matrix-valued operator:

T1 =
(−ab 0

0 −1

)
. (123)

The very simple form of T1 as a diagonal matrix with constant coefficients
was the motivation for the decomposition (116).

Next, we describe the 2 × 2 matrix-valued operator

Y =
(

Y11 Y12

Y21 Y22

)
, (124)

corresponding to Y given by (95). Below, we give the explicit expressions
for the Yi j , see (4.12)–(4.15) in [28]. The expressions for Y11 and Y22

involve the operator L = La,b,c,d;q as given in (4):

Y11 = ab(q−1cd + 1) − abLa,b,c,d;q

1 − ab
, (125)

Y22 = −ab(q−1cd + 1) + q−1Laq,bq,c,d;q

1 − ab
. (126)

We give Y12 and Y21 as operators acting on a symmetric Laurent polynomial
g[z]:

(Y21g)[z] = z(c − z)(d − z)

a(1 − ab)(1 − z2)(q − z2)

(
g[q−1z] − g[z]

)
+ z(1 − cz)(1 − dz)

a(1 − ab)(1 − z2)(1 − qz2)
(g[qz] − g[z]), (127)

(Y12g)[z] = a2b(a − z)(b − z)(1 − az)(1 − bz)

(1 − ab)z(q − z2)(1 − qz2)

× ((cd + q)(1 + z2) − (1 + q)(c + d)z)g[z]

− a2b(a − z)(b − z)(c − z)(d − z)(aq − z)(bq − z)

q(1 − ab)z(1 − z2)(q − z2)
g[q−1z]

− a2b(1 − az)(1 − bz)(1 − cz)(1 − dz)(1 − aqz)(1 − bqz)

q(1 − ab)z(1 − z2)(1 − qz2)
g[qz].

(128)
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Note an error in the formula [28, (4.14)] for (Y21g)[z], which we have
corrected above: In the first term on the right, we have replaced the
denominator factor 1 − qz2 by q − z2.

Then, the eigenvalue equation (98), with Y in matrix-valued form and
E±n in vector-valued form as given above, still holds:

Y
−→
En = qn−1abcd

−→
En (n = 0, 1, 2, . . .),

Y
−−→
E−n = q−n −−→

E−n (n = 1, 2, . . .). (129)

By [8, (3.7), (3.6)], we can express Y −1 in terms of Y and T −1
1 . Indeed,

Y −1 = T −1
0 T −1

1 = −qc−1d−1T0T −1
1 − (1 + qc−1d−1)T −1

1

= −qc−1d−1T −1
1 Y T −1

1 − (1 + qc−1d−1)T −1
1 . (130)

Then, the matrix realization of Y −1 follows from (130), (125)–(128), and
(123).

As a final example, the multiplication operator Z , given by (93),
corresponds to a 2 × 2 matrix-valued operator Z with matrix entries acting
as multiplication operators:

Z = 1

ab − 1

(
a + b − z − z−1 −a(1 − az)(1 − az−1)(1 − bz)(1 − bz−1)

a−1 ab(z + z−1) − (a + b)

)
.

(131)
Note that det(Z) = 1. Hence,

Z−1 = 1

ab − 1

(
ab(z + z−1) − (a + b) a(1 − az)(1 − a

z )(1 − bz)(1 − b
z )

−a−1 a + b − z − z−1

)
.

(132)
Z−1 can be diagonalized by

Z−1 = S−1

(
z−1 0
0 z

)
S, (133)

where S and S−1 are given in (118).
Now consider (119) for f := En:(

En[z]
En[z−1]

)
= S

−→
En[z],

−→
En[z] = S−1

(
En[z]
En[z−1]

)
.

On combination with (133) and (110), this shows that
−→
En[z] satisfies a

similar recurrence relation as En[z], namely,

Mn(
−→
En[z]) = Z−1−→En[z], (134)

where the operator Mn , acting on functions of n, is given by (111).
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6.2. Orthogonality and equivalence of representations

In addition to the conditions on a, b, c, d, q at the end of Section 2.1,
assume that a, b are real and ab < 0. Put

wa,b,c,d;q[z] := (q, ab, ac, ad, bc, bd, cd; q)∞
4π (abcd; q)∞

∣∣∣∣ (z2; q)∞
(az, bz, cz, dz; q)∞

∣∣∣∣2
for the weight function in the orthogonality relations (8) for the AW
polynomials, and put

W[z] :=
(
wa,b,c,d;q[z] 0

0 Ca,b,c,d;qwqa,qb,c,d;q[z]

)
,

where

Ca,b,c,d;q := −a3b
(1 − ab)(1 − qab)(1 − ac)(1 − ad)(1 − bc)(1 − bd)

(1 − abcd)(1 − qabcd)
> 0.

