
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Optimizing web search engines with interactions

Grotov, A.

Publication date
2018
Document Version
Final published version
License
Other

Link to publication

Citation for published version (APA):
Grotov, A. (2018). Optimizing web search engines with interactions. [Thesis, fully internal,
Universiteit van Amsterdam].

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/optimizing-web-search-engines-with-interactions(a987fdc8-e889-45a9-8da5-99bcd1defe05).html

Optimizing Web Search Engines
with Interactions

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof. dr. ir. K.I.J. Maex

ten overstaan van een door het College voor Promoties ingestelde
commissie, in het openbaar te verdedigen in

de Aula
op 7 november 2018, te 11:00 uur

door

Artem Grotov

geboren te Chelyabinsk, Rusland

Promotiecommissie

Promotor:
prof. dr. M. de Rijke Universiteit van Amsterdam

Co-promotor:
dr. J. Kiseleva Universiteit van Amsterdam

Overige leden:
prof.dr. L. Hardman Centrum Wiskunde en Informatica
dr. C. Hauff Technische Universiteit Delft
dr.ir. J. Kamps Universiteit van Amsterdam
prof.dr. E. Kanoulas Universiteit van Amsterdam
prof.dr.ir. C.T.A.M. de Laat Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The research was supported by the Netherlands Organisation for Scientific Research
(NWO) under project number 612.001.116 and by the Criteo Faculty Research Award
program.

Copyright © 2018 Artem Grotov, Amsterdam, The Netherlands
Cover by Olga Grotova
Printed by Off Page, Amsterdam

ISBN: 978-94-6182-912-2

Acknowledgements

The thesis would not have come about without the help of many.
I want to thank my supervisors: Maarten de Rijke, Julia Kiseleva, and, during the

early stages of my PhD studies, Shimon Whiteson, for their support and patience.
I want to thank my committee members: Lynda Hardman, Claudia Hauff, Jaap

Kamps, Evangelos Kanoulas and Cees de Laat.
I want to thank current colleagues: Alexey Borisov, Ana Lucic, Anna Sepliarskaia,

Boris Sharchilev, Chang Li, Chuan Wu, Damien Lefortier, Dan Li, Dat Tien Nguyen,
David van Dijk, Eva Kenny, Hamidreza Ghader, Harrie Oosterhuis, Hosein Azarbonyad,
Ilya Markov, Jiahuan Pei, Jie Zou, Ke Tran Manh, Maartje ter Hoeve, Marzieh Fadaee,
Mostafa Dehghani, Nikos Voskarides, Petra Best, Praveen Dakwale, Rolf Jagerman,
Shao-Jie Jiang, Xinyi Li, Yifan Chen, Ziming Li, and past colleagues: Abdallah El Ali,
Adith Swaminathan, Aleksandr Chuklin, Anne Schuth, Bob van de Velde, Christophe
Van Gysel, Daan Odijk, David Graus, Dilek Onal, Evgeny Sherkhonov, Fei Cai, Katya
Garmash, Floor Sietsma, Fons Laan, Isaac Sijaranamual, Ivan S. Zapreev, Maria-
Hendrike Peetz, Marlies van der Wees, Masrour Zoghi, Richard Berendsen, Shangsong
Liang, Spyros Martzoukos, Tom Kenter, Zhaochun Ren.

I want to thank my friends outside of work: Oleg Goryunov and Evgeny Karpov.
I want to thank my family: Tatyana and Olga Grotova and my grandmother Marina.
And I want to thank my partner Yared for loving me all this time!

Artem Grotov
Amsterdam, August 20, 2018

Contents

1 Introduction 1
1.1 Research Outline and Questions . 2

1.1.1 RQ1: Which is the best click model to model interactions with
a search engine result page? 3

1.1.2 RQ2: Does quantifying uncertainty in click models help to
evaluate search engine rankers? 4

1.1.3 RQ3: How to optimize deep neural networks using implicit
feedback to perform learning to rank online? 5

1.1.4 RQ4: Is it possible to optimize interactive systems using user
interactions without explicit reward? 5

1.2 Main Contributions . 6
1.2.1 Algorithmic contributions 6
1.2.2 Empirical contributions . 6
1.2.3 Software contributions . 7

1.3 Thesis Overview . 7
1.4 Origins . 9

2 A Comparative Study of Click Models for Web Search 11
2.1 Introduction . 11
2.2 Click Models . 12
2.3 Evaluation Measures . 14
2.4 Experimental Setup . 16
2.5 Results . 17
2.6 Conclusion . 21

3 Bayesian Ranker Comparison Based on Historical User Interactions 25
3.1 Introduction . 26
3.2 Related Work . 27
3.3 Problem Setting . 29
3.4 Click Model-Based Metric . 29
3.5 BARACO . 32

3.5.1 Inferring click model posteriors 32
3.5.2 The switching problem . 35
3.5.3 The difference estimation problem 36

3.6 Experimental setup . 37
3.6.1 LETOR evaluation . 38
3.6.2 WSDM evaluation . 40
3.6.3 Parameter settings . 40

3.7 Results . 41
3.7.1 LETOR results . 41

Results for the switching problem 41
Results for the difference estimation problem 43

3.7.2 WSDM results . 45
Results for the switching problem 45

v

CONTENTS

Results for the difference estimation problem 47
3.8 Conclusions and Future Work . 47

4 Deep Online Learning to Rank for Image Filtering with Implicit Feedback 49
4.1 Introduction . 50
4.2 Problem Setting . 52
4.3 Method . 53

4.3.1 Score network . 53
4.3.2 Exploration policies . 55

Exploitation . 55
Exploration . 55
✏-greedy . 55

Boltzmann exploration . 55
Bootstrapped exploration . 56

4.3.3 Two ways of training a score network using implicit user feedback 56
Reward signal . 56
DCG-loss . 56
PG-loss . 57

4.4 Experimental Setup . 60
4.4.1 Datasets . 60
4.4.2 Experimental design . 60
4.4.3 Evaluation measures . 61
4.4.4 Experimental conditions . 62
4.4.5 Optimization, regularization and hyperparameters 62

4.5 Results . 62
4.5.1 DCG-loss vs. PG-loss . 64
4.5.2 Exploration . 65
4.5.3 Effect of list size . 66

4.6 Related Work . 67
4.6.1 Image retrieval . 67
4.6.2 Online learning to rank . 67
4.6.3 Deep online learning . 68

4.7 Conclusion . 69

5 Optimizing Interactive Systems with Data-Driven Objectives 71
5.1 Introduction . 71
5.2 Background . 72
5.3 Modeling User-System Interactions 73

5.3.1 Modeling user behavior in interactive systems 73
5.3.2 Defining different types of user behaviors 74

5.4 Defining Data-driven Objectives . 75
5.4.1 Defining interactive system objectives 75
5.4.2 Recovering user rewards . 76

5.5 Optimizing Interactive Systems with Data-driven Objectives 77
5.6 Experimental Setup . 79

5.6.1 Designing an interactive system 79

vi

CONTENTS

5.6.2 Modeling user behavior . 79
5.6.3 Evaluation process . 80

5.7 Results and Discussion . 80
5.7.1 Performance of ISO . 80
5.7.2 Improving interactive systems with ISO 81
5.7.3 Suboptimal trajectories in the absence of feedback 82
5.7.4 Impact of ISO components 83

5.8 Related Work . 84
5.8.1 Optimizing interactive systems 84
5.8.2 Rewards for interactive systems 85

5.9 Conclusions and Future work . 85

6 Conclusions 87
6.1 Main Findings . 87

6.1.1 RQ1: Which is the best click model to model interactions with
a search engine result page? 87

6.1.2 RQ2: Does quantifying uncertainty in click models help to
evaluate search engine rankers? 88

6.1.3 RQ3: How to optimize deep neural networks using implicit
feedback to perform learning to rank online 88

6.1.4 RQ4: Is it possible to optimize interactive systems using user
interactions without explicit reward? 89

6.2 Looking Forward . 89
6.2.1 Evaluation . 90
6.2.2 Data . 91
6.2.3 Better algorithms . 91

Appendices 93

A Acronyms 95

B Code 97
B.1 Code for Bayesian Ranker Comparison Based on Historical User Inter-

actions . 97
B.2 Code for Deep Online Learning to Rank for Image Filtering with Im-

plicit Feedback . 98
B.2.1 Data preprocessing . 98
B.2.2 Algorithm modules . 99
B.2.3 Putting it together . 99

B.3 Code for Interactive System Optimizer 99

Bibliography 101

Summary 109

Samenvatting 111

vii

1
Introduction

Web search engines such as Baidu, Bing, Google and Yandex are some of the most
visited websites. Many people use them to access information available on the web.
Google alone serves more than six billion queries per day [59]. Half the world population
trusts search engines as a source of information and in some countries more than
television or news papers [36]. Search engines may influence public opinion [133].
Additionally, web search is one of the biggest businesses on the web [128].

Ranking documents in response to a query is a crucial step in producing a search
engine result page (SERP). The goal of a search engine ranker is to make the most
relevant documents easily accessible to its users by putting them at the top of the
ranking. Relevance is a multidimensional, dynamic, and complex concept that has been
studied extensively within the IR community [12]. Intuitively, relevant documents are
the ones that satisfy the user’s information need that is expressed as a query.

Ranking is typically done by combining tens, hundreds or even thousands of features
into a score that is used to sort the documents [112]. Examples of such features are
the tf-idf or BM25 ranking functions – they assign scores to documents with respect
to a query by looking at the word overlap between them and statistical properties of
the words that overlap such as document and corpus frequencies, which are assumed
to capture aspects of a document’s relevance [117]. Another example is a query inde-
pendent ranking function such as PageRank – it ranks documents with respect to their
centrality in the hyperlink graph, which is assumed to capture aspects of a document’s
authoritativeness [75]. If the number of features is small then a ranker can be created
manually by using a weighted sum of the features with manually assigned weights as the
ranking function. However, this is impractical when the number of features is large or
one wishes to use a more complex function for ranking such as forests of decision trees.
It is even more impractical when one wants to learn query or document representations
using neural networks. In order to learn more complex ranking functions, machine
learning – and in particular Learning to Rank (LTR) – has been extensively used by the
community [15, 16, 28, 112].

One cannot approach learning without being able to measure its success. Evaluating
rankers has been, and continues to be, a widely researched topic in the Information
Retrieval (IR) community. Many measures of ranker quality have been proposed
in the literature, such as Normalized Discounted Cumulative Gain, Mean Average
Precision [119], Expected Browsing Utility [151], Expected Reciprocal Rank [20], and

1

1. Introduction

many others. Learning to Rank and measuring ranker quality go hand in hand and
the approaches in both learning and evaluation fall into two general categories: using
annotated datasets – supervised learning – or by using recorded user interactions with
the search engine.

In the supervised learning approach the relevance of a representative set of query
document pairs is annotated by human judges. Such LTR datasets can be used both for
learning new rankers and for evaluating existing ones. The human judges who annotate
the relevance of documents can be either expert annotators or crowdsourced workers.
Since the early 1990s community-based efforts such as TREC,1 CLEF,2 INEX3 and NT-
CIR4 have produced a number of such datasets [140]. Independently, companies behind
large commercial search engines such as Microsoft [76], Yahoo [18] and Yandex [150]
have also shared annotated datasets, as have companies behind recommender systems
such as Netflix [99] and MovieLens [98]. The supervised approach is well studied and
has high internal validity and repeatability of experiments. However, creating such
labeled datasets can be expensive [2] and the performance of rankers measured using
standard IR metrics may not accurately reflect the users’ satisfaction [134, 137].

In order to overcome these limitations, learning and evaluation of rankers can
be done using observed user interactions with the search engine result page. User
interactions with a search engine can reflect user preferences [65, 66]. They are available
in large amounts in the form of search engines logs. They are collected from real users
so may be less biased than datasets collected from hired human judges. In this thesis
we study some of the key challenges of learning from user interactions collected in this
manner. In particular, we focus on how to make sense of the interactions of users with
a search engine using click models, how to use them to evaluate rankers, how to use
interactions to train deep neural networks, and how to learn from interactions without a
pre-specified performance metric.

In the next section we outline the research in this thesis and the questions that are
answered within it.

1.1 Research Outline and Questions
The main research problem underlying this thesis is: “How can we interactively optimize
web search engines using interactions?” We split our main research problem into four
concrete RQs:

RQ1 Which is the best click model to model interactions with a search engine result
page?

RQ2 Does quantifying uncertainty in click models help to evaluate search engine
rankers?

RQ3 How to optimize deep neural networks using implicit feedback to perform learning
to rank online?

1https://trec.nist.gov
2www.clef-initiative.eu
3https://inex.mmci.uni-saarland.de
4http://research.nii.ac.jp/ntcir/index-en.html

2

1.1. Research Outline and Questions

RQ4 Is it possible to optimize interactive systems using user interactions without
explicit reward?

We use a web search engine as a canonical instantiation of an interactive system when
we address the first three research questions. The findings in these chapters can gen-
eralize to other interactive systems that have ranking as the primary component and
there is a strong and known connection between user behavior and user satisfaction
such as recommender systems [93], e-commerce [123] and advertising [68]. We use
GridWorld [10] as an instantiation of an interactive system when we address the fourth
research question. The findings, however, can generalize to cases where the inter-
active system can be modeled as a Markov Decision Process (MDP) as in dialogue
systems [126] and web search sessions [90].

1.1.1 RQ1: Which is the best click model to model interactions
with a search engine result page?

Let us turn to the first research question. We start by investigating ways to model the
interactions that are observed between a user and a search engine. We focus on the task
of ranking documents on the search engine result page according to their relevance to a
user’s query. The user interacts with the search engine result page by clicking on the
results, scrolling the viewport, moving the mouse cursor and issuing new queries and in
other ways depending on the device. In this chapter we only consider clicks.

Clicks are modeled using so-called click models [24] that allow us to extract useful
information from noisy and biased click data. They exploit the relationship between
clicks and the underlying relevance of the clicked result while removing different types
of bias, such as position bias [27] (the phenomenon that items ranked at the top get
clicked because they are ranked at the top and not necessarily because they are the best
items), and de-noising the signal. Many click models have previously been proposed in
the literature, however they were never properly evaluated and compared to each other
on the same open dataset using the same set of tasks such as explaining and predicting
clicks, ranking and relevance prediction [24]. In particular, we compare the following
ones:

• Click-Through Rate models [41]

• Position-Based Model [41]

• Cascade Model [27]

• User Browsing Model [35]

• Dependent Click Model [46]

• Click Chain Model [45]

• Dynamic Bayesian Network [19] .

We evaluate and compare the click models on a number of dimensions, using multiple
metrics:

3

1. Introduction

• Which model explains the observed data best as measured by log-likelihood and
perplexity?

• Which model predicts future clicks best as measured by root mean squared error?

• Which model can be used to predict relevance as annotated by professional
annotators as measured by AUC?

• Which model’s predicted relevance can improve the ranking most as measured by
NDCG@5?

We find that there is no single click model that is the best across all metrics. Moreover,
while clicks and annotated relevance are certainly correlated, they are not the same
and optimizing for one or the other one will yield different results in terms of ranking
performance. This further exemplifies the gap between expert annotations and user
needs noted earlier in this introduction and motivates the development of methods that
can learn from user interactions.

1.1.2 RQ2: Does quantifying uncertainty in click models help to
evaluate search engine rankers?

For our second research question we investigate how much one can learn from a fixed
interaction log. User interaction logs are never complete and unbiased so it is important
to understand how much one can learn from a given interaction log without collecting
new data. One way of quantifying this is by looking at which pairs of interactive
systems we can compare given the data and which we cannot. It is also an important
question because these comparisons can be used for gradient descent which is a common
technique in machine learning.

So we investigate the question of quantifying the information in user interaction
logs by looking at the ranker comparison task. This is the task of asking whether ranker
A is better than ranker B given some dataset of user interactions with the search engine.
In order to model the confidence of the comparison we propose a Bayesian framework
of modeling the distribution of the relevance of a query document pair from observed
user interaction; based on this, we derive the posterior probability of one ranker being
better than another ranker.

The resulting algorithm, called Bayesian Ranker Comparison (BARACO), decides
if the observed data are enough to conclude that ranker A is better than ranker B. The
specific research questions that we pursue in Chapter 3 are:

• Can BARACO determine whether the production ranker should be replaced with
a candidate ranker better than a non-Bayesian approach to making this decision?

• Does BARACO produce better estimates of the difference in performance of
rankers than the non-Bayesian baseline?

4

1.1. Research Outline and Questions

1.1.3 RQ3: How to optimize deep neural networks using implicit
feedback to perform learning to rank online?

There have been many publications on online learning to rank [25, 40, 53, 55, 56, 74,
121, 160]. However, these works have one important shortcoming – very simplistic
ranking models are used. Most of them either use a linear model or a tabular model.
Both types of model seem at odds with ongoing developments in a discipline that has a
very strong focus on deep neural networks or ensembles of trees for ranking.

To address this gap we propose to train deep neural nets from user interactions
online to perform an image filtering task. The image filtering task is the task of ranking
a changing set of documents for a set of standing information needs. Examples include
video surveillance with a fixed visual vocabulary, (visual) reputation monitoring, visual
information discovery services such as Pinterest,5 visual ranking systems with a fixed
vocabulary such as those built into mobile or desktop photo management applications,
and product search where the number of product types is fixed (as is the case in most
established e-commerce platforms).

In order to solve this task using deep neural networks one must solve two funda-
mental issues:

• How to update deep neural networks based on an incoming stream of implicit
user feedback? and

• How to explore the space of possible image rankings obtained using deep ranking
models?

We propose two loss functions and compare three exploration methods on the MSCOCO
image dataset [85] and find that a regression based DCG-loss with epsilon greedy
exploration has the highest performance.

1.1.4 RQ4: Is it possible to optimize interactive systems using
user interactions without explicit reward?

For our final research question we start from the observation that interactively learning
from user interactions is difficult not only because it is hard to design the right learning
algorithm and efficiently explore the action space but also because it is often not clear
what is the right metric to optimize. For example, naively optimizing for click-through
rate (CTR) leads to a search engine result page populated by click-bait. Therefore,
for the task of document ranking dozens of metrics have been proposed, ranging from
very simple ones such as Expected Browsing Utility [151], Expected Reciprocal Rank
[20] to ones driven by machine learning such as the user satisfaction predictors in
[47–49, 64, 70].

However, all these metrics are founded on explicitly modeling the relationship
between the observed user interactions and user satisfaction. Sometimes these models
are hard to build; for example, dialogue systems have been particularly resistant to
automatic evaluation. This motivates us to mine user satisfaction metrics that we can
use as learning objectives from user interactions automatically.

5http://pinterest.com/

5

1. Introduction

To address our final research question, we introduce a novel algorithm, called
Interactive System Optimizer (ISO). It provides a new principled approach to optimizing
interactive systems without a predefined satisfaction metric by concurrently inferring
data-driven objectives from user interactions and optimizing the interactive system
accordingly. Thus, ISO does not depend on any domain knowledge.

1.2 Main Contributions

In this section we summarize the main contributions of this thesis. Our contributions
come in the form of algorithmic, empirical, and software contributions.

1.2.1 Algorithmic contributions

1. BARACO – an MCMC algorithm to compute the posteriors of the Dynamic
Bayesian Network click model. It can be used to evaluate ranker quality and
compare rankers in Chapter 3.

2. Two loss functions for image filtering using Deep Neural Networks – DCG-loss
and PG-loss – in Chapter 4.

3. ISO – an algorithm to optimize interactive systems without pre-specified loss
functions in Chapter 5.

1.2.2 Empirical contributions

1. We present the outcomes of a detailed analysis of several major click models for
web search: Click-Through Rate Models [41], the Position-Based Model [41],
the Cascade Model [27], the User Browsing Model [35], the Dependent Click
Model [46], the Click Chain Model [45] and the Dynamic Bayesian Network [19].
We use the first 32 million query sessions from the 2011 Yandex Relevance Pre-
diction contest,6 open-source software,7 and a range of evaluation techniques such
as log-likelihood, perplexity, relevance prediction, click prediction and ranking
performance, which makes our results both representative and reproducible. We
find that there is no click model that outperforms all others on all metrics. The
results of the analysis are presented in Chapter 2.

2. We provide a comparison of the performance of Bayesian and Expectation Maxi-
mization (EM) inference of the Dynamic Bayesian Network (DBN) click model
and find that Bayesian inference is more precise but much more expensive. We
analyze the performance of BARACO under violations of the click model as-
sumptions and using real and simulated clicks and find that it is robust to the
model mismatch. The results of the analysis are presented in Chapter 3.

6http://imat-relpred.yandex.ru/en/datasets
7https://github.com/markovi/PyClick

6

http://imat-relpred.yandex.ru/en/datasets
https://github.com/markovi/PyClick

1.3. Thesis Overview

3. We also provide a comparison of several exploration strategies and analyze the
performance of the algorithms and the effect of list size on ranking performance.
We find that DCG-loss with ✏-greedy exploration is the best choice. We find
that bigger list sizes make the problem more difficult. We present the results in
Chapter 4.

4. We present the outcomes of an analysis of the performance of Interactive System
Optimizer with labeled and unlabeled trajectories, with optimal and suboptimal
behavior in Chapter 5.

1.2.3 Software contributions
To facilitate future research, we share the implementations that we built to support the
experiments that we ran to obtain the results in the thesis:

1. Implementation of Bayesian Ranker Comparison in Chapter 3,

2. Implementation of the image filtering approaches in Chapter 4, and

3. Implementation of Interactive System Optimizer in Chapter 5.

The details of the implementations are given in Appendix B.

1.3 Thesis Overview
This section gives an overview of the content of each chapter of this thesis.

Chapters 2–5 are the main research chapters of this thesis. Briefly, the first two
chapters are in the context of ad-hoc search and click logs. In Chapter 2 we study
different ways of modeling clicks. In Chapter 3 we use click models studied in the
previous chapter to evaluate web search rankers. In Chapter 4 we study how to optimize
neural ranking systems with list-wise feedback when the user objective is defined and
observed. In Chapter 5 we remove the assumption that we know what the user wants and
propose an algorithm to optimize interactive systems without predefined user objective.
Let us take a closer look now.

In Chapter 2 we look at ways of modeling user interactions, in particular we look at
clicks in the context of a search engine. Click models have become an essential tool
for understanding user behavior on a search engine result page, for running simulated
experiments, and for predicting relevance. We analyze the impact of query frequency
and find that log-likelihood of complex click models is more stable across different
query frequencies than that of the CTR-based models meaning that they can handle less
frequent queries better. We also analyze the impact of click entropy on the performance
of a click model and find that the lower the click entropy the easier it is to approximate
clicks and, hence, the better the performance of click models.

Now that we have acquired an understanding of click models, we proceed to use
them to evaluate search engine rankers in Chapter 3. We address the problem of how
to safely compare rankers for information retrieval. In particular, we consider how to
control the risks associated with switching from an existing production ranker to a

7

1. Introduction

new candidate ranker. Whereas existing online comparison methods require showing
potentially suboptimal result lists to users during the comparison process, which can
lead to user frustration [56] and bad abandonment, our approach only requires user
interaction data generated through the natural use of the production ranker. Specifically,
we propose a Bayesian approach for:

1. Comparing the production ranker to candidate rankers, and

2. Estimating the confidence of this comparison.

The comparison of rankers is performed using click model-based information retrieval
metrics, while the confidence of the comparison is derived from Bayesian estimates of
uncertainty in the underlying click model. These confidence estimates are then used
to determine whether a risk-averse decision criterion for switching to the candidate
ranker has been satisfied. Experimental results on the LETOR datasets [112] and on a
click log used in the WSDM 2014 Web search personalization challenge,8 show that
the proposed approach outperforms an existing Expectation Maximization-based ranker
comparison method.

In Chapter 4 we switch from the evaluation of rankers to their optimization. In
this chapter, we focus on Online Learning to Rank (OLTR) from implicit feedback for
image filtering, which differs from traditional document retrieval in that high quality
features, such as BM25 or PageRank for ad-hoc web search, are typically available for
document retrieval while image retrieval relies on raw pixel values and deep neural
networks. The main challenges in OLTR are to predict the best ranking and to explore
the space of possible rankings so as to be able to learn new rankings. To predict the
best ranking of images we propose to use ResNet [51] trained with implicit feedback
and two loss functions: one based on regression, DCG-loss, and one based on Policy
Gradients, PG-loss. To explore the space of possible rankings, we use and compare
five explorations methods: ✏-greedy exploration [94], Boltzmann exploration [67, 129],
bootstrapped exploration [105], pure exploration, and exploitation (i.e., no exploration).
We find that DCG-loss with ✏-greedy exploration performs best in terms of expected
future NDCG and that DCG-loss without exploration has the best performance during
training. Additionally, our methods are more general than existing OLTR methods
because they only require list-wise implicit feedback as opposed to item-level feedback.
Using DCG-loss it is now possible to learn optimal rankings of images online.

Finally, in Chapter 5 we look at optimizing interactive systems when a clear notion of
user satisfaction has not been provided but instead we restore this notion from observed
interaction data. Effective optimization is essential for interactive systems to provide
a satisfactory user experience. However, it is often challenging to find an objective to
optimize for. In this chapter we propose an approach that infers the objective directly
from observed user interactions. These inferences can be made regardless of prior
knowledge and across different types of user behavior. We introduce Interactive System
Optimizer (ISO), a novel algorithm that uses these inferred objectives for optimization.
Our main contribution in this chapter is a new general principled approach to optimizing
interactive systems using data-driven objectives – objectives recovered from observed

8Personalized Web Search Challenge 2013
https://www.kaggle.com/c/yandex-personalized-web-search-challenge

8

https://www.kaggle.com/c/yandex-personalized-web-search-challenge

1.4. Origins

Chapter 1

Chapter 4Chapter 2

Chapter 3

Chapter 5

Chapter 6

Figure 1.1: Suggested reading paths through the thesis.

user interaction rather than defined explicitly by a system designer. We demonstrate the
high effectiveness of ISO using several GridWorld simulations.

The second and the third chapter of the thesis are closely related: the former investigates
click models and the latter applies them for ranker comparison. Therefore, readers
unfamiliar with click models should start with Chapter 2 and those familiar with click
models can skip to Chapter 3. Chapters 4 and 5 are independent from each other and
can be read in any order. See Figure 1.1 for suggested reading paths through the thesis.

1.4 Origins
The research in this thesis is based on the following publications:

Chapter 2 is based on A. Grotov, A. Chuklin, I. Markov, L. Stout, F. Xumara, and
M. de Rijke. A comparative study of click models for web search. In CLEF.
Springer, September 2015. AG ran the experiments, performed the analysis,
worked on the implementation of click models, and worked on the text. AC
performed analysis and worked on the text. LS, FX and IM worked on the
implementation of click models and worked on the text.

Chapter 3 is based on A. Grotov, S. Whiteson, and M. de Rijke. Bayesian ranker
comparison based on historical user interactions. In SIGIR, pages 273–282.
ACM, August 2015. AG wrote and ran the code for the experiments. All authors
contributed to the text, AG did most of the writing.

Chapter 4 is based on C. Li, A. Grotov, B. Eikema, I. Markov, and M. de Rijke. Deep
online learning to rank for image filtering with implicit feedback. In Submitted,
2018. AG, CL, BE wrote and ran the code for the experiments. All authors
contributed to the text.

Chapter 5 is based on Z. Li, A. Grotov, J. Kiseleva, M. de Rijke, and H. Ooster-
huis. Optimizing interactive systems with data-driven objectives. arXiv preprint
arXiv:1802.06306, February 2018. ZL wrote and ran the code for the experiments.
AG, ZL, JK developed the theory and algorithms. All authors contributed to the
discussions and text.

9

1. Introduction

Indirectly, the thesis also benefited from work on the following publications:

• Y. Norouzzadeh Ravari, I. Markov, A. Grotov, M. Clements, and M. de Rijke.
User behavior in location search on mobile devices. In ECIR, pages 728–733.
Springer, April 2015.

• A. Grotov and M. de Rijke. Online learning to rank for information retrieval:
SIGIR 2016 tutorial. In SIGIR, pages 1215–1218. ACM, July 2016.

• Z. Li, J. Kiseleva, M. de Rijke, and A. Grotov. Towards learning reward functions
from user interactions. In ICTIR, pages 941–944. ACM, 2017.

10

2
A Comparative Study of Click Models

for Web Search

In this chapter we address RQ1: Which is the best click model to model interactions
with a search engine result page? User interactions with a web search engine take many
different forms, e.g., clicks, queries, query reformulations, dwell times, transactions etc.
In this chapter we focus on one of the most important and widely used signals, which
is clicks. There are many models that model clicks on the search engine result page
and in this chapter we compare a number of them on a common set of metrics and the
same dataset, which has not been done before. The goal is to understand if there is a
unique model that is better than all others and how well the models agree with annotated
relevance judgements.

We examine several click models, and find that depending on the metric being
considered some are better than other ones and there is no clear winner. This means
that when choosing a model of interactions it is important to evaluate the model on
the task directly rather than some related metric because the performance can be very
metric dependent. For example, a click model that has the highest log-likelihood of the
observed clicks may not be the best to predict relevance or to serve as a ranking feature.

2.1 Introduction
Modeling user behavior on a search engine result page (SERP) is important for un-
derstanding users, supporting simulation experiments [52, 55], evaluating web search
results [20, 23] and improving document ranking [19, 34]. In recent years, many models
of user clicks in web search have been proposed [24]. However, no comprehensive
evaluation of these click models has been performed using publicly available datasets
and a common set of metrics with a focus on an analysis of the query space. As a result,
it is not clear what the practical advantages and drawbacks are of each proposed model,
how different models compare to each other, which model should be used in which
settings, etc.

In this chapter we aim to compare the performance of different click models using a
common dataset, a unified implementation and a common set of evaluation metrics. We

This chapter was published as [84].

11

2. A Comparative Study of Click Models for Web Search

Table 2.1: Notation used in the chapter.

Symbol Description

u A document
q A query
s A search query session
j A document rank
c A click on a document
S A set of sessions
E A random variable for document examination
R A random variable for document relevance
C A random variable for a click on a document
✏ The examination parameter
r The relevance parameter

consider all major click models for web search ranging from the simple Click-Through
Rate model (CTR), Position-Based Model (PBM) and Cascade Model (CM) [27]
through the more advanced Dependent Click Model (DCM) [46] to the more complex
User Browsing Model (UBM) [35], Dynamic Bayesian Network model (DBN) [19],
and Click Chain Model (CCM) [45]. These models are evaluated using log-likelihood,
perplexity, click-through rate prediction, relevance prediction, ranking performance and
computation time.

