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Abstract
Ecological theory about the dynamics of interacting populations is mainly based on unstructured models that account for
species abundances only. In turn, these models constitute the basis for our understanding of the functioning of ecological
communities and ecosystems and their responses to environmental change, natural disturbances and human impacts.
Structured models that take into account differences between individuals in age, stage or size have been shown to sometimes
make predictions that run counter to the predictions of unstructured analogues. It is however unclear which biological
mechanisms that are accounted for in the structured models give rise to these contrasting predictions. Focusing on two
particular rules-of-thumb that generally hold in unstructured consumer-resource models, one relating to the relationship
between mortality and equilibrium density of the consumer and the other relating to the stability of the equilibrium, I
investigate the necessary conditions under which accounting for juvenile-adult stage structure can lead to qualitatively
different model predictions. In particular, juvenile-adult stage structure is shown to overturn the two rules-of-thumb in case
the model also accounts for the energetic requirements for basic metabolic maintenance. Given the fundamental nature
of both juvenile-adult stage structure as well as metabolic maintenance requirements, these results call into question the
generality of the predictions derived from unstructured models.

Keywords Population structure · Maintenance requirements · Overcompensation · Population cycles ·
Emergent community effects

Introduction

Basic models of ecological interactions, such as the Lotka-
Volterra competition or predator-prey model, represent pop-
ulations essentially as collections of elementary particles,
subject to replication and mortality only. These so-called
unstructured models have also inspired classic textbooks in
ecology to define population dynamics as ‘...the variations
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in time and space in the sizes and densities of popula-
tions...’, where a population is defined as ‘...the number
of individuals per unit area’ (Begon et al. 2005; Turchin
2003). This perspective again emphasises changes in num-
bers of individuals and neglects differences between them.
Accounting for differences in population dynamic mod-
els started around almost the same time as Lotka and
Volterra introduced their classical models (Kermack and
McKendrick 1927; Leslie 1945) but the main focus of these
age-structured models has been the effect of individual life
history on the exponential growth rate of single populations,
rather than the ecological interactions between species.

Consumer-resource interactions constitute the backbone
of a community’s food web and are the main type of interac-
tions in ecological communities, which makes understanding
them crucial for our understanding of how ecological com-
munities respond to changes in productivity, exploitation or
disturbance. For example, one of the best established pieces
of ecological theory is the response of food chains, consist-
ing of a linear series of consumer-resource interactions, to
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changes in system productivity or exploitation rate of the
top trophic level (Oksanen et al. 1981). This theory under-
pins our understanding about and our capacity to predict the
community consequences of changes in system productivity
(Pace et al. 1999), collapses of dominant fish stocks (Frank
et al. 2005) or the re-introduction of top predators (Ripple
and Beschta 2012).

From unstructured models in continuous time modelling
the interaction of consumer populations foraging exploita-
tively on shared resources, the following two rules-of-thumb
can be distilled that seem to hold universally:

1. Decreasing density-mortality rule: an increase in con-
sumer mortality will lead to a decrease in consumer den-
sity and an increase in resource density at equilibrium,
if the increase in equilibrium resource density does not
increase resource production at equilibrium, and

2. Equilibrium stability rule: the equilibrium with positive
densities of both consumers and resource is stable, if
an increase in equilibrium resource density does not
increase resource production at equilibrium.

The condition that an increase in equilibrium resource
density does not increase resource production is sufficient,
but not necessary, for the two rules-of-thumb to hold
(see below). The first rule-of-thumb confirms an intuitive
expectation that, all else being equal, an increased loss
rate is detrimental for the persistence of a species as it
decreases its density. This negative relationship between
the density and mortality of a species is furthermore an
essential ingredient for the occurrence of trophic cascades
in communities, where the increase in the density of a
predator translates into an increase in predation mortality of
its prey and thus to a decrease in the density of this prey.
The second rule-of-thumb relates to the inherent tendency
of predator-prey interactions to exhibit cycles in population
density rather than stable equilibrium coexistence (Bonsall
and Hassell 2007). Classical predator-prey cycles, such as
predicted by the model of Rosenzweig and MacArthur
(1963) only occur, however, in case of a positive relation
between prey population growth rate and prey density, such
as embodied in exponential or logistic growth, as this allows
the prey to escape the top-down control imposed by the
predator at equilibrium (de Roos et al. 1990).

Both rules-of-thumb can be straightforwardly validated
in a generic, continuous time model for the dynamics of
resource and consumer density, R and C:
⎧
⎪⎪⎨

⎪⎪⎩

dR

dt
= p(R) − f (R)C

dC

dt
= βf (R)C − μC

(1)

In these differential equations, the function p(R) describes
the dynamics of the resource in the absence of consumers,

while f (R), βf (R) and μ represent the consumer’s per
capita feeding, reproduction and mortality rate. As is
common in unstructured consumer-resource models (cf. the
Lotka-Volterra predator-prey model and the Rosenzweig-
MacArthur model (Rosenzweig and MacArthur 1963)),
it is assumed that consumer mortality is independent
of consumer and resource density, while feeding and
reproduction rate are proportional to each other and
increasing functions of resource density (f ′(R) > 0).
In model (1), the resource density R̃ at equilibrium is
determined by the condition f (R̃) = μ/β, which implies
that R̃ increases with an increase in μ, given that f ′(R) >

0. The equilibrium consumer density C̃ is related to R̃

following C̃ = βp(R̃)/μ. An increase in consumer
mortality rate μ is therefore guaranteed to decrease the
equilibrium consumer density C̃ if the concomitant increase
in equilibrium resource density does not increase resource
production (p′(R̃) ≤ 0). Furthermore, the consumer-
resource equilibrium can be shown to be stable as long as
p′(R̃) − f ′(R̃)C̃ < 0. The condition p′(R̃) ≤ 0 is hence
also sufficient to guarantee equilibrium stability, provided
that f ′(R) > 0. The more restrictive condition that resource
production is a non-increasing function of R for all resource
densities (p′(R) ≤ 0) and not only at the equilibrium
resource density will hence also be sufficient for the two
rules-of-thumb to hold. Increases in consumer density with
increasing consumer mortality, also referred to as a ‘Hydra’
effect, have been reported to occur in unstructured models
by Abrams (2009, see also Abrams and Matsuda 2005),
but these increases are either due to an increase in resource
productivity with an increase in equilibrium resource
density (p′(R̃) > 0) or do not pertain to equilibrium
densities.

In models of size-structured interactions between con-
sumers and their resource (Persson and de Roos 2013), the
rule-of-thumb that increased losses decrease densities has
been shown to hold under limited conditions only, despite
that resource productivity was assumed to strictly decrease
with resource density (p′(R) < 0). These size-structured
population models describe the individual life history on
the basis of a model of the individual energy budget, in
which energy is conserved and energy assimilation from
food hence equals the total energy expenditure on growth
in body size, metabolic maintenance and reproduction. The
models predict that increases in stage-independent mortal-
ity may increase equilibrium biomass densities in specific
size ranges of the population (de Roos et al. 2007) or even
total population biomass (de Roos and Persson 2013). Fur-
thermore, increases in stage-specific mortality, for example
of adults only, may increase the equilibrium biomass of
the same stage (adults) (de Roos et al. 2007). Empiri-
cal evidence for such increases in biomass with increases
in (stage-specific) mortality, a phenomenon referred to as
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‘biomass overcompensation’, has recently been presented
for a variety of different systems (Schröder et al. 2014).

Many population dynamic models that in one way or
another account for population age, stage or size structure
have furthermore been shown to exhibit so-called single-
generation or delayed-feedback cycles in population density
that are different from the classical predator-prey cycles
(Gurney et al. 1980; Hastings 1984a; Gurney and Nisbet
1985; Murdoch et al. 2002). In contrast to predator-
prey cycles, single-generation cycles have a period that
is closely related to the generation time of the focal
species and result from differential impacts of intraspecific
density dependence in different phases of the life history
(Gurney and Nisbet 1985). In the case of consumer-
resource interactions, these cycles result from differences in
competitive ability between juvenile and adult individuals
(de Roos and Persson 2003; Persson and de Roos 2013),
even when resource productivity only decreases with
increasing resource density (p′(R) < 0).

The complexity of the (size-)structured models makes
it hard to determine which model assumptions result
in the violation of the rules-of-thumb derived from
unstructured consumer-resource models. In other words,
which biological mechanisms are minimally necessary
to result in increases in (stage-specific) biomass with
mortality and the occurrence of population cycles. It is
therefore unclear whether these phenomena result from
basic ecological principles and should occur generally or
not. To address this issue, I show here using a simplified
but general modelling framework that two basic model
ingredients, (1) juvenile-adult stage structure and (2) the
energetic costs of somatic maintenance of consumers, are
necessary for increases in stage-specific biomass with
mortality as well as population cycles to occur. Furthermore,
the rules-of-thumb are only overturned if juveniles and
adults differ in their efficiency to use acquired resource
for their maturation and reproduction, respectively, as
only the more efficient life stage will increase in density
with increasing mortality. Since juvenile periods and
somatic maintenance costs are immutable elements of
life, I postulate that the two fundamental rules-of-thumb
resulting from unstructured consumer-resource models will
only hold under limited conditions, thereby raising doubts
about our understanding of community dynamics, based on
unstructured, Lotka-Volterra type population models.

Introducing stage structure

To account for population stage structure the dynamics of
the consumer population and its resource will be described
with a general, stage-structured extension of model (1), in
which the consumer population is subdivided in juveniles

and adults with densities CJ and CA, respectively. Both
stages forage on the shared resource R but with different
resource-dependent rates fJ(R) and fA(R), respectively.
Adults and juveniles use assimilation to produce new
juvenile offspring at rate gA(R) and to mature to the
adult stage at rate gJ(R), respectively. Finally, juveniles
and adults experience mortality rates of μJ and μA.
The consumer-resource dynamics is then described by the
following system of ODEs:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dR

dt
= p(R) − fJ(R)CJ − fA(R)CA

dCJ

dt
= gA(R)CA − gJ(R)CJ − μJCJ

dCA

dt
= gJ(R)CJ − μACA

(2)

where the function p(R) is the production rate of the
resource in the absence of consumers. In the remainder of
this paper, I assume that fJ(R), fA(R), gJ(R) and gA(R)

are all non-decreasing functions of resource density R

(f ′
J (R), f ′

A(R), g′
J(R), g′

A(R) ≥ 0), while at least one
of the functions gJ(R) and gA(R) is dependent on the
resource density and has a strictly positive derivative (either
g′
J(R) > 0 or g′

A(R) > 0). The latter assumption is to
ensure that the model allows for an equilibrium solution.
Regarding the resource productivity I will assume that it
is constant or decreases with resource density (p′(R) ≤
0), but that not all three derivatives f ′

J (R), f ′
A(R) and

p′(R) are simultaneously equal to 0, as this would make
the resource dynamics independent of resource density.
These conditions guarantee that the classical predator-prey
cycles such as found in the Lotka-Volterra or Rosenzweig-
MacArthur model do not occur. Any population cycles
that do occur will hence result as a consequence of the
juvenile-adult stage structure.

