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Experimental research: problems and opportunities in the 

big-data era 

 

Henk Cremers 

 

 

Abstract: Experimental research in psychology, psycholinguistics or 

medicine provides quantitative and therefore seemingly conclusive and 

trustworthy evidence. However, it has been convincingly shown that most 

research findings are actually false. This has hardly influenced the dominant 

scientific evaluation system which reflects a continued trust in the 

unbiasedness of data by a strong reliance on simple quantifications of 

scientific quality and productivity, such as number of publications and 

number of citations. This state of affairs is remarkable in the light of a long 

history of strong criticism of commonly used inference methods and scientific 

evaluation systems, which is now backed by large-scale research projects 

directly questioning the reproducibility of scientific findings. This way, the 

large amounts of data – “big-data” – have helped to uncover some of these 

problematic issues, but also provided a more open attitude towards data and 

code sharing. In addition, novel analytic frameworks may help to better 

integrate empirical data with computational models. 



 

1. Introduction  

 

The former British Prime Minister Benjamin Disraeli is sometimes credited 

for the phrase that “there are lies, dammed lies, and … statistics”. Regardless 

of the origin of the saying, its relevance for modern science can hardly be 

overstated. Aside from questions whether data is theory-laden or not (Meehl 

1993), data and statistics can be used and misused in a virtually infinite 

number of ways. They serve as the foundation for policy and policy change, 

and are instrumental in scientific inferences. For example: The Washington 

Post reports that researchers found an 8% increase in head injuries in cities 

that have adopted a bike-sharing program.1 This is a remarkable finding, 

which may be used to argue against this bike-sharing program. Actually 

however, the head injuries dropped 14% in these cities, but the article 

compared this relative decline of head injuries to injuries overall (which was 

declining at an even faster rate) to infer the “increase” in injuries.2 While this 

may seem a trivial example of misrepresentation of data, which may be 

confined to the media, similar examples are just as common in the empirical 

(but “softer”) sciences. There have been cases of blatant scientific fraud 

(Wicherts & van Assen 2012), and reports of widespread error in statistical 

																																																													
1 https://www.washingtonpost.com/news/to-your-health/wp/2014/06/12/cities-with-bike-
share-programs-see-rise-in-cyclist-head-injuries/ 
2 http://andrewgelman.com/2014/06/17/lie-statistics-example-23110/ 



analyses (Nuijten, Hartgerink, van Assen, Epskamp & Wicherts 2015). Yet 

neither one of these issues will be that problematic in the long run: fraudulent 

researchers are, it is safe to assume, a tiny minority, and random errors will 

cancel out. However, some damage is done in the grey area between fraud 

and random mistakes, and concerns -among others - weak statistical 

inferences and scientific evaluation and a strong believe in unambiguity of 

research data.  

A painful example of such a case is the (social) priming effect shown 

by John Bargh (Bargh, Chen & Burrows 1996). In this famous study, Bargh 

and colleagues showed that participants primed with an elderly stereotype 

subsequently walked through the hallway more slowly than people in a 

control group. Such “strongly significant” effects were widely accepted as 

scientific evidence (Kahneman 2013). However, after decades of apparent 

replications and generalization of the findings, it was shown that these effects 

were not replicable and that they were actually due to a basic experimenter 

bias (Doyen, Klein, Pichon & Cleeremans 2012). This has urged Nobel prize 

laureate Daniel Kahneman, a long-time “believer” (Yong 2012) in this type 

of priming effects, to personally address the researchers involved, urging 

them to “clean up their mess”, and he proposed an even longer chain of 

replication studies to establish the robustness of results.3 

																																																													
3 http://www.nature.com/news/nobel-laureate-challenges-psychologists-to-clean-up-their-
act-1.11535 



Here I will discuss the appeal of such initial spectacular, but 

essentially non-replicable findings, and the culture of scientific evaluation 

and incentives in which they thrive. I will use psychology research as an 

example throughout, but it in fact more broadly concerns the social sciences, 

and certain “soft” medical and biological research (Fanelli 2010). To what 

extend it also relates to psycholinguistics is an open question. Perhaps the 

area is generally stronger theoretically embedded than most of the 

aforementioned research fields, although this doesn’t necessary ameliorate 

problematic statistical issues. A key contributing factor to the unreliability of 

research findings is simply the use of small samples (Tversky & Kahneman 

1971; Cohen 1994). Consequently, it may follow that in the current “big-data 

era” such problems are soon to be history, but it does not seem to be that easy 

(Lazer, Kennedy, King & Vespignani 2014). First I will start by discussing a 

few very well-known problems in the interpretations of research data, and 

then I will discuss the scientific evaluation system.  