Then, by [28, §5], we have the following orthogonality relations with respect
to a positive inner product:∫

|z|=1
(
−→
Em[z])t W[z]

−→
En[z]

dz

i z
= hn δm,n (m, n ∈ Z) (135)

for certain hn > 0. Here, −→v t means the column vector −→v written as a row
vector, and more generally, At means the transpose of a matrix A.

Now observe that

(ab − 1)W[z]−1
(
T1(Z−1)t T−1

1

)
W[z]

= W[z]−1

(
ab(z + z−1) − (a + b) −(a2b)−1

a2b(1 − az)(1 − a
z )(1 − bz)(1 − b

z ) a + b − z − 1
z

)
W[z]

=
(

ab(z + z−1) − (a + b) a(1 − az)(1 − a
z )(1 − bz)(1 − b

z )
−a−1 a + b − z − z−1

)
= (ab − 1)Z−1,

since

Ca,b,c,d;q
wqa,qb,c,d;q[z]

wa,b,c,d;q[z]
= −a3b(1 − az)(1 − az−1)(1 − bz)(1 − bz−1).

Hence, for 2-vector-valued Laurent polynomials
−→
f [z],−→g [z], we have∫

|z|=1

(
T−1

1 Z−1T1
−→
f [z]

)t
W[z] −→g [z]

dz

i z
=
∫

|z|=1
(
−→
f [z])t W[z] Z−1−→g [z]

dz

i z
.

(136)
Now we can show, analogous to (22) and following, that we can use−→

E n[z] to pass from the basic representation of HH to an antirepresentation
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of HH acting on scalar-valued functions of n. Define a Fourier-type
transform

(
−→
f )̂ (n) :=

∫
|z|=1

(
−→
f [z])t W[z]

−→
En[z]

dz

i z
(n ∈ Z).

Then, by (134) and (136),

Mn

(
(
−→
f )̂ (n)

)
=
∫

|z|=1
(
−→
f [z])t W[z] Mn(

−→
En[z])

dz

i z

=
∫

|z|=1
(
−→
f [z])t W[z] Z−1−→En[z]

dz

i z

=
∫

|z|=1

(
T−1

1 Z−1T1
−→
f [z]

)t
W[z]

−→
En[z]

dz

i z
=
(

T−1
1 Z−1T1

−→
f
)

ˆ(n).

Furthermore, by (109), (113), and (129), we have

Nn

(
(
−→
f )̂ (n)

)
=
∫

|z|=1
(
−→
f [z])t W[z] Nn(

−→
En[z])

dz

i z

=
∫

|z|=1
(
−→
f [z])t W[z] (Y

−→
En)[z]

dz

i z

=
∫

|z|=1
(Y

−→
f [z])t W[z]

−→
En[z]

dz

i z
= (Y

−→
f )̂ (n).

Finally define an operator Un acting on functions of n that extends the

action of T on
−→
E ±n . This operator U can easily be given explicitly by using

(120) and (123). Then,

Un

(
(
−→
f )̂ (n)

)
=
(

T
−→
f
)

ˆ(n).

So, in view of (92), we have settled that

HHa,b,c,d;q〈Un, Nn,Mn〉 � HHa,b,c,d;q〈T1, Y, T −1
1 Z−1T1〉

� HHopp
a,b,c,d;q〈T1, Y, Z−1〉.

We have achieved this by working with 2-vector-valued functions of z and
without using the DAHA duality, an approach quite different from the one
in Section 5.6.

Remark 16. Define the 2 × 2 matrix-valued polynomial

En[z] :=
(−→

En[z]
−−→
E−n[z]

)
(n = 0, 1, 2, . . .)
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where
−−→
E±n[z] are the 2-vector-valued polynomials given by (120). Then, by

(135),∫
|z|=1

(Em[z])t W[z] En[z]
dz

i z
= hn δm,n

(
1 0
0 1

)
(m, n = 0, 1, 2, . . .).

Thus, we have matrix-valued orthogonal polynomials, see, for instance, [36].

6.3. Duality for the 2D nonsymmetric AW polynomials

While many formulas turn out to be very satisfactory in the 2D presentation,
this is less so for the 2D version of the duality (101) for nonsymmetric
AW polynomials. Here, we will give a “mixed” duality formula, with
scalar-valued polynomials on the left side and 2-vector-valued polynomials
on the right side, because this is most suitable when taking limits to
continuous dual Hahn and big q-Jacobi. We will compare En[za,q(m)−1]

and
−→̃
Em[zã,q(n)−1] (m, n ∈ Z), where za,q(n) is given by (100), En by (97),

and
−→
En by (120), and where, as usual,

−→̃
Em means

−→
Em with respect to dual

parameters. Now it follows from (101), (116), and (109) that we have the
duality

En[za,q(m)−1] =
(

1
(1 − q−1abcd νã,q(n))(1 − ab νã,q(n))

νã,q(n)

)−→̃
Em[zã,q(n)−1].

