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ABSTRACT
Big data and data science transform organizational decision-making.
We increasingly defer decisions to algorithms because machines
have earned a reputation of outperforming us. As algorithms
become embedded within organizations, they become more
influential and increasingly opaque. Those who create algorithms
may make arbitrary decisions in all stages of the ‘data value
chain’, yet these subjectivities are obscured from view. Algorithms
come to reflect the biases of their creators, can reinforce
established ways of thinking, and may favour some political
orientations over others. This is a cause for concern and calls for
more transparency in the development, implementation, and use
of algorithms in public- and private-sector organizations. We
argue that one elementary – yet key – question remains largely
undiscussed. If transparency is a primary concern, then to whom
should algorithms be transparent? We consider algorithms as
socio-technical assemblages and conclude that without a critical
audience, algorithms cannot be held accountable.
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Society collects more data than ever before. Our databases contain emails, videos, audios,
images, click streams, logs, posts, search queries, health records, and more (Sagiroglu &
Sinanc, 2013). The abundance of available data and decreasing cost of computing capa-
bility leads to the digitization and automation of public- and private-sector decision-
making. Application areas in government span from traffic management to public sector
budgeting and food safety monitoring to cyber security (Janssen, Charalabidis, & Zuider-
wijk, 2012). The private sector has also taken to the algorithm and found applications
from e-commerce to logistics (Chen, Chiang, & Storey, 2012). Some algorithms, such
as profiling systems, are used in either context (Hildebrandt, 2006). Examples of algor-
ithms that the general public encounters include Google’s PageRank algorithm that
serves us with relevant search results, Spotify’s weekly music recommendation algorithm,
and dynamic pricing models that try to maximize the amount we pay for goods and
services.
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The rapid development and dissemination of data science have set high expectations.
Techniques such as deep learning and random forests can be used to develophighly accurate
predictivemodels. Such algorithms are perceived to have considerable potential toward sol-
ving some of our society’s most pressing issues such as mass migration and climate change
(Floridi &Taddeo, 2016). Decisions that affect the lives ofmillions of people are increasingly
underpinned with evidence that is created with algorithms. In some cases, such algorithms
may carry more weight than human decision-makers, or have replaced human decision-
making altogether. From an organizational perspective, big data and data science are per-
ceived as techniques that can help reduce costs by scaling down bureaucracy and allowing
organizations to make more effective decisions (Janssen & Kuk, 2016).

Algorithmic models

The concept ‘algorithm’ is subject to a number of interpretations, which we will not dis-
cuss at length here (see Kitchin, 2017 for an overview). In a narrow sense, an algorithm
consists of a step-by-step procedure that processes numerical inputs to outputs (Stone,
1971). Colloquially, references to ‘algorithms’ may refer to a single algorithm, or a large
collection of algorithms such as ‘the Google algorithm’ (Sandvig, Hamilton, Karahalios,
& Langbort, 2014). Algorithms can be used for a variety of tasks, including information
retrieval, image recognition, filtering, outlier detection, and recommendation. When
one considers the sheer extent of everyday practices that are in some way modulated by
the use of algorithms ‒ from the trading-market to the realm of dating, from following
the news to impression management ‒ it might indeed not be so strange to speak of an
‘algorithmic life’ (Mazzotti, 2017).

For the sake of clarity, we will use the term ‘algorithmic models’ to refer to a particular
subset of algorithms that is used to inform or make decisions. Because developing a formal
definition of algorithmic models is beyond the scope of this paper, we adopt the following
working definition by drawing on the work of several authors (Frigg & Hartmann, 2012;
Gross & Strand, 2000; Haag & Kaupenjohann, 2001; Minsky, 1965): an algorithmic model
is a formal representation of an object that an observer can use to answer questions about
that object. Within this definition, ‘observer’ refers to a human or machine decision-maker.

Algorithmic models are imbued with the promise of bringing ‘reliability and objectivity
to otherwise uncertain procedures’ (Mazzotti, 2017) and are associated with ideas of tech-
nocratic governance (Janssen & Kuk, 2016). This view stands in contrast with recent
studies that show algorithmic models are value-laden and can introduce inadvertent
biases. For instance, because of biases in input data, algorithmic models can learn to
adopt similar discriminatory attitudes based on words associated with a particular gender
or social group (Barocas & Selbst, 2016; Caliskan, Bryson, & Narayanan, 2017) ‒ similarly,
algorithmic models have been demonstrated to potentially reproduce racialized and sex-
ualized repertoires, for example in the fields of car insurance and platform-mediated ser-
vice work (Angwin, 2016; van Doorn, 2017).

