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Abstract
In a large-scale field experiment in 18 basins in a three-year old constructed wetland (6 ha) in the Netherlands, we analyzed a wide
range of environmental variables, grouped into variable groups, to determine the combined direct effect of the environmental
variables and the resulting decomposer community on decomposition rates of standing litter biomass in newly constructed
wetlands. The variability among the experimental units could only to a limited degree be explained by linear combinations of
all 54 possible predictor variables (30 and 23% of variation explained after 6 and 12 months of decomposition). Moreover,
models for decomposition after 6 months could not predict decomposition after 12 months. The poor predictions by our models
are probably due to (sometimes large) variations in the predictor variables but small differences in decomposition rates between
the different basins. Based on our results it seems that decomposition of standing litter biomass in newly constructed wetlands is
relatively uniform when considered in time and space, with low explanatory power by variable groups from biotic and abiotic
variables. Normally one would expect differences in decomposition rates with differing environments, but counterintuitively in
newly constructed wetlands these differences are small.

Keywords Phragmites australis . Decomposer community . In situ experiment . All-possible-subsets regression

Introduction

Most newly constructed wetlands are used for water treatment
and habitat restoration for wildlife (Fennessy et al. 1994;

Vymazal 2007; Zhao et al. 2015). To understand the function-
ing of newly constructed wetlands in terms of nutrient cycling,
it is important to quantify production and decomposition rates.
However, most studies focus on aboveground plant produc-
tion rather than on decomposition of this material (as indicator
number of results in Web of Science topic search:
Bconstructed wetland^ – 3623, Bconstructed wetland^ AND
production AND (macrophyte OR plant OR vegetation OR
biomass) – 240, Bconstructed wetland^ AND decomposition
AND (macrophyte OR plant OR vegetation OR biomass) –
61). Furthermore, since newly constructed wetlands show
large variability in both abiotic and biotic conditions, follow-
ing successional patterns over time, the drivers of decompo-
sition rates in these systems may differ from those in devel-
oped systems.

When designing and constructing new wetlands, one of the
well-known driving forces for production and decomposition,
i.e., nutrient availability, can be influenced by selecting spe-
cific types of sediment and water, for example rainwater with
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lower nutrient availability or more nutrient-rich water from
nearby agricultural fields. A high availability of nutrients from
surface water or eutrophic sediments potentially leads to high
biomass production and higher availability of nutrients in the
litter (Tanner 1996; Hoagland et al. 2001; Lee and
Bukaveckas 2002; Fennessy et al. 2008; Trinder et al. 2009;
Emsens et al. 2016a, b). However, decomposition rates will
also be high (Rejmánková and Houdková 2006; Sarneel et al.
2010; Emsens et al. 2016a), since high plant tissue nutrient
levels will increase decomposition (Serna et al. 2013) of the
most easily degradable water-soluble compounds and non-
lignified carbohydrates (Berg and Laskowski 2005). In con-
trast, high concentrations of N can also decrease decomposi-
tion rates of lignified carbohydrates and lignin, which are
decomposed in later stages, due to their inhibiting effect on
lignin degrading enzymes (Berg and Laskowski 2005). When
environmental conditions are highly eutrophic, decomposition
rates can become uncoupled from litter quality indicators
(Emsens et al. 2016a, b), possibly coinciding with a shift in
microbial decomposer community composition from a spe-
cialization in degradation of recalcitrant organic matter to
dominance of opportunistic competitors (Moorhead and
Sinsabaugh 2006).

This other important driving factor, the composition of the
decomposer community of invertebrates and microorganisms,
will also be influenced by the way in which a new wetland is
designed. In newly constructed systems, macroinvertebrates
colonize the area from the surroundings and will settle if suit-
able habitats are present (Stanczak and Keiper 2004; Stewart
and Downing 2008). Over time, density and diversity will
increase when the wetland habitats become more heteroge-
neous (Voshell and Simmons 1984; Christman and Voshell
1993; Heino 2000). Bacteria and fungi are functionally com-
plementary and degrade different fractions of organic matter
in different stages of succession (Findlay et al. 2002;
Thormann et al. 2003; Fischer et al. 2006). Microbial commu-
nity composition and activity can be influenced by litter nu-
trient availability and abiotic conditions (Trinder et al. 2009;
Andersen et al. 2010; Straková et al. 2011), and can in turn
influence food quality for macroinvertebrates (Boulton and
Boon 1991; Whatley et al. 2014). Since both microbes and
macroinvertebrates interact in the decomposition process
(Hieber and Gessner 2002), changes in the functional commu-
nity composition during different stages in succession after the
construction of a new wetland need to be considered when
studying decomposition rates in such systems.