(137)
On the right-hand side, we have a matrix product of a row vector and a
column vector, which yields a scalar.

7. Degenerations of the Askey–Wilson DAHA and the nonsymmetric
AW polynomials

7.1. Degenerations of DAHA and duality

The limits d → 0 from AW to continuous dual Hahn and d, c → 0
from AW to Al-Salam–Chihara (see (34) and (59)) have corresponding
DAHA degenerations that were discussed in [24]. Here, we recall the
main points of that study and construct other degenerations corresponding
to the limits (39) and (70) from AW to big and little q-Jacobi. We
will give the degenerations for the DAHA presentations (84) and (87).
Because certain rescalings have to be emphasized, we now use the
DAHA notation HHa,b,c,d;q[T1, T0, T −1

0 , Z , Z−1] in connection with (84) and
HHa,b,c,d;q〈T1, Y, Y −1, Z , Z−1〉 in connection with (87).
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7.1.1. From AW to continuous dual Hahn. Just as in (34) and (51),
we have to take the limit as d → 0. However, before taking the limit,
it is convenient to introduce a rescaling T ′

0 := q−1cdT −1
0 in (84) and a

rescaling Y ′ := q−1cdY −1 in (87) before letting d → 0. Then, (84) can be
equivalently written as

(T1 + ab)(T1 + 1) = 0, T0 + T ′
0 + 1 + q−1cd = 0,

(aZ−1T −1
1 + 1)(bZ−1T −1

1 + 1) = 0, q Z−1T0 + T ′
0 Z + (c + d) = 0,

T0T ′
0 = q−1cd = T ′

0T0, Z Z−1 = Z−1 Z = 1.

In the limit for d → 0, we get the algebra

HHCDqH
a,b,c;q [T1, T0, T ′

0, Z , Z−1] := lim
d→0

HHa,b,c,d;q [T1, T0, qc−1d−1T ′
0, Z , Z−1]

with generators T1, T0, T ′
0, Z , Z−1 and relations

(T1 + ab)(T1 + 1) = 0,

T0 + T ′
0 + 1 = 0,

(aZ−1T −1
1 + 1)(bZ−1T −1

1 + 1) = 0,

q Z−1T0 + T ′
0 Z + c = 0,

T0T ′
0 = 0 = T ′

0T0, Z Z−1 = Z−1 Z = 1.

As T ′
0 = −T0 − 1 by the second relation, this may be substituted in the

other relations in (138) that involve T ′
0, after which T ′

0 can be dropped as a
generator. The resulting relations are

(T1 + ab)(T1 + 1) = 0,

(aZ−1T −1
1 + 1)(bZ−1T −1

1 + 1) = 0,

q Z−1T0 − T0 Z − Z + c = 0,

T0(T0 + 1) = 0, Z Z−1 = Z−1 Z = 1. (138)

The presentation (138) is the same as for the algebra HV in [24,
(1.6)–(1.10)].

With Y ′ := q−1cdY −1, the relations (87) can be equivalently written as

(T1 + ab)(T1 + 1) = 0,

T −1
1 Y + Y ′T1 + 1 + q−1cd = 0,

(aZ−1T −1
1 + 1)(bZ−1T −1

1 + 1) = 0,

q Z−1T −1
1 Y + Y ′T1 Z + c + d = 0,

Y Y ′ = q−1cd = Y ′Y, Z Z−1 = 1 = Z−1 Z .
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In the limit for d → 0, we get the algebra

HHCDqH
a,b,c;q〈T1, Y, Y ′, Z , Z−1〉 := lim

d→0
HHa,b,c,d;q〈T1, Y, qc−1d−1Y ′, Z , Z−1〉

with generators T1, Y, Y ′, Z , Z−1 and relations

(T1 + ab)(T1 + 1) = 0,

T −1
1 Y + Y ′T1 + 1 = 0,

(aZ−1T −1
1 + 1)(bZ−1T −1

1 + 1) = 0,

q Z−1T −1
1 Y + Y ′T1 Z + c = 0,

Y Y ′ = 0 = Y ′Y, Z Z−1 = 1 = Z−1 Z . (139)

If we replace in (139) Z , Z−1 by X, X−1 and Y ′ by −Z , then we recover the
relations given in [26, proof of Lemma 2.3] for the algebra HV .