Algorithmic accountability

Safeguarding the quality of such algorithmic model-informed decision-making requires
scrutiny of data quality and all the subsequent steps in the so-called data value chain
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(Miller & Mork, 2013) Such quality assurance has always been part of effective organiz-
ational decision-making. However, the recent surge in the use of big data and the increas-
ing intricacy of algorithms have dramatically changed the complexity of such quality
assurance (Peng et al., 2016). Moreover, the speed at which new data science techniques,
tools, and libraries are developed and released is unprecedented. The resulting pervasive
collection of data-centric innovations has been subjected to limited academic scrutiny,
especially when compared to the dissemination of earlier statistical techniques (Gandomi
& Haider, 2015).

The increased prominence of algorithmic models in organizational decision-making
and the speed at which new data science techniques are developed and adopted, have
been case for concern and has led many to call for increased transparency (Hildebrandt,
2012; Janssen & Kuk, 2016; Pasquale, 2015). Transparency can be understood as the
‘understandability of a specific model’ (Lepri, Oliver, Letouzé, Pentland, & Vinck, 2017,
p. 9) and is seen as a requisite for algorithmic accountability. The transparency ideal
has found its way into open standards for government. Some suggest that publication
of datasets and other open-access schemes can bring about gains in transparency, account-
ability, and fairness (Lathrop & Ruma, 2010). At the same time, the limitations of trans-
parency have been the subject of debate. Annany and Crawford (2016) suggest that
transparency cannot be a characteristic of an algorithmic model. Rather the opacity of
algorithms should be considered with a sensitivity for the contexts of their use; transpar-
ency is performed by socio-technical assemblages of algorithm and people.

This paper contributes to the discussion on transparency and algorithmic accountabil-
ity by problematizing the notion of transparency and approaches it from a glitch studies
perspective. We demonstrate that transparency of algorithms can only be attained by vir-
tue of an interested critical audience. Even then, there are pronounced limits on the degree
of transparency that can be attained. These considerations are particularly relevant in light
of recent attempts of regulators ‒ such as the GDPR ‒ to develop guidelines for the use of
algorithmic models more generally, and the right to explanation in particular (Council of
Europe, 2017).

This paper is organized as follows. We begin with a succinct overview of the literature
on transparency and responsible data science, highlighting the call for transparency that
animates this discourse. We then introduce the field of glitch studies and explore it in
order to illustrate the problematic role that temporality, criticality, and complexity play
in attaining effective apprehensions of digital systems. These considerations will be tied
to a wider discussion concerning the value of transparency. We conclude that those look-
ing to improve the transparency of algorithmic models should look beyond open-access
alone. If transparency is to bring about algorithmic accountability, we cannot ignore the
role of a critical audience.

Guidelines for transparency

Although the scale of the challenges pertaining to the use of algorithmic models is unpre-
cedented, the challenge in itself is not new. Examples of rogue algorithms and improper
use of algorithm-produced evidence in organizational decision-making are manifold.
The seminal example of the former is the Google Flu Trends algorithmic model that inad-
vertently predicted more than double the proportion of doctor visits for influenza-like
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illness (Lazer, Kennedy, King, & Vespignani, 2014). Earlier high-profile cases include the
Red River flood incident in the United States, in which misinterpretation of model outputs
led government to wrongly assume that the dikes were high enough (Pielke, 1999) and,
more recently, the mistakes in the United KingdomWest-Coast mainline bidding process,
which led to a cancellation of the franchise (Department for Transport, 2012).

Such mishaps spark the interest of policy-makers and inspire the development of guide-
lines for the responsible development and use of algorithms. For instance, the United
Kingdom government issued a review of all ‘business critical models’ that inform pol-
icy-making. The results of this review are laid out in a report conducted by the (Macpher-
son, 2013). The report stresses the importance of proportionate quality assurance and
states that models should be fit for purpose. However, such guidelines on proper model
use have been around for quite some time (see Dekker, Groenendijk, Sliggers, & Verboom,
1990), which suggests that guidelines alone are not necessarily effective in preventing algo-
rithmic calamities, nor do such guidelines naturally aid in making algorithms accountable.

The recent attention for algorithmic accountability has set off a new surge in writings
on guidelines for proper data management and responsible algorithmic model use.
Although it cannot be seen as an integrated field of inquiry, the recent surge of these
ideas is sometimes referred to as ‘responsible data science’ (Stoyanovich et al., 2017). In
the following, we discuss some examples of guidelines that have recently been put forward
and that champion transparency, and identify a shared weakness of such work.

