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Symposium

Neurocognitive Development of Motivated Behavior:
Dynamic Changes across Childhood and Adolescence

Dylan G. Gee,! Kevin G. Bath,? Carolyn M. Johnson,’ Heidi C. Meyer,* Vishnu P. Murty,” “Wouter van den Bos,°
and “Catherine A. Hartley’
'Department of Psychology, Yale University, New Haven, CT 06520, 2Department of Cognitive, Linguistic, and Psychological Sciences, Brown University,
Providence, RI 02912, *Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, “Department of Psychiatry, Weill Cornell
Medicine, New York, NY 10065, SDepartment of Psychology, Temple University, Philadelphia, PA 19122, ®Department of Developmental Psychology,
University of Amsterdam, Amsterdam, Netherlands, and 7Department of Psychology, New York University, New York, NY 10003

The ability to anticipate and respond appropriately to the challenges and opportunities present in our environments is critical for
adaptive behavior. Recent methodological innovations have led to substantial advances in our understanding of the neurocircuitry
supporting such motivated behavior in adulthood. However, the neural circuits and cognitive processes that enable threat- and reward-
motivated behavior undergo substantive changes over the course of development, and these changes are less well understood. In this
article, we highlight recent research in human and animal models demonstrating how developmental changes in prefrontal-subcortical
neural circuits give rise to corresponding changes in the processing of threats and rewards from infancy to adulthood. We discuss how
these developmental trajectories are altered by experiential factors, such as early-life stress, and highlight the relevance of this research
for understanding the developmental onset and treatment of psychiatric disorders characterized by dysregulation of motivated behavior.
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Introduction

The past decades have seen a surge in research on the neurocir-
cuitry supporting motivated behavior in adulthood. Convergent
findings across species suggest that dynamic interaction between
the prefrontal cortex (PFC) and subcortical regions, including
the amygdala, hippocampus, and striatum, plays a central role in
learning to predict potential threats and rewards and determin-
ing how to respond to such environmental challenges (Phelps
and LeDoux, 2005; Haber and Knutson, 2010; Stuber et al., 2011;
Namburi et al., 2015; Beyeler et al., 2016; Burgos-Robles et al.,
2017). At the same time, a convergent literature has elucidated
pronounced changes in the structure and function of these cir-
cuits from childhood to adulthood (Murty et al., 2016; Casey et
al., 2017), highlighting the protracted development of structural
connections between the PFC and subcortical regions (Barnea-
Goraly et al., 2005; Lebel et al., 2012; Simmonds et al., 2014;
Achterberg et al., 2016), as well as shifting functional dynamics
within this circuitry (Gee et al., 2013b; Betzel et al., 2014; Swartz
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et al., 2014; Fareri et al., 2015; Jalbrzikowski et al., 2017). These
findings are consistent with the marked changes in motivated
learning and decision-making that occur across development;
however, to date, we have only a provisional understanding of
how these behavioral changes relate to developmental changes in
the brain.

In this review, we present recent research that has begun to
elucidate both neural and cognitive mechanisms that give rise to
shifts in threat and reward processing from childhood to adult-
hood. Building on an extensive literature on aversive condition-
ing and extinction in humans and animal models in adulthood,
we first discuss how the neurocognitive processes that underpin
threat prediction and reactive behavioral responses to anticipated
threats change over the course of development. In light of exten-
sive evidence for the central role of dopamine (DA) in the mod-
ulation of many facets of reward processing, we next discuss how
developmental changes in the dopaminergic system across ado-
lescence might relate to changes in reward-motivated behavior
during this developmental period (Fig. 1). The threats an indi-
vidual may face and the experiences that they deem rewarding
will vary as a function of developmental stage, as well as across
individuals. Just as motivated behavior may shift to meet the
needs of a particular developmental challenge, alterations in the
species-expected environment may demand adaptations in mo-
tivated behavior. In the third section of this review, we emphasize
how changes in motivated behavior over the course of develop-
ment may represent experience-dependent adaptations to the
demands of one’s environment or developmental stage, and dis-
cuss how atypical experiences (e.g., exposure to early-life stress)
might alter the normative developmental trajectory of motivated
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Figure 1.

Neurocognitive development of motivated behavior. Prefrontal-subcortical circuitry and dopaminergic signaling undergo profound changes across childhood and adolescence

(prefrontal cortex, PFC; nucleus accumbens, NAc; substantia nigra, SN; ventral tegmental area, VTA). These changes can interact with, and be influenced by, biological and environmental factors to
alter trajectories of threat- and reward-motivated behavior in ways that alter risk for the emergence of psychopathology. Circuitry diagram adapted with permission from Sinclair et al. (2014).

behavior. Childhood and adolescence are periods of increased
risk for psychiatric disorders (Kessler et al., 2007; Paus et al.,
2008), the majority of which are characterized by core deficits in
the ability to accurately anticipate and respond adaptively to po-
tential threats and rewards. In the final section, we highlight how
alterations in the normative trajectory of prefrontal-subcortical
circuitry and motivated behavior may contribute to risk for psy-
chiatric disorders at specific developmental stages and the impli-
cations of this research for optimizing clinical interventions
during development.