Most studies focus on the effect of only a few variables on
decomposition (e.g., Qualls and Richardson 2000; Aerts et al.
2005; Chimney and Pietro 2006; Álvarez and Bécares 2006;
Sarneel et al. 2010; Voellm and Tanneberger 2014), mainly in
developed, stabilized wetlands. However, since newly con-
structed wetlands show such large heterogeneity and variabil-
ity in abiotic and biotic conditions, it is likely that multiple

variables influence decomposition rates simultaneously or in
interaction. Some studies do include the complexity of multi-
ple variables in the field (Thullen et al. 2008), but mainly
using artificial substrates like cotton strips (Harrison et al.
1988; Mendelssohn et al. 1999; Tiegs et al. 2013), thereby
ignoring the chemical complexity of natural litter biomass.
We hypothesize that the mineral composition of both sediment
and water with the resulting sediment food quality, and the
availability of micronutrients, macronutrients and trace ele-
ments in the sediment and water all influence decomposer
community composition and activity (e.g., Heino 2000;
Stewart and Downing 2008; Straková et al. 2011; Andersen
et al. 2013;Whatley et al. 2014). Furthermore, we hypothesize
that those abiotic and biotic factors influence decomposition
rates of standing litter biomass (e.g., Fischer et al. 2006;
Rejmánková and Houdková 2006; Thullen et al. 2008;
Fennessy et al. 2008; Sarneel et al. 2010; König et al. 2014;
Ping et al. 2017) both directly and indirectly through the indi-
rect effect of abiotic conditions on litter quality (Fennessy
et al. 2008; Sarneel et al. 2010; Emsens et al. 2016a, b). To
be able to focus on the direct effects of abiotic conditions on
aboveground decomposition rates and separate them from the
indirect effects, this study used common reed (Phragmites
australis) as a single standard substrate. To add to the existing
knowledge, this study aims to (1.) determine the relative im-
portance of sediment and water characteristics on the compo-
sition and activity of the decomposer community, and to (2.)
determine the combined direct effect of the environmental
variables and the resulting decomposer community on decom-
position rates of standing litter biomass in newly constructed
wetlands.

To meet this aim, we performed a large-scale field decom-
pos i t i on expe r imen t in d i f f e r en t bas in s a t t he
Volgermeerpolder. This three-year old constructed wetland
(6 ha) in the Netherlands targets peat formation and contains
27 basins with a range in substrates, water regimes, and
resulting pioneer vegetation and decomposer communities.
Fifty-four variables, of which 45 were abiotic and 9 biotic,
were measured to determine which predictor variables, either
combined in groups or separately, best explain functional de-
composer community composition and activity as well as
aboveground litter decomposition in newly constructed
wetlands.

Materials and Methods

Site Description

All experiments were carried out in 2013–2014 in the
Volgermeerpolder (52°25’17^N; 4°59 ’35^S), the
Netherlands, a newly constructed wetland on top of a former
waste dump site that was completed in 2011. Multiple basins
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ranging from 550 to 1600 m2 were created in this wetland to
initiate peat development on top of a sand-covered
geomembrane. Basins were formed by clay dikes and the sand
substrate in some basins was complemented with clay or or-
ganic sludge. The application of different mixtures of sand,
clay and organic sludge resulted in a range of organic matter
fractions in the sediments (0.01 to 0.23, Fig. 1a, Table 1 and
Online Resource 1) in the different basins. The 18 basins used
in this study were fed either with rain water (collected in a
dedicated basin), or with nutrient-rich surface water from sur-
rounding agricultural fields. Water levels were kept at 60 ±
15 cm above the sediment surface. As a result of the combi-
nation of different sediment mixtures with the two water re-
gimes, the basins each developed a unique mineral

composition with resulting sediment food quality and avail-
ability of micronutrients, macronutrients and trace elements.
All experiments and measurements in this study were per-
formed in 2013/2014, three years after the construction of
the wetland was completed. During the initial years vegetation
in the basins developed depending on the sediment and water
composition. Basins with sand sediments remained mainly
unvegetated or covered by submerged species (77 ± 7%,
mean ± SD), with a helophyte coverage of only 14 ± 6% after
3 years. Basins with addition of clay or organic sludge showed
higher coverage by helophytes (40 ± 23 and 71 ± 16%, respec-
tively). Typha angustifoliawas the dominant species in basins
with added clay sediment, covering around 26 ± 21% of the
basins, while Typha latifolia was the dominant species in
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Fig. 1 Variation in selected
response variables between basins
in standing litter biomass
decomposition experiment in the
Volgermeerpolder, ranked
according to sediment organic
matter content. a) fraction organic
matter, b) decomposer
community with b1) Community
Metabolic Diversity, b2) Average
Well Color Development, b3)
macroinvertebrate FFG
distribution, c) aboveground litter
remaining (fraction dry weight)
with c1) fraction remaining after
6 months and c2) fraction
remaining after 12 months of
decomposition. In all graphs one
data point represents one
measurement, except in b3)
where it represents four
measurements each
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sediments with added organic sludge (65 ± 22%)
(Harpenslager et al. 2018).

Physico-Chemical Variables

Starting three years after construction, various physico-
chemical characteristics of surface water (SW), pore water
(PW) and sediment (SED) were measured several times in
one year, as described in Overbeek et al. (2018, details in
Online Resource 1).