An intuitively straightforward approach to model stage
structure effects is to take juvenile and adult foraging
proportional to the same stage-independent function f (R),
but with different proportionality constants αJ and αA

(fJ(R) = αJf (R) and fA(R) = αAf (R)). Analogously,
to describe the resource-dependence of the reproduction
and maturation rate, the same function g(R) is used,
but with different proportionality constants β and γ ,
respectively (gJ(R) = γg(R) and gA(R) = βg(R)).
These assumptions imply that juvenile and adult foraging
as well as juvenile maturation and adult reproduction only
differ quantitatively from each other, while the functional
form of their dependence on the current resource density
is qualitatively the same. Irrespective of how plausible
these assumptions are, they can be shown to prevent any
influence of the population stage structure on the long-
term population dynamics if it is furthermore assumed
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that consumers also experience the same stage-independent
mortality rate μ.

To assess the consequences of these assumptions, define
C = CJ + CA as the total number of consumers and z =
CJ /(CJ + CA) as the fraction of juveniles in the consumer
population. The dynamics of the total consumer density C

then follows:

dC

dt
= gA(R)CA − μJCJ − μACA

= gA(R)(1 − z)C − μJzC − μA(1 − z)C

while the dynamics of the fraction of juveniles in the
population z is given by the following:

dz

dt
= 1

CJ + CA

dCJ

dt
− CJ

CJ + CA

1

CJ + CA

d(CJ + CA)

dt

= gA(R)(1 − z)2 − gJ(R)z − (μJ − μA)z(1 − z)

Given the assumptions that fJ(R) = αJf (R), fA(R) =
αAf (R), gJ(R) = γg(R) and gA(R) = βg(R) and
μJ = μA = μ, the consumer-resource model can then be
rewritten as follows:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dR

dt
= p(R) − (αJz + αA(1 − z))f (R)C

dC

dt
= βg(R)(1 − z)C − μC

dz

dt
= (β(1 − z)2 − γ z)g(R)

(3)

For t → ∞, z will approach its equilibrium value z̄, given
by the only solution of β(1 − z̄)2 − γ z̄ = 0, for which
0 < z̄ < 1:

z̄ =
⎛

⎝1 + γ

2β
−

√
(

1 + γ

2β

)2

− 1

⎞

⎠ . (4)

The juvenile fraction z will asymptotically approach z̄

independent of the dynamics of the resource R. Variation in
time of g(R) will influence the rate at which the equilibrium
value z̄ is reached, but the changes in the population
distribution are transient in nature. In the long run, the
interaction between the consumer and the resource hence
follows the system of ODES:
⎧
⎪⎪⎨

⎪⎪⎩

dR

dt
= p(R) − ᾱf (R)C

dC

dt
= β̄g(R)C − μC

(5)

in which ᾱ = αJz̄ + αA(1 − z̄) and β̄ = β(1 − z̄)

are weighted parameters characterising consumer intake
and reproduction, which are adjusted to take into account
the population’s steady-state stage distribution. Clearly, the
long-term dynamics of the consumer-resource interaction
converges to the long-term dynamics of an unstructured
model in terms of resource and total consumer density

only. Episodic perturbations in either the resource den-
sity or the total consumer density, such as for example a
pulsed resource growth process, will not affect this result
at all: the consumer-resource dynamics follows the unstruc-
tured model (5) after the consumer stage distribution has
stabilised. On the other hand, perturbations to the stage
distribution of the consumer, for example due to pulsed
reproduction of consumers, will have an effect on the
consumer-resource dynamics, but this effect will dissipate
at a rate given by the last of the system of ODEs (3). Notice
that this dissipative effect scales with the value of g(R). In
Appendix A, it is shown that these results even generalise to
a consumer population with an arbitrary number of stages.

Necessary conditions for juvenile-adult
stage structure effects

For the general model (2), the equilibrium state is deter-
mined by the following set of equations, which has to be
solved for the equilibrium resource density R̄, the equilib-
rium juvenile consumer density C̄J and the adult consumer
density in equilibrium C̄A:
⎧
⎪⎨

⎪⎩

H1(R̄, C̄J, C̄A)=p(R̄) − fJ(R̄)C̄J − fA(R̄)C̄A = 0

H2(R̄, C̄J, C̄A)=gA(R̄)C̄A − gJ(R̄)C̄J − μJC̄J = 0

H3(R̄, C̄J, C̄A)=gJ(R̄)C̄J − μAC̄A = 0

(6)

Without further specification of the functions fJ(R), fA(R),
gJ(R) and gA(R), it is impossible to derive explicit
expressions for these equilibrium densities. However, it
is possible to asses whether or not an increase in either
juvenile or adult consumer density at equilibrium can occur
in response to an increase in mortality by applying the
implicit function theorem to the system of equilibrium
conditions (6). For example, to assess how a change in
juvenile mortality changes the equilibrium densities, the
conditions (6) can be written as follows:
⎧
⎪⎨

⎪⎩

H1(R̄(μJ), C̄J(μJ), C̄A(μJ), μJ) = 0

H2(R̄(μJ), C̄J(μJ), C̄A(μJ), μJ) = 0

H3(R̄(μJ), C̄J(μJ), C̄A(μJ), μJ) = 0

(7)

which emphasises the fact that the equilibrium densities
R̄, C̄J and C̄A depend indirectly on the mortality rate μJ

through the dependence of the functions H1(R̄, C̄J, C̄A),
H2(R̄, C̄J, C̄A) and H3(R̄, C̄J, C̄A) on μJ. Differentiation
of the system of equations (7) with respect to the juvenile
mortality rate, μJ, results in a linear system of equations
that can be solved for the derivatives dR̄/dμJ, dC̄J/dμJ and
dC̄A/dμJ, representing the change in equilibrium density
of resource, juvenile and adult consumers, R̄, C̄J and C̄A,
respectively, with an increase in juvenile mortality, μJ (see
Appendix B and Online Resource 1 for details).

Theor Ecol (2018) 11:397–416400
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Similarly, to determine how a change in adult mortality
changes the equilibrium densities, the conditions (6) are
rewritten as follows:
⎧
⎪⎨

⎪⎩

H1(R̄(μA), C̄J(μA), C̄A(μA), μA) = 0

H2(R̄(μA), C̄J(μA), C̄A(μA), μA) = 0

H3(R̄(μA), C̄J(μA), C̄A(μA), μA) = 0

(8)

in which the equilibrium densities R̄, C̄J and C̄A are now
considered to depend on the mortality rateμA because of the
dependence of the functionsH1(R̄, C̄J, C̄A),H2(R̄, C̄J, C̄A)

and H3(R̄, C̄J, C̄A) on μA. Differentiation of the system of
equations (8) with respect to μA and solving the resulting
linear system of equations results in turn in expressions
for dR̄/dμA, dC̄J/dμA and dC̄A/dμA, representing the
change in equilibrium density of resource, juvenile and adult
consumers, R̄, C̄J and C̄A, respectively, with an increase in
adult mortality, μA (see Appendix B and Online Resource 1
for details).

The expressions for the derivatives presented in
Appendix B reveal that the derivative dC̄J/dμJ is always
negative, independent of parameters and irrespective of the
choice of fJ(R), fA(R), gJ(R), gA(R) and p(R) (apart from
the assumptions regarding their increase or decrease with
resource density discussed below equation (2)). In other
words, juvenile equilibrium consumer density will always
decrease with an increase in juvenile mortality. On the
other hand, the derivative of juvenile equilibrium consumer
density with respect to adult mortality, dC̄J/dμA, is only
guaranteed to be negative, as long as the derivative of the
quotient function fA(R)/gA(R) is non-negative:

(
fA(R̄)

gA(R̄)

)′
≥ 0 (9)

Similarly, the derivatives dC̄A/dμJ and dC̄A/dμA, repre-
senting the change in adult equilibrium consumer density
with an increase in juvenile and adult mortality, respectively,
are both guaranteed to be negative provided that the deriva-
tive of the quotient function fJ(R)/gJ(R) is non-negative:

(
fJ(R̄)

gJ(R̄)

)′
≥ 0 (10)

Appendix B furthermore shows how the stability of the
equilibrium state can be assessed independent of parameters
and irrespective of the choice of fJ(R), fA(R), gJ(R),
gA(R) and p(R) by analysing the Jacobian matrix of the
stage-structured model (2). The Jacobian matrix can be
shown to always satisfy the Routh-Hurwitz criterion if
the derivatives of the quotient functions fJ(R)/gJ(R) and
fA(R)/gA(R) are non-negative (inequalities (10) and (9)).
In this case, the equilibrium state with positive densities of
consumers and the resource is always stable.

In summary, if the derivatives of the quotient functions
fJ(R)/gJ(R) and fA(R)/gA(R) are non-negative (inequal-
ities (10) and (9)) any increase in (stage-specific) mortality
will decrease the densities of juvenile and adult consumers
at and population cycles will not occur. For the juvenile-
adult stage structure to overturn either of the two rules-of-
thumb discussed in the introduction, it is hence necessary
that
(

fJ(R̄)

gJ(R̄)

)′
< 0 (11)

and/or
(

fA(R̄)

gA(R̄)

)′
< 0 (12)

Negativity of the derivative (fJ(R)/gJ(R))′ indicates that
the juvenile maturation rate gJ(R̄) at equilibrium increases
faster with an increase in resource density than the juvenile
foraging rate fJ(R̄) at equilibrium. This implies that at a
higher resource density juveniles use acquired resources
more efficiently for their maturation. In this case, adult
consumer density at equilibrium can potentially increase
with an increase in either juvenile or adult mortality (or
both). Negativity of the derivative (fA(R)/gA(R))′ reflects
that the adult reproduction rate gA(R̄) at equilibrium
increases faster with an increase in resource density than the
adult foraging rate fA(R̄) at equilibrium. This implies that at
a higher resource density adult consumers convert acquired
resources more efficiently into offspring than at lower
resource densities. In this case, juvenile consumer density
at equilibrium can potentially increase with an increase
in adult mortality. Negativity of either the derivative
(fJ(R)/gJ(R))′ or the derivative (fA(R)/gA(R))′ or both
furthermore may result in instability of the equilibrium
and the occurrence of population cycles. The increased
efficiency with which juvenile or adult consumers at higher
resource densities use acquired resources for maturation
and reproduction, respectively, is therefore also a necessary
condition for the occurrence of cyclic dynamics.

