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ABSTRACT
In this paper, we study the problem of dynamic user profiling in
Twitter. We address the problem by proposing a dynamic user and
word embedding model (DUWE) and a streaming keyword diver-
sification model (SKDM). DUWE dynamically tracks the semantic
representations of users and words over time and models their
embeddings in the same space so that their similarities can be effec-
tively measured. We utilize Bamler and Mandt’s skip-gram Filtering
algorithm [4] for our inference, which works with a convex objec-
tive function that ensures the robustness of the learnt embeddings.
SKDM aims at retrieving top-K relevant and diversified keywords
to profile users’ dynamic interests. Experiments on a Twitter dataset
demonstrate that our proposed embedding algorithms outperform
state-of-the-art non-dynamic and dynamic embedding and topic
models.
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1 INTRODUCTION
Twitter is one of the most popular microblogging platforms that
allow users to describe their current status, recent activities and
opinions in short pieces of texts [21]. Understanding how the in-
terests of users evolve over time is of paramount importance to
a variety of downstream applications in microblogging platforms,
such as user clustering [25], and news recommendations [33]. In
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this paper, we study the problem of user profiling [3] based on
their interests as expressed in streams of short text. The task of user
profiling was first introduced by Balog et al. [3], where language
modeling was used to model users and a set of relevant keywords
were selected to represent a user’s profile. Similar approaches were
used by Rybak et al. [36] and Fang and Godavarthy [14]. These
approaches demonstrate a number of major drawbacks: (a) they
treat words as atomic units leading to a vocabulary mismatch that
harms performance, (b) they represent words and users in disjoint
vocabulary spaces making it difficult to measure the similarity be-
tween users and words when constructing the profile, and (c) they
fail to capture the dynamic nature of user profiles along time (with
the exception of Fang and Godavarthy [14]).

Unlike previous work on user profiling that concentrating on
words, in this paper we target at building user profiles by em-
bedding users and words in a common semantic space. Embed-
dings [4, 7, 32, 34, 40] have emerged as a powerful method to encode
semantic relations between words and hence bridge the vocabulary
gap, while they have led to impressive improvements in natural
language processing (NLP) tasks [10, 15, 32]. However, learning
embeddings in a dynamic context is a non-trivial task, as trade-offs
should be made between computational cost and result optimality.
Most current approaches naively group data into time bins and
learn embeddings separately for each one of these bins [16, 18, 20],
which provides a sub-optimal solution given that they lead to a
considerable reduction in training data, while decisions such as the
size of the time bins are made ad-hocly.

This work extends embedding models in two directions for the
temporal profiling of users: (a) it jointly models words and users
in a semantic space that allows measuring the similarity between
users and words when constructing a user profile, and (b) it directly
models the joint dynamics of both users and language through
time in the embedding space. We propose a dynamic user and
word embedding model, abbreviated as DUWE. Having inferred
the embeddings of words and users, we can generate top-K relevant
and diversified keywords to profile users’ interests over time in
streams of text.
Our contributions can be summarized as follows:
(1) We propose a dynamic user and word embedding algorithm that
can jointly and dynamically model user and word representations
in the same semantic space in the context of streams of documents
in Twitter, such that the semantic similarity between users and
words can be effectively measured.
(2) We propose a streaming keyword diversification model to diver-
sify top-K keywords for characterizing users’ profiles over time.
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(3) We verify the effectiveness of our proposed embedding model,
the inference algorithm, and the streaming keyword diversifica-
tion model, on user profiling in Twitter, and demonstrate that our
method significantly outperforms state-of-the-art methods.

2 RELATEDWORK
In what follows, we briefly discuss three lines of related work, user
profiling, dynamic topic models, and dynamic embeddings.

2.1 User Profiling
User profiling has been gaining attention after the launch of the
expert finding task at TREC 2005 enterprise track [11, 23]. Balog
et al. [2, 3] proposed a generative language modeling approach to
user profiling with the experiments conducted on a static docu-
ment collection. Recent studies became aware of the importance
of temporal user profiling. Temporal user profiling was first intro-
duced in [36], where topical areas were organized in a predefined
taxonomy and users’ interests was represented as a weighted static
tree built directly by the ACM computing classification system. A
probabilistic model was proposed in [14], where authors’ academic
publications were used to learn how personal research interests
evolve over time. All of the previous profiling algorithms are built
on word frequencies. To the best of our knowledge, there is no
user profiling algorithm that jointly models users and words in a
semantic space and diversifies the keywords for profiling.

2.2 Dynamic Topic Models
The proposed DUWE model is a dynamic probabilistic model. A
number of dynamic probabilistic topic models have appeared in the
literature, including the topic over time model [38], the dynamic
mixture model [39], and the topic tracking model [17]. All of these
models learn the evolution of latent topics over time. More recent
dynamic topic models include dynamic User Clustering Topic model
(UCT) [25, 42], dynamic topic model for search result diversifica-
tion [26], collaborative user clustering topic model for streams [28],
and Dynamic Clustering Topic model (DCT) [24]. In this work, we
take a different approach that pivots on neural embedding models
while at the same time we compare our approach to the state-of-
the-art dynamic topic models for user profiling [25].

2.3 Dynamic Embeddings
Kulkarni et al. [20] andMihalcea andNastase [30] provide a detailed
analysis on how word embeddings change over time by comparing
with static word embeddingmodels across different time periods. To
model changes in word embeddings over time, several approaches
have been proposed in the literature [16, 18]. Kim et al. [18] split
the data into separate time bins and train a word2vec model [31, 32]
within each bin. Word representations obtained over a time bin are
used to initialize the ones to be trained over the next time bin. Simi-
larly, Hamilton et al. [16] also split the data into different time bins
and train the embeddings over each bin. They assume that word
embeddings at nearby time periods approximately differ by a global
rotation in addition to a small semantic drift, and approximately
compute this rotation. However, it is challenging to distinguish
between semantic drifts of words over time and the artifacts of

the approximate rotation. None of the two dynamic word embed-
ding algorithms explicitly model the underlying dynamic process.
Further, both of them optimize non-convex objective functions,
resulting in an unstable representation of words – training word
representations twice in the same time bin leads to different embed-
dings. Bamler and Mandt [4] extend a bayesian skip-gram model
and propose a skip-gram filtering algoritm to a dynamic version for
word embeddings but not for user embeddings, and how to jointly
model two different entities in the same space is still unknown.
To the best of our knowledge, this is the first attempt to explicitly
model the evolution of users and words in a joint embedding space
over time.

3 TASK FORMULATION
The task we address in this paper is the following: given a set of
users and a stream of short text generated by them in Twitter, infer
both user and word semantic representations over time, and dynam-
ically identify a set of top-K relevant and diversified keywords to
profile each of the users. The output of the algorithm is essentially
a function f that satisfies:

Ut ,D≤t
f
−→Wt ,

whereUt = {ui }
|Ut |
i=1 is a set of users in the stream at time t , with

|Ut | being the number of users, D≤t = {Dj }
t
j=0 is the stream of

documents generated by the users up to time t , with Dt being a
set of documents generated by all the users at time t , andWt =

{Wu1,t , . . . ,Wu |Ut |,t } are all users’ profiling results at time t with
Wui ,t = {wui ,1,t , . . . ,wui ,K,t } being the profiling result, i.e., the
top-K diversified keywords, for user ui at time t .