Measurements of surface water temperature (T), electrical
conductivity (EC) and pH were taken in October – December
2013 and 2014 and April – June 2014 at 10 cm below the
water surface using a HQ40D portable meter (HACH-Lange,
Tiel, the Netherlands). Surface water samples were taken in
November 2013 and February, May, July and December 2014
and filtered before further analysis in the laboratory, using
Whatman mixed cellulose ester filters ME24. Pore water sam-
ples were taken at the same time as surface water samples at

15 cm depth in the sediment using vacuum syringes attached
to ceramic soil moisture cups (Eijkelkamp, Giesbeek, the
Netherlands). Alkalinity for surface water of unfiltered sam-
ples was determined by titration down to pH 4.2 using an
auto-burette with accurately determined titer (ABU901,
Radiometer, Copenhagen, Denmark, or Metrohm 716 DMS
Titrino, Metrohm Applikon, Herisau, Switzerland). Carbon
dioxide (CO2) and bicarbonate (HCO3

−) were measured on
an infrared gas analyser or high-temperature combustion total
organic carbon (TOC) (IRGA, ABB Analytical, Frankfurt,
Germany, or TOC-V CPH, Shimadzu, Kyoto, Japan), using
unfiltered samples. Nitrate (NO3

−), ammonium (NH4
+), dis-

solved organic nitrogen (DON), soluble reactive phosphorus
(SRP), potassium (K+) and sodium (Na+) were measured in
filtered samples on an auto-analyser (AA3 system, Bran &
Luebbe, Norderstedt, Germany, or San ++ system, Skalar,
Breda, the Netherlands). Chloride (Cl−), calcium (Ca2+), total
iron (Fe), total manganese (Mn), total phosphorus (P) and total
sulphur (S) were measured in filtered samples using

Table 1 Range in sediment and water quality variables (10 – 90 % percentiles (mean)) for basins in Volgermeerpolder (n=18)

Surface water Pore water

Variable Unit 10% – 90% (Mean) 10% – 90% (Mean)

Temperature May °C 14.4 – 15.7 (14.9)

Temperature November °C 7.3 – 7.9 (7.6)

Electrical conductivity μS/cm 534 – 1026 (766)

pH – 7.6 – 8.7 (8.2)

Alkalinity meq/l 2.6 – 4.4 (3.5) 7.4 – 24.6 (16.2)

CO2 μmol/l 45 – 418 (164) 2250 – 4371 (3137)

HCO3
- μmol/l 1901 – 4205 (2710) 7012 – 17994 (12653)

NO3
- μmol/l 0.23 – 1.14 (0.56) 0.07 – 3.47 (1.66)

NH4
+ μmol/l 2.1 – 11.0 (5.8) 6.7 – 81.7 (43.8)

Dissolved organic N μmol/l 8.0 – 38.2 (21.5)

Soluble reactive phosphorus μmol/l 0.2 – 6.0 (2.1) 0.8 – 21.2 (8.5)

K+ μmol/l 46 – 176 (119) 23 – 187 (100)

Na+ μmol/l 957 – 4508 (2662) 797 – 3092 (2123)

Cl- μmol/l 552 – 4521 (2481) 408 – 3640 (2029)

Ca2+ μmol/l 1613 – 2523 (2077) 3341 – 9801 (6553)

Total Fe μmol/l 1 – 5 (3) 98 – 483 (219)

Total Mn μmol/l 1 – 5 (3) 40 – 200 (95)

Total P μmol/l 1 – 10 (4) 19 – 151 (87)

Total S μmol/l 627 – 2230 (1455) 97 – 1754 (728)

Sediment

Fraction organic matter – 0.01 – 0.23 (0.09)

Olsen-P μmol/l FW 77 – 206 (146)

Percentage N mg/mg DW 0.03 – 0.48 (0.23)

Percentage C mg/mg DW 0.74 – 9.98 (4.58)

C:N ratio – 16.4 – 21.3 (19.3)

Percentage S mg/mg DW 0.05 – 0.53 (0.22)
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inductively coupled plasma spectrometry (ICP-OES iCAP
6000, Thermo Fisher Scientific, Waltham, MA, USA, or
Optima 8000DV, Perkin Elmer, Waltham, MA, USA).

Sediment samples were pooled from five subsamples per
basin using the top 10 cm in February 2014 and the top 5 cm
in June 2014, and stored at 4 °C until further analyses.
Fraction organic matter (OM) was determined using loss on
ignition (LOI, 4 h at 550 °C). Percentage nitrogen (N), carbon
(C) and sulphur (S) were measured on an elemental analyser
(Carlo Erba NA1500, Thermo Fisher Scientific, Waltham,
MA, USA, or Vario EL cube, Elementar, Hanau, Germany).
Phosphorus readily available for uptake by vegetation
(Olsen_P) was determined using extraction with 0.5 M
NaHCO3.

For all measured characteristics, except for temperature,
yearly averages were calculated per basin since no seasonal
differences were observed within basins. To give an indication
of variation between basins yearly averages and percentiles of
all basins combined are presented in Table 1 (see
Online Resource 1 for values per basin).

Decomposer Community

As described in Overbeek et al. (2018), the decomposer com-
munity of the Volgermeerpolder has developed on top of the
mineral sand bed from inocula introduced during the construc-
tion and during the pumping of water from the surrounding
areas. Furthermore, the open basins serve as a refuge for wa-
terfowl that may have introduced microorganisms and
macroinvertebrates.