The joint influence of life history structure
and somatic maintenance costs

One particular mechanism that will naturally lead to
negative derivatives of the quotient functions fJ(R)/gJ(R)

and fA(R)/gA(R) is somatic maintenance. The need to
cover energy requirements for somatic maintenance implies
that all assimilated food will be used for that purpose
when resource densities are low. As a consequence, at low
resource densities, both maturation and reproduction rate
equal 0 to only turn positive for resource densities above a
certain threshold (Fig. 1). The sudden increase in maturation
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Fig. 1 Somatic maintenance costs induce disproportionate responses
in reproduction and maturation with increasing resource densities.
Left panels: assimilation and net-production rate (top: reproduction
by adults; bottom: juvenile maturation) as a function of resource
density in case juveniles assimilate resources more efficiently than
adults. Maintenance costs lead to a range of resource densities with-
out production and preclude that production scales proportionally
with assimilation, such that a small increase in resource density and
ingestion can translate into a disproportionally large increase in net-
production. For example, if population growth is substantially limited
by reproduction (left vertical dotted line), a decrease of 10% in den-
sity and redistribution of available resource over the remaining 90% of

the individuals, might increase per capita ingestion by only 10% (right
vertical dotted line) but roughly double per capita fecundity, resulting
in an overall 80% increase in total population reproduction. If juve-
niles are more efficient in acquiring resources (bottom) this increase
in reproduction is disproportionally larger than the increase in juvenile
maturation. Right panels: ratio of the adult foraging and reproduc-
tion rate fA(R)/gA(R) (top) and the ratio of the juvenile foraging
and maturation rate fJ(R)/gJ(R) (bottom), as derived from the curves
shown in the left panels assuming a constant conversion efficiency
between foraging and assimilation rate. The vertical dotted lines indi-
cate the threshold resource densities above which reproduction (top)
and maturation rate (bottom) are positive

and reproduction rate when resource density exceeds these
thresholds makes that the net efficiency of a consumer
population changes rapidly and thus that the derivatives of
the quotient functions fJ(R)/gJ(R) and fA(R)/gA(R) are
negative (Fig. 1, right panels).

In the unstructured model (1), maintenance costs can
be accounted for by reducing the per-capita reproduction
rate in the ODE for consumer density with the costs for
somatic maintenance, T . The per-capita rate βf (R) is hence
replaced by (βf (R) − T )+, where the superscript ‘+’
is used to indicate that the reproduction rate should be
restricted to biologically realistic, non-negative values (i.e.
(βf (R) − T )+ := max(βf (R) − T , 0)). In the absence
of life history structure, accounting for such maintenance
costs does not in any way affect the equilibrium predictions
of model (1), since for resource densities close to the
equilibrium the reproduction rate βf (R) − T is necessarily
always positive and hence (βf (R) − T )+ = βf (R) − T .
The modified model with maintenance and mortality rate

T and μ, respectively, and the original model (1) with
mortality rate μ + T therefore make the same predictions
regarding the changes in equilibrium density with an
increase in mortality and the stability of the equilibrium.
In other words, in unstructured models maintenance costs
can be straightforwardly accounted for by reinterpreting the
mortality rate as a loss rate, including both background
mortality and maintenance. Of course, the term (βf (R) −
T )+ may affect dynamics at resource densities well below
the equilibrium resource density, but these effects are
transient in nature.

In combination with juvenile-adult stage structure,
however, accounting for somatic maintenance costs does
change the basic rules-of-thumb of population ecology for
reasons, which are illustrated in Fig. 1 for the case that
reproduction is more resource-limited than maturation. If
an increase in mortality leads to a decrease in density with
say 10%, this will increase resource density and thereby
increase per-capita resource assimilation by juveniles and
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adults proportionally, thus with also roughly 10%. However,
because adults are less efficient in resource assimilation and
thereby more resource-limited than juveniles, this increase
in assimilation will roughly double adult fecundity. The
rate of offspring production by the entire population may
consequently increase with up to 80% (90% of the original
number of individuals, but each now reproducing at a rate
that is 200% of the original reproduction rate). Maintenance
costs may thus entail that with the same amount of food
distributed over fewer individuals a larger population-level
reproduction can be achieved. At the same time, the increase
in maturation rate of juveniles will be closer to the increase
in their resource assimilation, as for juveniles the difference
between the actual resource level and the minimum required
for their maturation is larger. The disproportionally large
increase in total reproduction rate therefore exceeds the
increase in the rates at which individuals leave the juvenile
stage through maturation or through mortality. Juvenile
density at equilibrium will therefore increase due to an
increase in mortality, despite that juveniles experience the
higher mortality as well. For analogous reasons, adult
density in equilibrium may increase with mortality when
population growth is more limited by juvenile maturation
than by reproduction.

Figure 2 (top panels) illustrates using a variant of the
consumer-resource model (2) how life history structure and
maintenance costs together lead to overcompensation in
density when mortality increases. These results are derived
assuming that resource productivity is constant p(R) =
P , juveniles and adults forage with exactly the same rate,
fJ(R) = fA(R) := f (R), experience the same mortality,
μJ = μA := μ, and similar maintenance costs T ,
but potentially differ in their efficiency to assimilate the
resource. Adult reproduction is thus described by gA(R) :=
(βf (R) − T )+, whereas juvenile maturation is modelled
with gJ(R) := (γf (R) − T )+. The particular model is
therefore captured by the differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dR

dt
= P − f (R) (CJ + CA)

dCJ

dt
= (βf (R) − T )+CA − (γf (R) − T )+CJ − μCJ

dCA

dt
= (γf (R) − T )+CJ − μCA

(13)

By applying the implicit function theorem to the system
of equations determining the equilibrium densities R̄, C̄J

and C̄A of the model, it is shown in Appendix C that
the nature and extent of the density overcompensation
(i.e. the increases in equilibrium juvenile or adult density
with increasing mortality) are completely determined by
the adult-juvenile ratio of resource assimilation, β/γ ,
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Fig. 2 Increases in density with mortality and population cycles due
to life history structure and maintenance costs. Top: juvenile (solid
line) and adult consumer density (dashed line) in equilibrium of the
consumer-resource model (13) as a function of stage-independent
mortality μ, when juveniles (left, β = 0.75) and adults (right, β =
1.5) are more efficient in assimilating resource, respectively. Bottom:
cycles in resource (grey solid line), juvenile (black solid line) and adult
consumer density (black dashed line) occurring for β = 2.5 in the
consumer-resource model (13). The results shown are based on the
assumption of a linear functional response, f (R) = R, and that the
parameters P , γ , and T all equal 1.0

and the relative loss rate through mortality compared to
maintenance, μ/T . Increases in the equilibrium density
of juvenile consumers with mortality can occur when
reproduction is more limited by resources than maturation,
β/γ < 1, and as long as the loss rate through maintenance
exceeds the mortality losses, μ/T < 1 (Fig. 3, left panel).
On the other hand, increases in the equilibrium density of
adult consumers with mortality can occur when maturation
is more limited by resources than reproduction, β/γ > 1.
These increases also occur predominantly when the loss rate
through maintenance exceeds mortality losses (Fig. 3, left
panel), but for very high adult-juvenile efficiency ratios,
they also occur when mortality losses are larger than
maintenance. Figure 2 provides examples of these increases
in juvenile and adult density in equilibrium for particular
parameter combinations. The maximum equilibrium density
occurs when mortality losses are in the order of 20–30%
of the losses through somatic maintenance, independent of
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Fig. 3 Parameter ranges with overcompensation and population
cycles. Parameter ranges for which overcompensation in juvenile and
adult density (left) and population cycles (right) occur in the consumer-
resource model (13) as a function of the ratio between mortality and
maintenance rate and the ratio between adult and juvenile assimilation
rate. For parameter combinations μ/T and β/γ in the white region
of the right panel the equilibrium is always stable, whereas the light

to dark grey regions in this panel indicate parameter combinations for
which increasingly larger values of resource productivity are required
for equilibrium stability (black contour lines indicate from low to high
the stability boundaries for γPf ′(R̄)/T 2 = 0, 1, 2, . . . , 5, respec-
tively). The results shown are independent of the form of the functional
response f (R) and parameter values

whether the population is more limited by reproduction
or by maturation (Fig. 2). These increases in equilibrium
density of juvenile and adult consumers can also occur when
only juveniles or adults are exposed to a higher mortality
rate (Online Resource 2, Sections II.4 and II.5). Increases
in juvenile mortality can increase adult equilibrium density
when maturation is more limited by resources than
reproduction, but will never increase juvenile equilibrium
density. Increases in adult mortality, on the other hand,
can increase juvenile as well as adult equilibrium density,
depending on whether reproduction or maturation is more
resource-limited. The increases in equilibrium density of
adults with increases in their mortality clearly violates the
rule-of-thumb that higher loss rates decrease densities.

In Appendix C, it is furthermore shown that the
Jacobian matrix of the specific model (13) can violate the
Routh-Hurwitz criterion even though resource production
is independent of resource density (p′(R) = 0). This
implies that the combination of life history structure and
somatic maintenance costs can also lead to instability of
the consumer-resource equilibrium and the occurrence of
population cycles, dependent again on the adult-juvenile
ratio of resource assimilation and the relative loss rate
through mortality compared to maintenance. In case the
equilibrium is unstable, the consumer-resource system
exhibits antiphase population cycles with approximately
a half-period phase lag between consumer and resource
densities, as shown in Fig. 2 (lower panel). Cycles only
occur when maturation is more limited by resources than
reproduction, β/γ > 1, and losses through maintenance

exceed the mortality losses, μ/T < 1 (Fig. 3, right
panel). Furthermore, the occurrence of population cycles
also depends on the resource productivity and the sensitivity
of the maturation rate at equilibrium to changes in resource
density, both expressed relative to the somatic maintenance
rate. For larger values of the resource productivity, the
equilibrium is always stable; hence, population cycles are
primarily expected to occur when productivity is low.

Discussion

The models discussed in this paper are phenomenological
and hence only mimic to a very limited extent any real
ecological system. In fact, they are as phenomenological
as the basic Lotka-Volterra predator-prey model, but extend
the latter with a juvenile-adult stage structure. The juvenile-
adult stage structure is shown to overturn the decreasing
density-mortality and equilibrium stability rules-of-thumb
if and only if either the maturation rate increases faster
than the juvenile foraging rate in response to an increase
in resource density (inequality (11)) or if the reproduction
rate increases faster than the adult foraging rate as a
consequence of the resource density increase (inequality
(12)). Accounting for the energetic requirements for somatic
maintenance automatically results in such increases in
resource utilisation efficiency for both juveniles and adults.