We also analyze two different factors that influence the performance of click models,
namely, query frequency and click entropy. Intuitively, it is easier to predict clicks for
frequent queries than for less frequent ones because of the larger size of the training
data and the relatively more uniform click patterns associated with frequent queries.
Click entropy can be used to distinguish between navigational and informational queries.
Navigational queries tend to have low click entropy (usually only the top result is
clicked), while informational queries tend to have high click entropy (several results
may be clicked before a user’s information need is satisfied).

Our main finding in this chapter is that no single model excels on each of the
considered metrics and that sometimes simple models outperform complex ones and
that the relative performance of models can be influenced by the dataset characteristics
such as query frequency and click entropy. These results can guide the application of
existing click models and inform the development of new click models.

2.2 Click Models
In this section, we give an overview of all major click models for web search, which we
will then use in our comparative study

Click-Through Rate Models Three simple click models, all based on click-through
rates, predict click probabilities by counting the ratio of clicks to the total number of
impressions. In the simplest case of Global CTR (GCTR) this ratio is computed globally

12

2.2. Click Models

for all documents, while in Rank CTR (RCTR) it is computed separately for each rank
j and in Document CTR (DCTR) for each document-query pair uq:

PGCTR(Cu = 1) = r = 1P
s2S |s|

P
s2S

P
u2s cuq (2.1)

PRCTR(Cuj = 1) = rj =
1
|S|

P
s2S cj (2.2)

PDCTR(Cu = 1) = ruq = 1
|Suq|

P
s2Suq

cuq , where Suq = {sq : u 2 sq}. (2.3)

Position-Based Model This model builds upon the CTR models and unites DCTR
with RCTR. It adds a separate notion of examination probability (E) which is subject
to position bias, where documents with smaller rank are examined more often; the
document can only be clicked if it was examined and is relevant:

Cuq = 1, (Eju = 1 and Ruq = 1) . (2.4)

The examination probability ✏j = P (Eju = 1) depends on the rank j, while the
relevance ruq = P (Ruq = 1) depends on the document-query pair. Inference of this
model is done using the Expectation Maximization algorithm (EM).

Cascade Model The Cascade Model (CM) [27] is another extension to the Click-
Through Rate (CTR) models. The model introduces the cascade hypothesis, whereby a
user examines a SERP from top to bottom, deciding whether to click each result before
moving to the next one; users stop examining a SERP after the first click. Inference
of the parameters of CM is done using Maximum Likelihood Estimation (MLE). The
click probability is defined using the examination (2.4) and the cascade assumptions:

P (E1 = 1) = 1 (2.5)
P (Ej = 1 | Ej�1 = e, Cj�1 = c) = e · (1� c), (2.6)

where e and c are 0 or 1, and the only parameters of the model are ruq = P (Ruq = 1).
The fact that users abandon a search session after the first click implies that the model
does not provide a complete picture of how multiple clicks arise in a query session and
how to estimate document relevance from such data.

User Browsing Model Dupret and Piwowarski [35] propose a click model called the
User Browsing Model (UBM). The main difference between UBM and other models
is that UBM takes into account the distance from the current document uj to the last
clicked document uj0 for determining the probability that the user continues browsing:

P (Eju = 1 | Cuj0 = 1, Cuj0+1
= 0, . . . , Cuj�1q = 0) = �jj0 . (2.7)

Dependent Click Model The Dependent Click Model (DCM) by Guo et al. [46] is
an extension of the cascade model that is meant to handle sessions with multiple clicks.
This model assumes that after a user clicked a document, they may still continue to
examine other documents. In other words, (2.6) is replaced by

P (Ej = 1 | Ej�1 = e, Cj�1 = c) = e · (1� c+ �jc), (2.8)

where �j is the continuation parameter, which depends on the rank j of a document.

13

2. A Comparative Study of Click Models for Web Search

Click Chain Model Guo et al. [45] further extend the idea of DCM into the Click
Chain Model (CCM). The intuition behind CCM is that the chance that a user continues
after a click depends on the relevance of the previous document and that a user might
abandon the search after a while. This model can be formalized with (2.4) and the
following conditional probabilities:

P (Eju+1 = 1 | Eju = 1, Cuq = 0) = ⌧1 (2.9)
P (Eju+1 = 1 | Eju = 1, Cuq = 1) = ⌧2(1� ruq) + ⌧3ruq. (2.10)

Dynamic Bayesian Network Model The DBN model [19] takes a different approach
in extending the cascade model. Unlike CCM, DBN assumes that the user’s persever-
ance after a click depends not on the relevance ruq, but on a different parameter suq
called satisfaction parameter. While r is mostly defined by the snippet on the SERP,
the satisfaction parameter s depends on the actual document content available after a
click. The DBN model is defined by (2.4) and the following formulas:

P (Eju+1 = 1 | Eju = 1, Cuq = 0) = � (2.11)
P (Eju+1 = 1 | Eju = 1, Cuq = 1) = �(1� suq), (2.12)

where � is a continuation probability after a non-satisfactory document (either no click,
or click, but no satisfaction).

In general, inference should be done using the EM algorithm. However, if � is set to
1, the model allows easy MLE inference. We refer to this special case as the Simplified
DBN (SDBN) model.

2.3 Evaluation Measures

Different studies use different metrics to evaluate click models [24]. In this section we
give an overview of these metrics. We will then use all of them in our comparative
study.

Log-likelihood Log-likelihood evaluates how well a model approximates observed
data. In our case, it shows how well a click model approximates clicks of actual users.
Given a model M and a set of observed query sessions S, log-likelihood is defined as
follows:

LL(M) =
P

s2S logPM (C1, . . . , Cn) , (2.13)

where PM is the probability of observing a particular sequence of clicks C1, . . . , Cn

according to the model M .

Perplexity Perplexity measures how surprised a model is to see a click at rank r in a
session s [35]. It is calculated for every rank individually:

pr(M) = 2�
1

|S|
P

s2S(c(s)r log2 q(s)r +(1�c(s)r) log2 (1�q(s)r)), (2.14)

14

2.3. Evaluation Measures

where c(s)r is the actual click on the document at rank r in the session s, while q(s)r is
the probability of a user clicking the document at rank r in the session s as predicted by
the model M , i.e., q(s)r = PM (Cr = 1).

The total perplexity of a model is defined as the average of perplexities over all
positions. Lower values of perplexity correspond to higher quality of a click model.

Click-through rate prediction Click-Through Rate (CTR) is a ratio of the cases
when a particular document was clicked to the cases when it was shown. In [19], the
following procedure was proposed to measure the quality of click models using CTR:

• Consider a document u that appears both on the first position and on some other
positions (in different query sessions).

• Hold out as a test set all the sessions in which u appears on the first position.

• Train a click model M on the remaining sessions.

• Use the model M to predict clicks on the document u on the held-out test set
(predicted CTR).

• Compute the actual CTR of u on the held-out test set.

• Compute the Root Mean Squared Error (RMSE) between the predicted and actual
CTRs.

Relevance prediction It was noticed in [19] that click models can approximate docu-
ment relevance. A straightforward way to evaluate this aspect is to compare document
relevance as predicted by a model to document relevance labels provided by human
annotators. We measure the agreement between the two using the Area Under the ROC
Curve (AUC) and Pearson correlation.

Predicted relevance as a ranking feature The predicted relevance can also be used
to rank documents [19]. The performance of such a ranker can be evaluated using any
standard IR measure, such as MAP, DCG, etc. In this study, we use NDCG@5 [63]. To
calculate NDCG@5 we only consider documents for which we have relevance labels.
The evaluation is performed as follows:

• Retrieve all sessions that have complete editorial judgments.

• Sort sessions by session id.

• The first 75% are training sessions, the remainder are test sessions.

• Train the model on the training sessions and predict relevance for the test sessions.

• Sort the documents w.r.t the predicted relevance given by the model.

• Compute the NDCG@5.

• Average over all sessions.

15

2. A Comparative Study of Click Models for Web Search

Computation time Historically, in machine learning a big problem in creating accu-
rate models was the amount of data that was available. However, this is no longer the
case, and now we are mostly restricted by the time it takes to learn a model based on a
large amount of available data. This makes the ability to efficiently compute parameters
an important feature of a successful model. Therefore, we also look at the time it takes
to train a click model.

2.4 Experimental Setup

Our goal is to evaluate and compare the click models presented in Section 2.2 using
the evaluation metrics described in Section 2.3. To this end we use the first 32 million
query sessions from the 2011 Yandex Relevance Prediction contest.1 In this contest
participants were asked to predict document relevance based on click log data. We split
the session set into 32 batches of one million sessions each and measured, for every
click model, the log-likelihood, perplexity, RMSE of CTR prediction and computation
time for each of the batches. Then we average the measurements across the batches.

The sessions in each batch are sorted based on their session id and divided into a set
of training sessions used to train the click models and a set of test sessions used in the
evaluation of the models; the number of sessions in these sets have a 3 to 1 ratio.

To measure the quality of relevance prediction and ranking performance we use
sessions for which all the documents have relevance labels. For each query all except
the last session is used for training and the last session is used for testing. There are
861,000 search sessions and 178 unique queries in the training set and 112 queries in
the test set.

To determine whether observed differences are statistically significant we use a
two-tailed student-t test with p values below 0.05 indicating significant differences. The
error bars in the plots below are standard errors of the means.

Performance impacting factors To evaluate the effect of query frequency on click
model performance, we split the data into four parts (see Table 2.2).

Table 2.2: The distribution of sessions with respect to query frequency.

Query frequency Number of sessions

2 6,940,000
3–5 12,800,000
6–19 16,600,000
20+ 108,000,000

Another factor that may influence click model performance is click entropy. Click
entropy has been used to analyze queries in [31]. The formal definition of the entropy

1http://imat-relpred.yandex.ru/en/datasets

16

http://imat-relpred.yandex.ru/en/datasets

2.5. Results

of query q is:

ClickEntropy(q) = �
P

d2P(q) P (d | q) log2 P (d | q), (2.15)

where P(q) are documents clicked on for query q and P (d | q) is the fraction of clicks
on document d among all clicks on q,

P (d | q) =
X

p

c(q)rd ·

0

@
X

u2P(q)

c(q)ru

1

A
�1

. (2.16)

Click entropy can be used to distinguish navigational and informational queries. In
navigational queries users know what they are looking for so the click entropy will be
low because almost all clicks within that query will be on the same document. In an
informational query the users explore different results to find the optimal one because
they do not know what document they are looking for yet. This gives these queries a
high click entropy. We divide our search sessions into three bins with respect to click
entropy and report on evaluation measures per bin; statistics of these bins are listed in
Table 2.3.

Table 2.3: The distribution of sessions with respect to click entropy.

Click entropy Number of sessions

0–1 53,400,000
1–2 48,800,000
2+ 42,200,000

2.5 Results
In this section we present the results of our experiments. For every evaluation measure
we report the influence of the query frequency and click entropy. Table 2.4 contains the
evaluation outcomes for every model when trained on the entire dataset.

Log-likelihood Figure 2.1 shows the results of the log-likelihood experiments; shorter
bars indicate better results. The Cascade Model (CM) cannot handle multiple clicks in
one session and gives zero probability to all clicks below the first one. For such sessions
its log-likelihood is log 0 = �1 and so the total log-likelihood of CM is �1.

When evaluated on the whole test set, the User Browsing Model (UBM) shows the
best log-likelihood, followed by the Dynamic Bayesian Network (DBN), the Position-
Based Model (PBM) and the Click Chain Model (CCM). Note that the Simplified DBN
(SDBN) model has lower log-likelihood values compared to its standard counterpart
(DBN). The simple CTR-based models show the lowest log-likelihood. This confirms
that complex click models explain and approximate user behavior better than simply
counting clicks.

17

2. A Comparative Study of Click Models for Web Search

Figure 2.1 (left) shows the log-likelihood of click models for different query fre-
quencies. In general, the higher the query frequency (more training data available)
the better the performance of click models. When comparing complex click models,
there is variation in their relative performance based on the query frequency, but UBM
consistently has the highest log-likelihood. SDBN and DCM have considerably lower
log-likelihood than the similar models DBN and CCM (apart from the “20+” bin). In
contrast, the log-likelihood of the CTR-based models varies considerably across query
frequencies. On the “2” and “3–5” bins, Global CTR (GCTR) outperforms SDBN and
DCM, while Rank CTR (RCTR) is the second best model overall (after UBM). The
Document CTR (DCTR) model has the lowest log-likelihood for all query frequencies
but “20+”. There, it outperforms SDBN, DCM and CCM and comes close to PBM.
These results show two interesting facts. On the one hand, the log-likelihood of complex
click models is more stable across different query frequencies than that of the CTR-
based models. On the other hand, for each query frequency bin there is a CTR-based
model that has log-likelihood scores comparable to complex models (RCTR for “2–19”
and DCTR for “20+”).

Figure 2.1 (right) shows the log-likelihood of click models for queries with different
click entropy. In general, the lower the click entropy the easier it is to approximate clicks
and, hence, the better the performance of click models. The relative log-likelihood of
different click models for different values of click entropy is similar to that for different
query frequencies: UBM is followed in different orders by DBN, PBM and CCM;
SDBN and DCM have lower log-likelihood than the above; the log-likelihood of the
CTR-based models varies across bins (RCTR is better than SDBN and DCM on (1, 2],
DCTR is comparable to PBM and CCM on (2,1)). As a future work, we plan to
investigate the relation between query frequency and click entropy.

Perplexity Figure 2.2 shows the perplexity of the click models; the lower the better.
When evaluated on all test sessions, most of the complex click models (apart from
CM and CCM) have comparable perplexity, with DBN and SDBN having the lowest
one, but not significantly so. The CTR-based models have higher perplexity than the
complex models, which again confirms the usefulness of existing click models for web
search.

The trends for different query frequencies (Figure 2.2, left) are similar to those for
log-likelihood (Figure 2.1, left): the variation of perplexity of complex click models is
not large (but there are different winners on different bins), while the perplexity of the
CTR-based models varies considerably (RCTR has the lowest perplexity overall on “2”
and “3–5”, DCTR is comparable to other models on “20+”). The trends for different
values of click entropy are similar (see Figure 2.2, right). CM performs poorly in all
query classes apart from the [0, 1] entropy bin, which is related to the fact that CM is
tuned to explain sessions with one click.

CTR prediction Figure 2.3 shows the impact of query frequency and click entropy
on the CTR prediction task. Here, the simple models, RCTR and CM, outperform some
of the more complex ones. This is because the intuition of these models is exactly what
this task has set out to measure. The average rank of the documents in the training data

18

2.5. Results

All data 2 3-5 6-19 20+
�0.6

�0.5

�0.4

�0.3

�0.2

�0.1

0.0

GCTR
RCTR

DCTR
PBM

CM
UBM

DCM
CCM

DBN
SDBN

All data [0,1] (1,2] (2,inf)
�0.6

�0.5

�0.4

�0.3

�0.2

�0.1

0.0

Figure 2.1: Log-likelihood of click models, grouped by query frequency (left) and
click entropy (right).

set is 2.43, i.e., they were usually in some of the top positions. As the RCTR and CM
models both perform well on documents that are ranked high, this high average rank
influences the observed performance.

The top performers on this task are SDBN and DCM. It is not clear why there is
such a notable gap in performance between DBN and SDBN on this task; it could be
speculated that DBN relies more on the satisfactoriness parameters that are not used in
this task. Both UBM and PBM have poor performance on this task, we hypothesize that
they rely even more on the position dependent parameters and in this task the document
under question was presented at a different position.

Relevance prediction The results of the relevance prediction task can be seen in Fig-
ure 2.4. The plot for different query frequencies could not be generated in a meaningful
way, because the queries with judged results do not occur often in the dataset, while the
relevance prediction protocol only considers queries that occur at least ten times.

The relevance prediction performance of all click models is relatively low (between
0.500 and 0.581). The GCTR and RCTR models do not have a document-specific
parameter and, thus, cannot predict relevance. So their AUC is equal to that of random
prediction, i.e., 0.5. UBM and PBM have the highest AUC (0.581), while other models
are closer to random prediction (from 0.515 for CM to 0.541 for CCM).

These results show that existing click models still have a long way to go before they
can be used for approximating relevance labels produced by human annotators.

19

2. A Comparative Study of Click Models for Web Search

All data 2 3-5 6-19 20+
0.8

1.0

1.2

1.4

1.6

1.8

GCTR
RCTR

DCTR
PBM

CM
UBM

DCM
CCM

DBN
SDBN

All data [0,1] (1,2] (2,inf)
0.8

1.0

1.2

1.4

1.6

1.8

Figure 2.2: Perplexity of click models, grouped by query frequency (left) and click
entropy (right).

Predicted relevance as a ranking feature Figure 2.5 shows the results of using the
predicted relevance as a ranking feature. The best model here is CCM, followed by
the simple DCTR model. This is not surprising as relevant documents attract more
clicks and usually have higher CTRs. Thus, ranking documents based on their CTR
values only (as done by DCTR) results in high NDCG@5 scores. Notice, though, that
predicting actual relevance labels of documents based on the documents’ CTRs is still a
difficult task (see the discussion above).

The GCTR and RCTR models do not have document-specific parameters and, thus,
cannot rank documents. Therefore, they have the lowest values of NDCG@5. They
still have high values of NDCG because no reranking was done for documents with
equal relevance estimates, hence the values of NDCG for GCTR and RCTR reflect the
ranking quality of the original ranker.

Computation time In the rightmost column of Table 2.4 we see that, as expected, the
models that use MLE inference are much faster than those with EM inference. When
using EM inference to calculate the parameters of a click model, one would ideally use
some convergence criteria; we have chosen to do a fixed number of iterations (i.e., 50).
Notice that UBM is 5–6 times faster than DBN and CCM, even though they all use EM.
DBN and CCM use more complex update rules and this results in such a big difference
in training time.

Overall results We summarize our experimental results in Table 2.4. There is no
perfect click model that outperforms all other models on every evaluation metric. For
example, UBM is the best in term of log-likelihood and relevance prediction, while DBN
is the best in terms of perplexity and CTR prediction. Even simple CTR-based models
have relatively high performance according to some metrics (e.g., DCTR according to
NDCG@5).

20

2.6. Conclusion

All data 2 3-5 6-19 20+
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

GCTR
RCTR

DCTR
PBM

CM
UBM

DCM
CCM

DBN
SDBN

All data [0,1] (1,2] (2,inf)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 2.3: Click-through rate prediction RMSE of click models, grouped by
query frequency (left) and click entropy (right).

All data [0,1] (1,2] (2,inf)
0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

GCTR
RCTR

DCTR
PBM

CM
UBM

DCM
CCM

DBN
SDBN

Figure 2.4: Relevance prediction of click models on click entropy

2.6 Conclusion

In this chapter we addressed RQ1: Which is the best click model to model interactions
with a search engine result page? In particular we have studied the problem in the
context of clicks on search engine result pages.

We have shown that a universal benchmark is necessary for developing and testing
click models. The unified evaluation we performed gave important insights into how
click models work. In particular, we found that complex click models dominate most
of the evaluation metrics, however, in some cases simple click models outperform
state-of-the-art models. We also found that none of the tested click models outperforms
all others on all measures, e.g., DBN and SDBN are best when judged by perplexity,
UBM is best when judged by likelihood, GCTR and RCTR are the fastest and CCM is

21

2. A Comparative Study of Click Models for Web Search

All data 2-5 6-19 20+
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

GCTR
RCTR

DCTR
PBM

CM
UBM

DCM
CCM

DBN
SDBN

All data [0,1] (1,2] (2,inf)
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 2.5: Ranking performance (NDCG@5) of click models, grouped by query
frequency (left) and click entropy (right).

best for ranking documents.
Our results suggest that different click models can excel at some tasks while having

inferior performance at others. Hence, when introducing a new click model or improving
an existing one, it is important to keep in mind how it is going to be used. If a click
model is going to be used for reranking, then the log-likelihood or the perplexity do not
matter as much as the ability of the model to rerank documents, and if a click model is
going to be used to understand user behavior, then the reranking performance is less
important than its ability to explain observations as measured by log-likelihood and
perplexity. It is not clear whether a single click model can be designed to cater for all
needs. Potentially optimizing the design of a click model to a particular use case may
improve performance.

We also showed that considering query frequency and click entropy increases the
amount of information that can be gained from click model evaluation. In some of the
cases our findings were counter intuitive, e.g., higher query frequency did not always
make log-likelihood higher. Also, when ranking models by performance, different
rankings are observed depending on query frequency or click entropy. This again
suggests that no single model can beat all others and that one may benefit from either
designing different models for different settings or using an ensemble of models.

The CTR prediction task seems to mimic the behavior of perplexity at the first rank
and as such does not give any additional insights into model performance. Relevance
prediction also does not give any new insights, albeit for a different reason, namely the
presence of a large set of unseen document-query pairs when evaluating the models.

Our evaluation only covers some of the many click models that have been proposed.
The potential for future work is great in the sense that the same evaluation approach can
be applied to other click models.

We looked at clicks on the search engine result page and found that there is not
a single model that performs best overall and different models have different merits.

22

2.6. Conclusion

Table 2.4: Performance of click models according to various measures: log-
likelihood (LL), perplexity, RMSE of the CTR prediction task, AUC of the rel-
evance prediction task, Pearson correlation between annotated relevances and
predicted relevances, ranking performance (NDCG@5), and computation time.
The symbol N denotes a significant difference at p = 0.01 as measured by a two
tailed t-test.

Model LL Perplexity RMSE AUC Pearson correlation NDCG@5 Time (sec.)

GCTR -0.369 1.522 0.372 0.500 0.000 0.676 0.597
RCTR -0.296 1.365 0.268 0.500 0.000 0.676 0.589N

DCTR -0.300 1.359 0.261 0.535 0.054 0.743 3.255
PBM -0.267 1.320 0.354 0.581N 0.128 0.727 34.299
CM 1 1.355 0.239 0.515 0.024 0.728 4.872
UBM -0.249N 1.320 0.343 0.581N 0.130N 0.735 82.778
DCM -0.292 1.322 0.212N 0.516 0.035 0.733 5.965
CCM -0.279 1.341 0.283 0.541 0.106 0.748 521.103
DBN -0.259 1.318N 0.286 0.517 0.089 0.719 457.694
SDBN -0.290 1.318N 0.212N 0.529 0.076 0.721 3.916

However, modeling the position and presentation bias nearly always yields substantial
performance gains. Interactions with other interactive systems also have bias, all of
them have presentation bias – some actions were selected more often than others but
often other biases are also present. For example, in recommender systems users are
more likely to interact with the items they like and in dialogue systems some utterances
are more likely to be produced than others. Modeling and taking into account these
biases is crucial for successful optimization of interactive systems using interactions.

23

3
Bayesian Ranker Comparison Based on

Historical User Interactions

In this chapter we address address RQ2: Does quantifying uncertainty in click models
help to evaluate search engine rankers? In particular, we consider the case when we
have a finite dataset of observed user interactions. This setting is practical for the task
of evaluating and optimizing search engines. We focus on evaluation but the findings
can be generalized to optimization as well – at each optimization step the algorithm
has access to a finite dataset of observed user interactions and has to make decisions
based on it. Understanding the evaluation task will shed light on how much information
can be extracted from the dataset, what are the limitations and challenges. In order to
quantify the amount of information we can extract from the logged interactions we take
a Bayesian stance and explicitly model the confidence of our estimates. We address
two tasks: evaluating a ranker and deciding if the logged interactions are enough to
confidently decide that one version of the ranker is better than another one. These
tasks are important both from practical and a theoretical perspective. From a practical
perspective they are important because in practice one usually logs the interactions with
the system and routinely has to decide if a new version of the system is better than
the current one and how well they are performing. From a theoretical perspective it is
important to understand how various biases in the dataset affect the confidence of the
estimates and how important it is to take them into account during optimization.

We use web search as a particular instantiation of an interactive system and use
the Dynamic Bayesian Network click model from the previous chapter as a model for
interactions. In order to model the confidence of the estimates of the DBN click model
we develop Bayesian inference for it. We also use the expected effort metric defined in
[23] and develop a way to estimate it given a click log and reason about the confidence
of this estimate. Using this machinery we can decide if one web search ranker is
better than another one. As we said above, this setting is very common in industry and
the findings can be generalized well beyond web search rankers to other systems that
employ ranking such as music search, product search, recommender systems, retrieval
based question answering and much more. All it requires is a model of interactions
and an interaction based metric that decomposes into a combination of individual item
contributions. Fortunately, often such metrics exist and models of interactions exist for

This chapter was published as [42].

25

3. Bayesian Ranker Comparison Based on Historical User Interactions

well studied tasks or can be adapted from one task to another.

3.1 Introduction

Comparing rankers is an essential problem in information retrieval. In an industrial
setting, an existing production ranker must often be compared to a new candidate
ranker to determine whether to replace the former with the latter. Practical constraints
make it difficult to make such decisions well. Because the performance of the candidate
ranker is unknown, trying it out to gather data about its performance is often too risky:
if it proves to be substantially inferior to the production ranker, the user experience may
degrade, leading to abandonment. However, existing historical data (typically collected
using the production ranker) may not be sufficiently informative about the candidate
ranker. Hence, decisions about when to switch to the candidate ranker that are based on
such data can be erroneous, also leading to a degraded user experience.

Controlling the risks associated with switching to a candidate ranker requires ranker
comparison methods that can (1) estimate the performance of the production and
candidate rankers using only historical data, and (2) quantify their uncertainty about
such estimates. Quantification of uncertainty is essential for controlling risk because
it enables system designers to switch to a candidate ranker only when they are highly
confident that its performance will not be substantially worse than that of the production
ranker.

Existing ranker evaluation methods do not fully meet these requirements. Traditional
methods rely on explicit relevance labels provided by human assessors to measure
metrics such as Normalized Discounted Cumulative Gain (NDCG) and Mean Average
Precision (MAP) [119]. However, such labels are expensive to obtain and may not
reflect the preferences of real users. Click-based approaches overcome these limitations
by estimating performance from the implicit signals in users’ click behavior, using A/B
testing or interleaving experiments [21, 22, 50, 54, 65, 71, 113, 115, 120]. Nonetheless,
these methods typically require trying out the candidate ranker to gain data about it,
which, as mentioned above, may be too risky. While interleaving methods have been
developed that use importance sampling to estimate ranker performance given only
historical data [55], they have limited generalization properties and require historical
data to be gathered stochastically.

Click models [19, 43], i.e., probabilistic models of user behavior, can also estimate
ranker performance given only historical data [23] and do not share these limitations.
The uncertainty in the resulting estimates depends on the relationship between the
historical data and the rankers to be evaluated. E.g., if a candidate ranker differs from
the production ranker only in that it swaps a lowly ranked but relevant document with
a highly ranked but irrelevant one, then the click model can confidently conclude that
the candidate ranker is better so long as the historical data shows which of the two
documents is relevant. It can do so even if the result lists containing such a swap do
not appear in the historical data. By contrast, if the candidate ranker gives a high rank
to a document that does not appear in the historical data, then its relevance cannot be
estimated with confidence. A key limitation of existing click models is that they do not
distinguish between cases such as these. Because they do not quantify their uncertainty

26

3.2. Related Work

about the comparisons they perform, they cannot judge whether the information in the
logs is sufficient to compare rankers. Only methods that can measure the confidence
of the performed comparisons can be used to safely decide whether to switch from the
production ranker to a candidate one.

We present Bayesian Ranker Comparison (BARACO), a click model-based ap-
proach to ranker evaluation that compares the performance of ranker pairs using only
historical data and quantifies the uncertainty in such comparisons. The key novelty lies
in maintaining a full posterior distribution over the relevance of documents for queries.
This posterior is used to estimate the probability that the candidate ranker’s performance
is not substantially worse than that of the production ranker. By switching to the can-
didate ranker only when this probability is sufficiently high, the risks associated with
switching can be controlled in a principled way.

BARACO is able to estimate not only the probability of a candidate ranker being as
good as the production ranker, but also the expected difference in performance between
two rankers. Measuring the expected difference can be useful in practice, e.g., to select
a single ranker from a set of candidates, all of which have a high probability of beating
the production ranker.

We present the results of an empirical evaluation on several learning to rank datasets
and on a real click log published by Yandex that compares BARACO to an existing non-
Bayesian click model-based ranker evaluation method that estimates only the expected
difference in performance between ranker pairs, without quantifying uncertainty.

We address the following research questions:

RQ2.1 Can BARACO determine whether the production ranker should be replaced
with a candidate ranker better than the non-Bayesian baseline?

RQ2.2 Does BARACO produce better estimates of the difference in performance of
the rankers than the non-Bayesian baseline?

Our results show that BARACO has better performance than the baseline method and
can identify more good rankers in a set of candidates more reliably. In addition, the full
Bayesian approach enables the production of more precise estimates of the expected
differences between rankers than the baseline method.

3.2 Related Work
Ranker evaluation has long been a central topic in information retrieval. The classical
approach is to perform offline evaluation based on the Cranfield paradigm [26, 119],
where a collection of documents is manually annotated by human experts. A repre-
sentative set of queries together with associated user intents are crafted by a group of
experts. Then, for each query, documents in the collection are assigned relevance labels.
The documents and their relevance labels can then be used in metrics such as NDCG.
This approach is widely used, well understood, and benefits from controlled laboratory
settings. But it is expensive and assessors’ relevance judgements may not adequately
reflect real users’ opinions.

Online evaluation is a family of techniques that addresses these difficulties by letting
users be the judges. In A/B testing [71], the user population is split into two groups,

27

3. Bayesian Ranker Comparison Based on Historical User Interactions

and pairs of rankers are compared by presenting one group with one ranker and the
other group with another ranker. The ranker with the best performance on a selected
metric (such as CTR) is typically considered to be the winner [71]. Another approach
is interleaved comparison: search engine result pages (SERPs) presented to users are
obtained by interleaving SERPs of two competing rankers under consideration. The
user feedback in the form of clicks is then interpreted as user preference for one ranker
over the other [115]. The key problem of online methods is that they require user
feedback to evaluate each pair of rankers, which often requires exposing suboptimal
SERPs. Consequently, they may be too risky for many real-world settings.

