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ABSTRACT
Multivariate discrete outcomes are common in a wide range of areas including insurance, finance, and
biology. When the interplay between outcomes is significant, quantifying dependencies among interrelated
variables is of great importance. Due to their ability to accommodate dependence flexibly, copulas are
being applied increasingly. Yet, the application of copulas on discrete data is still in its infancy; one of
the biggest barriers is the nonuniqueness of copulas, calling into question model interpretations and
predictions. In this article, we study copula estimation with discrete outcomes in a regression context.
As the marginal distributions vary with covariates, inclusion of continuous regressors expands the region
of support for consistent estimation of copulas. Because some properties of continuous outcomes do
not carry over to discrete outcomes, specification of a copula model has been a problem. We propose a
nonparametric estimator of copulas to identify the “hidden” dependence structure for discrete outcomes
and develop its asymptotic properties. The proposed nonparametric estimator can also serve as a diagnostic
tool for selecting a parametric form for copulas. In the simulation study, we explore the performance of
the proposed estimator under different scenarios and provide guidance on when the choice of copulas is
important. The performance of the estimator improves as discreteness diminishes. A practical bandwidth
selector is also proposed. An empirical analysis examines a dataset from the Local Government Property
Insurance Fund (LGPIF) in the state of Wisconsin. We apply the nonparametric estimator to model the
dependence among claim frequencies from different types of insurance coverage. Supplementary materials
for this article are available online.
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1. Introduction

Multivariate discrete outcomes are common in a wide scope of
areas, including insurance, psychometrics, and epidemiology.
For instance, in property insurance, it is common that a policy
contains multiple coverage types, for example, building and
contents (BC) coverage and motor vehicle (MV) coverage, so
that the analyst may observe multiple outcomes, one from each
coverage type. When the interplay between outcomes has signif-
icant consequences, modeling dependencies among interrelated
variables is of great importance. In the foregoing example, quan-
tifying dependencies among risks is critical for understanding
the uncertainty of the portfolio, and thus is important for an
insurer’s solvency and profitability.

There are many good approaches available for modeling
multivariate discrete outcomes. Generalized linear mixed
models (McCulloch and Neuhaus 2005) have been extensively
applied to handle correlated discrete observations, though
the models do not keep the marginal distributions after
integrating out random effects. For binary data, models such
as multinomial logistic regression, dependence ratios, and
odds ratios approaches are widely used, cf., Frees, Jin, and
Lin (2013). None of these models appears to be uniformly
preferable to the others. The existing literature also contains

CONTACT Lu Yang L.Yang@uva.nl Amsterdam School of Economics, University of Amsterdam, Roetersstraat 11, 1018 WB, Amsterdam, The Netherlands.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/r/JASA.
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a variety of models for multivariate counts. One commonly
used approach of introducing dependencies among counts is
through common additive errors, for instance, a multivariate
Poisson model with a common covariance parameter (Johnson,
Kotz, and Balakrishnan 1997). Multivariate negative binomial
distributions (Winkelmann 2000) and zero-inflated multivari-
ate Poisson models (Bermúdez and Karlis 2011) can be applied
in the presence of overdispersion. A limitation of the foregoing
models is that they allow only positive correlations. There are
models that allow negative correlations, such as multivariate
Poisson-log-normal models (Aitchison and Ho 1989) and the
correlated latent effects approach (Chib and Winkelmann 2001).
However, for some datasets, different marginal models than the
commonly used ones or combinations of different marginal
models might be necessary (Frees, Lee, and Yang 2016).

This paper uses a probabilistic structure known as a cop-
ula, which is a multivariate distribution function with uniform
margins and has been used to study dependencies in many
areas including, but not limited to, insurance (Frees and Valdez
1998), finance (Li 1999), and survival analysis (Shih and Louis
1995); see Nelsen (2006) for an introduction. Sklar’s theorem
(Sklar 1959) provides a theoretical foundation for copulas as
useful tools to connect margins and dependence that the joint
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distribution can be expressed in terms of margins and a cop-
ula. Sklar’s theorem is unified over continuous, discrete, and
mixture cases. Parametric copulas can be fit through maximum
likelihood estimation (MLE) straightforwardly, and there are
numerous copula families which can accommodate different
dependence structures such as negative correlations, asymme-
try, and tail dependence (Joe 1993; Yang, Frees, and Zhang
2011).

Copulas are commonly applied in the regression settings in
which outcomes are related to a set of covariates (Song, Li, and
Yuan 2009). Copula regression can preserve the solid body
of work established for marginal models (e.g., McCullagh and
Nelder 1989) and accommodate dependence structures flexibly.
Each marginal distribution can be specified to be conditioned
on its covariates. It is customary to assume a dependence struc-
ture that is constant over observations. We use this simplifying
assumption in this article for the purposes of identifiability
and easy interpretation; see alternatives in Nikoloulopoulos and
Karlis (2008).

Although most applications focus on continuous variables,
there is an increasing trend in the application of copulas on
discrete data. For binary outcomes, the widely used multivariate
probit model (Brown 1998) is indeed a special case of copula
regression models using probit margins and a Gaussian copula
(Song 2007). For more applications, Nikoloulopoulos and Karlis
(2008) and Genest et al. (2013) modeled multivariate binary
outcomes using copulas. There are also expanding applications
in count data (see, e.g., Nikoloulopoulos and Karlis 2009; Shi
and Valdez 2014).

Yet the application of copulas on discrete data is still in its
infancy; one of the biggest barriers is the identifiability of cop-
ulas. Sklar showed the uniqueness of copulas is only guaranteed
at the range of marginal distribution functions (Sklar 1959), and
thus the copula representation may not be unique for discrete
outcomes, and the set of copulas compatible with the same data
is generally quite large (Genest and Nešlehová 2007). Due to
this lack of uniqueness, modeling and interpreting dependence
for discrete outcomes using copulas is subject to caution. For
example, Zilko and Kurowicka (2016) described applying para-
metric copulas on iid. discrete data and discussed conditions
under which discrete data can be realized by the parametric
copulas. In contrast, we study copula estimation with discrete
outcomes in a regression context. As the marginal distributions
vary with covariates, inclusion of continuous regressors expands
the region of support for copula identifiability. In this article,
we provide sufficient conditions under which a unique copula
regression model can be estimated consistently.

Given identifiability, how to consistently estimate a copula
model has remained a question. For any d dimensional
variable (Y1, . . . , Yd) with marginal distribution functions
F1(·), . . . , Fd(·), when each Yj, j = 1, . . . , d is continuous, the
probability integral transform Fj(Yj) is uniformly distributed,
and the unique underlying copula is actually the joint distri-
bution of (F1(Y1), . . . , Fd(Yd)). Hence, copula identification
can be conducted using the probability integral transforms by
checking properties such as tail dependence and asymmetry in
scatterplots (Joe 2014) or through formal tests (Li and Genton
2013). Nonetheless, for a discrete outcome such as Y1, the
distribution of F1(Y1) is generally not uniform, so that the joint

distribution function of (F1(Y1), . . . , Fd(Yd)) is not a copula.
Thus, the approaches of copula estimation for continuous
outcomes cannot be applied directly to discrete outcomes.

To estimate the “hidden” dependence structure under
discreteness, in this article, we develop a nonparametric copula
estimator. Other existing nonparametric copula estimators
(Deheuvels 1979; Chen and Huang 2007; Omelka et al.
2009) assume continuity of the marginal distributions. We
construct the estimator based on a local average approach.
For practitioners who prefer to use parametric copulas, the
proposed nonparametric estimator can also serve as a diagnostic
and specification tool for selecting a parametric form of
copulas. Adequacy of fit can be checked by comparing the fitted
parametric copula with the nonparametric estimator.

The rest of the article is organized as follows. In Section 2, we
present the proposed nonparametric estimator and its asymp-
totic properties. Section 3 contains our simulation study, and
in Section 4 we analyze the data from the LGPIF. Discussion
and conclusions are presented in Section 5. The supplementary
materials include proofs for theoretical results and additional
simulations.