Disproportionally large increases in maturation or
reproduction rate compared to the increase in juvenile
and adult foraging rate, respectively, occur in particular at
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resource densities just above the break-even density, where
the resource intake of a juvenile or adult is just sufficient
to cover its basic maintenance requirements (Fig. 1). This
threshold resource density is also referred to as critical
resource density or maintenance resource density (Persson
et al. 1998; Persson and de Roos 2013). When consumer
mortality is low and competition for resources consequently
intense, the consumer population can be expected to
equilibrate at resource densities just above the juvenile or
the adult critical resource density, whichever is the smaller
of the two. Changes in population structure with increasing
mortality can thus be expected to occur especially at low
background mortality levels.

Juvenile-adult stage structure and energetic costs for
basic maintenance requirements are hence the two neces-
sary model ingredients that give rise to the increases in
stage-specific or total population biomass reported for size-
structured models (de Roos et al. 2007; Persson and de Roos
2013; de Roos and Persson 2013) and the single-generation
cycles in population density found in many age-, stage-
or size-structured models (Gurney et al. 1980; Gurney and
Nisbet 1985; Murdoch et al. 2002; de Roos and Persson
2003). These two biological mechanisms are furthermore
immutable elements of life: every organism experiences a
delay between its birth and the onset of its reproduction and
furthermore needs energy to sustain its basic life functions
and to fuel the inevitable turn-over of its tissues. A certain
amount of the energy an individual assimilates is hence not
used for increasing its soma or for the production of offspring,
but simply for ensuring its own persistence. The combination
of these two immutable elements of life overturns the two
basic rules-of-thumb focused on in this paper: the negative
relationship between equilibrium density and mortality and
the stability of the consumer-resource equilibrium as long
as resource productivity is not increasing with an increase
in resource density. Since the rules-of-thumb are central to
a considerable body of basic ecological theory, in particular
with respect to the occurrence of trophic cascades and top-
down effects in food webs, the results presented here call
into question the generality of this basic ecological theory.

The influence of population stage structure is shown
to be completely irrelevant for the long-term population
dynamics if juveniles and adults experience the same
mortality rate, their foraging rates scale with resource
density following the same function f (R) and, similarly,
maturation and reproduction rate scale with resource density
following the same function g(R). Juvenile and adult
foraging rates in this case only differ from each other by a
constant multiplication factor, while the same holds for the
maturation and reproduction rates. If these conditions apply,
the dynamics of the population stage structure decouples
from the dynamics of the total consumer density and
the stage structure converges to a steady-state distribution

irrespective of the changes in resource and consumer
density. These conditions resemble the conditions that lead
to ontogenetic symmetry in energetics, as presented in the
context of size-structured consumer-resource dynamics by
de Roos et al. (2013). Instead of size structure and biomass
densities, the focus here is on numerical abundances of
consumers in the different stages, disregarding any energetic
aspects. Nonetheless, the conditions that eliminate the
influence of the population structure on the dynamics of the
total population have the same interpretation as described
by de Roos et al. (2013): all consumer stages are to the same
extent limited by food in their performance and experience
the same per-capita mortality rate. More generally, it can
thus be concluded that any impact of consumer population
structure on consumer-resource dynamics can only come
about in case of ontogenetic asymmetry, which occurs when
individuals in different life stages either respond differently
to changes in resource density or differ in the mortality
rate they experience. Indeed, the analysis in this paper
also shows that energetic differences between juveniles
and adults are a prerequisite for the occurrence of positive
relationships between equilibrium density and mortality as
well as the occurrence of population cycles (Fig. 3).

While models accounting for juvenile-adult stage struc-
ture have been studied frequently (e.g. Hastings 1983, 1984b;
Briggs 1993; Olson et al. 1995; Revilla 2000; Abrams and
Quince 2005), population dynamic models that account for
basic maintenance requirements are more rare except for the
model proposed by Yodzis and Innes (1992). More often,
the maturation and reproduction rate of a consumer tends
to be taken proportional to the juvenile and adult forag-
ing rate, respectively, as exemplified by the model studied
by Schreiber and Rudolf (2008), which captures juvenile
maturation with a phenomenological description. The linear
relationship between a consumer’s numerical and func-
tional response is referred to as the linear conversion rule
(Ginzburg 1998), which is considered a sensible assump-
tion that is effectively adopted in most if not all unstruc-
tured models (Ginzburg 1998; Arditi and Ginzburg 1989).
Accounting for maintenance costs, however, necessarily
leads to deviations from this linear conversion rule.

Some predictions of the generic model (2) differ from
those of the more complicated size-structured models for
which positive relationships between equilibrium density
and mortality were reported first. In particular, juvenile
equilibrium density is shown to decrease with increas-
ing juvenile mortality in the stage-structured model (2),
whereas in stage-structured biomass models a positive
relationship between juvenile equilibrium biomass density
and mortality has been shown to occur (de Roos et al.
2007). Such increases have furthermore been firmly cor-
roborated in multi-generational laboratory experiments with
self-sustaining populations of least killifish (Heterandria
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formosa) kept under controlled food supply conditions
(Schröder et al. 2009). This discrepancy in predictions
between the two model frameworks implies that the growth
in body size of juveniles, which is accounted for in stage-
structured biomass models (de Roos et al. 2007) but not in
the stage-structured model (2), plays a crucial role. Indeed,
if the equilibrium resource density is just above the critical
resource density, at which juvenile ingestion exactly covers
juvenile maintenance costs, an increase in resource density
in the stage-structured model (2) only translates into a dis-
proportionally large increase in the rate at which individuals
leave the juvenile stage and mature into the adult stage.
However, if the model would account for growth in body
size of juveniles, the disproportionally large increase would
occur as well in the production rate of new biomass through
somatic growth, thus explaining why juvenile biomass may
indeed increase with increases in juvenile mortality in stage-
structured biomass or size-structured models (de Roos et al.
2007; de Roos and Persson 2013).

As another discrepancy, the stage-structured model (2)
predicts that only a single type of population cycles arises,
whereas in previously analysed size- and stage-structured
models, two different types of single-generation cycles
have been found to occur (de Roos and Persson 2003;
2013), driven by either juvenile or adult superiority in the
competition for resources. When juveniles are competitively
superior, juvenile-driven cycles result that are characterised
by a single cohort dominating the population dynamics
throughout its lifetime and a strongly varying population
size or stage distribution with either juveniles or adults
making up the largest part of the population. Consequently,
in juvenile-driven cycles, reproduction tends to be limited
to a short time interval at the start of a population cycle.
In contrast, adult-driven cycles, which occur when adults
are competitively superior to juveniles in the competition
for resources, are characterised by a more stable population
size or stage distribution (de Roos and Persson 2003, 2013)
and reproduction occurring more continuously throughout
the entire population cycle. Since the cycles found in the
stage-structured model (2) only occur when adults are more
efficient in their use of resources for reproduction than
juveniles use ingested resources for maturation (β/γ >

1; Fig. 3), they likely correspond to adult-driven cycles
arising from adult superiority in resource competition.
Juvenile-driven cycles are unlikely to occur in the stage-
structured model (2) as the model structure does not allow
for the formation of distinct cohorts that can dominate the
population throughout their life.

An important characteristic of the consumer-resource
cycles shown in Fig. 2 is the phase difference between the
resource and especially the juvenile consumer density of
approximately half a cycle period. Such antiphase cycles
have been argued to be the hallmark of predator-prey cycles

driven by rapid evolution in the prey (Yoshida et al. 2003)
but occur here as a consequence of asymmetric juvenile-
adult competition for resources. Juveniles dominate the con-
sumer population and suppress the resource density when
their density increases. This contributes to further increases
in juvenile density as it slows down their own recruitment
to the adult stage, while adults use acquired resources more
efficiently and hence continue to reproduce despite the low
resource density. The lack of adult recruitment eventually
leads to a decrease in total reproduction and a decline in
juvenile consumer density.

The most important consequence of the positive rela-
tionships between consumer density and mortality are their
implications for higher trophic levels and community struc-
ture. For example, a generalist predator foraging on both
juveniles and adults would impose stage-independent pre-
dation mortality. If this predation mortality increases either
juvenile or adult consumer density in equilibrium, the gen-
eralist predator indirectly increases the food availability for
a stage-specific predator that specialises on either juvenile
or adult consumers. Density overcompensation may hence
lead to facilitation between generalist and stage-specific
predators, but also between two predators that specialise on
different life history stages of consumers (de Roos et al.
2008). As shown in Online Resource 2 (Section II.4), an
increase in juvenile mortality alone can lead to increases in
adult equilibrium density if adults are more efficient in their
resource use (β/γ > 1). If the increased mortality would be
imposed by a predator specialising on juvenile consumers,
it would facilitate the persistence of a predator specialis-
ing on adult consumers as an indirect consequence of the
positive density-mortality relationship. Similarly, predators
specialising on adult consumers can promote the persistence
of predators specialising on juveniles in case juvenile con-
sumers are more efficiently using resources for maturation
than adults use their ingested resources for reproduction
(Online Resource 2, Section II.5). Clearly, because of this
facilitation the diversity of the predator guild, exploiting a
particular consumer species in different phases of its life is
important for the persistence of its guild members: if the
specialist predator on adult consumers is driven to extinc-
tion, the predator on juvenile may follow suit when its mor-
tality is high. In more complex food web configurations,
in which juvenile and adult consumers forage on separate
resources and each stage is vulnerable to predation by its
own stage-specific predator, even mutual facilitation between
two stage-specific predator species can occur (de Roos and
Persson 2013, chapter 6). For specific combinations of pro-
ductivity of the resources, on which juvenile and adult
consumers forage, the two stage-specific predators can then
only persist when together and will go extinct otherwise.

The positive relationship between consumer mortality
and consumer density may in addition also lead to situations
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that stage-specific predators promote their own persistence.
As shown in Online Resource 2 (Section II.5), if juveniles
are more efficient in resource assimilation than adults
and reproduction is hence more limited by resource than
maturation, adult equilibrium density will increase with
increasing adult mortality. High densities of a predator
species that forages exclusively on adult consumers could
in this case impose high adult predation mortality and
potentially increase adult density above the density that
these predators require for their own persistence. In contrast,
if predator density is too low, the mortality they impose may
not be sufficient to increase adult consumer density enough
and predators die out. This may result in the occurrence
of two alternative stable states for the community over a
range of predator mortality rates: one resource-consumer
equilibrium that is dominated by juvenile consumers and
an alternative, resource-consumer-predator equilibrium, in
which the consumer population for a substantial fraction
consists of adults (de Roos and Persson 2002). The
occurrence of these alternative stable states also entails that
the predator population can exhibit a catastrophic collapse
when its mortality increases and that the predator may
not be able to recover from such a population collapse as
the density of adult consumers in the consumer-resource
equilibrium that follows the disappearance of the predator
is too low for predators to achieve a positive growth
rate. Since the predator in this case would only achieve
a positive growth rate if it is itself present at sufficiently
high density, this phenomenon is referred to as an emergent
Allee effect (de Roos and Persson 2002; de Roos et al.
2003).