 

 

2. The questionable empirical toolbox  

 

2.1  Bias 

 

While most experimental researchers make a living gathering data, the 

biostatistician John Ioannidis has made a career out of questioning their 



empirical status. Particularly remarkable examples of his work are the two 

papers “Why most published research findings are false” (Ioannidis 2005) 

and “Why most discovered true associations are inflated” (Ioannidis 2008), 

which re-initiated long-standing debates about the reliability of empirical 

science (e.g. Meehl 1978). By a modelling approach Ioannidis showed that 

under various estimates of biased research practices, it can be shown that 

more than 50% of research findings reported to be statistically significant are 

in fact false.4 Interestingly, a large collaborative effort a decade later found 

empirically what Ioannidis predicted based on his model: most published 

findings in psychology do not replicate (Open Science Collaboration 2015). 

The main concern addressed by Ioannidis is that the results of an 

analysis cannot be interpreted in a vacuum but need to be considered in their 

context, in particular the amount of bias (e.g. selective reporting) that is part 

of the results. This points at an essential issue in the interpretation of research 

findings: the validity and reliability never simply follow from the data itself, 

but always depend on the assumptions of the statistical framework. For 

example, it is well-known that when running multiple statistical tests, the 

chance of finding a “false positive” increases. Usually a threshold of p<0.05 

is applied to consider a result statistically significant (i.e. a less than 5% 

chance that some observation is drawn from a null, or no effect, distribution). 

However, if one tests for example 20 hypotheses at this threshold, the overall 

																																																													
4 that is, more likely to be drawn from a so called “null” distribution, see section 2.2  



probability increases to 1-(1-0.05)^20 = 0.63, or about 63%. When all tests 

that are performed are actually reported, this so-called “multiple comparisons 

problem” allows for a fairly straightforward solution, a topic in any 

introductory statistics course. However, results can easily get biased when not 

all tests that are performed are reported. For example, several statistical tests 

are explored, the inclusion or exclusion of data points (for example subjects) 

is evaluated, et cetera, long before any correction for multiple comparisons is 

being applied. Considering this flexibility and several loosely defined 

statistical tests, it actually becomes easy to create a situation in which at least 

one finding is “significant” (e.g. Carp, 2012; Maxwell, 2004; Simmons, 

Nelson & Simonsohn 2011). In other words, given the undisclosed flexibility 

or researchers’ “degrees of freedom” (Simmons et al. 2011) the phrase 

“statistical significance” becomes meaningless.  

 

2.2 Null hypothesis testing 

 

The above-mentioned issues are problems intrinsically related to the standard 

inference method that experimental psychology has adopted over the last 60 

or so years. This standard framework became known as the null hypothesis 

statistical testing (NHST) (Nickerson 2000), and is a remarkable historical 

hybrid of two statistical philosophies: Fisher’s null hypothesis testing and 

Neyman-Pearson’s ideas on having “decision thresholds” (Gigerenzer 2004). 

Most of the problems with this NHST approach are fairly easily exposed from 



a Bayesian perspective (Lindley 2000) yet have stayed remarkably persistent 

(Falk & Greenbaum 1995).  