2. Methodology

In what follows, we focus on the bivariate case first for simplicity.
The results can be naturally extended to higher dimensions,
which we will elaborate upon theoretically and through simu-
lations. Let Y = (Y1, Y2)

′ be discrete response variables taking
integer values, and X be all available covariates. Each marginal
distribution is specified to be conditioned on its covariates Xj ⊆
X for j = 1, 2, that is, conditioning on Xj = xj, Yj follows a
distribution function Fj(y|xj) = P(Yj ≤ y|Xj = xj), where Fj
depends on parameters βj. Note that βj might contain location,
scale, and shape parameters, and X1 and X2 could overlap. From
Sklar’s Theorem, conditioning on X = x, for FY|X(y1, y2|x) =
P(Y1 ≤ y1, Y2 ≤ y2|X = x), there exists a copula Cx such that
for (y1, y2) ∈ R

2

FY|X(y1, y2|x) = Cx
(
F1(y1|x1), F2(y2|x2)

)
. (1)

We assume that the copula does not change with covariates,
denoted as C, for the purpose of identifiability and easy inter-
pretation. The goal is to consistently estimate C.

The assumption of constant dependence structure dates
back to multivariate ordinal regression models. As noted in
Joe (2014), the multivariate ordinal regression is a special
case within the copula regression framework with marginals
generated from latent normal random variables and a Gaussian
copula. The copula in this context describes the dependence
structure of the unmeasurable latent variables which is assumed
to follow multivariate normal distribution and be independent
of the covariates (Muthén 1979). Jiryaie et al. (2016) also
explored the idea of modeling multivariate data through latent
variables and Gaussian copulas. In this article, we try to estimate
the latent dependence structure nonparametrically instead
of imposing Gaussian assumption. Under our framework, as
copulas are used at a latent level, the dependence measures of the
copula are free of margins. We will further explain in Section 2.1
that the assumption of constant dependence structure is also
made for identifiability purpose.
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2.1. Identifiability

The first question concerns identifiability, that is, whether C
can be uniquely determined by the population distribution of
(X, Y). This issue has been addressed in Genest and Nešlehová
(2007) in the setting without regressors X. It was shown by
Sklar that the copula is only unique over Ran(F1) × Ran(F2),
where Ran(Fj) denotes the range of Fj. The copulas that equate
C (F1(k1), F2(k2)) to F(k1, k2), for (k1, k2)

′ taking the possible
values of Y, are compatible with the data, which only constrains
the copula on a discrete number of points. There are infinitely
many such copulas that are observationally identical and would
be indistinguishable from one another even with the knowledge
of the population distribution of Y. As a most extreme example,
for bivariate binary outcomes, we are only able to identify the
copula at the point (F1(0), F2(0)).

The nonidentifiability issue of copulas on discrete outcomes
has concerned analysts. First, the qualified copulas have dif-
ferent properties such as Kendall’s τ and tail dependencies,
which results in difficulties of interpretation. Second, one may
want to make predictions outside the range of observations;
identifiability is essential for extrapolation.

In the regression setting, in contrast, for a fixed integer kj,
Fj(kj|xj) is a function of xj. For example, for logistic regression
models, Fj(0|xj) = 1/

[
1 + exp(x′

jβj)
]

. Hence, inclusion of con-
tinuous covariates widens the range of Fj(kj|xj) from a discrete
number of points to an interval. Together with the assumption
that the copula does not change with covariates, the copula
function can be uniquely determined by the population at the
region composed of possible values of (F1(k1|x1), F2(k2|x2)).

2.2. Perturbed Empirical Copula Estimator

Given identifiability of the copula over a region, now we focus
on how to consistently estimate the model. If Yj is continu-
ous, plugging (Xj, Yj) in Fj, the variable Fj(Yj|Xj) is known as
the probability integral transform and is uniformly distributed.
Jointly, for a fixed point (s, t) ∈ (0, 1)2, from (1), conditioning
on X = x,

Cx(s, t) = FY|X
(

F(−1)
1 (s|x1), F(−1)

2 (t|x2)|x
)

= P
(

Y1 ≤ F(−1)
1 (s|x1), Y2 ≤ F(−1)

2 (t|x2)|x
)

= P (F1(Y1|x1) ≤ s, F2(Y2|x2) ≤ t|x) ,

(2)

where F(−1)
j (s|xj) = inf{y : Fj(y|xj) ≥ s} and is well defined

for continuous variables. When X varies in regression, with our
assumption that the copula does not change with X, that is,
CX(s, t) = C(s, t), the following equality holds as a result of the
law of total expectation:

C(s, t) = P (F1(Y1|X1) ≤ s, F2(Y2|X2) ≤ t) . (3)

That is, the copula related to Y is the joint distribution function
of (F1(Y1|X1), F2(Y2|X2)). Equation (3) is essential for copula
estimation under continuity.

To introduce an empirical version, let (Xi, Yi) , i = 1, . . . , n
be an iid sample of (X, Y). For each margin, with a fitted
marginal model F̂j, we can obtain a sequence of Cox–Snell

residuals (Cox and Snell 1968) F̂j(Yi|Xi), i = 1, . . . , n. The
empirical distribution of the bivariate Cox–Snell residuals
(Deheuvels 1979)

1
n

n∑
i=1

1
(

F̂1(Yi1|Xi1) ≤ s, F̂2(Yi2|Xi2) ≤ t
)

, (4)

where 1(A) is an indicator variable, being 1 if event A holds and
zero otherwise, or its kernel estimator (see, e.g., Scaillet and Fer-
manian 2002; Chen and Huang 2007) provides nonparametric
estimation of C.

However, when Y1 and Y2 are discrete, Equation (3) does
not always hold, and thus the empirical copula estimators for
continuous outcomes do not readily apply, which will be further
demonstrated through simulation in Section 3.2. To see where
Equation (3) does hold, we define the conditional range of
the distribution function given X as a two-dimensional grid
�(X) = {(F1(k1|X1), F2(k2|X2)) , k1 = 0, 1, . . . , k2 = 0, 1, . . .}.
Note here the range could be finite, for example, binary
outcomes. Alternatively, each margin has its grid �j(Xj) =
{Fj(k|Xj) : k = 0, 1, . . .} and �(X) = �1(X1) × �2(X2). For
a fixed point of (s, t), Equation (3) is true if (s, t) is on the grid
�(X).

To construct a copula estimator under discreteness, ideally, if
we could find a subset of observations for which (s, t) ∈ �(X)

holds, those observations can be plugged in Equation (4). Recall
that we require X contains continuous components. When X
varies in regression, there might be a subset of observations for
which (s, t) ∈ �(X) holds approximately.

To formalize this idea, we condition on X1 and define “per-
turbed” probability integral transform
H(s; X1) = argminη∈�1(X1)\{1} |η − s|, that is, the interior grid
point of �1(X1) closest to s. Here, we exclude 1 as Equation (3)
always holds for the boundary, and as we will see this exclusion
does not impact our estimator. When s is equidistant from
two grid points, H(s; X1) is defined as the bigger one, though
this is a zero probability event with continuous covariates. We
can define H(t; X2) similarly, and now extend the notation and
denote H(s, t; X) = (H1(s; X1), H2(t; X2)). It can be seen that
H(s, t; X) ∈ �(X) and is the closest interior grid point to (s, t).
Thus, the distance between (s, t) and �(X) can be quantified
by the difference between (s, t) and H(s, t; X). For an observa-
tion that (s, t) is “close to” being on its grid in the sense that
H1(s; X1) ≈ s, H2(t; X2) ≈ t, we can build an approximation
to (4) due to the fact

P(F1(Y1|X1) ≤ H2(s; X1), F2(Y2|X2) ≤ H2(t; X2))

= C (H2(s; X1), H2(t; X2)) ≈ C(s, t),

where the first equality holds since H(s, t; X) ∈ �(X) from its
definition.