In what follows, we describe our dynamic embedding method
DUWE (See §4), based on which, we generate top-K diversified
keywords for profiling each user at time t (See §5).

4 DYNAMIC EMBEDDING MODEL
In this section, we detail our proposed dynamic user and word
embedding model, i.e., DUWE.

4.1 Preliminaries
The goal of DUWE is to capture the semantic representations of
users, Ut = {ui,t } |Ut |

i=1 , and words, Vt = {vk,t }Vk=1, over time. Here
ui,t and vk,t represent the user ui ’s and the wordvk ’s embeddings
at time t , respectively; V is the size of the vocabularyV .

Our DUWE is a dynamic skip-gram model – a generalization of
the well-known static skip-gram model, i.e., word2vec [32]. Given
a corpus of documents, word2vec [32] collects evidence of word
pairs for which zk,l = 1, i.e., words vk and vl co-occur within a
context window. Here, zk,l ∈ {0, 1} is an indicator variable that
denotes a draw for the word pair (vk ,vl ) from the probability
distribution p (zk,l = 1 | vk ,vl ) = s (v⊤k vl ), where s (x ) is defined
by a sigmoid function s (x ) = 1

1+exp (−x ) . The word pair (vk ,vl )
with the indicator being zk,l = 1 in a specific context window is
called a positive example, while the word pair for which zk,l = 0
is called a negative example. Let n+k,l denote the number of times
a word pair (vk ,vl ) is observed in documents in a corpus. This is
a sufficient statistic of the skip-gram model, and its contribution
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to the likelihood is obtained as p (n+k,l | vk ,vl ) = s (v
⊤
k vl )

n+k,l . The
skip-gram model also assumes the probability of rejecting a word
pair (vk ,vl ) if zk,l = 0, and thus it also constructs a fictitious second
training set of rejected word pairs, i.e., the negative examples, the
number of which are denoted asn−k,l . The likelihood of both positive
and negative examples in the whole corpus is obtained as:

p (n+,n− | V) =
V∏

k,l=1
s (v⊤k vl )

n+k,l × s (−v⊤k vl )
n−k,l , (1)

where n+, n− ∈ RV×V are the positive and negative indicator matri-
ces for all word pairs withn+k,l andn

−
k,l being their elements, respec-

tively; s (−x ) = 1 − s (x ), and V = {vk }Vk=1 being the embedding re-
sults of all the words in the vocabulary. To construct negative exam-
ples, the skip-gram model computes n−k,l as n

−
k,l ∝ p (vk )p (vl )

3/4,
where p (vk ) is the frequency of word vk , so that n− is well-defined
up to a proportional constant factor that needs to be tuned expe-
rientially. Instead of maximizing the likelihood in (1) directly, the
skip-gram model tries to maximize its log likelihood:

logp (n± | V) =
V∑

k,l=1
n+k,l log s (v

⊤
k vl ) + n

−
k,l log s (−v

⊤
k vl ), (2)

where we denote n± = (n+,n−).
The assumptions made in (1) an (2) are not realistic when it

comes to the setting of streams, where the embeddings change
over time. In addition, the skip-gram model does not model users’
embeddings. In the following subsections, we detail the way we
model users’ and words’ embeddings over time (§4.2) and apply the
skip-gram filtering [4] to obtain their dynamic embeddings (§4.3).

4.2 Modeling Embeddings over Time
To model the dynamic user and word embeddings, following the
static/dynamic word embedding models [4, 16, 18, 31, 32], we pro-
pose DUWE. DUWE builds up on the skip-gram model [32] and
extends it by using a Kalman filter [29] as a prior for the time evo-
lution of user and word embeddings. This allows the algorithm
to share information, that is user-to-word and word-to-word co-
occurring statistics (in a short document, e.g., a tweet in Twitter, the
user and the words in the tweet associated with the user, and word
themselves in the tweet are assumed to be co-occurring), across all
time steps while still allows the embeddings to drift over time.

In DUWE, we consider a diffusion process of the vector rep-
resentations of both users and words over time, and thus we let
variances of the transition kernels for all the embeddings of the
users be α 2

t−1 = {α
2
u,t−1}

|Ut |
u=1 with αui ,t−1 being the variance of

the transition kernel for userui ’s embedding transferring from t −1
to t . According to Kalman filtering [29], we can define α2u,t−1 as:

α2u,t−1 = ε · д(Du,t ,Du,t−1) (τt − τt−1), (3)

where ε is a local diffusion constant for user u’s embedding,Du,t ∈

Dt ≡
⋃
u′ Du′,t is a set of documents generated by user u at time t ,

д(Du,t ,Du,t−1) is a local diffusion value measuring the word distri-
bution changes from previous time step t−1 to the current time step
t for user u, and (τt −τt−1) is the time interval between subsequent
observations in the stream. Let Du,t = [θv1,t ,θv2,t , . . . ,θvV ,t ] be a
vector representation for u’s document set Du,t at time t , with its

element θvk ,t being computed by an unsupervised language model
with Dirichlet smoothing [12, 41] as:

θvk ,t =
c (vk ;Du,t ) + δ · p (vk | D≤t )∑

v c (v ;Du,t ) + δ
, (4)

where c (v ;Du,t ) is the total number of times the wordv appearing
in the document set Du,t , p (v | D≤t ) is the probability of the
word v appearing in the whole corpus D≤t , and δ is a smoothing
parameter that is set to the average length of the documents in the
corpus [41]. Then, we define the local diffusion value in (3) as:

д(Du,t ,Du,t−1) =

1 − exp
{
−
1
2
(
KL(Du,t ∥Du,t−1) + KL(Du,t−1∥Du,t )

)}
, (5)

where KL(·∥·) is the Kullback-Leibler (KL) divergence. According
to (5), if Du,t = Du,t−1, we will have the variance αu,t−1 = 0,
which indicates that u’s embedding at t does not change; and thus
unlike other models, DUWE can avoid inappropriate drifts for user
embeddings and distinguishes actual drifts from random noise.