FAIR guiding principles

Academia is one area where the rapid digitization of society has had a profound impact
on the day-to-day work. Online platforms for collaborations, literature recommendation
engines, prepublication websites, and real-time metrics are some examples of new tools
that are impacting academic research. At the same time, the rapid increase of the amount
of available data and the growing complexity of the methods used to store, analyse, and
model that data present challenges for the academic research process (Wilkinson, 2016;
Wilkinson et al., 2017). This has not gone unnoticed and led to the formulation of the
‘FAIR guiding principles for scientific data management and stewardship’. Although
these guiding principles revolve around data management in academia, their impact
extends well beyond the realm of universities, funding bodies, and publishers, which is
why we discuss them here.

The FAIR principles find their origin in a workshop held at the Lorentz Centre in Lei-
den, the Netherlands. The discussions demonstrated that there exists a wide consensus for
the development of minimal guiding principles for the management of research data and
resulted in the definition of the FAIR principles. The FAIR acronym refers to data man-
agement that is Findable, Accessible, Interoperable, and Reusable (Wilkinson, 2016, p. 4;
Wilkinson et al., 2017, p. 3):

Findable ‒ data should be identified using globally unique, resolvable, and persistent
identifiers, and should include machine-actionable contextual information that can be
indexed to support human and machine discovery of that data;

Accessible ‒ identified data should be accessible, optimally by both humans and
machines, using a clearly defined protocol and, if necessary, with clearly defined rules
for authorization/authentication;
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Interoperable ‒ data become interoperable when it is machine-actionable, using shared
vocabularies and/or ontologies, inside of a syntactically and semantically machine-acces-
sible format;

Reusable ‒ reusable data will first be compliant with the F, A, and I principles, but
further, will be sufficiently well-described with, for example, contextual information, so
it can be accurately linked or integrated, like-with-like, with other data sources. Moreover,
there should be sufficiently rich provenance information so reused data can be properly
cited.

These four principles of FAIR hold equally for both humans and machines (Rodríguez-
Iglesias et al., 2016). Recent discussions of the FAIR principles suggest that transparency ‒
which is the focus of this paper ‒ is essential, and stakeholders discussed the importance of
data accessibility and the need to contextualize data (National Institute of Food and Agri-
culture, 2017).

FACT

Although the FAIR principles have a usefulness outside of academia, their primary con-
cern is to improve data management for scholarly endeavours. Others have put forward
guiding principles for the storage, analysis, and modelling of data in a wider perspective.
The FACT principles have been positioned as an antithesis to the widely cited four V’s of
Big Data. The acronym covers the Fairness, Accuracy, Confidentiality, and Transparency
for data science. FACT-proponents argue that the challenges faced by data science are in
themselves not new. In statistics and economics, the cognitive biases of people (e.g. confir-
mation bias) and analytical pitfals (e.g. selection bias) have been subject of inquiry for
many decades and are relatively well understood (see Tversky & Kahneman, 1974). The
FACT authors suggest that big data and data science, however, bring something new to
the domain of statistics, which requires us to develop new guidelines (Aalst, Bichler, &
Heinzl, 2017). The Transparency component of the FACT principles can be described
as follows (Responsible Data Science Initiative, 2016):1

Transparency ‒ Data science should provide transparency; how to clarify answers in
such a way that they become indisputable? Data science can only be effective if people
trust the results and are able to correctly infer and interpret the outcomes. Data science
should thus not be viewed as a black box that magically transforms data into value.
Many design choices need to be made in a typical ‘data science pipeline’ as shown in Figure
1. The journey from raw data to meaningful conclusions involves multiple steps and
actors; thus accountability and comprehensibility are key for transparency.

Recent contributions to the FACT-principles stress that these principles should be
applied not only to the use of algorithmic models, but are equally important in the design
and development phase. The data scientist ought to work responsibly from the moment he
or she receives data. This continues through the phases of data wrangling, modelling, and
deployment and should persist when algorithmic model results are interpreted and the

Figure 1. The data science pipeline. Adapted from Ojeda, Murphy, Bengfort, and Dasgupta (2014).
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algorithmic model maintained ‒ transparency remains a core guiding principle here
(Stoyanovich et al., 2017).