Interleaving methods that exploit importance sampling [55] provide a way to com-
pare rankers using only historical click data. However, importance sampling requires
that the source distribution is non-zero everywhere where the target distribution is
non-zero (i.e., every SERP that can result from interleaving has a non-zero probability
of occurring in the historical data), a requirement that is often not met in practice.
Importance sampling guarantees only that the resulting estimator is unbiased, not that
it has low variance: the addition of more historical data is not guaranteed to improve
estimates, as new data can actually increase the variance [9]. Additionally, importance
sampling has poor generalization properties compared to click-based approaches that
infer relevance labels of documents. In particular, the latter can generalize across SERPs
that differ in the order of documents, while the former cannot.

In recent years, a number of probabilistic models have been developed to describe,
understand, and predict user behavior while interacting with an IR system. In particular,
click models such as the Dynamic Bayesian Network (DBN) [19], the Dependent Click
Model (DCM) [43] and the User Browsing Model (UBM) [35] infer the relevance of
documents for queries and model user clicks on documents in the SERP by analyzing
search engine log files. These inferred relevance labels can be further used for learning
to rank [19] and for ranker comparisons using click model-based metrics [23]. However,
to our knowledge, none of these approaches provide a way to quantify the uncertainty
in the resulting comparison, which is critical for making informed decisions about when
to switch from a production ranker to a candidate ranker. For metrics such as EBU
[151], ERR [20] and the utility and effort based metrics in [17, 23], the effect on the
comparison of a document seen just once and that of one seen a hundred of times is
the same, given that the inferred relevance labels have the same value. Furthermore,
these metrics do not take into account the number of previously unseen documents
that appear in the SERPs produced by the candidate rankers. Hence, these approaches
cannot properly control the risks associated with switching to a candidate ranker, as the
uncertainty in the comparison is not measured.

We present a new approach to ranker evaluation that is designed to overcome these
limitations. It compares rankers using only the log files collected through natural user
interactions with the production ranker. In contrast to importance sampling based
interleaving methods [55], our method does not require the data to be obtained stochas-
tically. In contrast to the metrics in [17, 20, 23, 151], our method takes into account the
uncertainty associated with the inferred relevance labels and the presence of unseen
documents and measures the confidence of the resulting comparison.

28

3.3. Problem Setting

3.3 Problem Setting
We consider two related problems. The first is the switching problem: deciding whether
or not to switch from a production ranker Rp to a candidate ranker Rc. The second is
the difference estimation problem: estimating the expected difference in performance
between the production ranker Rp and candidate ranker Rc.

The switching problem is as follows. System designers must decide whether or not
to switch from a production ranker Rp to a candidate ranker Rc. They are willing to do
so only if they are highly confident that the candidate ranker is at least almost as good
as the production ranker, i.e., if

p(Mc + ✏ �Mp) � 1� �, (3.1)

where Mp and Mc are the expected performance of the production and candidate ranker,
respectively, according to some metric; ✏ is the degree to which the candidate ranker
is allowed to be worse than the production ranker; and � is the probability with which
the candidate ranker is allowed to fall outside this threshold. The goal of a ranker
comparison method in the switching problem is to determine whether (3.1) holds. Note
that this requires explicitly reasoning about the uncertainty of comparisons between Rp

and Rc.
By contrast, the goal of a ranker comparison method in the difference estimation

problem is to accurately estimate the expected difference of the metric values for the
two rankers:

E[Mc �Mp]. (3.2)

Unlike the switching problem, the difference estimation problem does not require
explicitly reasoning about uncertainty. Nonetheless, it can be useful for, e.g., selecting a
single ranker from a set of candidates, all of which satisfy (3.1).

For both problems, the ranker comparison method is given only a log L = [l1, . . . ,
l|L|] of user interaction sessions gathered using Rp. Each session lj consists of the
following: q, the query the user has submitted; [d0, . . . , dN], the list of N documents
returned by Rp that make up the SERP; and [c0, . . . , cN], the clicks produced by the
user on those documents.

3.4 Click Model-Based Metric
In this section, we describe the metric used to define Mp and Mc within BARACO, the
Bayesian ranker comparison method we introduce in Section 3.5. While BARACO can
work with any click model that provides relevance estimates, our implementation uses
DBN [19] because it has shown high performance in predicting user clicks [23].

DBN, the Dynamic Bayesian Network click model [19], represents the relevance
of a document for a query as a combination of two variables: attractiveness and
satisfactoriness. In DBN, each user interaction session lj begins with a query q from
which the SERP, consisting of titles and snippets of the documents [dq,0, . . . , dq,N], is
generated. By assumption, the user starts by examining the first document’s title and
snippet. If they find the document attractive, they click on and examine the document,

29

3. Bayesian Ranker Comparison Based on Historical User Interactions

or otherwise proceed to examine the following documents’ titles and snippets in order.
If a clicked document satisfies the user, they terminate the session. Otherwise, they
may or may not continue to examine the SERP. DBN assumes the user will not click a
document prior to examining its snippet and cannot be satisfied by a document before
clicking on it.

Specifically, for a query q the document at position i in the SERP is modelled with
four binary variables: whether it is

• attractive (Aq,i),

• satisfactory (Sq,i),

• examined (Eq,i), and

• clicked (Cq,i).

The following relationships hold between variables for a given query:

• Eq,0 = 1: the first document is examined,
• Aq,i = 1, Eq,i = 1 , Cq,i = 1: a document is clicked if, and only if, it is

attractive and examined,
• Cq,i = 0 =) Sq,i = 0: only clicked documents can be satisfactory,
• Sq,i = 1 =) Eq,i+1 = 0: satisfied users abandon the search, and
• Eq,i = 0 =) Eq,i+1 = 0: users do not skip documents.

In addition, the following stochastic relationships hold:

• p(Eq,i+1 = 1|Eq,i = 1, Sq,i = 0) = �: users continue to examine the list after
not being satisfied with probability �,

• p(Aq,i = 1) = aq,i, and
• p(Sq,i = 1|Cq,i = 1) = sq,i.

Thus, attractiveness and satisfactoriness are governed by stationary Bernoulli distribu-
tions with unknown parameters aq,i and sq,i, which must be inferred from clicks, the
only observed variables. As in [19, 23], we assume � is fixed and known. Figure 3.1
depicts the relationships between all variables in a given session.

Once aq,i and sq,i have been inferred, they can be used to compute a metric such as
EBU [151], ERR [20], and the utility and effort-based metrics described in [17, 23]. In
this chapter, we use the expected effort metric defined in [23]. For a query q that yields
a document list with N documents, the metric is defined as:

rrMetric(q) =
NX

i=1

0

@sq,iaq,i
i

i�1Y

j=1

(1� sq,jaq,j)

1

A. (3.3)

For a given ranker Rx, the metric Mx required by (3.1) can then be defined as the
expected value of the rrMetric(q) across queries:

Mx =
X

q2Q

rrMetric(q)p(q). (3.4)

30

3.4. Click Model-Based Metric

ai+1Ai+1Ci+1Ei+1

aiAiCiEi

siSi

si+1Si+1

Figure 3.1: Graphical representation of the DBN click model. The grey circles
represent the observed variables.

Comparing the production ranker to a candidate ranker is complicated by the presence of
unseen documents in the candidate rankings. In order to compute the values of a metric
for rankings with unseen documents, the unseen documents can be either assigned some
a priori values of attractiveness and satisfactoriness or excluded from the ranking. The
latter strategy is taken in [23] and in the baseline method used in our experiments.

Using an approach based on Expectation Maximization (EM), a maximum a poste-
riori estimate of Mx can be computed [19]. Hence, the difference estimation problem
can be addressed by simply estimating Mc and Mp using this EM-based method and
then computing the difference between them. However, this approach suffers from a key
limitation. Because it is based only on maximum a posteriori estimates, the difference
computed by such an EM-based approach is not the true expected difference of the
metric values for the two rankers. Instead, it is only the first mode of the posterior distri-
bution of the difference of the metric values, which may not be equal to the expectation
if the distribution is multimodal or asymmetric. Because BARACO is a fully Bayesian
approach, it can estimate the true expected value of the difference between Mc and Mp,
which leads to better quality estimates, as we will see.

Furthermore, the switching problem cannot be directly addressed using an EM-
based approach because such an approach gives no information about the uncertainty
in the resulting estimate. That is, it does not estimate the distribution over the metric
values of the two rankers. Consequently, it provides no way to estimate the probability
that Mc + ✏ is greater than or equal to Mp. Instead, addressing the switching problem
using an EM-based method requires resorting to a heuristic approach, e.g., switching
only when the estimated difference exceeds some manually tuned threshold. This forms
the core of the baseline method we compare against in Section 3.7.

Below, we present a method that addresses the shortcomings of an EM-based
approach and enables better solutions to both the switching problem and the difference
estimation problem.

31

3. Bayesian Ranker Comparison Based on Historical User Interactions

3.5 BARACO

In this section, we present BARACO. First, Section 3.5.1 describes how the posterior
distributions over aq,i and sq,i can be inferred from L, the set of user interaction
sessions; Section 3.5.2 describes how to solve the switching problem by evaluating (3.1)
when Mp and Mc are defined according to (3.4), given posterior distributions over aq,i
and sq,i; Section 3.5.3 describes how to solve the difference estimation problem.

3.5.1 Inferring click model posteriors

Evaluating (3.1) and (3.2) requires knowing the posterior probabilities p(aq,i|L) and
p(sq,i|L) for each ranker, query, and document. In this subsection, we describe how to
estimate these posteriors.

The algorithm works by iterating over the sessions. To process the first session,
the posteriors p(aq,i|l1) and p(sq,i|l1) are computed given uniform priors p(aq,i) and
p(sq,i). Then, for each subsequent session lj , p(aq,i|Lj) and p(sq,i|Lj) are computed
given p(aq,i|Lj�1) and p(sq,i|Lj�1), where Lj = [l1, . . . , lj]. The algorithm termi-
nates when l = |L|, yielding p(aq,i|L) and p(sq,i|L).

We now describe how to compute p(aq,i|Lj) and p(sq,i|Lj) given p(aq,i|Lj�1) and
p(sq,i|Lj�1) and the next session lj . Because Aq,i and Sq,i are Bernoulli variables, we
can model the distribution over their parameters aq,i and sq,i using a Beta distribution.
Focusing on aq,i, this yields:

p(aq,i|Lj) = Beta(↵,�)

=
aq,i↵�1(1� aq,i)��1

B(↵,�)
,

(3.5)

where ↵ is the number of observations of Aq,i = 1 and � is the number of observations
of Aq,i = 0 that have occurred up to and including session j, and B(↵,�) is a Beta
function. Beta(1, 1) corresponds to a uniform distribution, i.e., no prior knowledge
about aq,i. If Aq,i is observed in session lj , then p(aq,i|Lj) can be updated using Bayes’
rule:

p(aq,i|Lj) = p(aq,i|Aq,i, Lj�1)

=
p(Aq,i|aq,i)p(aq,i|Lj�1)

p(Aq,i|Lj�1)
,

(3.6)

In this case, the update reduces to simply incrementing ↵ or �. Since the Beta distri-
bution is the conjugate prior for the Bernoulli variable, the posterior remains a Beta
distribution.

In our setting, Aq,i is not directly observed. However, when we know Eq,i, we can
directly infer Aq,i from Cq,i because the user always clicks on an attractive examined
document. Thus, the difficult case is when we do not know Eq,i, which occurs whenever
i > c, where c is the index of the last clicked document. The remainder of this
subsection describes how to address this case.

32

3.5. BARACO

a1A1C1

s

S

E1

C2E2 a2A2

C3E3 a3A3

Figure 3.2: Graphical representation of the DBN click model for the part of the
SERP below and including the last clicked document in a session. Grey circles
represent observed variables.

There are two steps. Since we do not know Eq,i when i > c, in the first step we
must instead compute a posterior over it: p(Eq,i|Lj). Then, in the second step, we use
p(Eq,i|Lj) to estimate p(aq,i|Lj) and p(sq,i|Lj).

To perform the first step, we use the sum-product message passing algorithm [9]. In
particular, we extract the subgraph of the graphical model that represents the documents
below the last clicked one and remove the nodes representing the satisfactoriness (Sq,i

and sq,i) for documents without clicks. This is because it is not possible to say anything
about sq,i for i > c as it is not observed and has no effect on what is observed. Since the
resulting graph, shown in Figure 3.2, is a polytree, the sum-product algorithm enables
us to perform exact inference, which yields p(Eq,i|Lj).

For the second step, we compute p(aq,i|Lj) and p(sq,i|Lj) given p(Eq,i|Lj). Fo-
cusing now on p(aq,i|Lj) and starting from Bayes’ rule, we have:

p(aq,i|Lj) = p(aq,i|Cq,i, Lj�1)

=
p(Cq,i|aq,i)p(aq,i|Lj�1)

p(Cq,i|Lj�1)
.

(3.7)

The likelihood term p(Cq,i|aq,i) can be computed by marginalizing across A and E:

p(Cq,i|aq,i) =
X

A2{0,1}

X

E2{0,1}

⇣
p(Cq,i|Eq,i = E,Aq,i = A)

p(Eq,i = E)p(Aq,i = A|aq,i)
⌘
.

(3.8)

33

3. Bayesian Ranker Comparison Based on Historical User Interactions

Sticking (3.8) into (3.7) and ignoring normalization gives:

p(aq,i|Cq,i, Lj�1) /
X

A2{0,1}

X

E2{0,1}

⇣
p(Cq,i|Eq,i = E,Aq,i = A)

p(Eq,i = E)p(Aq,i = A|aq,i)p(aq,i|Lj�1)
⌘

/ p(aq,i|Lj�1)
X

A2{0,1}

⇣
p(Aq,i = A|aq,i)

�
p(Cq,i|Eq,i = 0, Aq,i = A)p(E = 0) +

+ p(Cq,i|Eq,i = 1, Aq,i = A)p(Eq,i)
�⌘

.

Since we are focusing on the case where i > c, we know that Cq,i = 0, i.e., dq,i was
not clicked. Furthermore, we know that p(Cq,i = 0|Eq,i = 0, Aq,i = A) = 1 and
p(Cq,i = 0|Eq,i = 1, Aq,i = A) = 1�A, yielding:

p(aq,i|Cq,i = 0, Lj�1) / p(aq,i|Lj�1)
X

A2{0,1}

⇣
p(Aq,i = A|aq,i)

(1 · p(Eq,i = 0) + (1�Aq,i) · p(Eq,i = 1))
⌘

/ p(aq,i|Lj�1)
X

A2{0,1}

⇣
p(Aq,i = A|aq,i)

(1� p(Eq,i = 1) + p(Eq,i = 1)�A · p(Eq,i = 1))
⌘

/ p(aq,i|Lj�1)
X

A2{0,1}

⇣
p(Aq,i = A|aq,i)

(1�A · p(Eq,i = 1))
⌘
.

(3.9)

Now we can substitute p(Aq,i = A|aq,i) for the values of A: p(Aq,i = 1|aq,i) = aq,i
and p(Aq,i = 0|aq,i) = 1� aq,i yielding:

p(aq,i|Cq,i = 0, Lj�1) / p(aq,i|Lj�1)(1 � aq,i · p(Eq,i = 1)). (3.10)

Thus, (3.10) is the Bayesian update rule for attractiveness. When p(Eq,i = 1) = 1,
e.g., if the document was clicked, the posterior is a Beta distribution because plugging
p(Eq,i = 1) = 1 in (3.10) yields a term conjugate to the parametrization in (3.5).
Otherwise, we use p(Eq,i|Lj), as computed in the first step via a message-passing
algorithm that takes into account the satisfactoriness of the last clicked document and
the attractivenesses of the unexamined documents. Instead of a Beta distribution, this
yields a more general polynomial function. The normalization constant can be found
by integration: since the function is a polynomial with known coefficients, it can be
integrated analytically and then the definite integral evaluated on the interval [0, 1]. The

34

3.5. BARACO

Algorithm 1 ComputePosteriors(L)
1: InitializePriors()
2: for lj in L do
3: for i in lj do
4: p(Eq,i) sumProduct(lj)
5: if Cq,i = 1 then
6: p(aq,i|Cq,i = 1, Lj�1) p(aq,i|Lj�1)aq,i
7: p(sq,i|Cq,i+1 = 0, Lj�1) p(sq,i|Lj�1)

(p(Eq,i+1 = 1) + sq,ip(Eq,i+1 = 0))
8: else
9: p(aq,i|Cq,i = 0, Lj�1) p(aq,i|Lj�1)

(1� aq,i · p(Eq,i = 1))
return p(a|L), p(s|L)

cumulative distribution function is therefore also a polynomial and easy to compute.
The same holds for the expectation of the distribution.

Analogously, we can derive an update rule for satisfactoriness:

p(sq,i|Cq,i+1 = 0, Lj�1) /
p(sq,i|Lj�1)(p(Eq,i+1 = 1) + sq,ip(Eq,i+1 = 0)).

(3.11)

Algorithm 1 summarizes the steps involved in computing p(aq,i|L) and p(sq,i|L).
First, the attractiveness and satisfactoriness of all document query pairs are assigned
uniform Beta(1, 1) priors. Then, the log file is processed session by session and
the attractiveness and satisfactoriness of all document query pairs in the session are
updated using the Bayesian update rules described in this section: (3.6) and (3.10) for
attractiveness and (3.11) for satisfactoriness.

3.5.2 The switching problem
To decide whether or not to switch from Rp to Rc, we must determine whether (3.1)
holds. Determining this from L requires evaluating the following double integral:

p(Mc + ✏ �Mp | L) =
Z Mc=M⇤

Mc=0
p(Mc|L)

Z Mp=Mc+✏

Mp=0
p(Mp|L) dMc dMp,

(3.12)

where M⇤ is the maximum possible value of the metric defined in (3.4). Evaluating this
integral requires knowing the posterior probabilities p(Mp|L) and p(Mc|L), which can
be computed from (3.3) and (3.4) given p(aq,i|L) and p(sq,i|L) for each ranker, query,
and document.

Computing (3.12) analytically is hard, but it can be estimated using a Monte-
Carlo sampling scheme. Algorithm 2 describes this scheme, which yields a version of
BARACO that solves the Switching Problem.

35

3. Bayesian Ranker Comparison Based on Historical User Interactions

Algorithm 2 BARACO-SP(Rp, Rc, L, ✏, �)

1: p(a|L), p(s|L) computePosteriors(L) . Section 3.5.1
2: for k in 1:K do . Section 3.5.2
3: Mk

p sample(Rp, p(a|L), p(s|L))
4: Mk

c sample(Rc, p(a|L), p(s|L))
5: if Mk

c + ✏ �Mk
p then

6: NMc+✏�Mp NMc+✏�Mp + 1

7: p(Mc + ✏ �Mp)
NMc+✏�Mp

K

return p(Mc + ✏ �Mp) � 1� �

First, we compute the posteriors p(a|L) and p(s|L) using the approach described in
Section 3.5.1 (line 1). Then, each sampling iteration k consists of drawing a sample
aq,i and sq,i for each ranker, document, and query from p(aq,i|L) and p(sq,i|L). Using
these samples, we compute Mk

c and Mk
p , the values of the metrics given the sampled

probabilities from the k-th iteration (lines 3–4). Estimating (3.12) then reduces to
computing the fraction of sampling iterations for which Mk

c + ✏ �Mk
p (lines 6–7). If

this fraction is greater than 1� �, we can safely switch to the candidate ranker.
However, sampling aq,i and sq,i from p(aq,i|L) and p(sq,i|L) is itself hard because

their cumulative distribution functions are high degree polynomials that are hard to invert.
Therefore, we employ the Metropolis-Hastings algorithm [9] with the expected value of
the sampled distribution, which can be calculated analytically through integration, as
the starting position of the random walk. The proposal distribution is a Gaussian with
fixed variance.

3.5.3 The difference estimation problem

If we are interested only in the expected value of a ranker Rx, and not the uncertainty
of this estimate, we can compute it as follows:

E[Mx] =
RMx=M⇤

Mx=0 Mxp(Mx) dMx.

Using the same sampling procedure described above, we can solve the difference
estimation problem by estimating this expected value:

E[Mx] ⇡ 1
K

PK
k=1 M

k
x , (3.13)

where K is the number of sampling iterations. We can similarly estimate the expected
difference between Mc and Mp:

E[Mc �Mp] ⇡ 1
K

PK
k=1 (M

k
c �Mk

p). (3.14)

Algorithm 3 summarizes the resulting version of BARACO that solves the difference
estimation Problem. It is essentially the same as Algorithm 2 except that it estimates
the expected difference between the production and the candidate rankers’ metrics.

36

3.6. Experimental setup

Algorithm 3 BARACO-DEP(Rp, Rc, L, ✏, �)

1: p(a|L), p(s|L) computePosteriors(L) . Section 3.5.1
2:

P
�M
 0

3: for k in 1:K do . Section 3.5.3
4: Mk

p sample(Rp, p(a|L), p(s|L))
5: Mk

c sample(Rc, p(a|L), p(s|L))
6:

P
�M

P
�M

+Mk
c �Mk

p

7: E[Mx]
P

�M
K

return E[Mx]

3.6 Experimental setup

In this section, we describe the experimental setup used to evaluate BARACO. This
evaluation is complicated by the fact that the user’s information need, and therefore
the true relevance labels, are unknown. We present two evaluations which deal with
this problem in different ways. The first evaluation, based on the LETOR datasets
[112], uses manual relevance assessments as ground-truth labels and synthetic clicks as
feedback to BARACO. The second evaluation, based on the WSDM 2014 Web search
personalization challenge,1 uses dwell time as ground-truth labels and real clicks as
feedback to BARACO.

Another possibility would be to evaluate BARACO using explicit relevance labels
provided by human assessors to measure metrics such as Normalized Discounted
Cumulative Gain (NDCG) but this approach is known to have low agreement with
metrics based user behavior such as A/B testing or interleaving [20, 22, 115, 152], so it
is natural to expect that it would have a low agreement with BARACO as well. It would
also be possible to evaluate BARACO using A/B tests or interleavings, but A/B tests
have low agreement with interleavings and different metrics collected during A/B tests
such as click through rate, clicks@1 and others have low agreement with each other
[115]. The only definitive way to evaluate BARACO would be in an industrial setting
that measures long-term metrics such as engagement. Such results, however, would be
difficult to reproduce. Consequently, the LETOR evaluation is the most reliable and
reproducible, as it depends on indisputably unbiased ground truth. In addition, it allows
us to explore how the discrepancy between the click model and user behavior affects
BARACO’s performance. However, the WSDM evaluation, though less reliable, is
nonetheless useful because it gives insight into how BARACO performs in a real-world
setting with real users.

We compare BARACO to a baseline that, in lieu of our Bayesian approach, uses
the EM-based approach described in [19] to compute maximum a posteriori estimates
of (3.4) for Mp and Mc. These estimates can then be directly used in the difference
estimation problem. Because this approach does not compute full posteriors, it does
not quantify uncertainty in the resulting estimates and therefore cannot be directly

1Personalized Web Search Challenge 2014, https://www.kaggle.com/c/yandex-
personalized-web-search-challenge

37

https://www.kaggle.com/c/yandex-personalized-web-search-challenge
https://www.kaggle.com/c/yandex-personalized-web-search-challenge

3. Bayesian Ranker Comparison Based on Historical User Interactions

used in the switching problem. Instead, the baseline method, which we call Manual
Thresholding (MT), resorts to a heuristic approach to determine whether (3.1) holds.
In particular, Rc is deemed safe when M̂c � M̂p > ✏m, where M̂c and M̂p are the
maximum a posteriori estimates of Mc and Mp produced by the EM-based method and
✏m is a threshold parameter whose value must be tuned manually. Because we want to
switch whenever Mc �Mp > �✏, the quantity ✏+ ✏m acts as a buffer, i.e., an extra gap
that Rc must exceed to be considered safe. Adding this buffer heuristically accounts for
the uncertainty in M̂c and M̂p.

The need to tune ✏m for MT poses significant difficulties in practice. To understand
the effect of ✏m on the behavior of MT would require access to ground truth about
a set of candidate rankers, i.e., whether they are in fact no more than ✏ worse than
the production ranker. While such ground truth could be obtained using off-line or
on-line evaluations, such evaluations pose exactly the difficulties that motivate the
need for methods like BARACO: the former is expensive and may not reflect real
user preferences. The latter requires showing potentially poor rankers to real users.
Furthermore, while such ground truth, even if it could be obtained, would shed light
on how ✏m affects to which candidate rankers MT switches, it would still not make
it possible to select the ✏m that is best for a given � supplied by the system designers.
Doing so would require a quantification of the uncertainty about each candidate ranker
that is inherent to BARACO but absent in MT.

Importantly, BARACO does not require tuning ✏m or any analogous parameter.
On the contrary, � and ✏, which are supplied by the system designers, are simply
quantifications of their risk tolerance.

3.6.1 LETOR evaluation
The first evaluation is based on the LETOR datasets [112], which include manual
relevance assessments. However, they do not include user clicks. In addition, even
if they did, these would likely correlate only poorly with the relevance assessments,
since the assessors may not interpret the users’ information need correctly. To address
this difficulty, we instead axiomatically define the relevance assessments to be correct
ground-truth labels and use click models to generate the clicks. Since BARACO also
relies on click models, we evaluate it in settings where the clicks are generated and
interpreted using different click models, to assess BARACO’s robustness to errors in its
modeling assumptions.

LETOR is split into six sub-datasets: HP2003, HP2004, NP2003, NP2004, TD2003,
and TD2004. For each run of each algorithm, we use the data from one sub-dataset.
First we train a ranker RAda using AdaRank [149] on all the data in this sub-dataset.
AdaRank, which performs reasonably on all these datasets [149], trains a linear ranking
function, i.e., a linear combination of the ranking features for a given query-document
pair. The documents are then sorted based on the values produced by this ranking
function.

To ensure that some candidate rankers will be better than the production ranker, we
craft Rp by “damaging” RAda, i.e., randomly by adding random vectors to it. These
vectors were generated by randomly sampling a normal distribution with mean equal
to 0 and standard deviation of 0.2. Finally, to generate a population of candidate

38

3.6. Experimental setup

rankers Rc, we again perturb Rp 1,000 times using the same sampling method. This
ranker generation methodology is motivated by the gradient descent algorithm [154];
the standard deviation value was chosen so that some of the rankers would be similar
enough to the production ranker and some too different from it for the algorithm to be
confident about their performance.

The next step is to generate the log file. To this end, we generate user click
interaction data using the DBN, SDBN and UBM click models with three user model
settings: perfect, navigational and informational. The clicks are then interpreted using
the DBN click model. The parameters of the click models are summarized in Table
3.1, where p(C|R) and p(C|NR) denote the probability of a user clicking a relevant
document and an irrelevant document, respectively, and p(s|R) and p(s|NR) denote the
probability of abandoning the SERP after clicking a relevant document and an irrelevant
document, respectively. The closer p(C|R) is to p(C|NR) and p(s|R) to p(s|NR),
the more noise there is in the feedback and the more difficult inference becomes. The
user interaction data is generated for the production ranker by randomly sampling 500
queries and generating the SERPs and clicks.

Table 3.1: Overview of the user model settings.

Model p(C|R) p(C|NR) p(s|R) p(s|NR)

Perfect 1.0 0.0 0.0 0.0
Navigational 0.95 0.05 0.9 0.2
Informational 0.9 0.4 0.5 0.1

The perfect user model setting is used to obtain an upper bound in performance: the user
clicks all relevant documents and no irrelevant ones. The navigational and informational
user models are based on typical user behavior in web search [44]. The navigational
user model reflects user behavior while searching for an item they know to exist, such as
a company’s homepage. Because it is easy for users to distinguish between relevant and
irrelevant documents, the noise levels are low. The informational user model reflects
user behavior while looking for information about a topic, which can be distributed over
several pages. Because this task is more difficult, there is more noise in the feedback.

The clicks are generated and interpreted using either the same or different click
models. When they are generated and interpreted using the same click model, our
findings are not affected by the accuracy of the assumptions in the click model, allowing
us to focus on the differences between BARACO and the baseline method. Of course,
some assumptions made by DBN, which is used to interpret clicks, may not always
hold in practice. For example, DBN assumes that the document that was clicked and led
to abandonment is the document that satisfied the user. This assumption typically holds
for navigational queries, but may not be valid for informational queries. Therefore,
experiments in which the clicks are generated and interpreted using different click
models help measure the robustness of BARACO to settings whether the assumptions
underlying DBN do not always hold.

In the LETOR evaluation setup, we compare the performance of BARACO and MT
using Area Under the ROC Curve (AUC), Pearson correlation, and the square root of

39

3. Bayesian Ranker Comparison Based on Historical User Interactions

the mean squared error (RMSE). The rankers are compared using the metric rrMetric

(3.3).

3.6.2 WSDM evaluation
We additionally evaluate BARACO using an anonymized click log released by Yandex
for the WSDM 2014 Web search personalization challenge. The click log contains
sessions with queries submitted by a user. For each query there is a list of search results
returned by the engine and the clicks produced by the user. The queries and the clicks
have timestamps. However, the units of time are not disclosed. The queries, query
terms, documents, and users are represented by IDs in order to protect the privacy of
users.

The organizers of the challenge have defined three levels of relevance based on the
clicks that the documents receive: documents that receive clicks with dwell time less
than 50 time units have relevance 0, clicks with dwell time between 50 and 150 units
have relevance 1, and clicks with dwell time of more than 2 time units as well as clicks
that are the last clicks for a given query have relevance 2. We use all but the last session
for a query for training and use the last session for extracting the relevance labels for
query-document pairs.

The candidate rankers are generated by perturbing the result lists observed in the
click log in a random way. In order to ensure that some of the candidates are better than
the production ranker, the relevant documents have a higher chance to be promoted to
top than the irrelevant ones.