Similarly, let the variance of the transition kernels for embed-
dings of all the words be β2t−1 = {β

2
t−1}

V
v=1 with βt−1 being the

variance of the transition kernel for any word embedding transfer-
ring from t − 1 to t . Again, according to Kalman filtering [29], we
can define β2t−1 as:

β2t−1 = η · h(Dt ,Dt−1) (τt − τt−1), (6)

where η is a local diffusion constant for words’ embeddings and
h(Dt ,Dt−1) is a local diffusion value measuring the words’ distri-
bution changes from t − 1 to t . Let Dt = [ϕv1,t ,ϕv2,t , . . . ,ϕvV ,t ]
be a vector representation for document set Dt , with its element,
ϕvk ,t , being computed by an unsupervised language model with
Dirichlet smoothing [12, 41] as:

ϕvk ,t =
c (vk ;Dt ) + δ · p (vk | D≤t )∑

v c (v ;Dt ) + δ
, (7)

where c (v ;Dt ) is the total number of times the word v appearing
in the document set Dt . Then, with (7) we define and compute the
local diffusion value in (6) as:

h(Dt ,Dt−1) =

1 − exp
{
−
1
2
(
KL(Dt ∥Dt−1) + KL(Dt−1∥Dt )

)}
. (8)

According to (8), ifDt = Dt−1, we will have the variance βt−1 = 0,
which indicates that word embeddings at t are modeled to remain
unchanged; and thus unlike other models, our DUWE can avoid
inappropriate drifts for word embeddings and distinguish actual
drifts from random noise.

To model p̃ (Ut | Ut−1), that is the the probability of user em-
bedding (before normalization), Ut , at current time step, t , given
the user embedding at the previous time step, t − 1, Ut−1, we add a
Gaussian prior with mean 0 and variance α 2

0 = {α
2
u,0}

|Ut |
u=1 , which

prevents the user embedding vectors from growing too large. Thus,

p̃ (Ut | Ut−1) ∝ N (Ut−1,α 2
t−1I) · N (0,α 2

0 I), (9)

where N (·, ·) is a Gaussian distribution, and I is an identity matrix.
Similarly, to model p̃ (Vt | Vt−1), that is the probability of word em-
bedding (before normalization) at t , Vt , given the word embedding
results at t − 1, Vt−1, we add a Gaussian prior with mean 0 and
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Figure 1: Graphical representation of our DUWE. Shaded
nodes represent observed variables.

variance β
2
0 = {β

2
0}
V
v=1 that prevents the word embedding vectors

from growing too large. Thus,

p̃ (Vt | Vt−1) ∝ N (Vt−1, β2t−1I) · N (0, β
2
0 I). (10)

We apply normalizations to (9) and (10), and according to the theory
that the convolution of two Gaussian distributions is a Gaussian dis-
tribution [8], we obtain the corresponding normalized distributions
for Ut | Ut−1 and Vt | Vt−1, respectively:

p (Ut | Ut−1) = N *
,

Ut−1
1 + α 2

t−1/α
2
0
,
(α 2

t−1)
⊤ · α 2

0

α 2
t−1 + α

2
0

I+
-
, (11)

p (Vt | Vt−1) = N
*.
,

Vt−1

1 + β2t−1/β
2
0

,
(β2t−1)

⊤ · β
2
0

β2t−1 + β
2
0

I+/
-
, (12)

The proof that the normalizations of (9) and (10) are (11) and (12),
respectively, is omitted here but similar proof is found in [8]. For
initialization, i.e., at time t = 0, we define p (U1 | U0) ≡ N (0,α 2

0 I)

and p (V1 | V0) ≡ N (0, β
2
0 I).

According to the graphical representation of DUWE (shown in
Fig. 1), the joint distribution of our DUWE can be factorized as:

p (m±≤tn
±
≤t ,U≤t ,V≤t ) =

t∏
t ′=1

(
p (Ut ′ | Ut ′−1) p (Vt ′ | Vt ′−1)×

( V∏
k,l=1

p (n±k,l,t ′ | vk , vl )
)
·
( |Ut ′ |∏

i=1

V∏
k=1

p (m±ui ,k,t ′ | ui , vk )
))
, (13)

where n±k,l,t ′ = {n
+
k,l,t ′ ,n

−
k,l,t ′ }, m

±
ui ,k,t ′

= {m+i,k,t ′ ,m
−
i,k,t ′ }. Here

n+k,l,t ′ , n
−
k,l,t ′ ∈ R

V×V are the positive and negative indicator
matrices for all word-to-word pairs with n+k,l,t ′ and n

−
k,l,t ′ being

the number of word-to-word positive (observed word-to-word pairs
(vk ,vl )) and negative (fictitious rejected pairs (vk ,vl ); see §6.3 for
their constructions) examples at time t ′, respectively; and m+i,k,t ′ ,
m−i,k,t ′ ∈ R

|Ut ′ |×V are the positive and negative indicator matrices
for all user-to-word pairs withm+i,k,t ′ andm

−
i,k,t ′ being the number

of user-to-word positive (observed user-to-word pairs (ui ,vk )) and
negative (fictitious rejected user-to-word pairs (ui ,vk ); see §6.3 for
constructions) examples.

4.3 Inference
The following derivation follows closely the skip-gram filtering
algorithm proposed by Bamler and Mandt in [4]. To infer the users’
and words’ embedding results at time step t , Ut and Vt , we start
by formulating a joint distribution of our DUWE model, i.e., (13),
overm±≤t and n

±
≤t , and the users’ and words’ embeddings U≤t and

V≤t across all the time. Accordingly, we are interested in the pos-
terior distribution over U≤t and V≤t conditioned on the statistics
information m±≤t and n±≤t as follows:

p (U≤t , V≤t | m±≤t , n
±
≤t ) =

p (m±≤tn
±
≤t , U≤t , V≤t )!

p (m±≤tn
±
≤t , U≤t , V≤t )dU≤t dV≤t

. (14)

The Evidence Lower BOund. It is intractable to compute the de-
nominator in (14), i.e., the normalization term. Variational inference
transforms the problem of approximating a posterior (conditional)
distribution into an optimization problem [5, 35]. The idea is to
posit a simple family of distributions over the latent variables and
find the member of the family that is closest in KL divergence to
the posterior distribution. Accordingly, we propose a variational
inference algorithm to approximately infer U≤t and V≤t . Let λ≤t
be the free parameters of a variational distribution qλ≤t (U≤t ,V≤t ).
Here, λ≤t = {λt ′ }tt ′=0 summarizes all parameters of the variational
distribution from time 0 to t . The goal of our inference algorithm is
to approximate the posterior, i.e., (14), with the simpler variational
distribution qλ≤t (U≤t ,V≤t ) by minimizing the KL divergence to
the posterior. Minimizing the KL divergence is equivalent to maxi-
mizing the following Evidence Lower BOund (ELBO) [35]:

L (λ≤t ) =Eqλ≤t (U≤t ,V≤t )
[logp (m±≤t ,n

±
≤t ,U≤t ,V≤t )] −

Eqλ≤t (U≤t ,V≤t )
[logqλ≤t (U≤t ,V≤t )]. (15)

Black Box Variational Inference. For a restricted class of mod-
els, their ELBO can be computed in a closed-form [5]. However, our
embedding model is non-conjugate and thus can not be computed
in a closed-form. Instead, we propose a variational inference algo-
rithm, which is based on black-box variational inference [35]. Our
inference algorithm iteratively updates the variational distribution
qλ≤t (U≤t ,V≤t ) given the statisticsm

±
≤t and n

±
≤t from 0 to t . There-

fore, we define a variational distribution that is factorized across all
time steps up to t , i.e., let qλ≤t (U≤t ,V≤t ) =

∏t
t ′=0 qλt ′ (Ut ′ ,Vt ′ ).

