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The transport of excitations between pinned particles in many physical systems may be mapped to
single-particle models with power-law hopping, 1=ra. For randomly spaced particles, these models present
an effective peculiar disorder that leads to surprising localization properties. We show that in one-
dimensional systems almost all eigenstates (except for a few states close to the ground state) are power-law
localized for any value of a > 0. Moreover, we show that our model is an example of a new universality
class of models with power-law hopping, characterized by a duality between systems with long-range hops
(a < 1) and short-range hops (a > 1), in which the wave function amplitude falls off algebraically with the
same power γ from the localization center.

DOI: 10.1103/PhysRevLett.120.110602

Long-range interactions are crucial in many disordered
systems. In particular, dipole-induced transport of excita-
tions, with a hopping amplitude decaying with interparticle
distance r as 1=r3, plays a key role in disparate scenarios,
including magnetic atoms [1], polar molecules [2], Rydberg
atoms [3], nitrogen vacancy centers in diamonds [4], and
nuclear spins in solid-state systems [5]. Interestingly, systems
with tunable power-law interactions 1=ra have been recently
proposed. In the presence of laser-driven coupling, trapped
ions may realize power-law-decaying spin interactions with
tunable 0 < a < 3 [6,7]. Spin models with an arbitrary
power-law interaction can be also engineered between atoms
trapped in a photonic crystal waveguide [8]. These tunable
systems can be realized in low dimensions, opening in-
triguing questions on transport with truly long-range inter-
actions, i.e., for a < d, with d as the dimensionality.
Most of the previous works considered excitation trans-

port among regularly spaced particles, e.g., by pinning
them in an uniformly filled lattice with on-site disorder. In
addition, long-range hopping has been considered either
anisotropic with zero angular average (e.g., dipole hopping
[9,10]) or random with zero ensemble average [11]. Under
such conditions, the interplay of on-site disorder and long-
range hops may result in localization, critical behavior, or
fully extended states. In his seminal work, Levitov sug-
gested that these cases occur for a > d, a ¼ d, and a < d,
respectively [9]. Later studies for d ¼ 1 using a super-
symmetric nonlinear sigma-model approach confirmed this
suggestion [11]. Intense efforts have been devoted to the

critical power-law banded random matrix (PLBRM)
ensemble (d ¼ a ¼ 1) [12–18]. Dipolar excitations in a
2D lattice with on-site disorder (d ¼ a ¼ 2) exhibit a
purely critical behavior only for the time-reversal-invariant
case and may have a “metal-insulator” transition if the
invariance is broken [10].
Notwithstanding these details, the common wisdom until

recently was that, for noninteracting particles with on-site
disorder, long-range hopping is a delocalizing factor that
destroys localization for a ≤ d. Only few recent works have
stood out of this paradigm. Surprisingly, all states appeared
to be localized for the exotic case of linear hopping
(a ¼ −1) between randomly placed points in a 1D system
[19]. A second example is provided by a simplex (a ¼ 0),
where all excited states were found to be localized [20]. This
peculiar behavior was linked in Ref. [20] to the macroscopic
degeneracy of the perturbation matrix. The role of degen-
eracy in this model was recently further emphasized and
extended to a > 0 in Refs. [21,22], where it was argued that
the long-range hopping has no effect on the system
dynamics as long as the width of the disorder-broadened
(N − 1)-fold degenerate level (with N as the number of
sites) is smaller than the gap between the ground and excited
states for a ¼ 0. Since this gap is proportional to N1−a and
the bandwidth is N independent, the long-range hopping is
“shielded” in the thermodynamic limit for all 0 < a < 1,
and the localization of excited states is preserved.
In this Letter, we consider the physically relevant case of

excitation transport due to power-law hops among randomly
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pinned particles. We call these models power-law Euclidean
(PLE) models, in connection with the Euclidean random
matrices with no diagonal elements [23]. Disorder in PLE
models is purely off diagonal given by the Poisson distri-
bution of the particle positions. However, it is crucially
different from the off diagonal disorder in nearest-neighbor
hopping models [24,25], since long-range hops break down
the chiral (sublattice) symmetry [26] of the nearest-neighbor
hopping case. It also differs from the off diagonal disorder of
Ref. [11] because the angular or ensemble average of the
hopping amplitude is not zero.
We focus on the 1D case, showing that PLE models

possess features radically different from those with ran-
dom-sign long-range hopping [11]. Similar to the Anderson
model on a lattice with diagonal disorder and nonrandom
long-range hopping [21], almost all states (except for a few
states close to the lower edge of the spectrum; see
Supplemental Material [27]) are localized for any a > 0.
However, in contrast to the conventional Anderson model
with exponential localization, in the PLE model, localiza-
tion is algebraic with a power-law decrease of wave

functions, expðln jψðnÞj2Þ ∼ jn − n0j−γ at sites n away from
the localization center n0, where γ depends on a. This
remains valid for the model of Ref. [21], even for arbitrarily
small but finite a. As discussed below, power-law locali-
zation emerges because long-range hops are not fully
shielded, but rather become effectively short range.
The main result of this Letter is a surprising duality,