Summarising, the distinction between a juvenile and an
adult phase and the energetic costs of covering basic mainte-
nance requirements are two of the most fundamental elements
of every life history. Models that take these two biologi-
cal aspects into account make predictions about commu-
nity structure and dynamics that are qualitatively different
from the expectations generated by contemporary ecologi-
cal theory based on unstructured population dynamic mod-
els. These contrasting predictions thereby challenge this
unstructured ecological theory and its biological relevance.
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Appendix A: Stage-independent mortality
and scaling with resource density in case
of an arbitrary number of consumer stages

The result presented in themain text for a two-stage consumer-
resource model that stage-independence of mortality and
a qualitatively identical scaling of foraging, maturation
and reproduction with resource density leads to a fading
influence of population stage structure can be generalised
to an arbitrary number of consumer stages. Consider a
consumer population consisting of n stages with density Ci ,
i = 1, . . . , n. Assume that all consumer stages forage on
the resource at a rate αif (R), where f (R) is an arbitrary,
monotonously increasing function of the resource density
R. Furthermore, assume that the stages with index i =
k, . . . , n are adult and reproduce at a rate βig(R). All stages
i mature into the next stage at rate γig(R). To capture the
lack of maturation out of the last stage (i = n), we simply
set γn equal to 0. Finally, all consumers experience the same,
stage-independent mortality rate μ.

The system of equations describing the consumer-resource
dynamics is now given by the system of ODEs:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dR

dt
= p(R) −

n∑

i=1

αif (R)Ci

dC1

dt
=

n∑

i=k

βig(R)Ci − γ1g(R)C1 − μC1

dCi

dt
= γi−1g(R)Ci−1 − γig(R)Ci − μCi, i = 2, . . . , n

(A.1)

where the function p(R) is the growth or production rate
of the resource in the absence of consumers and γn =
0 by definition. Notice that model (A.1) can capture a
broad range of individual life histories, including those in
which the delay between birth and maturation is distributed
following a gamma distribution (when all γi are identical,
see Bjørnstad et al. 2016) with an expected juvenile delay
depending on the resource density.

Now define the fraction of the total consumer population
in stage i as zi :

zi = Ci
∑n

i=1Ci

Then,

dzi

dt
= 1

∑n
i=1Ci

(
dCi

dt
− zi

n∑

i=1

dCi

dt

)

= 1
∑n

i=1Ci

(
dCi

dt
− zi

(
n∑

i=k

βig(R)Ci − μ

n∑

i=1

Ci

))

= 1
∑n

i=1Ci

dCi

dt
− zi

n∑

i=k

βig(R)zi + μzi

n∑

i=1

zi
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Therefore,

dzi

dt
= 1

∑n
i=1Ci

dCi

dt
− β̄g(R)zi + μzi (A.2)

in which the average fecundity parameter β̄ is defined as
follows:

β̄ =
n∑

i=k

βizi (A.3)

For i = 1 we can derive from Eq. A.2:

dz1

dt
= 1

∑n
i=1Ci

(
n∑

i=k

βig(R)Ci − γ1g(R)C1 − μC1

)

−β̄g(R)z1 + μz1

=
n∑

i=k

βig(R)zi − γ1g(R)z1 − μz1 − β̄g(R)z1 + μz1

= β̄g(R) − γ1g(R)z1 − β̄g(R)z1

= (β̄ − (γ1 + β̄)z1)g(R)

For i = 2, . . . , n we can derive from Eq. A.2:

dzi

dt
= 1

∑n
i=1Ci

(γi−1g(R)Ci−1 − γig(R)Ci − μCi)

−β̄g(R)zi + μzi

= γi−1g(R)zi−1 − γig(R)zi − μzi − β̄g(R)zi + μzi

= γi−1g(R)zi−1 − γig(R)zi − β̄g(R)zi

= (γi−1zi−1 − (γi + β̄)zi)g(R)

The dynamics of the fractions zi can hence be described
by the following vector equation:

dz
dt

= d

dt

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

z1
...
zi

...
zn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

β̄ − (
γ1 + β̄

)
z1

...
γi−1zi−1 − (

γi + β̄
)
zi

...
γn−1zn−1 − (

γn + β̄
)
zn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

g(R)

(A.4)

(remember that γn = 0 by definition).
In the vector equation (A.4) the factor g(R) scales all the

rates in the same way. This rate may hence vary over time,
depending on the dynamics of R, but the factor g(R) only
influences the rate of approach to an attractor, but not the
final attractor of the vector z. In other words, the factor g(R)

may scale the time axis in a particular way, but it will not
influence the long-term fate of the fractions z.

The final attractor of z is determined by the equations:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

β̄ − (γ1 + β̄)z1
...

γi−1zi−1 − (γi + β̄)zi

...
γn−1zn−1 − (γn + β̄)zn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0 (A.5)

which can be solved recursively to yield:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

z1 = β̄

γ1 + β̄

zi = γi−1

γi + β̄
zi−1, i = 2, . . . , n

(A.6)

or:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1 = β̄

γ1 + β̄

zi =

i−1∏

j=1
γj

i∏

j=2
(γj + β̄)

z1, i = 2, . . . , n

(A.7)

For a given value of β̄, these expressions for the fractions
zi of consumers in stage i obviously yield a unique, relative
distribution over the stages. However, β̄ is itself defined
in terms of the fractions zi (see Eq. A.3). Assuming that
consumer individuals in the stage i = 1 do not reproduce
(k > 1), the definition (A.3) for β̄ can be combined with
Eq. A.7 to yield:

β̄ =
n∑

i=k

βizi =
n∑

i=k

βi

i−1∏

j=1
γj

i∏

j=2
(γj + β̄)

z1

⇒ β̄ =
n∑

i=k

βi

i−1∏

j=1
γj

i∏

j=2
(γj + β̄)

β̄

γ1 + β̄

β̄ should therefore satisfy the following condition:

n∑

i=k

βi

i−1∏

j=1
γj

i∏

j=1
(γj + β̄)

= 1 (A.8)
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The left-hand side of Eq. A.8 is a strictly decreasing func-
tion of β̄, which implies that there is a unique value of β̄

satisfying this condition, as long as:

n∑

i=k

βi

γi

> 1 (A.9)

which should always be the case given that we assumed
γn = 0.

The derivation above implies that the dynamical sys-
tem (A.4) for z over time approaches a unique equilibrium
that is determined by Eqs. A.7 and A.8, where the value of
β̄ is the unique solution of Eqs. A.8 and A.7 determines the
unique, stable, relative stage distribution that is associated
with this value of β̄. Most importantly, this approach to the
stable stage distribution decouples from and is hence unaf-
fected by the dynamics of the resource R and the dynamics
of the total number of consumers

∑n
i=1 Ci , except for the

fact that the dynamics of R determine the rate at which the
stable stage distribution is approached.

Defining the total consumer population abundance C as
follows:

C =
n∑

i=1

Ci (A.10)

and the average resource foraging parameter ᾱ as follows:

ᾱ =
n∑

i=1

αizi, (A.11)

it can be concluded that the long-term dynamics of the
consumer-resource model (A.1) is completely captured by
the following asymptotically autonomous system (Thieme
1994):
⎧
⎪⎪⎨

⎪⎪⎩

dR

dt
= g(R) − ᾱf (R)C

dC

dt
= β̄g(R)C − μC

(A.12)

after the (decoupled) dynamics of the relative stage
distribution of the consumer has settled down to its attractor
determined by Eqs. A.7 and A.8.

Appendix B: Different rates of juvenile and
adult foraging,maturation and reproduction

All derivations discussed below have been carried out using
Maple (version 18; Maplesoft, a division of Waterloo Maple
Inc., Waterloo, Ontario). TheMaple document with step-by-
step calculations is provided as Online Resource 1.

The equilibrium state of the general model (2) is
determined by the set of conditions (6) presented in the main
text. These equations can be used to express the equilibrium

adult consumer density in terms of the equilibrium density
of juveniles:

C̄A = gJ(R̄)

μA
C̄J

Substitution of this equality in the right-hand side of
H2(R̄, C̄J, C̄A) leads to the following condition determining
the resource density in a non-trivial equilibrium, that is,
an equilibrium with positive juvenile and adult consumer
densities:

gJ(R̄)(gA(R̄) − μA) − μJμA = 0 (B.1)

Since gJ(R) and gA(R) are increasing functions of R

the equilibrium condition (B.1) makes clear that for a
given parameter set this non-trivial consumer-resource
equilibrium is unique. Furthermore, condition (B.1) can
only be satisfied if gA(R̄) > μA.

The equilibrium conditions H1(R̄, C̄J, C̄A) and
H3(R̄, C̄J, C̄A) can also be used to derive expressions for
the equilibrium densities of juvenile and adult consumers in
terms of the equilibrium resource density R̄:

C̄J = p(R̄)μA

fJ(R̄)μA + fA(R̄)gJ(R̄)
(B.2)

C̄A = p(R̄)gJ(R̄)

fJ(R̄)μA + fA(R̄)gJ(R̄)
(B.3)

Therefore, given a unique equilibrium resource density, the
consumer stage distribution is also unique.