BIOLOG GN2 plates (BIOLOG Inc., Hayward, CA,
USA) were used to determine functional microbial com-
munity composition and activity in the sediments three
years after wetland construction. BIOLOG GN2 plates
contain 95 wells with single simple carbon substrates
and one control well (for an overview of all carbon
sources see Garland and Mills 1991), specifically de-
signed to make rapid community-level physiological pro-
files which best differentiate gram negative bacteria
(Garland 1997). For each basin, the top 5 cm of five
sediment samples taken in June 2014 were pooled togeth-
er to get a representative sample per basin and stored at
4 °C until further processing the next day. Sediment sam-
ples were diluted with sterilized demi water to obtain a
dilution of 1:7, shaken by hand for a minute to detach
bacteria from sediment particles and centrifuged at
1000 g for 15 min, after which the supernatant was dilut-
ed with sterilized demi water to a final dilution of 1:87
(adapted from Hench et al. 2004). BIOLOG plate wells
were inoculated with 150 μl bacterial suspension and in-
cubated in the dark at 15 °C to simulate natural condi-
tions. Absorption was measured at 590 nm every 24 h for
7 days (VersaMax microplate reader, Molecular devices,

Sunnyvale, USA). The absorbance for individual wells
was corrected for background absorbance by subtracting
absorbance of the control well and subsequently consid-
ering negative values as zero. Average Well Color
Development (AWCD), a measure of microbial activity,
was calculated according to Garland (1997), by averaging
all 95 corrected response well absorbances. For
Community Metabolic Diversity (CMD), a measure for
microbial diversity, corrected absorbance values were
converted to binary data (presence/absence) using a
threshold absorbance of 0.25 (Garland 1996). The maxi-
mum slope in the sigmoidal response curve for AWCD as
well as CMD appeared after three days of incubation,
providing the highest distinctiveness between samples.
Therefore, measurements taken after three days of incu-
bation were used in further analyses.

Macroinvertebrates were sampled six months after the
start of the experiment at the same time as the standing
litter biomass (May 2014, see below) and identified to
family-level, except for chironomids and oligochaetes,
which were identified to tribe and class level, respective-
ly. This taxonomic information was used to estimate the
representation of functional feeding groups (FFGs). It
was assumed that individuals found in the basins all
originated from source populations in the surroundings,
and that data on these source populations could therefore
be used to determine the functional feeding guilds
(FFGs) of the collected individuals in our study without
determination to species level. To this purpose, FFGs
were determined for all macroinvertebrate species found
in an area stretching 5 km around the Volgermeerpolder
in the years 2000–2015 (data provided by local water
authority, http://hnk-water.nl) using the database from
Schmidt-Kloiber and Hering (2015) (Online Resource
2). Subsequently, weighted averages, using the number
of times a species was sampled by the water authority in
all sampling locations at all times together as weight,
were calculated for all FFG fractions per taxonomic fam-
ily present in the surrounding area. For chironomids and
oligochaetes, weighted averages were calculated per tribe
and class, respectively (Online Resource 2). The calculat-
ed FFG distribution from the source population was
assigned to the sampled individuals. When a sampled in-
dividual belonged to a taxonomic family which was not
present in the source population, the FFG distribution was
assumed to be equal to the one given by Schmidt-Kloiber
and Hering (2015). Weighted averages of FFGs per sam-
ple were calculated accounting for number of individuals
sampled per taxonomic level, without correction for size
per individual. Gatherers (GAT), shredders (SHR), miners
(MIN) and grazers (GRA) are all active in decomposition,
therefore those four FFGs together were labeled as
detritivores (DET).

Wetlands (2019) 39:113–125 117
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Decomposition Experiment

To separate the direct effects of environmental variables on
decomposition rates of aboveground litter from the indirect
effects of litter quality itself, we used common reed
(Phragmites australis) as a single standard substrate.
Common reed is a common wetland plant with easily distin-
guishable leaves and culms, therefore making it easy to con-
struct quantifiable substrates for decomposition measure-
ments. By constructing bundles of vegetation, keeping larger
fragments together, instead of using litterbags (e.g., Petersen
and Cummins 1974; Triska and Sedell 1976; McArthur et al.
1994), we avoided negative influences caused by using litter-
bags such as altering microclimates within the litterbags or
exclusion of certain sizes of decomposer organisms (Boulton
and Boon 1991; Bradford et al. 2002; Kurz-Besson et al.
2005; Bokhorst and Wardle 2013).

P. australis was collected from fresh stands growing in a
ditch in the Volgermeerpolder at the end of the growing season
in September 2013 and dried for several weeks at room tem-
perature in the laboratory. Part of the litter was oven dried at
60 °C to determine the conversion factor between air-dry and
oven-dry weight, as well as C, N and S content of the litter
(n = 4, 45.0 ± 0.2, 1.7 ± 0.1 and 0.30 ± 0.03% (mean ± SD),
respectively). Collected reed material consisted of equal
amounts of stems and leaves and therefore both were tied
together to 10 g bundles in equal proportions. The conversion
factor between air-dry and oven-dry weight was used to cal-
culate initial oven-dry weight of the air-dried bundles to be
able to compare them to oven-dry weight at the time of col-
lection. Litter bundles were placed in the field in November
2013 using a random block design with four blocks of 1 × 1
meter each placed in an area of 5.5 × 5.5 m. Each block
contained two litter bundles for collection at two different
times, resulting in eight litter bundles per basin in total. The
bundles within a block were placed about 40 cm apart, and
secured to the sediment using pins. Upon placement of the
bundles, handling loss was determined to be ~2%. One bundle
per block was retrieved after 6 months, while the other half
was collected after 12 months by gently but quickly lifting the
bundle from the sediment using a net to include macroinver-
tebrates. Litter bundles and macroinvertebrates were
transported to the laboratory in sealed plastic bags and stored
at 4 °C until further processing the next day, as described in
Overbeek et al. (2018). Litter was gently rinsed and sieved
using a mesh size of 1 mm to exclude sediment particles and
dried for approximately three days at 60 °C, after which re-
maining litter mass was determined. The weight difference
between standing litter biomass at the start of the experiment
(corrected for handling loss) and at time of retrieval was con-
sidered to be decomposition and expressed as fraction of the
oven-dry start weight to get the fraction of decomposed