In NHST, the observed data are evaluated under the assumption (the 

null hypothesis and its associated null distribution) that there is no effect. The 

aforementioned infamous “p-values” scattered throughout many research 

papers refer exactly to this probability: the likelihood that a certain effect is 

observed under the assumption that there is actuality no (a null) effect. If this 

probability is small, then this so-called null hypothesis is rejected. For 

example, if one runs an experiment where priming of elderly-related words 

leads to a reduction in walking speed, one may conclude it is unlikely that 

such effect would be obtained if in actuality there is no effect of these prime 

words on walking speed. However, this is not what is often concluded. There 

is a tendency to interpret this as: it is unlikely that there is no effect of prime 

words given the data. In other words, it is not about the unlikeliness of the 

data under the assumption of no effect, but it is seen as a measure of the 

unlikeliness of the null hypothesis (and perhaps taken even one step further: 

the likelihood of an alternative hypothesis, i.e. priming, exists). This 

difference is not a play of words. The former correct interpretation refers to 

the conditional probability (that this the likelihood of some event given some 

other event) of observing some data (D) given a null hypothesis of no effect 

(H0): p(D|H0). The latter refers to another condition probability (the 

posterior), that of the existence of the null hypothesis given the data p(H0|D). 

That these two conditional probabilities are not identical follows from Bayes’ 



theorem and can be made intuitive by the following example. The probability 

that there are clouds, given the observation that it rains, approaches 1. 

However, the probability that it rains, given the observation that there are 

clouds is high, but certainly much lower. Simply put, you may see clouds 

without rain, but not rain without clouds. Using these probabilities 

interchangeably has consequences beyond empirical research or the weather. 

In the context of law enforcement for example, it is referred to as the 

prosecutor fallacy (Thompson & Schumann 1987): the difference between 

the likelihood of some evidence, given that someone is innocent, versus the 

probability that someone is innocent given the evidence. Mixing-up these 

probabilities has resulted in unwarranted years in jail (Hill 2004). While the 

difference between the probabilities potentially has far-stretching 

consequences for the interpretation, it is remarkable that many researches are 

not aware of the correct interpretation of p-values (Rosenthal & Gaito 1963), 

especially given the frequency with which you come across “p<0.05” in an 

empirical research article. 

 

2.3 Theory testing 

 

The weak empirical status of null-hypothesis testing in psychology stands in 

sharp contrast to other scientific disciplines like physics (Meehl 1967). The 

“softer” empirical sciences, unlike the physical sciences, generally do not 

make point estimates, that is, exact predictions on the strength of an 



association: the effect size (Meehl 1967). Hypotheses are often stated in such 

a way that they can neither be corroborated nor refuted (Meehl 1978), and 

theories lack a cumulative character; like old generals, they never die, they 

just slowly fade away (Meehl 1978). Particularly in these softer sciences, the 

gap between some substantive theory (T) and hypothesis about an observation 

(O) is large, and these need to be glued together with an often problematic 

auxiliary (A) hypothesis and experimental particulars (C); (T.A.C) à O. 

Consequently, by falsifying some statistical hypothesis, one does not directly 

falsify the theory, but rather the conjunction: ¬O implies ¬ (T.A.C) or ¬T 

∨¬A ∨ ¬C, (not just ¬T ), which is arguably uninformative (Meehl 1978). 

This is a classic topic in the philosophy of science, and certainly not a problem 

specific to the social sciences, but because the auxiliary assumptions are much 

more problematic, and usually flexible, the burden of proof is low (Meehl 

1978). Indeed, a large-scale study underscored this assertion and showed that 

the social sciences have a higher number of “positive” findings compared to 

other sciences, indicative of a weaker form of hypothesis testing (Fanelli 

2010). Statistically the difference between these “soft” and “hard” sciences 

could be described as the difference between data-fitting versus data-

predictions (Shmueli 2010). Along that line, with the application of basic 

techniques (split data into test and training sets) borrowed from machine-

learning (Breiman 2001), a data-prediction approach can relatively easily be 

achieved. Linguistics and machine learning share a long and successful 



history, for instance with he application neural networks in modelling natural 

language processing and language acquisition (e.g. Collobert & Weston 

2008), yet even modern clever machines can get lost in translation (see 

Google Translate, figure 1c). However with respect to experimental research, 

a data-driven, test/training methodology allows for predictions on the effect 

size, even when theory and auxiliary assumptions do not directly forecast one.  