B.1 Equilibrium changes with increasing
mortality

To assess how an increase in juvenile mortality affects the
equilibrium densities of resource, juvenile and adult con-
sumers, the implicit function theorem can be applied to the
system of equilibrium conditions (7). Taking the derivative
of these conditions with respect to μJ leads to the following:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂H1

∂R

∂H1

∂C̄J

∂H1

∂C̄A
∂H2

∂R

∂H2

∂C̄J

∂H2

∂C̄A
∂H3

∂R

∂H3

∂C̄J

∂H3

∂C̄A

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

dR̄

dμJ

dC̄J

dμJ

dC̄A

dμJ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

0

−C̄J

0

⎞

⎟
⎟
⎟
⎠

= 0

where the first term represents the indirect effects of μJ

on the equilibrium densities R̄, C̄J and C̄A and the second
term represents the direct effect of μJ on the functions
H1(R̄, C̄J, C̄A), H2(R̄, C̄J, C̄A) and H3(R̄, C̄J, C̄A). Notice
that the matrix in the first term of the equation above is the
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Jacobian matrix of the model, evaluated at the non-trivial
equilibrium densities:

J =

⎛

⎜
⎜
⎜
⎝

p′(R̄)−f ′
J (R̄)C̄J−f ′

A(R̄)C̄A −fJ(R̄) − fA(R̄)

g′
A(R̄)C̄A−g′

J(R̄)C̄J −gJ(R̄) − μJ gA(R̄)

g′
J(R̄)C̄J gJ(R̄) −μA

⎞

⎟
⎟
⎟
⎠

(B.4)

To determine the derivatives of the resource, juvenile and
adult consumer density in equilibrium with respect to the
parameters μJ, dR̄/dμJ, dC̄J/dμJ and dC̄A/dμJ, respec-
tively, the following (linear) system of equations has to be
solved:

J

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

dR̄

dμJ

dC̄J

dμJ

dC̄A

dμJ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

0

C̄J

0

⎞

⎟
⎟
⎟
⎠

(B.5)

where we are mostly interested in the sign of the derivatives
dC̄J/dμJ and dC̄A/dμJ.

The linear equation system (B.5) can be solved using
Cramer’s rule. As a first step of applying Cramer’s rule, the
determinant of the Jacobian matrix J is computed. Using
the equilibrium resource condition (B.1) for simplification
(Online Resource 1, Eqs. 2.3–2.6), the determinant can be
expressed as follows:

D = −(fJ(R̄)(gA(R̄) − μA) + fA(R̄)μJ) g′
J(R̄) C̄J

− (fJ(R̄)μA + fA(R̄)gJ(R̄)) g′
A(R̄) C̄A (B.6)

Since it is assumed that either g′
J(R̄) > 0 or g′

A(R̄) > 0, it
can be inferred that D is strictly negative.

Using the expression for the determinant of the Jacobian
matrix D, the derivative dC̄J/dμJ is given by (Online
Resource 1, Eq. 2.10):

dC̄J

dμJ
= D−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

p′(R̄) − f ′
J (R̄)C̄J − f ′

A(R̄)C̄A 0 − fA(R̄)

g′
A(R̄)C̄A − g′

J(R̄)C̄J C̄J gA(R̄)

g′
J(R̄)C̄J 0 −μA

∣
∣
∣
∣
∣
∣
∣
∣
∣

= D−1((−p′(R̄) + f ′
J (R̄)C̄J + f ′

A(R̄)C̄A)μA

+fA(R̄)g′
J(R̄)C̄J)C̄J (B.7)

Given the assumptions on p(R), fJ(R), fA(R) and gJ(R),
the above expression makes clear that dC̄J/dμJ always has
the same sign as D and hence is negative. Thus, juvenile
consumer density always decreases with increasing juvenile
mortality.

The derivative dC̄A/dμJ is given by (Online Resource 1,
Eqs. 2.12–2.15):

dC̄A

dμJ
= D−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

p′(R̄) − f ′
J (R̄)C̄J − f ′

A(R̄)C̄A −fJ(R̄) 0

g′
A(R̄)C̄A − g′

J(R̄)C̄J −gJ(R̄) − μJ C̄J

g′
J(R̄)C̄J gJ(R̄) 0

∣
∣
∣
∣
∣
∣
∣
∣
∣

= D−1

(

−p′(R̄)+f ′
A(R̄)C̄A+

(
fJ(R̄)

gJ(R̄)

)′
gJ(R̄)C̄J

)

gJ(R̄)C̄J

(B.8)

which also always has the same sign as D and hence
is negative, provided that the derivative of the quotient
function fJ(R)/gJ(R) is non-negative:
(

fJ(R̄)

gJ(R̄)

)′
≥ 0 (B.9)

Thus, as long as this inequality holds, adult consumer
density also always decreases with increasing juvenile
mortality, while adult consumer density can potentially
increase with increasing juvenile mortality if the derivative
in the left-hand side of inequality (B.9) is negative.

In a similar manner, to compute the derivatives of
the resource, juvenile and adult consumer densities in
equilibrium with respect to the adult consumer mortality
μA, consider the system of equilibrium conditions (8).
Taking the derivative of these conditions with respect to μA

leads to the following (linear) system of equations that can
be solved for dR̄/dμA, dC̄J/dμA and dC̄A/dμA:

J

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

dR̄

dμA

dC̄J

dμA

dC̄A

dμA

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

0

0

C̄A

⎞

⎟
⎟
⎟
⎠

(B.10)

Again using the expression for the determinant of the
Jacobian matrix D, the derivative dC̄J/dμA is given by
(Online Resource 1, Eqs. 2.18–2.19):

dC̄J

dμA
= D−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

p′(R̄)−f ′
J (R̄)C̄J−f ′

A(R̄)C̄A 0 − fA(R̄)

g′
A(R̄)C̄A−g′

J(R̄)C̄J 0 gA(R̄)

g′
J(R̄)C̄J C̄A −μA

∣
∣
∣
∣
∣
∣
∣
∣
∣

= D−1

(

gA(R̄)(−p′(R̄)+f ′
J (R̄)C̄J)+fA(R̄)g′

J(R̄)C̄J

+
(

fA(R̄)

gA(R̄)

)′
(gA(R̄))2C̄A

)

C̄A (B.11)
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which also always has the same sign as D and hence
is negative, provided that the derivative of the quotient
function fA(R)/gA(R) is non-negative:
(

fA(R̄)

gA(R̄)

)′
≥ 0 (B.12)

Thus, as long as this inequality holds, juvenile consumer
density always decreases with increasing adult mortality,
while juvenile consumer density can potentially increase
with increasing adult mortality if the derivative in the left-
hand side of inequality (B.12) is negative.

Finally, the derivative dC̄A/dμA is given by (Online
Resource 1, Eqs. 2.21–2.22):

dC̄A

dμA
= D−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

p′(R̄)−f ′
J (R̄)C̄J−f ′

A(R̄)C̄A −fJ(R̄) 0

g′
A(R̄)C̄A−g′

J(R̄)C̄J −gJ(R̄)−μJ 0

g′
J(R̄)C̄J gJ(R̄) C̄A

∣
∣
∣
∣
∣
∣
∣
∣
∣

= D−1

(

(gJ(R̄)+μJ)(−p′(R̄)+f ′
A(R̄)C̄A)+μJf

′
J (R̄)C̄J

+ fJ(R̄)g′
A(R̄)C̄A+

(
fJ(R̄)

gJ(R̄)

)′
(gJ(R̄))2C̄J

)

C̄A (B.13)

which also has the same sign as D and hence is negative, pro-
vided that the derivative of the quotient function fJ(R)/gJ
(R) is non-negative (inequality (B.9)). Thus, as long as
inequality (B.9) holds, adult consumer density always
decreases with increasing adult mortality, while adult con-
sumer density can potentially increase with increasing adult
mortality if the derivative in the left-hand side of inequal-
ity (B.9) is negative.

In summary, the analysis in this section shows that any
increase in (stage-specific) mortality will decrease the equi-
librium densities of juvenile and adult consumers, pro-
vided the derivatives of the quotient functions fJ(R)/gJ(R)

and fA(R)/gA(R) are non-negative (inequalities (B.9) and
(B.12)). If the inequality
(

fJ(R̄)

gJ(R̄)

)′
< 0 (B.14)

would hold, the juvenile maturation rate gJ(R̄) at equilib-
rium increases faster with an increase in resource density
than the juvenile foraging rate fJ(R̄) at equilibrium. This
implies that the increase in resource density translates into
an increased efficiency with which juveniles use acquired
resources for maturation. In this case, adult consumer den-
sity at equilibrium can potentially increase with an increase
in either juvenile or adult mortality (or both).

If the inequality
(

fA(R̄)

gA(R̄)

)′
< 0 (B.15)

would hold, the adult reproduction rate gA(R̄) at equilib-
rium increases faster with an increase in resource density
than the adult foraging rate fA(R̄) at equilibrium. This
implies that the increase in resource density translates into
an increased efficiency with which adults use acquired
resources for reproduction. In this case, juvenile consumer
density at equilibrium can potentially increase with an
increase in adult mortality.

B.2 Stability of the equilibrium

The characteristic equation determining the stability of
the non-trivial equilibrium is determined by the following
characteristic polynomial in terms of the eigenvalue λ:

λ3 + a1λ
2 + a2λ + a3 = 0 (B.16)

in which the coefficients a1, a2, and a3 are given by the
following:

a1 = −p′(R̄) + f ′
J (R̄)C̄J + f ′

A(R̄)C̄A + gJ(R̄) + μJ + μA

a2 = (gJ(R̄) + μJ + μA)(−p′(R̄) + f ′
A(R̄)C̄A)

+(μJ + μA)f ′
J (R̄)C̄J

+fA(R̄)g′
J(R̄)C̄J + fJ(R̄)g′

A(R̄)C̄A

+
(

fJ(R̄)

gJ(R̄)

)′
(gJ(R̄))2C̄J (B.17)

a3 = ((gA(R̄) − μA)fJ(R̄) + μJfA(R̄))g′
J(R̄)C̄J

+(fA(R̄)gJ(R̄) + fJ(R̄)μA)g′
A(R̄)C̄A

(see Online Resource 1, Eqs. 3.2–3.7).
For systems of 3 ODEs the Routh-Hurwitz conditions

stipulate that the equilibrium is stable if a1 > 0, a3 > 0
and a1a2 − a3 > 0. Given that p′(R) ≤ 0, f ′

J (R) ≥ 0,
f ′
A(R) ≥ 0, g′

J(R) ≥ 0, g′
A(R) ≥ 0, and necessarily

gA(R̄) > μA (see Eq. B.1), it is clear that the conditions
a1 > 0 and a3 > 0 are satisfied. The detailed calculations
in Online Resource 1 (see Eqs. 3.9–3.19) show that the
expression for a1a2 − a3 is also positive indicating that
the equilibrium is stable, provided that the derivatives of
the quotient functions fJ(R)/gJ(R) and fA(R)/gA(R) are
non-negative (inequalities (B.9) and (B.12)).

Population cycles can hence only occur if the efficiency
with which juveniles can use acquired resources for
maturation increases with an increase in resource density,
i.e. the juvenile maturation rate gJ(R) increases faster with
an increase in resource density than the juvenile foraging
rate fJ(R) and inequality (B.14) holds, or in case the
efficiency with which adults can use acquired resources for
reproduction increases with resource density, i.e. the adult
reproduction rate gA(R) increases faster with an increase
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in resource density than the adult foraging rate fA(R) and
inequality (B.15) holds.

