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a b s t r a c t

The rank-based association between two variables can be modeled by introducing a latent
normal level to ordinal data. We demonstrate how this approach yields Bayesian inference
for Kendall’s τ , improving on a recent Bayesian solution based on its asymptotic properties.

© 2018 Elsevier B.V. All rights reserved.

1. A Bayesian framework for Kendall’s τ

Kendall’s τ is a popular rank-based correlation coefficient. Compared to Pearson’s ρ, Kendall’s τ is robust to outliers,
invariant under monotonic transformations, and has an intuitive interpretation (Kendall and Gibbons, 1990). Let x =

(x1, . . . , xn) and y = (y1, . . . , yn) be two data vectors each containing rankedmeasurements of the same n units. For instance,
x could be the rank ordered scores on a math exam and y the rank ordered scores on a geography exam, for n test-takers.
A concordant pair is defined as a pair of subjects (i, j) where subject i has a higher score on x and y compared to subject j,
whereas a discordant pair is defined as one where i scores higher on y, but j scores higher on x, or the other way around.
Kendall’s τ is defined as the difference between the number of concordant and discordant pairs, expressed as proportion of
the total number of pairs:

τ =

∑n
1≤i<j≤n Q ((xi, yi), (xj, yj))

n(n − 1)/2
, (1)

where the denominator is the total number of pairs and Q is the concordance indicator function, which is defined by:

Q ((xi, yi)(xj, yj)) =

{
−1 if (xi − xj)(yi − yj) < 0,
+1 if (xi − xj)(yi − yj) > 0,

(2)

which returns −1 if a pair is discordant, and returns +1 if a pair is concordant. However, due to the nonparametric nature of
Kendall’s τ and the lack of a likelihood function for the data, Bayesian inference is not trivial.

An innovative method for overcoming this problem was proposed by Johnson (2005), and involves the modeling of the
test statistic itself, rather than the data. This method has been applied to Kendall’s τ by Yuan and Johnson (2008), and was
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Fig. 1. A graphical model of the latent normal method. Here, x and y are observed rank data. The latent level is denoted with zx and zy , and ρzxzy represents
the latent correlation.

recently developed by vanDoorn et al. (2018). The inferential framework that follows from thiswork uses the limiting normal
distribution of the test statistic T ∗ (Hotelling and Pabst, 1936; Noether, 1955), where

T ∗
= τ

√
9n(n − 1)
4n + 10

. (3)

Under H0, this limiting normal distribution is the standard normal, whereas under H1, this distribution is specified with a
non-centrality parameter ∆ for the mean, and a sampling variance of 1.

However, the method –henceforth the original asymptotic method –might fall short on two counts. Firstly, the asymptotic
assumptions only hold for sufficiently large n (i.e., n ≥ 20, see van Doorn et al., 2018). Secondly, the variance of the sampling
distribution of the test statistic depends on the population value of Kendall’s τ . For τ = 0, the sampling variance equals 1,
but as |τ | → 1, the variance decreases to 0 (Kendall and Gibbons, 1990; Hotelling and Pabst, 1936).

In the current article, we will explore two corrections that aim to improve Bayesian inference for Kendall’s τ :

1. Within the asymptotic framework, the observed value of Kendall’s τ can be used to set its sampling variance.We label
this the enhanced asymptotic method.

2. Within a Bayesian latent normal framework, a latent level correlation is obtained and transformed to Kendall’s τ . We
label this the latent normal method.

2. Correction using the sample τ

A first correction to consider is to use the sample value of Kendall’s τ , denoted τobs, to estimate the sampling variance of
T ∗, denoted σ 2

T∗ . A convenient expression for the upper bound of σ 2
T∗ in terms of τ is given in Kendall and Gibbons (1990):

σ 2
T∗ ≤

2.5n(1 − τ 2)
2n + 5

. (4)

Using τobs as an estimate of τ provides a somewhat crude approximation to the sampling distribution of T ∗. However,
compared to using σ 2

T∗ = 1 as in the original asymptotic method, working with the upper bound will result in a more
narrow posterior for cases where τ ̸= 0. However, the enhanced asymptotic method still suffers from the use of asymptotic
assumptions about the sampling distribution and variance of the test statistic.