Neurocircuitry of threat processing and its development

The ability to learn that cues or contexts signal potential threat,
and to modify these learned associations as the environment
changes, is critical for adaptive function. These abilities and their
underlying neural mechanisms develop over time. Studies in ro-
dents and humans have yielded a detailed model of the neurocir-
cuitry underlying the acquisition and extinction of aversive
learning in adulthood (Hartley and Phelps, 2010; Milad and
Quirk, 2012). This work highlights the central role of the
amygdala in acquisition, storage, and maintenance of aversive
learning (Fanselow and LeDoux, 1999; Maren and Quirk, 2004),
whereas extinction learning and retention involve dynamic inter-
actions between the amygdala, the infralimbic (IL) and prelimbic
(PL) regions of PFC, and the hippocampus (Maren and Quirk,
2004; Sierra-Mercado et al., 2011). Specifically, during adult-
hood, reciprocal connections between the amygdala and PL (for
which the dorsal anterior cingulate is the proposed human ho-
molog) drive the expression of conditioned responses to threat,
and their reciprocal connections with the IL (for which the ven-
tromedial PFC is the proposed human homolog) can inhibit the
expression of conditioned responses to threat (Sotres-Bayon and
Quirk, 2010). Mature rodents and humans show robust aversive
learning, including avoidance, freezing, and elevated physiologi-