γðaÞ ¼ γð2 − aÞ; ð1Þ

for 0 < a < 1. We obtain this duality numerically for 0 <
a < 1 (Fig. 1 and Fig. 2) and analytically for the PLE
model at finite but small a [29]. Strikingly, this duality is
more general than our PLE models. It holds for the model
of Ref. [21], which presents on-site disorder in a regular
lattice with long-range hops. It also holds for the PLE

model with additional on-site disorder. Moreover, the
exponent γ depends only on a but not on other details
of the models, including the eigenstate energy (see Fig. 3
and Fig. S6 in the Supplemental Material [27]), except for a
small fraction (∼3%) of the states at the edges of the
spectrum. Thus, the considered models are not only
experimentally relevant but represent a new class of
long-range models where localization is algebraic and
the duality Eq. (1) holds.
Model.—We consider N particles pinned at random

positions frng by an external 1D potential. Each particle
has two internal states f↑;↓g, which can be treated as
(pseudo)spin states. The particles experience power-law
spin exchange described by the XY Hamiltonian

HXY ¼ −
J
2

X
n;m

1

jrn − rmja
ðSþn S−m þ S−n SþmÞ; ð2Þ

with S�n as the spin operators associated with particle n.
Assuming that all particles are in the state ↓, we denote jni
the state with a single spin-flipped particle ↑ at the site n
placed at position rn. The propagation of a single excitation
among the particles, determined by the XY exchange, can
be modeled by the Hamiltonian

H ¼
X
n

X
m≠n

Hn;mjnihmj: ð3Þ
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FIG. 1. Duality for 0 < a < 1 and 1 < a < 2 of the localization
properties of the PLE model (blue circles) and the model of
Refs. [20,21] with diagonal disorder and deterministic sign-
definite, long-range hopping (red triangles): (a) slope k of the
MFS extrapolated to N → ∞; (b) exponent γ of the algebraic
localization of jψ j2. Dashed lines correspond to γ ¼ 1=k ¼ 2a for
1 < a < 2 or to γ ¼ 4 − 2a for 0 < a < 1. The error bars mainly
stem from the extrapolation to infinite size systems.

FIG. 2. Average of lnðjψðnÞj2Þ for 1D chain of N ¼ 2 × 104

sites vs logarithm of the distance n from the localization center.
(a) PLE model with random site positions and deterministic
hopping function 1=ra for a ¼ 0.5 and a ¼ 1.5. The duality
Eq. (1) manifests itself in the same slope −γðaÞ of the curves at
the tail. (b) Model of Ref. [21] on regular lattice with diagonal
disorder and deterministic power-law hopping for a ¼ 0,
a ¼ 0.1, and a ¼ 1.9. Notice a drastic difference between the
exactly solvable [30] case a ¼ 0 and the two dual cases with a
close to zero and two (a ¼ 0.1 and a ¼ 1.9). At a → 0, the
eigenstates are algebraically localized with γ → 4, while at a ¼ 0
they are “critically multifractal” with fðαÞ ¼ α=2 for 0 < α < 2
and have a form of a sharp peak on the top of a background [31].
In contrast to the eigenstates of the standard Anderson model,
where the background is exponentially small, the critically
multifractal states are characterized by much stronger back-
ground ∼N−2.
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The hopping of the excitation between the nth and mth
particles follows a power law

Hn;m ¼ −Jjrn − rmj−a: ð4Þ

Below we assume for simplicity J ¼ 1. Since the positions
rn are randomly distributed, the excitation experiences a
peculiar randomness that may significantly handicap its
propagation in the system. The single-particle model is
expected to describe well the case of more than one
excitation, as long as the gas of excitations is dilute enough.
Localization and multifractality.—We are interested in

the localization properties of the eigenstates jψ si of H,
Hjψ si ¼ Esjψ si, close to the maximum of the density of
states (see Supplemental Material [27]) and, in particular,
how these properties depend on a. The eigenfunctions and
eigenenergies were obtained by exact diagonalization of
model (3) with N up to 8.4 × 104.
We characterize the eigenstates jψ si ¼

P
nψ sðnÞjni

by the moments IqðsÞ¼
P

njψ sðnÞj2q∝N−τðqÞ, where
DðqÞ ¼ τðqÞ=ðq − 1Þ are the so-called fractal dimensions.