Transparency of algorithms in context

The principles discussed above all attribute importance to the concept of transparency.
The increased influence of algorithmic models on our daily lives has intensified this call
for more transparency of the mechanics of those algorithmic models. The initial response
of many authors has been to call for algorithmic transparency through the open-sourcing
of algorithms (Goodman & Flaxman, 2016). However, such schemes may not necessarily
have the required effect. It is possible for organizations to share all available documen-
tation, procedures, and code, yet this will not constitute transparency if that information
is not understood by the relevant audience (Heald, 2006).

As with any other technology, algorithms are embedded within existing social, political,
and economic settings. To understand the impact of algorithmic models in particular, and
quantification objects more generally, it is paramount to study how they become
embedded in the networks of people and existing systems that make use of them, and
the practices that facilitate this embedding (Espeland & Stevens, 2008). Algorithmic
models cannot be separated from the practices in which they are designed, programmed,
and used (Geiger, 2014). Qualitative approaches can help draw detailed and rich accounts
of algorithmic model use (Kitchin, 2017).

The importance of this is illustrated by two examples. First, (Bodó et al., 2017) argue that,
although it can be very challenging to separate algorithms from the data they are based on,
and the decisions they inform, it is important to consider their context.Discriminatory algo-
rithmic decisions are hardly hard-coded, and may be the emergent properties of the
machine learning process, not identifiable from the review of code; full code transparency
may actually aid the abuse of the algorithms bymalevolent agents. In any case, there are very
few algorithmic agents whose full code is available for review either by the public or by a
closed group of experts. Even themost transparent companies in this domain (such as Red-
dit) keep parts of their code closed to avoid abuse.

Second, empirical work on the role of digital quantification objects in the financial sec-
tor has demonstrated the potential of such a practice-based approach. Social studies of
finance describe the process through which people and digital quantification objects inter-
act to arrive at ‘calculative frames’ (Hardie &Mackenzie, 2007) or ‘market frames’ (Beunza
& Garud, 2007); world-views that exist as mental models and have a material manifes-
tation in the form of text, spreadsheets and models. Millo and MacKenzie (2009) illustrate
how the widespread adoption of the Black–Scholes–Merton options pricing model funda-
mentally impacted the dynamics of that market. In this fashion, they show that the world-
view entrenched in algorithmic models can have performative capacity that may not be
readily apparent to their users.

This means that, despite good intentions, guidelines or principles for fostering respon-
sible data science will fail if they do not consider the context in which algorithms are used.
In the following, we will contribute to the discussion about transparency by building on
insights from the field of glitch studies, arguing for a more critical approach to the
implementation of measures that increase a model’s transparency ‒ what is it that such
measures truly achieve and what issues confront them?
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Glitch

A brief introduction

Glitch theorists Hugh S. Manon and Daniel Temkin offer the following introduction to the
scope of glitch studies:

Almost invariably, digital imagery greets its beholder in the guise of analog ‒ as a
smooth and seamless flow, rather than as discrete digital chunks. A glitch disrupts the
data behind a digital representation in such a way that its simulation of analog can no
longer remain covert. What otherwise would have been passively received ‒ for instance
a video feed, online photograph, or musical recording ‒ now unexpectedly coughs up a
tumorous blob of digital distortion. Whether its cause is intentional or accidental, a glitch
flamboyantly undoes the communications platforms that we, as subjects of digital culture,
both rely on and take for granted (Manon & Temkin, 2011, p. 1).

The field of glitch studies, in other words, emphasizes digital errors and failures in order
to bring to the fore normative modes of engagement with digital technology. Departing
from the Heideggerian assertion that when a tool malfunctions, one is forced to apprehend
it in a different way, glitch-based artworks generally propose that errors and hiccups in a
system can engender the necessary distance required for critical reflection; ‘the shock
comes because when we work with the machine we are contained by it. A glitch ruptures
this immersive environment, undercutting the sovereignty of the digital by revealing its
pervasiveness’ (Manon & Temkin, 2011, p. 7).

As demonstrated, this pervasive quality of the digital has been manifested through the
expansion and intensification of algorithmic mediation. As individuals, organizations and
governments alike rely on algorithmic models in order to achieve tasks or to get a grip on
the world, daily life is increasingly underpinned by the ‘subterranean, ongoing operation
of [algorithmic] assemblages which have not yet been resolved, and may never resolve;
assemblages beyond human mastery, yet in which humans are implicated and entangled’
(Cloninger, 2013, pp. 25–26). We can understand glitch studies as a field that is invested in
on the one hand mapping and elucidating these assemblages, but on the other hand in
revealing the extent to which the digital necessarily remains opaque. In the following para-
graphs, we will draw on three dominant motifs within the field of glitch studies that prove
particularly pertinent to the case at hand. These motifs will be supplemented with a wider
discussion of algorithms and transparency2. In light of the call for transparency that we
have been outlining, the essential question that unites the following considerations is
this: what value is there to transparency when that which is rendered transparent still trou-
bles or escapes comprehension (specialist or otherwise)?