In the WSDM Evaluation setup, we compare the performance of BARACO and MT
using the following metrics: AUC and Pearson correlation as before. But we do not use
RMSE because the graded relevance and the estimated relevance have different scales
from 0 to 2, and from 0 to 1 respectively. The candidates are compared using DCG
instead of the metric in (3.3) because (3.3) requires a mapping from relevance labels to
attractiveness and satisfactoriness that is not available for the graded relevance in the
click log—it could be computed using, e.g., DBN but then the evaluation would be less
sound because the same click model would be used for training the parameters of the
documents and for training the metric.2

3.6.3 Parameter settings
Both BARACO and MT are instantiated with the user persistence parameter � = 0.9, as
in [19, 23], ✏ = 0.01. For the Metropolis-Hastings sampling procedure described in Sec-
tion 3.5.2, the variance of the proposal distribution was set to 0.1, which was determined
experimentally to provide a rejection ratio of around 0.6. For each query/document pair,
Nsamples = 1000 samples are drawn and shuffled to reduce autocorrelation in order to
evaluate (3.1). All results are averaged over 30 independent runs for each algorithm.
In order to check the significance of observed differences between results, we perform
Wilcoxon signed-rank tests; in the result tables, N denotes a significant difference at
p = 0.01, and M at p = 0.05.

2In the case of the LETOR evaluation experiments, this mapping is known and can be read from Table 3.1.

40

3.7. Results

3.7 Results

In this section, we present our experimental results aimed at answering Research
Questions 2.1 and 2.2. In Section 3.7.1, we analyse the performance of BARACO and
MT on the LETOR data; in Section 3.7.2, we analyse their performance on the WSDM
data.

3.7.1 LETOR results

In Section 3.7.1, we compare BARACO and MT on the switching problem; in Sec-
tion 3.7.1, we compare BARACO and the EM-based approach [19] that underlies MT
on the difference estimation problem.

Results for the switching problem

To address RQ2.1, we compare the ROC curves of BARACO and MT on the switching
problem. Such curves show how the true and false positives of both methods change
when we fix ✏ = 0.01 and vary across different values of � 2 [0, 1] for BARACO
and ✏m 2 [�4✏, ✏] for MT. In this context, a true positive occurs when the algorithm
recommends switching to Rc and Mc + ✏ �Mp, while a false positive occurs when it
recommends switching but Mc + ✏ < Mp. We then compare the AUC of both methods
for different datasets and user and click models.

Note that this comparison is fundamentally unfair to BARACO because its pa-
rameter, �, does not require tuning but instead is input by the system designers as a
quantification of their risk tolerance. By contrast, ✏m is a parameter that requires manual
tuning and cannot be derived from �, which MT ignores. As discussed in Section 3.6,
tuning this parameter is quite difficult in practice. Because the ROC curves show perfor-
mance across different values of � and ✏m, they allow MT to “cheat” by optimizing its
critical parameter, a step that is unnecessary in BARACO. In other words, these ROC
curves answer the following question: for each value of � that a system designer could
input to BARACO, how well can MT match the quality of BARACO’s decisions about
when to switch to Rc if an oracle provides MT with the best possible value of ✏m? Thus,
BARACO can be considered a success if it can match the performance of MT when MT
is given this advantage.

Figures 3.3, 3.4 and 3.5 plot the area under the ROC curves for BARACO and MT
for all six data sets, three click models, and three user model settings. Figure 3.6 shows
the ROC curve for the TD2004 dataset, informational user model with the DBN model
used for generation. The other ROC curves, omitted for brevity, are qualitatively similar.

The results in Figure 3.3 show that, even at the best value of ✏m, BARACO substan-
tially outperforms MT on four of the six datasets (HP2003, HP2004, NP2003, TD2004).
On the other two datasets (NP2003 and TD2003), the two methods perform similarly.
Analysis of the latter two datasets shows that the production ranker was at a local
minimum. Hence, nearly all candidate rankers are better than the production ranker and
the best performance is obtained by always switching. As this degenerate policy can be
represented just as well by MT as by BARACO, the two perform similarly.

41

3. Bayesian Ranker Comparison Based on Historical User Interactions

Furthermore, the fact that BARACO performs nearly as well when clicks are gen-
erated and interpreted with different models, as shown in Figures 3.4 and 3.5, shows
that BARACO is robust to violations of its modeling assumptions. The baseline sub-
stantially outperforms BARACO only for the perfect SDBN user model on the TD2003
and TD2004 datasets. The baseline shows superior performance because there are many
more relevant documents in the TD datasets, and many of them are not presented to
the user by the production ranker. In the case of the perfect user model, the user only
clicks on relevant documents. Therefore, there are many queries for which no clicks are
produced because no relevant documents were shown. The baseline essentially removes
such queries from consideration through condensing [22], which may be an effective
strategy in this case. Overall, these results demonstrate that BARACO can offer a robust
and effective means for deciding when to switch rankers: especially in cases where its
modeling assumptions hold, it outperforms MT with a tuned ✏m parameter for nearly
all combinations of dataset and user model.

P N I P N I P N I P N I P N I P N I
0.6

0.7

0.8

0.9

1.0

A
re

a
U

n
d
er

th
e

R
O

C
C

u
rv

e

BARACO

MT

HP2003 HP2004 NP2003 NP2004 TD2003 TD2004

Figure 3.3: Using DBN for generation and interpretation.

P N I P N I P N I P N I P N I P N I
0.6

0.7

0.8

0.9

1.0

A
re

a
U

n
d
er

th
e

R
O

C
C

u
rv

e

BARACO

MT

HP2003 HP2004 NP2003 NP2004 TD2003 TD2004

Figure 3.4: Using SDBN for generation and DBN for interpretation.

The values of ✏m shown here were chosen because their inflection point lies in the
interval � 2 [0, 1]. These are all negative values of ✏m because MT has a consistent
negative bias: almost all candidate rankers receive a score lower than the production

42

3.7. Results

P N I P N I P N I P N I P N I P N I
0.6

0.7

0.8

0.9

1.0

A
re

a
U

n
d
er

th
e

R
O

C
C

u
rv

e
BARACO

MT

HP2003 HP2004 NP2003 NP2004 TD2003 TD2004

Figure 3.5: Using UBM for generation and DBN for interpretation.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P
os

it
iv

e
R

at
e

BARACO ROC (area = 0.88)

MT ROC (area = 0.85)

Figure 3.6: The ROC curves for BARACO and MT, using DBN for generation and
interpretation, TD2004 dataset, informational user model (LETOR evaluation).

ranker. This bias is a consequence of condensing [22]: almost all candidate rankers
have unseen documents that do not contribute to the metric. This further highlights the
brittleness of MT: as more data is collected, the relative number of unseen documents
may decrease, which would reduce the effect of condensing and therefore the amount
of bias, necessitating a retuning of ✏m.

Results for the difference estimation problem

To address RQ2.2, we compare BARACO to the EM-based method [19] that underlies
MT, on the difference estimation problem. BARACO uses (3.14) to estimate the
expected difference while the EM-based method uses M̂c � M̂p, where M̂x is the
maximum a posteriori estimate of Mx. First, we consider how the RMSE scores of the
two approaches differ. Error is defined here to be the difference between the true and
estimated value of Mc �Mp. The true values are computed from the expert-generated

43

3. Bayesian Ranker Comparison Based on Historical User Interactions

Table 3.2: RMSE between the predicted outcome of the comparison and the
ground truth, P – perfect user model setting, I – informational, N – navigational
(LETOR evaluation).

DBN SDBN UBM

Dataset UM BARACO EM BARACO EM BARACO EM

HP2003 P 3.1e�5N 3.0e�4 3.8e�5N 3.1e�4 3.5e�5N 3.2e�4
N 2.8e�5N 3.5e�4 2.6e�5N 3.1e�4 4.7e�5N 3.0e�4
I 6.1e�5N 2.7e�4 4.1e�5N 2.7e�4 1.1e�4N 2.6e�4

HP2004 P 2.7e�5N 2.3e�4 4.3e�5N 2.0e�4 2.7e�5N 2.4e�4
N 1.6e�5N 2.4e�4 1.9e�5N 2.3e�4 6.0e�5N 1.9e�4
I 6.2e�5N 2.0e�4 5.3e�5M 1.6e�4 2.2e�4 2.4e�4

NP2003 P 1.3e�5N 2.9e�4 1.5e�5N 2.8e�4 1.4e�5N 2.9e�4
N 1.4e�5N 3.0e�4 1.3e�5N 2.8e�4 3.3e�5N 2.5e�4
I 3.7e�5N 2.8e�4 3.8e�5N 2.7e�4 1.1e�4N 2.7e�4

NP2004 P 4.1e�6N 6.2e�5 6.6e�6N 5.8e�5 4.3e�6N 6.6e�5
N 4.9e�6N 8.9e�5 3.6e�6N 7.8e�5 7.9e�6N 6.4e�5
I 1.5e�5N 9.8e�5 1.5e�5N 1.0e�4 2.5e�5N 1.2e�4

TD2003 P 7.0e�5N 1.1e�4 3.7e�4H 1.2e�4 6.8e�5N 1.7e�4
N 8.0e�5N 3.5e�4 6.2e�5N 3.8e�4 7.6e�5N 1.9e�4
I 6.3e�5N 2.7e�4 6.9e�5N 2.7e�4 1.5e�4N 3.0e�4

TD2004 P 4.0e�4N 7.8e�4 1.2e�3H 5.9e�4 5.1e�4N 9.2e�4
N 3.2e�4N 2.3e�3 2.5e�4N 2.3e�3 6.0e�4N 1.2e�3
I 4.7e�4N 2.0e�3 4.2e�4N 1.7e�3 1.2e�3N 1.5e�3

relevance labels in the datasets. Table 3.2 summarizes the RMSE of BARACO and MT.
These results show that BARACO consistently outperforms the EM-based approach, in
many cases by an order of magnitude. The only exception is the TD2004 dataset for
clicks generated using UBM. This exception occurs because there are many unseen
relevant documents in the TD2004 dataset and, when the user model assumptions do
not hold, the baseline’s condensing strategy [22] may be more effective because it does
not rely on these assumptions.

However, the fact that BARACO has lower RMSE scores is important only if we
are interested in the absolute values of the metric differences. Instead, if we want to
be able to rank the candidate rankers by their metric values, we need a different way
to compare the methods. To this end, we measure the Pearson’s correlation between
the ground truth value Mc �Mp and the estimates produced by BARACO or MT. For
example, if the correlation with the ground truth was perfect, ordering all the candidate
rankers by their ground truth difference with the production ranker would be the same as
ordering them by the estimated difference. Thus, the correlation with the ground truth is
more informative than RMSE in cases where we care about preserving the ground-truth
ranking. This occurs, e.g., when several candidate rankers confidently outperform the

44

3.7. Results

production ranker. In such cases, it is desirable to switch to the one that outperforms it
by the largest margin, while the exact absolute values of the estimated metrics are not
important.

Table 3.5 summarizes the correlations between the ground truth difference of rankers
and the difference of rankers computed by BARACO and the EM-based method. Higher
correlations with the ground truth mean that the way the rankers are ranked is closer to
the ground truth. These results show that BARACO again outperforms the EM-based
method. The negative correlation in the informational setting of NP2003 dataset is due
to a heavily skewed distribution of candidate rankers when the production ranker is at a
local minimum of the ranker space and almost all candidate rankers are better for the
queries in which the production ranker has not presented any relevant documents. This
situation is unlikely to occur in the real world since production rankers are typically
highly engineered and thus more likely to be local maxima than local minima. As with
our earlier results, we see that the performance on the TD2004 dataset using UBM for
generation is qualitatively different from the other conditions for the reasons mentioned
earlier.

Table 3.3: AUC and Correlation between the predicted outcome of the compari-
son and the ground truth (WSDM evaluation).

BARACO Manual Thresholding

AUC 0.936 0.934
Correlation 0.751 0.735

To answer RQ2.2, we observe that both the RMSE and correlation results show that
BARACO outperforms MT: BARACO achieves better estimates in both absolute and
relative terms, except on the TD2004 dataset with the UBM click model for generation,
whose special nature has been recognized before.

3.7.2 WSDM results
In this section, we compare BARACO and MT on the switching problem and difference
estimation problem, respectively, using the WSDM experimental setup.

Results for the switching problem

To address RQ2.1, we compare the ROC curves of BARACO and MT on the switching
problem. The AUC of these curves for both methods are stated in Table 3.3. The AUCs
illustrate that both methods are able to distinguish between strong and weak candidates.
Both methods suffer from a weak, systematic bias—they consistently underestimate the
quality of the candidates because the relevance labels used in the evaluation are biased
towards top results.

The real proportion of candidate rankers that are better than the production ranker
across different probability levels computed by BARACO is summarized in Table 3.4.
The probabilities output by BARACO are not perfectly calibrated and instead tend to

45

3. Bayesian Ranker Comparison Based on Historical User Interactions

Table 3.4: Proportion of candidate rankers that beat the production ranker across
probability levels computed by BARACO (WSDM evaluation).

Probability Level 0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5
Proportion 0.004 0.037 0.139 0.312 0.546

Probability Level 0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1
Proportion 0.742 0.886 0.971 0.993 1.0

Table 3.5: Correlation between the predicted outcome of the comparison and the
ground truth, P – perfect user model setting, I – informational, N – navigational
(LETOR evaluation)

DBN SDBN UBM

Dataset UM BARACO EM BARACO EM BARACO EM

HP2003 P 0.961N 0.846 0.950N 0.858 0.963N 0.857
N 0.967N 0.856 0.961N 0.856 0.950N 0.808
I 0.914N 0.763 0.930N 0.744 0.510H 0.664

HP2004 P 0.963N 0.933 0.946 0.937 0.969N 0.940
N 0.980N 0.926 0.981N 0.943 0.960N 0.908
I 0.931N 0.825 0.935M 0.825 0.262H 0.612

NP2003 P 0.979N 0.890 0.982N 0.901 0.982N 0.897
N 0.973N 0.878 0.982N 0.891 0.969N 0.856
I 0.902N 0.777 0.887N 0.769 0.523H 0.678

NP2004 P 0.922N 0.841 0.915N 0.871 0.925N 0.861
N 0.923N 0.809 0.943N 0.835 0.864N 0.751
I 0.700N 0.571 0.678N 0.546 0.464M 0.393

TD2003 P 0.738M 0.678 0.398H 0.619 0.732 0.723
N 0.838N 0.813 0.873M 0.830 0.758N 0.675
I 0.777N 0.689 0.776N 0.702 0.009,67H 0.404

TD2004 P 0.846M 0.783 0.434H 0.817 0.887N 0.795
N 0.862N 0.776 0.890N 0.753 0.858N 0.693
I 0.755N 0.633 0.829 0.637 �0.156H 0.464

be underestimates. Thus, not all risk prescribed by � and ✏ can be utilized, making the
system somewhat overly conservative.

Unfortunately, a limitation of these WSDM experiments is that there is no way to
ascertain how much of this bias is due to discrepancies between the relevance labels and
the true information needs of the users who generated the clicks and how much is due
to discrepancies between BARACO’s click model and those users’ behavior. However,
because the bias is consistent, correcting for this bias, e.g., by learning a constant offset,
is straightforward.

46

3.8. Conclusions and Future Work

Results for the difference estimation problem

The correlations between the true and estimated value of Mc � Mp computed by
BARACO and MT are also stated in Table 3.3. The estimated difference between
rankers is strongly correlated with the ground truth in the WSDM dataset, suggesting
that both methods can estimate the difference between rankers well given the logged
user interactions with the production ranker.

In both experimental setups, i.e., the LETOR and WSDM setup, both BARACO and
MT have good performance in most cases and high agreement with the ground truth. In
the LETOR setup the performance is often superior to that in the WSDM experiments,
especially when there is little noise and no discrepancy between the user behavior
and the click model. However, when there is much noise and the clicks are generated
and interpreted using different click models, the performance drops to levels lower
than in the WSDM experiments. Overall, these results show that, given a reasonable
click model, BARACO makes it possible to make informed decisions whether or not to
switch to a candidate ranker given historical user interaction data obtained using the
production ranker.

3.8 Conclusions and Future Work
We presented BARACO, a new click model-based method of ranker comparison with
two key features: (1) it compares the performance of rankers using only historical
data, and (2) it quantifies the uncertainty in such comparisons. Using BARACO, it is
possible to decide, using only historical data collected with the current production ranker,
whether one can confidently replace the production ranker with a candidate ranker. The
algorithm takes as input ✏, the degree to which the candidate ranker is allowed to be
worse than the production ranker; �, the probability with which the candidate ranker
is allowed to fall outside this threshold; and user interaction logs collected with the
production system.

Our experiments show that BARACO can correctly and confidently identify candi-
date rankers that are ✏ as good as the production ranker. BARACO outperforms or has
performance comparable to that of the MT baseline that requires manual tuning of the
threshold ✏m through offline assessments or online user experiments.

A natural application of BARACO is within online learning to rank algorithms,
many of which require an evaluation subroutine. For example, in Dueling Bandit
Gradient Descent (DBGD) [154], the algorithm randomly picks a candidate ranker
from the neighborhood of the current ranker, compares it to the current ranker, and,
if the candidate ranker appears to be better, updates the current ranker so that is is
closer to the candidate ranker. The evaluation step is usually done using interleaving,
which requires showing potentially poor rankings to the user. Using BARACO, DBGD
could be performed while restricting the rankings shown to users to those generated by
production rankers or candidate rankers in which we have sufficient confidence.

In this chapter we addressed research question RQ2: Does quantifying uncertainty
in click models help to evaluate search engine rankers? We explicitly modeled the
user interactions with an interactive system using a click model. We also modeled user
satisfaction with a click based metric. This, together with the Bayesian approach we

47

3. Bayesian Ranker Comparison Based on Historical User Interactions

took, allowed us to both estimate the quality of an interactive system given a finite and
biased interaction log and to decide confidently if one system is better than another one.
We showed that it is important to explicitly model the biases in the logged interaction
dataset. In the next chapter we turn away from evaluation to the question of optimizing
interactive systems.

48

4
Deep Online Learning to Rank for Image

Filtering with Implicit Feedback

Next we turn to interactively optimizing interactive systems using interactions and
answer the research question RQ3: How to optimize deep neural networks using
implicit feedback to perform learning to rank online? This topic is difficult by itself
and it is difficult to study. How would we know if an algorithm we propose works and
works better than state-of-the-art baselines? Of course, the best choice is to deploy it in
the wild and measure user satisfaction. However, it happens that most researchers do
not have access to an interactive system with real users interacting with it.

One of the possible ways forward would be to collect an interaction log and use it
to evaluate our algorithm. In the previous chapter we have shown that it is possible to
compare some versions of an interactive system to some other ones based on interaction
data collected using a production system. However, one can confidently decide if one
system is better than another one only if there is enough data supporting it. As a result, if
a system is too different from the one used to collect the data, then we cannot confidently
estimate its quality.

We take an alternative approach that was first proposed by Joachims [65] and then
followed by the community [53, 55, 121]. While also resorting to simulations we take a
conservative stance. We do not directly model user interactions like we did with click
models before. Instead, we assume that we have access to an interaction based metric,
which is a lesser assumption. We still assume that we can decompose the overall metric
to an independent combination of its parts, weighted sum of document relevance scores
in our case. This assumption can be lifted by using a context sensitive scoring model
like in [104].

We use image filtering using deep neural networks as our task. This task is important
because before most of the methods in the literature use simpler online ranking mod-
els [40]. Deep neural networks have shown success in a lot of tasks such as computer
vision, machine translation, dialogue systems, web search ranking, linguistics and many
others so they can be used for many interactive systems. It is important to see how we
can learn them interactively. We use image filtering task because it is easy to make
a simulation for it without too many manipulations. One can use an annotated image
dataset and use the categories that it comes with as queries. Then one can use the

This chapter was published as [81].

49

4. Deep Online Learning to Rank for Image Filtering with Implicit Feedback

labels of the images to compute the metric for any ranking proposed by the evaluated
algorithm. In this chapter we demonstrate that it is possible to start with a completely
random neural network and train it to perform an image filtering task in an interactive
fashion using interactions.

4.1 Introduction
One of the core problems in information retrieval is ranking in interactive systems.
Given a user’s query, the task is to return a list of relevant items and to constantly
improve this list based on an incoming stream of user feedback such as clicks. Current
Online Learning to Rank (OLTR) methods are limited to tabular or linear models and are
therefore suitable for applications where the number of items to be ranked is relatively
small or where the items have high-quality feature representations [121, 154]. In this
chapter, we study OLTR in the setting of image filtering, a setting that is neither tabular
nor linear.

Document filtering is a task that has long been studied [140]. In contrast to traditional
ad hoc retrieval scenarios it is characterized by having a set of standing information
needs but a changing set of documents to be ranked against representations of those
needs. In image filtering the document collection is a collection of images; thus, image
filtering is the task of identifying relevant images given a standing query [7, 29]. We are
particularly interested in scenarios that are characterized by a fixed set of information
needs and a set of images that needs to be ranked against each of those needs. Examples
include video surveillance with a fixed visual vocabulary [11], (visual) reputation
monitoring [3], visual information discovery services such as Pinterest,1 visual ranking
systems with a fixed vocabulary such as those built into mobile or desktop photo
management applications either, and product search where the number of product types
is fixed (as is the case in most established e-commerce platforms).

Existing tabular OLTR methods such as cascading bandits [74] are not applicable to
image filtering because the number of ranked items can be arbitrarily large; moreover,
the item set is dynamic and tabular methods, by definition, do not generalize to unseen
items. Linear methods such as dueling bandit gradient descent [154] are not applicable
because they require effective high quality features – features that are simply not
available for images. Modern image understanding heavily relies on Deep Neural
Networks (DNN) [51]. However, there exists no OLTR method that is applicable to
DNN. To develop an OLTR method, one needs to address the following challenges:

1. how to update DNNs using an incoming stream of implicit user feedback, and

2. how to explore the space of possible image rankings obtained using deep ranking
models.

In this chapter we address these challenges and propose novel OLTR methods for image
retrieval. To tackle the first challenge, we propose two learning approaches: DCG-loss,
which is based on regression, and PG-loss, which is based on policy gradients [67]; both
rank images using DNNs and can learn from implicit user feedback. To tackle the second

1http://www.pinterest.com

50

http://www.pinterest.com

4.1. Introduction

challenge, we compare several exploration policies, namely ✏-greedy exploration [94],
Boltzmann exploration [67, 129] and bootstrapped exploration [105], as well as two
natural baselines, pure exploration (i.e., explore randomly) and pure exploitation (i.e.,
only exploit).

On top of that, existing OLTR methods typically require implicit feedback at the
level of individual items, e.g., seeing whether a particular item was clicked or not.
However, many metrics apply not to the level of individual items but only to the entire
list. Moreover, previous work [103] shows that the list-wise or search engine result
page (SERP)-based implicit feedback can improve the result relevance over item-level
click-based methods in the image retrieval task. Clearly, all item-level feedback can be
turned into list-level feedback but not vice versa. The methods we propose operate on
feedback at the list-level and, hence, they are more generally applicable than existing
OLTR methods.

We evaluate the proposed OLTR methods, i.e., various combinations of deep ranking
models and exploration policies, on an image filtering task using the MSCOCO [85]
dataset, which was released in 2017 as part of the COCO and Places Challenge. Exam-
ples of input images are shown in Figures 4.1 and 4.2.

Figure 4.1: A cat in a bag, image from the MSCOCO dataset.

A single image typically belongs to several categories. For example, Figure 4.1 belongs
to the categories “cat” and “bag,” while Figure 4.2 belongs to “person,” “dog,” and
“frisbee.” In the MSCOCO dataset, there are 80 categories. Our experimental results
show that DCG-loss with ✏-greedy has the best final performance on the test set, while
DCG-loss with pure exploitation performs best during online training.

The main contributions of this chapter can be summarized as follows:

51

4. Deep Online Learning to Rank for Image Filtering with Implicit Feedback

Figure 4.2: A person playing frisbee with a dog.

1. We propose two loss functions for training deep ranking models for image filtering,
namely DCG-loss and PG-loss, both of which learn from implicit user feedback.

2. We adopt several exploration policies, namely ✏-greedy, Boltzmann exploration
and bootstrapped exploration, to efficiently explore the space of possible image
rankings obtained using the above deep ranking models.

3. We propose the first OLTR methods that can learn from list-level implicit feedback
instead of the more specific item-level feedback that today’s OLTR methods
assume.

4. We find that DCG-loss has superior performance compared to PG-loss especially
when the list size increases.

The rests of this chapter is organized as follows. We present the problem setting in
Section 4.2. In Section 4.3 we present our deep OLTR methods. Section 4.4 presents
our experimental setup and in Section 4.5 we present our results. Finally, related work
is presented in Section 4.6 and we conclude with Section 4.7.

4.2 Problem Setting
In this section, we briefly describe standard OLTR and outline specific properties of the
OLTR setting considered in this chapter.

Roughly speaking, standard OLTR methods work as follows: (1) a user submits a
query to a ranking system (image filtering in our case); (2) the system returns a ranking

52

4.3. Method

Table 4.1: Notation used in the chapter.

Notation Meaning

q Query
x Raw image representation
X Set of images
f(x) Score of image x
l = [x1, . . . ,xk] Ranked list of images
r(l) Reward for ranked list l

of items according to its current ranking model; (3) the user interacts with the returned
ranking and provides implicit feedback (e.g., clicks, dwell time, etc.); (4) the system
updates its ranking model based on the observed feedback. This process is performed
for every user query.

The OLTR setting considered in this chapter is different from the standard OLTR
setting in two aspects. First, we consider the image filtering scenario. This means that
an incoming stream of images is filtered according to user interests, which we assume
to be expressed in the form a predefined set of queries [7, 29]. Thus, our set of queries
is finite as opposed to an infinite set of queries in traditional ad hoc information retrieval
and standard OLTR. Second, we consider a more general type of implicit user feedback,
i.e., list-level feedback (such as time to success, abandonment, etc.) instead of the
item-level feedback (such as clicks, dwell time, etc.) that is used by standard OLTR
methods.

The notation used in this chapter is given in Table 4.1.

4.3 Method
In this section, we describe the proposed deep OLTR algorithms. Figure 4.3 provides a
graphical overview of our method. Our OLTR algorithms employ deep neural networks
to assign scores to image candidates (second component from the bottom in Figure 4.3,
detailed in Section 4.3.1) and then use exploration policies to decide how to use these
scores to rank the candidates (third component from the bottom in Figure 4.3, detailed
in Section 4.3.2). After that, we use implicit user feedback to update our scoring
model (top component in Figure 4.3, detailed in Section 4.3.3).

We proceed as follows. First, we describe ResNet, the scoring function we use.
Second, we describe how we use the scores produced by ResNet to do exploration; here
we consider five alternatives. Third, we describe DCG-loss and PG-loss, which are
alternative ways of updating the ResNet model based on implicit feedback.

4.3.1 Score network
In order to rank image results in response to a query it is a common approach to score
those results according to some relationship to the query. In this chapter we propose
to use a deep neural network to score results according to a relationship to the query.

53

4. Deep Online Learning to Rank for Image Filtering with Implicit Feedback

Figure 4.3: Overview of our deep OLTR method with alternative choices for the
exploration policy and for the training network.

For the image filtering task that we address, we use the ResNet-50 architecture [51].
We have chosen ResNet-50 because it produces high quality results for the object
recognition task and it is fast to train. Instead of ResNet-50, we could have chosen other
versions of ResNet [51], DenseNet [58], or VGG-Net [125] without having to change
anything in the framework depicted in Figure 4.3.

The architecture of ResNet can be summarized as a deep convolutional network
with residual connections between layers and a softmax layer; the number of output
nodes equals the number of object categories. The depth of the network is equal to 50.
In order to obtain a score for an image given a standing information need, we feed the
image to the network, obtain scores for all standing information needs, and select the
score for the desired information need.

Traditionally, object recognition methods have been trained using cross entropy, full
information feedback, and no exploration [125]. Instead of cross entropy, in this chapter
we propose two loss functions instead, DCG-loss and PG-loss, which we introduce in
Section 4.3.3.

54

4.3. Method

4.3.2 Exploration policies
In this section, we detail the exploration policies we plan to use: pure exploitation,
pure exploration, ✏-greedy exploration, Boltzmann exploration [67], and bootstrapped
exploration [105] .

Exploitation

The first policy we use is pure exploitation (or exploitation, for short), which ranks
images only based on the scores produced by the ResNet-50. Since this policy limits
the exploration space to the best known subset, it might be good for short-term users’
experiences. However, this policy might be bad for training ResNet-50, because ResNet-
50 might never see the optimal ranking without the sufficient exploration, and get stuck
in a poor local optima.

Exploration

In contrast to pure exploitation, pure exploration (or exploration, for short) always
explores the space of possible image rankings uniformly. With this policy, ResNet-50
will be trained with diverse ranked lists, and is likely to learn the optimal score function.
However, since the results are random during training, exploration is potentially harmful
to users’ experiences.

✏-greedy

To balance exploitation vs. exploration dilemma, we describe ✏-greedy, a standard
policy widely used to tackle this dilemma in online and reinforcement learning [67,
129]. ✏ 2 [0, 1] is the only hyper-parameter used in ✏-greedy. With probability ✏, the
algorithm ranks image candidates randomly (exploration), while with probability 1� ✏
the algorithm ranks image candidates based on the scores produced by the network, i.e.
ResNet-50.

The advantage of exploring with ✏-greedy is that the exploration is easily controlled
by tuning the value of ✏, where a larger value of ✏ means a higher degree of exploration.
However, ✏-greedy lacks a convergence guarantee, which may lead to a degradation of
the user experience.

Boltzmann exploration

Another policy we use is Boltzmann exploration, which is a more sophisticated explo-
ration policy in online and reinforcement learning [67, 129]. In this case, the scores of
candidates for a given query are taken into consideration when building the ranked list.
Given a query qj , for each position we choose an image according to the distribution

P (x) =
exp(f(x))P

x02X̂j
exp(f(x0))

,

where f(x) is the score produced by the network and X̂j ⇢ Xj is the set of remaining
image candidates.

55

4. Deep Online Learning to Rank for Image Filtering with Implicit Feedback

Bootstrapped exploration

The final policy we use is bootstrapped exploration, which shows state-of-the-art ex-
ploration strategy performance in the Arcade Learning Environment [105]. To fit this
policy, we change the outputs of the score network (ResNet-50). The new structure
is shown in Figure 4.4. We duplicate the outputs of ResNet z times, where z is the
hyper-parameter controlling the exploration. Each duplicate output is called a head,
which has the exact same structure but is initialized differently. At each round, we
uniformly choose one head out of z to score the image. In the update phase, we only
update the shared network and the chosen head. This method facilitates exploration by
approximating Thompson sampling – a well known exploration strategy [135] using the
bootstrap approach [37]. Intuitively, different heads will learn different scorings and
explore more diverse sets of rankings.