cal reactivity to stimuli that have been paired with shock (e.g.,
Blanchard and Blanchard, 1969; Bolles and Collier, 1976). In
adulthood, the extinction of conditioned responses is subject to
relapse (i.e., the return of conditioned responding even after ex-
tinction) through renewal, reinstatement, and spontaneous re-
covery (e.g., Bouton, 2002). These forms of relapse indicate that,
in mature animals, the aversive memory is not forgotten, even if
the behavioral expression of fear has been attenuated.
Consistent with marked changes in prefrontal-subcortical cir-
cuitry, aversive learning undergoes substantial change across
childhood and adolescence. Aversive conditioned responses are
largely suppressed in young rat pups, before postnatal day (PND)
10 (Rudy and Cheatle, 1977), although the ability to feel pain and
detect an aversive stimulus are both intact (Stehouwer and
Campbell, 1978; Collier and Bolles, 1980; Emerich et al., 1985;
Barr, 1995). Unlike avoidance or freezing behaviors observed in
adults, pups exhibit approach behaviors toward odors that have
been paired with a shock (Camp and Rudy, 1988; Sullivan et al.,
2000). These findings have been taken to reflect a dominance of
infant-caregiver attachment learning early in life (Landers and
Sullivan, 2012), consistent with the role of maternal presence in
suppressing rat pups’ aversive learning until approximately PND
15 (Stanton et al., 1987; Suchecki et al., 1993; Moriceau and Sul-
livan, 2006). Following PND 10 and coinciding with the capacity
for learning-induced synaptic plasticity in the amygdala, rats gain
the ability to acquire aversive conditioned responses when not in
the presence of the mother (Thompson et al., 2008; Landers and
Sullivan, 2012). During the juvenile stage of development, al-
though PL activity increases in response to aversive conditioned
stimuli, inactivation of PL does not attenuate conditioned re-
sponding until adolescence (Monk, 2008; Chan et al., 2011; Li et
al., 2012). Moreover, the inverse activity of PL and IL that is
observed in adult aversive learning and regulation (Gilmartin
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and McEchron, 2005; Corcoran and Quirk, 2007; Quirk and Mu-
eller, 2008) emerges after the juvenile period (Kim et al., 2009).
In both humans and rodents, memories for aversive associa-
tions acquired during infancy (before PND 18 in rodents) are not
as robust or persistent as those acquired later in life and are sus-
ceptible to forgetting through a process known as infantile am-
nesia (Campbell and Campbell, 1962; Campbell and Spear, 1972;
Hayne, 2004; Kim and Richardson, 2007; Josselyn and Frankland,
2012; Li et al., 2014; Mullally and Maguire, 2014; Alberini and
Travaglia, 2017). Moreover, during the juvenile stage, extinction
learning is not subject to the forms of relapse typically observed in
adults (renewal, reinstatement, and spontaneous recovery), sug-
gesting that extinction learning during this stage may yield “un-
learning” or erasure of the original aversive association (Yap and
Richardson, 2007; Gogolla et al., 2009; Kim et al., 2009). The
closing of this window for memory erasure through extinction
coincides with changes in extracellular matrix chondroitin
sulfate proteoglycans within the juvenile amygdala after which
aversive memories are protected from erasure by perineuronal
nets (Gogolla et al., 2009; Duvarci and Pare, 2014), as well as
hippocampal-dependent changes mediating the closure of the
window for infantile amnesia (Alberini and Travaglia, 2017).
During adolescence, aversive learning appears to be persis-
tently retained and easily generalized (Morrow et al., 1969;
Hefner and Holmes, 2007; McCallum et al., 2010; Kim et al.,
2011; Pattwell et al., 2012; D. C. Johnson and Casey, 2015a; Baker
et al., 2016). Adolescent rodents exhibit diminished extinction
learning relative to younger and older individuals (McCallum et
al., 2010; Kim et al., 2011; Pattwell et al., 2012), with impaired
retention of extinction memory also apparent during adoles-
cence in rats (McCallum et al., 2010; Kim et al., 2011; Baker and
Richardson, 2015). Protracted development of prefrontal regions
(PL and IL), which continues well into adolescence (Giedd et al.,
1996, 1999; Cunningham et al., 2002; Gogtay et al., 2004; Casey et
al., 2005; Chan et al., 2011), may limit the capacity for prefrontal
regulation of the amygdala and hippocampus. Indeed, amygdala
potentiation is observed following cued aversive conditioning
during adolescence in mice (Pattwell et al., 2011; Saul et al.,
2014). Interestingly, connectivity between the amygdala and PL is
stronger in adolescence than in preadolescence or adulthood,
marked by an increased number of axonal projections and a surge
in dendritic spine formation in PL (Pattwell et al., 2016). As a
result, a positive feedback loop may be maintained in this circuit
that mediates the persistent expression of conditioned responses.
Although the amygdala appears to be similarly involved in extinc-
tion across development, in rats, IL is not required for extinction
before PND 21 (Kim et al., 2009). This suggests a change in the
connectivity between amygdala and IL that emerges later in de-
velopment (Arruda-Carvalho et al., 2017) to support adult-like,
extinction learning. Moreover, bidirectional PL-amygdala syn-
apses mature earlier than IL-amygdala synapses (Chan et al.,
2011), and adolescent rodents exhibit blunted IL activity during
extinction (Pattwell et al., 2012; Cruz et al., 2015), suggesting
potential neurobiological mechanisms underlying the resistance
of conditioned responses to extinction during adolescence.
Relative to cued conditioning, contextual conditioning in ro-
dents emerges later in development (Rudy, 1992, 1993; McCal-
lum et al., 2010; Pattwell et al., 2011; Schiffino et al.,, 2011;
Jablonski et al., 2012; Akers et al., 2014). This developmental
trajectory parallels the protracted maturation of the hippocam-
pus (Raineki et al., 2010; Akers et al., 2014), consistent with its
central role in the processing of contextual information (Maren
etal., 2013). Despite intact contextual conditioning in preadoles-
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cents, freezing in a conditioned context is suppressed during ad-
olescence (Pattwell et al., 2011). This developmental difference is
likely due to a temporary inability to retrieve, rather to encode,
the contextual aversive memory during adolescence because mice
are able to retrieve and express the contextual aversive memory as
they transition out of adolescence and into adulthood, coinciding
with an increase in basal amygdala activity (Pattwell et al., 2011).
Moreover, even previously consolidated aversive memories ac-
quired during the juvenile period are temporarily suppressed
during adolescence.

Research on aversive learning during human infancy and
childhood has been more limited; however, consistent with evi-
dence in rodents, humans exhibit substantial changes in aversive
learning across development. Aversive learning has been ob-
served soon after birth, with both infants (Wickens and Wickens,
1940; Ingram and Fitzgerald, 1974) and toddlers (Gao et al.,
2010) exhibiting extinction and relapse effects. However, re-
sponding to aversive conditioned stimuli increases across child-
hood (Gao et al., 2010; Glenn et al., 2012; Jovanovic et al., 2014;
Michalska et al., 2016) and differs between adolescents and adults
(Lauetal., 2011), suggesting that the underlying aversive learning
process continues to mature. As in rodents, the adolescent period
in humans is marked by diminished extinction learning relative
to younger and older individuals (Pattwell et al., 2012; D. C.
Johnson and Casey, 2015b).