 

 

3. Scientific publications and evaluation 

 

Results from experimental (or observational) research thus seem to convey 

much more than is warranted. The inferences are dependent on basic 

statistical assumptions (e.g. normality, multiple comparison) and a host of 

(questionable) research practices (e.g. flexibility in data analyses). What is 

even more remarkable is how this set of common practices has “survived” the 

decades of convincing criticism and viable alternative inference procedures 

that for instance (one way or another) simply address the uncertainty around 

the strength (effect size) of statistical results (Loftus 1993).5 In this context, 

it is also interesting to consider the confirmation bias among scientists 

(Fugelsang, Stein, Green & Dunbar 2004), a tendency to interpret information 

that confirms one’s hypotheses: How is it possible that despite the abundance 

																																																													
5 For instance with the bayes factor or by providing confidence intervals. 



of evidence against the repertoire of a set of common research practices, they 

remain so widely used and strongly believed? One reason may be that the idea 

that data give unambiguous “answers” is deeply embedded in the system of 

scientific publication and evaluation. The idea, for example, that scientific 

quality can easily be quantified (in terms of number of papers, number of 

citations etc), and the fact that novelty is more highly regarded than 

replications, and a review process has been adopted that blatantly ignores 

statistical laws (Tversky & Kahneman 1971) have led to a system where 

spectacular but often non-replicable results thrive and evolve. Clearly, a 

complex process like the evaluation of research findings or scientific quality 

does not lend itself to a simple optimal solution. However, beyond this 

process being just not optimal, it may even be essentially non self-correcting 

(Ioannidis 2012).  

 

3.1 The economy of the publication and evaluation systems  

 

The scientific publication system has been described according to a set of 

economics principles were articles are considered as commodities, that may 

help explain the persistence of certain research practices (Young, Ioannidis & 

Al-Ubaydli 2008). According to this work, scientific reports suffer from what 

is called the winner’s curse. In auctions, and particularly in a situation where 

no one exactly knows how much an object is worth, the “winner of the bid” 

on average tends to overpay for whatever was for sale (Young et al. 2008). In 



science one example of this phenomenon is that only “significant” findings 

will get published (the famous “file drawer problem”; Rosenthal 1979) and 

among the published findings, especially those in selective, high-impact 

journals, tend to contain results that are overstated (Ioannidis 2008). This 

occurs because from a pool of findings, the strongest, and hence most 

spectacular results also are the ones that on average tend to overestimate the 

underlying population effect most strongly. Often subsequent replication 

studies tend to show different results (but get less attention, see below) – 

outside the realm of economics referred to as the proteus phenomenon 

(Pfeiffer, Bertram & Ioannidis 2011). Remarkably, largely publicly funded 

research is freely available to commercial intermediates (journals) who sell 

the articles back to the author(s)! This system can be explained by the inherent 

uncertainty in science; it is impossible to predict beforehand the future value, 

extensions, and practical applications (Young et al. 2008). Journals provide 

authority independent of the content of a manuscript, and hence give the 

commodity “value”. A relatively small amount of a high impact and therefore 

powerful journals (an oligopoly) with limited publication slots thus determine 

the visibility of research. Effectively these journals create artificial scarcity, 

low acceptance rates, numbers of papers and print page limits. These 

limitations stem from the paper publications age, but are entirely artificial in 

the digital age, and fuel the rise of open-access publications. Notable is the 

switch that the editorial team of the journal Lingua made by starting a similar 

new journal Glossa, in response to their publisher Elsevier’s reluctance to 



support open-access publication.6 

 Citations are of course essential and mandatory to the scientific 

process, simply to acknowledge other work. But the reliance on counting 

papers and the importance of citations as evidence of scientific quality has 

several drawbacks. The role of high-impact journals is peculiar even if the 

number of citations of a paper actually says anything about the quality or 

importance of a paper. It has been shown that citations of individual papers 

do not really correlate with the impact factor of a journal (Munafo 2013). In 

other words, the actual “impact” of a research paper (measured in number of 

citations) is hardly predictable by the journal rank – which is based on the 

citations of its manuscripts! Citations for an individual paper could still be 

useful as a measure of scientific quality regardless. However, a survey under 

highly-cited biomedical researchers showed a limited relation between what 

researchers themselves regarded as their most important work, and the 

number of times this work was cited (Ioannidis, Boyack, Small, Sorensen & 

Klavans 2014). Citations can also start to live a life of their own; scientific 

citation networks can create a blur with unfounded authority; for example 

through a citation bias against papers that weakened a belief, the amplification 

of results without new data, or even invention of results (Greenberg 2009). A 

particular form of citation, self-citation, further helps to create this unfounded 