Image

Shared
ResNet

Head 1 Head 2 . . . Head z

Figure 4.4: Structure of bootstrapped exploration, one of our exploration policies.

4.3.3 Two ways of training a score network using implicit user
feedback

Now that we have obtained rankings, we can collect feedback on those rankings and
update our ResNet-50 model. First, we identify our reward signal. After that we
introduce two loss functions. To begin, we take the idea of reward regression from
Q-learning, which directly estimates the rewards of a list for a given query (here, DCG),
and propose DCG-loss. Next, we build on the idea of policy gradient, which estimates
the probability of each possible ranking, and propose PG-loss.

Reward signal

We use DCG as our reward signal [144]. Clearly, this is an idealized setup rather
than a practical one, since we cannot compute the true DCG of a given list in practice.
However, this work shows the way of online learning from implicit feedback in the
challenging setting of image filtering. We can always change the last layer of DCG-loss,
mentioned in the next section, to mimic other measurements, like the probability of
clicks of a list for a given query. We leave this as a future work.

DCG-loss

As the name suggests, the key idea of DCG-loss is to directly predict the DCG of a
ranked list for a given query, e.g., r(lj) for query qj , where r(lj) is the DCG (reward) of

56

4.3. Method

list lj defined in Section 4.2. Since we do not know the true relevance scores of images
for a given query, the first step will be image scoring as discussed in Section 4.3.1. Then,
we sum up these scores with the discounted weight of DCG to get the predicted DCG
r̂(lj). The loss function is the L2-loss:

L(r(lj), r̂(lj)) =
1

2
(r(lj)� r̂(lj))

2. (4.1)

The structure of DCG-loss is shown in Figure 4.5. The last layer is the fixed weight
layer, whose weights are the discounted weights used in DCG. This layer sums up the
score of each image and outputs the predicted DCG score r̂(lj) for the given list lj .
Except the last discounted weight layer, other components share the same structure and
weights. In this chapter, we use ResNet-50 as a shared component. Each component is
given a raw image as input, and outputs M relevance scores that describe how relevant
the image is to queries, where M is the number of categories described in Section 4.2;
they represent the standing information needs in our image filtering scenario. Then
DCG-loss passes the relevance scores of query qj to the last layer. After we obtain the
relevance scores, we can use them to build a ranked list.

Since the last layer is a fixed layer and we use the L2-loss, which is differentiable,
we can back propagate the loss to the score network.

Shared
ResNet

1

Shared
ResNet

2
. . .

Shared
ResNet

n

Image 1 Image 2 Image n

Discounted
sum

Predict DCG

weights weights weights

Figure 4.5: Structure of DCG-loss, used for training a score network using im-
plicit user feedback.

PG-loss

In order to apply policy gradients to the image ranking task, we need to model a
distribution over possible image rankings, for which we use a Plackett-Luce model [89,
110]. The Plackett-Luce model defines the probability of a ranking as in Eq. (4.2),
where we have added the conditional dependence on the query q:

PL(lj | qj , Xj) =
kY

i=1

exp(f(xi))Pk
m=i exp(f(xm))

. (4.2)

Here, lj is a random variable representing the ranking, Xj is the set of documents to
rank, and f(xi) assigns a score to xi given query qj . We model the scores using a neural

57

4. Deep Online Learning to Rank for Image Filtering with Implicit Feedback

network, which is subsequently trained using policy gradients. From a reinforcement
learning point of view, we are modeling the policy over the top document using a neural
network. Usually, the policy estimator in policy gradient methods outputs a probability
distribution over actions directly. However, for combinatorially challenging problems
such as image filtering, the number of actions grows with O(n!), which would make
things infeasible as we increase the problem size. Thus, we follow the Plackett-Luce
model and sample without replacement from a probability distribution over the set
of documents [61]. In this way we create a ranking and perform an action from the
reinforcement learning perspective, with a probability as defined in Eq. (4.2). Figure 4.6
provides a high-level overview of PG-loss.

Shared
ResNet

1

Shared
ResNet

2
. . .

Shared
ResNet

n

Image 1 Image 2 Image n

Softmax

Plackett-Luce
distribution

weights weights weights

Figure 4.6: Structure of PG-loss, used for training a score network using implicit
user feedback based on policy gradients.

We train the neural network using policy gradients, using the average-reward formu-
lation [131] as in Eq. (4.3). Note that it contains a double expectation over the query
distribution and the ranking distribution. In image filtering we have a uniform unparam-
eterized query distribution, which turns out to be important in order to get a tractable
form of the gradient. The ranking distribution is given in Eq. (4.2) and is parame-
terized with neural network parameters ✓; we will therefore denote this distribution
PL✓(lj | qj), where we will also drop the dependence on the set of available documents.
The reward function r(lj , qj) is defined as the NDCG score [63] of the ranking based
on its relevance labels, which are either 1 if the image falls within the queried category,
or 0 otherwise:

L(✓) = Eq,l[r(l, q)]. (4.3)

The policy gradient takes the form given in Eq. (4.4):

r✓L(✓) =
X

q

P (q)
X

l

r✓

�
PL✓(l|q) · r(l, q)

�
. (4.4)

In order to compute the gradient it is necessary to sum over all possible result lists.
This is not feasible because the number of possible lists is very large. We would like
to estimate this gradient by sampling just some or one of the result lists. In order to
achieve this we need to turn this equation into an expectation. In this way we will be
able to sample some results lists, compute the gradients for them and get an unbiased

58

4.3. Method

estimator of the gradient. Using some simple rewriting, we can get a different form of
the gradient as shown in Eq. (4.5) and Eq. (4.6):

r✓L(✓) =
X

q

P (q)
X

l

PL✓(l|q)
PL✓(l|q)

·r✓PL✓(l|q) · r(l, q) (4.5)

= Eq,l[r✓ logPL✓(l|q) · r(l, q)] (4.6)

Now the gradient also has the form of an expectation over the query distribution and
ranking distribution. This is something we can approximate using sampling, for example
using a single Monte Carlo sample.

Correction for exploration distribution. The gradient of our model takes the form
of an expectation as seen in Eq. (4.6). We can approximate this expectation using Monte
Carlo samples from the distribution over rankings. However, we do not sample from
the real distribution over actions, but from the distribution provided by the exploration
strategy in order to trade off between exploration and exploitation. To correct for this,
we have to multiply each sample with a correction weight. It is easy to see that the
correction weight should be as shown in Eq. (4.7):

!corr(l, q, ✓) =
PL✓(l|q)

(1� ✏) · PL✓(l|q) + ✏ · pe(l|q)
. (4.7)

Here, pe(r|q) is the explore distribution and ✏ is the probability that an exploratory action
is taken; for example, in the case of uniform exploration this is a uniform distribution
over all rankings.

Reward transformation. In order to further reduce the variance we transform the
reward by subtracting a baseline from it. By baseline we mean a scalar value that
approximates the expected reward of the actions taken by the model, i.e., the expected
DCG of the result lists that are produced by the current model and shown to the user.
We want to increase the probability of actions that are better than expected and decrease
the probability of actions that are worse than expected. We achieve this by subtracting
a scalar value bi, which we compute as the average of the previous nb rewards which
approximates the expected reward which is an optimal baseline [142] to an acceptable
quality:

bi =
1

nb

j=iX

j=i�nb

r(lj |qj). (4.8)

When we add the correction for the exploration distribution, Eq. (4.7), and add the
reward transformation, Eq. (4.8), to the gradients in Eq. (4.6) and approximate them
using i finite samples, we obtain the final equation for the gradients of PG-loss:

r✓L(✓) =
X

i

[r✓ logPL✓(li|qi) · (r(li, qi)� bi) · !corr(li, qi, ✓)]. (4.9)

Stepping back, in this section we have introduced the reward signal and the two loss
functions that we use to train the score network. The proposed combinations of score
network, reward signal and loss functions have the following three advantages:

59

4. Deep Online Learning to Rank for Image Filtering with Implicit Feedback

1. DCG-loss and PG-loss are list-wise learning methods, therefore they directly
optimize the target metric, DCG.

2. The shared score components of DCG-loss and PG-loss are flexible enough to be
set to any neural network structure, e.g., in our task we use ResNet-50 as the score
network, while we can always substitute it with other structures in the future.

3. We do not need item-level feedback, therefore our method can directly optimize
both item-level and list-level metrics.

4.4 Experimental Setup
Our experiments are designed to address the following research questions:

RQ3.1 How do the proposed DCG-loss and PG-loss learning methods compare to each
other?

RQ3.2 What exploration policy helps to improve the performance of the proposed
DCG-loss and PG-loss methods?

RQ3.3 How does the proposed architecture (score network + exploration policy + loss
function) perform for different sizes of result lists?

4.4.1 Datasets
We conduct experiments on the MSCOCO image dataset created for the object recog-
nition problem [85]. This dataset is well-suited for the image filtering task and can be
used as follows. In MSCOCO, each image contains objects, where an object can be
seen as a category the image belongs to or a query the image is relevant to. Each image
in MSCOCO contains one or more objects, which can be interpreted as the image being
relevant to one or more queries. More precisely, MSCOCO contains 2.5 million labeled
objects in 328, 000 images chosen from a set of 80 objects.

We train our models on the training set of MSCOCO and test them on a left out test
set.2 Before passing images to our score network, ResNet-50, we apply the VGG-Net
preprocessing script [125] to raw MSCOCO images in order to rescale them and obtain
random crops so as to avoid overfitting [125].

4.4.2 Experimental design
Since MSCOCO is originally designed for an object recognition task, we propose the
following procedure to fit this dataset to our OLTR task:

1. Given a query, a set of candidate images is selected randomly, such that at least
one of the selected images is relevant to the query. This step is the same as in
standard LTR systems, where a set of candidate documents is first selected using
unsupervised retrieval techniques and then the selected set is ranked using LTR.

2Because the test set of MSCOCO does not have public labels, the test set we use is essentially the left out
validation set of MSCOCO.

60

4.4. Experimental Setup

2. ResNet-50 produces a score for each selected image.

3. Then an exploration policy is used to decide how to produce a ranking of images,
i.e., based on relevance scores, randomly or sampling and returns this ranking to
a user.

4. The user provides list level feedback on the produced ranking of images. Any
list level metric could be used here. Since we do not have access to real user
feedback in this work, we simulate list level feedback by computing DCG of the
produced image ranking.

5. The user feedback is used to update ResNet-50.

Since we focus on the image filtering scenario with a finite set of queries, the same
query appears multiple times in the training and test set. On the other hand, the same
image may appear in only one of the sets.

In order to avoid updating ResNet-50 frequently and to take advantage of parallelized
computations, the above procedure is performed in batches. Each batch contains 100
queries (see Section 4.4.5), which are processed in parallel. We update ResNet-50 after
we collect feedback for all 100 queries in a batch.

4.4.3 Evaluation measures

We have two types of evaluation. In the first one, we care about the final quality of an
image filtering algorithm, which is measured in terms of NDCG on a test set. In the
second, we care about user experience during training. It is important to measure both
because aggressive exploration can often result in high final quality but may hurt user
experience while the system is being trained.

When we measure the final quality, we randomly choose 500 batches each containing
100 queries from the test set. Then, we compute the average NDCG over these 50, 000
queries. To verify whether differences between the best performance and the others are
significant, we use a two tailed Student’s t-test with p < 0.05.

When we measure the user experience during training, we compute the discounted
cumulative reward:

R(T) =
TX

t=1

�t�1r(lt), (4.10)

where r(lt) is a reward corresponding to an image list lt and � 2 [0, 1] is a discounting
factor. By setting different values of �, we can measure short-term and long-term user
experience. For instance, if we focus on long-term user experience, we should use large
values of �, so that all summands in Eq. (4.10), both older and newer, contribute to the
cumulative reward. In contrast, if we care about short-term user experience, we should
use smaller values of �, so that only recent summands contribute to the cumulative
reward. In our experiments, we report both the cumulative reward (� = 1) and the
discounted cumulative reward (� = 1� 1

30000), which balances the long- and short-term
user experience, where 30, 000 is the number of batches (see Section 4.4.5).

61

4. Deep Online Learning to Rank for Image Filtering with Implicit Feedback

4.4.4 Experimental conditions
We compare several experimental conditions in terms of different combinations of loss
functions and exploration policies. Below, we use subscripts to indicate the exploration
policy used: ✏, exploration, exploitation, BOLTZ and BOOT stand for ✏-greedy,
pure exploration, pure exploitation, Boltzmann exploration and bootstrapped exploration
policies, respectively. In total, we compare 10 conditions in our experiments:

• DCG-loss✏,

• DCG-lossexploration,

• DCG-lossexploitation,

• DCG-lossBOLTZ ,

• DCG-lossBOOT ,

• PG-loss✏,

• PG-lossexploration,

• PG-lossexploitation,

• PG-lossBOLTZ , and

• PG-lossBOOT .

4.4.5 Optimization, regularization and hyperparameters
There are many hyperparameters that can potentially influence the performance of our
code: the learning rate, l1 and l2 regularizations, dropout rate, gradient clipping just to
name a few. In practice, it is very expensive to tune them for online learning algorithms
because each setting of hyperparameters would have to be evaluated online. For this
reason, we do not tune the hyperparameters, but use the following predefined values.
We use a learning rate of 0.0001 together with the Adam [69] optimizer, we also use
batch normalization [60] with the decay of 0.997 and epsilon of 0.00001 which are the
default values. We use a batch size of 100 which is close to the maximum of what can
fit in the memory of the GPUs we used. We train our models on 30, 000 batches.

4.5 Results
In this section we report and analyse the results of the experiments described in Sec-
tion 4.4. First, we compare the overall performance of DCG-loss and PG-loss in
Section 4.5.1. Then we analyze the effect of the list size in Section 4.5.3. Finally, we
compare different exploration policies in Section 4.5.2.

Table 4.2 and Table 4.3 show the NDCG values computed on the test set after the
models were trained using DCG-loss and PG-loss on the training set. The values in
these table reflect the quality of the user experience after the models finished training
using DCG-loss and PG-loss.

62

4.5. Results

Table 4.2: NDCG@k on the test set of MSCOCO. The best results per value of
k (over Table 4.2 and Table 4.3) are marked in boldface. Statistically significant
losses over the best results are indicated by ⇤. We report the standard deviation
in the subscripts.

DCG-loss

Exploitation Exploration ✏-greedy BOLTZ BOOT

k = 2 0.9510.02 0.9530.02 0.9520.02 0.9510.02 0.949⇤0.02
k = 5 0.8370.05 0.816⇤0.05 0.8380.05 0.829⇤0.05 0.820⇤0.05
k = 10 0.6910.08 0.660⇤0.08 0.6970.09 0.681⇤0.08 0.667⇤0.08

Table 4.3: NDCG@k on the test set of MSCOCO. The best results per value of
k (over Table 4.2 and Table 4.3) are marked in boldface. Statistically significant
losses over the best results are indicated by ⇤. We report the standard deviation
in the subscripts.

PG-loss

Exploitation Exploration ✏-greedy BOLTZ BOOT

k = 2 0.904⇤0.02 0.924⇤0.02 0.945⇤0.02 0.909⇤0.02 0.910⇤0.02
k = 5 0.638⇤0.06 0.604⇤0.05 0.626⇤0.05 0.666⇤0.05 0.514⇤0.06
k = 10 0.484⇤0.06 0.467⇤0.07 0.495⇤0.07 0.474⇤0.06 0.475⇤0.07

Table 4.4: Cumulative reward on the training set of MSCOCO. NDCG@k is used
as reward. The best results per value of k (over Table 4.4 and Table 4.5) are
marked in boldface.

DCG-loss

Exploitation Exploration ✏-greedy BOLTZ BOOT

k = 2 28257.32 24572.42 27895.06 28120.18 28068.68
k = 5 24089.83 17955.74 23485.60 21429.76 23620.31
k = 10 18878.01 14045.72 18622.58 16518.62 18140.91

Table 4.5: Cumulative reward on the training set of MSCOCO. NDCG@k is used
as reward. The best results per value of k (over Table 4.4 and Table 4.5) are
marked in boldface.

PG-loss

Exploitation Exploration ✏-greedy BOLTZ BOOT

k = 2 27146.26 24568.05 27784.00 27122.83 27075.45
k = 5 18852.77 17954.19 18432.53 19154.88 18493.73
k = 10 14269.26 14019.09 13805.38 14345.53 14017.46

63

4. Deep Online Learning to Rank for Image Filtering with Implicit Feedback

Table 4.6: Discounted cumulative reward with � = 1 � 1
30000 on the training set

of MSCOCO. NDCG@k is used as reward. The best results per value of k (over
Table 4.6 and Table 4.7) are marked in boldface.

DCG-loss

Exploitation Exploration ✏-greedy BOLTZ BOOT

k = 2 17797.83 15534.25 17574.31 17753.56 17664.05
k = 5 15051.26 11351.03 14685.07 13386.99 14730.12
k = 10 11724.37 8880.00 11578.96 10267.38 11216.53

Table 4.7: Discounted cumulative reward with � = 1 � 1
30000 on the training set

of MSCOCO. NDCG@k is used as reward. The best results per value of k (over
Table 4.6 and Table 4.7) are marked in boldface.

PG-loss

Exploitation Exploration ✏-greedy BOLTZ BOOT

k = 2 17138.80 15530.08 17506.00 17120.39 17076.92
k = 5 11884.52 11350.79 11662.13 12023.88 11644.90
k = 10 9020.68 8862.71 8770.04 9041.78 8852.13

Table 4.4 and Table 4.5 show the NDCG values accumulated while training the models.
These values reflect the quality of the user experience while the models are being trained.
Higher values indicate that the user experience is less damaged by exploration.

Similar to Table 4.4 and Table 4.5, Table 4.6 and Table 4.7 show the NDCG values
accumulated while training the models but with discounting (see Eq. (4.10)). The
discounting is applied to put more weight on the NDCG values accumulated early in the
training history. The motivation for this is that we do not just want a model that trains
well, but we also want a model that trains fast. The faster training models will have
accumulated more reward early on and therefore have higher discounted cumulative
performance.

Figure 4.7 presents the training curves of DCG-loss on the left and PG-loss on the
right. The NDCG values are computed on the batches used for training the model and
then averaged over 3, 000 batches for smoothness.

4.5.1 DCG-loss vs. PG-loss
Table 4.2 and Table 4.3 show that DCG-loss clearly dominates PG-loss across all metrics.
Even for list size k = 2, where PG-loss has a comparable performance, the worst
exploration strategy of DCG-loss, namely bootstrapped exploration, outperforms the
best exploration strategy of PG-loss, namely ✏-greedy, with NDCG of 0.949 vs. NDCG
of 0.945. As the list size grows, the performance of PG-loss degrades and the gap in
performance between DCG-loss and PG-loss grows.

Answering RQ3.1, we find that DCG-loss is a better choice as the loss function for

64

4.5. Results

Figure 4.7: Offline performance (NDCG) of different combination of loss func-
tions (DCG-loss and PG-loss) and exploration policies (✏�greedy, Boltzmann,
bootstrapped, pure exploration and pure exploitation). Higher is better.

OLTR with deep neural networks.

4.5.2 Exploration

The effect of exploration can be seen by comparing the top performers in Table 4.2–4.7.
The best combination of loss function and exploration strategy according to Table 4.2
and Table 4.3 is DCG-loss with ✏-greedy exploration (the results for k = 2 and DCG-
loss with pure exploration are not significantly better). However, according to Tables 4.4
and 4.6 the best combination is DCG-loss with pure exploitation. These results are not
surprising because exploration is expected to have better long-term performance at the
expense of short term performance. This happens because more exploration produces
less biased and more diverse training data which increases the performance on the test
dataset. However, sampling diverse data points is likely to hurt short term performance

65

4. Deep Online Learning to Rank for Image Filtering with Implicit Feedback

when compared to always taking the “best” action according to the model.
Answering RQ3.2, we conclude that ✏-greedy exploration provides the best trade-

off between exploration and exploitation. It has good generalization performance,
high scores on a heldout dataset, and it does not hurt the online performance as well
because it has comparable cumulative and discounted cumulative NDCG performance.
Additionally, it is possible to explicitly control the amount of exploration by choosing
different values for ✏. It is also the easiest method to implement and does not add
computational overheads.

4.5.3 Effect of list size

In order to correctly interpret the results in Tables 4.4–4.7, it is important to keep in
mind that NDCG of a random model is 0.81 for a list size k = 2, 0.6 for k = 5 and 0.44
for k = 10. This supports the intuition that increasing the list size increases the task
complexity, which can also be explained as follows. First, the feedback signal becomes
sparser and the same feedback has to be shared among more items. It makes it more
difficult for the algorithms to figure out which items are the relevant ones and which
ones are not relevant. This leads to higher variance and slower convergence of both the
algorithms. Second, the number of possible rankings grows with the list size: a list with
two items can either be ranked correctly or incorrectly, while a list with ten items has
3, 628, 800 possible permutations, and if there is just one relevant item then there are
ten possible positions on which it can appear. This makes the exploration more difficult.

Tables 4.4–4.7 show that DCG-loss has superior performance across all list sizes.
The PG-loss method degrades rapidly as the list size increases. While the performance
is comparable for k = 2, for k = 5 the gap in performance is already huge. However,
it is worth noting that PG-loss still manages to learn: its performance is significantly
better than random, even for k = 10.

We analyze the performance of PG-loss in more detail to understand why it performs
so poorly for larger list sizes. We find that the gradients of ResNet-50 vary for different
list sizes. In particular, when the list size increases, so do the average l2-norm of
the gradients and its variance. The variance in gradients can lead to much slower
convergence. We further investigate why the gradients have higher variance for larger
list sizes and find that the correction weights in Eq. (4.7) take on much more extreme
values. The variance of the gradients in Eq. (4.9) depends on the variance of the
correction weights and therefore when it is high the variance of gradients is high as well.
One of the possible remedies to this problem would be to only explore lists that would
have similar values of the correction weights.

Figure 4.7 shows that increasing the list size also affects the speed of convergence.
For k = 2 the models converge after about 5, 000 batches, while for both k = 5 and
k = 10 the models continue learning even after 30, 000 batches. As discussed above,
this happens because for larger list sizes the feedback is more sparse and there are more
possible permutations. Answering RQ3.3, we find that the proposed architectures will
converge slower with the increasing size of lists.

As a summary of all the experiments reported above, we conclude that DCG-loss with
✏-greedy exploration is the top performing OLTR method across metrics and list sizes.

66

4.6. Related Work

4.6 Related Work

We first give a brief overview of the state-of-the-art in image retrieval in Section 4.6.1.
Then we discuss existing OLTR studies in Section 4.6.2. Finally, we survey related
work on deep online learning in Section 4.6.3.

4.6.1 Image retrieval

Early approaches to image retrieval are mostly based on text-based approaches, where
text-based descriptors such as title, description, and tags are used for matching [6]. In
contrast, in content-based approaches [127] some level of machine-based understanding
of the content of images is used. While early content-based approaches were low-level
(e.g., with features such as color histograms, RGB color space, Gabor wavelets, efficient
color descriptors), in recent years, deep learning-based approaches to content-based
image understanding have made tremendous progress [51, 58, 125] so that very large
human interpretable vocabularies can be used for reliable image understanding.

With the increase in quality of content-based image analysis, implicit feedback and
other behavioral aspects of image search have begun to draw attention from researchers
in recent years. Previous work [108, 111, 136] has illustrated that user behavior on
image search engine result pages differs from traditional, linear result pages. For
example, image search leads to shorter queries, tends to be more exploratory, and
requires more interactions compared to traditional web (text) search. Xie et al. [147]
study the examination behavior of image search users and Xie et al. [148] study the
intent of image searchers on the web. Hua et al. [57] and Pan et al. [107] study the
potential of large-scale click data with a variety of experiments, such as building large-
scale concept detectors, tag processing, search, definitive tag detection, intent analysis,
etc.

As our understanding of image search user behavior increases, there is a growing
number of publications on learning to rank images that somehow exploits user behavior.
Jain and Varma [62] use click data as a pseudo relevance signal to train a re-ranking
model and also use PCA and Gaussian Process regression to address the sparsity
problem of click data in image search. Yu et al. [153] simultaneously use visual features
and click features to learn a ranking model. O’Hare et al. [103] extract user behavior
features such as hover-through rate and demonstrate that combining these features with
content features can yield significant improvements on relevance estimation compared
to purely content-based features. However, to train a learning to rank framework using
these features, a manually annotated dataset is needed.

In contrast to the work listed above, we propose an online learning to rank method
for image search that is based on list-level feedback. To the best of our knowledge, we
are the first to do so.

4.6.2 Online learning to rank

Learning to Rank (LTR) is used in both offline and online scenarios. Offline LTR [86]
is well-studied and widely used both in academia and industry to learn effective ranking

67

4. Deep Online Learning to Rank for Image Filtering with Implicit Feedback

models [14, 16, 61, 86]. However, offline LTR methods heavily depend on human-
annotated data, which is expensive to produce and may not necessarily align with user
satisfaction [119].

Online LTR, instead, learns a ranking model from the interactions between users and
an IR system [56, 121]. Most previous studies formulate the Online LTR problem as a
Multi-Armed Bandits (MAB) [74, 114, 160] problem or as a linear bandits problem [56,
121, 154].

MAB-based algorithms estimate document relevance for a given query by treating
each document as an arm,3 and the best arm is determined based on user feedback, i.e.,
clicks. Kveton et al. [74] propose Cascading Bandits that learn document relevance
for a given query based on the cascade click model [24]. Zoghi et al. [160] generalize
this idea so that document relevance is learned without any assumption about click
models. The drawback of this type of algorithm is that they require us to train a separate
model for each query and they need a lot of data before they can learn good estimates
of document relevance for a given query. Another downside of this type of algorithms
is that they require term-level feedback, e.g., clicks on specific items in SERP, an
assumption that we are not making in this chapter.

In linear bandits, each ranker is treated as an arm and user feedback is utilized to
learn the best ranker online. An important recent development in this area is Multileave
Gradient Descent (MGD) [121]. While learning, MGD samples a number of rankers
around the optimal ranker that has been learned so far and interleaves all ranked lists
output by these rankers. Then MGD evaluates rankers based on user feedback and
identifies winning rankers, i.e., those that beat the optimal ranker. If there exist winning
rankers, MGD updates the optimal ranker in the direction of either the average or the
best of the winning rankers. Importantly, linear bandits based algorithms also require
term-level feedback, and, thus, we do not include this type of algorithms in this work
either.

4.6.3 Deep online learning

Deep online learning is a rapidly growing area of research [94, 105, 106, 132].4 One
of the challenges here is how to efficiently explore the space generated by DNN.
Since the space of image rankings generated by DNN is large and complex, neither
frequentist exploration policies, like Upper Confidence Bound [4], nor Bayesian policies,
like Thompson Sampling [135], are computationally tractable here [105]. For this
reason, we focus on traditional exploration policies, namely ✏-greedy, Boltzmann
exploration [67, 129] and the more recently proposed bootstrapped exploration [105].

Mnih et al. [94] use ✏-greedy in deep reinforcement leaning and propose Deep
Q-Learning (DQN), which surpasses a human expert in some of the Atari games. With
the ✏-greedy policy, the learning algorithm (or learner) randomly explores the space
generated by DNN randomly with probability ✏. The main drawback of ✏-greedy is that

3In the bandit setup, an action is called an arm. The goal is to find the best arm based on the historical
behavior of arms.

4The algorithms discussed here are developed in the area of deep Reinforcement Learning (RL). However,
in LTR, online learning can be formulated as RL [55] and so we say deep online learning instead of deep
reinforcement learning here.

68

4.7. Conclusion

the learner always randomly explores with probability ✏, which potentially degrades
the user experience. Although we can choose a small ✏, it may take a long time for
the learner to reach the best action in the space, which, in other words, means that the
learner may learn slowly.

In follow-up work, Osband et al. [105] propose Bootstrapped DQN, which improves
the learning speed and cumulative reward across most games in the Arcade Learning
Environment, a reinforcement learning platform proposed by Bellemare et al. [8].

Boltzmann exploration is another widely used policy in online (or reinforcement)
learning. With Boltzmann exploration, the learner scores every action in the space.
Then the learner samples an action based on the softmax distribution over all scores.
Since the learner explores based on the learned knowledge – when the best action is
played more frequently, its probability of being chosen will become higher – Boltzmann
exploration is a more sophisticated policy than ✏-greedy [67].

4.7 Conclusion
This chapter has shown a novel way to use deep neural networks for online learning to
rank in the image filtering task. The two proposed loss functions, DCG-loss and PG-loss,
can be used to train deep OLTR score networks, ResNet-50, with the only requirement
being that we need list-wise implicit feedback. Furthermore, ten combinations of loss
function and exploration policy have been extensively compared in experiments on the
MSCOCO dataset. The main findings are that DCG-loss with ✏-greedy offers best final
quality while DCG-loss with pure exploitation has the best users’ experiences during
online training. These results have shown the potential to use DCG-loss to train a DNN
to learn optimal ranking of image online.

We have focused on five types of exploration policy that are classic but easily
implementable. More recent development in deep exploration schemas [106, 132]
might also be compared in future work. Meanwhile, since we have found that DCG-loss
outperforms PG-loss, we can hypothesize whether this is caused by the policy gradient
schema being worse than the Q-learning schema in ranking or by the baseline policy
used in policy gradient being too weak to provide useful guidance. If the second case is
true, future work should examine how to make deep OLTR doubly robust [33], where
the policy gradient uses Q-learning as a baseline.

In this chapter we addressed research question RQ3: How to optimize deep neural
networks using implicit feedback to perform learning to rank online? We have shown
that it is important which loss function one uses even if the learning signal and the
exploration strategy are the same. Therefore, it is important to develop high quality
differentiable estimators of the performance of interactive systems that can be computed
using the observed interactions. However, what happens when one does not know how
to estimate the performance of the interactive system using the observed interactions? Is
it possible to optimize an interactive system without explicitly telling the algorithm how
to know if the user is satisfied? These are the questions we address in the next chapter.

69

5
Optimizing Interactive Systems with

Data-Driven Objectives

In this chapter we answer research question RQ4: Is it possible to optimize interactive
systems using user interactions without explicit reward? The motivation behind the
chapter is that interactive systems are growing more diverse and complex. It is difficult
to explicitly define user satisfaction with many interactive systems. For example, how
to model the user satisfaction with a chat bot? How to evaluate it? Right now, we either
ask the user to explicitly rate it, use task completion or some similarity metric with a
golden set of answers. For each new interactive system, for each new task, for each
new user it may be is necessary to develop a new metric. In this chapter we attempt to
optimize an interactive system without specifying a metric explicitly.