Localized states are characterized by DðqÞ ¼ 0, ergodic
extended states by DðqÞ ¼ 1, while extended, but non-
ergodic, multifractal states have a set of nontrivial fractal
dimensions 0 < DðqÞ < 1 [17,32–35]. The Legendre trans-
form τðqÞ ¼ qα − fðαÞ defines the multifractal spectrum
(MFS) fðαÞ [32], which characterizes the Hausdorff
dimension of the manifold of sites, where jψ sðnÞj2 ¼
N−α. Normalization

P
njψ sðnÞj2 ¼ 1 requires α ≥ 0.

An important difference between power-law- and short-
range-hopping models is that, in the former case, localized
states, if they exist at all, have power-law-decaying tails
jψ sðnÞj2 ∝ 1=jn − n0jγ; i.e., they are algebraically local-
ized. One can show that the corresponding fðαÞ has a
triangular form, where fðαÞ ¼ kα for 0 < α < 1=k with
k ¼ d=γ. This is in contrast to exponentially localized states
for a short-range hopping, where k ¼ 0. Note that
jψ sðnÞj2 ∝ jHnþn0;n0 j2 ∝ n−2a in the perturbative regime
at a > d, and hence γ cannot be smaller than γa ¼ 2a > 2d.
Therefore, for algebraically localized states in 1D, one has
k < 1=2 like for the exponentially localized states on the
Bethe lattice [34].
We evaluate the spatial distribution of the eigenstates by

setting the localization center placed at the maximum value
of jψ j2 at index n ¼ n0 and averaging ln jψðnÞj2 over
disorder realizations and over an energy window. For the
localized states discussed below, the typical average

expðln jψðnÞj2Þ is well fitted by the expected algebraic
dependence jn − n0j−γ as seen in Fig. 2, except for the
special point a ¼ 0 [see Fig. 2(b)], where the PLE model is
disorder free and the model [21] is exactly solvable [30].
Multifractal spectrum.—We obtain the MFS in the

thermodynamic limit by means of a linear extrapolation
of our finite-size calculations in terms of 1= lnN [34,35].
For a > 1, we expect localized states and, indeed, we find
linear fðαÞ with a slope k < 1=2. At a ¼ 1, for all
eigenstates, the MFS displays a triangular shape with the
slope kc ≃ 0.42 [Fig. 4(b)]. Since kc is very close to the
critical value 1=2, the eigenstates for a ¼ 1 are either
weakly localized or critical. For a < 1, one would naively

FIG. 4. Multifractal spectrum fðαÞ (blue curve) obtained from the distribution function PðjψsðnÞj2Þ, extrapolated to N → ∞, for
(a) a ¼ 0.5; (b) a ¼ 1, and (c) a ¼ 1.5. We consider eigenstates at the maximum of the density of states. The inset of (a) shows that the
inverse participation ratio I2 does not depend on N, thus proving insulating behavior. Note that the concave feature in fðαÞ appears in all
cases (see text). The red dashed line in each case shows the triangular ftrðαÞ with k < 1=2 that corresponds to the same moments Iq as
fðαÞ. The blue dashed line indicates that fð0Þ ¼ 0, which is confirmed by our numerics.

FIG. 3. Dependence of γ on the energy for the PLE model.
(a) DOS for a ¼ 0.5. (b) DOS for a ¼ 1.5. (c) Average of
lnðjψðnÞj2Þ. For all energies E− < E < Eþ, in both cases a ¼ 0.5
and a ¼ 1.5, the slope of the curves −γ ≈ −3 is the same. The
fraction of states beyond this energy interval, i.e., at small and
large energies, is ∼3% in both cases.
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expect extended eigenstates. However, this expectation
appears to be wrong. The eigenstates inside a band
emerging due to disorder broadening of the macroscopi-
cally degenerate level remain localized for all 0 < a < 1.
Note that the slope k of the linear part of fðαÞ shown in

Fig. 4 reflects the algebraic decay of jψ sðnÞj far from the
localization center. For small α, the MFS becomes concave,
implying a reduced probability to find intermediate values
jψ sðnÞj2 ∝ N−α. A similar concave MFS has been dis-
cussed for the insulating phase of the Rosenzweig-Porter
random matrix ensemble [36]. The moments Iq ∝ N−τðqÞ

are, however, determined by finding the tangent −τðqÞ þ
qα to fðαÞ that does not cross the MFS at any point. Hence,
τðqÞ and fractal dimensions for fðαÞ with a concave
segment are the same as those for the MFS in which the
concave part is replaced by the red dashed line shown
in Fig 4.
Duality.—The localization properties of the eigenstates