3. Correction using the latent normal approach

3.1. Latent normal models

Several latent variable models quantify the association between two ordinal variables. These methods often introduce a
latent bivariate normal distribution to the ordinal variables, where the association between variables is modeled through
a latent correlation (Pearson, 1900; Olssen, 1979; Pettitt, 1982; Albert, 1992; Alvo and Yu, 2014). The observed rank data
(x, y) can then be seen as the ordinal manifestations of the continuous latent variables (zx, zy), which have a bivariate normal
distribution. Fig. 1 offers a graphical representation of such a model. Using this methodology, the nonparametric problem of
ordinal analysis is transformed to a parametric data augmentation problem.

3.2. Posterior distribution for the latent correlation

The joint posterior can be decomposed as follows:

P(zx, zy, ρzx,zy | x, y) ∝ P(x, y | zx, zy) × P(zx, zy | ρzx,zy ) × P(ρzx,zy ). (5)
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The second factor on the right-hand side is the bivariate normal distribution of the latent scores given the latent correlation:(
zx
zy

)
∼ N

[(
0
0

)
,

(
1 ρzx,zy

ρzx,zy 1

)]
. (6)

The factor P(x, y | zx, zy) consists of a set of indicator functions that map the observed ranks to latent scores, such that the
ordinal information is preserved. For the value zxi , this means that its range is truncated by the lower and upper thresholds
that are respectively defined as:

axi = max
j:xj<xi

(
zxj
)

(7)

bxi = min
j:xj>xi

(
zxj
)
. (8)

The third factor is the prior distribution on the latent correlation. In the remainder of this article, the prior is specified by
a uniform distribution on (−1, 1) (but see Berger and Sun, 2008; Ly et al., 2016).

The general Bayesian framework for estimating the latent correlation involves data augmentation through a Gibbs
sampling algorithm (Geman and Geman, 1984) for the latent values zx and zy, combined with a random walk Metropolis–
Hastings sampling algorithm for ρzx,zy . At sampling step s:

1. For each value of zxi , sample from a truncated normal distribution:

(zxi | zxi′ , z
y
i , ρzx,zy ) ∼ N

(
zyi ρzx,zy , 1 − ρ2

zx,zy
)
1(axi ,b

x
i )
(zxi ),

where 1(axi ,b
x
i )
(zxi ) indicates truncation between the lower threshold axi given in (7) and the upper threshold bxi given

in (8).
2. For each value of zyi , the sampling procedure is analogous to step 1.
3. Sample a new proposal for ρzx,zy , denoted ρ∗

zx,zy , from the asymptotic normal approximation to the sampling
distribution of Fisher’s z-transform of ρ (Fisher, 1915):

tanh−1(ρ∗

zx,zy ) ∼ N
(
tanh−1 (ρs−1

zx,zy
)
,

1
n − 3

)
.

The acceptance rateα is determined by the likelihood ratio of (zx, zy | ρ∗

zx,zy ) and (zx, zy | ρs−1
zx,zy ), where each likelihood

is determined by the bivariate normal distribution in (6):

α = min

(
1,

P(zx, zy | ρ∗

zx,zy )(1 − (ρ∗

zx,zy )
2)

P(zx, zy | ρs−1
zx,zy )(1 − (ρs−1

zx,zy )2)

)
,

where (1 − ρ2) is the Jacobian of Fisher’s z-transform.

Repeating the algorithm a sufficient number of times yields samples from ρzx,zy given zx, zy, thus, P(ρzx,zy | zx, zy), and the
posterior of zx, zy, that is, P(zx, zy | x, y).

3.3. Relation to Kendall’s τ

With the posterior distribution for the latent ρzx,zy in hand, the transition to the posterior distribution for Kendall’s τ can
be made using Greiner’s relation (Greiner; Kruskal, 1958). This relation, defined as

τ = G(ρ) =
2
π

sin−1(ρ) (9)

enables the transformation of Pearson’s ρ to Kendall’s τ when the data follow a bivariate normal distribution. The latent
normal framework thus models the posterior distribution for Kendall’s τ as

P(τ | x, y) = P(G(ρ) | x, y) =

∫ ∫
P(G(ρ) | zx, zy)P(zx, zy | x, y)dzxdzy.