Now consider a sample (Xi, Yi), i = 1, . . . , n. As (s, t) is close
to the grid of some observations while not for others, we use a
kernel function K(·) to assign weights to observations depend-
ing on the normalized distance between (s, t) and H(s, t; Xi)
using the form K [(H1(s; Xi1) − s) /εn, (H2(t; Xi2) − t) /εn]
with bandwidth εn. If the copula is smooth enough, it is
approximately constant over a small neighborhood.

The above observation motivates the definition of the per-
turbed empirical copula estimator as an alternative to Equation
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(4). Recall that β = (β1, β2) is the vector of underlying marginal
parameters. For simplicity, denote

Yi(β) = 1 [F1(Yi1|Xi1) ≤ H1(s; Xi1), F2(Yi2|Xi2) ≤ H2(t; Xi2)] .
(5)

Hence, the copula estimator is

Ĉ(s, t; β) =
n∑

i=1
Wni(s, t; Xi, β)Yi(β), (6)

where

Wni(s, t; Xi, β)

= K [(H1(s; Xi1) − s) /εn, (H2(t; Xi2) − t) /εn]∑n
i=1 K [(H1(s; Xi1) − s) /εn, (H2(t; Xi2) − t) /εn]

,

and K is a bounded and symmetric kernel. Intuitively, we put
large weights on the observations for which (s, t) is closely on
their grids, while putting small weights otherwise.

In practice, β is unknown; let β̂ be the corresponding esti-
mator. By plugging β̂ in Equation (6), we may obtain the copula
estimator Ĉ(s, t; β̂). It will be shown in the following section
that the uncertainty in the coefficients is negligible under mild
regularity conditions.

As an example, when Y1 and Y2 are binary outcomes, their
marginal distribution grid only contains two points. Denote
the marginal probability of 0 given X as Fj(0|Xj), and hence
�(X) = {F1(0|X1), 1} × {F2(0|X2), 1} and H(s, t; X) =
(F1(0|X1), F2(0|X2)). Therefore, Equation (6) becomes

Ĉ(s, t; β)

=

∑n
i=1 K [(F1(0|Xi1) − s) /εn, (F2(0|Xi2) − t) /εn]

1(Yi1 = 0, Yi2 = 0)∑n
i=1 K [(F1(0|Xi1) − s) /εn, (F2(0|Xi2) − t) /εn]

.

This statistic can be recognized as a Nadaraya–Watson estimator
and so its asymptotic properties, such as consistency and asymp-
totic normality, are well established.

In contrast, when Y has an infinite range, for instance Poisson
variables, Ĉ(s, t; β) is a nonstandard estimator in the following
aspects. First, for a fixed point (s, t), H(s, t; X) is a noncon-
tinuous variable. To illustrate, we assume that Y1 follows the
commonly used Poisson generalized linear model (GLM) with
the log link, that is, Y1|X1 ∼ Poisson

(
exp(X′

1β1)
)
. Figure 1

shows H1(s; X1) as a function of μ = X′
1β1 (solid curves). In

this example, for a fixed k, F1(k|X1) is a monotone decreas-
ing function of μ (dashed lines). From Figure 1, the curve of
H1(s; X1) is composed of continuous pieces from the curves
of F1(k|X1), k = 0, . . .. To formalize, denote Mk

1 as the jump
point of H1(s; X1) on the curve of F1(k|X1), as in Figure 1. For
example, when μ < M1

1, F1(0|X1) is closest to s, and hence
H1(s; X1) = F1(0|X1) from its definition. When μ = M1

1,
F1(0|X1) and F1(1|X1) are equidistant from s, and we define
H1(s; X1) as F1(1|X1) . While M1

1 < μ < M2
1, F1(1|X1) is closest

to s, and thus H1(s; X1) = F1(1|X1). To generalize, it can be seen
that

H1(s; X1) = F1(k|X1) when Mk
1 ≤ μ < Mk+1

1 , (7)

Figure 1. H1(s; X1) (solid curve) as a function of μ = X′
1β1 for Poisson GLM with

the log link. Dashed curves: F1(k|X1), from left to right k = 0, 1, 2, 3, 4, 5, 15, and 16.
The curve of H1(s; X1) is composed of pieces from the curves of F1(k|X1), k = 0, . . ..
Horizontal lines: s + ε, s, and s − ε.

and M0
1 is set to be −∞ for completion. Hence, the random

variable H1(s; X1) is a continuous function of μ almost every-
where except at a countable number of points under which s
is in the middle of two grid points. Similar arguments apply
to H2(t; X2). We will further analyze the issue of discontinuity
in Section 2.3. Because of these discontinuities, the proof for
asymptotic properties of the estimator is not trivial.

Second, H(s, t; X) is a function of (s, t). That is, when esti-
mating the copula at different points, we plug different variables
into the kernel function, which differs from the setting of tradi-
tional nonparametric regression models. The dynamic scheme
increases efficiency especially when the data are less discrete.
This point will be demonstrated using a simulation study in the
supplementary material.

It should be emphasized that though we address the technical
challenges associated with count outcomes, our methodological
and theoretical results are applicable to general discrete data.
Following the Poisson example in Figure 1, Figure 2 shows
that H1(s; X1) presents similar curves for binary and ordinal
outcomes with commonly used regression models.

2.3. Asymptotic Behavior

In this section, we study the asymptotic properties of the copula
estimator Ĉ(s, t; β̂) defined in Equation (6). We first analyze
Ĉ(s, t; β), then plug in the estimator of β .

In the previous section, we demonstrated that marginally, for
j = 1, 2, for a fixed k, Fj(k|Xj) is a monotone decreasing function
of a random location parameter μj = X′

jβj. Hence, Fj(k|Xj)

is random with its own distribution function and, assuming
continuity, a density. Let fFj(k|Xj) denote the density of Fj(k|Xj),
and fHj(s;Xj) is the density of Hj(s; Xj). From the form of the
estimator (6), the weights Wni(s, t; Xi, β) relate to the density
of fHj(s;Xj) at s as fHj(s;Xj)(s), and by transformation of random
variables

fHj(s;Xj)(s) =
∞∑

k=0
fFj(k|Xj)(s).

Note for ordinal (binary) outcomes, the summation is up to the
second largest possible value.

In contrast, the density of Hj(s; Xj) at a point other than s,
fHj(s;Xj)(s + ε) has a different form from fHj(s;Xj)(s) for ε 
= 0.
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Figure 2. H1(s; X1) (solid curve) as a function of μ = X′
1β1 for logistic regression (left panel) and ordinal regression with 4 levels (right panel). Dashed curves for right

panel: F1(k|X1), from left to right k = 0, 1, 2. Horizontal lines: s + ε, s, and s − ε.

Given μj = Mk
j defined in Equation (7), denote the corre-

sponding function value of Hj(s; Xj) as νk
j . For a small k such

as k ≤ 5 in Figure 1, |νk
j − s| > ε, that is, the jump point of

Hj(s; Xj) on the curve of Fj(k|Xj) is outside the ε neighborhood
of s. Hence, fFj(k|Xj) contributes to fHj(s;Xj) at s+ε when applying
transformation of random variables. While for large k such as
k = 15, |νk

j − s| < ε, and thus the density of Fj(15|Xj) does not
contribute to the density of fHj(s;Xj) at s + ε. Therefore, in this
example,

5∑
k=0

fFj(k|Xj)(s + ε) ≤ fHj(s;Xj)(s + ε) <

∞∑
k=0

fFj(k|Xj)(s + ε). (8)

That is, fHj(s;Xj) is not smooth due to loss of fFj(k|Xj) curves
contributing to fHj(s;Xj) at s + ε.

The nonsmoothness issue is less of a concern for finite range
variables. When ε takes a small value εn which goes to 0, a finite
number of jump points as in Figure 2 would be excluded from
the small neighborhood of s. Therefore, they do not require
following Lemma 2.1 and Assumption 2.1 which are made
to handle the nonsmoothness issue for variables with infinite
ranges.