Similarly, as for (138) we may rewrite the second relation in (139) as
Y ′ := −T −1

1 Y T −1
1 − T −1

1 , substitute this in the other relations in (139) that
involve Y ′, and then remove Y ′ as a generator:

(T1 + ab)(T1 + 1) = 0,

T −1
1 Y + Y ′T1 + 1 = 0,

(aZ−1T −1
1 + 1)(bZ−1T −1

1 + 1) = 0,

q Z−1T −1
1 Y − T −1

1 Y Z − Z + c = 0,

Y T −1
1 Y + c = 0, Z Z−1 = 1 = Z−1 Z . (140)

7.1.2. From AW to big q-Jacobi. Just as (54), we have to replace the
substitution (39) and then take the limit for λ → 0. Because of the way,
z transforms in (39), before taking the limit it is necessary to rescale
X := λZ , X ′ := λZ−1 in (84) and (87). After these substitutions, relations
(84) can be equivalently written as

(T1 + qa)(T1 + 1) = 0,

(T0 + b)(T0 + 1) = 0,

T1 X + qa X ′T −1
1 + (λ2 + qa) = 0,

bT −1
0 X + q X ′T0 + qc + b/cλ = 0,

X X ′ = λ2 = X ′ X.
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In the limit for λ → 0, we get the algebra

HHBqJ
a,b,c;q [T1, T0, T −1

0 , X, X ′] := lim
λ→0

HHλ,qaλ−1,qcλ−1,bc−1λ;q [T1, T0, T −1
0 , λ−1 X, λ−1 X ′]

with generators T1, T0, X, X ′ and relations

(T1 + qa)(T1 + 1) = 0,

(T0 + b)(T0 + 1) = 0,

T1 X + qa X ′T −1
1 + qa = 0,

bT −1
0 X + q X ′T0 + qc = 0,

X X ′ = 0 = X ′ X. (141)

This algebra can be seen to be equivalent with the algebra Hγ

V in [24,
(3.110)–(3.114)] if we replace there a, b, c by −a2/q, bc/q, cq.

With Z := λ−1 X and Z−1 := λ−1 X ′, the relations (87) can be
equivalently written as

(T1 + qa)(T1 + 1) = 0,

(T −1
1 Y + b)(T −1

1 Y + 1) = 0,

T1 X + qa X ′T −1
1 + (λ2 + qa) = 0,

bY −1T1 X + q X ′T −1
1 Y + qc + b/cλ = 0,

X X ′ = λ2 = X ′ X.

In the limit for λ → 0, we get the algebra

HHBqJ
a,b,c;q〈T1, Y, Y −1, X, X ′〉 = lim

λ→0
HHλ,qaλ−1,qcλ−1,bc−1λ;q〈T1, Y, Y −1, λ−1 X, λ−1 X ′〉

with generators T1, Y, X, X ′ and with relations

(T1 + qa)(T1 + 1) = 0,

(T −1
1 Y + b)(T −1

1 Y + 1) = 0,

T1 X + qa X ′T −1
1 + qa = 0,

bY −1T1 X + q X ′T −1
1 Y + qc = 0,

X X ′ = 0 = X ′ X. (142)

7.1.3. Duality. Now recall the anti-isometric dualities (90) and (91) that
read in extended notation as

HHa,b,c,d;q[T1, T0, T −1
0 , Z , Z−1]

� HHã,b̃,c̃,d̃;q[T1, aZ−1T −1
1 , a−1T1 Z , ãT −1

0 T −1
1 , ã−1T1T0] (143)
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and

HHa,b,c,d;q〈T1, Y, Y −1, Z , Z−1〉 � HHã,b̃,c̃,d̃;q〈T1, aZ−1, a−1 Z , ãY −1, ã−1Y 〉.
(144)

In (143), substitute (45) and T −1
0 = abλ−2T ′

0:

HHa,b,c,qa−1b−1c−1λ2;q[T1, T0, abλ−2T ′
0, Z , Z−1]

� HHλ,abλ−1,acλ−1,qb−1c−1λ;q[T1, aZ−1T −1
1 , a−1T1 Z , abλ−1T ′

0T −1
1 , λ−1T1T0].

In the limit for λ → 0, we get

HHCDqH
a,b,c;q[T1, T0, T ′

0, Z , Z−1]

� HHBqJ
q−1ab,ab−1,q−1ac;q[T1, aZ−1T −1

1 , a−1T1 Z , abT ′
0T −1

1 , T1T0] (145)

or equivalently

HHCDqH
a,b,c;q[T1, T −1

1 X ′, a−1b−1 XT1, aT −1
1 T −1

0 , a−1T0T1]

� HHBqJ
q−1ab,ab−1,q−1ac;q[T1, T0, T −1

0 , X, X ′]. (146)

These anti-isometric dualities can also be verified directly by comparing
(138) and (141). They were observed in [24, (3.115)] as an isometry from
HV to Hγ

V .
In (144), substitute (45) and Y −1 = abλ−2Y ′:

HHa,b,c,qa−1b−1c−1λ2;q〈T1, Y, abλ−2Y ′, Z , Z−1〉
� HHλ,abλ−1,acλ−1,qb−1c−1λ;q〈T1, aZ−1, a−1 Z , abλ−1Y ′, λ−1Y 〉.