Consistent with changes in behavior, the neural circuitry
underlying aversive learning in humans also undergoes develop-
mental changes. The amygdala exhibits early structural (Hum-
phrey, 1968; Giedd et al., 1996; Ulfig et al., 2003; Payne et al.,
2010) and functional (Graham et al., 2016; Rogers et al., 2017;
Gabard-Durnam et al., 2018) maturation; however, its function-
ing shifts across human development (Hare et al., 2008; Decety et
al., 2012; Gee et al., 2013b; Swartz et al., 2014; Vink et al., 2014;
Silvers et al., 2015). The amygdala responds differentially to
threat cues as early as infancy in humans (Graham et al., 2013).
Although aversive learning depends primarily on the amygdala
early in life, a more complex circuit, including the hippocampus
and PFC, supports aversive learning later in human development
(Lau et al., 2011; Britton et al., 2013), consistent with a similar
shift in rodents (Kim et al., 2009; Li et al., 2012). Moreover, the
processes by which threat reactivity is regulated change by devel-
opmental stage. As with rodents, caregivers play a central role in
suppressing threat reactivity early in life when regulatory connec-
tions are still maturing. Specifically, in humans, parental pres-
ence reduces the hypothalamic-pituitary-adrenal axis response
and amygdala reactivity to stress during childhood (Gunnar and
Donzella, 2002; Ahnert et al., 2004; Feldman et al., 2010; Seltzer et
al., 2012; Gee et al., 2014; Hostinar et al., 2014), but not during
adolescence (Gee et al., 2014; Hostinar et al., 2015). Despite di-
minished extinction learning in adolescence, longer-term reduc-
tion of conditioned responding is achieved when methods rely
less on the PFC (e.g., extinction during memory reconsolidation,
at which time a reactivated memory can be updated), than with
PFC-dependent methods (e.g., extinction) (D. C. Johnson and
Casey, 2015b). These findings correspond with continued devel-
opment of connectivity between the hippocampus, amygdala,
and PFC across childhood and adolescence in humans, both
structurally (Lebel etal., 2012; Swartz et al., 2014; Gee et al., 2016)
and functionally (Perlman and Pelphrey, 2011; Decety et al,
2012; Qin et al., 2012; Gee et al., 2013b; Gabard-Durnam et al.,
2014; Vink et al., 2014; Jalbrzikowski et al., 2017).

While this section focused primarily on developmental
changes in the acquisition and extinction of Pavlovian reactive
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responses, a more recent literature in adult humans and animal
models has begun to characterize the neurocognitive processes
involved in the learning of threat-motivated instrumental actions
that are effective at preventing aversive outcomes (LeDoux and
Daw, 2018). Functional integration between the amygdala, stria-
tum, and PFC appears to be critically involved in such active
avoidance learning (Moscarello and LeDoux, 2013; Bravo-Rivera
et al., 2014; Collins et al., 2014; Boeke et al., 2017; Diehl et al.,
2018). An important area of future study will be to elucidate how
changes within this circuitry modulate the learning and expres-
sion of threat-motivated instrumental actions across development.

Neurocircuitry of reward processing and its development
Convergent evidence in adult humans and animal models indi-
cates a central role for the DA system in reward processing. DA
neurons project broadly throughout the striatum, PFC, hip-
pocampus, and the amygdala, and exhibit heterogeneity in recep-
tor types and cotransmitters, conferring diverse mechanisms for
influencing motivated behavior (Lammel et al., 2014; Hu, 2016).
Consistent with this complex organization, DA has been impli-
cated in a broad array of reward-related processes in adulthood,
including learning the value of stimuli and actions (Schultz,
2015), determining how much time, effort, or risk-taking is war-
ranted for a potential outcome (Salamone and Correa, 2012), and
modulating memory for reward-associated events (Shohamy and
Adcock, 2010).

The DA system also undergoes significant changes across de-
velopment (Teicher et al., 1995; Galvéan, 2013; Spear, 2013). Al-
though findings are somewhat mixed (Galvan, 2013), evidence in
rodents suggests that DA receptor binding and tonic DA concen-
trations within the striatum, a region centrally implicated in re-
ward learning (Haber and Knutson, 2010), peak in adolescence
(Tarazi et al., 1998; Badanich et al., 2006; Philpot et al., 2009).
Corroborating these findings in animals, DA receptor density in
the striatum is highest in postmortem adolescent human brains,
relative to postmortem child and adult brains (Haycock et al.,
2003), and adolescents exhibit greater striatal engagement during
reward processing than children and adults in neuroimaging
studies (Silverman et al., 2015). Notably, the adolescent peak in
DA availability and reward-related activation is paralleled by typ-
ical adolescent behaviors, such as increased exploration, novelty-
seeking, and risk-taking in both primates and rodents (Laviola et
al., 2003; Spear, 2013), as well as changes in many laboratory
measures of reward-related learning and decision-making (Hart-
ley and Somerville, 2015). However, at present, we lack a clear
mechanistic understanding of how developmental changes in DA
signaling across adolescence alter reward processing.