aboveground litter (Frac_D6 and Frac_D12 for fraction above-
ground litter loss after 6 and 12 months, respectively).

Data Analysis

Predictor and Response Variables

Linear models (multiple regression, assuming Gaussian er-
rors) were formulated, fitted and validated to establish the
relative importance of measured predictor variables for
explaining response variables in the early stages of our newly
constructed wetland (Burnham and Anderson 2002). To post-
process the models, all measured predictor variables were
grouped in order to determine the relative importance of spe-
cific variable groups, defined as presence of these groups in
the model ensemble, in explaining the response variable.
Variables were grouped to water (SW), sediment (PW +
SED), microbes (CMD+AWCD as measured by BIOLOG
GN2 plates) or macroinvertebrates (abundance and FFGs,
Online Resource 1), using yearly means for water and sedi-
ment variables. Next to these categories, predictor variables
were also grouped in macronutrients (all SW and PW N+ P),
sediment food quality (SED OM +C + N + C_N), or other
(see Online Resource 1 for an extensive list). To explain var-
iation in (1.) functional community composition of microbes,
(2.) activity of microbes, and (3.) fraction detritivores in mac-
roinvertebrates, these three variables were separately taken as
the response variable with all remaining separate variables
from water and sediment variable groups after variable selec-
tion (see BVariable Selection^ section and Online Resource
3a) as potential predictor variables in model formulation.
When using (4.) fraction aboveground litter loss after 6months
of decomposition or (5.) fraction aboveground litter loss after
12 months of decomposition as a response variable, all re-
maining separate variables from all variable groups after var-
iable selection (see BVariable Selection^ section and
Online Resource 3a) were present as possible predictor
variables.

Validation

The models were validated in two steps: (1.) by cross-valida-
tion, applying fitted models to predict unseen-data measured
at the same time-period (both after 6 or 12 months of decom-
position, resulting in R2

val), and (2.) by extrapolation, apply-
ing fitted models (based on data at 6 months of decomposi-
tion) to predict unseen-data at 12 months of decomposition
(resulting in R2

val_t2_with_t1).
The different response variables were observed in different

experimental layouts: macroinvertebrate and decomposition
observations were laid out in 4 randomized blocks per basin
while microbial data were observed only once per basin. For
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that reason the different response variables were validated
differently: microbial data was validated using leave-one-out
cross-validation (LOOCV), macroinvertebrate and decompo-
sition data was validated using blocks for cross-validation:
using three blocks to predict the fourth.

Variable Selection

Formulation of the linear models took place in two steps: (1.)
selecting a subset from all predictor variables, using regres-
sion trees, and (2.) finding the best linear models using all-
possible-subsets regression.

In the first step, regression trees were built using all avail-
able scaled predictors. For Frac_D and DET as response var-
iables, where four-fold cross-validation was applied, the re-
gression trees were based on the different combinations of
three out of four blocks, after which all potentially important
variables resulting from the four regression trees were com-
bined into one list of potentially important predictor variables
per response variable. For CMD and AWCD as response var-
iables, a regression tree was fitted only once to the entire data
set (see Online Resource 3a for an overview of the resulting
potentially important predictor variables per response
variable). In the second step, all possible combinations of up
to four variables were made from the set with potentially im-
portant predictor variables, excluding combinations of vari-
ables with an absolute correlation higher than 0.7, and includ-
ing interactions between number of macroinvertebrate indi-
viduals and FFGs. Only those models with an AIC-
difference less than 2 from the model with the lowest AIC-
value were considered adequate and retained. For the resulting
model ensemble the importance and effect of each predictor
variable was determined, as well as mean adjusted R2 (R2

adj),
with variable importance representing the fraction of models
in the model ensemble in which the variable was present. The
predictors were also aggregated into variable groups
(Online Resource 1), and the relative frequency at which each
variable group was represented in the model ensemble was
used to express variable group importance.

All analyses were performed in R (R Core Team 2015),
using functions from the packages plyr, reshape, rpart and
ggplot2 (Wickham 2007; Wickham 2009; Wickham
2011; Therneau and Atkinson 2018).

Results

Decomposer Community

Functional microbial community composition varies between
basins, with Community Metabolic Diversity (CMD) varying
between 0.26 and 0.66 (mean 0.44) (10–90% percentiles,

Fig. 1b1 and Table 2). For CMD as response variable, a model
ensemble of 8 models was found with an adjusted R2 of 0.711
and cross-validated R2 of 0.598 (Table 2, Online Resource
3b). Variables belonging to both water and sediment variable
groups were present in all models (Fig. 2), with calcium in the
surface water and phosphorus from the sediment readily avail-
able for uptake by vegetation both present in 88% of the
models (see Table 2 for an overview of the importance and
effect of predictor variables in predicting the response
variable). Sediment food quality variables were present in all
models as well, with either fraction organic matter, or percent-
age N or percentage C in the sediment present in each model.
Macronutrients, including phosphorus from the sediment
readily available for uptake by vegetation, were present in
88% of the models.