Glitch and speed

Within the field of glitch studies, glitches are generally apprehended in terms of the
deceleration of speed or the hampering of a smooth flow of information transmission;
glitches

interfere with a particular software or device to an extent that they cannot be ignored by the
user (altering media aesthetics, modifying the scope of software’s operations logic), but (…)
do not lead to a complete failure of a system / machine understood as a tool. (Contreras-
Koterbay & Mirocha, 2016, p. 97)
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Glitches, in this sense, are more about delay than about total malfunction. When a glitch
arises, it can impede on the functionality of a system and cause a suspension in achieving
the user’s intended goal. This makes glithces a privileged site for inquiring into the speed
at which digital operations proceed; fluctuations in velocity rip the user from his
or her immersion and thus shape a space for critical reflection (Manon & Temkin,
2011, p. 7).

Glitches, however, can also signify speed on a more overarching and conceptual level.
Rosa Menkman’s The Collapse of PAL (2010) is an audiovisual performance that employs
glitches in order to raise questions about digital culture and its economy of obsolescence.
The performance invokes Walter Benjamin’s famous figure of the Angel of History
(inspired by Paul Klee’s 1920 painting Angelus Novus) and recasts it in a digital sheen,
reflecting on the role of the historical within the digital. Through its reliance on glitches,
the performance signifies the attrition of technology and its perpetual displacement by
newer technologies or applications. Menkman’s performance captures the ‘twinning of
ennui and excitement’ (Chun, 2016, p. 73) that animates digital culture; a general logic
that inspires both users and creators to above all desire the arrival of new versions, new
updates, new innovations (Chun, 2016). This marks a digitalized echo of the economic
rationale of creative destruction, ‘with the emphasis on “creative” and almost no serious
reflection on destruction’ (Liu, 2004, p. 322). The Collapse of PAL, whose glitches serve
as a eulogy for one of many technologies that have been rendered obsolete by the incessant
mantra of digital innovation (Rhizome, 2012), helps us understand the general temporality
of digital culture. What the field of glitch studies thus discloses is that there is a twofold
logic of speed that underpins our engagement with digital technology; not only do
these technologies achieve tasks at a rate unfathomable to human cognition, but digital
culture’s perpetual drive towards the new also means that whatever system we are engaged
with today might be supplanted by a newer system tomorrow.

What does all this mean for the valuation of transparency? First of all, through its insis-
tence on materiality (Halter, 2010), glitch studies demonstrate that the speed and
efficiency of a digital model can be impacted by its material basis. The idea of considering
the material properties of models may seem odd because we tend to think of materials as
physical substances such as wood and stone. However, the rapid growth of the digital has
sparked a debate on the material status of digital objects. Conflicting perspectives on this
issue exist (Betancourt, 2017; Faulkner & Runde, 2013; Knoespe & Zhu, 2008; Leonardi,
2010; Suchman, 2007), but the intimate connection between immaterial digital objects
and their material bearers cannot be overlooked when considering a model’s functionality
(Kallinikos, Aaltonen & Marton, 2013). Consider, for example, the possibility of material
bearers of digital objects to crash, to be unresponsive or to encourage lock-ins. A model
may be transparent, but this renders its relation to a material bearer no less precarious.
As such, as glitch studies reminds us, the temporal efficiency of a model cannot be entirely
decoupled from the material properties of its bearer(s).

Even more pertinent in relation to matters of transparency is the speed at which algo-
rithmic models perform their tasks. The reasons that many of the algorithmic models
under scrutiny here have been developed is that they achieve a goal at a much faster
rate than would a human actor or even an entire team of professionals. The downside
to this is that a (regular) critical and deliberative assessment of the model would in a
sense defeat the purpose; the time required to map the entire functionality of an
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algorithmic model generally greatly exceeds the time such algorithmic models require to
achieve their tasks. Philosopher Franco ‘Bifo’ Berardi has written at length about the con-
stitutive disconnect between the performance of algorithmic models and our own cogni-
tive faculties: ‘The technical composition of the world has changed, but the modalities of
cognitive appropriation and elaboration cannot adapt to this change in a linear way’
(Berardi, 2015, p. 44) ‒ the great tragedy here is that while cyberspace is infinite, ‘cyber-
time’ is not (Berardi, 2015). Algorithmic models may expand, evolve, mutate and perform
their operations at ever greater speed, but our cognitive resources remain necessarily lim-
ited. Even when an organization chooses to disclose the algorithmic models they use and
what data they are based on, a typical audience will not have the required time or expertise
to critically assess the implications of that algorithmic model.