In the limit for λ → 0, we get

HHCDqH
a,b,c;q〈T1, Y, Y ′, Z , Z−1〉 � HHBqJ

q−1ab,ab−1,q−1ac;q〈T1, aZ−1, a−1 Z , abY ′, Y 〉
(147)

or equivalently

HHCDqH
a,b,c;q〈T1, X ′, a−1b−1 X, aY −1, a−1Y 〉

� HHBqJ
q−1ab,ab−1,q−1ac;q〈T1, Y, Y −1, X, X ′〉. (148)

These anti-isometric dualities can also be verified directly by comparing
(139) and (142).

7.1.4. From continuous dual q-Hahn to Al-Salam–Chihara and from big
to little q-Jacobi. Just as in (59), (70), and Section 4.3, we have to let
c → 0 to arrive from continuous dual q-Hahn to Al-Salam–Chihara and
from big q-Jacobi to little q-Jacobi:

HHASC
a,b;q[T1, T0, Z , Z−1] := lim

c→0
HHCDqH

a,b,c;q[T1, T0, T ′
0, Z , Z−1],
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HHASC
a,b;q〈T1, Y, Y ′, Z , Z−1〉 := lim

c→0
HHCDqH

a,b,c;q〈T1, Y, Y ′, Z , Z−1〉,

HHLqJ
a,b;q[T1, T0, T −1

0 , X, X ′] := lim
c→0

HHBqJ
a,b,c;q[T1, T0, T −1

0 , X, X ′],

HHLqJ
a,b;q〈T1, Y, Y −1, X, X ′〉 := lim

c→0
HHBqJ

a,b,c;q〈T1, Y, Y −1, X, X ′〉.

The corresponding formulas for the relations and for the dualities can be
obtained by putting c = 0 in (138)–(142) and (145)–(148). The algebra
HHASC

a,b;q[T1, T0, Z , Z−1] equals the algebra Hβ

I I I in [24, remark 6.17].

7.1.5. From continuous dual q-Hahn to AW q-Bessel and from big to
little q-Jacobi with c → ∞. Corresponding to the limit (65), we should let
c → ∞ in (138). However, to get meaningful limit relations, we first have
to rescale T0 = cT̃0. Then, we obtain

HHAWqB
a,b;q [T1, T̃0, , Z , Z−1] := lim

c→∞HHCDqH
a,b,c;q[T1, cT̃0,−cT̃0 − 1, Z , Z−1],

with relations

(T1 + ab)(T1 + 1) = 0,

(aZ−1T −1
1 + 1)(bZ−1T −1

1 + 1) = 0,

q Z−1T̃0 − T̃0 Z + 1 = 0,

T̃ 2
0 = 0, Z Z−1 = Z−1 Z = 1. (149)

If we compare the relations (149) with the relations (138) for c = 0, then
we see that they are equivalent under the substitution T0 = −qT̃0 Z−1 − 1.
Thus,

HHAWqB
a,b;q [T1, T̃0, Z , Z−1] � HHASC

a,b;q[T1,−qT̃0 Z−1 − 1, Z , Z−1].

Similar results can be formulated in connection with the limit for c → ∞
of relations (140). The algebra HHAWqB

a,b;q [T1, T̃0, Z , Z−1] equals the algebra
HI I I in [24, (1.16)–(1.20)] and [26, (1.5)–(1.8)]. It can be recognized as
a so-called nil-DAHA [27, remark 8.4]. The above correspondence between
HHASC and HHAWqB was earlier given in [24, remark 6.17].

Corresponding to the limit (68), we should let c → ∞ in (141) and (142).
However, to get meaningful limit relations, we first have to rescale X = cX̃ ,
X ′ = cX̃ ′. Then, we obtain

H̃HLqJ
a,b;q[T1, T0, T −1

0 , X̃ , X̃ ′] := lim
c→∞HHBqJ

a,b,c;q[T1, T0, T −1
0 , cX̃ , cX̃ ′],

H̃HLqJ
a,b;q〈T1, Y, Y −1, X̃ , X̃ ′〉 := lim

c→∞HHBqJ
a,b,c;q〈T1, Y, Y −1, cX̃ , cX̃ ′〉
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with relations, respectively,

(T1 + ab)(T1 + 1) = 0,

(T0 + ab−1)(T0 + 1) = 0,

T1 X̃ + abX̃ ′T −1
1 = 0,

ab−1T −1
0 X̃ + q X̃ ′T0 + a = 0,

X̃ X̃ ′ = 0 = X̃ ′ X̃ , (150)

and

(T1 + qa)(T1 + 1) = 0,

(T −1
1 Y + ab−1)(T −1

1 Y + 1) = 0,

T1 X̃ + abX̃ ′T −1
1 = 0,

aY −1T1 X̃ + qbX̃ ′T −1
1 Y + ab = 0,

X̃ X̃ ′ = 0 = X̃ ′ X̃ . (151)

If we compare the relations (151) with the relations (142) for c = 0,
then we see that they are equivalent under the substitutions X̃ = −XY −1,
X̃ ′ = −qa−2Y X ′. Thus,

H̃HLqJ
a,b;q〈T1, Y, Y −1,−XY −1,−qa−2Y X ′〉 � HHLqJ

a,b;q〈T1, Y, Y −1, X, X ′〉.