5.1 Introduction
Interactive systems play an important role in assisting users in a wide range of tasks.
They are characterized by doing so through repeated interactions with humans. For
instance, if users are looking for information, interactive systems can assist them in the
form of web search engines [145], dialogue systems [82], or intelligent assistants [70].
Here, users interact with systems following the request-response schema: first the
user takes an action, which could be a question or a query, then the interactive system
produces a reply, which could be an answer or a search engine result page. Such
interactions can continue for several iterations until the user decides to stop when he is
either satisfied or frustrated with his experience. Importantly, an interactive system and
its users always have a shared goal: for users to have the best experience. Thus, both a
system and its users are expected to behave accordingly, e.g., the user submits the query
that he expects to lead him to the desired results and the interactive system provides the
search results that are most helpful to the user. But despite their shared goal, only the
user can observe their own experience, leaving interactive systems unable to directly
optimize their behavior.

Currently, the optimization of interactive systems relies on assumptions about user
needs and frustrations [83]. Commonly, an objective function is manually designed to

This chapter was published as [41].

71

5. Optimizing Interactive Systems with Data-Driven Objectives

reflect the quality of an interactive system in terms of user satisfaction. The drawback
of this approach is that it is heavily based on domain knowledge, e.g., clicks on search
results [92] or the cross-entropy between generated replies and predefined answers [82].
Additionally, a handcrafted objective function is expensive to maintain and does not
generalize over different domains. Moreover, it is impossible to design such functions
when there is a lack of domain knowledge. Given an objective function, optimization
can be done following the Reinforcement Learning (RL) paradigm; previous work does
this by considering an interactive system as the agent and the stochastic environment
as a user [55, 82]. However, user needs are inherently complex and depend on many
different factors [72, 143]. Consequently, manually crafted objective functions rarely
correspond to the actual user experience. Therefore, even an interactive system that
maximizes such an objective function is not expected to provide the optimal experience.

In contrast, we propose an approach that overcomes this discrepancy by simulta-
neously inferring an objective function directly from data, namely user interactions
with the system, and optimizing the system for this data-driven objective. Thereby, and
in contrast to traditional approaches, our data-driven objectives are learned from user
behavior, instead of being hand-crafted. We suppose that by incorporating a data-driven
objective, interactive systems can be optimized to an objective closer to the actual user
satisfaction; unlike previous methods that optimize for assumed user preferences.

We seek to answer the following main research question:

Can we optimize an interactive system for users through data-driven objec-
tives?

To answer this research question, we introduce a novel algorithm: Interactive System
Optimizer (ISO). It provides a new principled approach by concurrently inferring
data-driven objectives from their interactions, and optimizing the interactive system
accordingly. Thus, ISO does not depend on any domain knowledge.

In this chapter, we start by formalizing the interaction process between a user and an
interactive system as a MDP (Section 5.3). Then we make the following contributions:

• The first method that infers data-driven objectives solely from user interactions,
that accurately reflect the users’ needs without using any domain knowledge
(Section 5.4).

• A novel algorithm, ISO, that optimizes an interactive system through data-driven
objectives (Section 5.5). Our experiments with different types of simulated user
behavior (Section 5.6) show that ISO has higher performance by increasing the
expected state value by at least 89% and up to 136% (Section 5.7).

5.2 Background

Reinforcement Learning (RL) and Inverse Reinforcement Learning (IRL) are the funda-
mental techniques used in the framework we propose in this chapter.

In RL an agent learns to alter its behavior through trial-and-error interactions with
its environment [130]. The goal of the agent is to learn a policy that maximizes the

72

5.3. Modeling User-System Interactions

expected return. RL algorithms have successfully been applied to areas ranging from
traditional games to robotics [32, 79, 80, 95, 124, 141, 156].

The task of IRL is to extract a reward function given observed, optimal (or sub-
optimal) behavior of an agent over time [100]. The main motivation behind IRL is
that designing an appropriate reward function for most RL problems is non-trivial;
this includes animal and human behavior [1], where the reward function is generally
assumed to be fixed and can only be ascertained through empirical investigation. Thus,
inferring the reward function from historical behavior generated by an agent’s policy
can be an effective approach. Another motivation comes from imitation learning, where
the aim is to teach an agent to behave like an expert agent. Instead of directly learning
the agent’s policy, other work first recovers the expert’s reward function and then uses it
to generate a policy that maximizes the expected accrued reward [100].

Since the inception of IRL by Russell [118], several IRL algorithms have been
proposed. Generally, these methods assume that the environment can be modelled as an
MDP. Many IRL methods [87, 159] model the reward functions as linear combinations
of hand selected state features; these linear functions are then chosen so that they can
explain the behavior of the agent. However, linear functions are rarely capable of
explaining complex behavior in real environments. Thus, other work has introduced
methods for non-linear reward functions, such as margin-based methods [5, 77, 116],
that recover non-linear reward functions through feature construction while assuming
the demonstrated behavior is optimal. For suboptimal behavior Levine et al. [78] com-
bine probabilistic reasoning about stochastic expert behavior with non-linear reward
functions, outperforming prior methods in suboptimal settings. To avoid their reliance
on handcrafted state features, recent methods have exploited the representational capac-
ity of neural networks to approximate complex reward functions without meticulous
feature engineering [146]. Alternatively, Finn et al. [39] explore how Inverse Opti-
mal Control can learn behaviors and recover reward functions from demonstrations in
high-dimensional robotics settings. Another branch of IRL uses evaluated suboptimal
demonstrations where the agent’s trajectories are scored by an expert. By changing
the expert’s role from a demonstrator to a judge, El Asri et al. [38] learn reward func-
tions from the scores even when the transition functions are unknown. Burchfiel et al.
[13] show that this IRL method is robust to labelling errors in scored trajectories; a
disadvantage of these approaches is that obtaining scores is often very costly.

In this chapter we propose ISO. The critical difference with previous work is that
interactive systems are optimized while the objectives are inferred from recovered user
reward functions.

5.3 Modeling User-System Interactions
In this section we explain how we model user interactions (Section 5.3.1) and define
different types of user behavior in interactive systems (Section 5.3.2).

5.3.1 Modeling user behavior in interactive systems
We assume that the agent is a user who interacts with the interactive system with the goal
of maximizing his expected rewards. This process is modelled using a finite Markov

73

5. Optimizing Interactive Systems with Data-Driven Objectives

Decision Process (S,A, ⌧, r, �), in the following way:

1. S is a finite set of states that represent responses from the interactive system to
the user.

2. A is a finite set of actions that the user can perform on the system to move between
states.

3. ⌧ is a transition probability table and ⌧(s, a, s0) is the probability of transitioning
from state s to state s0 under action a at time t:

⌧(s0 | s, a) = P(St+1 = s0 | St = s,At = a). (5.1)

The set of all possible ⌧ is T .

4. r(s, a, s0) is the expected immediate reward after transitioning from s to s0 by
taking action a. We compute the expected rewards for (state, action, next state)
triples as:

r(s, a, s0) = E[Rt | St = s,At = a, St+1 = s0], (5.2)

where Rt is reward at time t.

For similarity in exposition, we write rewards as r(s) rather than r(s, a, s0) in our
setting; the extension is trivial [100].

5. � 2 [0, 1] is a discount factor.

We write P to denote the set of interactive systems, i.e., triples of the form (S,A, ⌧).
System designers have control over the sets S, A and the transition probability table, ⌧ ,
and ⌧ can be changed to optimize an interactive system.

The user behavior strategy is represented by a policy, which is a mapping, ⇡ 2 ⇧,
from states, s 2 S, and actions, a 2 A, to ⇡(a|s), which is the probability of performing
action At = a by the user when in state St = s:

⇡(a|s) = P(At = a | St = s). (5.3)

The observed history of interactions between the user and the interactive system, H ,
is represented as a set of trajectories, {⇣i}ni=1, drawn from a distribution Z, which is
brought about by ⌧ , ⇡, and D0, where D0 is the initial distribution of states. A trajectory
is a sequence of state-action pairs:

⇣i = S0, A0, S1, A1, . . . , St, At, (5.4)

Next we introduce different ways of generating ⇣i.

5.3.2 Defining different types of user behaviors
There are two aspects to characterize the type of user behaviors that influence the shape
of ⇣i 2 H:

74

5.4. Defining Data-driven Objectives

1. What are the underlying principles that govern how users make decisions
while interacting?

(a) Randomly. Users have no prior information about an interactive system and
behave randomly.

(b) Optimally. Users know how to behave optimally in an interactive system to
satisfy their needs.

(c) Suboptimally. The behavior is suboptimal, which is better than random but
not as good as optimal.

2. Are users giving explicit feedback about the quality of an interactive sys-
tem?

(a) Yes. Users provide us with feedback about the quality of the interactive
system by labelling ⇣i 2 H .

(b) No. Users do not give us any feedback and the ⇣i 2 H are unlabelled.

To summarize, we have described the basic principles of modeling interactions between
users and an interactive system. Next, we detail how to define data-driven objectives
which are used to optimize an interactive system.

5.4 Defining Data-driven Objectives
In this section we present a way to convert user needs to interactive system objectives
(Section 5.4.1) and explain how these objectives can be estimated (Section 5.4.2).

5.4.1 Defining interactive system objectives
We define the quality of an interactive system as the expected quality of trajectories
under optimal user policy. The quality of the i-th trajectory, ⇣i, is the discounted sum of
the rewards of each state in the trajectory:

P1
t=0 �

tRt+1. The expected quality of the
i-th trajectory, ⇣i, is the value of its starting state, S0, in interactive system under user
policy ⇡:

�⇡(S0) = E⇡

" 1X

t=0

�tRt+1

#
, (5.5)

where the expectation E⇡[·] is taken with respect to sequences of states S0, S1, . . . , St, . . .
drawn from the user policy ⇡ and transition probability table ⌧ . The quality of the
interactive system under user policy ⇡ is:

ES0⇠D0 [�⇡(S0)], (5.6)

where D0 is the initial distribution of states. In the proposed setting, the user goal is to
find the best policy such that ES0⇠D0 [�⇡(S0)] is maximized. And �⇤(S0) defines the
maximum possible value of �⇡(S0) as follows:

�⇤(S0) = max
⇡2⇧

�⇡(S0), (5.7)

75

5. Optimizing Interactive Systems with Data-Driven Objectives

where ⇧ is the set of possible user policies. We formulate the problem of finding the
optimal interactive system’s transition probability table, denoted ⌧⇤, in the following
terms:

⌧⇤ = argmax
⌧2T

ES0⇠D0 [�⇤(S0)]. (5.8)

Therefore, Eq. (5.8) represents the objective that we use to optimize an interactive
system in order to improve the user experience. To estimate these interactive system
objectives we first need to recover Rt, which we will discuss next.

5.4.2 Recovering user rewards
We assume that continued user interactions with the system indicate a certain level
of user satisfaction, which can be reflected by experienced rewards. In contrast with
⇣i 2 H presented in Eq. (5.4), the complete history of interactions, Ĥ , consists of
trajectories ⇣̂i ⇠ Ẑ, which include the user reward Rt:

⇣̂i = S0, A0, R1, S1, A1, R2 . . . , Rt, St, At, (5.9)

The problem is that the true reward function is hidden and we need to recover it from the
collected incomplete user trajectories, H , shown in Eq. (5.4). To address this challenge
we apply IRL methods (Section 5.2), which are proposed to recover the rewards of
different states, r(s), for trajectories ⇣i 2 H .

Assumptions about user reward function. We make the following assumptions
about the user reward function:

• There is a state feature function, � : St ! Rk, which can describe a state with a
k-dimensional feature vector.

• There exist unknown true reward weights ✓ 2 Rk which linearly map the state fea-
tures, � : St, to a reward value, r(s) = ✓T�(s), which represent the satisfaction
of a user for this state.

We adopt two types of IRL method, as we have assumed two scenarios for user feedback
(Section 5.3.2).

Unlabeled trajectories. We use Maximum Entropy Inverse Reinforcement Learning
(MaxEnt-IRL) [159] if users give no feedback about their experience with an interactive
system. The core idea of this method is that trajectories with equivalent rewards have
equal probabilities to be selected and trajectories with higher rewards are exponentially
more preferred, which can be formulated as:

P(⇣i | ✓) = 1

⌦(✓)
e✓

T�(⇣i) =
1

⌦(✓)
e
P|⇣i|�1

t=0 ✓T�(St), (5.10)

where ⌦(✓) is the partition function. MaxEnt-IRL maximizes the likelihood of the
observed data under the maximum entropy (exponential family) distribution. Its task
can be seen as a classification problem where each trajectory represents one class.
MaxEnt-IRL employs gradient descent to update the reward weights ✓.

76

5.5. Optimizing Interactive Systems with Data-driven Objectives

Labeled trajectories. We employ Distance Minimization Inverse Reinforcement
Learning (DM-IRL) [13] for scenarios when users do give us feedback. For DM-IRL, it
is not essential for the trajectories to be optimal because trajectories, ⇣i 2 H , are labeled.
Therefore, DM-IRL directly attempts to regress the user’s actual reward function that
explains the given labels. DM-IRL uses discounted accrued features to represent the
trajectory:

 (⇣i) =

|⇣i|�1X

t=0

�t�(St), (5.11)

where � is the discount factor. The score of a trajectory ⇣i is assumed to be:

score⇣i = ✓T (⇣i). (5.12)

Since the score for each trajectory is supplied, the task reduces to a normal regression
problem.

Once we have recovered the reward function r(s), we can proceed to the optimiza-
tion objectives presented in Eq. (5.8).

5.5 Optimizing Interactive Systems with Data-driven
Objectives

In this section, we aim to find the best interactive system for an optimally behaving
user. This is equivalent to finding the optimal transition probability table ⌧⇤, defined in
Eq. (5.8).

We start by explaining how to maximize the quality of an interactive system for a
user behaving according to a fixed stationary policy ⇡:

⌧⇤⇡ = argmax
⌧2T

ES0⇠D0 [�⇡(S0)]. (5.13)

This problem is equivalent to finding the optimal policy in a new MDP+(S+, A+, ⌧+,
r+, �+), where the agent is an interactive system and the stochastic environment is a
user. In MDP+, the state S+

t is represented by a combination of the state St the user is
and the action At the user takes at time step t from the original MDP; the action A+

t is
the original state St+1. The interactive system observes the current state S+

t and picks
an action A+

t under the interactive system policy ⇡+(A+
t |S+

t). Then the user returns the
next state S+

t+1 according to the transition probability ⌧+(S+
t+1|S

+
t , A+

t) conditioned
on the policy ⇡(At+1|St+1) and transition probability ⌧(St+1|St, At) from the original
MDP.

Therefore, finding the optimal ⌧⇤⇡ from Eq. (5.13) is equivalent to finding the optimal
⇡+
⇤ for MDP+ as follows:

⇡+
⇤ = argmax

⇡+2⇧+

ES+
0 ⇠D+

0
[�⇡+(S+

0)], (5.14)

which can be done using an appropriate RL method such as Q-learning or Policy
Gradient. D+

0 is the initial distribution of states in MDP+. After we have demonstrated

77

5. Optimizing Interactive Systems with Data-Driven Objectives

Algorithm 4 Interactive System Optimizer (ISO)

1: Input: Original system (S,A, ⌧), r, �, D0.
2: Output: Optimized system (S,A, ⌧⇤)
3: Construct original MDP(S,A, ⌧, r, �)
4: ⇡⇤(a|s) = RL(S,A, ⌧, r, �)
5: Transform MDP to MDP+(S+, A+, ⌧+, r+, �+):

• S+
t = (St, At)

• A+
t = St+1

• ⌧+(S+
t+1|S

+
t , A+

t) =
⌧(St+1|St, At) · ⇡⇤(At+1|St+1)

• r(S+
t)+ = r(St)

• �+ = �
6: D+

0 ⇠ (S0 ⇠ D0, A0 ⇠ ⇡⇤(a|S0))
7: ⇡+(A+

t |S+
t) = ⌧(St+1|St, At)

8: ⇡+
⇤ (a

+|s+) = RL(S+, A+, ⌧+, r+, �+)
9: ⌧⇤(St+1|St, At) = ⇡+

⇤ (A
+
t |S+

t)

how to optimize the interactive system for a given stationary policy, we return to the
original problem of optimizing the interactive system for an optimal policy ⇡⇤

We propose a procedure ISO that is presented in Algorithm 4 and has the following
main steps:

• Line 1: We assume that we have an estimate of the reward function r(s) using
one of the IRL methods described in Section 5.3, so we have as input the original
system (S,A, ⌧), reward function r, discount factor � and initial distribution of
states D0.

• Line 2: ISO outputs the optimized interactive system (S,A, ⌧⇤).

• Line 3: ISO formulates the original system as MDP(S,A, ⌧, r, �).

• Line 4: ISO uses an appropriate RL algorithm to find the optimal user policy
⇡⇤(a|s).

• Line 5: ISO transforms the original MDP(S,A, ⌧, r, �) into the new MDP+(S+,
A+, ⌧+, r+, �+). In our setting, S+

t has the same reward value as St. The
discount factor �+ remains the same.

• Line 6: ISO transforms D0 to D+
0 to match the distribution of first state-action

pairs in the original MDP.

• Line 7: The equivalence ⇡+(A+
t |S+

t) = ⌧(St+1|At, St) means that finding
the optimal ⇡+

⇤ according to Eq. (5.14) is equivalent to finding the optimal ⌧⇤⇡
according to Eq. (5.13).

• Line 8: We can use an appropriate RL algorithm to find ⇡+
⇤ (A

+
t |S+

t).

78

5.6. Experimental Setup

• Line 9: ISO extracts ⌧⇤(St+1|St, At) from the optimal system policy ⇡+
⇤ (A

+
t |S+

t).
The extraction process is trivial: ⌧⇤(St+1|St, At) = ⇡+(A+

t |S+
t). Therefore,

ISO terminates by returning the optimized interactive system.

Once ISO has delivered the optimized system (S,A, ⌧⇤), we expose it to users so they
can interact with it. Hence, it is natural to assume that users adjust their policy towards
⌧⇤. After enough iterations the user policy will converge to the optimal one. The
iteration between optimizing the interactive system for the current policy and updating
the user policy for the current interactive system continues until both converge.

In summary, we have presented the Interactive System Optimizer (ISO). It optimizes
an interactive system using data-driven objectives. It works by transforming the original
MDP, solving it and using its solution to yield the optimal transition probability table in
the original MDP.

5.6 Experimental Setup
In this section we explain our experimental setup to test the performance of the Interac-
tive System Optimizer (ISO).

5.6.1 Designing an interactive system
To design an interactive system we need a finite set of states S, a finite set of actions
A and a transition probability table ⌧ . Features of a state �(s) are fixed. We use
GridWorld as an example of an interactive system. In our setting, GridWorld is an
N ⇥N grid of states, where N = 6 (|S| = 36). It supports four possible actions per
state (|A| = 4) that represent the four directions in which a user can move. In standard
settings of GridWorld, from any state a user can only jump to neighboring ones, so the
transition probability table, ⌧ , is static. For our experimental setup, we design a more
complex environment where a user can move between any two states and the transition
probability is changeable. For an initial interactive system, D0 is randomly sampled as
well as ⌧ . At each iteration ISO delivers ⌧⇤, which substitutes the initial ⌧ .

5.6.2 Modeling user behavior
To model user behavior we require a true reward function r(s), and an optimal user
policy ⇡⇤. We utilize a linear reward function r(s) by randomly assigning 25% of the
states with reward 1 while others with 0. As we use one-hot features for each state,
r(s) is guaranteed to be linear. We use 25% because we see quantitatively the same
performance when the proportion of the rewarded states changes. We hypothesize that
the complexity of the problem is proportional to the entropy in the reward function
because it leads to higher entropy in the observed trajectories and higher variance in
the reward estimate. We use the value iteration method [158] to obtain the optimal user
policy ⇡⇤. There are two main aspects of user behavior, as introduced in Section 5.3.2:

Types of user trajectory: Suboptimality in user behavior influences the quality of the
recovered reward functions, which in turn can affect the performance of ISO

79

5. Optimizing Interactive Systems with Data-Driven Objectives

as it relies on r(s) to optimize an interactive system. To simulate optimal user
behavior, we use ⇡⇤ trained with the real reward function. To model suboptimal
user behavior we use two user policies: (1) an optimal user policy ⇡⇤; and (2) an
adversarial policy (1�⇡⇤). We included an adversarial policy instead of a random
one because it is the hardest case as users behave opposite of what we expect.
The final dataset H is a mix of trajectories generated by two policies. The noise
factor (NF) 2 [0.0, 1.0]1 determines the proportion of trajectories in H that has
been generated by the adversarial policy. Hence, user trajectories are modelled as
follows: (1) adversarial (adv) when NF = 1.0; (2) optimal (opt) – NF = 0.0;
and (3) suboptimal (sub) – NF = 0.4.

Types of user feedback: The generated history of user interactions H represents the
case of unlabelled trajectories. To generate a dataset with labelled trajectories Ĥ
we calculate the score using r(s) as shown in Eq. (5.12).

At each iteration, we sample six datasets reflecting different types of histories of
user interactions: Ĥadv, Ĥopt, Ĥsub, Hadv, Hopt, Hsub, each of size 10, 000 and |⇣i|
2 [20, 30].

5.6.3 Evaluation process
To evaluate the performance of ISO, we report the expected state value under optimal
policy (Eq. (5.6)) for an initial interactive system and an optimised one, which we derive
after 200 iterations. A higher expected state value means users are more satisfied while
interacting with the interactive system. We randomly initialize 100 reward functions
and report the overall performance. Also, relative improvements are computed. We
use a t-test to show statistical significance (p < 0.01) of derived relative improvements.
We separately show the quality of the selected IRL methods for different types of user
behavior.

In summary, we have described our experimental setup, which includes the design
of an interactive system, user behavior simulation, and evaluation metrics. Next, we
present and discuss our experimental results.

5.7 Results and Discussion
In this section, we present the experimental results and analyze the performance of ISO
and its robustness.

5.7.1 Performance of ISO
Table 5.1 displays the expected state values of the initial and optimized interactive system
and the relative improvement (Impr) that ISO achieves using labelled and unlabeled
trajectories of the adversarial, optimal, and suboptimal user behavior. ISO manages to
improve the interactive system in all cases but one – when there is no feedback and the

1For example, NF = 0.1 means that 10% of the trajectories are noisy and generated with the adversarial
policy.

80

5.7. Results and Discussion

Table 5.1: The performance of ISO, measured as relative improvement (Impr)
in expected state value over the Initial interactive system of the Optimized version
(after 200 iterations) for different types of user behavior (Section 5.3.2): (1) trajec-
tory generation principles: (a) Adversarial, (b) Optimal, (c) Suboptimal; (2) with
and without user feedback. * indicates statistically significant changes (p < 0.01)
using a paired t-test.

(2) Feedback
(1) Trajectories (a) Adversarial (b) Optimal (c) Suboptimal

Initial Optimized Impr Initial Optimized Impr Initial Optimized Impr

Explicit feedback 1.78 4.21 136%⇤ 1.78 4.21 136%⇤ 1.78 4.21 136%⇤

No feedback 1.78 1.66 �6% 1.78 3.95 122%⇤ 1.78 3.36 89%⇤

Figure 5.1: Performance of ISO. Expected state value over 100 random func-
tions with standard error. Note that the curves for Opt-withFeedback, SubOpt-
withFeedback and Adv-withFeedback have almost the same shape.

user behavior is adversarial. As expected, when the user gives feedback about the quality
of the trajectories, the task is simpler and ISO manages to get higher improvements
than when the labels are not provided. While working with labeled trajectories, ISO is
also completely insensitive to the optimality of the user behavior. However, the picture
changes when we hide the labels from the trajectories. Without labels, ISO relies on the
optimality of user behavior to recover the reward function. As the optimality decreases
so does the behavior of ISO, and the performance decays.

5.7.2 Improving interactive systems with ISO
Figure 5.1 shows how the quality of the interactive system increases with each iteration
of ISO. ISO converges quite fast – as we can see in Figure 5.1, after 50 iterations the
expected state value begins to plateau. Most improvements happen in the first several
iterations. Also, ISO improves consistently – each iteration is an improvement over

81

5. Optimizing Interactive Systems with Data-Driven Objectives

the previous one. User trajectories range from optimal (Opt) to suboptimal (SubOpt)
to adversarial (Adv) – as long as there is user feedback, ISO is able to improve the
initial expected state value. As expected, with respect to adversarial user trajectories
without feedback, ISO fails to optimize the interactive system and the expected state
value decreases. Thus, ISO works with accurately labelled trajectories, but usually
obtaining high-quality labels is intractable and expensive in a real interactive system
because the real rewards are invisible.

Figure 5.2: Performance of ISO without feedback under different noise factors
after the first iteration.

5.7.3 Suboptimal trajectories in the absence of feedback

In Figure 5.2 we analyze further what happens after one iteration when the user trajecto-
ries are increasingly suboptimal and there is no feedback. The suboptimality of user
behavior only matters in the absence of labels, so we only plot the performance of ISO
without labels across different levels of noise in Figure 5.2.

Recall that the noise factor is the proportion of trajectories generated by the adver-
sarial policy compared to the optimal user policy. The tipping point for our algorithm is
around 0.5 – when more than half of the trajectories come from the adversarial policy,
ISO starts to deteriorate. However, as long as the noise factor is below 0.5, ISO manages
to optimize the interactive system already after the first iteration. With more iterations,
the robustness of ISO gets even stronger.

Thus, while ISO is able to deal with unlabelled trajectories, we have to assume that
the majority of users behaves optimality; its performance degrades when this assumption
is violated. With a noise factor of 0.4, ISO manages to get 89% improvement, with
136% being the maximal improvement (Table 5.1: suboptimal trajectories).

82

5.7. Results and Discussion

Figure 5.3: The quality of IRL methods (from top to bottom): Line 1: the
true r(s); Line 2: the recovered r(s) by DM-IRL; Line 3: the recovered r(s)
by MaxEnt-IRL after the first iteration; and Line 4: the recovered r(s) by
MaxEnt-IRL after the 200-th iteration. Left column was produced using data
from optimal trajectories, right column was produced using data from subopti-
mal trajectories.

5.7.4 Impact of ISO components

The performance of ISO depends on its two components: (1) RL methods used to
optimize the user policy ⇡ for the original MDP and system policy ⇡+ for transformed
MDP+; and (2) IRL methods – to recover the true reward function. The dependence on
RL methods is obvious – the end result will only be as good as the quality of the final

83

5. Optimizing Interactive Systems with Data-Driven Objectives

optimization, so an appropriate method should be used. The performance of ISO can
be influenced by the quality of the recovered reward functions, r(s), which we analyze
for the following types of user behavior: Ĥopt, Ĥsub, Hopt, Hsub. For the case of
labeled trajectories, we can see that values of r(s) recovered by DM-IRL are identical
to the ground truth in Figure 5.3 (2nd line).2 For the case of unlabelled trajectories, the
quality of MaxEnt-IRL is worse as shown in Figure 5.3 (3rd and 4th lines). However,
MaxEnt-IRL can still give a general overview of r(s) if user trajectories are optimal as
presented in Figure 5.3 (3rd line, left). With each iteration of running ISO the shape
of the sampled trajectories becomes more similar, which means most trajectories pass
by the same states and the diversity of trajectories decreases. This makes it even more
difficult to recover r(s) so the MaxEnt-IRL quality deteriorates with the number of
iterations. Hence, improving the performance of IRL methods is likely to significantly
boost the performance of ISO.

In summary, we have presented the experimental results and analyzed the perfor-
mance of ISO with and without labels and across different types of user trajectory. We
can conclude that ISO works well in the presence of user feedback. In case of unlabelled
trajectories, the performance of ISO depends on the optimality of user interactions.

5.8 Related Work

Relevant work for this chapter comes in two broad strands: how to optimize interactive
systems and what reward signal can be used for optimization.

5.8.1 Optimizing interactive systems

Interactive systems can be optimized by direct and indirect optimization. Direct op-
timization aims at maximizing the user satisfaction directly, in contrast, indirect opti-
mization solves a related problem while hoping that its solution also maximizes user
satisfaction [30]. Direct optimization can be performed using supervised learning or
RL [96].

Many applications of RL to optimizing interactive systems come from IR, recom-
mender systems, and dialogue systems. Hofmann et al. [53, 56] apply RL to optimize
IR systems; they use RL for online learning to rank and use interleaving to infer user
preferences [55]. Later work on RL in IR predefines reward functions as the number of
satisfied clicks in session search [91, 92].

Shani et al. [122] describe an early MDP-based recommender system and report on
its live deployment. Li et al. [82] apply RL to optimize dialogue systems, in particular
they optimize the hand crafted reward signals such as: ease of answering, information
flow, and semantic coherence.

2We sampled 100 different reward functions to run ISO, we report the quality of one r(s), the results of
the rest are similar.

84

5.9. Conclusions and Future work

5.8.2 Rewards for interactive systems
When applying RL to the problem of optimizing interactive systems, we need to have
rewards for at least some state-action pairs. Previous work typically handcrafts those,
using, e.g., NDCG [102], clicks [73] before the optimization or the evaluation of the
algorithm. Instead of handcrafting rewards, we recover them from observed interactions
between the user and the interactive system using IRL. Ziebart et al. [157] use IRL for
predicting the desired target of a partial pointing motion in graphical user interfaces.
Monfort et al. [97] use IRL to predict human motion when interacting with environment.
IRL has also been applied to dialogues to extract the reward function and model the
user [109]. Typically, IRL is used to model user behavior in order to make predictions
about it. We use IRL as a way to recover the rewards from user behavior instead of
handcrafting them and optimize an interactive system using these recovered rewards.
The work that is closest to ours in spirit is by Lowe et al. [88], who learn a function to
evaluate dialogue responses. However, the authors stop at evaluation and do not actually
optimize an interactive system.

Thus, the key distinctions between our work and previous studies are that we first
use recovered rewards from observed user interactions to reflect user needs and define
interactive system objectives, subsequently the interactive system can be optimized
according to the defined data-driven objectives to improve the user experience.