A further challenge surrounding the transparency of algorithmic models lies in their
dynamic nature and the dynamic nature of digital culture in general. Algorithmic models
are rarely static; even when they are not refined, extended, or updated, they can be reac-
tive to their inputs (Miyazaki, 2012). Algorithmic models may be adapted as more data
become available, or can be adjusted to benefit from the latest data science break-
throughs. Especially since new data science methods are developed at a high pace and
because open-source implementations of these methods are released in rapid succession,
there is a high turnover in terms of the algorithmic models being used. In this context,
the idea of an algorithmic model as a stable object that can be submitted to critical
inspection may sit uncomfortably with practice; an algorithmic model that is in use
today, might not be next week. This falls in line with the critique against the fetishization
of the new weighed from the perspective of glitch studies; what is the value of transpar-
ency when the model under scrutiny is already being (or has already been) refined,
adapted, updated, and expanded? In sum, both the fact that the output of an algorithmic
model is generated at a far greater speed than the time required to assess its operations
and the fact that the contemporary technological ecosphere quickly relegates individual
versions to the realm of obsolescence raise questions about the value and usefulness of
transparency.

Glitch and critical audiences

The problem that faces many theorizations of glitches is that they presuppose an inherent
critical quality to the glitch; the glitch is often a priori figured as emancipatory, revelatory,
and empowering, wresting the user from the spell of the digital. The truth is, however, that
there is no given situation in which the encounter of a glitch invariably leads to a more
critical and informed engagement with the system at hand. Michael Betancourt is thus
right in arguing that glitches in and of themselves do not guarantee a critical engagement
‒ in fact, the digital’s axiomatic status generally ensures that a glitch is deemed ultimately
insignificant (Betancourt, 2017, p. 100). Betancourt introduces the notion of an active and
critical audience into the equation, designating the requirement that a glitch not only
needs to be aesthetically registered, but also deemed meaningful in order for any critical
engagement to emerge. The way in which our engagement with digital technologies
takes shape generally forecloses such an engagement, as minor medial failures tend at
best to be attributed to the functionality of the particular device we are using and seldom
inspire a more general reflection on the naturalization and ubiquitization of the digital.
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We can expand Betancourt’s work on glitches and active audiences in relation to trans-
parency by on the one hand considering the notion of context-dependence and on the
other hand by expanding his idea of criticality to indicate not simply the nature of an aes-
thetic judgment, but also the subsequent critical engagement (or lack thereof) with a glitch
or a digital system. As discussed, Betancourt’s work is based on the assertion that in glitch
studies the role of the audience in making critical judgments is often elided. A similar logic
can be discerned when it comes to the marker of transparency (and similar monikers like
‘open-access’ or ‘open-source’). Let us offer an example taken from UK government. The
2050 Calculator, an energy and emissions model, was designed to be open-source, mean-
ing that anyone could explore its details. The developers of the 2050 Calculator, however,
noted that very few people bothered to look into the documentation. More importantly,
they felt that by open-sourcing the model, people were less inclined to contest its out-
comes; the model was thus more credible, but evoked less credibility work (Kolkman,
in press). This is an example of how a signifier of transparency (‘open-source’) can incite
people a priori to place their trust in a system – transparency here leads to a less critical
attitude, but not necessarily to a better product.

Another example is found in the practice of peer reviewing, which is a practice through
which a model commonly gets and maintains its credibility. In short, this typically entails
an external organization coming in to review a model to assess its quality (the model is
thus rendered transparent to the organization in question). Model professionals see the
external review as a good means to assess the quality of a model and the Treasury’s (Mac-
pherson, 2013) report on government analytic models regards it as one of the most
thorough means to quality assurance. In instances where there are strong connections
between several models, external reviews are not without challenges, however. External
reviews of a particular model are typically conducted by organizations that use a similar
type of model for a similar purpose. For instance, one of the Pensim2 model’s reviews3

was conducted by the United States Congressional Budget Office, an organization that
also uses a dynamic microsimulation. Because these two algorithmic models share their
technical foundations, the US Congressional Budget Office was well positioned to review
the Pensim2 model. At the same time, however, it seems unlikely that two parties that use
the same underlying modelling paradigm would question the use of that paradigm. Again,
a degree of transparency does not automatically ensure a better model.