The following lemma guarantees the summation on the left-
hand side of Equation (8) can be up to a large number an(s)
going to ∞, and fHj(s;Xj) can be approximated by

∑an(s)
k=0 fFj(k|Xj),

which is continuous in the εn neighborhood of s.

Lemma 2.1. There exists a sequence an(s) going to infinity such
that for all k ≤ an(s), |νk

j − s| > εn, and thus fHj(s;Xj)(s + εn) ≥∑an(s)
k=0 fFj(k|Xj)(s + εn).

The proofs for this and other theoretical results can be found
in the supplementary materials. Since there are countable jump
points of H1(s; X1) and εn → 0, Lemma 2.1 can be satisfied by
choosing right order of an(s). Specifically, Lemma 2.1 is satisfied
by choosing an(s) to be 1/ε2

n for Poisson and 1/εn for negative
binomial distributions; see verifications in Yang (2017).

Extending our notation, denote the joint density of
(F1(k1|X1), F2(k2|X2)) as fF1(k1|X1),F2(k2|X2), and fH(s,t;X) as the
density of H(s, t; X). It can be seen

fH(s,t;X)(s, t) =
∞∑

k1=0

∞∑
k2=0

fF1(k1|X1),F2(k2|X2)(s, t). (9)

Similar to the univariate case, the summation is up to the
second largest possible values for outcomes with finite range.

Recall Man(s)
1 denotes the jump point of H1(s; X1) on the curve

of F1(an(s)|X1) as in Equation (7). The following assumption
guarantees the non-smoothness of fH(s,t;X) is negligible by con-
straining the tail probability of μj.

Assumption 2.1. Let an(s) and bn(t) be sequences as in
Lemma 2.1 for H1(s; X1) and H2(t; X2), respectively, then
ε−2

n P
(
μ1 > Man(s)

1
) → 0 and ε−2

n P
(
μ2 > Mbn(t)

2
) → 0.

Assume we can interchange the derivatives and the limits, the
partial derivatives of fH(s,t;X)(s, t) are fH(s,t;X),1 = ∂fH(s,t;X)/∂s
and fH(s,t;X),2 = ∂fH(s,t;X)/∂t. We make the following reg-
ularity assumption to ensure fF1(k1|X1),F2(k2|X2) is sufficiently
smooth.

Assumption 2.2. For fixed k1 and k2, fF1(k1|X1),F2(k2|X2) is twice
continuously differentiable. The densityfH(s,t;X) and its deriva-
tives are bounded.

A necessary condition for Assumption 2.2 is that there exists
a continuous regressor whose coefficient is not 0. When Y1
and Y2 follow Poisson distributions with means λ1 = exp(μ1)
and λ2 = exp(μ2), Assumptions 2.1 and 2.2 are satisfied
if EX1λ1, EX2λ2, and EX

√
λ1λ2 are finite, and they hold for

negative binomial distributions if EX1λ
2
1, EX2λ

2
2, and EXλ1λ2 are

finite. Therefore, if there are highly right-skewed covariates, log
transformation is suggested. For binary and ordinal variables,
Assumption 2.2 is satisfied given that the density of μj is twice
continuously differentiable.

The copula is assumed to satisfy smoothness conditions,
which guarantees the eligibility of approximating the copula
value at a point using its neighborhood.

Assumption 2.3. The copula C for Y1|X1 and Y2|X2 does not
change with X. The copula is twice continuously differentiable,
and the corresponding partial derivatives are bounded.

The first part of Assumption 2.3 is called “simplifying
assumption” (Haff, Aas, and Frigessi 2010). Let V be a subset
of (0, 1)2 such that for (s, t) ∈ V , fH(s,t;X)(s, t) > 0. Denote C1,
C2, C11, and C22 as first and second order partial derivatives of
C. Let the bandwidth εn satisfy that εn → 0 and nε2

n → ∞
as n → ∞, and nε6

n = O(1). Assume K is a symmetric
and compact supported kernel function, and denote R2(K) =∫

K(u, v)2dudv, κ2 = ∫
u2K(u, v)dudv, we have the following

property.
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Theorem 2.1 (Consistency). Under Assumptions 2.1–2.3, for
(s, t) ∈ V ,

Ĉ(s, t; β) →p C(s, t).

With further assuming C satisfies Lipschitz condition, we
can have asymptotic normality and corresponding order of
Ĉ(s, t; β).

Assumption 2.4. C satisfies Lipschitz condition of order 2, that is,
there exists a constant α1 such that for any (a, b), (s, t) ∈ (0, 1)2,

|C(s, t) − C(a, b)| ≤ α1 |(s, t) − (a, b)|2 .

Theorem 2.2 (Asymptotic normality). Under Assumptions 2.1–
2.4, for (s, t) ∈ V ,

√
nε2

n

(
Ĉ(s, t; β) − C(s, t) − κ2ζ(s, t)ε2

n

)

→d N
(

0,
R2(K)C(s, t)(1 − C(s, t))

fH(s,t;X)(s, t)

)
,

where

ζ(s, t) = C11(s, t)
2

+ C22(s, t)
2

+ C1(s, t)fH(s,t;X),1(s, t)
fH(s,t;X)(s, t)

+C2(s, t)fH(s,t;X),2(s, t)
fH(s,t;X)(s, t)

. (10)

Therefore, the asymptotic mean squared error (AMSE), a
commonly used measure of the quality of an estimator, for
Ĉ(·; β) at (s, t) is

AMSE
(

Ĉ(s, t; β)
)

= κ2
2 ζ(s, t)2ε4

n + C(s, t)(1 − C(s, t))R2(K)

nε2
nfH(s,t;X)(s, t)

,

which converges to 0.
The following assumptions ensure the asymptotics hold

when we plug the estimates of the marginal models into the
copula estimator. When the parameters are set to be θ , we denote
H(s, t; X, θ) as the corresponding perturbed probability integral
transform.

Assumption 2.5 (Lipschitz condition). There exists a constant α2
such that for all i, for bounded θ and β , when |θ − β| is small
enough,

|H(s, t; Xi, θ) − H(s, t; Xi, β)| ≤ α2 |θ − β|
almost surely.

Note that this assumption is satisfied when Y1 and Y2 follow
Poisson GLMs with the log link and bounded covariates.

Assumption 2.6. n1/2(β̂ − β) = Op(1).

Theorem 2.3. With Assumptions 2.1–2.6, for (s, t) ∈ V ,
√

nε2
n

(
Ĉ(s, t; β̂) − C(s, t) − κ2ζ(s, t)ε2

n

)

→d N
(

0,
C(s, t)(1 − C(s, t))R2(K)

fH(s,t;X)(s, t)

)
.

That is, the AMSE of the copula estimator Ĉ(s, t; β̂) is same
as when the margins are known.

Here are a few comments on the asymptotic results especially
for count outcomes; the cases of binary and ordinal outcomes
are rather trivial. First, the estimator behaves well with large
marginal means under which fH(s,t;X)(s, t) is large. For illus-
tration in one dimension, we use Figure 1 as an example, and
without loss of generality, we focus on the fixed point s in the
figure. When μ takes a small value, for instance -3, Hj(s; Xj) =
Fj(0|Xj) which is around 1 and not in a small neighborhood of
s. While μ is larger, it is more likely that Hj(s; Xj) is in the small
neighborhood of s. That is, the density fHj(s;Xj)(s) is large when
μ is mostly distributed at large values. Intuitively, as μ gets large,
the grid gets dense and the variable is more similar to a continu-
ous random variable. Extending to two dimensions, when both
margins have large means, the estimator performs well. We will
demonstrate this point in Section 3 through simulated examples.

Second, when s is small, it requires large μ value for Fj(k|Xj)
to be in a small neighborhood of s. Since we constrain the tail
probability of μ by Assumption 2.1, fHj(s;Xj)(s) is small in this
case. In other words, we have more effective observations when
we estimate the copula at the right upper corner than the lower
left corner.