5.9 Conclusions and Future work
In this chapter, we have recognized that previous work on interactive systems has relied
on numerous assumptions about user preferences. As a result, interactive systems have
been optimized on manually designed objectives that do not necessarily align with the
true user preferences and cannot be generalized across different domains. To overcome
this discrepancy, we have investigated the following main research question: Can we
optimize an interactive system for users through data-driven objectives? As an answer,
we have proposed a novel algorithm, the Interactive System Optimizer (ISO), that both
infers the user objective from their interactions, and optimizes the interactive system
according to this inferred objective.

Firstly, we model user interactions using MDPs, where the agent is the user, and
the stochastic environment is the interactive system. Users display one of three types
of behavior: random, suboptimal, optimal. Each of these types of behavior reflects
different levels of familiarity with the interactive system, i.e., an unexperienced user will
display random behavior, whereas an experienced user will maximize their experience
by displaying optimal behavior. User satisfaction is modelled by rewards received from
certain interactions, and the user interaction history is represented by a set of trajectories.
Thus, if a user is not displaying random behavior, their trajectories will be somewhat
indicative of their preferences. Optionally, users can also give explicit feedback on the
quality of the interactive system by labelling their trajectories.

Secondly, we infer user needs from observed interactions in the form of a data-driven
objective. Since the user goal is to find the optimal policy that maximizes his gain from
the system, their interactions will indirectly indicate their satisfaction. Making use of
this property, we use Inverse Reinforcement Learning (IRL) to recover the user reward

85

5. Optimizing Interactive Systems with Data-Driven Objectives

function from the observed user behavior. We experiment with two IRL methods, one
that works with explicit feedback, the other without. Importantly, these methods work
without any domain knowledge, and are thus even applicable when prior knowledge is
absent.

Thirdly, ISO optimizes the interactive system to match the inferred objective. The
interactive system chooses how to respond to user actions, and from the user perspective
these responses are state transitions. However, the interactive system is in control of
the transitions, thus these are the actions it chooses from. We optimize the system
behavior by using a transformed MDP that represents the system perspective. Using
the recovered reward signal the system changes its behavior, and thus how it responds
to the user interactions. In response, the user is expected to change his behavior as
well, to adopt the new system policy. ISO iterates between optimizing the interactive
system for the current inferred objective; and letting the user adapt to the new system
behavior. This process repeats until both the user and system policies converge. In the
end, both the behavior of the system and the user have been optimized according to the
user satisfaction. Our experimental results show that ISO robustly improves the user
experience across different types of user behavior.

In conclusion, we have proposed a new approach to infer objectives from user
interactions that uses IRL methods. Furthermore, we have invented the principled
algorithm ISO that simultaneously infers objectives from interactions, while optimizing
a system for these inferred user preferences. Since optimizing an interactive system
based on data-driven objectives is novel, many promising directions for future work
are possible. For instance, while ISO performs well for users with a singular goal,
this approach could be extended for settings with multiple goals. Similarly, extensions
considering more personalized goals could benefit the overall user experience. Finally,
investigating the scalability and real world applicability of ISO could open many
research possibilities.

With this chapter we have reached the end of the fourth and final research chapter in
the thesis. Next, we zoom out and formulate our overall conclusions.

86

6
Conclusions

In this thesis we have studied how to interactively optimize web search engines using
interactions. Our approach to designing web search engines is different from more
traditional ones, which rely on the system designer having enough domain knowledge to
construct a full-information supervised dataset. Often, it is too expensive or difficult to
provide the web search engines with the knowledge which action it has to take in each
context. Instead of using a full-information supervised dataset, we have proposed to use
interactions to optimize web search engines. This choice poses a number of challenges.
In this thesis we attempted to answer the following RQs:

RQ1 Which is the best click model to model interactions with a search engine result
page?

RQ2 Does quantifying uncertainty in click models help to evaluate search engine
rankers?

RQ3 How to optimize deep neural networks using implicit feedback to perform learning
to rank online?

RQ4 Is it possible to optimize interactive systems using user interactions without
explicit reward?

In this, the concluding chapter, we look back at the studies on which we reported, on the
results and answers obtained, and identify the broader implications. We also describe
the limitations of our studies and indicate promising directions for follow-up work.

6.1 Main Findings
In this section we summarize what we have done in the thesis. The four research
chapters of this thesis addressed the challenges of interactively optimizing web search
engines using interactions as follows.

6.1.1 RQ1: Which is the best click model to model interactions
with a search engine result page?

In Chapter 2 we answered RQ1. We modeled clicks using click models and analyzed
different aspects of their performance. Based on our experimental results we concluded

87

6. Conclusions

that the performance of different click models depend on the task. In particular, we
discovered that the UBM click model [35] has the lowest log-likelihood and that the
DBN click model [19] has the lowest perplexity, the SDBN [19] and the DCM [46]
click models predict clicks the best as measured by RMSE, and the UBM [35] and
the PBM click models predict annotated relevance the best, the CCM [45] click model
produces the best ranking feature. We also found that high query frequency and low
click entropy make the click model predictions more reliable.

Overall, we concluded that there is no single “best” click model and that click
models and annotated relevance, while being correlated, they are vastly different signals.
This further served as a motivation for using interactions such as clicks instead of
annotations for optimization of interactive systems.

6.1.2 RQ2: Does quantifying uncertainty in click models help to
evaluate search engine rankers?

In Chapter 3 we answered RQ2. We used click models to evaluate search engine rankers
using historical clicks and a predefined click based metric – the expected effort metric
defined in [23]. In particular, we addressed the switching problem that is described in
Chapter 3: is the collected click data enough to confidently conclude that a candidate
ranker is better than the production one? We argued that this is an important problem
because it is highly practical and it also explores the key issues of interactions with
SERPs in the context of web search – namely position bias and presentation bias [65].
We took a Bayesian stance and extended the DBN click model to compute full posteriors
of its parameters. We used these posteriors to compute the probability that one ranker is
better than another ranker.

We showed that the resulting algorithm BARACO could confidently decide if the
candidate ranker is better than the production one and it could better estimate the quality
of the ranker than the Expectation Maximization algorithm previously proposed in the
literature.

6.1.3 RQ3: How to optimize deep neural networks using implicit
feedback to perform learning to rank online

In Chapter 4 we answered RQ3. We optimized deep image ranking in the context
of image filtering – ranking images for a known finite set of information needs. We
assumed that we can observe a list-wise user satisfaction metric, a setting that is more
general than the setting in the previous chapter that required an item-wise metric and
item-wise observations. We proposed and compared two loss functions: DCG-loss and
PG-loss and several exploration methods.

We found that DCG-loss with ✏-greedy exploration has the best overall performance.
PG-loss was found not to be able to optimize SERPs that have more than two elements
efficiently no matter which exploration strategy is used, while DCG-loss can optimize
long result lists.

88

6.2. Looking Forward

6.1.4 RQ4: Is it possible to optimize interactive systems using
user interactions without explicit reward?

In Chapter 5 we answered RQ4. We tackled the most complex setting – optimizing
an interactive system without predefined user satisfaction metric. We modeled a user
interacting with the system as a Markov Decision Process. We looked at scenarios where
the user performs optimally or sub-optimally and gives feedback about the quality of
the interactions or does not give feedback about the quality of the interactions. First, we
recovered user rewards to estimate data-driven objectives using Inverse Reinforcement
Learning (IRL) [100], namely we used two IRL methods: Maximum Entropy [146] in
the unsupervised case and Distance Based Optimization [13] for the case where the
user has left feedback. Then, we optimized interactive systems by optimizing the state
transition probabilities of the Markov Decision Process. We did so by transforming
the original Markov Decision Process to a new one, where the user and the system
are swapped. Then we applied Value Interaction to solve the transformed Markov
Decision Process and transform it back to get the state transition probabilities of the
newly optimized environment.

We found that we can get even better performance if we deploy the optimized
system, collect new user behavior and repeat the optimization. This happens because
the users start to explore more rewarding states in the optimized system and the new
trajectories lead to better reward estimates. We also found that the method is robust to
some degree of suboptimality of the user performance in the unsupervised case without
user feedback.

The goal of this thesis has been to develop a better understanding of how to interactively
optimize interactive systems using interactions and to develop and evaluate new algo-
rithms for this task. As described above, we advanced towards this goal in several ways,
in particular we compared and analyzed click models in the setting of search engines,
proposed a novel ranker comparison algorithm, proposed a series of algorithms for
image filtering, and an algorithm to optimize interactive systems using data driven ob-
jectives. This thesis is intended mainly for industrial practitioners, people who develop
interactive systems such as search engines, recommender systems, e-commerce plat-
forms and computational advertising. This thesis may also be interesting for academic
researchers in the field of information retrieval and artificial intelligence.

6.2 Looking Forward
In this section we start by discussing the limitations of the work on which we report
in the thesis by chapter and ways to overcome them. Then we discuss more general
directions for future work.

In Chapter 2 we analyze click models. The main limitations of the studied click
models is that they only address position and presentation biases of clicks and nothing
else. While clicks are a strong signal of user satisfaction, there are many other signals
such as dwell time, transactions and others that these click models ignore. Also, often
user satisfaction happens without clicks – for instance, the user may be satisfied by a
result snippet without clicking it. Complex SERPs such as the ones with many verticals

89

6. Conclusions

pose additional challenges for click models. The studied click models also assume that
the user queries in a session are independent, while this is not true – query reformulations
are also an important satisfaction signal. Finally, the click models examined have a
tabular representation for document query pairs and therefore do not generalize to new
document query pairs. In order to address these limitations more complex click models
can be used such as click models that take into account query document features [155].

In Chapter 3 we present BARACO. The main limitations of BARACO are inherited
from the limitations of click models – namely tabular representation, no generalization
and only click signals. BARACO also has its own limitations – the metric has to be
item-wise decomposable and defined on observed clicks or the parameters of the click
model. BARACO is computationally expensive – its memory usage is linear in the click
log size and it requires sampling from complex posteriors using Metropolis Hasting
algorithm, which is quite slow. The size of the posterior in memory can be addressed
by using click models that have a conjugate prior and the computation speed can be
improved by using a posterior that allows easier sampling such as a Gaussian posterior.

In Chapter 4 the main limitation of the work is that the set of user information needs
is finite and known in advance – while this is fine for the image filtering task, ad-hoc
search would require generalization across user information needs. This limitation can
be addressed by using a neural network architecture where the query is first projected
into a dense space and then its cosine similarity with the image embedding is com-
puted [138, 139]. Second, while the algorithm only requires the list-wise metric to be
observed, the metric itself should be decomposable as a weighted sum of independent
item-wise contributions. This is necessary in order to factor the loss function. This
means that metrics with item interactions like diversity aware metrics cannot be opti-
mized by the proposed algorithm. This limitation can be addressed by using a context
sensitive scoring method [104].

In Chapter 5 the main limitation of the work is that we either need the user to
perform optimally or provide annotations of his or her experience. A second limitation
is that the current version of the algorithm would not work in big state action spaces.
A third limitation is that we do not model individual user preferences and assume that
all users have the same goals and that the reward signal does not change with time.
Additionally, the proposed algorithm was evaluated only using a toy environment of
Grid World. While the first limitation is fundamental, the other limitations can be
addressed by using function approximation in order to handle large state action spaces,
by explicitly modeling personal or evolving goals and evaluating the approach on a
more realistic task.

Let us turn the table now and discuss potential future directions of research that
will mitigate the limitations that we have just listed. This thesis has provided answers
to some questions, but it has raised a lot of new ones too. The key challenges of
developing interactive systems are their evaluation, the amount of data they require,
and the algorithms.

6.2.1 Evaluation
While we have high quality offline evaluation techniques for some types of interactive
systems, such as search engines and recommender systems, evaluating other interactive

90

6.2. Looking Forward

systems is very difficult. In particular, evaluating interactive systems is difficult when
interactions take multiple turns and only the entire multi-turn trajectory can be evaluated.
This happens in search engines when one considers evaluating search sessions instead
of individual SERPs and it is particularly pronounced in dialog systems. In dialogue
systems this problem happens twice: at the utterance level and at the dialogue level –
it is not possible to annotate all responses to a phrase, and it is even more difficult to
annotate all sequences of utterance exchanges between the agent and the user. Future
work along this line should address these limitations by developing better generalization
techniques that would require less annotated data, better active learning techniques to
decide which data to annotate and better ways to learn from unannotated user behaviors.

6.2.2 Data
In this thesis we have optimized interactive systems using interactions. However, often
one needs a lot of interactions to be able to optimize an interactive system. For instance,
in Chapter 4 we start to get decent performance only after observing tens of thousands
interactions, and similarly in Chapter 5 a big chunk of the state space has to be covered
by observed trajectories. This poses a real limitation in the real world, especially for
problems with many states and actions. In order to overcome this problem one could
leverage unsupervised data that may be is available in abundance. However, it is not
clear how to do it. Currently, most approaches train a model on one task – which can
be unsupervised and then fine-tune it on the main task. These attempts often result in
higher performance. However, this method is not principled as it provides no theoretical
guarantees. Future work along this line should utilize massive amounts of unsupervised
data and various tasks while guaranteeing the improvement of the performance of the
main task.

6.2.3 Better algorithms
Optimizing interactive systems is difficult from an algorithmic perspective. One can
use many different Reinforcement Learning algorithms in combination with other tech-
niques. In particular, current approaches suffer from high variance and bias. The
problem is particularly noticeable in sequential problems with large discrete combina-
torial state-action spaces such as dialogue systems. These problems are very difficult
and require too much data to be solved using current techniques. Currently, we can
only hope to solve these problems if we have access to an oracle that can evaluate any
possible interaction trajectory. This is only possible for the cases when the entire agent-
environment system can be simulated reliably. However, most real world problems are
not currently amendable to simulation. This calls for new algorithms that are able to
learn good policies from few available observations or new algorithms that would be
able to simulate more complex real world problems.

91

Appendices

93

A
Acronyms

AUC Area Under the ROC Curve

BARACO Bayesian Ranker Comparison

CM Cascade Model

CCM Click Chain Model

CTR Click-Through Rate

DBN Dynamic Bayesian Network

DCG Discounted Cumulative Gain

DCM Dependent Click Model

DM-IRL Distance Minimization Inverse Reinforcement Learning

DNN Deep Neural Networks

DRL Deep Reinforcement Learning

DCTR Document CTR

EBU Expected Browsing Utility

EM Expectation Maximization

ERR Expected Reciprocal Rank

GCTR Global CTR

IR Information Retrieval

IRL Inverse Reinforcement Learning

ISO Interactive System Optimizer

LTR Learning to Rank

95

A. Acronyms

MAB Multi-Armed Bandits

MAP Mean Average Precision

MaxEnt-IRL Maximum Entropy Inverse Reinforcement Learning

MDP Markov Decision Process

MGD Multileave Gradient Descent

MLE Maximum Likelihood Estimation

MSCOCO Microsoft Common Objects in COntext

NDCG Normalized Discounted Cumulative Gain

OLTR Online Learning to Rank

PBM Position-Based Model

RCTR Rank CTR

RL Reinforcement Learning

RMSE Root Mean Squared Error

SERP search engine result page

SDBN Simplified DBN

UBM User Browsing Model

96

B
Code

The contributions of this thesis consist of answers to the research questions and of
implementations of the algorithms made available to the research community. Providing
code is important for three reasons. First, it makes research reproducible and dramati-
cally reduces the effort to reproduce the results. Second, it serves as a reference, often
important details can be omitted in the paper that presents the core algorithmic idea, but
nothing can be omitted in the code. Finally, having the code for an algorithm makes
improving this algorithm a lot easier.

We provide code for the algorithms described in Chapters 3, 4, and 5. The code
implementing the algorithms can be found at the following locations

• https://bitbucket.org/agrotov/lerotexperimental/src

• https://bitbucket.org/agrotov/meta-rl-rank/src/master/

• https://bitbucket.org/ZimingLi/irl-icml-code/src/master/

B.1 Code for Bayesian Ranker Comparison Based on
Historical User Interactions

In this section we present the code for Chapter 3. Bayesian Ranker Comparison
(BARACO) is a framework to compare search engine rankers given a click log. It
takes as input two ranking functions and a dataset with observed clicks and returns
the probability that the first ranker is better than the second one. The probability is
computed by doing Bayesian inference on the Dynamic Bayesian Network click model.
In order to run BARACO one must specify the path to the click log in Yandex WSDM
2014 Web search personalization challenge format. The compared ranking functions
are generated randomly by perturbing the rankings in the click log. BARACO can be
run using the following command:

compare_rankers.py --dataDir <click_data>
--outputFile <outputFile>

97

https://bitbucket.org/agrotov/lerotexperimental/src
https://bitbucket.org/agrotov/meta-rl-rank/src/master/
https://bitbucket.org/ZimingLi/irl-icml-code/src/master/

B. Code

B.2 Code for Deep Online Learning to Rank for Image
Filtering with Implicit Feedback

In this section we present the code for Chapter 4, entitled DeepOLTR. DeepOLTR
learns to rank images against a finite set of queries interactively. It learns from the
observed user reward. At each time step a set of images and a query are sampled.
DeepOLTR decides on the ranking of the images and the nDCG for this list is computed
and presented to the algorithm. The algorithm then updates the weights of the ResNet-50
network, which it uses for scoring the images. The process then repeats for a set number
of time steps. The algorithm is evaluated on final nDCG on a held-out set of images and
both cumulative and discounted cumulative nDCG accumulated during learning.

DeepOLTR is a modular framework based on Python and Tensorflow. It implements
two loss functions: DCG-loss and PG-loss. It also implements the following exploration
strategies: ✏-greedy, Boltzmann and Bootstrapped exploration.

DeepOLTR uses full-information to bandit conversion. In order to run the experi-
ment we use the MSCOCO dataset [85] originally designed for the object recognition
task.

We use the following procedure to fit this dataset to our OLTR task:

1. Given a query, a set of candidate images is selected randomly, such that at least
one of the selected images is relevant to the query.

2. ResNet-50 produces a score for each selected image.

3. Then an exploration policy is used to decide how to produce a ranking of images,
i.e., based on relevance scores, randomly or sampling and returns this ranking to
a user.

4. The user provides list level feedback on the produced ranking of images. Any list
level metric could be used here. Since we do not assume to have access to real
user feedback in this work, we simulate list level feedback by computing DCG of
the produced image ranking.

5. The user feedback is used to update ResNet-50.

Since we focus on the image filtering scenario with a finite set of queries, the same
query appears multiple times in the training and test set. On the other hand, the same
image may appear in only one of the sets.

The above procedure is performed in batches. Each batch contains 100 queries (see
Section 4.4.5), which are processed in parallel. We update ResNet-50 after we collect
feedback for all 100 queries in a batch.

Below we describe how to preprocess the data, specify the desired choices of loss
function and exploration and run DeepOLTR.

B.2.1 Data preprocessing
First, the MSCOCO dataset has to be preprocessed in order to convert it to the format
used by DeepOLTR. The format is based on Google’s protobuf which encodes Tenser-
flow records. Each record contains the pixel values of the image in three channels and

98

B.3. Code for Interactive System Optimizer

the set of objects present in the image. In order to preprocess the MSCOCO dataset, the
following command needs to be run, where the dataDir is the path to the dataset and
outputFile is the path where you want to save the preprocessed data:

preprocess_coco.py --dataDir <coco_data>
--outputFile <outputFile>

B.2.2 Algorithm modules
DeepOLTR is modular so before running it you need to specify the loss function and the
exploration strategy that you want to use. In order to specify the loss function use the
loss function parameter with two possible values, DCGloss and PGloss, for DCG-loss
and PG-loss, respectively. In order to choose the exploration type, use the exploration
parameter with one of the following values: epsilon, boltz, boot. You can also set
epsilon with epsilon parameter and a numerical value between zero and one.

B.2.3 Putting it together
Summarizing, you can run DeepOLTR with the following command:

train_coco.py --serpSize <serpSize>
--lossFunction <pg|dcg>
--exploration_type <exploration_type>

B.3 Code for Interactive System Optimizer
In this section we present the code for the main algorithm introduced in Chapter 5,
the Interactive System Optimizer (ISO). ISO optimizes the user satisfaction with an
interactive system without a predefined satisfaction metric. It does this by collecting a
set of trajectories, then recovering the metric using Inverse Reinforcement Learning, and
then optimizing the interactive system for this metric. The algorithm proceeds in two
steps: first the trajectories are generated, then the algorithm uses them for recovering
the metric and optimization.

The algorithm can function with unannotated and annotated trajectories. This is
controlled by the -irl parameter with values MaxEnt-IRL being the unannotated case
and DM-IRL being the annotated one. The trajectories can be generated from an optimal
or suboptimal policy, in order to choose, specify policy noise parameter with a
numerical value between 0 suboptimal and 1 being optimal.

In order to run Interactive System Optimizer, you need to specify if you want to use
annotations using annotated parameter with boolean values.

The command for running Interactive System Optimizer is:

pipeline-iteration-test.py -irl <MaxEnt-IRL|DM-IRL>
-policy_noise <pg|dcg>

99

Bibliography

[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In ICML, pages
1–8. ACM, 2004. (Cited on page 73.)

[2] O. Alonso, D. E. Rose, and B. Stewart. Crowdsourcing for relevance evaluation. In SIGIR Forum,
volume 42, pages 9–15. ACM, 2008. (Cited on page 2.)

[3] E. Amigó, J. Carrillo-de Albornoz, I. Chugur, A. Corujo, J. Gonzalo, E. Meij, M. de Rijke, and
D. Spina. Overview of RepLab 2014: Author profiling and reputation dimensions for online reputation
management. In Information Access Evaluation. Multilinguality, Multimodality, and Interaction, pages
307–322. Springer, 2014. (Cited on page 50.)

[4] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47(2-3):235–256, 2002. (Cited on page 68.)

[5] J. Bagnell, J. Chestnutt, D. M. Bradley, and N. D. Ratliff. Boosting structured prediction for imitation
learning. In NIPS, pages 1153–1160, 2007. (Cited on page 73.)

[6] J. M. Barrios, D. Diaz-Espinoza, and B. Bustos. Text-based and content-based image retrieval on flickr.
In SISAP, pages 156–157, 2009. (Cited on page 67.)

[7] N. J. Belkin and W. B. Croft. Information filtering and information retrieval: Two sides of the same
coin? Communications of ACM, 35(12):29–38, 1992. (Cited on pages 50 and 53.)

[8] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, 2013.
(Cited on page 69.)

[9] C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006. (Cited on pages 28, 33, and 36.)

[10] M. Boddy and T. L. Dean. Solving time-dependent planning problems. Brown University, Department
of Computer Science, 1989. (Cited on page 3.)

[11] B. J. Boom, J. He, S. Palazzo, P. X. Huang, C. Beyan, H.-M. Chou, F.-P. Lin, C. Spampinato, and R. B.
Fisher. A research tool for long-term and continuous analysis of fish assemblage in coral-reefs using
underwater camera footage. Ecological Informatics, 23:83–97, 2014. (Cited on page 50.)

[12] P. Borlund. The concept of relevance in IR. Journal of the Association for Information Science and
Technology, 54(10):913–925, 2003. (Cited on page 1.)

[13] B. Burchfiel, C. Tomasi, and R. Parr. Distance minimization for reward learning from scored trajectories.
In AAAI, pages 3330–3336. AAAI Press, 2016. (Cited on pages 73, 77, and 89.)

[14] C. J. Burges. From RankNet to LambdaRank to LambdaMART: An overview. Technical Report
MSR-TR-2010-82, Microsoft Research, 2010. (Cited on page 68.)

[15] C. J. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. Learning
to rank using gradient descent. In ICML, pages 89–96, 2005. (Cited on page 1.)

[16] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank: from pairwise approach to listwise
approach. In ICML, pages 129–136. ACM, 2007. (Cited on pages 1 and 68.)

[17] B. Carterette. System effectiveness, user models, and user utility: a conceptual framework for
investigation. In SIGIR, pages 903–912. ACM, 2011. (Cited on pages 28 and 30.)

[18] O. Chapelle and Y. Chang. Yahoo! learning to rank challenge overview. In Proceedings of the Learning
to Rank Challenge, pages 1–24, 2011. (Cited on page 2.)

[19] O. Chapelle and Y. Zhang. A dynamic Bayesian network click model for web search ranking. In
WWW. ACM, 2009. (Cited on pages 3, 6, 11, 12, 14, 15, 26, 28, 29, 30, 31, 37, 40, 41, 43, and 88.)

[20] O. Chapelle, D. Metzler, Y. Zhang, and P. Grinspan. Expected reciprocal rank for graded relevance. In
CIKM, pages 621–630. ACM, 2009. (Cited on pages 1, 5, 11, 28, 30, and 37.)

[21] O. Chapelle, T. Joachims, F. Radlinski, and Y. Yue. Large-scale validation and analysis of interleaved
search evaluation. ACM Transactions on Information Systems, 30(1):6, 2012. (Cited on page 26.)

[22] A. Chuklin, A. Schuth, K. Hofmann, P. Serdyukov, and M. de Rijke. Evaluating aggregated search
using interleaving. In CIKM, pages 669–678. ACM, 2013. (Cited on pages 26, 37, 42, 43, and 44.)

[23] A. Chuklin, P. Serdyukov, and M. de Rijke. Click model-based information retrieval metrics. In SIGIR,
page 493. ACM, 2013. (Cited on pages 11, 25, 26, 28, 29, 30, 31, 40, and 88.)

[24] A. Chuklin, I. Markov, and M. de Rijke. Click Models for Web Search. Morgan & Claypool Publishers,
2015. (Cited on pages 3, 11, 14, and 68.)

[25] M. Ciaramita, V. Murdock, and V. Plachouras. Online learning from click data for sponsored search.

101

6. Bibliography

In WWW. ACM, 2008. (Cited on page 5.)
[26] C. W. Cleverdon, J. Mills, and E. Keen. Factors determining the performance of indexing systems

(Volume 1: Design). Cranfield: College of Aeronautics, 1966. (Cited on page 27.)
[27] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An experimental comparison of click position-bias

models. In WSDM, pages 87–94. ACM, 2008. (Cited on pages 3, 6, 12, and 13.)
[28] N. Dai, M. Shokouhi, and B. D. Davison. Learning to rank for freshness and relevance. In SIGIR,

pages 95–104. ACM, 2011. (Cited on page 1.)
[29] N. DeClaris, D. Harman, C. Faloutsos, S. Dumais, and D. Oard. Information filtering and retrieval:

overview, issues and directions. In IEEE Engineering in Medicine and Biology Society, volume 1,
pages A42–A49, 1994. (Cited on pages 50 and 53.)

[30] M. Dehghani, H. Zamani, A. Severyn, J. Kamps, and W. B. Croft. Neural ranking models with weak
supervision. In SIGIR, pages 65–74. ACM, 2017. (Cited on page 84.)

[31] Z. Dou, R. Song, J.-R. Wen, and X. Yuan. Evaluating the effectiveness of personalized web search.
IEEE TKDE, 21(8):1178–1190, 2008. (Cited on page 16.)

[32] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel. RL2: Fast reinforcement
learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016. (Cited on page 73.)

[33] M. Dudı́k, J. Langford, and L. Li. Doubly robust policy evaluation and learning. arXiv preprint
arXiv:1103.4601, 2011. (Cited on page 69.)

[34] G. Dupret and C. Liao. A model to estimate intrinsic document relevance from the clickthrough logs
of a web search engine. In WSDM, pages 181–190, ACM, 2010. (Cited on page 11.)

[35] G. E. Dupret and B. Piwowarski. A user browsing model to predict search engine click data from past
observations. In SIGIR, pages 331–338. ACM, 2008. (Cited on pages 3, 6, 12, 13, 14, 28, and 88.)

[36] Edelman. 2018 Edelman Trust Barometer Global Report. http://cms.edelman.com/sites/
default/files/2018-02/2018_Edelman_Trust_Barometer_Global_Report_
FEB.pdf, 2018. (Cited on page 1.)

[37] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. CRC press, 1994. (Cited on page 56.)
[38] L. El Asri, R. Laroche, and O. Pietquin. Reward shaping for statistical optimisation of dialogue

management. In SLSP, pages 93–101. Springer, 2013. (Cited on page 73.)
[39] C. Finn, S. Levine, and P. Abbeel. Guided cost learning: Deep inverse optimal control via policy

optimization. In ICML, pages 49–58. ACM, 2016. (Cited on page 73.)
[40] A. Grotov and M. de Rijke. Online learning to rank for information retrieval: SIGIR 2016 tutorial. In

SIGIR, pages 1215–1218. ACM, July 2016. (Cited on pages 5 and 49.)
[41] A. Grotov, A. Chuklin, I. Markov, L. Stout, F. Xumara, and M. de Rijke. A comparative study of click

models for web search. In CLEF. Springer, September 2015. (Cited on pages 3, 6, and 71.)
[42] A. Grotov, S. Whiteson, and M. de Rijke. Bayesian ranker comparison based on historical user

interactions. In SIGIR, pages 273–282. ACM, August 2015. (Cited on page 25.)
[43] F. Guo and Y.-m. Wang. Efficient multiple-click models in web search. In WSDM. ACM, 2009. (Cited

on pages 26 and 28.)
[44] F. Guo, L. Li, and C. Faloutsos. Tailoring click models to user goals. In Proceedings of the 2009

workshop on Web Search Click Data, pages 88–92. ACM, 2009. (Cited on page 39.)
[45] F. Guo, C. Liu, A. Kannan, T. Minka, M. Taylor, Y.-M. Wang, and C. Faloutsos. Click chain model in

web search. In WWW, pages 11–20. ACM, 2009. (Cited on pages 3, 6, 12, 14, and 88.)
[46] F. Guo, C. Liu, and Y. M. Wang. Efficient multiple-click models in web search. In WSDM, pages

124–131, 2009. (Cited on pages 3, 6, 12, 13, and 88.)
[47] A. Hassan and R. W. White. Personalized models of search satisfaction. In CIKM, pages 2009–2018.