7.2. Nonsymmetric continuous dual q-Hahn polynomials and
Al-Salam–Chihara polynomials

The nonsymmetric versions of the continuous dual q-Hahn can be obtained
by setting d = 0 in (97), see [26]:

En[z; a, b, c | q] := lim
d→0

En[z; a, b, c, d | q].

Then,

En[z; a, b, c | q] = Rn[z; a, b, c | q] − q1−n(1 − qn)

(1 − qab)(1 − ab)(1 − ac)

×az−1(1 − az)(1 − bz)Rn−1[z; qa, qb, c | q] (n = 0, 1, 2, . . .),

E−n[z; a, b, c | q] := Rn[z; a, b, c | q] − q1−n(1 − qnab)

(1 − qab)(1 − ab)(1 − ac)

×b−1z−1(1 − az)(1 − bz)Rn−1[z; qa, qb, c | q] (n = 1, 2, . . .), (152)

where (1 − qn)En−1 := 0 for n = 0.
Corresponding to the presentation (139) of the corresponding DAHA,

it is sufficient to deal with the generators T1, Y, Y ′, and Z in its basic
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representation. For T1, Y , and Z , put d = 0 in their formulas in Section 5.3.
This does not change the formulas (93) for Z and (94) for T1. Formula (95)
for Y becomes

(Y f )[z] = z (1 + ab − (a + b)z) (c − z)

(1 − z2)(q − z2)
( f [z] − f [qz−1])

+ (1 − az)(1 − bz)(1 − cz)

(1 − z2)(1 − qz2)
( f [qz] − f [z−1]).

This was also given in [26, proof of Lemma 2.4]. The formula for Y ′

is obtained by putting Y ′ := q−1cdY −1 with Y −1 given by (96) and then
putting d = 0:

(Y ′ f )[z] = z (a + b − (1 + ab)z) (q − cz)

ab(1 − z2)(q − z2)
f [z]

− z(aq − z)(bq − z)(c − z)

ab(q − z2)(q2 − z2)
f [q−1z] + (1 − az)(1 − bz)(q − cz)

ab(1 − z2)(q − z2)
f [z−1]

− qz ((a + b)z − q(1 + ab)) (c − z)

ab(q − z2)(q2 − z2)
f [qz−1].

Then, from (98) and also using the definition of Y ′, we obtain the
eigenvalue equations

Y En = 0 (n = 0, 1, 2, . . .),

Y E−n = q−n E−n (n = 1, 2, . . .), (153)

Y ′En = q−na−1b−1 En (n = 0, 1, 2, . . .),

Y ′E−n = 0 (n = 1, 2, . . .). (154)

Formulas (153) and (154) were earlier given in [26, Lemma 2.4].
As for the recurrence relation (110) with Mn given by (111) involving

formula (109) for νã,q(n), one can see from (111) and (109) that the limit of
Mn for d → 0 exists, where one has to distinguish between the cases n ≥ 0
and n < 0. We do not give the explicit formulas here.

Similar results for nonsymmetric Al-Salam–Chihara polynomials will
simply follow by putting c = 0 in the above formulas.

7.3. Nonsymmetric big and little q-Jacobi polynomials

When taking the limit (39) to big q-Jacobi (and consequently the limits
(68) and (69) to little q-Jacobi), one produces true polynomials rather
than Laurent ones. By taking the same limits of the nonsymmetric AW
polynomials (97), one obtains families of polynomials that are no longer
functionally independent. To overcome this difficulty, we need to deal with
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the 2D nonsymmetric AW polynomials (120) and take limits of those. Thus,
define the nonsymmetric big q-Jacobi polynomials
−→
En(x ; a, b, c; q) := lim

λ→0

−→
En[λ−1x ; λ, qaλ−1, qcλ−1, bc−1λ | q]. (n ∈ Z).