The activity of DA neurons has been observed to closely ap-
proximate a reward prediction error (RPE) signal, a fundamental
reward learning computation that encodes when rewards exceed
or fall short of one’s current expectation (Schultz et al., 1997).
Striatal activity correlating with RPE signals has been observed
from childhood onwards in several neuroimaging studies (Gal-
van et al., 2006; van den Bos et al., 2012; Keren et al., 2018). These
signals likely support the early-developing ability to associate cues
and actions with their reward values, which is evident from the ear-
liest stages of postnatal development (Johanson and Hall, 1979).
Although many studies have shown enhanced striatal responses to
reward in adolescence (Silverman et al., 2015), and some find that
RPE signals are specifically enhanced (Cohen et al., 2010) and asso-
ciated with better learning performance (Peters and Crone, 2017)
during this period, this pattern has not been observed consistently
across reward learning tasks (van den Bos et al., 2012; Christakou et
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al., 2013). Thus, the significance of adolescents’ increased striatal
sensitivity to reward for learning remains unclear.

Dopaminergic networks extending beyond the striatum also
contribute to reward processing. Bidirectional projections con-
nect DA nuclei with the PEC and hippocampus, which enable DA
signaling to be modulated by current goals and environmental
features (e.g., novelty) to which the hippocampus and PFC are
sensitive (Goto and Grace, 2005; Sesack and Grace, 2010). These
connections between DA neurons with the PFC and hippocam-
pus also facilitate functions, such as working memory, attention,
and episodic memory (Seamans and Yang, 2004; Shohamy and
Adcock, 2010). Projections from DA nuclei to the striatum can
organize corticothalamic circuits (Haber, 2003), providing a
mechanism by which reward signals can guide higher-order
learning and decision-making (Balleine and O’Doherty, 2010;
Botvinick, 2012). To date, the developmental trajectories of this
broader circuitry remain poorly characterized. However, the hip-
pocampus and PFC have protracted maturation into early adult-
hood (Giedd, 2004; Ghetti and Bunge, 2012) and exhibit changes
in the excitation-inhibition balance during adolescence that sug-
gest ongoing refinement of the function of these circuits
(O’Donnell, 2010; Luna et al., 2015; Gomes et al., 2016).

Recent studies have begun to characterize the development of
behaviors that require integration across these prefrontal-
striatal-hippocampal circuits by administering more complex
tasks that require learning more than simple reward associations.
These studies suggest that the use of structured knowledge to
explore or plan how best to obtain current or future rewards (van
den Bos et al., 2015; Decker et al., 2016; Somerville et al., 2018),
and the use of counterfactual reward information to guide
choices (Palminteri et al., 2016), increase gradually from child-
hood into young adulthood. This gradual developmental emer-
gence is consistent with evidence that these cognitive processes
are PFC-dependent in adults (Daw et al., 2011; Badre et al., 2012;
Donoso et al.,, 2014) and with the protracted development of
prefrontal-subcortical connectivity (Casey et al., 2016).

Notably, other aspects of reward learning appear to be facili-
tated in adolescence relative to adulthood. A recent study found
that adolescents showed better learning in a probabilistic reward
learning task, and that their episodic memory for rewarding out-
comes was related to heightened hippocampal RPE signals and
greater functional connectivity between the hippocampus and
the striatum during reward receipt (Davidow et al., 2016). This
finding is consistent with recent suggestions that the functional
development of the DA system during adolescence, through its
projections to both the striatum and the hippocampus, may fa-
cilitate memory for reward-associated experiences during this
period (Murty et al., 2016). These early studies provide burgeon-
ing evidence of developmental changes in reward processing
across multiple learning systems, and suggest that network inte-
gration between the striatum, PFC, and hippocampus across
development contributes to these shifts in learning and decision-
making. This work underscores the need for further research
regarding the relationship between the myriad changes in adoles-
cents’ reward-motivated behavior and the function of these neu-
ral circuits, and examining the mediating role of DA systems.

Accumulating evidence suggests that pubertal hormones are
also important modulators of adolescent reward processing. In-
deed, several studies in humans have reported a positive relation-
ship between pubertal testosterone and risk-taking (Forbes et al.,
2010; Op de Macks et al., 2011; Cardoos et al., 2017) and impul-
sivity (Laube et al., 2017). Moreover, recent studies have found
that activation in the ventral striatum was positively correlated
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with salivary testosterone (Op de Macks et al., 2011; Braams et al.,
2015), suggesting that there may be direct modulation of DA
pathways by pubertal hormones. However, this hypothesis is only
partially supported by findings in the animal literature. For in-
stance, pubertal changes in gonadal hormones do not play a role
in adolescent DA receptor overproduction (Andersen et al.,
2002). Moreover, animal studies primarily identify the dorsal,
not ventral, striatum as a key target of pubertal hormones (Mat-
thews et al., 2013; Sinclair et al., 2014; Laube and van den Bos,
2016). In addition, these studies show that increases in pubertal
hormones typically lead to a decrease in DA function (Stamford,
1989; Matthews et al., 2013; Purves-Tyson et al., 2014). Given the
robust connectivity of the dorsal striatum to the PFC, it is possi-
ble that the influence of pubertal hormones on DA signaling
specifically affects prefrontal influence over reward processing.
Thus, while many details remain unclear, the extant animal liter-
ature suggests that pubertal hormones do impact the DA path-
way. An important open question is how this hormonal
modulation of DA in adolescence specifically influences reward
processing and motivation.