Third, here we only provide the theoretical results of bivari-
ate case. The estimator can be extended to higher dimensions
naturally by adopting higher dimensional kernel functions with
smaller order of convergence

√
nεd

n , where d is the number of
dimensions. We include a three-dimensional simulation study
in Section 3. An alternative is to build up the multivariate mod-
els through bivariate blocks, known as the vine copula structure
(Panagiotelis, Czado, and Joe 2012).

2.4. Selection of Bandwidth

An important choice to be made is the bandwidth which is
selected to balance the bias and variance of the estimator. In this
section, we establish a data-driven selector for the bandwidth.
The benchmark bandwidth is the minimizer of the integrated
squared error (ISE). The ISE is considered to be a desirable
criterion when one wants to measure how good an estimator is
for a given dataset and is defined as

ISE
(

Ĉ(s, t; β̂)
)

=
∫

s,t

(
Ĉ(s, t; β̂) − C(s, t)

)2
dsdt. (11)

Hence, a good estimator is supposed to have a small ISE
value. However, in practice, C(s, t) is unknown. In this section,
we propose a practical “plug-in” bandwidth selection rule.
The independence copula is one natural choice to plug in
Equation (11). Furthermore, motivated by the idea of working
covariance in generalized estimating equations (Zeger and
Liang 1986), we propose a procedure to replace C(s, t) by a “rule-
of-thumb” estimator: a Frank copula estimated by maximum
likelihood. We apply a Frank copula as the working copula for
the following practical reasons. First, a Frank copula can capture
a wide range of dependence including positive and negative
dependence. Second, Frank copulas belong to the Archimedean
family with a closed form of distribution functions and
benefits of easy computation. There is no absolute justification
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for this choice. If there is prior information such as tail
dependence, a more informative copula can be applied in our
procedure.

The idea of “plug-in” has been widely applied for choos-
ing smoothing parameters in kernel density estimation (Chiu
1991) and nonparametric regression with an odd number order
of local polynomial (Ruppert, Sheather, and Wand 1995), in
which optimal smoothing parameters are selected by minimiz-
ing an approximation to the mean integrated squared error or
its asymptotic form. Nonetheless, the asymptotic mean inte-
grated squared error of the proposed nonparametric estimator
involves fH(s,t;X)(s, t) and its derivatives, as in Theorem 2.3. Since
fH(s,t;X)(s, t) is not a typical density function, its approximation
takes extra efforts than plugging in a parametric density func-
tion. In addition, the estimation of the derivatives of fH(s,t;X)(s, t)
is challenging and has a smaller order of convergence. We also
avoid using cross-validation due to its computational burden.
Because H(s, t; X) varies with (s, t), the typical setting of gen-
eralized cross-validation, which is an approximation to cross-
validation and commonly applied for bandwidth selection in
nonparametric regression, is violated.

We conduct a simulation study to assess the proposed
bandwidth selector by comparing it with the benchmark
selector minimizing the ISE values. The detailed results
are included in the supplementary materials. Overall, the
proposed selector performs quite satisfactorily under different
scenarios.

3. Simulation Study

In this section, we evaluate the overall ability of the proposed
estimator to identify a copula for different types of data under
various scenarios. In addition, we explore our nonparametric
estimator working as a diagnostic tool for choosing a parametric
copula.

3.1. Simulation Study Design

The simulations are conducted under scenarios with combi-
nations of different levels of dependence and discreteness in
margins using the following algorithm. With a copula C and
marginal models Fj, j = 1, 2 assumed,

1. Draw a bivariate uniform random variables from C, that
is, Ui = (Ui1, Ui2) ∼ C. Do this independently for i =
1, . . . , n. Note that the copula does not depend on covariates
(a “simplifying assumption”).

2. Simulate covariates (Xij), i = 1, . . . , n, j = 1, 2. Construct
the jth marginal distribution function using covariates (Xij)
and assumed marginal parameters (βj), that is,

Fij(z) = Fj(z|Xij), j = 1, 2.

3. Obtain the jth discrete outcome by evaluating the uniform
random variable at the inverse of the marginal distribution
function, that is,

Yij = F(−1)
ij (Uij).

For count variables, we demonstrate explicit results for Pois-
son outcomes as an example. The results of negative binomial

variables are included in the supplementary materials from
which we see similar patterns. Marginally, for j = 1, 2, the mean
of the Poisson variable is based on the function E(Yj|Xj) =
λj = exp(βj0 + Xjβj1), where X1 ∼ N(0, 1), X2 ∼ N(0, 1),
independently. As indicated in Nikoloulopoulos (2013), it is
more problematic to apply copulas when data are highly discrete
with large probability of ties. Hence, we consider three marginal
scenarios to explore the influence of the discreteness on the
estimator. When λj is small, Yj takes on a small number of values
with high level of discreteness, while Yj behaves analogously to
a continuous variable with large λj. Parameters βj0, j = 1, 2 are
allowed to vary to obtain different marginal mean levels:

• Small mean: β10 = −2, β11 = 2, β20 = −2, and β21 = 1.5.
• Medium mean: β10 = 0, β11 = 2, β20 = 0, and β21 = 1.5.
• Large mean: β10 = 5, β11 = 2, β20 = 5, and β21 = 1.5.

We also consider binary outcomes and let Fj(0|Xj) =
1/

(
1 + exp(X′

jβj)
)

, j = 1, 2, where X1 ∼ N(0, 1), X2 ∼ N(0, 1)

independently and β1 = 1.5, β2 = 1.
Meanwhile, three levels of dependence are considered. To

compare across different copulas, we quantify dependence of C
using Kendall’s τ as 0.07 for low dependence, 0.2 for moderate
dependence, and 0.6 for high dependence, respectively. We also
conducted the analysis on negative correlated data and found
out it is the level instead of the sign of the correlation that
influences the results mostly. We use sample sizes n = 1000 and
n = 5000. The number of replications in each simulation is 500,
and the Epanechnikov kernel is used throughout.

3.2. Finite-Sample Performance

We first assess the finite sample performance of our estimator
under different scenarios. Here we employ Gaussian copulas
as the underlying dependence models. Correspondingly, the
parameter of the Gaussian copula under low, moderate, and high
dependence are 0.1, 0.3, and 0.8. There are many possibilities for
the dependence models. Although their results are not reported
here, we can draw consistent conclusions. With simulated data,
we first fit their marginal models and then plug the estimates in
the copula estimator (6).

3.2.1. Count
Figure 3 displays the proposed estimator for Poisson outcomes
under different scenarios with sample size n = 1000. For
clarification, the corresponding confidence intervals are given
for every other copula value. The leftmost plots correspond to
the cases with small marginal means. We can see both bias
and variance are large under high discreteness level. This is
consistent with the theoretical results in Section 2.3. Figure 4
includes the contour plots of fH(s,t;X)(s, t) for (s, t) ∈ (0, 1)2. In
the small mean scenario, the values of fH(s,t;X)(s, t) are small, and
thus the number of effective observations with positive weights
in Equation (6) is small. As a result, large bias and variance are
expected, especially at the lower left corner, which is getting out
of the V area of Theorem 2.3.

As the marginal means increase to the medium level, as dis-
played in the middle column of Figure 3, it is clear that the accu-
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Figure 3. Contour plots of the nonparametric estimator for Poisson outcomes under different scenarios with sample size 1000. The average of the estimator over 500
replications is given by the solid lines, while the dash-dot symbols give the corresponding 95% confidence interval for every other copula value, and the dashed lines give
the underlying copulas.

Figure 4. Contour plots of fH(s,t;X)(s, t) for Poisson outcomes under different marginal mean levels.

racy of the estimator improves with smaller bias and variance as
a result of larger fH(s,t;X)(s, t) values from Figure 4. When the
marginal means increase to the large scenario (right column of
Figure 3), the estimator appears to perform well with negligible
bias and variance. Indeed, as the grid points become dense, the
estimator behaves seemingly with order of convergence n−1/2.