We adopt the mean-field approximation inference strategy, and
thus factorize the distribution qλt (Ut ,Vt ) at t as:

qλt (Ut ,Vt ) = qλt (Ut ) · qλt (Vt )

=

|Ut |∏
i=1
N (ui,t ; µui ,t ,σ

2
ui ,t I) ·

V∏
k=1
N (vk,t ; µvk ,t ,σ

2
vk ,t I), (16)

where µui ,t and µvk ,t are the means of the user ui ’s and the word
vk ’s embeddings at t , respectively; and σ2

ui ,t and σ2
vk ,t are the

corresponding variances, respectively. At t , givenm±≤t and n±≤t ,
and the fact that λ≤t−1,Ut−1 and Vt−1 have been obtained, the goal
of our inference algorithm is to infer the variational parameters in
qλt (Ut ,Vt ) at t , i.e., λt =

{
{µui ,t ,σ

2
ui ,t }

|Ut |
i=1 , {µvk ,t ,σ

2
vk ,t }

V
k=1

}
.

As our model is a Markovian dynamic system (see Fig. 1), we
have the following recursion:

p (m±≤t ,n
±
≤t ,U≤t ,V≤t ) = p (U≤t ,V≤t | m

±
≤t ,n

±
≤t ) p (m

±
≤t ,n

±
≤t )

∝ p (U≤t ,V≤t | m±≤t ,n
±
≤t ) = p (U≤t ,V≤t | m

±
≤t ) p (V≤t | n

±
≤t )
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=

t∏
t ′=0

p (Ut ′ ,Vt ′ | m±≤t ′ ) ·
t∏

t ′=0
p (Vt ′ | n±≤t ′ )

∝

t∏
t ′=0

(
p (m±t ′ | Ut ′ ,Vt ′ ) p (Ut ′ ,Vt ′ | m

±
≤t ′−1)×

p (n±t ′ | Vt ′ ) p (Vt ′ | n
±
≤t ′−1)

)
. (17)

Substituting (17) into (15), the ELBO in (15) therefore separates into
a sum of terms from time 0 to the current time t , i.e., L (λ≤t ) =∑t
t ′=0 L (λt ′ ) with L (λt ) for time step t being the following:

L (λt ) =Eqλt (Ut ,Vt )
[logp (m±t | Ut ,Vt )]+

Eqλt (Ut ,Vt )
[logp (Ut ,Vt | m±≤t−1)]+

Eqλt (Vt )
[logp (n±t | Vt )] + Eqλt (Vt )[logp (Vt | n

±
≤t−1)]+

Eqλt (Ut ,Vt )
[logqλt (Ut ,Vt )], (18)

where similar to (2), logp (m±t | Ut ,Vt ) can be computed as:

logp (m±t | Ut ,Vt ) =
|Ut |∑
i=1

V∑
k=1

(
m+i,k,t log s (u

⊤
i vk )+

m−i,k,t log s (−u
⊤
i vk )

)
, (19)

logp (n±t | Vt ) is computed by (2), and logqλt (Ut ,Vt ) can be
computed according to (16), respectively; and thus their corre-
sponding expectations can be computed easily. However p (Ut ,Vt |
m±
≤t−1) and p (Vt | n±≤t−1) in (18) are still intractable. Apply-

ing the variational inference results in the previous time step,
qλt−1 (Ut−1,Vt−1) ≈ p (Ut−1,Vt−1) and qλt−1 (Vt−1) ≈ p (Vt−1), we
can approximate these two probabilities, respectively:

p (Ut ,Vt | m±≤t−1) ≡ Ep (Ut−1,Vt−1 |m±≤t−1 )[p (Ut ,Vt | Ut−1,Vt−1)]

≈ Eqλt−1 (Ut−1,Vt−1 )
[p (Ut ,Vt | Ut−1,Vt−1)], (20)

p (Vt | n±≤t−1) ≡ Ep (Vt−1 |n±≤t−1 )[p (Vt | Vt−1)]

≈ Eqλt−1 (Vt−1 )
[p (Vt | Vt−1)], (21)

where p (Ut ,Vt | Ut−1,Vt−1) = p (Ut | Ut−1) p (Vt | Vt−1), which
are obtained by (11) and (12), respectively. Thus, the resulting ap-
proximate probability of (20) is a fully factorized distribution:

p (Ut ,Vt | m±≤t−1) ≈
|Ut |∏
i=1
N (ui,t ; γ̃ui ,t ,ψ̃

2
ui ,t I)×

V∏
k=1
N (vk,t ; γ̃vk ,t ,ψ̃

2
vk ,t I), (22)

where the mean γ̃ui ,t and the variance ψ̃2
ui ,t are:

γ̃ui ,t = ψ̃
2
ui ,t

(
σ2
ui ,t−1 + α

2
ui ,t−1I

)−1
µui ,t−1, (23)

ψ̃2
ui ,t =

[(
σ2
ui ,t−1 + α

2
ui ,t−1I

)−1
+ (1/α 2

0)I
]−1
. (24)

The equations for the word vk ’s mean γ̃vk ,t and variance ψ̃2
vk ,t

applied in both (20) and (21) are analogous to (23) and (24), respec-
tively. The proof of (23) and (24) is detailed in Appendix A. Similarly,

the resulting approximate probability of (21) is: x

p (Vt | n±≤t−1) ≈
V∏
k=1
N (vk,t ; γ̃vk ,t ,ψ̃

2
vk ,t ). (25)

Inserting (22) and (25) into (18) results in the fact that all the expec-
tations in (18) now involve only Gaussians and can be carried-out
analytically; and more importantly, our ELBO in (18) becomes a
convex objective and thus training the embeddings twice on the
same data would result in the same embedding results in contrast
to other embedding models with non-convex objectives. We, there-
fore, can optimize our ELBO at time t via applying the black-box
variational inference using the reparameterization trick [19, 35, 37].
We develop an unbiased estimator of the gradient of (18), which
can be computed from samples from the variation posterior. To do
this, we write the gradient of our ELBO in (18) as expectation with
respect to the variational distributions as: ∇λtL (λt ) =

Eqλt (Ut ,Vt )
[∇λt (Ut ,Vt ) logqλt (Ut ,Vt ) logp (m

±
t | Ut ,Vt )]+

Eqλt (Ut ,Vt )
[∇λt (Ut ,Vt ) logqλt (Ut ,Vt ) logp (Ut ,Vt | m

±
≤t−1)]+

Eqλt (Vt )
[∇λt (Vt ) logqλt (Vt ) logp (n

±
t | Vt )]+

Eqλt (Vt )
[∇λt (Vt ) logqλt (Vt ) logp (Vt | n

±
≤t−1)]+

Eqλt (Ut ,Vt )
[∇λt (Ut ,Vt ) logqλt (Ut ,Vt ) logqλt (Ut ,Vt )], (26)