Future research will be essential for establishing a mechanistic
understanding of the ways in which specific developmental
changes in prefrontal-striatal-hippocampal circuitry and DA sig-
naling influence the changes in reward processing that character-
ize transitions from childhood to adulthood.

Effects of early-life stress on threat and reward processing
The early postnatal period sets the foundation for socioemotional
and cognitive development. Elevated neuroplasticity renders the
young brain exquisitely sensitive to environmental stimuli, such
that early experiences can have lifelong effects on cortical-
subcortical circuitry and behavior (McEwen, 2003; Hensch, 2005;
Lupien et al., 2009; Shonkoff et al., 2012). Early in life, stable and
responsive caregiving is one of the strongest species-expected ex-
periences for altricial mammals (Tottenham, 2012). Caregiver-
offspring relationships are essential for normative brain and
behavioral development, rendering disruptions of early caregiv-
ing a profound stressor (Tottenham, 2012; Kok et al., 2015;
McLaughlin et al., 2015; Bernier et al., 2016; Callaghan and Tot-
tenham, 2016a; Gee, 2016). Even relatively brief alterations in
caregiving have been associated with deleterious long-term phys-
ical and mental health outcomes (Heim and Nemeroff, 2001;
Sanchez et al., 2001; Anda et al., 2006; Zeanah et al., 2009; Conti
et al., 2012).

In humans, early-life adversity has been associated with myr-
iad cognitive and socioemotional impairments, including re-
duced cognitive functioning (Nelson et al., 2007), delayed
academic performance (Loman et al., 2009), alterations in asso-
ciative learning (Hanson et al., 2017; Kamkar et al., 2017; Sheri-
dan et al., 2018), and deficits in cognitive flexibility, working
memory, and behavioral inhibition (Richards and Wadsworth,
2004; Bos etal., 2009; McDermott et al., 2012; Hanson et al., 2013;
Harms et al., 2018). In the socioemotional domain, early-life
stress is associated with social dysfunction, anxiety and depres-
sive symptoms, and reduced ability to suppress attention to po-
tential threat in favor of goal-directed behavior (Tottenham et al.,
2010,2011; Lawler et al., 2014; Burkholder et al., 2016; Krugers et
al., 2017; Sheridan et al., 2018). These effects are mediated by
altered patterns of neural structure, function, and connectivity in
prefrontal-subcortical circuitry (Edmiston et al., 2011; Gee et al.,
2013a; Hanson et al., 2013; Herringa et al., 2013; Bick et al., 2015;
Thomason et al., 2015; Chen and Baram, 2016; Teicher et al.,
2016; Fareri et al., 2017; Kaiser et al., 2018), which has a high
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density of glucocorticoid receptors (Woolley et al., 1990; Honk-
aniemi et al., 1992; De Kloet et al., 1998; Plotsky et al., 2005;
Lupien et al., 2009; Wang et al., 2014). Changes in volume of the
PEC, hippocampus, and amygdala have been identified following
early-life stress (Mehta et al., 2009; Tottenham et al., 2010; van
Harmelen et al., 2010; Luby et al., 2013; Hanson et al., 2015;
Hodel et al., 2015; McLaughlin et al., 2016), and these alterations
are associated with depression and anxiety symptoms
(Vythilingam et al., 2002; Frodl et al., 2010; Tottenham et al.,
2010; Bick et al., 2017). In parallel to structural changes, early-life
stress drives altered patterns of brain activation, with evidence for
hypoactivation in the PFC, hippocampus, and ventral striatum
(Mehta et al., 2010; Goff et al., 2013; van Harmelen et al., 2014;
Liberzon et al., 2015; Hanson et al., 2016), and hyperactivation in
the amygdala (Tottenham et al., 2011; Gee et al., 2013a).