Appendix C: Consumermaturation
and reproduction reduced by somatic
maintenance costs

All derivations discussed below have been carried out using
Maple (version 18; Maplesoft, a division of Waterloo Maple
Inc., Waterloo, Ontario). TheMaple document with step-by-
step calculations is provided as Online Resource 2.

If resource productivity is constant p(R) = P , juveniles
and adults forage with exactly the same rate, fJ(R) =
fA(R) := f (R), experience the same mortality, μJ =
μA := μ, and similar maintenance costs T , but potentially
differ in their efficiency to assimilate the resource,
reproduction and maturation rate are given by gA(R) :=
(βf (R) − T )+ and gJ(R) := (γf (R) − T )+, respectively.
Under these assumptions the equilibrium of model (13) is
determined by the following set of conditions:

⎧
⎪⎪⎨

⎪⎪⎩

H1(R̄, ¯̄CJ, C̄A)=P − f (R̄)(C̄J + C̄A) = 0

H2(R̄, C̄J, C̄A)=(βf (R̄)−T )C̄A − (γf (R̄) − T )C̄J − μC̄J = 0

H3(R̄, C̄J, C̄A)=(γf (R̄)−T )C̄J − μC̄A = 0

(C.1)

in which it is assumed that in equilibrium necessarily
βf (R̄) > T and γf (R̄) > T and hence the superscripts ‘+’
in the reproduction and maturation rate gA(R) and gJ(R)

have been dropped from the equations. These equations can
be used to express the equilibrium adult consumer density
in terms of the equilibrium density of juveniles:

C̄A = (γf (R̄) − T )

μ
C̄J

Substitution of this equality in the right-hand side of
H2(R̄, C̄J, C̄A) leads to the following condition determining
the resource density in a non-trivial equilibrium, that is,
an equilibrium with positive juvenile and adult consumer
densities:

(γf (R̄) − T )(βf (R̄) − T − μ) − μ2 = 0 (C.2)

Since f (R) is an increasing function of R and γf (R̄) >

T the equilibrium condition can only be satisfied if
βf (R̄) > T + μ, which also implies that the equilibrium
condition (C.2) determines a unique, positive value of the
resource density in equilibrium. The equilibrium conditions
H1(R̄, C̄J, C̄A) and H3(R̄, C̄J, C̄A) can furthermore be
used to derive expressions for the equilibrium densities of

juvenile and adult consumers in terms of the equilibrium
resource density R̄:

C̄J = μ

f (R̄)(γf (R̄) − T + μ)
P (C.3)

C̄A = (γf (R̄) − T )

f (R̄)(γf (R̄) − T + μ)
P (C.4)

Therefore, given a unique equilibrium resource density, the
consumer stage distribution is also unique.

The equilibrium condition can be rewritten in terms of
three scaled quantities h(R̄) := γf (R̄)/T , q := β/γ and
m := μ/T as follows:

(h(R̄) − 1)(q h(R̄) − 1 − m) − m2 = 0 (C.5)

which leads to the unique, positive solution for h(R̄) =
γf (R̄)/T > 1 (Online Resource 2, Eq. 1.12):

h(R̄) = m + q + 1 + √
(m + q + 1)2 − 4 q (1 + m − m2)

2q
(C.6)

C.1 Equilibrium changes with increasing
mortality

To assess how an increase in mortality affects the
equilibrium densities of resource, juvenile and adult
consumers, the implicit function theorem can be applied to
the system of equilibrium conditions (C.1). This system of
equations can be rewritten as
⎧
⎪⎨

⎪⎩

H1(R̄(μ), C̄J(μ), C̄A(μ), μ) = 0

H2(R̄(μ), C̄J(μ), C̄A(μ), μ) = 0

H3(R̄(μ), C̄J(μ), C̄A(μ), μ) = 0

which emphasises the fact that the equilibrium densities
R̄, C̄J and C̄A depend indirectly on the mortality rate μ

through the dependence of the functions H1(R̄, C̄J, C̄A),
H2(R̄, C̄J, C̄A) and H3(R̄, C̄J, C̄A) on μ. Taking the
derivative of the conditions above with respect to μ leads to
the following:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂H1

∂R

∂H1

∂C̄J

∂H1

∂C̄A
∂H2

∂R

∂H2

∂C̄J

∂H2

∂C̄A
∂H3

∂R

∂H3

∂C̄J

∂H3

∂C̄A

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

dR̄

dμ

dC̄J

dμ

dC̄A

dμ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

0

−C̄J

−C̄A

⎞

⎟
⎟
⎟
⎠

= 0

where the first term represents the indirect effect of μ on
the equilibrium densities R̄, C̄J and C̄A and the second
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term represents the direct effect of μ on the functions
H1(R̄, C̄J, C̄A), H2(R̄, C̄J , C̄A) and H3(R̄, C̄J, C̄A). Notice
that the matrix in the first term of the equation above is the
Jacobian matrix of the model, evaluated at the non-trivial
equilibrium densities (Online Resource 2, Eq. 2.2):

J =

⎛

⎜
⎜
⎜
⎝

−f ′(R̄)(C̄J + C̄A) −f (R̄) − f (R̄)

βf ′(R̄)C̄A − γf ′(R̄)C̄J −(γf (R̄) − T ) − μ (βf (R̄) − T )

γf ′(R̄)C̄J (γf (R̄) − T ) −μ

⎞

⎟
⎟
⎟
⎠

(C.7)

To determine the derivatives of the resource, juvenile and
adult consumer densities in equilibrium with respect to the
parameter μ, dR̄/dμ, dC̄J/dμ and dC̄A/dμ, respectively,
the following (linear) system of equations has to be solved:

J

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

dR̄

dμ

dC̄J

dμ

dC̄A

dμ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

0

C̄J

C̄A

⎞

⎟
⎟
⎟
⎠

(C.8)

where we are mostly interested in the sign of the derivatives
dC̄J/dμ and dC̄A/dμ.

The linear equation system (C.8) can be solved using
Cramer’s rule. As a first step of applying Cramer’s rule, the
determinant of the Jacobian matrix J is computed. Using
the equilibrium resource condition (C.2) for simplification
(Online Resource 2, Eqs. 2.3–2.4), the determinant can be
expressed as follows:

D = −((μ(γf (R̄) − T + μ) + T (βf (R̄) − T ))C̄J

+(T (γf (R̄) − T ) + μ(γf (R̄)

+βf (R̄) − T + μ))C̄A) f ′(R̄) (C.9)

Since f ′(R̄) > 0, βf (R̄) > T and γf (R̄) > T , D is strictly
negative.

Using the expression for the determinant, the derivative
dC̄J/dμ can be expressed as follows (Online Resource 2,
Eqs. 2.7–2.10):

dC̄J

dμ
= D−1((γf (R̄) + μ)C̄2

J + (γf (R̄) + βf (R̄)

−T + μ)C̄JC̄A − T C̄2
A)f ′(R̄) (C.10)

which indicates that juvenile equilibrium density increases
with mortality if:

(γf (R̄)+μ)C̄2
J +(γf (R̄)+βf (R̄)−T +μ)C̄JC̄A−T C̄2

A < 0

(C.11)

This inequality can be simplified (Online Resource 2,
Eqs. 2.12–2.18) using the expressions (C.3) and (C.4) for C̄J

and C̄A to the inequality:

βf (R̄) − T

γf (R̄) − T
<

T

γf (R̄) + 2μ
(C.12)

Because in equilibrium γf (R̄) > T the right-hand side of
this inequality is always smaller than 1, which implies that
the condition can only be satisfied if β < γ . Furthermore,
like the equilibrium condition (C.5) the inequality can be
expressed in terms of three scaled quantities h(R̄) :=
γf (R̄)/T , q := β/γ and m := μ/T :

q h(R̄) − 1

h(R̄) − 1
<

1

h(R̄) + 2m
(C.13)

Substitution of the equilibrium value h(R̄) (C.6) into the
inequality above, allows Maple to rewrite it in the form
q < LJ(m), where LJ(m) is the following explicit function
of m (Online Resource 2, Eqs. 2.20–2.25):

LJ(m) = −m4 − 2m3 + m2 − 4m − 2

8m4 − 4m3 − 4m2 − 4m − 2

+
√

m8 + 4m7 − 46m6 + 60m5 + 45m4

8m4 − 4m3 − 4m2 − 4m − 2
(C.14)

The function LJ(m) constitutes the boundary of the
parameter domain with juvenile density overcompensation
shown in Fig. 3 (left panel).

Using the expressions for the determinant, the derivative
dC̄A/dμ can be expressed as (Online Resource 2, Eq. 2.27):

dC̄A

dμ
= D−1((γf (R̄) + βf (R̄) − T + μ)C̄2

A

+(γf (R̄) − 2T + μ)C̄JC̄A − T C̄2
J )f

′(R̄) (C.15)

which indicates that adult equilibrium density increases
with mortality if:

(γf (R̄)+βf (R̄)−T +μ)C̄2
A+(γf (R̄)−2T +μ)C̄JC̄A−T C̄2

J <0

(C.16)

This inequality can be simplified (Online Resource 2,
Eqs. 2.29–2.37) using the expressions (C.3) and (C.4) for C̄J

and C̄A to the inequality:

βf (R̄) − T

γf (R̄) − T
>

γf (R̄) + μ

3T − 2γf (R̄)
(C.17)
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where it is required (see Online Resource 2, Eq. 2.36)
that T < γf (R̄) < 3

2T . Given that the right-hand
side of the inequality above is always larger than 1 for
T < γf (R̄) < 3

2T , it can be concluded that an increase in
adult density with mortality can only occur for β > γ .

The inequality can be expressed in terms of three scaled
quantities h(R̄) := γf (R̄)/T , q := β/γ and m := μ/T as
follows (Online Resource 2, Eq. 2.39):

q h(R̄) − 1

h(R̄) − 1
>

h(R̄) + m

3 − 2h(R̄)
(C.18)

with the restriction that 1 < h(R̄) < 3
2 .

Solving of the equilibrium condition for h(R̄) (C.5) and
the condition for the occurrence of adult overcompensation
(C.18) for h(R̄) and q, results in an inequality q > LA(m)

(Online Resource 2, Eqs. 2.42–2.45), where LA(m) is an
explicit function of m (see Online Resource 2, Eq. 2.46).
The expression for LA(m) is however too complicated
to be repeated here. The function LA(m) constitutes the
boundary of the parameter domain with adult density
overcompensation shown in the left panel of Fig. 3.