(155)
Then,

−→
En(x) =

⎛⎜⎝ Pn(x ; a, b, c | q)

− q1−n(1 − qn)(1 − qnb)

(1 − qa)(1 − q2a)(1 − qc)
Pn−1(qx, q2a, b, qc; q)

⎞⎟⎠ (n ≥ 0),

−→
E−n(x) =

⎛⎜⎝ Pn(x ; a, b, c | q)

−q−n(1 − qn+1a)(1 − qn+1ab)

a(1 − qa)(1 − q2a)(1 − qc)
Pn−1(qx, q2a, b, qc; q)

⎞⎟⎠ (n ≥ 1), (156)

where (1 − qn)Pn−1 := 0 for n = 0.
We will deduce the basic representation of HHBqJ

a,b,c;q by 2 × 2 matrix-
valued operators from the one for HH. We need to impose the substitution

sub = {z → λ−1x, a → λ, b → qaλ−1, c → qcλ−1, d → bc−1λ}, (157)

defined in (39), in the 2D realization of the basic representation of HH.
However, when taking the limit as λ → 0, we see that to obtain well-defined
matrix operators, we need to conjugate all operators by the diagonal matrix
with entries 1, 1

λ
. Moreover, because z → λ−1x , we need to multiply Z by

λ. Therefore, we introduce the following rescalings of (131), (132), and
(123):

Z̃ : = λ

(
1 0
0 1/λ

)
Zsub

(
1 0
0 λ

)
, (158)

(1 − qa)x Z̃11 = x2 + λ2 − x(λ2 + qa),

(1 − qa)x Z̃22 = λ2x − qa(λ2 + x2 − x),

(1 − qa)x2 Z̃12 = (x − λ2)(qax − λ2)(x − 1)(x − qa),

(1 − qa)Z̃21 = −1;

Z̃−1 : = λ

(
1 0
0 1/λ

)
Z−1

sub

(
1 0
0 λ

)
=
(

Z̃22 −Z̃12

−Z̃21 Z̃11

)
; (159)

T̃1 : =
(

1 0
0 1/λ

)
T1sub

(
1 0
0 λ

)
=
(−qa 0

0 −1

)
; (160)

Ỹ : =
(

1 0
0 1/λ

)
Ysub

(
1 0
0 λ

)
, (161)

where Z±1
sub,T1sub , and Ysub denote the operators in which we have per-

formed the substitution (157). Denote the limits for λ → 0 by X,X′,T1,Y,
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respectively. Then, we obtain:

X = 1

qa − 1

(
qa − x qa(x − 1)(qa − x)

1 qa(x − 1)

)
,

X′ = 1

qa − 1

(
qa(x − 1) −qa(x − 1)(qa − x)
−1 qa − x

)
, T1 =

(−qa 0
0 −1

)
.

For Y, which we have not given explicitly, we obtain from (129) that

Y
−−→
E−n(x) = q−n −−→

E−n(x) (n = 1, 2, . . .),

Y
−→
En(x) = qn+1ab

−→
En(x) (n = 0, 1, 2, . . .). (162)

Finally, the analog of (134) is:

M̃n

(−→
En(x)

)
= X′−→En(x), (163)

where

M̃n(g(n))

= μã,q(n)(abμã,q(n) − c)(a(1 + b)qμã,q(n) − 1 − qa)

(abμã,q(n)2 − 1)(abqμã,q(n)2 − 1)
(g(n) − g(−1 − n))

+ (1 − aqμã,q(n))(1 − abqμã,q(n))(1 − cqμã,q(n))

(abq2μã,q(n)2 − 1)(abqμã,q(n)2 − 1)
(g(n − 1) − g(−n))

(164)

and

μã,q(n) :=
{

(abq1+n)−1, n ≥ 0,
q−n, n < 0.

(165)

This is proved straight from (134) by substitution.
Similar results for nonsymmetric little q-Jacobi polynomials will simply

follow by putting c = 0 in the above formulas.

Remark 17. Clearly, from (39), there is a symmetry Pn(x ; a, b,
c) = Pn(x ; c, ab/c, a). Hence, from (156),

−→
En(x ; c, ab/c, a; q) =

⎛⎜⎝ Pn(x ; a, b, c | q)

− q1−n(1 − qn)(c − qnab)

c(1 − qa)(1 − qc)(1 − q2c)
Pn−1(qx, qa, qb, q2c; q)

⎞⎟⎠,

−−→
E−n(x ; c, ab/c, a; q) =

⎛⎜⎝ Pn(x ; a, b, c | q)

−q−n(1 − qn+1c)(1 − qn+1ab)

c(1 − qa)(1 − qc)(1 − q2c)
Pn−1(qx, qa, qb, q2c; q)

⎞⎟⎠
(166)
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for n ≥ 0, respectively, n > 0. Note that the q-shifts in the parameters
of the big q-Jacobi polynomials occurring in the second coordinate in
(166) are different from the ones in (156). The q-shifts in (166) are
more in agreement with the q-shifts in the vector-valued little q-Jacobi
polynomials discussed in [28, §6]. In fact, the limit for c → 0 of(

1 0
0 c

)−→
En(x ; c, ab/c, a; q) essentially gives these polynomials [28, (6.4),

(6.5)].
The polynomials (166) will also be eigenfunctions of the Y operator in

the basic representation of HHBqJ
c,ab/c,a;q . A limit for c → 0 will be possible

in this eigenvalue equation (a little q-Jacobi case). However, it is not clear
at all if some decent algebra will result from taking the limit for c → 0 of
HHBqJ

c,ab/c,a;q .