Another problem concerns the shortage of expertise. There is a significant lack of
people who know how to effectively formulate algorithms, let alone people who are willing
to review their use in models (Miller, 2014; Rae & Singleton, 2015). Furthermore, even the
developers of models themselves – even though the entire model is transparent to them ‒
may not have a sound understanding of the entire model. Especially for models that are
built up over the years and that are made up from many lines of code, this may present
a difficulty. Developers of Pensim2, for instance, reported that they felt more familiar
with some parts of that algorithmic model and less familiar with other parts. Moreover,
some parts of the algorithmic model may even be completely unknown to them. Consider
the following excerpt from an interview conducted with a developer of the Pensim2 model
(Kolkman, in press):

(…) How the regression equations are derived, I don’t know a great deal about how they are
derived. I’ve seen a lot of the spreadsheets, the workbooks and know how they are work ing,
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taking whatever variable and applying this parameter, but then I have no idea how those par-
ameters were developed in the first place. I know they are the outcome of some minor logistic
regression, but I don’t know much more than that.

The thing to note here is that even model professionals who interact with the algorith-
mic model on a daily basis may not understand the model in its entirety. An algorithmic
model may thus be entirely transparent, but if it is so complex or distributed that even
people who work with it daily do not entirely understand it, how can we presuppose out-
siders to thoroughly assess its qualities?

Just as a glitch does not automatically lead to a more critical attitude toward the digital,
so too does the signifier of transparency not ensure a more critical evaluation of a model
(in some cases it may even facilitate the averse, as the 2050 Calculator example shows).
The qualification of transparency is in itself not enough to assure better quality; other fac-
tors (expertise, willingness, the model’s relative complexity, objectivity, etcetera) deter-
mine whether such transparency will in fact prove beneficial.

Glitch, complexity, and irreducibility

In the previous paragraphs, we already briefly hinted at the complex nature of the models
under scrutiny and this dovetails smoothly into the third glitch-informed dimension that
problematizes the notion of transparency; the complexity and irreducibility of the algo-
rithmic. Glitches have always been associated with the chaotic and unpredictable aspects
of the computational. Good glitch art, conclude Manon and Temkin in their seminal
article Notes on Glitch (2011), maintains ‘a sense of the wilderness within the computer’
(Manon & Temkin, 2011, p. 13). Similarly, Sean Cubitt argues that the glitch ‘indicates
another subject in the medium, the ghost in the machine, the inhuman in our communi-
cations’ (2017, p. 20). Whether a glitch is ultimately deemed significant or insignificant, it
still generally comes to us unexpectedly and in this sense indicates a degree of autonomy
within the system or model. As such, glitches communicate the complex nature of tech-
nology, informed by procedures inscrutable to the human eye. In the case of algorithmic
models, for example, specific collections of algorithms are often embedded within entire
algorithmic ecologies. If access is gained, algorithmic models, as Seaver (2013) notes,
are thus rarely reconstructible in a straightforward manner. Within code, algorithms
are usually woven together with hundreds of other algorithms to create algorithmic sys-
tems. It is the workings of these algorithmic systems that critical inquirers are mostly inter-
ested in, not the specific algorithms (many of which are quite benign and procedural).
However, disentangling these ecologies often proves nigh impossible due to their topolo-
gical complexity.

Moreover, the consequences and affordances of algorithmic models cannot exhaus-
tively be gleamed from the code behind a model, even if it is made entirely transparent.
Here, Betti Marenko’s recent work on glitches and the contingency endemic to the digital
is informative. She departs from the work of media theorist Luciana Parisi, who identifies
the algorithmic as an autonomous mode of thinking and randomness as ‘the condition of
programming culture’ (Parisi, 2013, p. ix, emphasis in original). For Marenko, the glitch
signifies the ‘tangible, yet undesigned […] evidence of the autonomous capacities of digital
matter’ (Marenko, 2015, p. 112). Properties may unintentionally emerge from the actual
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activity of algorithms (or from the communication between different algorithmic systems),
rather than having been planned and programmed; ‘the contingencies revealed in the
opening of spaces of possibilities, in the manifestation of an otherwise potential, in the
interstices of the present, are what allows the irruption of the virtual’ (Marenko, 2015,
p. 113). Glitches become events that reveal the autonomous agency of the algorithmic.
Crucially, in light of our discussion of transparency, a model’s potentiality always exists
in excess of its formulation: ‘There is something within algorithmic procedures that can-
not be exhausted by their formulation, no matter how complex or elegant’ (Marenko,
2015, p. 115).