Furthermore, in Section II.4 of Online Resource 2, it
is analysed whether an increase in mortality for juvenile
consumers alone can give rise to an increase in juvenile
or adult density at equilibrium. The analysis shows that
an increase in mortality for juvenile consumers can lead
to an increase in adult consumer density at equilibrium,
depending on the value of the scaled quantities q := β/γ ,
mJ := μJ/T and mA := μA/T , where μJ and μA indicate
the stage-specific mortality rates for juvenile and adult
consumers, respectively. The equilibrium juvenile consumer
density will, however, always decrease with an increase in
juvenile mortality μJ, independent of parameters.

Similarly, in Section II.5 of Online Resource 2, it is
shown that an increase in mortality for adult consumers only
can result in an increase in either juvenile or adult consumer
density at equilibrium, depending on the parameters q :=
β/γ , mJ := μJ/T and mA := μA/T . An increase in
juvenile consumer density with adult mortality is likely to
occur when q := β/γ < 1, whereas an increase in adult
consumer density at equilibrium with adult mortality can
only occur for q := β/γ > 1.

C.2 Stability of the equilibrium

The characteristic equation determining the stability of
the non-trivial equilibrium is determined by the following
characteristic polynomial in terms of the eigenvalue λ:

λ3 + a1λ
2 + a2λ + a3 = 0 (C.19)

in which the coefficients a1, a2 and a3 are given by (see
Online Resource 2, Eqs. 3.2–3.6):

a1 = (C̄J + C̄A)f ′(R̄) + γf (R̄) − T + 2μ

a2 = ((γf (R̄) − T + 2μ)(C̄J + C̄A) + βf (R̄)C̄A)f ′(R̄)

(C.20)

a3 = ((T (βf (R̄) − T − μ) + μ(γf (R̄) + μ))C̄J

+(T (γf (R̄) − T ) + μ(γf (R̄)

+βf (R̄) − T + μ))C̄A)f ′(R̄)

For systems of three ODEs, the Routh-Hurwitz condi-
tions stipulate that the equilibrium is stable if a1 > 0, a3 >

0 and a1a2−a3 > 0. Given that necessarily γf (R̄) > T and
βf (R̄) > T + μ (see Eq. C.2), it is clear that the conditions
a1 > 0 and a3 > 0 are satisfied.

The detailed calculations in Online Resource 2 (see
Eqs. 3.8–3.19) show that a1a2 − a3 > 0 and hence the
equilibrium is stable if:

b1Pf ′(R̄) + b2 > 0 (C.21)

in which the coefficients b1 and b2 are given by:

b1 = γf (R̄)(γf (R̄)−T + μ)+4(βf (R̄)−T )(γf (R̄)−T )

γf (R̄)(βf (R̄)−T )

+ 3μ(βf (R̄) − T )

γf (R̄)(βf (R̄) − T )
(C.22)

b2 = −T (βf (R̄)−T )+(γf (R̄)−T +μ)2+μ(γf (R̄)−T +2μ)

+βf (R̄)(γf (R̄)−T )+ (γf (R̄)−T +2μ)2(γf (R̄)−T )

μ

(C.23)

(Online Resource 2, Eqs. 3.18–3.19). Since in equilibrium
γf (R̄) > T and βf (R̄) > T + μ (see Eq. C.2),
the coefficient b1 is always positive. The coefficient
b2, however, can be negative if the term −T (βf (R̄) −
T ) is sufficiently negative, implying that adult fecundity
(βf (R̄) − T ) has to be sufficiently large for population
cycles to occur.

Condition (C.21) for stability of the non-trivial equilib-
rium can be expressed in terms of the three scaled quantities
h(R̄) = γf (R̄)/T , q = β/γ and m = μ/T as follows:

γP

T 2
f ′(R̄) > −c2

c1
(C.24)
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in which the coefficients c1 and c2 are given by the following:

c1 = h(R̄)(h(R̄) − 1 + m) + 4(q h(R̄) − 1)(h(R̄) − 1) + 3m(q h(R̄) − 1)

h(R̄)(q h(R̄) − 1)
(C.25)

c2 = −(q h(R̄) − 1) + (h(R̄) − 1 + m)2 + m(h(R̄) − 1 + 2m)

+q h(R̄)(h(R̄) − 1) + (h(R̄) − 1 + 2m)2(h(R̄) − 1)

m
(C.26)

(Online Resource 2, Eqs. 3.21–3.26). The left-hand side of
inequality (C.24) represents a scaled value of the resource
productivity (scaled with γf ′(R̄)/T 2) and can thus be set
equal to any arbitrary value by an appropriate choice for P .
On the other hand, the right-hand side of inequality (C.24)
is only dependent on the dimensionless quantities q and
m, given that h(R̄) is also only dependent on q and m

(see Eq. C.6). Therefore, if −c2/c1 is positive, values of
the resource productivity P close to 0 would result in an
unstable equilibrium and the occurrence of limit cycles in
the consumer-resource system, whereas increasing the value
of P will always lead to a stable equilibrium state. The
right panel of Fig. 3 illustrates the results of this stability
analysis, by showing for different values of γPf ′(R̄)/T 2

the combinations of the parameters q and m for which the
equilibrium is stable.

References

Abrams PA (2009) When does greater mortality increase population
size? The long history and diverse mechanisms underlying the
hydra effect. Ecol Lett 12(5):462–474

Abrams PA, Matsuda H (2005) The effect of adaptive change in the
prey on the dynamics of an exploited predator population. Can J
Fish Aquat Sci 62(4):758–766

Abrams PA, Quince C (2005) The impact of mortality on predator
population size and stability in systems with stage-structured prey.
Theor Popul Biol 68(4):253–266

Arditi R, Ginzburg LR (1989) Coupling in predator-prey dynamics:
ratio-dependence. J Theor Biol 139(3):311–326

Begon M, Townsend CR, Harper JL (2005) Ecology: from individuals
to ecosystems, 4th edn. Wiley-Blackwell, New York

Bjørnstad ON, Nelson WA, Tobin PC (2016) Developmental
synchrony in multivoltine insects: generation separation versus
smearing. Popul Ecol 58(4):479–491

Bonsall MB, Hassell MP (2007) Predator-prey interactions. In: May
RM, McLean AR (eds) Theoretical ecology, Oxford University
Press on Demand, pp 46–61

Briggs CJ (1993) Competition among parasitoid species on a stage-
structured host and its effect on host suppression. Am Nat
141(3):372–397

de Roos AM, Persson L (2002) Size-dependent life-history traits
promote catastrophic collapses of top predators. Proc Natl Acad
Sci 99(20):12,907–12,912

de Roos AM, Persson L (2003) Competition in size-structured pop-
ulations: mechanisms inducing cohort formation and population
cycles. Theor Popul Biol 63(1):1–16

de Roos AM, Persson L (2013) Population and community ecology of
ontogenetic development. Monographs in Population Biology 51.
Princeton University Press, Princeton

de Roos AM, Metz JAJ, Evers E, Leipoldt A (1990) A size dependent
predator-prey interaction: who pursues whom? J Math Biol
28:609–643

de Roos AM, Persson L, Thieme HR (2003) Emergent Allee effects in
top predators feeding on structured prey populations. Proc R Soc
B Biol Sci 270(1515):611–618

de Roos AM, Schellekens T, Van Kooten T, Van De Wolfshaar
KE, Claessen D, Persson L (2007) Food-dependent growth leads
to overcompensation in stage-specific biomass when mortality
increases: the influence of maturation versus reproduction
regulation. Am Nat 170:E59–E76

de Roos AM, Schellekens T, Van Kooten T, Persson L (2008)
Stage-specific predator species help each other to persist while
competing for a single prey. Proc Natl Acad Sci 105(37):13,930–
13,935

de Roos AM, Metz JAJ, Persson L (2013) Ontogenetic symmetry and
asymmetry in energetics. J Math Biol 66(4-5):889–914

Frank KT, Petrie B, Choi JS, Leggett WC (2005) Trophic cascades in
a formerly cod-dominated ecosystem. Science 308(5728):1621–
1623

Ginzburg LR (1998) Assuming reproduction to be a function of
consumption raises doubts about some popular predator-prey
models. J Anim Ecol 67(2):325–327

Gurney WSC, Nisbet RM (1985) Fluctuation periodicity, generation
separation, and the expression of larval competition. Theor Popul
Biol 28(2):150–180

Gurney WSC, Blythe SP, Nisbet RM (1980) Nicholson’s blowflies
revisited. Nature 287(5777):17–21

Hastings A (1983) Age-dependent predation is not a simple process. I.
Continuous time models. Theor Popul Biol 23(3):347–362

Hastings A (1984a) Delays in recruitment at different trophic levels:
effects on stability. J Math Biol 21(1):35–44

Hastings A (1984b) Age-dependent predation is not a simple process.
II. Wolves, ungulates, and a discrete time model for predation on
juveniles with a stabilizing tail. Theor Popul Biol 26(2):271–282

Kermack WO, McKendrick AG (1927) Contributions to the math-
ematical theory of epidemics. Royal Statistical Society Journal
115:700–721

Leslie PH (1945) On the use of matrices in certain population
mathematics. Biometrika 33:183–212

Murdoch WW, Kendall BE, Nisbet RM, Briggs CJ, McCauley E,
Bolser R (2002) Single-species models for many-species food
webs. Nature 417(6888):541–543

Oksanen L, Fretwell SD, Arruda J, Niemela P (1981) Exploitation
ecosystems in gradients of primary productivity. Am Nat
118:240–261

Olson MH, Mittelbach GG, Osenberg CW (1995) Competition
between predator and prey: resource-based mechanisms and
implications for stage-structured dynamics. Ecology 76(6):1758–
1771

415



Pace ML, Cole JJ, Carpenter SR, Kitchell JF (1999) Trophic cascades
revealed in diverse ecosystems. Trends Ecol Evol 14(12):483–488

Persson L, de Roos AM (2013) Symmetry breaking in ecological
systems through different energy efficiencies of juveniles and
adults. Ecology 94(7):1487–1498

Persson L, Leonardsson K, de Roos AM, Gyllenberg M, Christensen
B (1998) Ontogenetic scaling of foraging rates and the dynamics
of a size-structured consumer-resource model. Theor Popul Biol
54(3):270–293

Revilla TA (2000) Resource competition in stage-structured popula-
tions. J Theor Biol 204(2):289–298

Ripple WJ, Beschta RL (2012) Trophic cascades in Yellowstone: the
first 15 years after wolf reintroduction. Biol Conserv 145(1):205–
213

Rosenzweig ML, MacArthur RH (1963) Graphical representation
and stability conditions of predator-prey interactions. Am Nat
97:209–223

Schreiber S, Rudolf VHW (2008) Crossing habitat boundaries:
coupling dynamics of ecosystems through complex life cycles.
Ecol Lett 11(6):576–587
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