of model (3) for 0 < a < 1 and for 1 < a < 2 exhibit a
striking duality given by Eq. (1). The slope k of the MFS is
depicted in the upper panel of Fig. 1. The lower panel
shows the exponent γ extracted from the average

lnðjψðnÞj2Þ ∝ −γ ln jn − n0j (see Fig. 2). Both graphs are
in good mutual agreement given by the relation k ¼ 1=γ.
Remarkably, a similar duality is present for the model of
Ref. [21], where disorder is purely diagonal (see Fig. 1).
Proof of duality for a → 0 and a → 2.—As was already

mentioned, for a ¼ 0, there is an (N − 1)-fold degeneracy
of the excited states, which may be chosen both extended
and localized on equal footing. The localization properties
of degenerate states are controlled by the perturbation
VðrÞ ¼ r−a − 1, namely, by the properties of the “good
zero-order wave functions” [37], which are eigenvectors of
the perturbation operator in a certain convenient basis. Let
us select a basis of (N − 1) states including N=2 non-
overlapping dimers jψn;nþ1i ¼ ðjni − jnþ 1iÞ= ffiffiffi

2
p

, N=4
nonoverlapping tetramers jψnþ2;nþ3

n;nþ1 i ¼ ðjni þ jnþ 1i−
jnþ 2i − jnþ 3iÞ=2, N=8 octamers, and so on. The basis
constructed in this way is orthonormal and complete for
any N ¼ 2k, where k is a positive integer. Moreover, the n-
mers are compact and thus represent localized states for any
n ¼ Oð1Þ. The perturbation results in hopping between n-
mers. The hopping amplitude Vn;m from the dimer jψn;nþ1i
to the dimer jψm;mþ1i, located far away (andm ≫ n), in the
limit of small a is given by

Vn;m ¼
�

1

jrmþ1 − rnja
−

1

jrm − rnja

þ 1

jrm − rnþ1ja
−

1

jrmþ1 − rnþ1ja
�

∝
a

R2
nm

; ð5Þ

where Rnm¼ðrmþ1þrm−rnþ1−rnÞ=2. A similar depend-
ence holds for the hopping between tetramers and all
n-mers (see the Supplemental Material [27]). Therefore

good zero-order wave functions in the basis of n-mers obey
the same equation as eigenvectors of the Hamiltonian with
hopping ∼1=r2. Thus, we have reduced the problem of
localization close to the point of macroscopic degeneracy
a ¼ 0 to the problem of localization in a system of n-mers
with hopping amplitude ∝ 1=R2

nm for which localization is
well understood. This proves the localization in our model
for a → 0 case [29] and its duality to localization at a ¼ 2.
Note finally that for a < 1 at the edge of the spectrum at

negative energy there are also delocalized states (see the
Supplemental Material [27]). The measure of the number of
such states is zero, but they will be responsible for the
transport in the system.
Role of sign alteration.—The localization properties of

our model and, in particular, the duality (2) are drastically
different from those of PLBRM [11] and Levitov’s scenario
[9]. We show at this point that this difference is related to
the sign randomness in the long-range hopping. To this end,
we modify our model in such a way that Hn;m acquires a
randomness ηn;m,

Hn;m ¼ −ðJ þ ηn;mÞ=ranm; ð6Þ

where ηn;m are random bounded numbers, jηn;mj < W, and
rnm ¼ jrn − rmj. Model (3) corresponds to W ¼ 0, J ¼ 1,
while that of Ref. [11] corresponds toW ¼ 1, J ¼ 0. Model
(6) can be physically realized for a spatially pinned two-
component system, in which the spinlike excitations may
be transferred either between particles of the same or of
different species (see the Supplemental Material [27]).
Another possible modification is the staggering model,

Hn;m ¼ ð−1Þrnm=ranm; ð7Þ

for which the sign of the product Hm;j1Hj1;j2 ;…; Hjl−1;n

over a path of l hops from m to n is independent of the
number of hops and equal to ð−1Þrnm .
The analysis presented in the Supplemental Material [27]

shows that, even at small W ¼ 0.1, model (6) exhibits for
J ¼ 1 the same properties as PLBRM and the eigenstates
are extended for a < 1. In contrast, model (7) is in the same
universality class as model (3). This shows that localization
in model (3) is due to interference of long-range paths
involving one or more hops, which is not affected by
staggering, but destroyed by sign randomness.
Conclusions.—Systems with power-law ∝ 1=ra spin

exchange between randomly spaced particles represent a
peculiar form of off diagonal disorder that leads to
surprising localization properties. We have shown that
1D spin excitations remain algebraically localized for
any value of the hopping power a > 0. Moreover, we
show that our model is a representative of a new univer-
sality class of models with power-law hopping, charac-
terized by a duality Eq. (1) between models with 0 < a < 1
and 2 > a > 1.
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