Microbial activity varies between basins, with Average
Well Color Development (AWCD) varying between 26 and
60 (mean 43) (10–90% percentiles, Fig. 1b2 and Table 2). For
AWCD as response variable, a model ensemble of 12 models
was found with an adjusted R2 of 0.774 and cross-validated R2

of 0.704 (Table 2, Online Resource 3c). Like CMD, variables
belonging to both water and sediment variable groups were
used in all models (Fig. 2), with pore water alkalinity present
in 83% of the models (Table 2). Either fraction organic matter,
or percentage N or percentage C in the sediment were present
in each model as sediment food quality variable, resulting in a
combined presence of 100%. Macronutrients were present in
75% of the models, with pore water NH4

+ present in 58%.
In all basins in the Volgermeerpolder 82% of all macroin-

vertebrates are detritivores (63–97%, 10–90% percentiles,
Table 2), with gatherers making up the largest fraction and
miners a very low fraction of detritivores (Fig. 1b3). With an
increasing fraction of organic matter in the sediment, the
fraction of gatherers decreases, while the fraction of shred-
ders, grazers and other FFGs increases. The number of indi-
vidual macroinvertebrates per block is variable within basins
and decreases with a higher fraction of sediment organic
matter. Forty models were present in the model ensemble
with fraction detritivores (DET) as the response variable,
with an adjusted R2 of 0.269 and a cross-validated R2 of
0.218 (Table 2, Online Resource 3d). Water and sediment
variable groups are present in 95% and 98% of the models,
respectively (Fig. 2), with the sediment C:N ratio present in
85% and surface water soluble reactive phosphorus present
in 58% of the models (Table 2). Sediment food quality var-
iables are present in 85% of the models, with sediment C:N
ratio present in all those models. Macronutrients are present
in all models, with either P or soluble reactive phosphorus in
the surface water present in 83% of the models. When con-
sidering surface and pore water together, P and/or soluble
reactive phosphorus are present in 90% of the models, while
N is only present in 28%.
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Table 2 Range in five microbial, macroinvertebrate and decomposition
response variables (mean (10 – 90 % percentiles), N) as measured in
basins in the Volgermeerpolder, including number of models in model
ensemble, adjusted R2 (R2

adj, mean ± SD), cross-validated R2 (R2
val,

mean ± SD, using LOOCV for microbial data, and cross-validation
using blocks for macroinvertebrate and decomposition data), and
extrapolated R2 predicting unseen-data after 12 months of

decomposition using fitted models based on data after 6 months of
decomposition (R2

val_t2_with_t1, mean ± SD). Importance of predictor
variable (sub)groups in model ensemble per response variable
(importance representing the fraction of models in the model ensemble
in which the variable (sub)group was present), with importance and effect
of main predictor variables (present in more than 50 % of model
ensemble)

Response variable
mean (10 % – 90 %), N

Predictor variable
(sub)group – importance

Main predictor variable – importance and effect

Community Metabolic Diversity (CMD)

0.44 (0.26 – 0.66), N = 18 Water – 100 % Surface water Ca – 88 % +

8 models in ensemble Sediment – 100 % Sediment Olsen_P – 88 % -

R2
adj = 0.711 ± 0.009 Sediment food quality – 100 % Either fraction organic matter, percentage N or percentage

C in sediment – 100 % +

R2
val = 0.598 ± 0.025 Macronutrients – 88 %

Average Well Color Development (AWCD)

43 (26 – 60), N = 18 Water – 100 %

12 models in ensemble Sediment – 100 % Pore water alkalinity – 83 % -

R2
adj = 0.774 ± 0.008 Sediment food quality – 100 % Either fraction organic matter, percentage N or percentage

C in sediment – 100 % +

R2
val = 0.704 ± 0.017 Macronutrients – 75 % Pore water NH4

+ – 58 % +

Percentage detritivores (DET)

82 (63 – 97), N = 72 Water – 95 % Surface water soluble reactive phosphorus – 58 % -

40 models in ensemble Sediment – 98 % Sediment C:N ratio – 85 % -

R2
adj = 0.269 ± 0.007 Sediment food quality – 85 % Sediment C:N ratio – 85 % -

R2
val = 0.218 ± 0.018 Macronutrients – 100 % Either surface water P or surface water soluble reactive

phosphorus – 83 % -
Surface or pore water P and/or surface or pore water soluble

reactive phosphorus – 90 % -

Percentage aboveground litter loss after 6 months (Frac_D6)

42 (34 – 51), N = 70 Water – 100 % Surface water NO3 – 100 % -
Surface water S – 92 % +

12 models in ensemble Sediment – 67 %

R2
adj = 0.295 ± 0.007 Macroinvertebrate – 75 %

R2
val = 0.223 ± 0.024 Microbial – 0 %

R2
val_t2_with_t1 = 0.002 ± 0.003 Sediment food quality – 8 %

Macronutrients – 100 % Surface water NO3 – 100 % -

Percentage aboveground litter loss after 12 months (Frac_D12)