By comparing across different levels of dependence corre-
sponding to the rows in Figure 3, we can conclude the level of

dependence is less influential on the performance of the copula
estimator than the discreteness. Figure 5 shows the results with
sample size n = 5000. As anticipated, the bias and variance are
smaller with larger sample size. This phenomenon suggests the
identification of copulas even when outcomes are highly discrete
is possible if the sample size is sufficiently large.

Correspondingly, the results are summarized numerically in
Table 1. We quantify the performance of the estimator using
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Figure 5. Contour plots of the nonparametric estimator for Poisson outcomes under different scenarios with sample size 5000.

the ISE defined in Equation (11). As an example, when the
sample size is n = 1000, over the 500 replications, the average
ISE of the nonparametric estimator is 2.865 × 10−3 with a
standard deviation 2.081×10−3 for the case with small marginal
means and low dependence. Consistent with Figures 3 and 5,
the level of discreteness plays an important role on the perfor-
mance of the nonparametric estimator, which is reflected in the
ISE values. The nonparametric estimator performances better
as the marginal means and the sample size increase. We also
carry out simulations with mixed marginal discreteness levels
in the supplementary materials, whose overall performance lies
between the corresponding two cases with identical marginal
mean levels.

3.2.2. Binary
For binary outcomes, with high level of discreteness, it is dif-
ficult to estimate the dependence structure; this difficulty is
clearly demonstrated in Figure 6. As the estimator performs
comparably across different levels of dependence, here we only
employ Gaussian copula with high dependence as the underly-
ing model. The values of fH(s,t;X)(s, t) are small especially near
boundary as shown in the left panel. Thus, the estimator, which
coincides with the Nadaraya–Watson estimator in this case, has
large bias and variance reflected in the right panel of Figure 6

Table 1. ISE values for Poisson examples under different scenarios (multiplied by
1000).

n=1000 n=5000

Marginal mean Dependence Average SD Average SD

Small Low 2.865 2.081 0.857 0.311
Moderate 3.061 2.233 0.878 0.334

High 3.547 2.652 0.974 0.429
Medium Low 0.331 0.118 0.107 0.030

Moderate 0.330 0.125 0.101 0.030
High 0.352 0.150 0.103 0.031

Large Low 0.088 0.040 0.018 0.009
Moderate 0.088 0.040 0.018 0.009

High 0.091 0.047 0.019 0.010

as well as large ISE values summarized in the supplementary
materials.

To illustrate that the empirical copula estimator (4) is not
a consistent copula estimator for discrete outcomes, the con-
tour plots of the empirical copula estimator compared with
the underlying copulas for two simulated examples, Poisson
outcomes with medium marginal means and binary outcomes
with high dependence and sample size 5000, are displayed in
Figure 7, which clearly confirms the necessity of alternative ways
of estimating the copula. We can see that under the same settings
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Figure 6. Left panel: contour plot of fH(s,t;X)(s, t) for binary outcomes. Right panel:
contour plot of the nonparametric estimator for binary outcomes with sample size
5000.

Figure 7. Contour plots of the empirical copula estimator (solid curve) with its
confidence interval (dash-dot symbols) compared with the underlying copulas
(dashed lines).

Table 2. ISE of three-dimensional estimator for Poisson outcomes under high
dependence with sample size 5000 (multiplied by 1000).

Marginal Mean Average SD

Small 2.500 1.408
Medium 0.143 0.042
Large 0.017 0.008

the proposed estimator provides more reasonable fitting as the
middle panel in the bottom row of Figure 5 and right panel of
Figure 6.

3.2.3. Higher Dimension
As discussed in Section 2.3, our estimator can be extended to
higher dimensions naturally. We conduct simulations with three
dimensional Poisson variables at a high dependence level, and
Table 2 summarizes the results numerically. Comparing Table 2
with the corresponding cells in Table 1, we see that under small
mean level, the estimator suffers from the curse of dimensional-
ity which is a well-known problem in nonparametric regression.
Interestingly, when the marginal means are large, the curse
of dimensionality is mitigated, as the ISE value of the three-
dimensional estimator is comparable to the bivariate estimator.
An intuitive reason is that the variables behave analogously to
continuous outcomes in this case.

3.3. Copula Specification and Diagnosis

There are few approaches available for copula specification and
diagnosis in discrete cases. In practice, overall goodness-of-fit
statistics, such as AIC, BIC, and likelihood, are used to choose
the best model among candidates. Vuong’s test (Vuong 1989)
can be applied to further compare if the models are statistically

significantly different. However, these methods are not diag-
nostic for adequacy of fit and do not suggest improvements.
The classical way of comparing expected and observed counts
is infeasible when there are many large observations and hard
to present when the dimension is greater than two.

The proposed nonparametric estimator can serve as a specifi-
cation and diagnostic tool for selecting a parametric copula. We
now explore the usage under different scenarios. For each of the
simulations, given the generated data, we first fit the marginal
models. Then, we plug the marginal estimates in Equation (6)
to obtain our nonparametric estimator. Meanwhile, different
parametric copulas are fit through MLE. Finally, we compare the
parametric copulas with our nonparametric estimator.

To measure the distance between the fitted parametric cop-
ulas with the nonparametric copula estimator, we use the L2-
norm distance

d(Ĉ(·; β̂), C̃
θ̂
) =

∫
s,t

(Ĉ(s, t; β̂) − C̃
θ̂
(s, t))2dsdt, (12)

where Ĉ(·; β̂) is the proposed nonparametric estimator, and C̃
θ̂

is the parametric copula. The parametric copulas with good
fitting are supposed to be close to our nonparametric estimator
with small distances.

We generated the data using Gaussian (no tail dependencies),
Clayton (lower tail dependence), and Joe (upper tail depen-
dence) copulas to explore the impact of tail dependence. The
detailed graphical and numerical results are provided in the
supplementary material due to space limitations. To summa-
rize, first, the selection of copula is more important with large
marginal means and high dependence. Second, overall, our
nonparametric estimator is likely to exclude copulas with wrong
tail behaviors, especially those with opposite tail dependence
structures of the underlying model. In the situations where it
seems ambiguous between copulas, we suggest expanding the
candidate pool.

4. Data Example

To illustrate the nonparametric estimator on real data, we use
our model to investigate the dependence of insurance claim
frequencies across different business lines using a unique dataset
from the LGPIF in the state of Wisconsin.

The LGPIF was established to provide property insurance for
local government entities that include counties, cities, towns,
villages, school districts, fire departments, and other miscella-
neous entities. The fund provides different types of coverage
including government buildings, vehicles, and equipments. For
example, a county may need coverage for the buildings (and
their contents) that it owns as well as coverage for its auto-
mobiles and trucks. The LGPIF operates similarly to a typical
insurer, hence the data provide a good example for multiline
insurance companies encountered in practice.

4.1. Data Summary

We focus on joint modeling of BC and MV insurance of the
LGPIF. Table 3 shows the total number of policies for each
coverage type in the dataset for years 2006–2010. Jointly, there
are 2170 observations with both coverages.
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Table 3. Empirical numbers of observations.

Total 0 1 2 3 4 5 >5

BC 5660 3976 997 333 136 76 31 111
MV 2175 1511 314 116 53 36 21 124
Joint 2170

Table 4. Description and summary statistics of covariates.

Variable Description Mean

TypeCity =1 if entity type is city 0.140
TypeCounty =1 if entity type is county 0.058
TypeSchool =1 if entity type is school 0.282
TypeTown =1 if entity type is town 0.173
TypeVillage =1 if entity type is village 0.237
TypeMisc =1 if entity type is other 0.110
NoClaimCreditBC =1 if no building and content claims

in prior year given BC coverage 0.328
NoClaimCreditMV =1 if no MV claims

in prior year given MV coverage 0.054
lnCoverageBC Coverage of BC line in logarithmic 2.119

millions of dollars given BC coverage (2.000)

lnCoverageMV Coverage of MV line in logarithmic −0.798
millions of dollars given MV coverage (1.626)

lnDeductBC BC deductible level in logarithmic 7.155
millions of dollars given BC coverage (1.174)

Table 5. Correlations between frequencies of claims.