Introducing the latent normal level to the observed variables enables the link between Pearson’s ρ and Kendall’s τ , and
turns posterior inference for Kendall’s τ into a parametric data augmentation problem that can be solved with the above
MCMC-methods. Thus, Greiner’s relation can be applied to the posterior samples of ρzx,zy to yield posterior samples of τ.

Furthermore, the application of Greiner’s relation in this manner implicitly alters the prior from a uniform distribution
on the latent correlation to the following distribution on Kendall’s τ :

p(τ ) =
π

4
cos

(πτ

2

)
, for τ ∈ (−1, 1). (10)
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Fig. 2. To illustrate the performance of the three methods, quantile averaged posterior distributions for several values of τ and n are shown. Each column
corresponds to a value of n, and each row corresponds to a value of τ . The quantile averaged posterior distributions were obtained with 10,000 synthetic
datasets per combination of n and τ . The vertical gray line indicates the population value of τ .

4. Results: Simulation study

The performance of the original asymptotic method, the enhanced asymptotic method, and the latent normal method
was assessed with a simulation study. For four values of τ (0, 0.2, 0.4, 0.7) and three values of n (10, 20, 50), 10,000 data
sets were generated under four copula models: Clayton, Gumbel, Frank, and Gaussian (Sklar, 1959; Nelsen, 2006; Genest
and Favre, 2007; Colonius, 2016). Using Sklar’s theorem, copula models decompose a joint distribution into univariate
marginal distributions and a dependence structure (i.e., the copula). The aforementioned copulas are governed by Kendall’s
τ , so the performance of each method can be assessed through a parameter recovery simulation study. Furthermore, the
univariate marginal distributions can be transformed to any other distribution using the cumulative distribution function
and its inverse. Because these functions aremonotonic, this does not affect the copula or ordinal information in the synthetic
data and therefore vastly increases the scope of the simulation study.

For each data set, a posterior distribution was obtained using the three methods and the population value of τ was
estimated using the posterior median. Per combination of n and τ , this resulted in 10,000 posterior distributions. For an
overall view of each method’s performance, Fig. 2 shows the quantile averaged posterior distributions, along with a vertical
line indicating the population value of τ . The data in Fig. 2 were generated using the Clayton copula; other copula models
yielded highly similar results. The quantile averaged posteriors indicate no difference between the inferentialmethods under
H0, which corroborates the assumption of σ 2

T∗ = 1 when τ = 0. However, the difference in methods becomes pronounced
in the scenario where n = 10 and τ = 0.7. Both asymptotic approaches show a degree of underestimation, and yield
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a relatively broad posterior distribution. In the panels where τ ̸= 0, the misspecification of the sampling variance also
becomes clear, as it is overestimated and results in a wider posterior distribution compared to the latent normal method.
Although the assumption of latent normality is the price to pay for the Bayesian latent normal methodology, the simulation
results indicate robustness of the method to various violations of this assumption.1

5. Discussion

This article has outlined two methods of improving the Bayesian inferential framework in cases where n is low and/or
τ is high. Although an extension of the asymptotic framework performs somewhat better than the original asymptotic
framework in van Doorn et al. (2018), both are outperformed by the latent normal approach. Under H0, the methods do
not differ from each other, underscoring the validity of the general framework.

The outlinedmethods are useful for both estimation and hypothesis testing. In the former case, the posterior distribution
enables point estimation through the posterior median, or interval estimation through the credible interval. For hypothesis
testing, the Savage–Dickey density ratio (Dickey and Lientz, 1970; Wagenmakers et al., 2010) can be used to obtain
Bayes factors (Kass and Raftery, 1995). A concrete example is presented in the online appendix. Because the method uses
only the ordinal information in the data, it retains the robust properties of Kendall’s τ , such as invariance to monotone
transformations, robustness to outliers or violations of normality, and ability to detect nonlinear monotone relations.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.spl.2018.10.004.
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