authority. An example here is research on the so-called “Type-D” personality 

																																																													
6 http://kaivonfintel.org/2015/11/02/lingua-glossa/ 



construct supposedly psychometrically distinct form other personality 

constructs and highly predictive of some medical conditions, a claim that 

could not be replicated (Coyne & de Voogd 2012).  

 

3.2 Alternatives for the evaluation system 

 

A host of solutions have been proposed that are promising in ameliorating the 

current scientific evaluation system (Kriegeskorte 2012). A key problem is 

the closed evaluation system based on anonymous reviews. Research has 

shown that the system is highly unreliable (Bornmann, Mutz & Daniel 2010). 

A critical change might therefore be an open, and more importantly, post-

publication review system (Kriegeskorte 2012). That is, after the paper has 

appeared, researchers should be able to comment on the findings et cetera, 

which could refine a paper. This is markedly different from the current 

process were research findings are presented “as-is” after the anonymous 

review process. However, for such a novel system to work reviewers should 

also be rewarded for their contribution, by getting votes on the quality of the 

review (Kriegeskorte 2012). This would essentially be the type of highly-

effective review system that Amazon uses for its products. Another area 

where a similar review system has proven invaluable is the 

stackoverflow.com library of questions and answers on computer code. Votes 

are given on the quality of answers (“reviews”) and this way, users are 

rewarded for their contributions. Such applications at least suggest that the 



current review system is not questioned for the skill to review material, but 

rather for its closed nature and the usually small sample (maybe 2 or 3 

reviewers per paper or grant application). Moreover, in the slightly different 

setting of a so-called prediction-market, it turns out that a group of reviewers 

is actually good at predicting the replicability of research findings (Dreber et 

al. 2015).  

 

4. More Data, More Problems?  

 

We seemed to have unofficially entered the big-data era, although we don’t 

really seem to know how much data (the 20 petabytes of data Google 

processes, per day?) one needs to be considered to be working on big data.7 

Experimental research data still seems far away from these numbers, for the 

simple reason that the acquisition of data remains time-consuming. Moreover, 

if the interpretation of research data is so difficult, one may wonder why more 

data would actually be helpful at all. The most obvious advantage of having 

more data is that any statistical estimate simply becomes more reliable 

(Wainer 2007). Secondly, larger data-sets allow for machine-learning 

approaches: predictions are being made and tested on “unseen” data, instead 

of just fitting a statistical model (Breiman 2001). As discussed, this can be 

considered a much stronger form of scientific inference. Data collection 

																																																													
7 http://www.talyarkoni.org/blog/2014/05/19/big-data-n-a-kind-of-black-magic/ 



through internet and with smartphones (Miller 2012) has certainly helped to 

make the acquisition of experimental data much easier. Notable examples 

include a study on emotion contagion measured on Facebook, testing 689,003 

subjects (Kramer, Guillory & Hancock 2014) and a project on subjective 

well-being using a smartphone-survey that included 18,420 participants 

(Rutledge, Skandali, Dayan & Dolan 2014). In addition, large collaborative 

efforts help to collect large amounts of data relatively fast. Two examples 

here are the Many Labs replication project (Klein, Ratliff, Vianello, Adams 

& Bahník 2014) and the open science consortium (Open Science 

Collaboration 2015). The first showed that high-powered (that is large sample 

sizes) studies could replicate 10 out of 13 “classic” and modern psychological 

phenomena. The second study came to a perhaps more pessimistic 

conclusion: the effect sizes of the replication studies were roughly half of 

what the original studies found, and among the replication studies less than 

40% showed significant result, compared to 97% in the original publication 

pool (Open Science Collaboration 2015). Unsurprisingly, the interpretation 

of these findings led to debate (Gilbert, King, Pettigrew & Wilson 2016). 