Given ethical considerations that preclude the direct manip-
ulation of the early childhood environment in humans, animal
models have provided insight into the causal relationship be-
tween early-life stress and long-term behavioral, anatomical,
neurochemical, and hormonal changes. Rodents exposed to
early-life stress display similar behavioral phenotypes as those
observed in humans, including alterations in cognitive function-
ing and responding to threat and reward. More specifically, ro-
dent studies have demonstrated consequences of early-life stress
that include deficits in working memory (Brenhouse and Ander-
sen, 2011; Yang et al., 2015; Grassi-Oliveira et al., 2016), altered
reward processing (Fuentes et al., 2018), reduced cognitive flex-
ibility (Powell et al,, 2015; Thomas et al., 2016), increased
anxiety-like behavior (Kalinichev et al., 2002; Romeo et al., 2003),
and altered social behavior (Kikusui and Mori, 2009).

As in humans, early-life stress in rodents leads to long-term
changes in prefrontal-subcortical circuitry. Early-life stress or re-
peated stimulation of the hypothalamic-pituitary-adrenal-axis
through pharmacological means is associated with diminished
cell proliferation and increased cell death in the hippocampus
(Gould et al., 1991a, b, 1992; Dachir et al., 1993; Cameron and
Gould, 1994; Gould et al., 1997, 1998; Gage et al., 1998; Tanapat
etal., 1998) and dendritic arbor atrophy and decreased dendritic
spine plasticity in the hippocampus and PFC (Woolley et al.,
1990; Watanabe et al., 1992; Magarifios et al., 1998; Chen et al.,
2008; Liston and Gan, 2011; Chen et al., 2013; Yang et al., 2015).
Recent evidence suggests that early-life stress may alter the typical
trajectory of adolescent PFC synapse overproduction and prun-
ing (C. M. Johnson et al., 2016) to prematurely limit plasticity. In
addition, several studies indicate reductions in PFC parvalbumin
protein or cell labeling (Brenhouse and Andersen, 2011; Holland
et al., 2014; Powell et al., 2015; Grassi-Oliveira et al., 2016), al-
though results vary depending on the timing and duration of the
stress paradigm, sex of the animal, and subregion of the PFC.
Amygdala connectivity, structure, and function are also altered
by early-life stress in rodents (Caldji et al., 2000; Sabatini et al.,
2007; Malter Cohen et al., 2013; Yan et al., 2017; F. K. Johnson et
al., 2018), yielding amygdala hyperactivity that persists even after
termination of the stressor and the maturation of PFC, parallel-
ing observations in humans (Malter Cohen et al., 2013).

Given evidence that early-life stress can shift the timing of
prefrontal-subcortical development, the “stress acceleration hy-
pothesis” posits that early-life stress leads to the accelerated de-
velopment of neural and behavioral trajectories for aversive
learning (e.g., Callaghan and Tottenham, 2016b). Rodents ex-
posed to early-life stress exhibit accelerated development of the
hippocampus (i.e., earlier maturation of parvalbumin interneu-
rons, precocious synaptic development, and earlier onset of my-
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elination) and earlier emergence of the inhibition of contextual
conditioned responding (Bath et al., 2016). Similarly, early-life
stress in rodents is followed by accelerated trajectories of cued
conditioning (Sullivan et al., 2000; Moriceau et al., 2009; Cal-
laghan and Richardson, 2011; Cowan et al., 2013) that have been
associated with precocious engagement of the basolateral
amygdala during the acquisition of aversive learning (Moriceau
etal., 2004; Moriceau and Sullivan, 2006). Earlier structural mat-
uration of the amygdala (Ono et al., 2008) and PFC (Muhammad
etal., 2012) are also associated with early-life stress in rodents. In
humans, early-life stress is followed by earlier emergence of
adult-like functional connectivity between the amygdala and
PFC (Gee et al, 2013a) and the recruitment of broader
hippocampal-amygdala-PFC circuitry during aversive learning
(Silvers et al., 2016). Paralleling findings in rodents (Moriceau et
al., 2004, 2006), the earlier maturation of frontoamygdala cir-
cuitry in humans was mediated by cortisol levels (Gee et al,
2013a), suggesting that early-life stress may accelerate prefrontal-
subcortical development via modifications of the hypothalamic-
pituitary-adrenal axis (e.g., Ruttle et al., 2015). Changes in the
timing of circuit maturation may confer initial benefits as an
ontogenetic adaptation to meet the needs of the developing or-
ganism in an adverse environment (e.g., Gee et al., 2013a); how-
ever, there are likely to be long-term consequences of altered
developmental timing. Moreover, much remains unknown
about the nature of alterations in timing, such as whether they
reflect acceleration to an adult-like state or premature closure of
a sensitive period in development.

Alterations in prefrontal-subcortical circuit development
likely play an important mediating role in the pathway from
early-life stress to later psychopathology (Green et al., 2010; Kes-
sler et al., 2010). Importantly, behavioral and clinical phenotypes
following early-life stress can vary across individuals and do-
mains of functioning (e.g., Rutter and O’Connor, 2004). The
nature of stress exposure (e.g., Sheridan and McLaughlin, 2014)
and its timing relative to specific sensitive periods of neuroplas-
ticity (e.g., Tottenham and Sheridan, 2009; Gee and Casey, 2015)
may be critical determinants of long-term effects. Future research
will be essential to delineate the dimensions of stress exposure
and neurobiological and environmental factors that promote risk
versus resilience following early-life stress.