7.4. Duality between degenerate cases of nonsymmetric AW polynomials

By comparing (152) and (156), we obtain for m, n ∈ Z that

En(za,q(m)−1; a, b, c | q) = (
1 μab,q(n)

)−→
Em(q−n; q−1ab, ab−1, q−1ac; q),

(167)
where

μab,q(n) := abq−n(1 − qn) (n = 0, 1, 2, . . .),

μab,q(−n) := q−n(1 − qnab) (n = 1, 2, . . .),

and za,q(m) is given by (100). As in (137), formula (167) has a matrix
multiplication of a row vector with a column vector on the right. Formula
(167) is also a limit case of (137).

The duality (167) extends to a duality for the operators acting on both
sides as given in Sections 7.2 and 7.3. These will come from the dualities of
the degenerate DAHAs, given in Section 7.1, in their basic representations.
Furthermore, everything can be specialized to the next level in the q-Askey
scheme by putting c = 0.

8. Summary of other related work and further perspective

Necessarily, given the limited size of a journal article, we had to restrict
ourselves in the choice of material. This has resulted in a treatment of
material related to the part of the q-Askey scheme depicted in Figure 1.
A more comprehensive study of degenerate DAHAs associated with the
(q-)Askey scheme would have made links with cases already studied in the
literature (often also in higher rank):
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� Nonsymmetric dual q-Krawtchouk polynomials are related to Cherednik’s
one-dimensional nil-DAHA, see [27]. As we already mentioned, this nil-
DAHA is very close to the degenerate DAHAs for Al-Salam–Chihara and
little q-Jacobi considered in Section 7.1.

� Nonsymmetric Wilson polynomials are related to a degenerate DAHA
considered in [38] and [39].

� Nonsymmetric Jacobi polynomials are related to the case n = 1 of the
dDAHA (degenerate DAHA) of type BCn considered in [40, §3.1].

� Nonsymmetric Bessel functions (limit cases of nonsymmetric Jacobi
polynomials) are related to a rational Cherednik algebra [41] of rank 1.

Furthermore, we did not treat the finite and infinite discrete families,
with the q-Racah polynomials on top, see also Remark 8. From the point
of view of duality, such families were classified by Leonard [42]. A further
discussion of the families arising from Leonard’s classification was given in
[43], including the q → −1 limit to the Bannai–Ito polynomials. Recently,
a lot of work on q → −1 limits has been done by Vinet, Zhedanov, and
coauthors. See, in particular, [39], where the q → −1 degeneration of the
Zhedanov algebra associated with the Banna–Ito polynomials is identified
with the degenerate DAHA associated with the nonsymmetric Wilson
polynomials.

In a different line of development, the paper [44] introduced analogues
of Askey–Wilson polynomials that are orthogonal on the unit circle, and
constructed a DAHA associated with them.

An evident perspective for further work is to describe a full (q-)Askey
scheme of nonsymmetric orthogonal polynomials and the associated
degenerate DAHAs. Important questions here will be when it is necessary
to work with vector-valued polynomials rather than Laurent polynomials,
whether the orthogonality relations (135) for vector-valued AW survive in
the limit cases (for a few special cases positively answered in [28]), and
what the consequences are when limits of nonsymmetric AW are taken
with permuted parameters (see Remark 17). The “nonsymmetric” (q-)Askey
scheme should also be extended to nonpolynomial cases (cf. [29]). All such
work should finally get analogues in the higher rank (BCn) case.
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Birkhäuser, Boston, MA, 1997.

20. G. WILSON, Collisions of Calogero-Moser particles and an adelic Grassmannian,
Invent. Math 133:1–41 (1998).

21. Y. BEREST, Huygens’ principle and the bispectral problem, in The Bispectral Problem,
CRM Proceedings and Lecture Notes, Vol. 14, pp. 11–30, American Mathematical
Society, Providence, RI, 1998.

22. J. HARNAD, Dual isomonodromic deformations and moment maps to loop algebras,
Commun. Math. Phys 16:337–365 (1994).

23. B. DUBROVIN, Geometry of 2D topological field theories, in Integrable Systems
and Quantum Groups (M. Francaviglia and S. Greco, Eds.), Lecture Notes in
Mathematics, Vol. 1620, pp. 120–348, Springer-Verlag, Berlin, 1996.

24. M. MAZZOCCO, Confluences of the Painlevé equations, Cherednik algebras and
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