The proof that the gradient of (18) is (26) is omitted here but anal-
ogous proof can be found in [35]. With (26) we compute noisy
unbiased gradients of our ELBO at time t with S Monte Carlo sam-
ples from the variational distribution:

∇λtL (λt ) ≈
1
S

S∑
s=1

(
∇λt (Ust ,V

s
t )
logqλt (U

s
t ,V

s
t )

(
logp (m±t | U

s
t ,V

s
t )

+ logp (Ust ,V
s
t | m

±
≤t−1) + logqλt (U

s
t ,V

s
t )

)
+ ∇λt (Vst ) logqλt (V

s
t )

(
logp (n±t | V

s
t ) + logp (V

s
t | n

±
≤t−1)

))
,

where (Ust ,V
s
t ) ∼ qλt (U

s
t ,V

s
t ). (27)

With (27), we can use stochastic optimization to optimize our ELBO
in (18) and update the parameter λi+1t at the i + 1-th iteration with:

λi+1t = λit + ρ
i+1
t · ∇λit

L (λit ), (28)

where ρi+1t is the learning rate at the i + 1-th iteration. Once the
iterations converge, we obtain the optimal embeddings for users
and words at time t , U∗t and V∗t as:

(U∗t ,V
∗
t ) = arg max

(Ut ,Vt )
qλ∗t (Ut ,Vt ) = ({µ∗ui ,t }

|Ut |
i=1 , {µ

∗
vk ,t }

V
k=1), (29)

where λ∗t is the optimal parameter at t after the iterations have
been converged. In practice, to speed up the convergence, we apply
reparameterization trick [37] to (28) during the iterations.

5 STREAMING KEYWORD DIVERSIFICATION
MODEL

After user and word embeddings are obtained, inspired by PM-
2 [13], a static diversification method, we propose a streaming
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Algorithm 1: SKDM to generate top-K keywords for profiling.
Input :Users’ and words’ dynamic embedding at time t , Ut and Vt
Output :All users’ profiling results at time t ,Wt

1 for u = 1, . . . , |Ut | do
2 Wu,t ← ∅ /* Wu,t ∈ Wt */

3 Nu ← retrieve top-N words with their embeddings similar to ut
4 C ← perform K-means on Nu
5 for c = 1, . . . , |C | do
6 πc,u,t ← P (c | u, t )
7 sc |u,t ← 0

8 for all positions in the ranked listWu,t do
9 for c = 1, . . . , |C | do

10 qt [c |u, t ] = πc,u,t
2sc |u,t +1

11 c∗ ← argmaxc qt [c |u, t ]
12 v∗ ← argmaxv∈c∗ (κ P (v |c∗, u, t ) + (1 − κ) tfidf (v |u, t ))
13 Wu,t ← Wu,t ∪ {v∗ } /* append v∗ to Wu,t */

14 c∗ ← c∗\{v∗ } /* remove v∗ from the cluster c∗ */

15 sc∗ |u,t ← sc∗ |u,t + P (v∗ |c∗, u, t )

keyword diversification model [26], SKDM, to generate top-K rele-
vant and diversified keywords for profiling users’ interests at time
t . The overview of SKDM is shown in Algorithm 1.

For each user u at t , SKDM starts with an empty keyword set
Wu,t with K empty seats (step 2 of Algorithm 1), and a set of can-
didate keywords (step 3), which is the top-N (N ≫ K) relevant
words Nu whose embeddings have highest cosine similarities to
user u’ embedding. It then performs K-means onNu to obtain clus-
ters of the words (step 4). For each of the seats, it computes the
quotient qt[c |u, t] for each cluster c given a user u at time t by:
qt[c |u, t] = πc,u,t

2sc |u,t+1 , where πc,u,t is the probability of the user
u being interested in cluster c at t denoted as P (c |u, t ) and is set
to be πc,u,t = P (c |u, t ) = 1

ZC cos(ut , vc ) (step 6), and sc |u,t is the
“number” of seats occupied by cluster c (in initialization, sc |u,t is set
to 0 for all clusters (step 7)). Here vc is the average embedding of all
words in cluster c , ZC is a normalization term. According to PM-2,
seats should be awarded to the cluster with the largest quotient in
order to best maintain the proportionality of the result list. There-
fore, SKDM assigns the current seat to the cluster c∗ with the largest
quotient (step 11). The keyword to fill this seat is the one from c∗

and its embedding has the highest cosine similarity to ut , defined as
P (v |c∗,u, t ) = 1

Zc∗
cos(ut , vv ), where Zc∗ is a normalization term.

Thus we propose to obtain the keywordv∗ for useru’s profiling at t
as (step 12):v∗ ← argmaxv ∈c∗ (κ P (v |c∗,u, t )+(1−κ) tfidf (v |u, t )),
where 0 ≤ κ ≤ 1 is a trade-off free parameter, and tfidf (v |t ,u)
is a time-sensitive term frequency-inverse document frequency
function for user u at t , which can be defined as: tfidf (v |t ,u) =
tf (v |Du,t ) × idf (v |u,Dt ), where tf (v |Du,t ) =

| {d ∈Du,t :v ∈d } |
|Du,t |

is
the term frequency function that computes how many percents
of the documents that contain the word v in the whole document
set Du,t , and idf (v |u,Dt ) = log |Dt |

| {d ∈Dt :v ∈d } |+ϵ is the inverse
document frequency function with ϵ being set to 1 to avoid the
division-by-zero error. According to the tfidf function, if the wordv
frequently appears in Du,t generated by user u but not frequently
appears in the document set Dt generated by all the users inUt ,

tfidf (v |t ,u) will return a high score. After the word v∗ is selected,
SKDM adds v∗ as a result keyword toWu,t for profiling the user u
at t , i.e.,Wu,t ←Wu,t ∪ {v

∗} (step 13), removes it from the cluster
c∗ (step 14), and increases the “number” of seats occupied by the
cluster c∗ as (step 15): sc∗ |u,t ← sc∗ |u,t +P (v

∗ |c∗,u, t ). The process
(steps 8 to 15) repeats until we get K diversified keywords forWu,t .
The order in which a keyword is appended toWu,t determines its
ranking for the profiling. After the process is done, we obtain a set
of diversified keywordsWu,t that profile the interest of a user at t .

Obviously, the user and word dynamic embeddings can be com-
puted offline and the top-K keywords obtained by SKDM can be
performed offline as well. Thus, our profiling algorithm is efficient.

6 EXPERIMENTAL SETUP
6.1 Research Questions
We seek to answer the following research questions that guide the
remainder of the paper:
(RQ1) Can DUWE capture better semantic representations of users
and words for user profiling, compared to state-of-the-art non-
dynamic and dynamic embedding and topic models?
(RQ2) How the length of time bins affects the DUWE model?
(RQ3) How good the representations inferred by DUWE are?
(RQ4) Can DUWE capture the dynamics of both user and word
embeddings and make the embedding results explainable?
(RQ5) Is DUWE sensitive to the embedding dimensions?