Clinical implications

Deficits in motivated behavior are core features of psychiatric
disorders, including depression, anxiety, bipolar disorder,
schizophrenia, and substance use disorders. Each of these disor-
ders is characterized by alterations in the capacity to appropri-
ately predict and respond to threats or rewards in the
environment (e.g., Dillon et al., 2014). Such deficits are consis-
tent with observed abnormalities in prefrontal-subcortical cir-
cuitry across many forms of psychopathology (Rauch et al., 2003;
Casey et al., 2007; Monk, 2008; Goldstein and Volkow, 2011;
Arnsten and Rubia, 2012; Taylor et al., 2012; Brotman et al., 2014;
Heller, 2016; J. A. Johnston et al., 2017) and with evidence that
effective treatments act on this same circuitry (Goldapple et al.,
2004; Ressler and Mayberg, 2007; Goldin et al., 2013).

The majority of psychiatric disorders emerge before adult-
hood (Kessler et al., 2007). Understanding neurodevelopmental
changes in prefrontal-subcortical circuitry and their role in both
the emergence of illness onset as well as treatment efficacy is
critical to reducing the substantial burden of psychiatric disor-
ders. The developing brain may be particularly vulnerable to cer-
tain forms of psychopathology at specific maturational stages. As
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one example, 11in 5 adolescents has a psychiatric disorder that will
persist into adulthood (Kessler et al., 2005). The confluence of
neurodevelopmental state, hormonal changes and puberty,
changes in stress reactivity (Romeo et al., 2006; Foilb et al., 2011),
and increases in social demands may render adolescents particu-
larly vulnerable to disruption in reward- or threat-motivated
behavior (Ernst et al., 2009; Casey et al., 2016). Heightened sen-
sitivity to rewards, increases in novelty-seeking, and enhanced
exploratory behavior during adolescence are likely to serve adap-
tive functions, in part promoting transitions to adult roles. How-
ever, individual differences that predispose certain adolescents to
vulnerability may interact with this developmental stage in ways
thatincrease risk for disorders, such as substance use (e.g., Cham-
bers et al., 2003), depression (e.g., Silberg et al., 1999), and anxi-
ety (e.g., Gee et al., 2016).

The biological state of the brain at distinct developmental
stages may have direct implications for optimizing treatments for
these disorders in children and adolescents. Although the major-
ity of treatments for youth are based on research in adults,
pronounced changes during brain development suggest that
mechanisms of illness and treatment are likely to vary across
the lifespan (Lee et al., 2014). Integrating the neuroscience of
the developing brain and motivated behavior with research
on clinical interventions may enhance treatment outcomes
during development. For example, in the domain of pediatric
anxiety disorders, evidence-based treatments, such as cognitive-
behavioral therapy and selective serotonin reuptake inhibitors,
have proven effective (e.g., Walkup et al., 2008), yet recent studies
highlight the need for enhanced clinical efficacy (e.g., Ginsburg et
al., 2018). Protracted development of the regulatory connections
between the PFC and amygdala may constrain mechanisms of
anxiety reduction during childhood or adolescence (e.g., Pattwell
et al., 2012), suggesting potential avenues to optimize interven-
tions via approaches that are less dependent on the PFC (e.g.,
D. C. Johnson and Casey, 2015b). Future research that aims to
optimize treatment based on the developing brain and state of
threat- and reward-motivated behavior in childhood and adoles-
cence may be especially useful for informing the timing and types
of intervention that will be most effective at specific developmen-
tal stages.

In conclusion, dynamic changes in prefrontal-subcortical cir-
cuitry across childhood and adolescence support the develop-
ment of motivated behavior. Unique developmental stages
require individuals to flexibly respond and adapt to distinct en-
vironmental challenges and opportunities. Cross-species evi-
dence demonstrates that experiential inputs actively shape the
development of prefrontal-subcortical circuitry, and stress early
in life can influence the structure, function, and maturational
timing of this circuitry. Alterations in prefrontal-subcortical in-
teractions likely contribute to deviations from the normative de-
velopmental trajectory of motivated behavior and confer risk for
the myriad psychiatric disorders characterized by deficits in
threat and reward processing. Future investigations that focus on
elucidating brain-behavior relationships across development
will be essential to understanding how prefrontal-subcortical
maturation drives the development of motivated behavior and
informing interventions that target deficits in threat- and
reward-motivated behavior at specific developmental stages in
psychopathology.
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