Kendall’s τ Spearman’s ρ

0.361 0.402

Potential rating variables, covariates, are displayed in Table 4.
Here coverage and deductible are continuous covariates which
is essential for copula estimation.

Preliminary dependence measures for discrete claim fre-
quencies can be obtained using simple correlation statistics such
as Kendall’s τ and Spearman’s ρ. Table 5 shows the correla-
tions between the frequencies of the two coverages. Note that
these dependence measures in Table 5 are calculated before
controlling for the effects of explanatory variables and should
be taken with caution due to the following reasons. First, as
discussed in Denuit and Lambert (2005), the definitions of
Kendall’s τ and Spearman’s ρ do not take the probability of ties
into account and are not free of margins. Second, the large values
of the dependencies may be due to correlations in the covari-
ates. We will further quantify the correlations using likelihood-
based estimation after controlling the effects of covariates in
Section 4.3.

4.2. Marginal Models

From Table 3, it can be seen that the BC line contains a
large number of zeros and a significant amount of ones. This
motivates the usage of zero-one-inflated Poisson models in
Frees, Lee, and Yang (2016). The distribution function can
be expressed as

Fj(k|Xj, βj) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

πj0 + (1 − πj0 − πj1) exp(−λj)

k = 0,
πj0 + πj1 + (1 − πj0 − πj1)

∑k
i=0 λi

j exp(−λj)
1
i!

k > 0.

Table 6. Marginal coefficients.

BC (0-1 inflated Poisson) MV (Negative Binomial)

Variable Name Coef. SE Coef. SE

Count (Intercept) −1.540 0.125 −0.929 0.109
lnCoverage 0.751 0.023 0.708 0.036
lnDeduct −0.020 0.017
NoClaimCredit −0.395 0.131 −0.370 0.146
TypeCity −0.143 0.079 0.231 0.149
TypeCounty −0.250 0.087 1.518 0.132
TypeMisc −0.195 0.179 −0.352 0.301
TypeSchool −1.157 0.085 0.651 0.131
TypeTown 0.186 0.175 −1.085 0.244
size 1.428 0.139

Zero (Intercept) −4.755 0.448
lnCoverage −0.580 0.078
lnDeduct 0.879 0.062
NoClaimCredit 0.536 0.280

One (Intercept) −5.533 0.639
lnCoverage −0.047 0.094
lnDeduct 0.577 0.084
NoClaimCredit 0.300 0.353

Here, we employ the marginal models chosen in Frees, Lee,
and Yang (2016) in which expected and observed counts
were compared. For BC line, the zero-one-inflated Poisson
model outperformed the other methods, while for MV line, the
negative binomial model was selected. The coefficients for the
selected models are in Table 6. We address that it is the benefit of
employing copula regression models that the marginal models
can be freely specified.

4.3. Copula Estimation

Given well-fitting marginal models, now we are in a position
to conduct dependence analysis. We focus on the 2170 policies
with both BC and MV coverages. The nonparametric estima-
tor is fit with bandwidth selected by the process explored in
Section 2.4. The fitted nonparametric copulas are displayed in
Figure 8 as the solid curves.

To address the practical issue of parametric copula selec-
tion, we compare the nonparametric estimator with different
commonly used parametric copulas fit through MLE. Table 7
includes the parameters of different copulas. When the param-
eters are transformed to Kendall’s τ , it is not surprising that the
dependence is weaker than the raw dependence from Table 5
that was computed before introducing covariates, and it is com-
parable to the low dependence scenario of our simulation. Fig-
ure 8 shows the graphical comparisons between different para-
metric copulas with the nonparametric estimator. As in Sec-
tion 3.3, it is difficult to distinguish among different copulas
when the dependence is weak. From Figure 8, we are only able
to conclude that the Clayton copula does not fit well.

We further summarize the discrepancies numerically using
the distance defined in Equation (12) in Table 8. The Frank,
Gaussian, and Clayton copulas can be excluded due to their
large discrepancies. The performance of the t, Gumbel, and Joe
copulas seem similar, which suggests that there is upper tail
dependence in this dataset. To take the uncertainty into account,
we do bootstrap with the number of replications as 500 to obtain
the standard errors of the distances. Since the standard errors
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Figure 8. Contour plot of the nonparametric estimator (solid) and its confidence intervals (dotted) compared with parametric copulas contours (dashed).

Table 7. Parameters from different parametric copulas.

Estimate SE Kendall’s τ

Gumbel 1.040 0.015 0.038
Joe 1.042 0.018 0.024
T(df=4) 0.072 0.038 0.046
Frank 0.718 0.221 0.079
Gaussian 0.125 0.033 0.079
Clayton 0.223 0.075 0.100

Table 8. Distances d(Ĉ(·; β̂), C̃
θ̂
) of different parametric copulas (multiplied by

1000).

Gumbel Joe t Frank Gaussian Clayton

Estimate 0.633 0.635 0.646 0.711 0.701 0.885
SE 0.240 0.251 0.240 0.239 0.237 0.265

are comparable, given the smallest mean distance in Table 8, the
Gumbel copula seems to best describe the dependence.

Since the distances of parametric copulas with our nonpara-
metric estimator may not be normally distributed, standard
errors may not be informative enough to quantify the uncer-
tainty. Figure 9 displays the distribution of the distances of
different copula families constructed from bootstrap samples.
The Joe, Gumbel, and t copulas appear better than the rest in the
sense that their distances are mostly distributed around small
values.

5. Summary and Concluding Remarks

In this article, we considered modeling multivariate discrete
outcomes with copulas. We explored dependence modeling in
the practical regression settings. Our main contribution is the
proposal of a nonparametric copula estimator to specify the

Figure 9. Density plot of the distances (multiplied by 1000) of different parametric
copulas.

dependence structure under discreteness when the premises
of the methodologies under continuity are violated. We also
showed its asymptotic properties. Using a simulation study, we
concluded that first, the estimator behaves better with small
bias and variance when the data are less discrete, which is
consistent with the theoretical results. Second, when used as a
diagnostic tool, the nonparametric estimator can exclude false
models easily when the dependence is high and the discreteness
level is low. The data analysis suggested in the LGPIF dataset,
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there is upper tail dependence between the claim frequencies
from BC coverage and MV coverage.

We acknowledge that many potential improvements can be
made for our study. In this article, we applied the local aver-
age approach. Local polynomial estimators can be explored
to reduce bias on the boundary. In addition, the bandwidth
selector, we proposed chooses a global bandwidth. Since for our
estimator, we have more observations at the right upper corner
than the lower left corner, the variable bandwidth in Fan and
Gijbels (1995) might be applied. These are areas for our future
work.

Supplementary Materials

The supplementary materials include proofs for theoretical results in Sec-
tion 2.3 and detailed simulation results for Sections 2.4, 3.2, and 3.3.

Acknowledgments

The authors are grateful to the reviewers for insightful comments leading to
an improved article. The work of the first two authors (Yang and Frees) was
partially funded by a Society of Actuaries’ Center of Actuarial Excellence
Grant.