6.2 Dataset
In order to answer our research questions, we work with a publicly
available dataset collected from Twitter [25].1 In details, the dataset
randomly sampled 1, 375 users from Twitter, and all users’ tweets
posted from the beginning of their registrations up to May 31, 2015.
Totally, it has 3.78 million tweets with each tweet having its own
timestamp. The average length of the tweets is 12 words.

We obtain two types of Ground Truth: one for evaluating Relev-
ance-oriented (RGT) performance and another for evaluatingDiver-
sity-oriented (DGT) performance. To create the RGT, we split the
dataset into 5 different partitions of time periods, i.e., a week, a
month, a quarter, half a year and a year, respectively. For each
Twitter user at every specific time period, an annotator was asked
to generate a ranked list of top-K relevant keywords (the number of
which was decided by the annotators) that can summarize the user’s
interests at that time period. In total, 68 annotators took part in the
labelling with each of them labelling about 5 Twitter users for these
5 different partitions. To create DGT, as it is expensive to manually
obtain aspects of the keywords from annotators, we cluster the
relevant keywords with their embeddings 2 into 15 categories 3 by
K-means. Relevant keywords within a cluster are regarded as being
relevant to the same aspect in the DGT ground truth.

6.3 Baselines and Settings
We make comparisons between the proposed DUWE model and
the following state-of-the-art algorithms for user profiling:

1Available from https://bitbucket.org/sliang1/uct-dataset/get/UCT-Dataset.zip.
2Publicly available from https://nlp.stanford.edu/projects/glove/.
3Information of the categories is available from http://dmoztools.net.
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Non-dynamic embedding models:
Skip-Gram Model (SGM): This is the popular static word2vec
embedding model [31, 32].

Distributed Representations of Documents (DRD): This is
the popular static doc2vec embedding model [22].

Dynamic traditional profiling model:
Predictive Language Model (PLM). It models the dynamics
of personal interests via a probabilistic language model [14].

Dynamic topic model:
User Clustering Topic model (UCT). This is a dynamicmulti-
nomial Dirichlet mixture user clustering topic model [25],
which can capture users’ time-varying topic distributions.

Dynamic embedding models:
Dynamic Independent Skip-Gram model (DISG). It splits
the data into different time bins, independently initializes
words’ representations and obtains the words’ embeddings at
each bin by word2vec [31, 32]. Word embeddings at nearby
bins are then made comparable by approximating orthogonal
transformations [16].

Dynamic Pre-initialized Skip-Gram model (DPSG). This
approach [18] is the same as DISG, but with word vectors
being initialized with values from the previous time bin.

Dynamic Independent Distributed Representations of
documents (DIDR). This approach is the same as DISG, but
obtains embeddings of documents rather than words at each
bin by doc2vec [22].

Dynamic Pre-initialized Distributed Representations of
documents (DPDR). This approach is the same as DIDR, but
with document vectors being initialized with the average val-
ues of the words in the documents from the previous bin.

SGM and DRD are static methods, while the others are dynamic
ones. We do not include other dynamic topic models as baselines,
e.g., topic tracking model [17], since Liang et al. [25] have demon-
strated that UCT outperforms these topic models. For all the word
embedding baseline models, the average of the embeddings has
been used to represent users.

Following previous work on embeddings [16, 18, 31, 32], we set
the number of dimensions both in DUWE and in the baseline meth-
ods, to 300. For fair comparisons, we set the number of topics in the
baseline topic models to 300 as well (we found that the performance
is almost consistent once the dimensions of the representations in
embeddings and the number of topics in topic models are as large as
∼100). Following word2vec [31, 32], for both DUWE and all the em-
bedding baselines, we set the number of negativeword pairs (vk ,vj )
samples at time t to n−k,l,t =

( ∑V
k ′,l ′=1 n

+
k ′,l ′,t

)
· ξ · pt (k ) · p

′
t (l ),

where ξ is the ratio of negative to positive word pairs and is set

to 1.0, pt (k ) =
∑V
l=1 n

+
k,l,t∑V

k′,l=1 n
+
k′,l,t

, and p′t (l ) =
(pt (l ))3/4∑V

l ′=1 (pt (l
′))3/4

. We follow

the same way to define the number of negative user-word pair
(ui ,vk ) samples in m− in our DUWE. For tuning the parameters
in DUWE and all the baselines, we use a 70%/20%/10% split of the
users in the dataset for our training, validation and test sets, re-
spectively. We train DUWE for different values of the parameters
ε in (3), η in (6), α 2

0 in (9) and β
2
0 in (10); ε , η, and all elements

in α 2
0 and β

2
0 take values in [0.001, 0.01, 0.1, 0.2, . . . , 1, 2, . . . , 10],

respectively (elements in α 2
0 are set to be equal at each training

time; the same setting to those in β
2
0). The optimal ε , η, α 2

0 and β
2
0

values are decided based on the validation set, and evaluated on
the test set. The train/validation/test splits are permuted until all
users were chosen once for the test set. We repeat the experiments
10 times and report the average results. For initialization in DUWE
and other embedding baselines, we let words’ embeddings at t = 0
be those pre-trained by word2vec and users’ embeddings be the
average of the words embeddings associated with the users. We
adopt Adadelta for setting our learning rates ρi+1t in (28).

6.4 Evaluation Metrics
For evaluation purpose, we use standard relevance-oriented evalu-
ation metrics, Pre@k (Precision at k), NDCG@k (Normalized Dis-
counted Cumulative Gain at k), MRR@k (Mean Reciprocal Rank at
k), and MAP@k (Mean Average precision at k) [12], and diversity-
oriented metrics, Pre-IA@k (Intent-Aware Precision at k) [1], α-
NDCG@k [9], MRR-IA@k [1], MAP-IA@k [1]. We also propose
semantic versions of the original metrics, denoted as Pre-S@k ,
NDCG-S@k , MRR-S@k , MAP-S@k , Pre-IA-S@k , α-NDCG-S@k ,
MRR-IA-S@k , and MAP-IA-S@k , respectively. Here the only differ-
ence between the original metrics and the corresponding semantic
ones is the way to compute the relevance score of a retrieved key-
word v∗ to ground truth keyword vдt . For original metrics, we let
the relevance score be 1 if and only if v∗ = vдt , otherwise be 0;
whereas for the semantic versions, we let the relevance score be
the cosine similarity between the word embedding vectors of v∗
and vдt , computed as cos(v∗, vдt ). Since we are usually restricted
to choose a small number of keywords to describe a user’s profile,
we compute the scores at depth 10, i.e., let k = 10 in evaluation. For
simplifying the notation we use M to refer to M@k , where M is
any metrics. Additionally, we adopt Perplexity [6] to evaluate the
generalization performance of the models.

7 RESULTS AND DISCUSSIONS
In this section, we answer the research questions listed in §6.1,
analyze the experimental results, and provide discussions.