ACM, 2013. (Cited on page 5.)
[48] A. Hassan, R. Jones, and K. L. Klinkner. Beyond DCG: User behavior as a predictor of a successful

search. In WSDM, pages 221–230, 2010.
[49] A. Hassan, X. Shi, N. Craswell, and B. Ramsey. Beyond clicks: query reformulation as a predictor of

search satisfaction. In CIKM, pages 2019–2028. ACM, 2013. (Cited on page 5.)
[50] J. He, C. Zhai, and X. Li. Evaluation of methods for relative comparison of retrieval systems based on

clickthroughs. In CIKM, pages 2029–2032. ACM, 2009. (Cited on page 26.)
[51] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, pages

770–778. IEEE, 2016. (Cited on pages 8, 50, 54, and 67.)
[52] K. Hofmann, S. Whiteson, and M. de Rijke. A probabilistic method for inferring preferences from

102

http://cms.edelman.com/sites/default/files/2018-02/2018_Edelman_Trust_Barometer_Global_Report_FEB.pdf
http://cms.edelman.com/sites/default/files/2018-02/2018_Edelman_Trust_Barometer_Global_Report_FEB.pdf
http://cms.edelman.com/sites/default/files/2018-02/2018_Edelman_Trust_Barometer_Global_Report_FEB.pdf

clicks. In CIKM, pages 249–258. ACM, 2011. (Cited on page 11.)
[53] K. Hofmann, S. Whiteson, and M. de Rijke. Balancing exploration and exploitation in learning to rank

online. In ECIR, pages 251–263. Springer, 2011. (Cited on pages 5, 49, and 84.)
[54] K. Hofmann, F. Behr, and F. Radlinski. On caption bias in interleaving experiments. In CIKM, pages

115–124. ACM, 2012. (Cited on page 26.)
[55] K. Hofmann, A. Schuth, S. Whiteson, and M. de Rijke. Reusing historical interaction data for faster

online learning to rank for IR. In WSDM, pages 183–192. ACM, 2013. (Cited on pages 5, 11, 26, 28,
49, 68, 72, and 84.)

[56] K. Hofmann, S. Whiteson, and M. de Rijke. Balancing exploration and exploitation in listwise and
pairwise online learning to rank for information retrieval. Information Retrieval Journal, 16(1):63–90,
2013. (Cited on pages 5, 8, 68, and 84.)

[57] X.-S. Hua, L. Yang, J. Wang, J. Wang, M. Ye, K. Wang, Y. Rui, and J. Li. Clickage: Towards bridging
semantic and intent gaps via mining click logs of search engines. In MM, pages 243–252. ACM, 2013.
(Cited on page 67.)

[58] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten. Densely connected convolutional
networks. arXiv preprint arXiv:1608.06993, 2016. (Cited on pages 54 and 67.)

[59] Internet Live Stats. Google search statistics. http://www.internetlivestats.com/
google-search-statistics/, 2018. (Cited on page 1.)

[60] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. In ICML, pages 448–456, 2015. (Cited on page 62.)

[61] R. Jagerman, J. Kiseleva, and M. de Rijke. Modeling label ambiguity for listwise neural learning to
rank. In Neu-IR, August 2017. (Cited on pages 58 and 68.)

[62] V. Jain and M. Varma. Learning to re-rank: query-dependent image re-ranking using click data. In
WWW, pages 277–286. ACM, 2011. (Cited on page 67.)

[63] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM Transactions
on Information Systems, 20(4):422–446, 2002. (Cited on pages 15 and 58.)

[64] J. Jiang, A. H. Awadallah, X. Shi, and R. W. White. Understanding and predicting graded search
satisfaction. In WSDM, pages 57–66. ACM, 2015. (Cited on page 5.)

[65] T. Joachims. Optimizing search engines using clickthrough data. In KDD, pages 133–142. ACM,
2002. (Cited on pages 2, 26, 49, and 88.)

[66] T. Joachims. Evaluating retrieval performance using clickthrough data. In J. Franke, G. Nakhaeizadeh,
and I. Renz, editors, Text Mining. Physica Verlag, 2003. (Cited on page 2.)

[67] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. Journal of
Artificial Intelligence Research, 4:237–285, 1996. (Cited on pages 8, 50, 51, 55, 68, and 69.)

[68] M. Karimzadehgan, W. Li, R. Zhang, and J. Mao. A stochastic learning-to-rank algorithm and its
application to contextual advertising. In WWW, pages 377–386. ACM, 2011. (Cited on page 3.)

[69] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. (Cited on page 62.)

[70] J. Kiseleva, K. Williams, A. H. Awadallah, I. Zitouni, A. Crook, and T. Anastasakos. Predicting user
satisfaction with intelligent assistants. In SIGIR, pages 45–54. ACM, 2016. (Cited on pages 5 and 71.)

[71] R. Kohavi, R. Longbotham, D. Sommerfield, and R. Henne. Controlled experiments on the web:
survey and practical guide. Data Mining and Knowledge Discovery, 18:140–181, 2009. (Cited on
pages 26, 27, and 28.)

[72] M. Kosinski, D. Stillwell, and T. Graepe. Private traits and attributes are predictable from digital
records of human behavior. PNAS, 110:5802–5805, 2013. (Cited on page 72.)

[73] M. Kutlu, V. Khetan, and M. Lease. Correlation and prediction of evaluation metrics in information
retrieval. arXiv preprint arXiv:1802.00323, 2018. (Cited on page 85.)

[74] B. Kveton, C. Szepesvari, Z. Wen, and A. Ashkan. Cascading bandits: Learning to rank in the cascade
model. In ICML, pages 767–776, 2015. (Cited on pages 5, 50, and 68.)

[75] A. N. Langville and C. D. Meyer. Google’s PageRank and Beyond: The Science of Search Engine
Rankings. Princeton University Press, 2011. (Cited on page 1.)

[76] LETOR: Learning to Rank for Information Retrieval. Letor: Learning to rank for informa-
tion retrieval, 2009. URL https://www.microsoft.com/en-us/research/project/
letor-learning-rank-information-retrieval/. (Cited on page 2.)

[77] S. Levine, Z. Popovic, and V. Koltun. Feature construction for inverse reinforcement learning. In

103

http://www.internetlivestats.com/google-search-statistics/
http://www.internetlivestats.com/google-search-statistics/
https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval/
https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval/

6. Bibliography

NIPS, pages 1342–1350, 2010. (Cited on page 73.)
[78] S. Levine, Z. Popovic, and V. Koltun. Nonlinear inverse reinforcement learning with gaussian processes.

In NIPS, pages 19–27, 2011. (Cited on page 73.)
[79] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies. Journal

of Machine Learning Research, 17(39):1–40, 2016. (Cited on page 73.)
[80] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen. Learning hand-eye coordination for

robotic grasping with deep learning and large-scale data collection. The International Journal of
Robotics Research, pages 173–184, 2016. (Cited on page 73.)

[81] C. Li, A. Grotov, B. Eikema, I. Markov, and M. de Rijke. Deep online learning to rank for image
filtering with implicit feedback. In Submitted, 2018. (Cited on page 49.)

[82] J. Li, W. Monroe, A. Ritter, D. Jurafsky, M. Galley, and J. Gao. Deep reinforcement learning for
dialogue generation. In EMNLP, pages 1192–1202. ACL, 2016. (Cited on pages 71, 72, and 84.)

[83] Z. Li, J. Kiseleva, M. de Rijke, and A. Grotov. Towards learning reward functions from user interactions.
In ICTIR, pages 941–944. ACM, 2017. (Cited on page 71.)

[84] Z. Li, A. Grotov, J. Kiseleva, M. de Rijke, and H. Oosterhuis. Optimizing interactive systems with
data-driven objectives. arXiv preprint arXiv:1802.06306, February 2018. (Cited on page 11.)

[85] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
Microsoft COCO: Common objects in context. In ECCV, pages 740–755. Springer, 2014. (Cited on
pages 5, 51, 60, and 98.)

[86] T.-Y. Liu. Learning to rank for information retrieval. Foundations and Trends in Information Retrieval,
3(3):225–331, 2009. (Cited on pages 67 and 68.)

[87] M. Lopes, F. Melo, and L. Montesano. Active learning for reward estimation in inverse reinforcement
learning. In ECML/PKDD, pages 31–46. Springer, 2009. (Cited on page 73.)

[88] R. Lowe, M. Noseworthy, I. V. Serban, N. Angelard-Gontier, Y. Bengio, and J. Pineau. Towards an
automatic Turing test: Learning to evaluate dialogue responses. In ACL, pages 1116–1126, 2017.
(Cited on page 85.)

[89] R. D. Luce. Individual Choice Behavior a Theoretical Analysis. John Wiley and sons, 1959. (Cited on
page 57.)

[90] J. Luo, S. Zhang, and H. Yang. Win-win search: Dual-agent stochastic game in session search. In
SIGIR, pages 587–596. ACM, 2014. (Cited on page 3.)

[91] J. Luo, X. Dong, and H. Yang. Learning to reinforce search effectiveness. In ICTIR, pages 271–280.
ACM, 2015. (Cited on page 84.)

[92] J. Luo, X. Dong, and H. Yang. Session search by direct policy learning. In ICTIR, pages 261–270.
ACM, 2015. (Cited on pages 72 and 84.)

[93] Y. Lv, T. Moon, P. Kolari, Z. Zheng, X. Wang, and Y. Chang. Learning to model relatedness for news
recommendation. In WWW, pages 57–66. ACM, 2011. (Cited on page 3.)

[94] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013. (Cited on
pages 8, 51, and 68.)

[95] V. Mnih, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra,
S. Legg, and D. Hassabis. Human-level control through deep reinforcement learning. Nature, 518
(7540):529–533, 2015. (Cited on page 73.)

[96] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. MIT Press, 2012.
(Cited on page 84.)

[97] M. Monfort, A. Liu, and B. Ziebart. Intent prediction and trajectory forecasting via predictive inverse
linear-quadratic regulation. In AAAI, pages 3672–3678. AAAI Press, 2015. (Cited on page 85.)

[98] Movielens. Movielens dataset. https://grouplens.org/datasets/movielens/, 2018.
(Cited on page 2.)

[99] Netflix. Netflix prize data. https://www.kaggle.com/netflix-inc/netflix-prize-
data, 2017. (Cited on page 2.)

[100] A. Y. Ng and S. J. Russell. Algorithms for inverse reinforcement learning. In ICML, pages 663–670.
Morgan Kaufmann, 2000. (Cited on pages 73, 74, and 89.)

[101] Y. Norouzzadeh Ravari, I. Markov, A. Grotov, M. Clements, and M. de Rijke. User behavior in location
search on mobile devices. In ECIR, pages 728–733. Springer, April 2015.

104

https://grouplens.org/datasets/movielens/
https://www.kaggle.com/netflix-inc/netflix-prize-data
https://www.kaggle.com/netflix-inc/netflix-prize-data

[102] D. Odijk, E. Meij, I. Sijaranamual, and M. de Rijke. Dynamic query modeling for related content
finding. In SIGIR, pages 33–42. ACM, 2015. (Cited on page 85.)

[103] N. O’Hare, P. de Juan, R. Schifanella, Y. He, D. Yin, and Y. Chang. Leveraging user interaction signals
for web image search. In SIGIR, pages 559–568. ACM, 2016. (Cited on pages 51 and 67.)

[104] H. Oosterhuis and M. de Rijke. Ranking for relevance and display preferences in complex presentation
layouts. arXiv preprint arXiv:1805.02404, 2018. (Cited on pages 49 and 90.)

[105] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via bootstrapped DQN. In NIPS,
pages 4026–4034, 2016. (Cited on pages 8, 51, 55, 56, 68, and 69.)

[106] I. Osband, D. Russo, Z. Wen, and B. Van Roy. Deep exploration via randomized value functions.
arXiv preprint arXiv:1703.07608, 2017. (Cited on pages 68 and 69.)

[107] Y. Pan, T. Yao, T. Mei, H. Li, C.-W. Ngo, and Y. Rui. Click-through-based cross-view learning for
image search. In SIGIR, pages 717–726. ACM, 2014. (Cited on page 67.)

[108] J. Y. Park, N. O’Hare, R. Schifanella, A. Jaimes, and C.-W. Chung. A large-scale study of user image
search behavior on the web. In CHI, pages 985–994. ACM, 2015. (Cited on page 67.)

[109] O. Pietquin. Inverse reinforcement learning for interactive systems. In Workshop on Machine Learning
for Interactive Systems, pages 71–75. ACM, 2013. (Cited on page 85.)

[110] R. L. Plackett. The analysis of permutations. Applied Statistics, pages 193–202, 1975. (Cited on
page 57.)

[111] H.-T. Pu. A comparative analysis of web image and textual queries. Online Information Review, 29(5):
457–467, 2005. (Cited on page 67.)

[112] T. Qin, T.-Y. Liu, J. Xu, and H. Li. LETOR: A benchmark collection for research on learning to
rank for information retrieval. Information Retrieval, 13(4):346–374, 2010. (Cited on pages 1, 8, 37,
and 38.)

[113] F. Radlinski and N. Craswell. Comparing the sensitivity of information retrieval metrics. In SIGIR,
pages 667–674. ACM, 2010. (Cited on page 26.)

[114] F. Radlinski, R. Kleinberg, and T. Joachims. Learning diverse rankings with multi-armed bandits. In
ICML, pages 784–791. ACM, 2008. (Cited on page 68.)

[115] F. Radlinski, M. Kurup, and T. Joachims. How does clickthrough data reflect retrieval quality? In
CIKM, pages 43–52. ACM, 2008. (Cited on pages 26, 28, and 37.)

[116] N. D. Ratliff, D. Silver, and J. A. Bagnell. Learning to search: Functional gradient techniques for
imitation learning. Autonomous Robots, 27(1):25–53, 2009. (Cited on page 73.)

[117] S. Robertson and H. Zaragoza. The probabilistic relevance framework: BM25 and beyond. Foundations
and Trends in Information Retrieval, 3(4):333–389, 2009. (Cited on page 1.)

[118] S. Russell. Learning agents for uncertain environments. In COLT, pages 101–103. ACM, 1998. (Cited
on page 73.)

[119] M. Sanderson. Test collection based evaluation of information retrieval systems. Foundations and
Trends in Information Retrieval, 4(4):247–375, 2010. (Cited on pages 1, 26, 27, and 68.)

[120] A. Schuth, F. Sietsma, S. Whiteson, D. Lefortier, and M. de Rijke. Multileaved comparisons for fast
online evaluation. In CIKM, pages 71–80. ACM, 2014. (Cited on page 26.)

[121] A. Schuth, H. Oosterhuis, S. Whiteson, and M. de Rijke. Multileave gradient descent for fast online
learning to rank. In WSDM, pages 457–466. ACM, February 2016. (Cited on pages 5, 49, 50, and 68.)

[122] G. Shani, D. Heckerman, and R. I. Brafman. An MDP-based recommender system. Journal of Machine
Learning Research, 6(Sep):1265–1295, 2005. (Cited on page 84.)

[123] A. Shishkin, P. Zhinalieva, and K. Nikolaev. Quality-biased ranking for queries with commercial
intent. In WWW, pages 1145–1148. ACM, 2013. (Cited on page 3.)

[124] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the
game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016. (Cited on
page 73.)

[125] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
In arXiv preprint arXiv:1409.1556, 2014. (Cited on pages 54, 60, and 67.)

[126] S. P. Singh, M. J. Kearns, D. J. Litman, and M. A. Walker. Reinforcement learning for spoken dialogue
systems. In NIPS, pages 956–962, 2000. (Cited on page 3.)

[127] A. W. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based image retrieval at

105

6. Bibliography

the end of the early years. IEEE Transactions on pattern analysis and machine intelligence, 22(12):
1349–1380, 2000. (Cited on page 67.)

[128] Statistica. Market capitalization of the biggest internet companies worldwide as of may
2017. https://www.statista.com/statistics/277483/market-value-of-the-
largest-internet-companies-worldwide/, 2018. (Cited on page 1.)

[129] R. S. Sutton. Integrated architectures for learning, planning, and reacting based on approximating
dynamic programming. In ICML, pages 216–224, 1990. (Cited on pages 8, 51, 55, and 68.)

[130] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge, 1998.
(Cited on page 72.)

[131] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient methods for reinforcement
learning with function approximation. In NIPS, pages 1057–1063, 2000. (Cited on page 58.)

[132] H. Tang, R. Houthooft, D. Foote, A. Stooke, O. X. Chen, Y. Duan, J. Schulman, F. DeTurck, and
P. Abbeel. #Exploration: A study of count-based exploration for deep reinforcement learning. In NIPS,
pages 2750–2759, 2017. (Cited on pages 68 and 69.)

[133] H. Tavani. Search engines and ethics, 2012. URL https://plato.stanford.edu/entries/
ethics-search/. (Cited on page 1.)

[134] J. Teevan, S. T. Dumais, and E. Horvitz. Characterizing the value of personalizing search. In SIGIR,
pages 757–758. ACM, 2007. (Cited on page 2.)

[135] W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25:285–294, 1933. (Cited on pages 56 and 68.)

[136] D. Tjondronegoro, A. Spink, and B. J. Jansen. A study and comparison of multimedia web searching:
1997–2006. Journal of the Association for Information Science and Technology, 60(9):1756–1768,
2009. (Cited on page 67.)

[137] A. Turpin and F. Scholer. User performance versus precision measures for simple search tasks. In
SIGIR, pages 11–18. ACM, 2006. (Cited on page 2.)

[138] C. Van Gysel, M. de Rijke, and E. Kanoulas. Learning latent vector spaces for product search. In
CIKM, pages 165–174. ACM, 2016. (Cited on page 90.)

[139] C. Van Gysel, M. de Rijke, and M. Worring. Unsupervised, efficient and semantic expertise retrieval.
In WWW, pages 1069–1079. International World Wide Web Conferences Steering Committee, 2016.
(Cited on page 90.)

[140] E. M. Voorhees and D. K. Harman, editors. TREC: Experiment and Evaluation in Information Retrieval.
MIT Press, 2005. (Cited on pages 2 and 50.)

[141] J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z. Leibo, R. Munos, C. Blundell, D. Kumaran,
and M. Botvinick. Learning to reinforcement learn. arXiv preprint arXiv:1611.05763, 2016. (Cited on
page 73.)

[142] L. Weaver and N. Tao. The optimal reward baseline for gradient-based reinforcement learning. In UAI,
pages 538–545. Morgan Kaufmann Publishers Inc., 2001. (Cited on page 59.)

[143] H. Wei, F. Zhang, N. J. Yuan, C. Cao, H. Fu, X. Xie, Y. Rui, and W.-Y. Ma. Beyond the words:
Predicting user personality from heterogeneous information. In WSDM, pages 305–314. ACM, 2017.
(Cited on page 72.)

[144] Z. Wei, J. Xu, Y. Lan, J. Guo, and X. Cheng. Reinforcement learning to rank with markov decision
process. In SIGIR, pages 945–948. ACM, 2017. (Cited on page 56.)

[145] K. Williams, J. Kiseleva, A. C. Crook, I. Zitouni, A. H. Awadallah, and M. Khabsa. Detecting good
abandonment in mobile search. In WWW, pages 495–505, 2016. (Cited on page 71.)

[146] M. Wulfmeier, P. Ondruska, and I. Posner. Maximum entropy deep inverse reinforcement learning.
arXiv preprint arXiv:1507.04888, 2015. (Cited on pages 73 and 89.)

[147] X. Xie, Y. Liu, X. Wang, M. Wang, Z. Wu, Y. Wu, M. Zhang, and S. Ma. Investigating examination
behavior of image search users. In SIGIR, pages 275–284. ACM, 2017. (Cited on page 67.)

[148] X. Xie, Y. Liu, M. de Rijke, J. He, M. Zhang, and S. Ma. Why people search for images using web
search engines. In WSDM, pages 655–663. ACM, February 2018. (Cited on page 67.)

[149] J. Xu and H. Li. Adarank: A boosting algorithm for information retrieval. In SIGIR, pages 391–398,
New York, NY, USA, 2007. ACM. (Cited on page 38.)

[150] Yandex. Relevance prediction using user behaviour. https://academy.yandex.ru/events/
data_analysis/relpred2011/, 2011. (Cited on page 2.)

[151] E. Yilmaz, M. Shokouhi, N. Craswell, and S. Robertson. Expected browsing utility for web search

106

https://www.statista.com/statistics/277483/market-value-of-the-largest-internet-companies-worldwide/
https://www.statista.com/statistics/277483/market-value-of-the-largest-internet-companies-worldwide/
https://plato.stanford.edu/entries/ethics-search/
https://plato.stanford.edu/entries/ethics-search/
https://academy.yandex.ru/events/data_analysis/relpred2011/
https://academy.yandex.ru/events/data_analysis/relpred2011/

evaluation. In CIKM, pages 1561–1564. ACM, 2010. (Cited on pages 1, 5, 28, and 30.)
[152] E. Yilmaz, M. Verma, N. Craswell, F. Radlinski, and P. Bailey. Relevance and effort: an analysis of

document utility. In CIKM, pages 91–100. ACM, 2014. (Cited on page 37.)
[153] J. Yu, D. Tao, M. Wang, and Y. Rui. Learning to rank using user clicks and visual features for image

retrieval. IEEE Transactions on Cybernetics, 45(4):767–779, April 2015. (Cited on page 67.)
[154] Y. Yue and T. Joachims. Interactively optimizing information retrieval systems as a dueling bandits

problem. In ICML, pages 1201–1208. ACM, 2009. (Cited on pages 39, 47, 50, and 68.)
[155] Y. Zhang, D. Wang, G. Wang, W. Chen, Z. Zhang, B. Hu, and L. Zhang. Learning click models via

probit Bayesian inference. In CIKM, pages 439–448. ACM, 2010. (Cited on page 90.)
[156] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi. Target-driven visual

navigation in indoor scenes using deep reinforcement learning. In ICRA, pages 3357–3364. IEEE,
2017. (Cited on page 73.)

[157] B. Ziebart, A. Dey, and J. A. Bagnell. Probabilistic pointing target prediction via inverse optimal
control. In IUI, pages 1–10. ACM, 2012. (Cited on page 85.)

[158] B. D. Ziebart. Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy.
PhD thesis, Carnegie Mellon University, 2010. (Cited on page 79.)

[159] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement
learning. In AAAI, pages 1433–1438. AAAI Press, 2008. (Cited on pages 73 and 76.)

[160] M. Zoghi, T. Tunys, M. Ghavamzadeh, B. Kveton, C. Szepesvari, and Z. Wen. Online learning to rank
in stochastic click models. In ICML, pages 4199–4208, 2017. (Cited on pages 5 and 68.)

107

Summary

Web search engines are used by many people everyday, serving as one of the primary
gateways to information stored online. Optimizing search engines is challenging because
it requires large datasets annotated by human judges. Such datasets are expensive to
create and are often not reliable because there can be a mismatch between what human
judges and real users find relevant. This motivates using observed interactions between
the user and the web search engine. These interactions are readily available in massive
quantities and have been shown to correlate with user satisfaction with the search engine.

In this thesis we study how to use these interactions to optimize web search engines.
In the first research chapter we look at modeling clicks on a search engine result page
using several click models; we compare the ability of these click models to explain
and predict clicks, predict annotated relevance and improve rankings. In the second
research chapter we derive a Bayesian inference method for the DBN click model and
use it to compare search engine rankers to each other using a fixed interaction log. We
compare the proposed Bayesian approach with the traditional Expectation Maximization
inference. We find that the confidence estimates in the Bayesian approach help to decide
if the logged interactions are enough to conclude that one ranker is better than another
one. In the third research chapter we use deep neural networks to perform online
learning to rank. We propose and compare two loss functions and compare several
exploration strategies on the image filtering task. We find that while both loss functions
are theoretically sound only one of them works in practice. In the final research chapter
we address the scenario when we do not know what metric we want to optimize. We
propose a new algorithm that first recovers the user satisfaction metric using Inverse
Reinforcement Learning and then optimizes it using Reinforcement Learning. We find
that it successfully recovers user rewards and can optimize the system resulting in a
better user experience.

We have found that interactions are useful for optimizing search engines. User
interactions must be used cautiously because they are biased. They are biased because
users prefer to interact with the results that rank high on the result page and because the
search engine displays some results more often than others. However, when used cor-
rectly they can substitute annotated datasets annotated by human judges. The observed
user interactions can also be used to automatically create optimization objectives for
interactive systems. This thesis advanced our understanding of how to use interactions
to optimize web search engines and resulted in development of several algorithms that
can be used in practice to optimize real world systems.

109

Samenvatting

Internetzoekmachines worden iedere dag gebruikt door vele mensen. Ze dienen als
één van de belangrijkste toegangspoorten tot online informatie. Het is lastig om deze
zoekmachines te optimaliseren, aangezien er grote datasets, geannoteerd door mensen,
voor nodig zijn. Het is duur om dit soort datasets te maken en bovendien zijn de
uiteindelijke datasets vaak onbetrouwbaar aangezien er een verschil kan zijn tussen wat
de annotatoren belangrijk vinden en wat echte gebruikers belangrijk vinden.

Het gebruik van geobserveerde interacties tussen gebruikers en zoekmachines zou
kunnen helpen. Deze interacties zijn grootschalig beschikbaar en correleren met de
tevredenheid van gebruikers over de zoekmachines.

In dit proefschrift onderzoeken we hoe we deze interacties kunnen gebruiken om
internetzoekmachines te optimaliseren. In het eerste hoofdstuk kijken we naar het
modelleren van kliks op de resultatenpagina van een zoekmachine. Hiervoor gebruiken
we verschillende klikmodellen. We vergelijken hoe deze klikmodellen kliks kunnen
uitleggen en voorspellen, hoe ze geannoteerde relevantie kunnen voorspellen en hoe ze
rankings kunnen verbeteren.

In het tweede onderzoekshoofdstuk leiden we een Bayesiaanse inferentie methode
af voor het DBN klikmodel en we gebruiken deze methode om rankings van zoekma-
chines te vergelijken met behulp van een gegeven log met interacties. We vergelijken
de voorgestelde Bayesiaanse aanpak met de traditionele Expectation Maximization
inference. We vinden dat de betrouwbaarheidsschattingen in de Bayesiaanse aanpak
helpen om te beslissen of de gelogde interacties genoeg zijn om te concluderen dat de
ene ranker beter is dan de andere.

In het derde onderzoekshoofdstuk gebruiken we diepe neurale netwerken om de
online learning to rank taak uit te voeren. We stellen twee loss functies voor en
vergelijken deze twee. Ook vergelijken we verschillende exploratie strategieën voor
het filteren van afbeeldingen. Hoewel allebei de loss functies theoretisch correct zijn,
vinden we dat er in de praktijk slechts één werkt.

In het laatste onderzoekshoofdstuk bekijken we het scenario waarin we niet weten
welke metriek we willen optimaliseren. We stellen een nieuw algoritme voor dat eerst de
gebruikerstevredenheid metriek construeert. Hiervoor gebruiken we inverse reinforce-
ment learning. Vervolgens optimaliseert het algoritme de metriek met reinforcement
learning. We vinden dat het algoritme de gebruikers beloningen correct weet te con-
strueren en dat het algoritme het systeem kan optimaliseren. Dit resulteert in een betere
gebruikerstevredenheid.

Dit proefschrift heeft bijgedragen aan ons begrip van hoe interacties gebruikt kunnen
worden om internetzoekmachines te optimaliseren en heeft geresulteerd in de ontwikke-
ling van verschillende algoritmes die gebruikt kunnen worden om systemen uit de
praktijk te optimaliseren.

111

	Introduction
	Research Outline and Questions
	RQ1: Which is the best click model to model interactions with a search engine result page?
	RQ2: Does quantifying uncertainty in click models help to evaluate search engine rankers?
	RQ3: How to optimize deep neural networks using implicit feedback to perform learning to rank online?
	RQ4: Is it possible to optimize interactive systems using user interactions without explicit reward?

	Main Contributions
	Algorithmic contributions
	Empirical contributions
	Software contributions

	Thesis Overview
	Origins

	A Comparative Study of Click Models for Web Search
	Introduction
	Click Models
	Evaluation Measures
	Experimental Setup
	Results
	Conclusion

	Bayesian Ranker Comparison Based on Historical User Interactions
	Introduction
	Related Work
	Problem Setting
	Click Model-Based Metric
	BARACO
	Inferring click model posteriors
	The switching problem
	The difference estimation problem

	Experimental setup
	LETOR evaluation
	WSDM evaluation
	Parameter settings

	Results
	LETOR results
	Results for the switching problem
	Results for the difference estimation problem

	WSDM results
	Results for the switching problem
	Results for the difference estimation problem

	Conclusions and Future Work

	Deep Online Learning to Rank for Image Filtering with Implicit Feedback
	Introduction
	Problem Setting
	Method
	Score network
	Exploration policies
	Exploitation
	Exploration
	 -greedy
	Boltzmann exploration
	Bootstrapped exploration

	Two ways of training a score network using implicit user feedback
	Reward signal
	DCG-loss
	PG-loss

	Experimental Setup
	Datasets
	Experimental design
	Evaluation measures
	Experimental conditions
	Optimization, regularization and hyperparameters

	Results
	DCG-loss vs. PG-loss
	Exploration
	Effect of list size

	Related Work
	Image retrieval
	Online learning to rank
	Deep online learning

	Conclusion

	Optimizing Interactive Systems with Data-Driven Objectives
	Introduction
	Background
	Modeling User-System Interactions
	Modeling user behavior in interactive systems
	Defining different types of user behaviors

	Defining Data-driven Objectives
	Defining interactive system objectives
	Recovering user rewards

	Optimizing Interactive Systems with Data-driven Objectives
	Experimental Setup
	Designing an interactive system
	Modeling user behavior
	Evaluation process

	Results and Discussion
	Performance of ISO
	Improving interactive systems with ISO
	Suboptimal trajectories in the absence of feedback
	Impact of ISO components

	Related Work
	Optimizing interactive systems
	Rewards for interactive systems

	Conclusions and Future work

	Conclusions
	Main Findings
	RQ1: Which is the best click model to model interactions with a search engine result page?
	RQ2: Does quantifying uncertainty in click models help to evaluate search engine rankers?
	RQ3: How to optimize deep neural networks using implicit feedback to perform learning to rank online
	RQ4: Is it possible to optimize interactive systems using user interactions without explicit reward?

	Looking Forward
	Evaluation
	Data
	Better algorithms

	Appendices
	Acronyms
	Code
	Code for Bayesian Ranker Comparison Based on Historical User Interactions
	Code for Deep Online Learning to Rank for Image Filtering with Implicit Feedback
	Data preprocessing
	Algorithm modules
	Putting it together

	Code for Interactive System Optimizer

	Bibliography
	Summary
	Samenvatting