65 (55 – 75), N = 69 Water – 100 % Surface water P – 60 % -

5 models in ensemble Sediment – 100 % Pore water S – 100 % -

R2
adj = 0.227 ± 0.008 Macroinvertebrate – 100 % Grazers – 100 % +

R2
val = 0.072 ± 0.013 Microbial – 0 %

Sediment food quality – 0 %

Macronutrients – 100 %

A positive effect of a predictor variable on the response variable indicates that the response variable will increase with an increase in the predictor
variable, while a negative effect indicates a decrease in the response variable with an increase in the predictor variable. For an overview of the possible
predictor variables present in variable (sub)groups, see Online Resource 1
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Decomposition Experiment

The fraction of remaining standing litter biomass decreases
over time, with 58 and 35% litter remaining after 6 and
12 months of decomposition compared to starting values, re-
spectively (49–66 and 25–45%, respectively, both 10–90%
percentiles, Fig. 1c1 and c2, Table 2), with approximately
0.3% of the standing litter biomass being decomposed daily
(see Online Resource 1 for exponential decay constants (k) per
basin per period). Variation between basins was relatively
small, and comparable with variation within basins after both
6 and 12 months of decomposition. Furthermore, decomposi-
tion rates observed after 6 months of decomposition were not
correlated to the rates observed after 12 months (r = −0.076).

The model ensemble with Frac_D6 (fraction aboveground
litter loss after 6 months) as response variable and all other
measured variables (sediment, water, microbes, macroinverte-
brates) as potential predictor variables consists of 12 models
and has an adjusted R2 of 0.295 and a cross-validated R2 of
0.223 (Table 2, Online Resource 3e). Water variables are pres-
ent in all models (Fig. 2), with surface water NO3 and S pres-
ent in 100 and 92% of the models (Table 2). Sediment and
macroinvertebrate variables are present in 67 and 75% of the
models, respectively, while microbe variables are absent in all.
Macroinvertebrate variables in the model ensemble comprise
the number of individuals, the very small fraction of miners,
and the interaction between them. The more dominant frac-
tions of gatherers, shredders and grazers do not show up as
predictor variables. Macronutrients are present in all models,
with surface water NO3 present in 100% of the models.
Sediment food quality variables are only present in 8% of
the models. When predicting Frac_D12 with the model

ensemble from Frac_D6, almost no variance could be ex-
plained (R2

val_t2_with_t1 = 0.002, Table 2).
Five models make up the model ensemble with Frac_D12

(fraction aboveground litter loss after 12 months) as response
variable, with an adjusted R2 of 0.227 and a cross-validated R2

of 0.072 (Table 2, Online Resource 3f). Sediment, water and
macroinvertebrate variables are all present in each model,
while microbe variables are absent (Fig. 2). The macroinver-
tebrate variable group in the model ensemble is made up sole-
ly of grazers. For sediment, pore water S is present in all
models. For water, either surface water P or soluble reactive
phosphorus is present in all models, with surface water P
present in 60%. Macronutrients are present in all models, sed-
iment food quality variables are absent in all models.

Discussion

Using linear models, we aimed to (1.) determine the relative
importance of the abiotic conditions (in both the sediment and
the water column) on the composition and activity of the de-
composer community, and to (2.) determine the combined
direct effect of the environmental variables and the resulting
decomposer community on decomposition rates of standing
litter biomass in newly constructed wetlands. To be able to
focus on the direct effects of abiotic conditions on above-
ground decomposition rates and separate them from the indi-
rect effects, this study used common reed (Phragmites
australis) as a single standard substrate. In the model ensem-
bles we have presented here, variables related to the abiotic
conditions in water and/or sediment were present in all
models, indicating that the abiotic environment is an
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sediment food quality
macronutrients

sediment
water

microbes
macroinvertebrates

0 25 50 75 100

0 25 50 75 100

sediment food quality
macronutrients

sediment
water

CMD
R2

adj 0.711 ± 0.009

0 25 50 75 100 0 25 50 75 100

AWCD
R2

adj 0.774 ± 0.008
DET
R2

adj 0.269 ± 0.007

Frac_D12
R2

adj 0.227 ± 0.008

Variable importance (%)

Frac_D6
R2

adj 0.295 ± 0.007

Fig. 2 Presence of predictor variable groups (variable importance (%)) in
model ensembles explaining response variables. Response variables:
CMD) Community Metabolic Diversity for microbes, AWCD) Average
Well Color Development for microbes, DET) fraction detritivores for

macroinvertebrates, Frac_D6) fraction aboveground litter loss after
6 months of decomposition, Frac_D12) fraction aboveground litter loss
after 12 months of decomposition