To conclude: while Mazzotti compellingly argues for a standard of transparency to elu-
cidate ‘the technical choice of certain expert groups’ (Mazzotti, 2017), the reality of algor-
ithms today is that even for these experts the precise operations and potential
ramifications of an assemblage of algorithms remain obscure. Transparency supposes a
holistic model of planned codes and instructions that captures all possibilities, but the
nature of algorithmic mediation complicates such a vision. Even if an algorithmic
model is made entirely transparent, not all of its potential effects and faculties can be
inferred from this gesture. The complexity of the algorithmic along with its autonomous
capacities necessarily entails that part of its potentiality remains closed off.

Concluding remarks

Algorithmic models have become entrenched in virtually all spheres of human activity.
Despite the many advantages that these quantification objects may bring about, concerns
have risen about the susceptibility of algorithmic models to human-like bias (Barocas &
Selbst, 2016; Caliskan-Islam, Bryson, & Narayanan, 2016; van Doorn, 2017). This stands
in contrast with the promise of algorithmic models of bringing ‘reliability and objectivity
to otherwise uncertain procedures’ (Mazzotti, 2017). It is not surprising that the academic
community has moved to discuss this issue and has moved to develop guidelines for the
responsible management, analysis, and use of algorithmic models. We provided a snap-
shot of this discussion here to consolidate the pervasive discourse and intervene in the
debate. We identify transparency as a key factor in these guidelines and criticize the con-
cept by drawing on glitch studies and introducing the dimensions of speed, critical audi-
ences, and complexity and irreducibility. The argument that we have developed is twofold.

First, and foremost, we have emphasized and interrogated the role of a critical audience
when it comes to matters of transparency. Measures of transparency are at risk of remain-
ing empty signifiers if no critical and unbiased engagement emerges from their install-
ment. The key argument that this paper has thus developed is that uncoupling the
value of transparency from the practical matter of how that transparency takes shape
and how it is likely to be engaged with ultimately paints a limited picture. Measures toward
algorithmic accountability are most effective if we consider them a property of socio-tech-
nical assemblages of people and machines. Within such assemblages, the value of transpar-
ency fundamentally depends on enlisting and maintaining critical and informed
audiences.

A second point developed is that the fostering of such audiences meets its own share of
issues; the discrepancy between cyberspace and cybertime (Berardi, 2015), the rapid turn-
out of new versions, the exponential complexity of algorithmic architectures, and the
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irreducible autonomy of the algorithmic are all phenomena that hamper an effective assess-
ment of algorithms and that are not sufficiently remedied by transparency alone. We thus
conclude that the call for transparency as articulated in the discussed guidelines is in itself
unlikely to have the desired effect. We urgently need more empirical studies of algorithmic
models used in practice; in particular, we need to assess the conditions in whichmeasures of
transparency actually yield positive effects by fostering a productive relationship with an
audience, while also acknowledging the necessary limits of such a relationship. Such
research can help us to test guidelines for algorithmic accountability. Only then can we
begin to develop guidelines that are sound and fit within existing practices.

Notes

1. While transparency marks the focus of this paper, the other FACT principles are of course
implicated in the valuation of transparency ‒ here follows a brief outline: Fairness ‒ How
to avoid unfair conclusions even if they are true? Accuracy – How to answer questions
with a guaranteed level of accuracy? Confidentiality – How to answer questions without
revealing secrets?

2. In discussing the characteristics of the socio-technical assemblages surrounding algorithms
which can impede critical inspection altogether, or prevent the development of a critical
audience, we build on previous work on applications of algorithms in practice. We also
draw on fieldwork that has been presented extensively elsewhere (Author, forthcoming).
We studied 8 cases of algorithmic model use in government and analytic industry over a
period of 2.5 years. Data were collected in the form of interviews, participant observations,
and (digital) documents analysis.

3. Pensim2 has been reviewed on several occasions with varying degrees of formality. Examples
include the review by the US congressional office mentioned in the text and a review by the
UK Institute for Fiscal studies (Emmerson, Reed, & Shephard, 2004).
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