References

Aitchison, J., and Ho, C. (1989), “The Multivariate Poisson-Log Normal
Distribution,” Biometrika, 76, 643–653. [707]

Bermúdez, L., and Karlis, D. (2011), “Bayesian Multivariate Poisson Models
for Insurance Ratemaking,” Insurance: Mathematics and Economics, 48,
226–236. [707]

Brown, C. E. (1998), “Multivariate Probit Analysis,” in Applied Multivariate
Statistics in Geohydrology and Related Sciences, Berlin: Springer, pp. 167–
169. [708]

Chen, S. X., and Huang, T.-M. (2007),“Nonparametric Estimation of Cop-
ula Functions for Dependence Modelling,” Canadian Journal of Statistics,
35, 265–282. [708,709]

Chib, S., and Winkelmann, R. (2001), “Markov chain Monte Carlo Analysis
of Correlated Count Data,” Journal of Business & Economic Statistics, 19,
428–435. [707]

Chiu, S.-T. (1991) “Bandwidth Selection for Kernel Density Estimation,”
The Annals of Statistics, 19, 1883–1905. [713]

Cox, D. R., and Snell, E. J. (1968), “A General Definition of Residuals,”
Journal of the Royal Statistical Society, Series B, 30, 248–275. [709]

Deheuvels, P. (1979), “La Fonction de Dépendance Empirique et ses Pro-
priétés. Un Test Non paramétrique d’Indépendance,” Acad. Roy. Belg.
Bull. Cl. Sci.(5), 65, 274–292. [708,709]

Denuit, M. and Lambert, P. (2005), “Constraints on Concordance Measures
in Bivariate Discrete Data,” Journal of Multivariate Analysis, 93, 40–57.
[717]

Fan, J., and Gijbels, I. (1995), “Adaptive Order Polynomial Fitting: Band-
width Robustification and Bias Reduction,” Journal of Computational
and Graphical Statistics, 4, 213–227. [719]

Fermanian, J. D., and Scaillet O. (2003). “Nonparametric estimation of
copulas for time series,” Journal of Risk, 5, 25–54.

Frees, E. W., Jin, X., and Lin, X. (2013), “Actuarial Applications of Multivari-
ate Two-Part Regression Models,” Annals of Actuarial Science, 7, 258–
287. [707]

Frees, E. W., Lee, G., and Yang, L. (2016), “Multivariate Frequency-Severity
Regression Models in Insurance,” Risks, 4, 1-36. [707,717]

Frees, E. W., and Valdez, E. A. (1998), “Understanding Relationships Using
Copulas,” North American Actuarial Journal, 2, 1–25. [707]

Genest, C., and Nešlehová, J. (2007), “A Primer on Copulas for Count Data,”
Astin Bulletin, 37, 475–515. [708,709]

Genest, C., Nikoloulopoulos, A. K., Rivest, L.-P., and Fortin, M. (2013),
“Predicting Dependent Binary Outcomes Through Logistic Regressions
and Meta-Elliptical Copulas,” Brazilian Journal of Probability and Statis-
tics, 27, 265–284. [708]

Haff, I. H., Aas, K., and Frigessi, A. (2010), “On the Simplified Pair-Copula
Construction–Simply Useful or Too Simplistic?” Journal of Multivariate
Analysis, 101, 1296–1310. [711]

Jiryaie, F., Withanage, N., Wu, B., and De Leon, A. (2016), “Gaussian
Copula Distributions for Mixed Data, With Application in Discrimina-
tion,” Journal of Statistical Computation and Simulation, 86, 1643–1659.
[708]

Joe, H. (1993) “Parametric Families of Multivariate Distributions With
Given Margins,” Journal of Multivariate Analysis, 46, 262–282.
[708]

(2014), Dependence Modeling with Copulas: CRC Press. [708]
Johnson, N. L., Kotz, S., and Balakrishnan, N. (1997), Discrete Multivariate

Distributions, Vol. 165: Wiley New York. [707]
Li, D. X. (1999), “On Default Correlation: A Copula Function Approach,”

available at SSRN 187289. [707]
Li, B., and Genton, M. G. (2013), “Nonparametric Identification of Copula

Structures,” Journal of the American Statistical Association, 108, 666–675.
[708]

McCullagh, P., and Nelder, J. A. (1989), Generalized Linear Models (Vol. 37).
London: CRC Press. [708]

McCulloch, C. E., and Neuhaus, J. M. (2005), Generalized Linear Mixed
Models, Hoboken: Wiley. [707]

Muthén, B. (1979), “A Structural Probit Model With Latent Variables,”
Journal of the American Statistical Association, 74, 807–811. [708]

Nelsen, R. B. (2006), An Introduction to Copulas, New York: Springer
Science & Business Media. [707]

Nikoloulopoulos, A. K. (2013), “Copula-Based Models for Multivariate
Discrete Response Data,” in Copulae in Mathematical and Quantitative
Finance, eds. P. Jaworski, F. Durante, and W. K. Härdle, Berlin: Springer,
pp. 231–249. [713]

Nikoloulopoulos, A. K., and Karlis, D. (2008), “Multivariate Logit Copula
Model With an Application to Dental Data,” Statistics in Medicine, 27,
6393–6406. [708]

(2009), “Modeling Multivariate Count Data Using Copulas,”
Communications in Statistics-Simulation and Computation, 39, 172–187.
[708]

Omelka, M., Gijbels, I., and Veraverbeke, N. (2009), “Improved Kernel Esti-
mation of Copulas: Weak Convergence and Goodness-of-Fit Testing,”
The Annals of Statistics, 37, pp. 3023–3058. [708]

Panagiotelis, A., Czado, C., and Joe, H. (2012), “Pair Copula Constructions
for Multivariate Discrete Data,” Journal of the American Statistical Asso-
ciation, 107, 1063–1072. [712]

Ruppert, D., Sheather, S. J., and Wand, M. P. (1995), “An Effective Band-
width Selector for Local Least Squares Regression,” Journal of the Amer-
ican Statistical Association, 90, 1257–1270. [713]

Scaillet, O., and Fermanian, J.-D. (2002), “Nonparametric Estimation of
Copulas for Time Series,” FAME Research Paper. [709]

Shi, P., and Valdez, E. A. (2014), “Multivariate Negative Binomial Models
for Insurance Claim Counts,” Insurance: Mathematics and Economics, 55,
18–29. [708]

Shih, J. H., and Louis, T. A. (1995), “Inferences on the Association Param-
eter in Copula Models for Bivariate Survival Data,” Biometrics, 1384–
1399. [707]

Sklar, M. (1959), Fonctions de Répartition À N Dimensions et Leurs Marges,
Université Paris 8. [707,708]

Song, P. X.-K. (2007), Correlated Data Analysis: Modeling, Analytics, and
Applications, Springer Science & Business Media. [708]

Song, P. X.-K., Li, M., and Yuan, Y. (2009), “Joint Regression Analysis of
Correlated Data using Gaussian Copulas,” Biometrics, Vol. 65, pp. 60–
68. [708]

Vuong, Q. H. (1989), “Likelihood Ratio Tests for Model Selection and Non-
Nested Hypotheses,” Econometrica, 57, 307–333. [716]

Winkelmann, R. (2000), “Seemingly Unrelated Negative Binomial Regres-
sion,” Oxford Bulletin of Economics and Statistics, 62, 553–560.
[707]



720 L. YANG, E. W. FREES, AND Z. ZHANG

Yang, L. (2017), “Copula Regression With Discrete Outcomes,” Ph.D. dis-
sertation, University of Wisconsin–Madison. [711]

Yang, X., Frees, E. W., and Zhang, Z. (2011), “A Generalized Beta Copula
With Applications in Modeling Multivariate Long-Tailed Data,” Insur-
ance: Mathematics and Economics, 49, 265–284. [708]

Zeger, S. L., and Liang, K.-Y. (1986), “Longitudinal Data Analysis for
Discrete and Continuous Outcomes,” Biometrics, 42, 121–130. [712]

Zilko, A. A., and Kurowicka, D. (2016), “Copula in a Multivariate Mixed
Discrete–Continuous Model,” Computational Statistics & Data Analysis,
103, 28–55. [708]


	Abstract
	1.  Introduction
	2.  Methodology
	2.1.  Identifiability
	2.2.  Perturbed Empirical Copula Estimator
	2.3.  Asymptotic Behavior
	2.4.  Selection of Bandwidth

	3.  Simulation Study
	3.1.  Simulation Study Design
	3.2.  Finite-Sample Performance
	3.2.1.  Count
	3.2.2.  Binary
	3.2.3.  Higher Dimension

	3.3.  Copula Specification and Diagnosis

	4.  Data Example
	4.1.  Data Summary
	4.2.  Marginal Models
	4.3.  Copula Estimation

	5.  Summary and Concluding Remarks
	Supplementary Materials
	Acknowledgments
	References