Wetlands (2019) 39:113–125 121



important factor influencing decomposition rates of standing
litter biomass in newly constructed wetlands. Variables related
to the presence of macroinvertebrates were present in most of
our models, and are thus also recognized as a driving factor
(partly) explaining decomposition rates. These observations
corroborate with earlier findings on, for example, the effects
of nutrients (Rejmánková and Houdková 2006; Sarneel et al.
2010; Emsens et al. 2016a) and invertebrates (König et al.
2014; Raposeiro et al. 2014) on decomposition rates in
established wetland systems. However, sediment and water
variables could only explain a small part of variation in the
fraction of detritivores. Most likely, macroinvertebrates are
still colonizing this newly constructed wetland, therefore their
community composition is still variable and heterogeneous in
time and space. Inmost constructed wetlands, especially when
constructed basins are directly connected to other water bod-
ies, community composition of macroinvertebrates will be
similar to that in wetlands surrounding the area after a couple
of years (Christman and Voshell 1993; Stanczak and Keiper
2004; Balcombe et al. 2005), while density and biomass can
still show large variation (Stewart and Downing 2008), as was
the case in this study. Mitsch andWilson (1996) suggest that it
may even take up to two decades before the functioning of the
wetland can be determined after the initial stabilization phase.
The fact that macroinvertebrates were only identified up to
family level instead of species level might partially have
led to the low fraction of variance that could be explained
with the model ensemble, even though other studies
showed that taxonomic resolution at the family level was
adequate in determining the effect of environmental factors
on macroinvertebrate communities (Bailey et al. 2001;
Stewart and Downing 2008).

In contrast to sediment, water and macroinvertebrate vari-
ables, the composition of the microbial community was not an
adequate predictor of decomposition in any of our models.
This result can be explained in two ways; first, it could be that
potentially important groups of bacteria involved in decompo-
sition of more complex substrates like lignin and cellulose
have been missed in our analysis, because those complex sub-
strates are not present as carbon sources in BIOLOG GN2
plates (Garland and Mills 1991). Moreover, in soils and sedi-
ments bacteria interact physically and functionally with fungi
in the process of litter degradation (Findlay et al. 2002;
Thormann et al. 2003; Fischer et al. 2006; Hervé et al. 2016),
specifically targeting the complex compounds using extra-
cellular enzymes (Kirk and Farrell 1987; Thormann 2006).
This part of the microbial community is also largely
overlooked in the present study since BIOLOG GN2 plates
are specifically designed for gram-negative bacteria (Garland
and Mills 1991). Second, the microbial community composi-
tion and activity were sampled by combining five subsamples
per basin, resulting in a sample of the total microbial commu-
nity present per basin. This sampling procedure is accurate to

determine the influence of sediment and water quality vari-
ables on microbial community composition and activity, but
probably not to determine the influence of the microbial com-
munity composition and activity on decomposition rates of one
artificially introduced litter type. On those litter bundles, the
microbial communities will most likely have adapted to the
conditions present, sincemicrobial communities are very quick
in adapting to new conditions (Trinder et al. 2009; Andersen
et al. 2010; Flury and Gessner 2011; Weber and Legge 2011),
resulting in a different microbial community composition and
activity per litter bundle. Even though variables for microbial
community composition and activity were absent in the model
ensembles for decomposition, we cannot conclude that the
microbial community has no influence on decomposition rates,
since the microbial community composition and activity were
not measured per litter bundle in this study.

Even though the variable groups sediment, water, macro-
nutrients and macroinvertebrates were present in all or most of
the linear models explaining decomposition rates, our models
could only explain a small fraction (30 and 23% after 6 and
12months of decomposition, respectively) of the variability in
decomposition rates for both measurement times. Moreover,
the best models were inadequate for extrapolation: the model
ensemble using data after 6 months of decomposition could
not predict decomposition after 12 months. The poor predic-
tions by our models, and the discrepancies between time
points coincide with (sometimes large) variations in the pre-
dictor variables but simultaneously small differences in de-
composition rates between the different basins. Two studies
by Emsens et al. (2016a, b) found that decomposition rates
decreased under nutrient rich conditions as compared to nutri-
ent poor conditions, with more uniform decomposition rates
between plant species under nutrient rich conditions. Also,
decomposition rates were coupled with litter quality indicators
under nutrient poor conditions, but under nutrient rich condi-
tions this coupling was absent (Emsens et al. 2016a, b), prob-
ably due to a microbial community specialized in decomposi-
tion of recalcitrant organic matter (e.g. lignin) under nutrient
limiting conditions, and a more opportunistic microbial com-
munity under nutrient rich conditions (Moorhead and
Sinsabaugh 2006). Since the conditions in all of our basins
were nutrient rich, this may have resulted in relatively uniform
decomposition rates between basins and accompanying poor
predictions by our models, as comparable to the results found
by Emsens et al. (2016a, b).

Where in many studies effects of single factors on decom-
position rates are quantified experimentally (e.g., Qualls and
Richardson 2000; Aerts et al. 2005; Chimney and Pietro 2006;
Álvarez and Bécares 2006; Sarneel et al. 2010; Voellm and
Tanneberger 2014), our study, including a wide range of var-
iables in a large in situ experiment, later grouped into variable
groups, provides scientific insight in the complex interaction
between driving factors on decomposition rates. Normally,
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one would expect differences in decomposition rates with dif-
fering environments, but counterintuitively in newly con-
structed wetlands these differences are small. However, even
though single factors may influence decomposition rates in
laboratory studies, we showed that decomposition rates of
standing litter biomass in newly constructed wetlands seem
to be relatively uniform in time and space, with low explana-
tory power by variable groups from water, sediment, mi-
crobes, macroinvertebrates, macronutrients and sediment food
characteristics.
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