7.1 Overall Profiling Performance
RQ1: We compare the profiling performance of our DUWE with
that of the baselines listed in §6.3.

Tables 1 and 2 compare the relevance and diversity profiling
performance of DUWE to that of the baselines, averaged across
all the testing time periods on every month, and evaluated by the
relevance and diversity ground truths, RGT and DGT, respectively.
The ranking of models with respect to the relevance and diversity
performance is consistent across different evaluation metrics, and
in particular this order is observed: DUWE > DPDR ∼ DPSG >
UCT > DIDR ∼ DISG ∼ PLM ∼ DRD ∼ SGM. Here > denotes the
performance difference is statistically significant at a significance
level of 95% with Student’s two tailed t-test, and ∼ denotes the
difference is not statistically significant. The finding DUWE >
DPDR ∼ DPSG indicates that embeddings of both users and words
produced by our DUWE work better than those by state-of-the-art
dynamic embedding models. The finding that DUWE, DPDR, DPSG
and UCT outperform DIDR and DISG indicates that the strategies
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Table 1: Relevance Performance on time periods of each
month. Statistically significant differences between DUWE
and the best baseline DPDR are marked in the upper right
hand corner of DUWE scores. Statistical significance is
tested using a two-tailed paired t-test and is denoted using
▲ for α = .01, and △ for α = .05.

Pre NDCG MRR MAP Pre-S NDCG-S MRR-S MAP-S

SGM .264 .232 .662 .135 .410 .388 .863 .208
DRD .268 .234 .662 .137 .412 .392 .864 .210
PLM .273 .239 .668 .140 .417 .398 .870 .212
DISG .295 .279 .721 .150 .426 .417 .873 .220
DIDR .308 .287 .725 .153 .438 .425 .876 .225
UCT .335 .324 .787 .172 .462 .457 .883 .237
DPSG .352 .338 .792 .178 .470 .459 .897 .242
DPDR .355 .342 .812 .184 .476 .463 .905 .247
DUWE .383▲ .375▲ .854▲ .207▲ .495▲ .483▲ .932▲ .262▲

Table 2: Diversification Performance on time periods of ev-
ery month. Notations for the statistical significances are as
in Table 1.

Pre α-ND MRR MAP Pre α-ND MRR MAP
-IA CG -IA -IA -IA-S CG-S -IA-S -IA-S

SGM .158 .188 .482 .183 .260 .325 .734 .150
DRD .159 .189 .485 .183 .262 .328 .738 .150
PLM .162 .192 .487 .187 .265 .332 .742 .152
DISG .183 .217 .504 .198 .294 .352 .760 .172
DIDR .187 .228 .517 .205 .306 .364 .765 .178
UCT .209 .245 .543 .224 .328 .395 .778 .194
DPSG .223 .256 .573 .234 .337 .412 .783 .207
DPDR .225 .260 .580 .242 .348 .426 .787 .213
DUWE .257▲ .293▲ .617▲ .258▲ .387▲ .447▲ .808△ .227▲

of tracking embeddings over time upon the embeddings at previous
time steps work better than those of simply splitting the data into
separate time bins and then obtaining embeddings from each of
the bin as dynamic embedding results. All dynamic models work
better than static models, i.e., DRD and SGM, which illustrates that
embeddings need to be modeled over time for user profiling.

7.2 Length of Time Bins
RQ2:We vary the length of time bins to analyze if the models are
sensitive to the length and the performance is consistent over time.

Fig. 2 reports the relevance and diversity performance using Pre-
cision, NDCG, Pre-IA and α-NDCG as representative metrics. As it
can be seen, DUWE significantly and consistently outperforms the
best three baselines, DPDR, DPSG and UCT, for the different lengths
of testing time cutoffs which vary from a week to a year, which
illustrates that dynamic embeddings generated by our DUWE work
better than the state-of-the-art. When the length of time periods
increases from a quarter to a year, DUWE reaches a plato but still
outperforms the best baselines. All of these findings demonstrate
that DUWE is robust and it is able to maintain significant improve-
ments of user profiling performance over the state-of-the-art.

7.3 Quality of Semantic Representations
RQ3:We now evaluate the performance of DUWE and the baseline
models in terms of perplexity, which is widely used as an eval-
uation metric to evaluate the generation of representations [6].
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Figure 2: Relevance and diversity performance of DUWE,
DPDR, DPSG and UCT on time periods of a week, a month,
a quarter, half a year, and a year, respectively.
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Figure 3: Mean perplexity of DUWE and state-of-the-art
models with varying sizes of dimensions.

Perplexity is monotonically decreasing with the likelihood of the
documents, and is algebraically equivalent to the inverse of the
geometric mean per-word (in our case per-user and per-word) like-
lihood. To evaluate the quality of representations, we follow that
in [6, 24] and compute the perplexity [6, 24] as Perplexity(D≤t ) =

exp
(
−

∑t
t ′=0

∑ |Dt ′ |

d=1
∑
v ∈d logp (v |ud , t ′)∑t

t ′=0
∑ |Dt ′ |

d=1 Nd

)
, where Nd is the num-

ber of words in document d , and p (v |ud , t ′) = cos(v, ud ). Here ud
is the embedding of the user associated with d . A lower perplexity
score indicates better generalization performance. Fig. 3 shows the
mean perplexity performance of DUWE and the baseline models,
over different sizes of dimensions ranging between 10 and 300. We
report the result with the length of each time period being a month
as a representative. As it can be observed, DUWE consistently per-
forms better than the rest of the models, with the performance
flattening out when the dimensions are equal or more than ∼100.

7.4 Dynamic Representations
RQ4: Next, we examine whether DUWE outperforms baselines on
capturing the dynamics of embeddings to user profiling in streams.

We randomly choose one example user and display the top-K
words from the ground truth and the top-K words generated by
DUWE and the best baseline DPDR for profiling the user at every
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Figure 4: Precision and NDCG performance of DUWE and
the baselines with various sizes of dimensions of embed-
dings.

quarter, respectively. Looking as the ground truth keywords in Ta-
ble 3, the user’s interests first center on the aspects “sports” and
“plant" from April to June 2014 and then move to the aspects “educa-
tion” and “electronic products” from April to May 2015. Compared
to the best baseline, DUWE is more effective to track the user’s
interests over time and retrieve top-K relevant and diverse key-
words to profile the user at different quarters, which demonstrates
the high quality of the dynamic representations generated by our
dynamic user and word embedding model, DUWE.

7.5 Dimensions of Representations
RQ5: Finally, we vary the sizes of dimensions of the embeddings
in the models and evaluate their performance.