Regardless of how positive or worrisome these findings may be regarded, 

they certainly are good examples of how an open and collaborative effort can 

lead to much less biased and more robust experimental data.  

A second development is the expansion of sophisticated, and 

sometimes automatic, meta-analyses. These types of developments have led 

to both the uncovering and quantification of some problematic issues in 



experimental research. For example by plotting a large amount of reported p-

values, the phenomenon of “p-hacking” can be uncovered: there are many 

more p-values just under the significance threshold than would be expected, 

indicative of selective reporting (Simonsohn, Nelson & Simmons 2014). 

Large automatic meta-analytic techniques are also necessary to keep track of 

the tremendous amount of research papers and results, an example of this is 

the automated curation of facts in the biomedical literature (Rodriguez-

Esteban, Iossifov & Rzhetsky 2006). Another example in brain imaging is the 

Neurosynth framework: an automated way of aggregating thousands of 

research articles and performing automated meta-analyses on brain imaging 

research (Yarkoni, Poldrack, Nichols, Van Essen & Wager 2011). Figure 1b 

shows such an automated meta-analysis simply on the term “semantics”: 

among around 11000 articles, 70 studies are identified on which inferences 

are made about the likelihood of brain activation in relation to this term. There 

is no further specification of the process, no theory or even any guarantee that 

this does not also reflect concepts like “semantic memory”. However it could 

provide a useful starting point as an upper bound (since it is relatively 

sensitive, but highly unspecific) of a brain network underlying specific 

semantic processes, more than any single study could if it was based on a 

small sample (Button et al. 2013).   

 



 

 

Figure 1. Hits and misses of big-data 

a) Correlations between Google searches for “semantics” and “in the 

brain” (left) and “semantics” and “water soluble” (right) 

b) Automated meta-analyses on the brain regions involved in semantics.  

c) Google Translate’s understanding of Dutch 

 

However, even incredible amounts of data and tremendous 

computational power to process it can be mistaken. A now famous example 

is the large error of Google Flu Trends in predicting influenza prevalence 

based on Google search terms. In 2012 their estimation was twice as high as 

the actual prevalence (Lazer et al. 2014). When I tried to “predict” interest in 



semantics based on Google search terms, a term like “the brain” did very well 

(a correlation coefficient r=0.87; see figure 1a), which may seem reasonable 

given the wide network of brain regions related to semantics we just observed. 

However, the term “water soluble” does about as good a job, with a 

correlation coefficient of r=0.83, another number that would make most 

researchers jealous, yet the relationship seems random. In other words, one 

may still need some theory to understand data, since huge amounts of data 

easily produce strong but spurious results. As discussed, one of the core 

problems of inferences of experimental research data and theory testing is the 

gap between some theory and its hypothesis. This gap is a necessary evil since 

hypotheses need to be molded into highly simplified conditions in order to 

become testable with basic statistics. It has been argued that there is nothing 

so theoretical as a good method (Greenwald 2012), and I would like to end 

here by briefly mentioning a highly promising technique in that regard to 

combine computational models with brain imaging data: representational-

similarity analyses (Kriegeskorte, Mur & Bandettini 2008). The idea behind 

this approach is that you can evaluate predictions from computational models 

against a pattern of brain imaging data and as such, test the neural 

representation of these models (Kriegeskorte et al. 2008). Tyler and 

colleagues, for example, associated different syntactic computations with the 

similarity structure of brain waves measured with MEG data, and found 

different computational representations in the inferior frontal and temporal 

gyri (Tyler, Cheung, Devereux & Clarke 2013). Contrasted with “traditional” 



techniques, representational-similarity analysis overcomes the common 

correspondence problem between the units of a computational model and 

units of neural data (Kriegeskorte et al. 2008) and could therefore be highly 

influential in integrating (big) (brain) data with computational models.  
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