Fig. 4 shows the Precision and NDCG performance of DUWE
and the best baselines, DPDR, DPSG and UCT, on different sizes of
dimensions varying between 10 and 300. Performance evaluated by
other metrics is not reported here, as it follows the same pattern.
It is clear from the figure that the performance increases with the
number of dimensions both in DUWE and the baselines, when the
number of dimensions goes from 10 to ∼100. The performance of
all the models seems to be reaching a plateau when dimensions
increase from ∼100 to 300. At all different sizes, DUWE keeps out-
performing all other baselines. All of these findings demonstrate
another merit of our DUWE: it is not sensitive to the size of dimen-
sions of the embeddings when the size is set to be large enough, and
it is able to consistently improve user profiling performance with
various sizes of the dimensions over the best embedding models.

8 CONCLUSION
We have studied the problem of user profiling over time in Twitter.
To tackle the problem, we have proposed a dynamic user and word
embedding model, DUWE, that is the first attempt to simultane-
ously model user and word embeddings over time in the same space.
DUWE adopts a skip-gram model to a dynamic setup and trains on
all the data up to the current time step, which allows end-to-end
training. This leads to stable, continuous embedding trajectories,
smooth out noise, avoid inappropriate semantic drifts, and share
user-to-word and word-to-word statistics information across all
the steps. We closely follow Bamler and Mandt’s skip-gram filter-
ing algorithm [4] to infer the dynamic embeddings of users and
words in Twitter. To diversify top-K keywords for users’ profiling
over time, we have proposed a streaming keyword diversification

model, SKDM. Experimental results on a publicly available dataset
demonstrate the effectiveness of the proposed algorithms.

There are many aspects to be explored in future work, e.g., how
to generate phrases instead of keywords for profiling, whether there
other ways to model and infer user embeddings over time, whether
there other datasets to verify our embedding model, or whether we
can apply DUWE to other applications, e.g., rank aggregation [27],
and verify the effectiveness of the embeddings there.
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A DERIVATIONS OF γ̃ AND ψ̃

According to (20), we havep (Ut ,Vt | m±≤t−1) ≈
!

qλt−1 (Ut−1,Vt−1)
p (Ut , Vt | Ut−1,Vt−1)dUt−1dVt−1 =

∫
qλt−1 (Ut−1) p (Ut | Ut−1)

dUt−1 ·
∫
qλt−1 (Vt−1) p (Vt | Vt−1)dVt−1. In the following, we only

show the derivation for Eqλt−1 (Ut−1 )p (Ut | Ut−1) =
∫
qλt−1 (Ut−1)

p (Ut | Ut−1)dUt−1, as the derivation forEqλt−1 (Vt−1 )p (Vt | Vt−1) =∫
qλt−1 (Vt−1) p (Vt | Vt−1)dVt−1 is essentially the same. Apply-

ing (9) and (16), and inserting the expressions for the Gaussian
distributions, we have the following:

Eqλt−1 (Ut−1 )
p (Ut | Ut−1) =

∫
qλt−1 (Ut−1) p (Ut | Ut−1)dUt−1

∝

∫
N (Ut−1; µt−1,σ2

t−1I)N (Ut ;Ut−1,α 2
t−1I)N (Ut ; 0,α 2

0 I)dUt−1

∝

∫
exp


−
1
2
*
,

(Ut−1 − µt−1)2

σ2
t−1

+
(Ut − Ut−1)2

α 2
t−1

+
U2
t

α 2
0

+
-


dUt−1,

(30)

where letσ2
t−1 and µt−1 be abbreviated for the variances and means

for all users’s embeddings Ut−1, respectively, and drop the constant
prefactors and use a notation that is suitable for scalar values. In
reality, σ2

t−1 is a matrix, but since it is diagonal we can treat each
component as an independent scalar. To carry out the integral
in (30), we pull all terms that are independent of Ut−1 out of it, and
then (30) becomes:

∝ exp *
,
−
1
2
µ2t−1
σ2
t−1

+
-
× exp


−
1
2
*
,

1
α 2
t−1
+

1
α 2
0

+
-
U2
t


×

∫
exp


−
1
2
*
,

1
σ2
t−1
+

1
α 2
t−1

+
-
U2
t−1 +

*
,

µt−1

σ2
t−1
+

Ut
α 2
t−1

+
-
Ut−1


dUt−1,

(31)

where the first factor is a constant (independent of Ut ), which will
be cancelled out. In the last factor, we sort in powers of Ut−1, and
can carry out the Gaussian integral in (31) by completing the square.
Thus, (31) becomes:

∝ exp

−
1
2
*
,

1
α 2
t−1
+

1
α 2
0

+
-
U2
t


× exp



1
2
*
,

1
σ2
t−1
+

1
α 2
t−1

A2+
-


×

∫
exp


−
1
2
*
,

1
σ2
t−1
+

1
α 2
t−1

+
-
(Ut−1 − A)2


dUt−1, (32)
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Table 3: Top six keywords of an example user’s dynamic profile with the time being five quarters from April 2014 to May 2015.
The keywords from the DGT ground truth, generated by the best baseline DPDR and our DUWE are presented for the user in
the rows, respectively.

Apr. 2014 to Jun. 2014 Jul. 2014 to Sep. 2014 Oct. 2014 to Dec. 2014 Jan. 2015 to Mar. 2015 Apr. 2015 to May 2015

Ground
Truth

badminton leaf basketball
flower bicycling root

muscle apple heart kiwi
lungs pomelo

freezer fly toaster cock-
roach cabinet ant

injury clothes joint slacks
immune slippers

school macbook teacher
ipad assignment iphone

DPDR badminton sky basketball
herb coach grass

heart apple ankle pomelo
finger peach

freezer water muffin fly
toaster cockroach

injury clothes dose slacks
food slippers

class ipad garden update
teacher system

DUWE badminton flower basket-
ball leaf bicycling fruit

heart apple muscle kiwi
breath pomelo

freezer ant dishwaster fly
toaster cockroach

injury clothes ankle
trousers doctor slacks

teacher laptop student ap-
ple school ipad

where A =
(
1/σ2

t−1 + 1/α
2
t−1

)−1 (
µt−1/σ2

t−1 + Ut /α
2
t−1

)
. The in-

tegral in (32) leads to a constant factor (independent of Ut ) because
it is invariant under a constant shift of the integration variable,
which will be cancelled out as well. Thus, (32) becomes:

∝ exp

−
1
2
*
,

1
α 2
t−1
+

1
α 2
0

+
-
U2
t


× exp



1
2
*
,

1
σ2
t−1
+

1
α 2
t−1

A2+
-



= exp

−
1
2
*
,

1
α 2
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+

1
σ2
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2
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+
-
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t +
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σ2
t−1 + α

2
t−1

Ut


∝ N (Ut ; γ̃t ,ψ̃2
t I), (33)

where we let γ̃t and ψ̃2
t abbreviate for the means and variances for

all users’ embeddings Ut , respectively, and let:
1
ψ̃2
t
=

1
α 2
0
+

1
σ2
t−1 + α

2
t−1
, and

γ̃t

ψ̃2
t
=

µt−1

σ2
t−1 + α

2
t−1
, (34)

which results in:

γ̃t = ψ̃
2
t
(
σ2
t−1 + α

2
t−1I

)−1
µt−1, (35)

ψ̃2
t =

[(
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